A RAND NOTE

Policy Analysis of Water Management for the Netherlands

Vol. XII, Model for Regional Hydrology, Agricultural Water Demands and Damages from Drought and Salinity

A. H. Abrahamse, G. Baarse, E. van Beek

April 1982

N-1500/12-NETH

Prepared for

The Netherlands Rijkswaterstaat

The Rand Publications Series: The Report is the principal publication doc-
umenting and transmitting Rand's major research findings and final research results. The Rand Note reports other outputs of sponsored research for general distribution. Publications of The Rand Corporation do not necessarily reflect the opinions or policies of the sponsors of Rand research.
Copyright © 1982 The Rand Corporation

Published by The Rand Corporation

This note was prepared with the support of The Netherlands Rijkswaterstaat under Contract No. WW-256.

PREFACE

For some time the Netherlands has had a problem with water quality, particularly salinity, eutrophication, and thermal pollution. Moreover, the future demand for fresh water is expected to exceed the supply. The growing demand for the limited supply of groundwater is leading to increased competition among its users: agriculture, industry, nature preserves, and companies that supply drinking water. The supply of surface water is sufficient except in dry years, when there is competition not only among such users as agriculture, power plants, and shipping, but also among different regions.

Facing such water management problems, the Dutch government wanted an analysis to help draft the first national water management law and to select the overall water management policy for the Netherlands. It established the Policy Analysis for the Water Management of the Netherlands (PAWN) Project in August 1976 as a joint research project of Rand (a nonprofit corporation), the Rijkswaterstaat (the government agency responsible for water control and public works), and the Delft Hydraulics Laboratory (a leading Dutch research organization).

The primary tasks of the PAWN project were to:

- 1. Develop a methodology for assessing the multiple consequences of water management policies.
- Apply it to develop alternative water management policies⁴ for the Netherlands and to assess and compare their consequences.
- Create a Dutch capability for further such analyses by training Dutch analysts and by documenting and transferring methodology developed at Rand to the Netherlands.

The methodology and results of the PAWN project are described in a series of publications entitled <u>Policy Analysis of Water Management for the Netherlands</u>. The series contains the following volumes:

- Volume I, Summary Report (Rand R-2500/1)
- Volume II, <u>Screening of Technical and Managerial Tactics</u> (Rand N-1500/2)
- Volume III, <u>Screening of Eutrophication Control Tactics</u> (Rand N-1500/3)
- Volume IV, <u>Design of Long-Run Pricing and Regulation</u> Strategies (Rand N-1500/4)
- Volume V, Design of Managerial Strategies (Rand N-1500/5)
- Volume VA, Methodological Appendixes to Vol. V (Rand N-1500/5A)
- Volume VI, <u>Design of Eutrophication Control Strategies</u> (Rand N-1500/6)

- Volume VII, Assessment of Impacts on Drinking-Water Companies and Their Customers (Rand N-1500/7)
- Volume VIII, Assessment of Impacts on Industrial Firms (Rand N-1500/8)
- Volume IX, <u>Assessment of Impacts on Shipping and Lock</u> Operation (Rand N-1500/9)
- Volume X, Distribution of Monetary Benefits and Costs (Rand N-1500/10)
- Volume XI, Water Distribution Model (Rand N-1500/11)
- Volume XII, <u>Model for Regional Hydrology</u>, <u>Agricultural Water</u>
 Demands and <u>Damages from Drought and Salinity</u> (Rand N-1500/12)
- Volume XIII, <u>Models for Sprinkler Irrigation System Design</u>, <u>Cost</u>, and <u>Operation</u> (Rand N-1500/13)
- Volume XIV, Optimal Distribution of Agricultural Irrigation Systems (Rand N-1500/14)
- Volume XV, Electric Power Reallocation and Cost Model (Rand N-1500/15)
- Volume XVI, Costs for Infrastructure Tactics (Rand N-1500/16)
- Volume XVII, <u>Flood Safety Model for the IJssel Lakes</u> (Rand N-1500/17)
- Volume XVIII, <u>Sedimentation and Dredging Cost Models</u> (Rand N-1500/18)
- Volume XIX, <u>Models for Salt Intrusion in the Rhine Delta</u> (Rand N-1500/19)
- Volume XX, Industry Response Simulation Model (Rand N-1500/20)

Four comments about this series of publications seem appropriate. First, the series represents a joint Rand/Rijkswaterstaat/Delft Hydraulics Laboratory research effort. Whereas only some of the volumes list Dutch coauthors, all have Dutch contributors, as can be seen from the acknowledgments pages.

Second, except where noted, these publications describe the methodology and results presented at the final PAWN briefing at Delft on December 11 and 12, 1979. For Rand, this briefing marked the beginning of the documentation phase of the project and the end of the analysis phase. Rand and the Rijkswaterstaat (RWS) considered the results to be tentative because (1) some of the methodology had not become available until late in the analysis phase, and (2) the RWS planned to do additional analysis.

Third, the RWS is preparing its <u>Nota Waterhuishouding</u>, the new policy document on water management scheduled for publication in 1982, by combining some of the PAWN results from December 1979 with the results of considerable additional analysis done in the Netherlands with the PAWN methodology. Because the understanding gained in the original analysis led to improvements in the data--and, in some instances, the models--used to represent the water management system in the additional analysis, the reader is hereby cautioned that the numerical results and conclusions presented in the PAWN volumes will not always agree with those presented in the <u>Nota Waterhuishouding</u> or its companion reports. (It has not been possible to indicate such differences in the volumes

since they are being written before the Nota is published.) Thus, the present series of publications puts primary emphasis on documenting the methodology rather than on describing the policy results.

Fourth, Vols. II through XX are not intended to stand alone, and should be read in conjunction with the <u>Summary Report</u> (Vol. I), which contains most of the contextual and evaluative material.

The present volume describes the District Hydrologic and Agriculture Model (DISTAG). DISTAG computes water demands by agriculture, the most important user of water in the Netherlands. Two other volumes are particularly closely related. Volume XI describes the Water Distribution Model, which uses DISTAG as a subroutine. Volume XIII describes various sprinkler models, some of which are used as subroutines by DISTAG.

Parts of this volume (Chaps. 1, 2, and 7) should be valuable for policymakers and others who are mainly interested in the results of the PAWN study and want to get an impression of the modeling effort behind the results. Chapters 3, 4, and 6 are directed toward readers more specifically interested in water management and hydrology. Details of the computer implementation of the model are given in Chap. 5.

NOTES

- Rand had had extensive experience with similar kinds of analysis and had been working with the Rijkswaterstaat for several years on other problems.
- 2. The Rand contract was officially with the Rijkswaterstaat,
 Directie Waterhuishouding en Waterbeweging (Directorate for Water
 Management and Water Movement), but numerous other parts of the
 Rijkswaterstaat contributed to the analysis.
- 3. Delft Hydraulics Laboratory research was performed under project number R1230, sponsored by the Netherlands Rijkswaterstaat.
- 4. Each water management policy involved a mix of tactics, each a particular action to affect water management, such as building a particular canal or taxing a particular use. Four kinds of tactics were considered: building new water management facilities (infrastructure) or applying various treatments to the water (called technical tactics); using managerial measures (called managerial tactics) to change the distribution of water among competing regions and users; and imposing taxes or quotas to affect the quantity or quality of water extracted or discharged by different users (called price and regulation tactics, respectively). A mix of tactics of the same kind is called a strategy. Thus, the overall policy could be conceived as a combination of technical, managerial, pricing, and regulation strategies.

SUMMARY

This volume describes the <u>District Hydrologic and Agriculture Model</u> (DISTAG). It describes methodology only, and contains no results or conclusions about water management for the Netherlands--such results appear in other volumes.

DISTAG simulates the hydrologic cycle. It assumes that the amount of rain and conditions determining evaporation are known, as are hydrologic conditions (e.g., quantity of water stored in the soil) at the beginning of a time interval. It then determines:

- How much water actually evaporates, both directly and in the form of transpiration from plants.
- How much water and salt remain in the soil.
- How much water and salt drain out of the soil into the surface water system.
- The groundwater level.

In addition to these strictly hydrologic quantities, the model also computes:

- Quantity of water and operating cost of sprinkling.
- Drought and salt damage to crops.

This volume gives an overview of the problems to which DISTAG is applied, describes the model in detail, and shows how it is used by PAWN. It also describes the data used by DISTAG for the agricultural analysis and explains where they were obtained. Finally, it shows that the model gives results that are of adequate accuracy for PAWN.

ACKNOWLEDGMENTS

In developing the model described in this volume, we used many valuable suggestions from G. Miedema of the Delft Hydraulics Laboratory. He also provided much of the agricultural data.

We are also indebted to a number of officials of the Ministry of Agriculture and Fisheries. They provided information and expert opinions about the model and the analysis. We met with them many times to exchange ideas and discuss approaches. In particular, we would like to acknowledge H. Ton, J. M. L. Janssen, A. P. Hiddings, Th. de Vries of the Ministry of Agriculture and Fisheries, and R. A. Feddes and P. J. M. van Boheemen of the Institute of Land and Water Management Research.

Early in the study we visited some agricultural institutes to learn about problems and possible solutions. These visits proved to be very helpful, and we wish to thank the individuals with whom we met at these institutes.

The use of the great amount of data was only possible thanks to the kind collaboration of those who did the actual work in collecting it. We wish to thank H. Groen, W. Silva, H. J. Opdam, W. W. Zuiderveen, N. Borgesius, P. W. H. Buisman, D. R. Querner, A. W. van der Hoek, and B. P. C. Steenkamp, all of the Rijkswaterstaat, for their help.

The Dutch reviewer of this volume was H. J. Colenbrander of the Commission for Hydrologic Research-TNO, who made many suggestions that improved the first draft. Other constructive suggestions came from J. Wesseling and R. A. Feddes of the Institute of Land and Water Management Research and A. P. Hidding of the Ministry of Agriculture and Fisheries.

Finally, we wish to express our appreciation to the Rand reviewer, S. Wildhorn. In addition to suggesting a number of valuable improvements, he also helped us to incorporate the many suggestions received from the Netherlands in the final draft.

CONTENTS

PREFACI	E	iii
SUMMARY	Υ	vii
ACKNOW	LEDGMENTS	ix
FIGURES	S	xiii
TABLES		XV
Chapter	r	
1.	THE CONTEXT 1.1. The Major Elements of the Water Management System 1.2. The Problem	1 1 2 3 4
2.	DEFINITIONS AND GENERAL DESCRIPTION OF THE MODEL 2.1. The Hydrology of the Netherlands 2.2. The Hydrologic Cycle in General 2.3. Agriculture 2.4. Time 2.5. The District Hydrologic and Agriculture Model (DISTAG) 2.6. The Distribution Model (DM) Notes Reference	22 22 23 28 28
3.	INPUTS AND OUTPUTS 3.1. Rain, Evaporation, and Length of Timestep 3.2. Geographic and Location-Dependent Data 3.3. Computed Input Data 3.4. Outputs	29 29 30 36 40
4.	HOW DISTAG WORKS 4.1. An Overview 4.2. Computation of Water Flows 4.3. Computation of Salt Flows 4.4. Agricultural Damage 4.5. Cost of Sprinkling 4.6. Groundwater Levels References	42 42 47 69 77 83 83
5.	COMPUTER IMPLEMENTATION OF DISTAG	8! 8! 8!

	5.4. The Plot Salt Model (PLOTSLT)	111
	5.5. The Plot Damage Model (PLOTDAM)	117
	5.6. DISTAG	117
	5.7. Overview of Data Flows among the Models	129
	Reference	129
6.	DATA	130
	6.1. Districts, Subdistricts, and Plots	130
	6.2. Soil and Crop Parameters	159
	6.3. Sprinkling Parameters	173
	6.4. Basic Drainage Parameters	173
	6.5. External Supply	181
	6.6. Miscellaneous Parameters	190
	References	192
7.	PUALISATION OF DICTAG	195
/.	EVALUATION OF DISTAG	195
	7.1. Introduction	
	7.2. Theoretical Basis of the Model	198
	7.3. Comparisons between Computations and Actual	
	Measurements	201
	7.4. Sensitivity of Results	221
	Note	238
	References	238
Append	ix	
Α.	DETERMINATION OF CROP PRICES, by N. A. Katz	239
В.	SUPPLEMENTARY DATA TABLES	249
Ċ.	LOWLANDS UNDERGROUND WATER AS A PHYSICOCHEMICAL SYSTEM,	- , -
•	by J. C. De Haven	300

FIGURES

2.1.	Average rain and evapotranspiration per decade at De Bilt, 1911-1975	6
2.2.	Lowlands and highlands of the Netherlands	8
2.3.	PAWN districts	11
2.4.	Pathways for the flow of water	14
2.5.	Schematic showing district water flows	15
2.6.	Schematic showing district salt flows	17
2.7.	Relationship between DM, DISTAG, and the plot models	25
2.8.	Overview showing how DM uses DISTAG in a single timestep	26
2.9.	Overview of DISTAG logic	27
4.1.	How DM uses DISTAG	43
4.2.	Overview of DISTAG	45
4.3.	Soil profile, volumetric distribution, and suction profile	
	below a plot	48
4.4.	Water flows in a plot	50
4.5.	$\mathbf{E}_{\mathbf{A}}/\mathbf{E}_{\mathbf{p}}$ as a function of pF	56
4.6.	Soil profile illustrating water flows due to drainage	57
4.7.	Typical soil moisture tension curve (pF-curve)	60
4.8.	Water and salt flows, with the root zone salt profile for	
	crops grown under glass	75
4.9.	Drought damage fraction as a function of $\mathbb{E}_{A}/\mathbb{E}_{P}$	80
.10.	Salt damage fraction as a function of the root zone salt	
	concentration	81
5.1.	Overview showing variables passed between DM, DISTAG, and the three plot models	128
6.1.	Drainage regions	174
6.2.	Weather stations	182
7.1.	Comparison of measured and computed discharges of the	205
7.2.	Vecht, 1973-1976	20.
1.2.	Dieze, 1973-1976	206
7.3.	Location of the Vecht and Dieze areas	207
7.4.	Location of Rijnland, Friesland/Groningen, Schermerboezem,	20,
,	Flevoland, and drainage region 4	209
7.5.	Comparison of measured and computed discharges from	_0,
	Rijnland, 1973-1976	212
7.6.	Comparison of measured and computed discharges from	~ ~ ~ ~
	Friesland/Groningen, 1975-1976	213
7.7.	Comparison of measured and computed chloride concentrations	
	of Delfland in 1976	217
7.8.	Comparison of measured and computed chloride concentrations	
	in Rijnland in 1976	218
7.9.	Comparisons of measured and computed groundwater levels	
	for high highlands part of drainage in region 4	224
7.10.	Comparison of measured Vecht discharges with discharges	
	computed using original and new versions of the basic	
	drainage parameters	230

7.11.	Comparison of measured groundwater levels in drainage region			
	4 with levels computed using original and new basic drainage			
	parameters	234		
C.1.	Osmotic relations in polder groundwater			
C.2.	.2. Model of conceptualized movements in overlying and under-			
	lying water parcels in the lowlands as influenced by osmotic			
	forces	310		

TABLES

2.1.	Surface Water, Urban, and Vegetation-Covered Areas in the	
	Netherlands	12
2.2.	Vegetation-Covered Area, by Landform, in the Netherlands	20
2.3.	Netherlands Agricultural Land Area, by Type of Sprinkling	20
3.1.	Data That Are Constant over Nation	31
3.2.	District Data	32
3.3.	Subdistrict Data	34
3.4.	Plot Data	37
3.5.	Computed Inputs	38
3.6.	District Agriculture Model Outputs	41
5.1.	Inputs to the Plot Water Model	88
5.2.	How DISTAG Controls PLOTWAT	89
5.3.	Outputs from the Plot Water Model	89
5.4.	"Core" Computations: Inputs and Outputs	91
5.5.	Setting Inputs to "Core" Computations	92
5.6.	Computation of PLOTWAT Outputs for Open-Air Crops	94
5.7.	Implementation of the Core Function $E_A = E_P \times F_{EVAP}(\Psi)$	95
5.8.	Implementation of the Core Function $D=F_{DRAIN}(x)$	96
5.9.	Implementation of the Core Function $\theta = F_{THETA}(\Psi)$	98
5.10.	Implementation of the Core Function $\Psi = F_{\mathrm{PSI}}(\Theta)$	99
5.11.	Implementation of the Core Function $Y=F_{GWL}(\Delta,V)$	102
5.12.	Implementation of the Core Function $V=F_{CAPRISE}(\Psi, X)$	103
5.13.	Outputs from the Sprinkling Procedures	103
5.14.	Sprinkling Quantities in the Core Model	104
5.15.	Water Flow Computations for Crops Grown under Glass	110
5.16.	Plot Salt Model Inputs and Outputs	112
5.17.	Salt Flows in Root Zone of Open-Air Plots	114
5.18.	Salt Flows in Subsoil of Open-Air Plots	115
5.19.	Salt Flows in Glasshouse Crops	116
5.20.	Plot Damage Model Inputs and Outputs	118
5.21.	Plot Damage Model	119
5.22.	Water Flows between Plots and the Surface Water System	121
5.23.	District Water Balance Computations	122
5.24.	Salt Concentration of Surface Water	123
5.25.	Agricultural Damage and Costs of Sprinkling	124
5.26	Variables Written on File PLTCOMP	126
5.27	Variables Written on File DSTCOMP	127
6.1.	District, Subdistrict, and Plot Data Files	131
6.2.	District Data	132
6.3.	Subdistrict Data	136
6.4.	Plot Data	142
6.5.	Soil Type Identifiers and Areas	161
6.6.	Soil Characteristics Data Files	162
6.7.	Soil Parameters for Soil Combinations Actually Used	164
6.8,	Crop Characteristics Data Files	165
0.0,	orch aggregatizaties have titles """"""""""""""""""""""""""""""""""""	100

6.9.	Crop Type Identifiers, Areas, and Values	166
6.10.	Crop Factors	167
6.11.	Parameters of the Damage Model	169
6.12.	Parameters That Depend on Soil and Crop	172
6.13.	Root Depths by Soil Type	172
6.14.	Sprinkling Data Files	174
6.15.	Sprinkling Costs	175
6.16.	Start-Gift Sprinkling Model Parameters	176
6.17.	Basic Drainage File	176
6.18.	Basic Drainage Regions and Parameters	177
6.19.	External Supply File	184
6.20.	Rain and Evapotranspiration by Decade and Weather Station	
	for External Supply Scenario DEX	185
6.21.	Rain and Evapotranspiration by Decade and Weather Station	
	for External Supply Scenario DO5	186
6.22.	Rain and Evapotranspiration by Decade and Weather Station	
	for External Supply Scenario D10	187
6.23.	Rain and Evapotranspiration by Decade and Weather Station	
	for External Supply Scenario D50	188
6.24.	Rain and Evapotranspiration by Decade and Weather Station	
< n=	for External Supply Scenario WEX	189
6.25.	Coefficients for Imputing Rain and Evaporation Data for	191
7.1.	Regions from Point Measurements	$\frac{191}{203}$
7.1.	Measured and Computed Discharges for the Vecht and Dieze Measured and Computed Discharges for Rijnland	210
7.3.	Measured and Computed Discharges for Friesland/Groningen	214
7.4.	Measured and Computed Groundwater Levels in Drainage	214
7.4.	Region 4	222
7.5.	Differences between Full Iteration and Limited Iteration	222
,	Schemes for Capillary Rise Computations for the Year 1976	
	in Rijnland and Aa	226
7.6.	The Sensitivity of Groundwater Level to Capillary Rise	
	for Loamy Medium Coarse Sand	226
7.7.	Measured and Computed Vecht Discharges for Two Versions	
	of Basic Drainage Functions	228
7.8.	Measured and Computed Groundwater Levels for Drainage	
	Region 4 for Two Versions of Basic Drainage Functions	232
7.9.	Sensitivity Analysis of Drought Damage Parameters	236
7.10.	Sensitivity of District Water Salt Concentration	
	and Salt Damage to Subsoil Depth	236
A.1.	Overview of Sample of Plots	244
A.2.	Comparison of Sprinkling in the Netherlands with Sprinkling	
	in the Sample of Plots	244
А.З.	Physical Crop Damage in the Netherlands by Year	246
A.4.	Crop Values for Different Years	247
B.1.	Primary Municipality Data	250
B.2.	Percentage of Municipalities in PAWN Districts	259
B.3.	Final Urban, Water, and Other Areas	270
B.4.	Surface Water Areas and Volumes; Nature Areas	271
B.5.	Primary Crop Data	273
B.6.	Primary Irrigation Data	277
B.7.	Percentage of Agricultural Regions in PAWN Districts	281

· -xvii-

B.8.	Initial Definitions of Subdistricts	287
B.9.	Subdistrict Crop/Irrigation Data	292
B.10.	Irrigation Weights for Defining Plots	297
B.11.	Agricultural Regions and Areas	298
	Weather Stations and Districts	

Chapter 1

THE CONTEXT

This chapter explains why agriculture causes water management problems and what some of the problems are. Then it outlines very briefly how the subject of this volume, the District Hydrologic and Agriculture Model, is used to analyze these problems.

The chapter is intended primarily for readers who are unfamiliar with water management in the Netherlands or with PAWN. A more complete discussion of PAWN is given in Vol. I.

1.1. THE MAJOR ELEMENTS OF THE WATER MANAGEMENT SYSTEM

The surface water system of the Netherlands, taken as a whole, is large and complicated. It includes the deltas of two large European rivers (the Rijn and the Maas), a large freshwater lake (the IJsselmeer), many smaller rivers, streams and canals, and a huge network of small ditches. If all of the details of the entire surface water system were contained in a single model, that model would be hopelessly complicated. For any modeling effort a distinction has to be made between that part of the surface water system whose details should be included, and that part that should be modeled in a much more aggregate way. We will call that part of the surface water system that we model in detail the distribution system. The distribution system is controlled by national and regional governments, while the rest is largely controlled by local authorities. The major elements of the distribution system are:

- The Rijn River and its distributaries--the Waal, the IJssel, etc.
- The Maas River.
- The Noordzeekanaal, the Amsterdam-Rijnkanaal, and other man-made waterways.
- The IJsselmeer and other big lakes.

Agriculture is the single most important "user" of water in the Netherlands. To get some idea of how much water is used by agriculture, we note that in the Netherlands there are more than 20,000 km² of land containing cultivated cash crops. In an average summer month, approximately 100 mm of water will be transpired from each point on the surface of the cultivated area. Therefore, in that month, more than 2,000 million m³ of water are transpired by this cropland (expressed as a flow, this amounts to 770 m³/s). We can get an idea of how much water this is by comparing it with other large volumes:

- The Ijsselmeer has a surface area of approximately 2000 km², and an average depth of about 4 m. If the 2000 million m³ required by agriculture in an average summer month were to be supplied from the IJsselmeer alone, it would draw down the level by at least a meter.
- A typical low summer discharge of the Rijn River is about 1000 m³/s. At this rate, nearly the total discharge of the Rijn would be required to supply the needs of agriculture.
- The total production of all drinking water companies in the Netherlands is about 1000 million m³ per year.

In addition to being the biggest user of water, agriculture suffers more damage than other users when water is scarce. Our models indicate that, one year in twenty, on the average, a drought will cause crop damage on the order of 1000 Dflm, whereas the costs to shipping are around 50 Dflm, and to power plants, 30 Dflm.

1.2. THE PROBLEM

The high consumption of water by agriculture does not usually pose a national water management problem because, most of the time, water needed by agriculture is supplied directly by rain or from moisture stored in the soil. Moreover, only a small fraction of the agricultural area can currently meet its demand by extracting water from the distribution system or from groundwater. First, not all areas have access to surface water or good quality groundwater. More importantly, the extent to which farmers have sprinkling equipment is still quite limited (only about 13 percent of the total agricultural area could be sprinkled from either surface water or groundwater in 1976).

However, the use of sprinkling has been rapidly increasing. If this growth continues, then agriculture will begin to experience new problems, and cause problems for other users of water. Increased extractions from surface water cause:

- Competition for water among farmers, and between farmers and other users.
- Increased salinity damage because of saline sprinkling water.

Water extracted from the ground for sprinkling can also become a problem. For example, in the Netherlands there are places where a lowering of the groundwater table could lead to the destruction of certain unique environmental areas.

There are a number of ways a nation can control the way in which water is allocated among various competing users. It can control water physically by building a canal or a sluice or other physical structure, or by managing an existing element of the system to favor

one group or another. It can control water administratively by taxing a use, setting a price, or prohibiting an activity. In the present study, we call any combination of such options a water management policy.²

The problem addressed by PAWN is to determine the <u>impacts</u> of any proposed policy. By impacts, we mean the benefits or disbenefits to every "user" affected by the policy, as well as the costs of the policy itself.

1.3. THE MODEL

The <u>District Hydrologic</u> and <u>Agriculture Model</u> (DISTAG) is a model performs three functions. First, it estimates water and salt flows between the distribution system and the land. Second, it determines groundwater levels. Finally, it calculates agricultural costs and benefits affected by the availability or lack of water. To be explicit, it assumes that the amount of rain and conditions determining evaporation are known, as are hydrologic conditions (e.g., quantity of water stored in the soil), at the beginning of a time interval and then determines:

- How much water is actually evaporated, both directly and in the form of transpiration from plants.
- How much water and salt are retained in the soil.
- How much water and salt are drained out of the soil into the surface water system.
- The groundwater level.

In addition to these strictly hydrologic quantities, DISTAG also computes:

- Quantity and cost of sprinkling.
- Drought and salt damage to crops.

DISTAG is used by the principal tool of the PAWN analysis, the <u>Distribution Model</u> (DM), described in Vol. XI. DM simulates the major surface water system of the Netherlands. It computes water flows in the major rivers, canals, and lakes, the concentration of salt and some other pollutants in these waters, and what the impacts are for a number of user categories: shipping, power plants, agriculture, etc. In order to make these computations, DM needs to know how much water enters the country from rivers and from rain. It also needs to know how much water is extracted and/or discharged by the various user groups. DISTAG is used by DM to perform three functions. First, DISTAG computes:

- How much water and salt are discharged into and/or extracted from the distribution system.
- How much water is extracted by agriculture for sprinkling.
- Costs and benefits of sprinkling for agriculture.
- Crop damage.

Second, DM uses DISTAG's estimates of extractions and discharges, along with a specified management plan, to estimate water flows for the rivers, canals, and lakes of the national distribution system. Finally, it uses DISTAG's estimates of sprinkling costs and crop damage to compute the costs and benefits of the management plan.

NOTES

- 1. The Statistisch Zakboek of the Centraal Bureau voor de Statistiek reports over 25,000 km² of "cultured ground." In PAWN about 20,000 km² of land contained cash crops. The discrepancy is partly due to definitional differences, but also due to the fact that PAWN did not include the entire country (e.g., the islands in the North Sea were omitted from the analysis).
- 2. The term policy is defined more precisely in Vol. I.

Chapter 2

DEFINITIONS AND GENERAL DESCRIPTION OF THE MODEL

This chapter describes what DISTAG computes, and explains in some detail how it is related to DM. It begins by explaining a little of the specific hydrology of the Netherlands, and then continues with discussions of the hydrologic features that are included in the model.

The chapter is intended for readers who wish to get a general idea of what the model is, but may not need to know specifically how the model works. It is also used to define a large number of terms needed in subsequent chapters, and in other volumes.

2.1. THE HYDROLOGY OF THE NETHERLANDS

DISTAG is a general model, and could be used for many problems in many regions. For example, it could be used to study the benefits to agriculture and effects on groundwater levels of increased groundwater extractions in California. It could also be used to estimate the optimal size of a reservoir in a Nebraskan watershed. Nevertheless, we had only one problem in mind: water management in the Netherlands. We will begin our discussion by explaining general features of climate and geography of the Netherlands that dominated our thinking as the model was developed.

2.1.1. Rain and Evaporation

The Netherlands has a moderate climate, with approximately 750 mm of rain per year, of which about 500 mm is evaporated by plants. Neither rain nor evaporation is uniform over the year. Rain varies somewhat over the year, but evapotranspiration varies widely. As Fig. 2.1 shows, higher levels of precipitation occur in the autumn and winter, compared with spring and early summer. (The term "decade" used in Fig. 2.1 and elsewhere is defined in Sec. 2.4.) But the highest precipitation occurs in July and August. The level of evapotranspiration is very high in summer. In average years, evapotranspiration is greater than precipitation from April through September by about 100 mm [2.1]. The deficit is usually made up by drawing on water stored in the soil.

Although the Netherlands is a small country, there is a considerable variation in climate from one place to the next. Generally, there is less rain and more evapotranspiration along the coast than inland. For example, in the province of Zeeland, in the southwest corner of the country, about 320 mm of rain usually falls from April through September, while in the province of South Limburg, in the southeast, about 380 mm falls. Normal open water evaporation from April through September is 590 mm in Zeeland and 570 mm in the southern part of the province of Brabant.

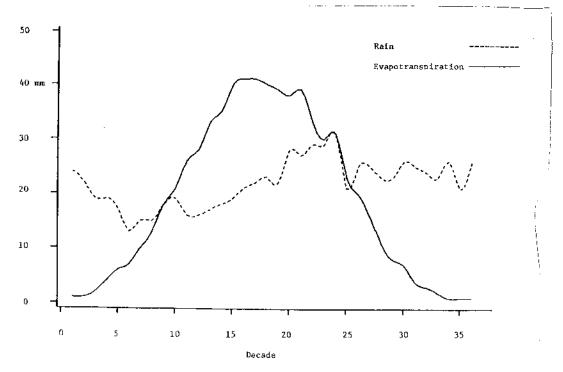


Fig. 2.1—Average rain and evapotranspiration per decade at De Bilt, 1911-1975

In a dry year, the discrepancy between rain and evaporation becomes much larger than in normal years. Whereas the normal discrepancy during the growing season, averaged over the whole country, is only around 100 mm, the discrepancy was closer to 375 mm during the drought year of 1976. During droughts, the moisture stored in the soil is inadequate, and crops are damaged. Because of regional differences, this damage can be quite different in different parts of the country.

2.1.2. Surface and Groundwater Systems

About 7 percent of the surface area¹ of the Netherlands consists of roads, buildings, and other hard surfaces that are impervious to moisture. Most of the rain that falls on such surfaces runs into the surface water system (a small fraction evaporates). Another 4 percent of the surface area consists of water that is not contained in the distribution system: ditches, small brooks, and the like. The remaining surface area is covered with vegetation. Except for a small part that evaporates immediately, rain falling on the vegetation—covered surfaces enters the soil, resides either in the root zone for a while before being evaporated by plants, infiltrates deeper into the groundwater (the saturated zone), or drains out into the surface water system. The hydrology of these vegetation—covered areas is complicated. It is necessary to distinguish two different landforms, called the lowlands and the highlands.

That part of the Netherlands where the elevation of the ground surface is less than 2 m above mean sea level is called the <u>lowlands</u>. The complement is called the <u>highlands</u>. These two regions are shown in Fig. 2.2. The lowlands contain about 60 percent of the total surface area of the country and lie largely in the northwestern part of the country. The terms <u>highlands</u> and <u>lowlands</u> need clarification in the context of the Netherlands, where the higher areas rarely exceed elevations of 30 to 40 m. The use of this terminology merely emphasizes the differences in hydrology between higher and lower parts of the country. These two landforms are discussed separately below.

The Hydrology of the Lowlands. Much of the lowlands lies below sea level--some parts even more than 6 m--and so excess water does not drain out naturally. To get rid of excess water, a system of ditches, polders, and boezems is used.

Ditches are straight and relatively shallow channels for water, which slice up the land into rectangular fields 50 to a few hundred meters on a side.

Polders are land areas surrounded by dikes. In polders the water level of the ditches is controlled independently of neighboring polders.

A boezem is a system of interconnected drainage canals and lakes surrounding the polders, having a single, controllable water level. When the water level in a polder gets too high, water is pumped into the boezem, which then drains it into the national distribution system (rivers, major canals, etc.), or temporarily stores it. In dry periods, the polders can be supplied with water from the boezem. In most places a considerable number of polders are connected to the same boezem. The water level in the boezem is generally substantially higher than those in the ditches of the connected polders. Water levels of both boezems and polders are normally maintained at a specified constant level.

In polders lying below sea level the considerable head difference between the ditches and the sea can cause a deep groundwater flow of saline water that penetrates the land and reaches the surface water. This phenomenon is called <u>seepage</u>. The rate of seepage and its salt content vary considerably from one area to another. In those places where the salinity of the seepage is very high, it is necessary to flush the ditches and boezems with fresh water to reduce the salinity and thus avoid crop damage.

Since the groundwater level in the lowlands is close to the surface, water can rise directly from the groundwater table to the root zone where it can be used by plants. This process is called capillary rise.

The Hydrology of the Highlands. Typically the elevation of the highlands ranges from 10 to 30 or 40 m above sea level. In most

Fig. 2.2--Lowlands and highlands of the Netherlands

·· - ___-

places, the land surface is slightly sloped. Most of the rain falling on the land reaches the groundwater table, where it flows from places with higher groundwater levels to places with lower groundwater levels and eventually ends up in brooks or small rivers. We call the phenomenon of water flowing out of the groundwater table because of gravitational forces basic drainage.

The natural drainage capacity of the highlands is generally not sufficient to prevent problems associated with high groundwater levels and flooding in wet periods. To combat these problems, the Dutch have dug an extensive network of ditches in many places that drains water more quickly into the bigger brooks and streams, where it eventually flows into the main distribution system. These ditches do not usually contain water in dry periods.

Seepage, similar to that in the lowlands and caused by basic drainage from higher surrounding areas, may occur in some places. But as this seepage is not influenced by the sea, it is not saline, and causes no crop damage.

The groundwater level in the highlands typically ranges from somewhat less than a meter to a couple of meters below the surface. The shallow groundwater levels are found in those parts of the highlands of relatively low altitude and near beds of rivers and streams. In these places, the capillary action can cause some water to rise from the groundwater table to the root zone. Where the groundwater level is deeper, capillary rise supplies no significant quantities of water, especially during the growing season.

2.1.3. Districts

We can view the hydrologic system of the Netherlands from many levels of detail. At a broad level, we could think of one or two rivers, and rain and evaporation averaged over the entire surface area. At a detailed level, we could consider every ditch, and different rain and evaporation measurements for every square meter of land. But this broad picture is too crude to give useful insight into water management problems, and the detailed picture would be hopelessly complicated. We need to strike a compromise.

On the basis of geography and surface water hydrology, we have partitioned the Netherlands into 77° regions that we call <u>districts</u>. Every district contains some urban area, some surface water, and some vegetation-covered area. Some of the vegetation-covered area may be in the lowlands, and some may be in the highlands. We assume that within each district:

- There is a single, connected surface water system, with a constant level everywhere.
- There is no variation of rain and open water evaporation.

- All parts discharge into and extract from the surface water system in the same way.
- Salt mixes perfectly in the surface water.

Districts are the basic hydrologic entities of PAWN. The division of the country into districts is shown in Fig. 2.3.

2.1.4. Perspective on the Main Water Management Problem

Historically, the main water management problem in the Netherlands has been too much water in both lowlands and highlands. Throughout the years many improvements to the drainage systems have been made, such as digging ditches and building pumping stations. Due to these improvements, the problem of excess water is essentially under control. Because of increases in the demand for water, and the occurrence of some dry summers in recent years (most recently, 1976), attention has gradually shifted to problems associated with water shortages. Thus, PAWN focuses on water shortage problems and their possible solutions rather than problems of excess water. Of course it also pays major attention to problems of water quality.

2.2. THE HYDROLOGIC CYCLE IN GENERAL

The term hydrologic cycle can be applied to the simple notion that water falls to the earth in some form of precipitation (rain, snow) and eventually evaporates back into the atmosphere. The term can also be applied to a much more complicated process, containing many pathways along which water moves in solid, liquid, and vapor forms. Large flows can be distinguished, such as major ocean and atmospheric currents, and major rivers. But there are also many small-scale processes involved, such as rain dripping from the leaves of a tree, leakage from ditches, etc. In addition to the water pathways to be included in a hydrologic model, the geographic features of the real world play an important role.

Generally, various dissolved or suspended substances are carried with water (when it is in a liquid phase). This process is sometimes called the geochemical cycle. In this volume, we are concerned with only one such substance: chloride, for which we will simply use the term salt. A discussion of the movement of salt through the hydrologic system concludes this section.

2.2.1. Geographic Features

<u>Districts</u>, introduced in Sec. 2.1.3, are regions small enough that internal details of surface water movement can be regarded as unimportant from a water management standpoint. A district consists of three parts: surface water, urban areas, and vegetation-covered



Fig. 2.3--PAWN districts

areas. We discuss each part in turn. Table 2.1 shows the total area of each of these three regions in the Netherlands.

The Surface Water System. This part of a district includes canals, ditches, lakes, and other bodies of water, the surfaces of which are open to the sky. They may be connected in quite complicated ways, but we do not consider such complications in our model. Instead, we regard the surface water system as one, homogeneous body. We assume that there is exactly one place (the extraction point) in the surface water system where water enters from the distribution system, and one place (the discharge point) where it leaves. These two places may or may not coincide.

<u>Urban Areas</u>. Each district contains surfaces that are essentially impervious to the vertical flow of water. Such surfaces include roads, buildings, glasshouses, and other hard surfaces. After a rain, a small amount of water may evaporate from these surfaces, but most of the rain runs, via sewage systems, into the surface water system. Most of these surfaces are in cities, so we will call them urban areas.

<u>Vegetation</u>. The major part of any district is covered with vegetation. Such vegetation includes agricultural cash crops (the cultivated area) and "nature," i.e., woods, fallow land, marshes, verges, parks, playing fields, etc. In the areas covered with vegetation, water can be stored in the soil in two separate zones. The <u>root zone</u> consists of a relatively shallow top layer of soil (30 to 80 cm, depending on soil type and kind of vegetation). The <u>subsoil</u> consists of everything below the root zone. The soil moisture content in the subsoil varies with depth. It increases with increasing depth to a point, called the <u>groundwater level</u>, where there is a maximum amount of water per unit of volume. The region below this level is called the saturated zone.

Table 2.1

SURFACE WATER, URBAN, AND VEGETATION-COVERED AREAS
IN THE NETHERLANDS

Category	Area (km²)	Pct
Surface water	1450	4.4
Urban areas (roads, buildings, etc.)	2400	7.3
All vegetation-covered land	28910	88.2
"Nature" (see text for definition)	9100	27.8
Cash crops	19810	60.5
Open-air cash crops	19730	60.2
Glasshouse crops	80	0.2
Total area	32760	100.0

SOURCE: Estimated by authors from data supplied by the <u>Centraal Bureau voor de Statistiek</u>. See Chap. 6. Values may differ in other tables because of round-off.

2.2.2. Pathways for the Flow of Water

Figure 2.4 depicts the elements of the hydrologic cycle that are included in our model. In this section we will discuss the various water flows. These flows are also shown schematically in Fig. 2.5.

Rain and Evaporation. Rain falls on each of the three primary areas of a district, surface water, urban, and vegetation-covered areas. Water evaporates from each of the three areas, too. Water is lost from vegetation-covered areas by a process known as evapotranspiration. Direct evaporation continually takes place from the surface water. To a limited extent evaporation losses also occur in urban areas.

<u>Urban Runoff</u>. Since urban areas, by definition, are impervious to the vertical flow of water, such rain as does not evaporate flows into the surface water system, either directly via the sewage system, or after going through some form of treatment.

Sprinkling: Surface Water, Groundwater, and Losses. By effective sprinkling we mean the amount of sprinkled water that finds its way into the root zone, from which it may be evaporated by crops. Such water comes from two places: surface water sprinkling is drawn from the surface water system; groundwater sprinkling is drawn from the subsoil. During and immediately after sprinkling water is applied, there are losses into the atmosphere due to evaporation of the water.

Root Zone Loss and Capillary Rise. By root zone loss we mean the downward flow of water, under the force of gravity, from the root zone into the subsoil. When the groundwater level is close enough to the surface, and the root zone is dried out to some extent, water rises into the root zone by a process known as capillary rise.

Seepage and Leakage. Head differences in groundwater aquifers cause groundwater to flow from places with higher groundwater levels to places with lower groundwater levels. In the lower parts of the country, this may result in seepage flows entering the subsoil and surface water. In higher parts, water may Leak from the subsoil for this reason. A particularly important phenomenon occurs in some lowland areas where saline seepage flows penetrate the subsoil and surface water, driven by relatively high sea level.

<u>Drainage</u> and <u>Infiltration</u>. When water moves from the subsoil into the surface water system under the force of gravity, the flow is called <u>drainage</u>. In low-lying areas, such water drains into the ditches, from which it is pumped up into the system of canals and lakes that surround polders called a boezem. Elsewhere, the elevation of the land is such that water drains out of the subsoil into naturally occurring streams and rivers, a phenomenon called basic drainage.

Not all drainage from a district flows into the surface water system of the district itself. Sometimes a portion of it flows out of the

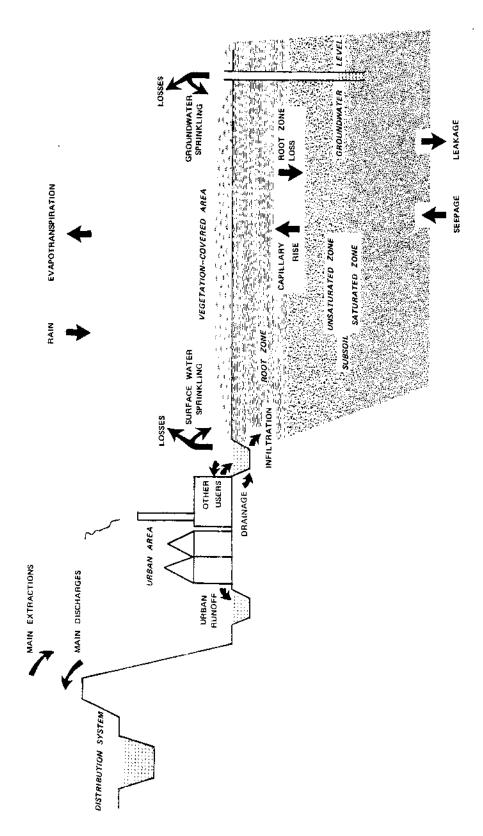


Fig. 2.4--Pathways for the flow of water

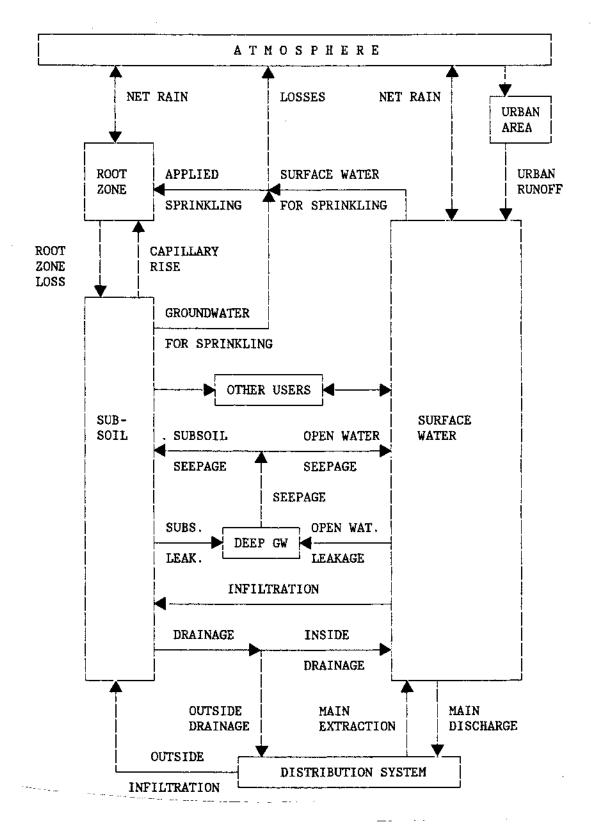


Fig. 2.5--Schematic showing district water flows

district into the surface water system of some other district or into the national distribution system; we call this total leakage to surrounding areas <u>outside drainage</u>. The drainage that remains entirely inside a district is called inside drainage.

Water can flow in the opposite direction, from ditches, canals, rivers, etc., directly into the subsoil. When this happens, the flow is called infiltration.

Other Users of Water. There may be other users of water in a district whose use of water is beyond the direct control of the water management system. Industries and drinking water companies are the most typical such users. They may extract groundwater and surface water, and they may discharge water into the surface water system.

Main Extractions and Discharges. Finally, the main discharge is the discharge of water from the surface water system of a district into the national distribution system, and the main extraction is the extraction of water from that place. Generally, these extractions and/or discharges are the result of managerial decisions, decisions made in order to control the level of the water in the canals and ditches of the district, to reduce the amount of salt, to provide adequate water for sprinkling, etc.

2.2.3. Pathways for the Transport of Salt

By <u>salt</u> we mean dissolved chloride. Only chloride is considered because it is by far the most prevailing salt component in Dutch surface waters and also the most harmful to crops. Salt is present in most naturally occurring bodies of water, and is transported along with the water wherever it flows (in liquid phase). Therefore, many water paths are also paths along which salt is transported. These paths are shown in Fig. 2.6.

Sources of Salt. Each of the three paths by which water enters a district can bring salt. Rain brings a small amount from the atmosphere, and more is washed into the surface water from urban areas by rain; the latter is mostly salt spread on roads in winter for controlling ice. In areas close to the ocean, seepage carries salt into the subsoil. Extractions from the national distribution system account for much salt. (The Rijn has a high salt concentration, due largely to industrial activity in Germany and France). Finally, fertilizers applied to agricultural land carry a certain amount of salt; this is a direct source not immediately connected to any inflow of water.

How Salt Leaves a District. Salt is not carried out of a district by evaporated water, and the only way to get rid of it is to discharge it into the national distribution system. In periods when no discharge

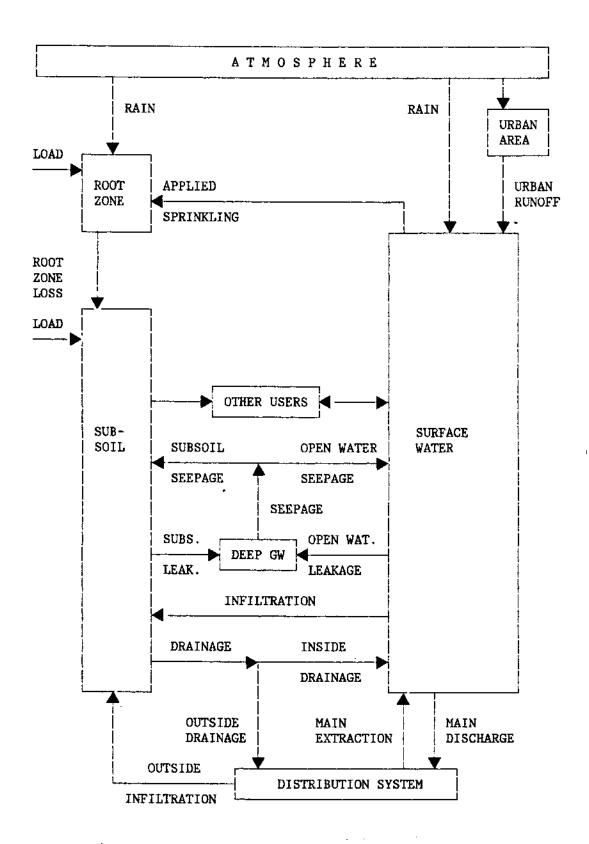


Fig. 2.6--Schematic showing district salt flows

takes place naturally, flushing may be needed, achieved by taking in and discharging water simultaneously. Reducing the amount of salt in the surface water can be a major reason to flush a district.

Internal Salt Flows. The flow of salt from urban areas into the surface water of a district has already been mentioned. Salt carried from the surface water system into the root zone by sprinkling causes the most trouble. Salt is also carried from the root zone into the subsoil by the water lost from the root zone, but this is a slow process, and so salt in the root zone can build up rather high concentrations and cause crop damage. Salt is transported from the subsoil into the open water system along with drainage water.

2.3. AGRICULTURE

In this section, we discuss briefly special problems relating to Dutch agriculture. First, we mention why various crops, soils, and landforms need to be distinguished. Then we discuss problems involving sprinkling. Finally we touch upon problems involved with crop damage, and conclude by defining two new entities: the subdistrict and the plot.

2.3.1. Crops, Soils, and Landforms

What happens to agriculture in any particular place and time depends on three important factors: the kind of crop under cultivation, the soil type, and the landform. We discuss each of these three factors in turn.

<u>Crops</u>. The crops raised in the Netherlands differ in their need for water, their capacity to extract water from the soil, their susceptibility to drought and salt damage, and their economic value. To capture the most important differences, we have distinguished thirteen different crop types.

The vegetation-covered area that does not have cash crops we call "nature." This area represents a significant fraction of the vegetation of the country, and so its presence is important for water balance computations. Since the hydrology of nature is, in principle, identical to that of agricultural crops, we treat "nature" as a kind of crop in addition to the thirteen proper agricultural crops. "Nature" includes many kinds of vegetation: woods, marshes, parks, verges, etc.

We distinguish between the crops raised in the open air and crops raised in glasshouses. The latter represent a rather small fraction of the total area devoted to agriculture in the Netherlands, but they are extremely valuable. The hydrologic and geochemical processes of glasshouse crops are quite different from those of open-air crops.

Soil Type. The soil type of a region affects the amount of water that can be stored in it, the difficulty plants have in extracting this water, and the rates at which water infiltrates, or rises through capillary action. Sixteen root zone/subsoil combinations are distinguished in our model. Associated with each soil type is a set of soil parameters used to control computations dependent on soil type. These computations are discussed in Sec. 4.1.

Landforms. The major landforms, the lowlands and the highlands, were defined in Sec. 2.1.2. The distinction between these landforms is important for agriculture, because in the lowlands the groundwater level is usually close to the surface, so capillary rise can account for a significant supply of water for crops. In the low highlands the groundwater level is usually less than 1 m below the soil surface. Depending on root zone depth there may be a substantial contribution of capillary rise to the water needed by agriculture. In the high highlands the groundwater level is usually more than a meter from the soil surface. For deep-rooted crops at locations where the groundwater level is not much deeper than a meter, capillary rise might be of some value. In other cases, capillary rise will be almost negligible or will not occur at all. The areas of these two landforms for the entire Netherlands are given in Table 2.2.

2.3.2. Sprinkling

In the Netherlands, farmers obtain water to irrigate crops from one of two places: water is pumped either from a nearby source of surface water (a ditch or canal) or from a groundwater well. A relatively small amount of irrigation is applied by actually flooding the crop land. This is called <u>surface irrigation</u> and it is almost only used for grass. Most irrigation is applied by various types of sprinklers. PAWN assumes that all irrigation is of the latter sort, so the term <u>sprinkling</u> is used to denote all forms of artificial irrigation. The term <u>groundwater sprinkling</u> denotes the situation where the source of the water is from the ground, and the term <u>surface water sprinkling</u> denotes the case where the source of the water is a ditch or canal.

The amount of water consumed by sprinklers in any district during a particular time period depends on four factors:

- How much of the cultivated land has sprinklers.
- How much the sprinklers are used, provided there is enough water.
- Water requirement of crops that are sprinkled, and sprinkling losses.
- The amount of water available.

The area of land sprinkled in a district does not change from one timestep to another, so, from DISTAG's perspective, this amount is an aspect of the geography of the district, just like the amount of

Table 2.2

VEGETATION-COVERED AREA, BY LANDFORM,
IN THE NETHERLANDS

Landform	Area (km²)	Pct
Lowlands	17070	59.0
Highlands	11850	41.0
Low highlands	2700	9.3
High highlands	9150 31.6	
Total vegetation-covered area	28920	100.0

SOURCE: Estimated by authors from data supplied by <u>Stichting</u> voor <u>Bodemkartering</u>. See Chap. 6. Values may differ in other

Table 2.3

NETHERLANDS AGRICULTURAL LAND AREA, BY SPRINKLING CATEGORY

Sprinkling category	Area (km²) Pct		
Unsprinkled	17170		
Surface water	1930	9.7	
Groundwater	710	3.6	
Total land containing cash crops	19810	100.0	

SOURCE: Estimated by authors from data supplied by the <u>Instituut voor Cultuurtechniek en Waterhuishouding</u>. See Chap. 6. Values may differ in other tables because of round-off.

any particular crop growing there. In Table 2.3, the area of land sprinkled in the nation for 1976 is given. For some PAWN analyses, estimates of future amounts of sprinklers have been made. These are discussed in Vol. XIV.

2.3.4. Crop Damage

In PAWN, only two types of crop damage are studied. <u>Drought damage</u> is the reduction in crop production due to water shortages. <u>Salt damage</u> is the reduction due to excessive salt concentration of the water in the root zone. Other kinds of damage, such as that caused by frost, excessive rain, or plant diseases, are not explicitly considered.

In any timestep (most often 10 days), DISTAG estimates the fraction of the total crop production that is lost due to drought or salt damage, both the damage in that particular timestep and the cumulative damage up to that point. The <u>survival fraction</u> is defined as the complement of the total cumulative damage fraction (both drought and salt); i.e., the survival fraction is 1 minus the cumulative damage fraction.

Crop production can be estimated in money terms by multiplying the survival fraction by the total value of the crop.

In dry years, crop prices may rise considerably because drought damages reduce market supply. This offsetting effect is treated by estimating crop prices as a function of how dry the year is. How these crop prices are estimated is described in App. A. Estimates for crop prices for an average year and for 1976 (an extremely dry year) are given in Chap. 6.

2.3.5. Definition of Subdistricts

Many districts contain more than one soil type and/or include more than one of the three landforms: lowlands, low highlands, or high highlands. That part of each district that is covered with vegetation has been divided further into <u>subdistricts</u> by first partitioning the district into landform types and then, if still necessary, partitioning the landform types by soil type. In districts where there is only one soil type and one landform, we call the entire vegetated region a single subdistrict. There are 143 subdistricts; each of the 77 districts contains from 1 to 6 subdistricts.

2.3.6. Definition of Plots

A mixture of crops is found in each subdistrict. Generally, each crop may be unsprinkled in some parts of the subdistrict, yet sprinkled from groundwater or surface water in other places. The two-way split of a subdistrict, first into crop types, then into type of sprinkling (if any), partitions each subdistrict into areas that we call plots.

We treat fourteen different crops and three different categories of sprinkling (no sprinkling, surface water sprinkling, and groundwater sprinkling), so each subdistrict could contain as many as 42 plots. However, not every crop occurs in every subdistrict, nor is every type of sprinkling applied to every crop. In practice the number of plots in a subdistrict is rarely greater than 12, and averages around 9. There are 1259 plots in the data that describe the agricultural situation of the Netherlands for 1976.

The plot is the smallest geographic unit of analysis used in DISTAG for the computation of water flows, salt flows, crop damage, and sprinkling costs. Three important submodels, the plot water model, the plot salt model, and the plot damage model operate solely at the level of the plot. They are all described in Chap. 4.

2.4. TIME

The overall PAWN analysis is carried out for a calendar year (January 1 through December 31). We divide each month of the year into three timesteps which the Dutch call <u>decades</u>; the first two decades of each month contain exactly 10 days, and the third decade contains as many days as are needed to fill in the month (8, 9, 10, or 11 days). We compute what happens for each decade, and then put together results for an entire year.

2.5. THE DISTRICT HYDROLOGIC AND AGRICULTURE MODEL (DISTAG)

Inputs to DISTAG can be segregated into three general classes:

- Geographic conditions define properties of the district itself, e.g., area of the district.
- <u>Initial conditions</u> indicate the state of the district at the beginning of the time period, e.g., salinity of the surface water in the district, amount of water stored in the root zone.
- Step conditions give time-varying conditions that occur during the time period, e.g., amount of rain, salinity of water in the distribution system, amount of water available for sprinkling.

Outputs from DISTAG fall into two classes:

- <u>Final conditions</u> indicate the state of the district at the end of the time period, to be carried forward and become the initial conditions for the next period.
- Impacts are the major quantities determined by the

model for a given decade and district. They include:

Water Flows

Extractions from the distribution system. Discharges to the distribution system. Amount of water required by agriculture for sprinkling.

Salt Transport

Salt concentration of the water discharged from the district.

Agriculture Costs and Benefits

Operating cost for sprinkling. Crop damage due to drought. Crop damage due to salt.

DISTAG uses three submodels to describe the more specific agricultural aspects within the district. These submodels all make computations for plots.

- The plot water model (PLOTWAT) computes water requirements by agriculture.
- The plot salt model (PLOTSLT) determines the salt concentration in the root zone and subsoil.
- The plot damage model (PLOTDAM) computes agricultural damages.

These models are described in more detail in Chap. 4.

2.6. THE DISTRIBUTION MODEL (DM)

The water distribution system studied by PAWN is a network of rivers, canals, and lakes, into which water comes from rivers, rain, and drainage from the land. The <u>Distribution Model</u> (DM) is a simulation model of the water distribution system, and it uses DISTAG as a subroutine to estimate discharges from or extractions by districts. DM is described in Vol. XI. To place DISTAG in context, we summarize DM briefly:

- DM considers details of the surface water system, such as flows in rivers, water levels, etc.
- It makes computations for a calendar year or longer.
- It considers regional differences.
- It includes a number of impact categories, such as

agriculture, shipping, power plants, etc.

It can implement managerial decisions, such as allo

• It can implement managerial decisions, such as allocating water when demand exceeds supply.

The relationship between DM and DISTAG is illustrated in Fig. 2.7. There are four main steps.

- Using the plot water model, DISTAG determines agricultural water requirements.
- DISTAG aggregates the agricultural demand and combines it with demands of other users, resulting in a total district demand.
- DM weighs the demands from all the districts and the various national users and then allocates water to the districts according to a specified managerial strategy.
- DISTAG allocates the water each district receives among its various users, and computes impacts on agriculture.

The first two of these steps are called the "request" phase; the last two are called the "delivery" phase.

A single "run" of DM simulates a water management policy and determines its impact for a single calendar year. In doing so, DM uses DISTAG many times, because it makes computations for many districts, for each of the 36 decades in the year.

DM must treat two interactions among districts. First, districts may demand more water than available. When this happens, DM must reduce the amount of water some district gets, either by reducing the amount of sprinkling allowed there or by reducing the amount of flushing. In either case, agricultural damages may increase: drought damages will increase if sprinkling is cut back, while salt damages will increase if flushing is reduced. If sprinkling is cut back, sprinkling costs will be reduced, too.

Second, districts exchange salt. DM must indicate to DISTAG the salinity of each district's extraction point. But this salinity is affected in part by what is discharged from other districts.

In a single decade, DM uses DISTAG twice for each district. The first time, the "request," DISTAG computes the previously listed impacts, first, assuming that there are no constraints on the amount of water available to each district and, second, using some initial estimate for the salinity of the water in the distribution system. After DISTAG has made its "request" computations, DM allocates water to the districts. Some districts may get less then requested.

Then, with updated estimates of salinities, DM uses DISTAG a second time, the "delivery," possibly constraining some water some districts get. DISTAG determines the impacts of this allocation. In Fig. 2.8, we diagram this two-step procedure.

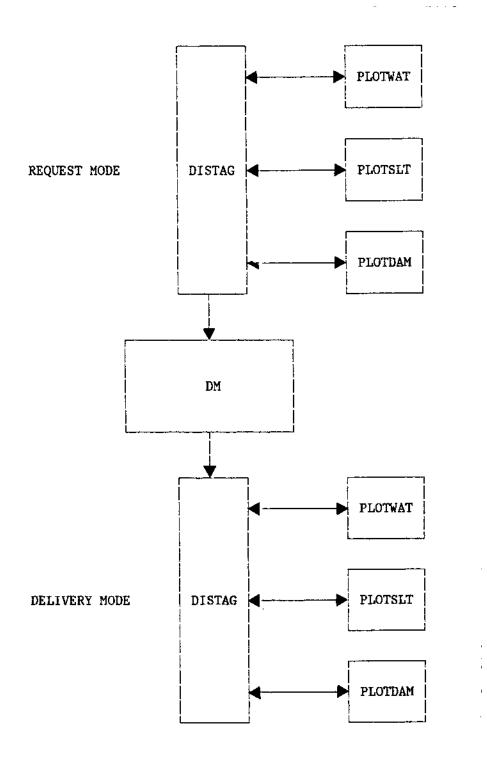


Fig. 2.7--Relationship between DM, DISTAG, and the plot models

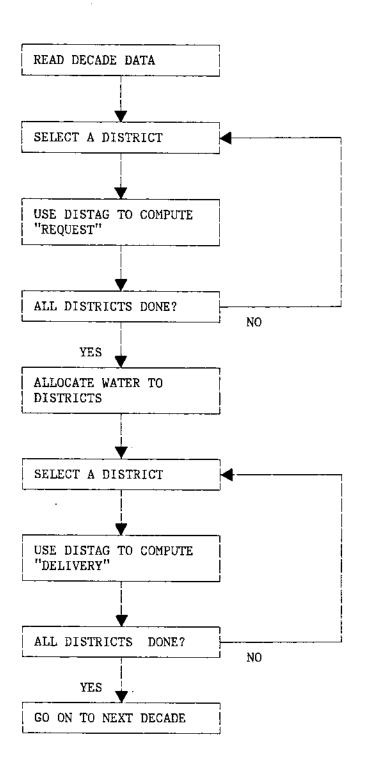


Fig. 2.8--Overview showing how DM uses DISTAG in a single timestep

Every time DISTAG is used by DM, it computes a set of final conditions that can be used as the initial conditions for the next timestep. Since DISTAG is used twice by DM, only the final conditions computed during the second call (the "delivery") are actually carried forward. Fig. 2.9 illustrates this logic.

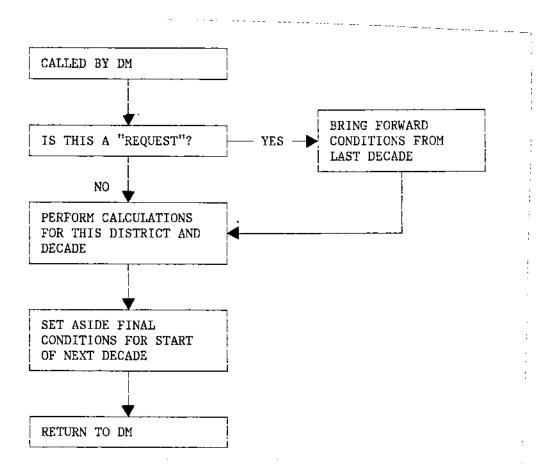


Fig. 2.9--Overview of DISTAG logic

NOTES

- 1. For this discussion, we exclude the surface area of the waters contained in the distribution system.
- 2. We also defined a 78th district corresponding to the proposed Markerwaard polder.

REFERENCE

2.1. Koninklijk Nederlands Meteorologisch Instituut, <u>De Droogte van 1976</u>, Publicatie No. 154, De Bilt, December 1976.

Chapter 3

INPUTS AND OUTPUTS

Chapter 2 gave an overview of what is included in DISTAG. The present chapter, in which we describe its inputs and outputs, will be important to readers interested in the technical details of the model. In the next two chapters, we explain how the model works. Chapter 6 describes the data base used by PAWN, including the specific values of the inputs.

Inputs to the model fall into three classes. First, there are rain and evaporation data. Second, there are the geographic and location-dependent data that characterize the soils, crops, districts, and other features of the system. Finally, there are computed input data: variables passed to DISTAG from DM, and initial conditions computed in a previous timestep. In what follows, we discuss each of these classes of input data in turn. In the final section, we discuss the outputs of the model.

3.1. RAIN, EVAPORATION, AND LENGTH OF TIMESTEP

In any decade, the amount of rain and evaporation that occurs during the decade must be supplied as input data to the district agriculture model. In reality, there is day-to-day variation in both rain and evaporation, and there is spatial variation as well. Our model does not resolve this day-to-day variation, but assumes a constant rate of both rain and evaporation for the entire decade. While we do treat the spatial variation to some extent by assigning different districts to different weather stations, no variation of rain or evaporation is assumed within a district.

Evaporation is the change of phase of water from a liquid to a vapor. We use the term to denote the amount of water that evaporates from open water. Transpiration is the evaporation of water from plants. Evapotranspiration is the mixture of evaporation and transpiration from a vegetation-covered region. Open water evaporation is considered to be a process that depends mainly on climatological conditions. It is affected by radiation, temperature, humidity, wind conditions, and other factors. Since controlling the weather is not part of any policy studied by PAWN, evaporation is specified as an input to the model. Once evaporation is given, evapotranspiration is computed by the model.

Transpiration is limited by the physiological processes within the plant, the external plant characteristics (shape, height, degree of soil covering), and the availability of water to the plant. The term potential evapotranspiration denotes the amount of water that will evaporate from a vegetation-covered surface in a given period of time, as long as the ability of plants to transpire water is not constrained by the lack of it. Actual evapotranspiration is what is actually evaporated from vegetation.

Not every decade is exactly ten days long. The last decade in each month may be 8, 9, 10, or 11 days long. The length of each decade is read in as data along with rain and evaporation.

GEOGRAPHIC AND LOCATION-DEPENDENT DATA

The inputs described in this section are read from data files once, stored in memory, and never changed. They define the nature of the system being modeled. We have grouped these data into classes that depend on how large a geographical area the elements represent. First, we discuss the "constants" of the model: numbers that remain fixed throughout the whole country. Then, we introduce in turn data that characterize districts, subdistricts, and finally, plots.

3.2.1. Constants

Some characteristics are assumed to remain the same throughout the entire nation. The most important ones are listed in Table 3.1, but it is more convenient to discuss these data in other places in this volume.

3.2.2. Data Characterizing Districts

Where a district is connected to the distribution system, i.e., where it extracts and/or discharges surface water, depends on management decisions made by the national government. Such connections are not treated by DISTAG, but rather by DM. The reader is referred to Vol. XI for further information about the connection of districts to the national distribution system.

Data characterizing districts may be classified into four groups. First, we note characteristics that a district may share with its immediate neighbors by virtue of its location: the weather station, which determines rain and evaporation, and the drainage region, which determines the groundwater aquifer characteristics. Second, there are data characterizing the urbanized part of the district. Third, there are data describing the surface water part. Finally, there is an extensive collection of data related to the vegetation-covered part of the district, including all the parameters characterizing agriculture. This last class of data elements is discussed in subsequent sections. The first three classes are discussed in what immediately follows. The district-specific data elements described in this section are listed in Table 3.2.

Weather Station and Drainage Region. In any particular decade, rain and evaporation may be different in different parts of the nation. We have used a standard division of the Netherlands into fourteen weather stations. Each district is assigned to one of them. These stations are discussed in more detail in Sec. 6.5.

Table 3.1

DATA THAT ARE CONSTANT OVER NATION

Name	Units	Description
Constant over	time	
DRAIN_MAXOUT	mm/year	Maximum amount of drainage that can flow directly into distribution system
DRAIN_UG	mm/year	Amount of root zone flushing for crops grown under glass
LOAD_RZ	(mg/m²)/day	Salt load in root zone
LOAD_SS	(mg/m²)/day	Salt load in subsoil
RAIN_CONC	mg/l	Salt concentration of rain
RAIN_SURP	rxru	Average annual rain surplus
SPR_EFF	mm/mm	Sprinkling efficiency, amount of sprinkling actually reaching soil divided by amount of water sent through sprinkling system
URBAN_CF	mm/mm	"Urban crop factor," potential evaporation from urban surface divided by open water evaporation
URB_CONC	mg/l	Salt concentration of urban runoff
VOLRZ_UG	mm	Volume of root zone for crops under glass
VOLSS_UG	mm	Volume of subsoil for crops under glass
Varying over	<u>time</u>	
BARE_CF	ram/mm	"Bare soil crop factor," amount of water that evaporates from bare soil, divided by open water evaporation

Table 3.2
DISTRICT DATA

Name	Units	Description
Constant over	Time	
DRAIN_REG		Index of drainage region
FLUSH_MIN	m³/s	Default flushing minimum
INDUST_EXT	m³/s	Industrial extraction from surface water
INDUST_DIS	m³/s	Industrial discharge into surface water
INDUST_SALT	mg/l	Salt concentration of discharge
URBAN_AREA	ha	Area of urban part of district
WATER_AREA	ha	Area of surface water of district
WATER_VOL	1000×m³	Volume of surface water of district
WEA_STA		Index of weather station
Time Varying		
NDAYS	day	Number of days in timestep
EVAP	mm	Open water evaporation
RAIN	mm	Rain

In the highlands, there is an appreciable drainage from the subsoil into the rivers and streams of the region. The nature of this drainage is complicated, but an important factor is the geological nature of the underlying aquifers. To treat such drainage, the highlands has been partitioned into seventeen hydrologically homogeneous drainage regions, each of which is judged to be more or less homogeneous with respect to the geological factors affecting drainage. Each district that contains part of the highlands has been assigned to one of the drainage regions. The model that computes this drainage is described in Sec. 4.1.

<u>Urban Area</u>. The urbanized part of a district is characterized solely by its surface area. Two other parameters are relevant, though they remain constant throughout the nation. The so-called "urban crop factor" determines how much water can potentially evaporate from the urban surfaces. The salt concentration of the urban runoff determines how much salt is discharged from cities.

Surface Water. The area of the district containing surface water (lakes, canals, ditches, etc.) determines the increase due to rain and the decrease due to evaporation of the amount of such water. The total volume of the surface water is used to determine the salt concentration. In some places, high salt concentration of the surface water is controlled by requiring a minimum amount of water to flow out of the district at all times. We call this flow the flushing minimum. In some places, there is a constant extraction or discharge into or out of the surface water of a district, e.g., industrial extractions. When these flows are regarded as beyond the control of the managerial strategy and other decision rules built into DM, they are taken as input data to DISTAG. Industrial discharges may contain salt, so its concentration must be specified.

3.2.3. Data Characterizing Subdistricts

As explained in Chap. 2, a subdistrict is defined as a part of a district that has a unique landform and soil characteristic. Additional data that are associated with subdistricts are described in this section and displayed in Table 3.3.

Agricultural Region. For statistical purposes, the Landbouw Economisch Instituut (Agriculture Economic Institute, or LEI) divided the country into 14 agricultural regions; in some places the distinctions follow our division based on soil type and landform. Data assembled with respect to these 14 regions have been used to estimate sprinkling costs, and so each subdistrict has been assigned to one of these regions. Associated with each agricultural region is a set of numbers used to compute sprinkling costs for each kind of sprinkling and each crop type. These computations are discussed in Sec. 4.5.

<u>Drainage and Infiltration Coefficients and Ditch Level</u>. In the lowlands, the drainage rate is assumed to be proportional to the head

Table 3.3
SUBDISTRICT DATA

Name	Units	Description
AGRI REG		Index of agricultural region
BD COEF	/day	Coefficient of basic drainage model
BD CONST	mm/day	Constant of basic drainage model
DRAIN COEF	/day	Drainage coefficient
DIST INDEX		Index of district
DITCH LEVEL	mm	Level of ditches
GWL INDUST	mm/day	Industrial groundwater withdrawals
GWL DRINK	mm/day	Drinking water groundwater withdrawals
HILO_CODE		Landform code $(0 = lowlands, 1 = low$
_		highlands, 2 = high highlands)
INITIAL GWL	mm	Groundwater level at first of year
INFIL COEF	/day	Infiltration coefficient
INF RATE	mm/day	Loss from surface water to subsoil due
_		to infiltration from ditches
RZ_SOIL		Index of root zone soil type
SATCAP_RZ	mm/mm	Saturation capacity of root zone
SATCAP_SS	mm/mm	Saturation capacity of subsoil
SEEP FRAC	mm/mm	Amount of seepage into surface water
		divided by total seepage
SEEP_RATE	mm/day	Seepage rate
SEEP_SALT	mg/l	Salt concentration of seepage
SSDEPTH	mm	Effective depth of subsoil
SS_SOIL		Index of subsoil
SUP_FRAC	ha/ha	Fraction of subdistrict that is
_		suppliable from ditches
WILTPT	mm/mm	Wilting point (of root zone)

difference between the groundwater level and the ditch level. The ditch level is held constant, while the groundwater level changes from one decade to the next. The constant of proportionality depends on such factors as the soil type and the spacing between ditches, and has been empirically determined for all places in the lowlands. Infiltration is the reverse of drainage. Normally infiltration takes place at a slower rate than drainage, so a different coefficient has to be specified. The ditch level, the drainage coefficient, and the infiltration coefficient are irrelevant in the highlands, because drainage is treated using a different model for basic drainage.

Basic Drainage Coefficients. In the highlands, the basic drainage rate has been assumed to be a function of the groundwater level. The two constants determining this function have been determined for each drainage region, for the high highlands and for the low highlands, by a statistical analysis of measured groundwater levels. This analysis is described in Sec. 6.4. The coefficients are irrelevant in the lowlands, because basic drainage does not occur there.

Seepage Rate and Open Water Seepage Fraction. In some places in the lowlands, there is a constant flow of water upward due to pressure differences between the groundwater level or surface water and deeper aquifers. The seepage rate is the rate at which this flow occurs and is assumed to be constant over the year. The open water seepage fraction indicates the fraction of the total seepage that flows directly to the open water. The rest of the seepage flows into the subsoil.

<u>Seepage Salt Concentration</u>. In those places where there is seepage into the region and the seepage water contains salt, the concentration of the seepage water must be specified.

Infiltration Rate. The drainage process in the highlands is modeled by means of the basic drainage functions. In some places in the highlands, however, water also infiltrates from canals and ditches into the subsoil. The infiltration rate specifies the rate at which this flow occurs. This rate, which is assumed to be a constant, is used only in those highlands subdistricts that have access to surface water.

Suppliable Fraction. This quantity is the fraction of the subdistrict that can be supplied with water from the national distribution system. It indicates in what fraction of the subdistrict the level of the ditches can be controlled. For highlands subdistricts this is the fraction of the area to which the above infiltration rate is applied in order to compute the infiltration flow.

<u>Subsoil Depth</u>. This is an empirically determined value needed for calculating salt concentrations in the subsoil. It is discussed in more detail in Sec. 4.3.2.

Industrial and Drinking Water Extractions. In some places, industries and drinking water companies extract groundwater. These extractions are assumed to be constant demands and are supplied as data to our model.

Root Zone Soil and Subsoil Type. Soil types affect the amount of water that can be stored and the difficulty plants have in extracting this water. Associated with each soil type is a set of soil parameters used to control computations dependent on soil type. These parameters are discussed in Sec. 4.1.

Landform. The three landform types were defined in Sec. 2.3.1.

3.2.4. Data Characterizing Plots

A plot is characterized by the subdistrict in which it lies, its crop, the kind of sprinkling installed (if any), and its area. Data characterizing plots are listed in Table 3.4.

Several data elements characterizing a plot depend on the crop type. For open-air crops, the potential evapotranspiration is determined by multiplying the open water evaporation by a factor. This constant factor, the crop factor, is approximately 0.8 for most crops during the growing season and somewhat less during the rest of the year. For glasshouse crops, potential evapotranspiration is specified as data. The crop value is just the value of the crop, in guilders per hectare. The root depth, which also depends on the soil type of the root zone, is important for the amount of water that can be stored in the root zone. Energy and labor costs of sprinkling depend on the crop type, as well as the type of sprinkling and the agricultural region in which the plot lies. Finally, associated with each plot is a large number of parameters controlling some of the submodels: the plot damage model, the plot salt model, etc. These parameters are more easily introduced when the models themselves are discussed.

3.3. COMPUTED INPUT DATA

Computed input data are not read from data files, but are supplied either by DM or were computed for a previous decade by DISTAG and carried forward. The latter are called initial conditions.

To each initial condition there corresponds, at the end of the decade, a final condition, which is used as the initial condition for subsequent computations. However, there must be supplied an "initial" initial condition to be used the very first time the model is applied.

In this section, we discuss each group of computed input data in turn. A summary of the data is given in Table 3.5.

Table 3.4
PLOT DATA

Name	Units	Description
Constant over	Time	
COST_ENERGY	(Dflm/mm)/ha	Energy cost of sprinkling
COST_LABOR	(Dflm/mm)/ha	Labor cost of sprinkling
CROP_VALUE	Df1/ha	Value of crop
IRR_CODE		<pre>Irrigation code (0 = unsprinkled, 1 = surface water sprinkled, 2 = groundwater sprinkled)</pre>
PLOTAREA	ha	Area of plot
PSI_REDUCE	mm	Evaporation reduction parameter
ROOTDEPTH	mm	Root depth of crop
SUBD_INDEX		Index of subdistrict
Time Varying		
CROPFACTOR	mm/mm	For open-air crops, potential evapotranspiration divided by open water evapotranspiration
	mm/day	For glasshouse crops, potential evapotranspiration per day

Table 3.5
COMPUTED INPUTS

Name	Units	Description
Initial Condi	tion for Dist	trict
SWSALT_OLD	g	Quantity of salt in surface water
Initial Condi	tion for Each	n Plot in District
GWL_OLD	mm	Groundwater level
RZDEF_OLD	mm	Root zone moisture deficit
SSDEF_OLD	mm	Subsoil moisture deficit
RZSALT_OLD	mg/l	Root zone salt concentration
SSSALT_OLD	mg/l	Subsoil salt concentration
SURVFRAC_OLD	ha/ha	Survival fraction
Provided by D	<u>M</u>	
IDIST		Index of district
CUTBACK	mm/mm	For "request": 1.0
		For "delivery": sprinkling to be delivered to open-air crops sprinkled from surface water divided by amount requested by such crops
FLUSH_RED	m³/s	Reduction from default flushing minimum
SALTCONC	mg/l	Salt concentration of water extracted by district from distribution system

3.3.1. Initial Conditions

There is one "districtwide" initial condition for each district. For each plot in the district, there are six initial "plot" conditions.

<u>Salt Concentration</u>. The districtwide condition is the salt concentration of the surface water changes from decade to decade and depends on the amount of salt present at the start of the decade.

Root Zone and Subsoil Deficits. Because the subsoil has no definite bottom, we do not know how much water it contains. Therefore, we find it convenient to measure the amount of water in the subsoil in terms of a <u>deficit</u>, so that, when the deficit is zero, the subsoil is full. The root zone does have a finite capacity, but to remain consistent, we have chosen to measure the water in the root zone as a deficit too.

Groundwater Level. The groundwater level depends on the subsoil deficit and the rate of capillary rise. The rate of capillary rise is not retained from one timestep to the next.

Root Zone and Subsoil Salt Concentrations. There is salt in both the root zone and the subsoil, and they both change from one decade to the next.

<u>Survival Fraction</u>. The survival fraction is a parameter needed in the damage calculation and indicates the history of the crop, i.e., which part of the original crop still survives at the beginning of the decade. The survival fraction also affects potential evapotranspiration.

3.3.2. Control Variables Supplied by DM

DM controls DISTAG with four parameters. DISTAG has the characteristics of all districts available but uses them only one district at a time. DM supplies a <u>district index</u> to indicate the district being considered.

Second, DM indicates the <u>salt concentration</u> of the water in the distribution system at the point where the given district extracts water.

Third, it indicates whether the computations are to be done in the request mode or the delivery mode. It indicates the request mode by setting a number, called the <u>cutback fraction</u>, equal to unity. It indicates the delivery mode by setting the cutback fraction equal to some value less than unity. When the cutback fraction is less than unity, sprinkling of certain crops is reduced so that the total amount of actual sprinkling, divided by the amount requested, is equal to the cutback fraction.

Finally, DM can change the amount of flushing using a parameter called the <u>flushing reduction</u>. When the flushing reduction is not zero, the amount of flushing in the district is reduced by an amount equal to it.

3.4. OUTPUTS

Outputs from DISTAG include variables returned directly to DM, final conditions that are retained internally and carried forward to the next decade where they are used as initial conditions, and a groundwater level that is written on a file for later analysis. These outputs are listed in Table 3.6.

3.4.1. Outputs Returned to DM

The model computes three water flows between the district and the distribution system. It computes a discharge from the surface water into the distribution system and an extraction from the distribution system into the surface water. These two numbers may both be nonzero, because of the necessity to flush water through the district for quality control. In addition, an amount representing drainage directly from the subsoil into the distribution system is computed.

DISTAG also gives DM some sprinkling quantities: the total amount sprinkled, the amount of sprinkling drawn from the surface water, and the amount of sprinkling drawn from the surface water that is applied to open-air cash crops. This last term represents the amount that DM can reduce if the extractions requested by a district are too great. The model also computes the average salt concentration of the water discharged to the distribution system.

Two other types of agricultural impacts are passed to DM. The first type consists of the amount of agricultural damage that occurred, due to salt, and the total agricultural damage (salt <u>and</u> drought). The second consists of the labor and energy costs of sprinkling, for each crop type.

3.4.2. Final Conditions

For each initial condition described in Sec. 3.3.1, the district agriculture model computes a final condition. This value is retained internally until the beginning of the next decade, when it becomes the initial condition for the new decade. There is one initial condition for the whole district (the amount of salt in the surface water), and there are six initial conditions for each plot in the district.

3.4.3. Groundwater

The groundwater level is not used in any way by the distribution model. Nevertheless, for some PAWN issues it is important to know the groundwater level. DISTAG computes the average groundwater level for each subdistrict and writes it on an output file at the end of each decade. Subsequently, these calculations can be studied to determine the effect of the policy.

Table 3.6
DISTRICT AGRICULTURE MODEL OUTPUTS

Name ——-	Units	Description
Water Flows		
DISCHARGE	m^3/s	Discharge by district into distribution system
DRAIN_OUT	m³/s	Drainage from subsoil of district that flows directly into distribution system
EXTRACTION	m³/s	Extraction by district from distribution system
SPRINK_CUT	m^3/s	Total surface water sprinkling that can be cut back in case of water shortages
SPRINK_SW SPRINK_TOT	m³/s m³/s	Total sprinkling from surface water Total amount of water consumed for sprinkling
Salt		
AVCONC_SW	mg/l	Average salt concentration of water discharged from district into distribution system
Crop Damage		
SALTDAM TOTDAM	Dfl Dfl	Total salt damage in district Total damage (salt and drought)
Sprinkling Co	osts	
LABOR_COST ENERGY_COST	Dfl Df1	Labor costs of sprinkling, per crop Energy costs of sprinkling, per crop
Groundwater I	Levels	
AV_GWL	ПЯП	Average groundwater level, per subdistrict

NOTE: DISTAG also computes a final condition, corresponding to each initial condition mentioned in Table 3.5. In the documentation, these outputs are referred to by the same prefix used in Table 3.5, followed by the suffix "NEW." For example, SWSALT_NEW, the quantity of salt in the surface water at the end of the decade, becomes SWSALT_OLD at the beginning of the next decade.

Chapter 4

HOW DISTAG WORKS

In this chapter we explain the theoretical background and mathematics of DISTAG, that is, <u>how</u> the model works. We will not discuss details of the computer implementation of the model. This explanation is given in Chap. 5.

4.1. AN OVERVIEW

In this section, we show how DISTAG is used by DM, and then we outline its main computational steps.

4.1.1. How DISTAG Is Used by DM

The operation of DM is shown in Fig. 4.1., a figure that emphasizes the role of DISTAG. We outline here the eight major steps shown in that figure.

Read Geographic Data. By geographic data we mean the data that remain constant from one decade to the next. These data describe the districts, and control some of the submodels.

Read Timestep Data. DM reads rain and evaporation data for a particular timestep.

Make Initial Estimates of Salt Concentrations. DM makes an estimate of the salt concentration of the waters of the national distribution system. An estimate of the salt concentration of the water extracted by the districts for agriculture is needed in order to, first, compute how much salt damage will occur and, second, to compute the concentration of the water discharged by the districts. The estimate made at this point is a temporary one, however, because the actual salt concentration may be affected by salt from districts whose discharges have not yet been computed.

Use DISTAG in "Request" Mode. For every district, DISTAG determines how much water is needed by agriculture to prevent additional damage during the timestep. DISTAG also computes salt discharges, based on the initial estimate described in the previous step.

Is There Enough Water? It may happen that, initially, more water is requested than is available. If this happens, then DM must invoke some previously specified managerial plan either to increase the supply of water where the shortage exists or to decrease the demand there. DM has two ways to reduce water demand by districts. First, DM can reduce the amount of water demanded for flushing out salt. Second, it can reduce the demand for surface water sprinkling by

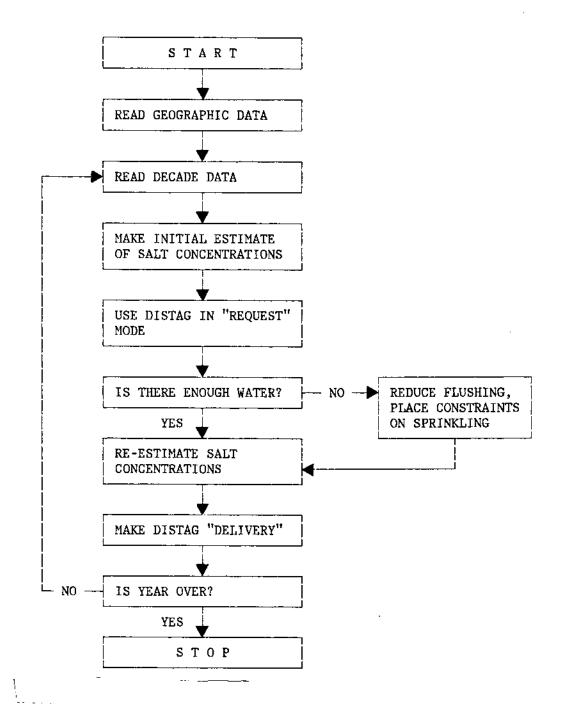


Fig. 4.1--How DM uses DISTAG

imposing a constraint on it. This constraint is applied only to sprinkling on open-air crops. (We assume that the demands of glass-house crops will not be cut back, because these crops are much more valuable than open-air crops and depend totally on irrigation. The benefits of saving a relatively small amount of water by constraining water delivered to these crops would be far outweighed by the costs.) The constraint is applied only to sprinkling from surface water, of course. DM applies this constraint by specifying a "cutback fraction." The total amount of surface water sprinkled on open-air crops is then set equal to the amount originally requested, multiplied by this cutback fraction.

Reestimate Salt Concentrations. At this point, DM has better information about what extractions and discharges the districts are making, and so it can make a better estimate of the salt concentrations in the national distribution system.

Use DISTAG to "Deliver." With updated estimates of salt concentrations, and possibly some constraints on agricultural extractions for sprinkling, DM uses DISTAG a second and last time to compute impacts. Agricultural damages and costs of sprinkling may change in this step: the damages may be higher and the costs of sprinkling lower than previously because of the constraints that may have been imposed on sprinkling by DM.

<u>Is Year Over?</u> If the year for which computations are being made is not completed, then DM returns to the point where data for the next timestep is read in, and repeats the above described steps for the new timestep.

4.1.2. The Main Computational Phases of DISTAG

DISTAG carries out its computations in eight main steps, summarized here and shown in Fig. 4.2.

If a Request: Bring Forward Last Decade's Conditions. As described in Sec. 3.2, there are a number of time-varying quantities required at the beginning of each timestep. Since DISTAG is used twice during each timestep, it must retain the correct initial conditions until they are no longer needed. When DISTAG is used for a "request," it carries forward from the previous timestep the final state conditions computed for that timestep, and uses them as the initial state conditions for the present timestep, destroying the old initial state conditions. When DISTAG is used to "deliver," it is not necessary to do this again.

If a Delivery: Constrain Flushing and Sprinkling, If Necessary. If DISTAG is being used to deliver water, then because of some conflict between supply and demand, DM may have decided to constrain the amount of water available for flushing and sprinkling. If DM has constrained flushing, it passes a variable to DISTAG indicating the amount by which flushing should be reduced. If DM has constrained sprinkling, it informs DISTAG of this decision by setting the cutback fraction.

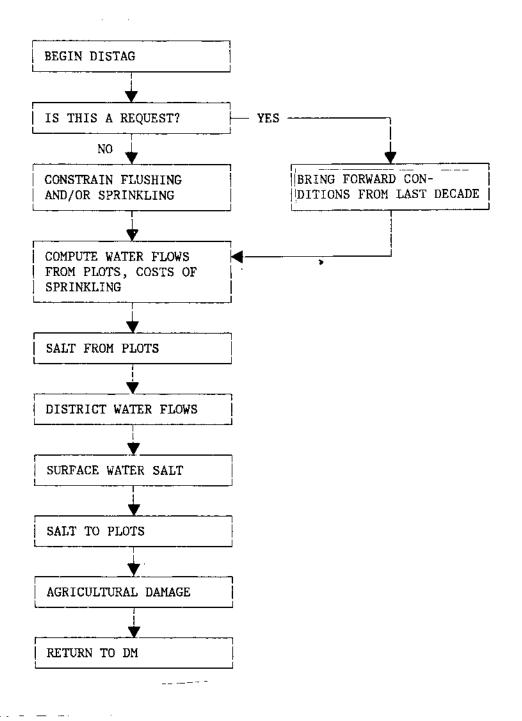


Fig. 4.2--Overview of DISTAG

The cutback fraction is the total amount of sprinkling that is to be delivered to all open-air surface water sprinkled crops, divided by the total amount of sprinkling actually requested by such crops. Generally, there are several plots containing such crops. Each of these plots receives what it originally requested, multiplied by the cutback fraction.

Discharges and Extractions from Plots, Sprinkling Costs. As described in Sec. 2.3.6, each district contains a number of plots, and these plots comprise all the agriculture and nature in the district. DISTAG first computes what extractions and discharges of water occur between these plots and the surface water system of the district. If DISTAG is being used in the "delivery" mode, some of the requests for sprinkling water may be constrained. If it is being used in the "request" mode, no such constraints are applied. The computation of water discharges, extractions, and sprinkling requests are carried out by the plot water model (PLOTWAT), described in much more detail in Sec. 4.2. After computing the amount of water sprinkled, DISTAG computes the operating cost of sprinkling.

Salt Flows from Discharging Plots. In the same timestep, some plots can discharge water at the same time that other plots extract water. In order to accurately determine the salinity of the extracted water, the amount of salt dumped into the district water by the discharging plots must be known. Salt discharged from plots is computed by the plot salt model (PLOTSLT), a model that is used again (see below) for plots that extract water.

<u>District Water Flows</u>. DISTAG determines the remaining water flows within the surface water system: urban runoff, rain into and evaporation from surface water, extractions from the main system, etc.

<u>Salt Concentration of the Surface Water</u>. Given all water and salt flows, DISTAG determines the salt concentration of the surface water and, hence, the salt concentration of the water taken in by plots that are extracting water and of the water that is being discharged into the national distribution system.

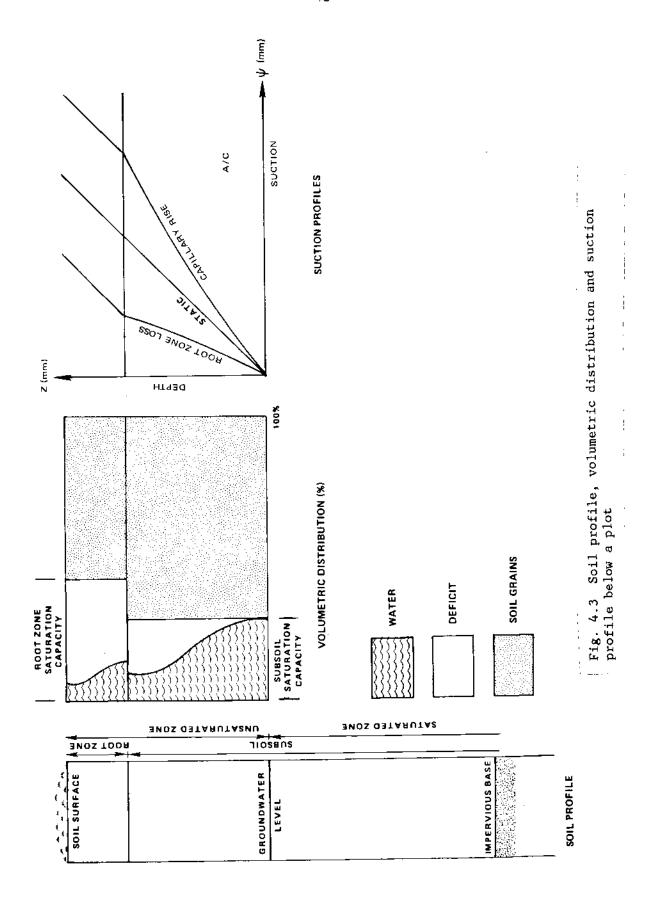
Salt Flows to Extracting Plots. Using the salt concentration mentioned in the previous step, DISTAG uses PLOTSLT again--this time for the remaining plots--to update the amount of salt contained in the soil of the plots that are extracting water from the district.

Agricultural Damage. At this point, all water and salt quantities have been computed, so the <u>plot damage model</u> (PLOTDAM) is used to determine what agricultural damage may have occurred due to salt or drought.

4.2. COMPUTATION OF WATER FLOWS

In this section, we explain how water flows are calculated. The main role of DISTAG here is to compute flows (i.e., discharges and extractions) between the district and the national distribution system, and to indicate to DM how much water is demanded for sprinkling. When DISTAG is used to formulate a request, DM needs to know how much water is used for sprinkling open-air crops with surface water, since this water may be constrained by DM if there are water shortages.

In Sec. 4.2.1 through Sec. 4.2.5 we will explain the theory underlying the water flow computations for open-air plots. In Sec. 4.2.6 we discuss the glasshouse crops, and we conclude this section with a discussion of the water flow computations carried out on a district level.


4.2.1. Definitions and Schematization for an Open-Air Plot

For the present purposes, it helps to think of a plot as a vertical column of soil. The surface area is not important, so to make matters precise, let us assume the area is 1 m². Suppose we take a slice Δz cm thick, containing Δw cm of water. If this water is removed and placed in a container of cross-sectional area 1 m², then the moisture content 0 of the slice is the ratio $0 = \Delta w/\Delta z$. Depending on the soil type, there is a maximum moisture content, called the saturation capacity w. Generally, the moisture content is different at different depths; it usually increases with increasing depth, until a point is reached where the moisture content just equals the saturation capacity. This point is called the groundwater level. Below the groundwater level lies the saturated zone. Above the groundwater level lies the unsaturated zone.

Schematization of the Soil Profile. The ideas in this section are illustrated in Fig. 4.3. The <u>effective root zone</u> is defined as the top layer of soil in which the roots of plants withdraw 80 percent of their water. Water is stored in the root zone; the actual amount at any one time is equal to the average soil moisture content of the root zone multiplied by the depth of the root zone.

The part of the soil profile below the effective root zone is called the <u>subsoil</u>. It consists of the saturated zone and the part of the unsaturated zone between the bottom of the root zone and the saturated zone. It is impossible to estimate the amount of water stored in the subsoil, because its depth is unknown. Instead, we consider the <u>subsoil deficit</u>, defined as the amount of water that could be added to the unsaturated zone in order to bring the groundwater level up to the top of the subsoil.

Any place water does not completely fill the soil pores, so that the moisture content is less than the saturation capacity, surface tension causes a negative pressure, called <u>suction</u>. Where the soil is saturated, suction is zero; as the soil becomes drier, suction increases.

Generally, the driest soil can be found in the root zone in dry periods, when the suction may become so high that plants can no longer absorb water from the soil. This limit on suction is around 16,000 cm, for almost all kinds of plants and soils. The moisture content of the soil when the suction is 16,000 cm is called the wilting point of the soil. In Fig. 4.3 we give an example of a suction profile in the unsaturated zone. (From this point on, we express suction in mm, since this unit is standard in the computer applications of our equations.)

We assume the suction profile in the root zone is linear and follows the hydrostatic pressure slope, that is,

$$\Psi_{x} = \Psi_{i} + x$$

where

 $\Psi_{\mathbf{X}}$: Suction (mm) at a distance of x mm from bottom of root zone

 Ψ_{i} : Suction (mm) at bottom of root zone

It follows that if the depth of the root zone is p mm, then

$$\Psi_i = \Psi - \rho/2$$

where Y is the average suction (mm) in the root zone.

The <u>field capacity</u> of a soil is the maximum moisture it can hold against the force of gravity. When the soil is at field capacity, there is by definition no capillary flow and the soil moisture tension curve follows the hydrostatic pressure line as shown in Fig. 4.3. This implies that the field capacity is different at different depths and the corresponding suction depends on the distance from the groundwater level.

<u>Water Flows in an Open- Air Plot</u>. The flows identified in this section are shown in Fig. 4.4. Since we consider a plot with a fixed cross-sectional area, the quantity of water in any given flow over a fixed interval of time can be expressed as a depth.

In our model, we will use as input two quantities that depend on atmospheric and climatic conditions:

- Rain, from atmosphere into root zone.
- Potential evapotranspiration, from root zone to atmosphere.

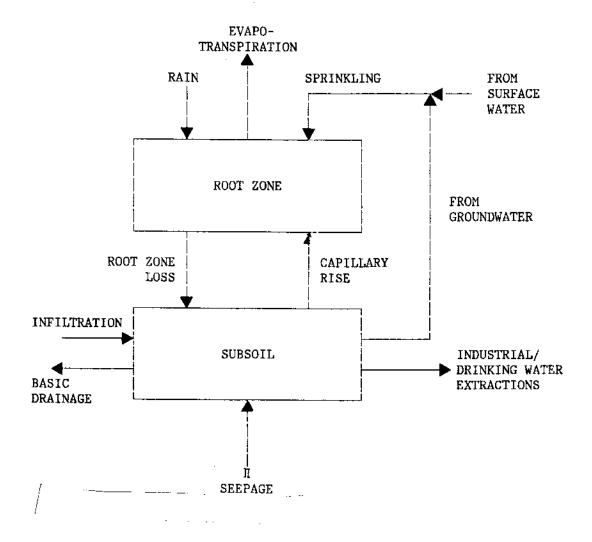


Fig. 4.4--Water flows in a plot

The remaining flows are determined by the physical processes occurring within the plot:

- Actual evapotranspiration, from root zone into atmosphere.
- Capillary rise, from subsoil into root zone.
- Drainage, from subsoil into surface water.

Evapotranspiration, of course, always represents a flow <u>out</u> of the plot. Water can flow from the root zone into the subsoil, in the opposite direction of capillary rise. When this happens, we call the flow <u>root zone loss</u>. Similarly, water can flow from the surface water system into the subsoil, in the opposite direction of drainage. When this happens, we call the flow infiltration.

In the "real" world, all of the quantities mentioned change continuously with time. In addition, the rate of vertical flow of water throughout the soil column is different at different depths, and the rate at which the moisture content of each "slice" of the soil column changes is different at different depths. A complete mathematical description of this system, if one were possible, would involve a complex system of partial differential equations whose variables are dependent on time and depth below the soil surface. Such a formulation is too complex for practical applications. In the next section, we describe a much simpler situation, called the steady-state.

4.2.2. Steady State Flows in Open-Air Plots

If during a fixed interval of time all the quantities discussed in the previous section remain constant, we say the system is in a <u>steady state condition</u>. While such a situation probably never occurs in the "real" world, it is a useful approximation for short intervals when quantities change slowly.

We specify two atmospheric conditions:

R: Rain (mm/day)

E_p: Potential evapotranspiration (mm/day)

Other flows depend on the physical situation:

 $E_{\underline{A}}$: Actual evapotranspiration (mm/day)

V: Capillary rise (mm/day)

D: Drainage (mm/day)

Finally, the "state" of the plot is determined by:

Θ: Soil moisture content of root zone (mm/mm)

Ψ: Average suction in root zone (mm)

Δ: Moisture deficit in subsoil (mm)

8: Groundwater level (mm)

In the "real" world, everything depends on everything else. In our model, we make some simplifying assumptions about certain causal relationships between the basic variables of our model. In what follows, we state these assumptions by writing some functional relationships between our variables. The exact nature of these relationships will be described in the next section.

Actual Evapotranspiration. Evapotranspiration depends on climatological conditions (the potential evapotranspiration), and on the difficulty that plants have extracting moisture from the soil (average suction in the root zone):

$$E_A = E_P \times F_{EVAP}(\Psi)$$
.

<u>Drainage</u>. Drainage depends on the groundwater level:

$$D = F_{DRAIN}(X)$$
.

Suction-Moisture (pF-curve). Suction depends on soil moisture:

$$\Psi = F_{PSI}(\theta)$$
.

Groundwater Level and Capillary Rise. Darcy's law (see, e.g., Ref. 4.1) relates the groundwater level, the soil moisture profile in the subsoil, and capillary rise. Two functions can be derived from this theory:

$$\mathcal{X} = F_{GWL}(\Delta, v)$$

and

$$V = F_{CAPRISE}(\Psi, \mathcal{E}).$$

4.2.3. Using Steady State Conditions

We consider an interval δ days long. Suppose that during this time rain falls at a constant rate equal to R mm/day, and that the potential evapotranspiration is E_p mm/day. At the beginning of the interval, we know

 θ^{\bullet} : The initial root zone soil moisture (mm/mm))

 Δ^{0} : The initial subsoil deficit (mm)

γ°: The initial groundwater level (mm)

Our problem is to determine three water flows:

 E_{Λ} : The actual evapotranspiration (mm/day)

V: The capillary rise during the interval (mm/day)

D: The drainage (mm/day)

and three final conditions:

 θ^1 : The final root zone soil moisture (mm/mm))

 Δ^1 : The final subsoil deficit (mm)

The final groundwater level (mm)

Finally, we will need two parameters that describe the plot itself:

ρ: The root depth (mm)

w: The saturation capacity of the root zone (mm/mm)

Mass balances and one of the functions introduced in the previous sections allow us to calculate the final conditions from the initial conditions and all of the water flows:

$$\Theta^{1} = \Theta^{0} + (R + V - E_{A})\delta/\rho \tag{1}$$

$$\Delta^{1} = \Delta^{0} + (V + D)\delta \tag{2}$$

and

$$\mathbf{\tilde{z}}^{1} = \mathbf{F}_{GML}(\mathbf{\Lambda}^{1}, \mathbf{V}). \tag{3}$$

We now assume that the water flows match those of a steady state system in which the state conditions (root zone soil moisture, subsoil deficit, and groundwater level) are set equal to averages. That is, we let

$$\theta = (\theta^0 + \theta^1)/2$$

$$x = (x^0 + x^1)/2$$

denote the average root zone soil moisture and groundwater level, respectively. We then assume that if the plot had been in a steady state condition, with constant value of the root zone soil moisture equal to θ and groundwater level equal to δ , then the same water flows would have been observed. If we let

$$\Psi = F_{PSI}(\theta)$$
,

then under such steady state conditions:

$$E_{A} = E_{P} \times F_{EVAP}(\Psi) \tag{4}$$

$$V = F_{CAPRISE}(\Psi, \mathcal{E})$$
 (5)

and

$$D = F_{DRAIN}(X). (6)$$

Our problem is therefore converted to that of solving simultaneously the six equations Eq. (1) through Eq. (6).

4.2.4. Specifying the Functions

In Sec. 4.2.2 we introduced five functional relationships between the steady state quantities in a plot, and in Sec. 4.2.3 we showed how the functions will be used. We now explain how these functions are actually defined.

Actual Evapotranspiration. Water is lost from the top of the soil column to the atmosphere by evaporation directly from the soil surface and by transpiration from plants. The sum of these two flows is called evapotranspiration. The amount of actual evapotranspiration cannot exceed the potential evapotranspiration. The latter quantity is computed from input data, by multiplying the open water evaporation rate by a time-dependent crop factor. (A correction factor used when plants have suffered damage is explained in Sec. 5.3.1.) The actual evapotranspiration depends on the amount of water available in the root zone. If the suction is low enough, the rate of actual evapotranspiration will equal the rate of potential evapotranspiration. But as the suction becomes higher, the actual rate will become lower than the potential rate. Evapotranspiration totally ceases at the wilting point, corresponding to a root zone suction of around 16,000 cm. An important question is what the functional relationship between the actual evapotranspiration $(\mathbf{E}_{\mathbf{A}})$, the potential evapotranspiration $(E_{_{\mathbf{D}}})$, and the average soil moisture suction (Ψ) looks like. As indicated by Minhas et al. [4.2], the results of various studies in this field differ considerably, so there does not seem to be a clear answer to this question. We made the following assumptions:

- Up to a certain value of the suction (Ψ_{reduce}), Ξ_A equals Ξ_P .
- Between Ψ and the wilting point (Ψ = 16000 cm), E_A decreases linearly with the pF value of the soil moisture (which is the logarithm of the suction in cm).
- At the wilting point, $E_{\Lambda} = 0$.

To express these assumptions in functional form, we write

$$E_A = E_p \times F_{EVAP}(\Psi)$$

where

 $\mathbf{E}_{\mathbf{A}}$: Actual evapotranspiration (mm/day)

 E_p : Potential evapotranspiration (mm/day)

Ψ: Average suction in the root zone (mm)

and the function $F_{\mbox{EVAP}}$ is defined by the expression

$$F_{EVAP}(\Psi) = 1$$
 $\Psi \leq \Psi_{reduce}$

$$= X \qquad \Psi_{reduce} \leq \Psi \leq 160000$$

$$= 0 \qquad 160000 \leq \Psi$$

where

X: $\log(\Psi/160000)/\log(\Psi_{\text{reduce}}/160000)$

Y reduce: A specified parameter

Figure 4.5 shows the relationship between ${\rm E}_{\rm A}/{\rm E}_{\rm p}$ and the pF value of the soil moisture.

Drainage and Infiltration. The force of gravity acts on water in the saturated zone, causing it to flow from places with a higher piezometric head to places with a lower one. When this flow moves water from the subsoil into the surface water, it is called drainage. When it causes water to leave the surface water and enter the subsoil, it is called <u>infiltration</u>. In either case, the flow is governed by a differential equation called Darcy's law (Fig. 4.6):

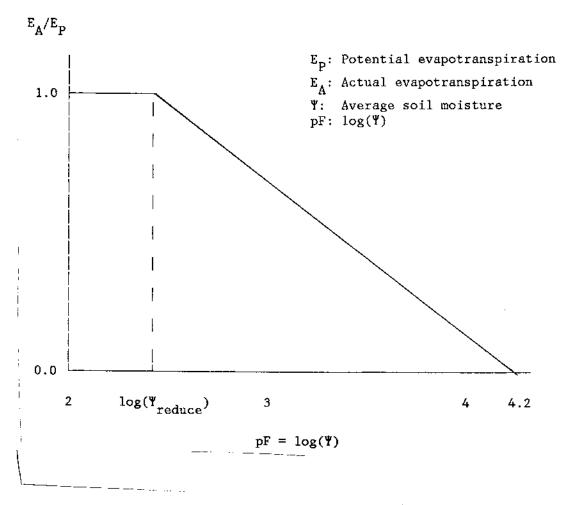


Fig. 4.5-- $E_{\mbox{\scriptsize A}}/E_{\mbox{\scriptsize p}}$ as a function of pF

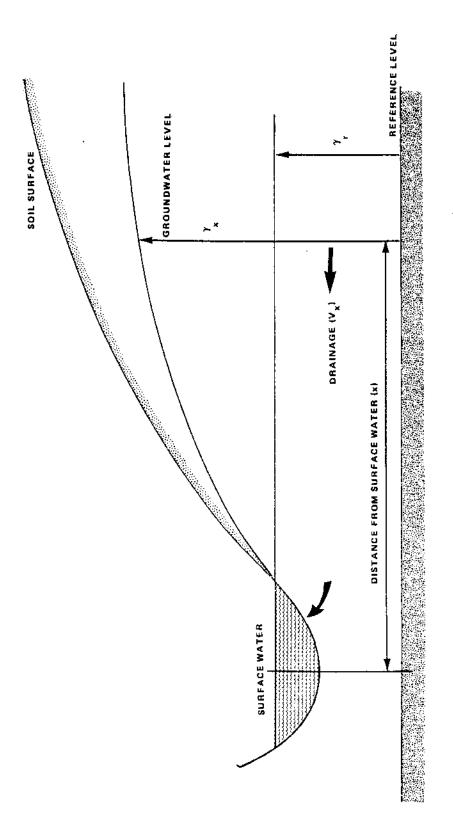


Fig. 4.6--Soil profile illustrating water flows due to drainage

$$V_{x} = V_{x}^{1}/K_{x} \tag{7}$$

x: Vertical distance from an arbitrary datum (mm)

 $V_{\mathbf{x}}$: Drainage velocity (mm/day)

K_s: Drainage resistance (days)

Hydraulic potential (groundwater level) in (mm)

 x_{x}^{t} : Derivative with respect to x

Solutions to Eq. (7) define the drainage function:

$$D = F_{DRAIN}(x)$$

where

D: Drainage (if positive) or infiltration (if negative) (mm/day)

δ: Groundwater level (mm)

When drainage occurs, the resistance consists of a horizontal component caused by the horizontal flow and a radial component when the flow enters the surface water system. When infiltration occurs, there is an additional entrance resistance when water from the surface water system enters the subsoil. We can assume that otherwise these two resistances are constant. The steady state solution to Eq. (7) then becomes:

$$D = (\mathfrak{F} - \mathfrak{F}_r)/k^+ \qquad \qquad \mathfrak{F} > \mathfrak{F}_r$$
$$= (\mathfrak{F} - \mathfrak{F}_r)/k^- \qquad \qquad \mathfrak{F} \leq \mathfrak{F}_r$$

where

 k^+ : Drainage resistance (1/day)

k: Infiltration resistance (1/day)

Reference level (e.g., level of the surface water system) (mm)

This form of the drainage function is used for plots lying in the lowlands, where the reference level is set equal to the ditch level. The values used for resistances can be estimated on the basis of such factors as soil type, ditch spacing, etc.

When no specific reference level can be distinguished, the steady state solution to Eq. (7) can be written in the form:

$$D = \alpha + \beta \mathcal{X}$$

where

α: Constant term of the drainage function (mm/day)

β: Coefficient term of the drainage function (1/day)

This form of the drainage function is used for plots in the highlands, where the coefficients are determined on the basis of measured groundwater levels.

Infiltration losses from the surface water system in the highlands are treated differently. These losses are assumed to come from that part of the surface water system in the highlands that is suppliable from the national system, and they are assumed to take place at a constant rate. Hence, they are determined only by the suppliable part of the highlands district and the infiltration rate. They are included as a part of the constant term of the drainage function. (See Sec. 5.3.2.)

Suction-Moisture (pF-Curve). For any suction value Ψ there corresponds a unique value of the soil moisture θ . This relationship depends strongly on the soil type, and in general it must be empirically determined. We will denote this empirical relationship generically by the functional notation

$$\Psi = F_{PST}(\theta)$$
.

The relationship is monotonic, and so can be inverted. We will denote the inverse by the notation

$$\Theta = F_{\text{THETA}}(\Psi)$$
.

The Ψ -0 relation has been empirically determined for twenty soil types [4.3]. It is called the <u>pF-curve</u> of the soil (pF is $\log_{10}\Psi$). Figure 4.7 is an example.

The Groundwater Relation. Darcy's law states that when steady state conditions hold, capillary rise is governed by the differential equation

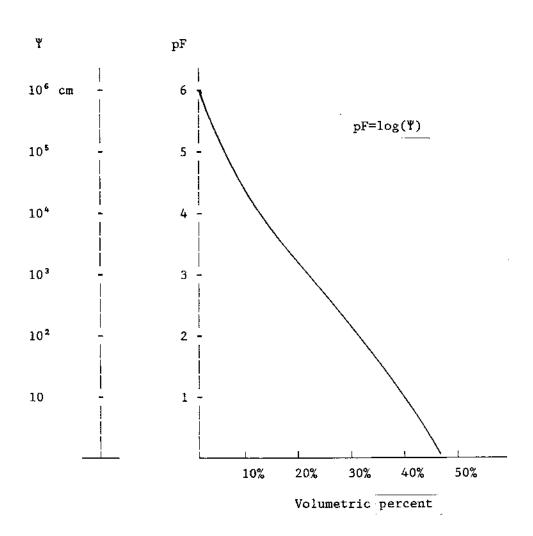


Fig. 4.7—Typical soil moisture-soil tension curve (pF-curve)

$$V = k(\Psi(z))(\Psi'(z) - 1) \qquad 0 \le z \le \mathfrak{F}$$
 (8)

Groundwater level (mm) measured downward from base of root zone

 $\Psi(z)$: Suction (mm) z mm above the groundwater level

 $k(\psi)$: Capillary conductivity as an empirically determined function of suction ψ (mm/day)

V: Rate of capillary rise (mm/day) in unsaturated zone (assumed constant)

If the capillary rise V is known, and a particular value for suction, Ψ , is specified, let $z(\Psi,V)$ denote the distance above the groundwater level where the suction Ψ is found. In the steady state situation, Darcy's equation gives the following expression for $z(\Psi,V)$:

Ψ

$$z(\Psi, V) = \int k(\psi)/(k(\psi)+V)d\psi.$$
(9)

Expressions for $k(\psi)$ take the following forms [4.3]. For each soil type, four empirically determined parameters k_0 , α , Ψ_a , and Ψ_{max} are given. Then,

$$k(\psi) = k_0 \qquad 0 \leq \psi \leq \Psi a$$

$$= k_0 \exp(-\alpha(\psi - \Psi_a)) \qquad \Psi_a \leq \psi \leq \Psi_{max}$$

$$= a\psi^{-1.4} \qquad \Psi_{max} \leq \psi$$

where a is the constant that makes the last two expressions equal when $\psi=\Psi_{\max}$.

For this "k" function, explicit expressions can be given for $z(\Psi,V)$:

$$z(\Psi, V) = \Psi k_0 / (k_0 + V) \qquad 0 \leq \Psi \leq \Psi_a \qquad (10)$$

$$= z(\Psi_a, V) + \ln(R) / \alpha \qquad \Psi_a \leq \Psi \leq \Psi_{max}$$

=
$$z(\Psi_{\text{max}})$$
+b $f 1/(1+u^{1.4})$ du $\Psi_{\text{max}} < \Psi$

$$R = [V+k_0]/[V+k_0\exp(-\alpha(\Psi-\Psi_a))]$$

$$b = (a/V)^{1/1.4}$$

and the integral is evaluated from Ψ_{max}/b to Ψ/b .

It can be seen from Eq. (9) that for a fixed value of capillary rise V, $\mathbf{z}(\Psi,V)$ is a monotonic function of the suction Ψ . Therefore, given a distance Z above the groundwater level, and a capillary rise V, the equation

$$z(\Psi,V) = Z$$

can be solved for the suction Ψ . We will denote this solution by the expression $\Psi(Z,V)$.

As explained above, the soil moisture θ can be determined from the suction Ψ . Therefore, once we know the suction $\Psi(Z,V)$ corresponding to a specified distance Z and capillary rise V, we know the soil moisture too, which we could denote as $\theta(Z,V)$. This defines the function F_{THETA} :

$$\Theta(Z,V) = F_{\text{THETA}}(\Psi(Z,V)).$$

For a fixed value V of capillary rise and a given groundwater level V, the moisture function O(Z,V) can be integrated to obtain an estimate of the total amount of water in the subsoil between the bottom of the root zone and the groundwater level:

8

$$\theta_{\text{subsoil}} = I \ \theta(z, V) dz.$$

0

An expression for the subsoil deficit Δ can therefore be written

$$\Delta(V, X) = X_{\omega}_{subsoil} - \theta_{subsoil}$$

where $\omega_{\rm subsoil}$ is the saturation capacity of the subsoil. For a fixed value of capillary rise, V, this expression is monotonic

in the groundwater level \mathcal{X} . Therefore, if a subsoil deficit Δ is specified, the equation

$$\Delta(V, \mathcal{E}) = \Delta$$

can be solved to find that groundwater level % which, for a specified capillary rise V, yields the specified subsoil deficit Δ . We denote the solution to this equation by the expression

$$rac{V}{V} = F_{GWL}(\Delta, V)$$

where

%: Groundwater level (mm)

Δ: Subsoil deficit (mm)

V: Capillary rise (mm/day)

The Capillary Rise Relation. From Eq. (8), capillary rise is zero when the slope of the suction curve is equal to one everywhere, and in this case it follows the hydrostatic curve:

$$\Psi(z) = z \qquad 0 \le z \le \delta.$$

Thus, capillary rise is zero if and only if the suction at the base of the root zone is equal to the groundwater level, and is therefore positive when the suction at the base of the root zone is greater than the groundwater level.

If the suction at the base of the root zone is equal to the groundwater level, the moisture in the root zone is at field capacity. If the suction decreases even more (e.g., because rain exceeds evapotranspiration), the excess must flow from the root zone into the subsoil. We call this flow root zone loss. We do not introduce an additional term for this flow. Instead, we will use the variable associated with capillary rise, but we let it take a negative value equal in magnitude to the rate of root zone loss.

Suppose Ψ is the average suction in the root zone, and let

$$\Psi_i = \Psi - \rho/2$$

denote the suction at the interface between the root zone and the subsoil. As the foregoing discussion indicates, if V denotes the capillary rise (in the extended sense just introduced), then

$$V > 0$$
 if $\Psi_i > 8$

≤ 0 otherwise.

Since $z(\Psi,V)$, defined in Eq. (9), is monotonic, the equation

$$z(\Psi_{\underline{i}}, V) = V \tag{11}$$

can be solved to obtain the capillary rise associated with the tension $\boldsymbol{\Psi}_i$ and groundwater level %.

In principle, solutions can result in positive <u>or</u> negative values for capillary rise. To simplify our calculations, however, we assume that negative capillary rise (root zone loss) is instantaneous. This means that the root zone soil moisture never exceeds field capacity. The rate of root zone loss is then just the difference between rain and evapotranspiration. Hence, in this case

$$V = -(R - E_A).$$

These two expressions define our capillary rise function,

$$V = F_{CAPRISE}(\Psi, V)$$

where

V: Capillary rise (mm/day)

Ψ: Average suction in the root zone (mm)

୪: Groundwater level (mm)

That is, V is the solution to Eq. (10) when $\Psi_{\underline{i}} > \delta$, and is given by Eq. (11) otherwise.

4.2.5. Sprinkling

In order to simplify the discussion, we have so far ignored the fact that some plots are sprinkled. We will discuss first how the overview presented in Sec. 4.2.2 could be modified to include sprinkling, and then we will discuss the ways in which sprinkling was modeled.

Overview. When a plot is sprinkled, four additional water flows need to be considered.

First of all, water that is sprinkled represents an additional input of water into the root zone. Second, because of cracks in the soil surface, or because sprinkled water is not uniformly distributed over the field, some of the sprinkled water may flow directly into the subsoil. Third, when water is sprinkled, part of it evaporates into the air before it ever reaches the root zone. The sum of these three flows represents the fourth flow: the total amount of water that is

extracted, either from the groundwater or from the surface water system, for the purpose of sprinkling.

To modify our overview discussion to include sprinkling, we need to introduce two additional terms:

I: Rate at which sprinkled water effectively enters the root zone (mm/day)

I_NET: Net withdrawal from subsoil, including a part that is extracted if the plot is sprinkled from groundwater, minus the part that flows directly back into the subsoil (mm/day). (Negative when sprinkled from surface water.)

The discussion in Sec. 4.2.2 can be modified to include sprinkling by adding the sprinkling term I to the rain term R in Eq. (1), and the subsoil flow term I_NET to the capillary rise term V in Eq. (1) and Eq. (2).

<u>Sprinkling Open- Air Crops</u>. DISTAG contains two different sprinkling procedures. Either can be used.

The simpler procedure uses two soil moisture levels, a critical level and a target level, and an upper bound on the rate at which sprinkling can occur. It first computes what the soil moisture would be if no sprinkling occurs. If this soil moisture is above the critical level, no sprinkling occurs. If this soil moisture level is below the critical level, then sprinkling is assumed to take place at such a rate as to bring the soil moisture up to the target level by the end of the timestep, unless this rate exceeds the upper bound. If it does exceed the upper bound, the sprinkling rate is set equal to the upper bound. To be precise, we let

$$\theta_{\text{unspr}} = \theta^{\circ} + (R + V - E_{p})\delta/\rho$$

denote what the soil moisture would be if no sprinkling occurs. Then we set

AMOUNT = 0
$$\theta_{\text{critical}} \leq \theta_{\text{unspr}}$$

=
$$min(I_MAX, (\theta_{target} - \theta_{unspr}) \times \rho/\delta)$$
 otherwise

where

AMOUNT: Rate at which sprinkled water effectively enters the root zone (mm/day)

δ: Length of interval (days)

R: Rain (mm/day)

E_p: Potential evapotranspiration (mm/day)

V: Capillary rise (mm/day)

 θ^{t} : Initial root zone soil moisture (mm/mm))

Ocritical: Critical soil moisture level (mm/mm)

 θ_{target} : Target soil moisture level (mm/mm)

I MAX: Maximum sprinkling rate possible (mm/day)

ρ: Depth of root zone (mm)

We then define

LOSS = AMOUNT \times (1- ε)/ ε

DOWN = LOSS $\times \epsilon$

where

LOSS: Total rate at which water extracted for sprinkling

is lost to atmosphere or subsoil

DOWN: Rate at which sprinkled water flows directly into

subsoil (mm/day)

ε: Water effectively applied to root zone divided by

total water withdrawn for sprinkling

 ϵ ': Fraction of "lost" water that flows into subsoil

Finally, we let

REQUEST = AMOUNT + LOSS

denote the total amount withdrawn for sprinkling.

These quantities are related to the symbols I and I_NET introduced above:

For all sprinkled plots,

I = AMOUNT.

- In addition, if the plot is sprinkled from groundwater,
 I NET = REQUEST DOWN.
- However, if the plot is sprinkled from surface water,
 I NET = DOWN.

This simple procedure does not take into account certain practical considerations concerning irrigation. A farmer lacks perfect knowledge about rain and evapotranspiration, and since it takes quite a while to irrigate his entire field, he must decide when to start sprinkling based on weather forecasts of a week or more. Moreover, he is constrained by the technical capabilities of an irrigation system that requires him to move it around his field in steps (sprinkling relatively small sections at a time) and that limits it to a certain capacity. The simple irrigation model treats the plot as a single, simultaneously irrigated field owned by a farmer who knows everything about the weather in that timestep. This procedure tends to underestimate the amount of irrigation, the drought damage that still occurs, and the amount of water lost from root zone to subsoil because of rainfall shortly after irrigation.

We have developed a more complicated sprinkling procedure that takes these problems into account. This procedure reproduces a detailed model that simulates the behavior of farmers whose activities are based on daily weather information and are constrained by practical considerations concerning the operations of irrigation systems. This detailed procedure is described in Chap. 5 of Vol. XIII. This more complicated procedure produces the same kinds of outputs as the simpler one described above (e.g., it computes I and I_NET). The more complicated procedure was the one actually used by PAWN.

4.2.6. Water Flow Computations for Glasshouse Plots

Plots with glasshouse crops differ considerably from those with openair crops. The climate of the glasshouses is carefully controlled. Temperature, the supply of water, and sometimes even light are controlled in such a way that optimal growing conditions for the plants are created. The soil moisture in the glasshouses is kept high, and capillary rise from the subsoil never occurs. To prevent salt buildup, farmers tend to sprinkle more water than is required for evapotranspiration, and so they flush salt from the root zone into the subsoil.

To model the flow of water in the glasshouse plots, we made the following assumptions:

- All rain flows directly into the surface water.
- Potential evapotranspiration does not depend on the "natural"

- climate, but is predetermined.
- The actual evapotranspiration is always equal to the potential evapotranspiration.
- Capillary rise never occurs.
- Root zone loss (flushing) is fixed and constant over the year.
- The moisture in the root zone is constant over the year.
- The moisture in the subsoil and the groundwater level are constant over the year.

These assumptions lead to a series of simple mass balance equations.

4.2.7. Flows in and out of the Surface Water of a District

We now turn to water flows in a district other than those computed by PLOTWAT.

Flows from Vegetation-Covered Area. In the previous section, we showed how water flows are calculated for a single plot. These flows are computed in units of millimeters per unit of area for the entire timestep, and the area of a given plot does not affect the calculations. To compute flows between the entire vegetation-covered region, which is made up of a number of plots of different sizes, and the surface water system, DISTAG must use PLOTWAT for each of these plots, then convert the relevant flows provided by PLOTWAT on the basis of a millimeter per unit of area to a volume of water (cubic meters per second), and sum these flows over all the plots in the district.

How DISTAG works depends on whether it is formulating a "request" or a "delivery." For a "request," there are no constraints on the amount of water that can be withdrawn from the surface water for sprinkling. For a "delivery," there may be a constraint, supplied by DM, on the amount of water that can be withdrawn from the surface water for sprinkling open-air crops. This constraint is expressed in the form of a so-called cutback fraction, set equal to the total amount of such sprinkling that DM is willing to allow, divided by the amount of such sprinkling originally requested. DISTAG "delivers" this reduced amount of water only to the plots that sprinkle open-air crops from surface water. When this happens, PLOTWAT simply adds the reduced amount of sprinkling to the rain, and makes computations as though the plot were an unsprinkled one. Cutting back sprinkling has no effect on the water flow computations of the unsprinkled plots, the plots with crops under glass, and the plots sprinkled from groundwater. For computing total water flows from the plots, DISTAG can use the flows from these plots that were calculated during the "request" phase.

In both the "request" and the "delivery" phases, DISTAG accumulates the relevant water flows for all the plots. In the "request" phase, PLOTWAT is used for each plot in the district to determine these flows. In the "delivery" phase, PLOTWAT is used again to recompute these flows only for the plots whose sprinkling can be cut back. For

the other plots, such flows are "remembered" from the time the "request" was formulated, and used again.

<u>Urban Runoff</u>. The amount of rain falling on the urban area is obtained by multiplying the surface area of the urban region by the amount of rain and converting to cubic meters per second. A small amount of evaporation is assumed to occur from the urban surfaces. It is calculated by multiplying the open water evaporation by what we call the <u>urban crop factor</u>, typically set equal to 0.2, and converting to a volume quantity as we did for rain. Urban runoff is the amount of rain minus this amount of urban evaporation, or the runoff is zero if urban evaporation exceeds the rain.

Change in Surface Water Volume Due to Rain and Evaporation. The rain falling on the surface water and the evaporation from the surface are converted to cubic meters per second.

Main Extraction and Discharge. The computation of the main discharge from the district to the national distribution system and of the main extraction in the reverse direction is based on three principles. First, the total water volume in the district must remain fixed: this is called the principle of absolute level control. Second, the discharge must not be less than a fixed constraint imposed by DM for flushing. Finally, the discharge should be minimized, as long as these first two principles are not violated.

The amount of flushing is governed by two quantities. First, there is a <u>minimum flushing rate</u> associated with each district. Second, DM can increase or reduce this amount with a control parameter.

All of the flows to and from the surface water system are combined to yield a preliminary change in water volume due to all causes other than flows between the district and the national distribution system. The main discharge is then the minimum of that required to discharge any excess water and meet the flushing minimum. The main extraction is what is required to keep the water volume constant.

4.3. COMPUTATION OF SALT FLOWS

When a district extracts water from the national distribution system, salt is usually found in the extracted water. The concentration of this salt is given to DISTAG by DM. In addition, a district has other sources of salt: rainwater, urban discharge, seepage, etc. This salt may be stored in the surface water for some time. It may also enter the plots, either with water withdrawn from the surface water for sprinkling or with water that infiltrates from the surface water directly into the subsoil. Eventually, however, salt returns to the national distribution system when the district discharges water, and so DISTAG must give to DM the salt concentration of the discharged water. In this section, we discuss how this salt concentration is computed.

Salt is stored in both the root zone and the subsoil of the plots, and the plot salt model, PLOTSLT, is used to estimate the salt content in these two places for each plot in the district. A simple model is used to calculate salt quantities in the surface water system. It turns out that an essentially identical mathematical formulation is used for both the salt computations for plots and for the surface water. We call this formulation the <u>basic salt model</u>, and we describe it first. Then we show how it is applied to plots and, finally, to the surface water system.

4.3.1. The Basic Salt Model

We consider a closed body of water over a fixed interval of time. We suppose there is a constant flow of water into the system carrying with it some salt at a fixed concentration, which mixes instantaneously and perfectly with the salt originally there. Some water may leave the system carrying no salt, say as evaporation; the rest flows out carrying some salt with it. We wish to know how much salt leaves and how much salt is left in the system at the end of the time interval.

The basic salt model takes as inputs the following six variables:

W_IN	Water entering the system
W_UP	Water leaving the system with no salt
WOLD	Amount of water in system at start of interval
W_NEW	Amount of water in system at end of interval
S_IN	Salt entering the system
s_ord	Amount of salt in system at start of interval

It determines the following two quantities:

S_NEW Amount of salt in system at end of interval AVCONC Average concentration of water leaving system

It is sufficient to determine the salt concentration C(1) at the end of the timestep, because then:

where

$$W_OUT = W_OLD - W_NEW + W_IN - W_UP.$$

The Basic Differential Equation. Let t be the variable denoting time, with t=0 at the beginning of the time interval, and t=1 at the end. The following intermediate variables will be used:

C(t): Salt concentration at time t

V(t): Water volume at time t

S(t): Amount of salt at time t, $C(t) \times V(t)$ W_DEL : Change in water volume, $W_NEW - W_DEL$

W_NET: Net volume entering, W IN - W UP

We know the initial salt concentration,

$$C(0) = S OLD/W OLD.$$

Because water flows are constant, we can write

$$V(t) = W_OLD + W_DEL \times t$$
.

Perfect mixing implies that salt leaves the system at time t at a rate equal to

$$(W_NET - W_DEL) \times C(t)$$
.

Hence, the rate of change of the volume of salt is given by the differential equation

$$S'(t) = S_IN - (W_DEL - W_NET) \times C(t)$$
.

Now, since

$$S'(t) = V'(t) \times C(t) + V(t) \times C'(t)$$

it follows that

$$C'(t)\times V(t) = S IN - (W DEL-W NET)\times C(t) - W DEL\times C(t)$$
.

This gives us our basic equation

$$C'(t) = [S_IN - W_NET \times C(t)]/[W_OLD + W_DEL \times t].$$

The equation is separable and the solution is elementary. There are four cases to consider, and we give the solution in each case.

Case 1: W_NET #0, W DEL #0.

$$C(t) = B(t) \times C(0) + (1-B(t)) \times S \text{ IN/W NET}$$

where

$$B(t) = [W_OLD/V(t)]^{(W_NET/W_DEL)}.$$

Case 2: $W_NET = 0$, $W_DEL \neq 0$.

$$C(t) = C(0) - \ln(V(t)/W_OLD) \times S_IN/W_DEL.$$

Case 3:
$$W_NET \neq 0$$
 $W_DEL = 0$.

$$C(t) = E(t) \times C(0) + (1-E(t)) \times S \text{ IN/W NET}$$

$$E(t) = \exp(-t \times W \text{ NET/W OLD}).$$

$$C(t) = C(0) + t \times S IN/W OLD.$$

A Simple Expression for C(1). For our purposes, we need only the value for C(1), the concentration at the end of the timestep. The four solutions above can be combined in a fairly simple way to obtain the following.

Define X by

$$X = ln(W_NEW/W_OLD)/W_DEL$$
 if $W_DEL \neq 0$
= $1/W_OLD$ otherwise.

Define Y by

$$Y = [1 - \exp(-X \times W_NET)]/W_NET$$
 if $W_NET \neq 0$
= X otherwise.

Then

$$C(1) = Y \times S_{IN} + (1 - Y \times W_{NET}) \times C(0).$$

4.3.2. Salt Computations for Plots: PLOTSLT

The plot salt model, PLOTSLT, is a model of the salt flows for a particular plot. It uses the water flow computations of PLOTWAT with various salt inputs, described in more detail below, and computes salt concentrations of:

- The water in the root zone
- The water in the subsoil
- The water that drains from the subsoil

PLOTSLT is used by DISTAG twice. First, it is used to compute discharges of salt from plots that are discharging water into the surface water system. Second, after DISTAG has computed the salt concentration of the surface water system, PLOTSLT is used to compute the salt concentrations in the soil for plots that are extracting water from the surface water system. It sometimes happens that a plot extracts and discharges water at the same time. In such a case, PLOTSLT is used twice for the same plot. The results of the computations of

PLOTSLT are also used by the plot damage model, discussed later, to determine salt damage.

PLOTSLT proceeds in two steps. First, it computes salt flows to and from the root zone, and then it computes salt flows to and from the subsoil. In principle, salt can flow from the subsoil to the root zone with capillary rise. Because generally a substantial freshwater layer builds up in the winter season, the salt in the subsoil (e.g., because of seepage) will hardly ever reach the root zone. The assumption therefore is that capillary rise carries no salt. This means that for most plots salt cannot be transported from the subsoil to the root zone, and the two-step computation, first for the root zone, then for the subsoil, is perfectly valid. The one exception involves plots that are sprinkled by using groundwater: the water extracted from the ground in fact carries salt with it, so there is an interaction going both ways between the root zone and the subsoil. However, in places where groundwater sprinkling takes place, the salt concentration of the subsoil is low relative to concentrations that cause damage to crops; therefore this contribution to the salt in the root zone is neglected.

PLOTSLT treats glasshouse crops quite differently from open-air crops--in fact, PLOTSLT is actually two different models, one for each of these two groups of crops.

Open-Air Crops. For crops grown in open air we assume that the water volumes in the root zone and the subsoil are completely mixed and that therefore the basic salt model described in Sec. 4.3.1 can be used. PLOTSLT uses it twice, first for the root zone, then for the subsoil.

For the root zone, the water flows are those computed by PLOTWAT. Salt enters the root zone along three paths. First, rainwater has a mild salt concentration. Second, there are exogenous sources of salt not connected directly to any inflow of water (e.g., from fertilizer and pesticides). Finally, if the plot is sprinkled using surface water, salt enters with this water at a concentration provided by DISTAG.

The basic salt model determines the amount of salt in the root zone at the end of the timestep and the average concentration of the salt leaving the root zone. The former value is used to compute the final root zone salt concentration, and the latter to compute the concentration of the root zone loss, which is used subsequently in the calculation of salt flows in the subsoil.

PLOTWAT computes water flows in the subsoil, just as it did for the root zone. Consistent with the assumption implicit in the root zone calculation that no salt is introduced when sprinkling from groundwater, we assume that no salt is carried from the subsoil by the water for this kind of sprinkling. Salt enters the subsoil from the root zone via root zone loss, at the concentration calculated during the root zone phase of PLOTSLT. Salt enters the subsoil via infiltration from surface water of the district at a concentration equal to that determined by

DISTAG. Salt also enters in seepage and as an exogenous load. The exogenous load that goes directly to the subsoil accounts for diffuse loads like salt used for ice abatement on roads. Eventually such salt ends up in the surface water system via verges alongside the road and from drainage out of the subsoil. Our way of handling the load ensures that the real phenomena are represented reasonably, although there is no actual physical meaning to it.

In order to compute salt concentrations, the model must assume a subsoil volume. Based on empirical findings with respect to the response time of the system, a limited top layer of the subsoil was specified to represent the "active" volume, i.e., that part of the subsoil where salt is stored.

The basic salt model determines the amount of salt in the subsoil at the end of the timestep and gives the average salt concentration of the water draining into the surface water system.

Glasshouse <u>Crops</u>. There are several reasons why a more accurate modeling of the salt flows in the glasshouse plots is required:

- Glasshouse crops are sprinkled continuously throughout the year.
- They are more sensitive to salt.
- They have a higher value (per unit of area) than open air crops.
- Most are located in lowland areas with rather high salt concentrations in the surface water.

Glasshouse crops get their total water supply from sprinkling, the most important source of salt for the root zone. This leads to an accumulation of salt in the root zone. Farmers try to prevent this accumulation by flushing the root zone, i.e., by sprinkling more water than is required for evapotranspiration by the plants. The simple approach described in the previous section that we adopted for openair crops would lead to a very high concentration of salt in the root zone of glasshouse crops. This high concentration would be caused by the assumption that the outflowing water of the root zone takes with it salt at a concentration equal to the average concentration of the root zone. In fact, there exists a distinct gradient of salt in the soil profile. The concentration is low at the top and equal to that of the sprinkling water. It is up to several times higher at the bottom. The concentration of the outflowing water is actually that of the bottom of the root zone.

We assume that the salt profile in the root zone of glasshouse crops is of the form (see Fig. 4.8):

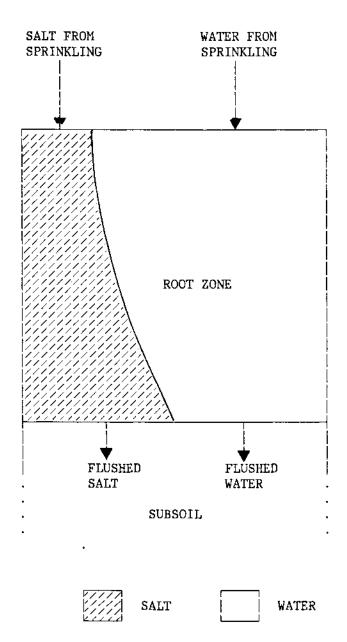


Fig. 4.8--Water and salt flows, with the root zone salt profile for crops grown under glass $\frac{1}{2}$

$$S_{x} = S_{0}/(1-x(1-LF))$$
 (12)

 $S_{\underline{\mathbf{x}}}$: The salt concentration at a fraction $\underline{\mathbf{x}}$ of the

depth of the root zone below the soil surface, in mg/l

LF: A leaching fraction

The leaching fraction is defined as the amount of flushing water (flowing from the root zone to the subsoil) divided by the total amount of water applied. We assume that the amount of flushing water is constant over the year, while the amount of irrigation water changes considerably.

By integrating Eq. (12) over the root zone, it follows that

Average salt concentration = $S_0 \times \ln(LF)/(LF-1)$.

This expression gives a more realistic estimate of the outflowing salt from the root zone of glasshouse crops.

4.3.3. Salt Flows in the Surface Water

The basic task of DISTAG described here is to take the amount of salt in the surface water at the beginning of the timestep and to compute the amount of salt in the surface water at the end of the timestep, as well as the average concentration of any water extracted from the district. This concentration is required by DM so that it can estimate the salinity of the water of the national distribution system.

In computing salt flows in the surface water system, DISTAG uses PLOTSLT twice, first to determine discharges of salt from the vegetation-covered area, and last to allow PLOTSLT to compute the salt concentrations in the soil of plots that are extracting water. Between these two applications of PLOTSLT, DISTAG uses the basic salt model described in Sec. 4.3.1 to determine the salt concentration of the district's surface water. We organize our discussion around these three tasks.

<u>Discharges of Salt from Plots</u>. The drainage from plots into the district's surface water system may contain salt. The amount of salt coming from a particular plot depends on the salt concentration of the subsoil of that plot. DISTAG uses PLOTSLT for each plot actually draining into the surface water system to determine this concentration.

In some districts, water seeps directly into the surface water system of the district, without first passing through the subsoil of any plot. The input data to DISTAG includes a fraction that indicates what part of the total seepage into the district flows directly into the surface water of that district. Since seepage typically contains salt, we use this fraction to estimate the amount of salt that is so carried into the surface water system of the district.

In the exceptional case where a plot both extracts <u>and</u> discharges water in the same timestep, we assume that within this timestep the salt concentration of the extracted water does not affect the salt concentration of the drainage.

Salt Concentration of the Surface Water. Having determined how much salt is entering the surface water from the plots, DISTAG uses the basic salt model to determine the average concentration of any water that is flowing out of the surface water system; it also determines the amount of salt left there, which is carried forward to the next timestep.

Extractions of Salt by Plots. Having determined the average salt concentration of any withdrawals of water from the surface water system, DISTAG then goes through those plots in the district that are extracting water from the district, and uses PLOTSLT to update the salt concentration of the root zone and the subsoil. For this use of PLOTSLT, the salt concentration of the district water is important, but it has just been calculated. These calculations are not relevant to the salt concentration of the district water for the immediate timestep. They are important for subsequent timesteps, and they are also needed to determine salt damage.

4.4. AGRICULTURAL DAMAGE

DISTAG determines two types of crop damage: that due to drought and that due to excess salt in the root zone. In this section, we will discuss how these crop damages are calculated. We first discuss PLOTDAM, which computes damages for a particular plot. We then discuss how PLOTDAM is used by DISTAG to accumulate damages for a whole district.

We need to define two terms. On any plot, the <u>potential annual yield</u> is the annual yield that would be realized on that plot if there were no salt or drought damage. As most crop types are aggregates of many individual crops, physical units do not necessarily have a logical interpretation, so the potential annual yield for any plot is expressed as a <u>crop value</u>, in Dutch guilders.

In any particular timestep, the <u>crop at risk</u> is defined as the crop that can potentially still be damaged sometime before the end of the growing season. The value of the crop at risk may be less than the potential annual yield, for two reasons.

First, crops grow over time, and in any timestep, especially late in the growing season, a fraction of the crop may have already been formed; hence a fraction of the potential annual yield may have already been earned. A good example is grass. During the growing season grass is formed continuously. Halfway through the growing season, half the grass has already been produced, and hence only half the annual yield can possibly be damaged. To account for the time-dependent production of each crop, a time series of potential yield fractions is supplied as data for each crop. For each timestep, the potential yield fraction corresponding to a given crop is the fraction of the crop that normally remains to be produced, assuming no damage occurs.

Second, the value of the crop at risk may be less than the potential annual yield because in some previous timestep some part of it was lost, due to drought or excess salt.

4.4.1. Computing the Drought Damage Fraction

Drought damage on a plot is estimated by computing a drought damage fraction—the fraction of the crop at risk that is damaged because of drought, independent of any salt damage that might also occur.

We assume that the drought damage fraction depends on the ratio of actual evapotranspiration to the potential evapotranspiration:

RATIO =
$$E_A/E_P$$
.

This ratio is always between 0 and 1. When it is equal to 1, we assume that the crop gets all the water it needs, so that production is optimal and damage is zero. As the ratio decreases, the crop receives less and less of the water it requires, and production decreases, so damage increases. We assume that the drought damage fraction is a piecewise linear function of RATIO, given by the following expression:

$$\begin{aligned} \text{DDF} &= 0 & \text{RATIO} &= 1 \\ &= \text{RD} \div (1 - \text{RATIO}) / (1 - \text{RP}) & \text{RP} &\leq \text{RATIO} &< 1 \\ &= \text{RD} + (\text{DD} - \text{RD}) \div (\text{RP} - \text{RATIO}) / (\text{RP} - \text{DP}) & \text{DP} &\leq \text{RATIO} &< \text{RP} \\ &= \text{DD} & \text{RATIO} &< \text{DP} \end{aligned}$$

where

DDF: Drought damage fraction

RD, RP, DD, DP: Input parameters, defined below.

The nature of the drought damage fraction is different over three different ranges for RATIO (see Fig. 4.9). We discuss each in turn.

Moderate Damage. When RATIO is less than 1, but greater than the input parameter RP, called the reduction point, we assume the damage is moderate. The damage fraction is set equal to zero when RATIO is one, and it is set equal to the input parameter RD when RATIO equals RP. When RATIO is between 1 and RP, the damage fraction is linearly interpolated between 0 and RD. The damage is only "moderate" because the damage does not lead to additional production losses in subsequent timesteps, provided there is enough water during those timesteps. The parameter RD is called the reduction damage.

Maximum Damage. When RATIO is less than the input parameter DP, called the <u>death point</u>, maximum damage occurs. The drought damage fraction is set equal to the input parameter DD, called the <u>death damage</u>. The crop is damaged to such an extent that no further production can take place, if the timestep considered is long enough.

<u>Severe Damage</u>. When RATIO is between RP and DP, the damage fraction is linearly interpolated between RD and DD.

The Parameters. Different crop types are susceptible to damage in different ways; therefore we can specify a different set of damage parameters for each crop type.

The drought damage fraction is computed each timestep. The susceptibility of a particular crop to drought changes over time. A crop has a specific growing season, so it cannot be damaged outside of that season. Some crops have specific drought sensitive periods, and during these periods the same degree of drought will have more severe consequences than at other times of the year. Because of the time-varying nature of crop damage, different damage model parameters can be provided for each timestep.

4.4.2. Computing the Salt Damage Fraction

Salt damage on a plot is estimated by computing a salt damage fraction—the fraction of the crop at risk that is damaged because of excess salt, independent of any drought damage that might also occur.

We assume that the salt damage fraction is a piecewise linear function of the salt concentration in the root zone. It is given by the following expression (see Fig. 4.10):

SDF = 0 RZSALT < MIN

= SD*(RZSALT-MIN) MIN $\leq RZSALT < MAX$

= 1 MAX \leq RZSALT

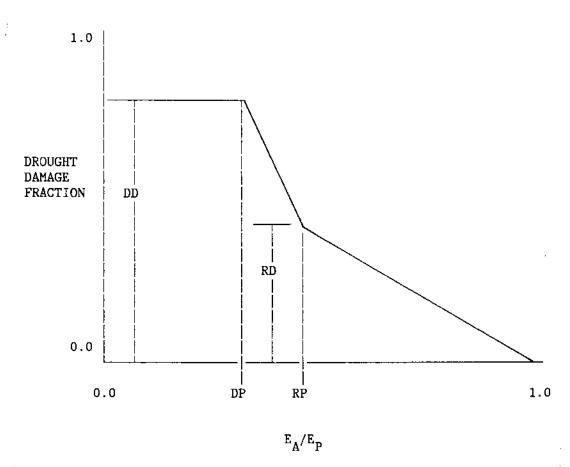


Fig. 4.9--Drought damage fraction as a function of ${\rm E_A/E_P}$

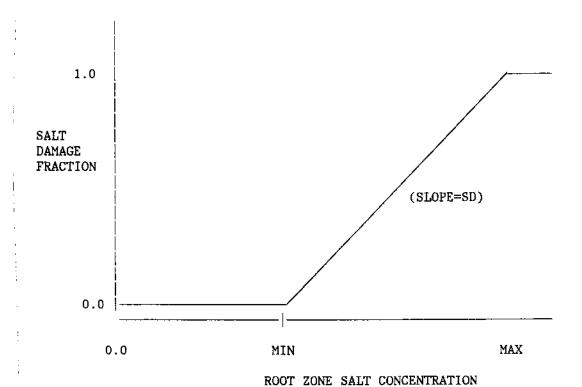


Fig. 4.10—Salt damage fraction as a function of the root zone salt concentration ${\bf r}$

SDF: Salt damage fraction

RZSALT: Concentration of salt in root zone

MIN, SD: Specified parameters

MAX = MIN + 1/SD.

The model is based on the notion that no damage occurs as long as the concentration of salt in the root zone is below some critical level (MIN), but that damage increases linearly with this concentration for higher values.

Only two parameters, MIN and SD, are required to specify the above function. They depend on crop type, but are assumed not to depend on the timestep, since the susceptibility of a plant to salt damage does not depend on the stages of growth of the plant.

4.4.3. Computing the Total Damage Fraction

In the model, the part of a crop damaged by salt cannot be damaged by drought, and vice versa. Therefore, damages computed for drought and salt cannot be simply added. Instead, the salt damage fraction is applied to the total crop "at risk" to compute salt damage, and then the drought damage fraction is applied to the remainder (the part of the crop "at risk" that was not damaged by salt). Total damage is the sum of these two damages. Of course, the order in which the two damage models are applied is irrelevant with respect to total damage. However, it should be remarked that the simultaneous occurrence of salt and drought damage is rare. Typically, drought damage occurs if a crop is unsprinkled, and because sprinkling from surface water is the major source of salt in the root zone, unsprinkled crops are rarely damaged by salt. Conversely, sprinkled crops are rarely damaged by drought.

The total damage fraction is derived from the drought damage fraction and the salt damage fraction by the formula:

$$TDF = SDF + (1-SDF)*DDF$$

where TDF represents the total damage fraction.

4.4.4. Applying the Damage Fractions

Information about the cumulative damage to each plot is carried forward from one timestep to the next. This information is contained in the so-called <u>survival fraction</u>, set equal to the fraction of the total crop that still survives at the end of each timestep. For each timestep, we determine the crop at risk by multiplying the potential annual yield by the survival fraction, then by the current value of the potential yield fraction.

Using the outputs of the plot water and salt models, the salt, drought, and total damage fractions are computed as described above. The value of the crop at risk is then multiplied by the salt damage fraction and the total damage fraction to obtain the salt damage and the total damage. The survival fraction is then updated and carried forward to the next timestep.

4.4.5. Computing Agricultural Damage in a District

PLOTDAM computes salt and total damage for each plot, in terms of guilders per hectare. It uses output from PLOTWAT and PLOTSLT. DISTAG computes district agricultural damage after it has used PLOTWAT to compute water flows, and PLOTSLT to compute salt concentrations. By using PLOTDAM to compute damages for each plot and summing the plot damages over all plots in the district, DISTAG computes total salt damage in the district (in guilders), and the total agricultural damage due to both salt and drought.

4.5. COST OF SPRINKLING

DISTAG computes the total amount of money spent sprinkling each crop in the district, broken into two cost components, labor and energy. The costs of sprinkling depend on the sprinkling system that is used, which in turn depends on a number of other factors such as crop type, area of the sprinkled field, source of the sprinkling water, etc. In a separate analysis, described in Vol. XIII, sprinkling cost parameters have been determined for each plot to take into account these various factors. DISTAG uses two coefficients for each plot. The first is the labor cost of sprinkling, in units of guilders per millimeter of sprinkling, per hectare of land. The second is the energy cost of sprinkling water, in the same units. DISTAG simply multiplies the amount of sprinkling on each plot by these numbers, then by the area of the plot, and sums over all sprinkled plots in the district.

4.6. GROUNDWATER LEVELS

DM does not use groundwater levels, but for some PAWN purposes, it is desirable to be able to analyze what happened to groundwater levels, after a DM run has been completed. To make such analyses, DISTAG writes a file of groundwater levels. Records are written on this file at the end of each timestep, when DISTAG is used in the "delivery" mode.

Groundwater levels are computed by the plot water model, PLOTWAT, and a separate groundwater level is retained for each plot. DISTAG computes the average groundwater level in each subdistrict. This average is the weighted average of the groundwater level in each plot in each subdistrict, weighted by the area of the plot.

REFERENCES

- 4.1. Hillel, Daniel, <u>Fundamentals of Soil Physics</u>, Academic Press, New York, 1980.
- 4.2. Minhas, B. S., K. S. Parikh, T. N. Srinivasan, "Toward the Structure of a Production Function for Wheat Yields," <u>Water Resources Journal</u>, Vol. 10, No. 3, June 1974.
- 4.3. Rijtema, P. E., Soil Moisture Forecasting, Report 513, ICW, Wageningen, 1969.

Chapter 5

COMPUTER IMPLEMENTATION OF DISTAG

Before a mathematical theory can be programmed into a computer, it has to be translated into mathematics that is compatible with what the computer can do. For example, if the theory contains a differential equation, a numerical technique must be devised that allows the computer to solve the equation. We call this step implementation, and we distinguish it from programming, which involves translating the implementation into some computer language (e.g., FORTRAN or PL/I). The present chapter is devoted to discussing the implementation, in the sense just described, of the theory presented in Chap. 4.

This chapter will be of interest to readers concerned with the general problem of implementing mathematical theories, particularly hydrologic ones, and to those who need to understand the models described here at the source code level, either because they plan to modify these programs or because they are writing similar ones.

We begin by reviewing the models and their interrelationships. We then discuss how the models communicate, and in particular, we outline how the data were structured internally and how certain variables are carried forward from one timestep to the next. Then, we discuss each of the models in turn.

5.1. THE MODELS IN CONTEXT

The four models described in this volume are:

- The District Hydrologic and Agriculture Model (DISTAG), which computes water and salt balances, crop damage, sprinkling costs, etc., for single districts.
- The plot water model (PLOTWAT), which computes water flows for a single plot.
- The plot salt model (PLOTSLT), which computes salt flows for a single plot.
- The plot damage model (PLOTDAM), which computes crop damages due to drought or salinity for a single plot.

DISTAG does not stand by itself, but is used as a subroutine by other programs. In particular, it is used by the Distribution Model (DM), which simulates the surface water distribution system for the entire nation and is described in Vol. XI. DISTAG is also used by the demand generator (DEMGEN), described in Sec. 5.6.3. New programs could be written that use DISTAG as well.

DISTAG uses the three plot models as subroutines. The interactions between the district and its plots, across time and within a decade, are controlled by DISTAG, and the data elements and other variables required by the plot models are provided by DISTAG. In the next section, we will briefly describe some aspects of the flow of data between DISTAG and the plot models.

5.2. DATA FILES AND COMMUNICATION BETWEEN THE MODELS

5.2.1. Input Files

DISTAG requires 16 input files, containing all the climatologic, geographic, and location-dependent data, and the parameters of the various submodels. No data have been permanently built into the programs themselves. The 16 files are:

FILE NAME	DESCRIPTION
CFACFIL	Crop factors
COEFFIL	Parameters for soil moisture relationships
COSTFIL	Sprinkling costs
DAMFIL	Parameters of the damage model
DISTFIL	District data
DRANFIL	Parameters of the basic drainage functions
ESFILE	External supply
PLOTFIL	Plot data
PSIFIL	Soil moisture tension values
RDEPFIL	Root depths
SCAPFIL	Capillary rise function parameters
SOILFIL	Soil parameters
SPRFIL	Sprinkling model parameters
SUBDFIL	Subdistrict data
SUB2FIL	Infiltration data
VALUFIL	Crop values

These files are described more thoroughly in Chap. 6.

5.2.2. Data Element Associations

Many of the variables contained in these files have been given names in Chap. 3, particularly in Tables 3.1 through 3.4. We will use these names consistently in this chapter, to show logically how computations flow from one model to the next.

In Chap. 3, we grouped the data according to geographical levels. For example, since subdistricts were defined partly on the basis of soil types, we associated soil parameters with subdistricts. In the computer implementation of the model, however, the situation is somewhat more complicated.

For example, only 16 root zone/subsoil combinations are used by PAWN, even though there are 143 subdistricts. While it would have been possible to associate a different set of soil parameters with each subdistrict, because only 16 combinations were actually used, many of these combinations would have been repeated. We found it easier to handle the data, and we saved space, by associating soil type indexes with each subdistrict. We then read in the soil parameters from separate files that contained one record for each soil type. When we needed to know the value of some soil parameter for a particular subdistrict, we used the soil type index associated with that subdistrict to "look up" the desired parameter in the row of the matrix containing the parameters of the corresponding soil type.

This feature is not essential for an understanding of our models. We mention it here for the benefit of readers who may wish to consider such fine details, and inspect the source code itself.

Associated with a district is one variable (the salt concentration of the surface water) that must be carried forward at the end of each decade's computation, to be used as an initial condition at the beginning of the next. Associated with each plot are six such variables (see Table 3.5 and the note to Table 3.6). In our discussions, we denote each initial condition by adding the suffix "OLD"; thus, the initial surface water salt concentration is denoted by the symbol SWSALT_OLD. The final condition is likewise denoted by adding the suffix "NEW"; thus, the final surface water salt concentration is denoted SWSALT NEW.

At the beginning of each decade, the final conditions from the previous decade must be carried forward. The salt concentration of the surface water of a district is carryed forward by executing the instruction:

SWSALT OLD = SWSALT NEW.

Instructions are included in DISTAG to correctly carry forward these district and plot variables at the appropriate time. To make the discussion that follows easier to understand, we will not mention this fact every time it might be appropriate to do so.

5.3. THE PLOT WATER MODEL (PLOTWAT)

In this section, we explain the implementation of the plot water model. We list the inputs to PLOTWAT in Table 5.1. Two of these inputs are specified by DISTAG to indicate whether sprinkling is to be calculated (the "request" mode) or has already been specified (the "delivery" mode). The interpretation of these variables is given in Table 5.2. The outputs from PLOTWAT are displayed in Table 5.3, and subsequent sections of this report will show how these outputs are used by DISTAG and the other models.

Table 5.1

INPUTS TO THE PLOT WATER MODEL

Name	Units	Description
Fixed Data		
BARE_CF	mm/mm	Bare soil "crop factor"
BD_COEF	/day	Basic drainage coefficient
BD_CONST	mm/day	Basic drainage constant
CROPFACTOR	mm/mm,mm/day	Crop factor
DITCH_LEVEL	mm	Level of ditches
DRAIN_COEF	/day	Drainage coefficient
DRAIN_UG	mm/year	Drainage from glasshouse crop subsoil
DRAIN_MAXOUT	mm/year	Maximum drainage to distribution system
EVAP	mm	Open water evaporation
GWL_DRINK	mm/day	Drinking water withdrawals
GWL_INDUST	mm/day	Industrial withdrawals
INF_RATE	mm/day	Infiltration rate
INFIL_COEF	/day	Infiltration coefficient
INITIAL_GWL	mm	First-of-year groundwater level
NDAYS		Number of days in decade
PSI_REDUCE	mm	Evapotranspiration reduction parameter
RAIN ROOTDEPTH	MM MM	Rain
SATCAP RZ	mm mm/mm	Root depth
SEEP_RATE	mm/mm	Saturation capacity of root zone
SEEP FRAC	mm/day mm/mm	Seepage Fraction of seepage to surface water
SPR EFF	mm/mm	Sprinkling efficiency
SPR EVAP	mm/mm	Fraction lost due to evaporation
SUP FRAC	ha/ha	Suppliability fraction
WILTPT	mm/mm	Wilting point
	,	
Passed by DIS	<u>rag</u>	
SPRINK ALLOW	mm	Sprinkling applied if "delivery"
SPRINK INDEX	11411	Sprinkling applied if defivery Sprinkling code
OT KTIVK_TIVEEX		Sprinkring code
Computed Prev	ious Decade by	PLOTWAT
GWL_OLD		Initial amoundment or level
RZDEF OLD	mm mm	Initial groundwater level Initial root zone deficit
SSDEF OLD	am ពេក	Initial root zone deficit
22001_000		INICIAL BUDBOLL GELICIC
Computed Prev	ious Decade by	PLOTDAM
SURVFRAC OLD	mm /mm	Initial apprinal fraction
SOKALVAC OPD	mm/mm	Initial survival fraction

Table 5.2

HOW DISTAG CONTROLS PLOTWAT

Name	Units	Description
SPRINK_ALLOW	mm	Set to zero for "request."
		Set to CUTBACK × SPRINKLE for "delivery." (CUTBACK supplied by DM, SPRINKLE previously computed by PLOTWAT during "request.")
SPRINK_INDEX		Set to sprinkling code for "request." (0 if unsprinkled, 1 if sprinkled from surface water, 2 if sprinkled from groundwater.)
		Set to zero for "delivery."

Table 5.3

OUTPUTS FROM THE PLOT WATER MODEL

Name	Units	Description
Water Flows		
AVAP	mm	Actual evapotranspiration
CAPRISE	mm	Capillary rise
DRAINAGE	mm	Total drainage from subsoil
DRAIN_SW	mm	Drainage to surface water
DRAINOUT	mm	Drainage to distribution system
INFILT	mm	Infiltration into subsoil
RZLOSS	mm	Downward flow, root zone to subscil
PVAP	mm	Potential evapotranspiration
SEEPAGE_SS	mm	Seepage to subsoil
SEEPAGE_SW	mm	Seepage to surface water
SPRINKLE	mm	Sprinkling
SPRINK_LOSS	mm	Total sprinkling losses
Initial Cond	itions for N	ext Decade
GWL NEW	mm	Final groundwater level
RZDĒF NEW	mm	Final root zone deficit
SSDEF_NEW	mm	Final subsoil deficit

PLOTWAT contains two submodels. The first computes water flows for plots containing crops grown in open air (including "nature"), the second for crops grown under glass. The submodel used for crops grown in open air is explained in Secs. 5.3.1 through 5.3.4. The submodel used for crops grown under glass is explained in Sec. 5.3.5.

The plot water model for open-air crops is complicated. To make it easier to understand, we treat in a separate discussion what we call the core computations. By describing these computations as a separate model, we isolate the mathematical complications from the hydrologic ones.

To make the formulas used by the core computations easier to read, we adopt a more compact notation. In Sec. 5.3.1 we explain how the "input" variables of the core computations are defined using the plot water model inputs displayed in Table 5.1, and then how the results of the core computations are translated into the outputs from the plot water model, displayed in Table 5.3.

The core computations use six functions introduced in Sec. 4.2. We will call these the core functions. They are:

- The evaporation function F_{EVAP}
- The drainage function F_{DRAIN}
- The suction function F_{PSI}
- The moisture function F_{THETA}
- The groundwater function F_{GWL}
- The capillary rise function F_{CAPRISE}

The core computations also use outputs from the sprinkling procedure. In Sec. 5.3.2 we explain how these six functions are implemented, and how the sprinkling procedure is used. In Sec. 5.3.3 we give an overview of the core computations, and in Sec. 5.3.4 we go into the details.

5.3.1. Variables Used by the Core Computations

Among the variables used by the core computations are those that can be called <u>inputs</u>, and those that can be called <u>outputs</u>. These variables are listed in Table 5.4. The inputs are derived from the inputs to the plot water model, the outputs are converted into outputs of the plot water model.

<u>Inputs</u>. Table 5.5 shows how the inputs to the core computations are set. The core computations use the root zone soil moisture content. PLOTWAT keeps track of the soil moisture by retaining the root zone moisture deficit (equal to the capacity of the root zone minus the actual root zone soil moisture content).

Table 5.4
"CORE" COMPUTATIONS: INPUTS AND OUTPUTS

Name	Units	Description
		Inputs
Fixed Data		
P	mm	Depth of root zone
W	mm/mm	Saturation capacity of root zone
'i	mm	Groundwater level at start of year
Initial Con	ditions	
\$ °	mm	Groundwater level
9	mm/mm	Root zone soil moisture content
7 0	min	Subsoil deficit
Other Input		
5	days	Length of interval
3	mm/day	Rainfall
E _P	mm/day	Potential evapotranspiration
From Sprink	ling Model	
I	mm/day	Sprinkling applied root zone
I_NET	mm/day	Net subsoil extraction due to sprinkling
		Outputs
Final Condi	tions	
γ 1	mm	Groundwater level
9¹	mm/mm	Root zone soil moisture content
Δ ¹	mm	Subsoil deficit
Flows		
EA	mm/day	Actual evapotranspiration
V	mm/day	Capillary rise
D	mm/day	Drainage

Table 5.5
SETTING INPUTS TO "CORE" COMPUTATIONS

Initial Conditions

 $R_0 = RMTOTD$

 θ^{0} = SATCAP - (RZDEF_OLD - BARE_EVAP × NDAYS)/ROOTDEPTH

 $\Delta^0 = SSDEF_OLD$

Other Variables

 $\delta = NDAYS$

 $\omega = SATCAP_RZ$

Flows

R = RAIN/NDAYS

 $E_{p} = EVAP \times CROPFACTOR \times SURVFRAC_OLD / NDAYS$

I,I_NET are obtained from sprinkling model

We adjust the potential evapotranspiration to account for the fact that when crops die, they evaporate less water. We multiplied the potential evapotranspiration by the survival fraction to estimate the evapotranspiration from plants, and then assumed that the land covered with dead plants would evaporate water at a rate defined by the "bare soil crop factor," a data element built into the program. We treat the computations as though this evaporation occurs at the beginning of the timestep, rather than attempting to calculate it simultaneously with other factors (which would involve a "feedback" because the amount of water affects the amount of damage, and vice versa). Because the amount of evaporation from bare soil is small when potential evaporation is large, the error incurred is small.

Outputs. Table 5.6 summarizes how the outputs from the core computations are used. We make a distinction between drainage that goes directly to the national distribution system (DRAINOUT) and drainage that flows into the surface water system of the district (DRAIN_SW). The former flow represents a deep groundwater flow that eventually ends up in the bigger streams and rivers.

5.3.2. Implementation

In Sec. 4.2.1 we outlined the theory behind the functions needed by our model. We now describe how these functions are implemented.

Actual Evapotranspiration. The evapotranspiration function is implemented exactly as it is described in Sec. 4.2.4. Table 5.7 gives details.

The Drainage Function. Because of some added hydrologic complications, the drainage function described in Sec. 4.2.4 contains some extra details. It is displayed in Table 5.8. A different expression is used for the lowlands from the one used in the highlands. From the point of view of the core computations, drainage is considered to consist of all water leaving or entering the saturated zone except for flows between the subsoil and the root zone (capillary rise, root zone loss, water withdrawn for sprinkling, etc.). Flows added to the "real" drainage are

- The fraction of seepage that goes into the subsoil.
- Groundwater <u>extractions</u> for drinking water companies and industry.
- Infiltration from surface water (in the highlands).

In contrast to the "real" drainage, these added flows are all constant over time and are determined only by data inputs. They are explained in Sec. 3.2.3.

The Moisture Function. For any particular soil type, the soil moisture content at a given place is related to a corresponding value

Table 5.6

COMPUTATION OF PLOTWAT OUTPUTS FOR OPEN-AIR CROPS

Equations: Water Flows $AVAP = E_A$ CAPRISE = V if V > O $= 0 \text{ if } v \leq 0$ DRAINAGE = DDRAINOUT = min(DRAINAGE, NDAYS x DRAIN_MAXOUT/365) DRAIN_SW = DRAINAGE - DRAINOUT INFILT = NDAYS × INF_RATE × SUP FRAC $PVAP = E_{p}$ RZLOSS = 0 if V > 0 $= V iv V \leq 0$ SEEPAGE_SS = NDAYS × SEEP_RATE × SEEP_OW_FRAC SEEPAGE_SW = NDAYS \times SEEP_RATE \times (1-SEEP OW FRAC) SPRINKLE = I $SPRINK_LOSS = I \times (1-SPR_EFF)/SPR_EFF$ Final Conditions GWL_NEW = 31 RZDEF NEW = $(SATCAP - 0^1) \times ROOTDEPTH$ SSDEF NEW = Δ^1

Table 5.7 $\label{eq:table 5.7}$ IMPLEMENTATION OF THE CORE FUNCTION $E_{\mbox{\scriptsize A}} = E_{\mbox{\scriptsize P}} \times F_{\mbox{\scriptsize EVAP}}(\Psi)$

Equations:			
	 	 	

AVAP = PVAP

if PSI \(\delta \) PSI_REDUCE

= PVAP × log (PSI-160000)/log(PSI_REDUCE-160000) otherwise

Name	Units	Description	
PVAP	mm	Potential evapotranspiration (E_p)	
PSI	mm	Average suction in root zone (Ψ)	
AVAP	mm	Actual evapotranspiration (E_{A})	

Table 5.8 IMPLEMENTATION OF THE CORE FUNCTION $D = F_{DRAIN}(x)$

Lowlands

- SEEP_RATE × (1-SEEP_OW_FRAC)

where

GWL_REF = DITCH_LEVEL - ROOTDEPTH

COEF

= DRAIN_COEF if GWL > GWL_REF = INFIL_COEF × SUP_FRAC otherwise

Highlands

DRAINAGE = BD_CONST + BD_COEF × GWL

+ GWL_INDUST + GWL_DRINK

- SEEP_RATE × (1-SEEP_OW_FRAC)

- INF_RATE × SUP_FRAC

Name	Units	Description
GWL	mm	Groundwater level (%)
DRAINAGE	mm/day	Drainage (D)

for suction in a unique way. Using empirical data [5.1] for each of twenty soil types, we estimated a formula that gave the moisture content θ as a function of suction Ψ .

There were two values that we wanted the formula to give exactly:

- θ = saturation capacity ω when Ψ = 0
- θ = wilting point ν when Ψ = 160000 mm

To obtain such a function, we note first that the expression

$$g(x) = \omega v / (v + (\omega - v)x)$$

satisfies the property

$$g(0) = \omega, g(1) = \nu.$$

Next, we note that the expression

$$x(\Psi) = \log (\Psi+1)/\log(160001)$$

satisfies

$$x(0) = 0, x(160000) = 1.$$

Finally, if A and B are any two constants, if we define

$$X(\Psi) = A \times x(\Psi)^{B} + (1-A) \times x(\Psi)^{2B}$$

then also

$$X(0) = 0, X(160000) = 1.$$

It follows that the compound expression

$$\Theta(\Psi) = g(X(\Psi))$$

has the desired properties

$$\Theta(0) = \omega$$
, $\Theta(160000) = v$

whatever the constants A and B. Taking the above expression, we used a nonlinear least squares estimating procedure to determine those values of A and B for which the above expression gave a best fit to the data. The function so derived is described in Table 5.9.

The Suction Function. The moisture function described above can be inverted to obtain a formula that gives the value for suction corresponding to a given moisture level. This expression is described in Table 5.10.

 $\label{eq:table 5.9}$ IMPLEMENTATION OF THE CORE FUNCTION Θ = $F_{\mbox{\scriptsize THETA}}(\Psi)$

THETA = SATCAP_RZ × WILTPT/(WILTPT+(SATCAP_RZ-WILTPT) × X)

where

$$X = PF_A \times Y^{PF_B} + (1-PF_A) \times Y^{2PF_B}$$

and

Y = ln(PSI+1)/ln(160001)

Name	Units	Description
PSI	mm	Suction in root zone
THETA	mm/mm	Soil moisture corresponding to this suction

 $\label{eq:table 5.10} \mbox{IMPLEMENTATION OF THE CORE FUNCTION} \quad \Psi = \mbox{\bf F}_{\mbox{\footnotesize{\rm PSI}}}(\Theta)$

$$PSI = 160001^{X} - 1$$

where

$$X = ((-PF_A+Y)/(2(1-PF_A)))^{(1/PF_B)}$$

and

$$Y = sqrt(PF_A^2+4(1-PF_A)Z)$$

Z = WILTPT(SATCAP-THETA)/THETA(SATCAP-THETA)

Name	Units	Description
THETA	mm/mm	Soil moisture in root zone (θ)
PSI	mm	Suction (Y)

The Groundwater Function. It is not impossible to implement the groundwater function described in Sec. 4.2.4 in a computer program directly from its definition, but the implementation would involve inverting a function $(\Delta(V, \mathcal{X}))$ that would itself be computed by means of a numeric integration. Therefore we developed a formula that we use to calculate this function.

To explain the formula, we refer to Fig. 4.3. We note that the region corresponding to the subsoil deficit (marked with a Δ) is roughly rectangular at the top, roughly triangular at the bottom. It seems plausible that as the groundwater level % increases (gets deeper), the widths of the rectangle and the triangle increase, the height of the rectangle increases, but the height of the triangle remains about the same. If this in fact happens, the area of the rectangle would depend on the square of the groundwater level, while the area of the triangle would depend only on the groundwater level itself. Therefore, we would have roughly:

$$\Delta = A \times X + B \times X^2.$$

Inverting this formula, we would obtain something like:

$$\mathcal{E} = a \times sqrt(\Delta) + b \times \Delta.$$

Our formula is of this form, except that the "coefficient" b is made dependent on capillary rise, and the expression is truncated at the vertex of the parabola relating Δ to % 2.

Equation (9) of Sec. 4.2.4 shows how the groundwater level can be expressed in terms of the tension Ψ at the top of the subsoil and the rate of capillary rise V. We used these formulas and the relationship between tension and moisture described above to compute, for each of the twenty soil types [5.1], a large table giving the relationship between groundwater level, capillary rise, and soil moisture content. To make these computations, we estimated the inegral of Eq. (9) using the expression:

x
$$f = 1/(1+u^{1.4}) du = A(x)P(x)/Q(x)$$

where

$$A(x) = 1.82721arctan(x)$$

$$P(x) = 1 + 1.90222x^{-0.699262}$$
 and
$$Q(x) = 1 + 4.41712x^{-0.63754}.$$

This formula was obtained by first evaluating the integral using a very accurate numerical method, and then estimating the coefficients of the formulas for A(x), P(x), and Q(x) to fit these values.

From our tables expressing the groundwater level as a function of capillary rise and soil moisture content, we derived a table expressing the subsoil deficit as a function of groundwater level and capillary rise. We used this final table to explore various relationships. Eventually, we found that the expression given in Table 5.11 worked well. The coefficients were estimated from our data using a nonlinear least squares procedure.

The Capillary Rise Function. The capillary rise function is defined for two cases. When $\Psi > 7 + \rho/2$, where ρ is the depth of the root zone in mm, the associated capillary rise V is positive. Otherwise, V is negative, and the resulting flow from the root zone to the subsoil is called root zone loss.

We implement the capillary rise formula only for positive capillary rise. It is easier to discuss root zone loss as a separate case when we discuss the core computations.

When suction at the interface between the root zone and the subsoil is greater than the groundwater level, the corresponding capillary rise is obtained by solving Eq. (11) in Sec. 4.2.4. We have implemented the solution of this equation using a binary search technique. Since the search may involve quite a number of evaluations of the left-hand side of Eq. (11), this method of deriving the capillary rise can be computationally costly.

To reduce costs, we developed an easily evaluated formula for the capillary rise function. For each soil type used in the PAWN analysis, we generated a table containing many combinations of capillary rise, groundwater levels, and soil suction values. After some experimentation, we obtained the formula displayed in Table 5.12. The coefficients were estimated using ordinary least squares regression on the logarithms of both sides of the expression.

Either the binary search technique or the simple formula can be used. If the coefficients of the simple formula are set equal to zero, the binary search technique is used.

The Sprinkling Procedures. The outputs from the sprinkling procedures are listed in Table 5.13. The "simple" sprinkling procedure described in Sec. 4.2.5 was not used in the PAWN analysis, so we will not describe it further. The more realistic sprinkling procedure actually used is described in Chap. 5 of Vol. XIII, where a discussion of the inputs will be found.

The sprinkling procedure is used only in the "request" mode, in which case the core computations use it to compute the two variables described in Table 5.14. In the "delivery" mode, these variables are

Table 5.11 $\label{eq:table 5.11} \mbox{IMPLEMENTATION OF THE CORE FUNCTION $%$ = $F_{\mbox{GWL}}(\Delta,V)$}$

If SSDEF > SSDEF_CR then

GWL = DEF A × sqrt(SSDEF)

otherwise

 $\label{eq:GWL} \text{GWL} = \text{DEF_A} \times \text{sqrt}(\text{SSDEF}) + (\text{DEF_B-DEF_C} \times \text{CAPRISE}^{\text{DEF_D}}) \times \text{SSDEF}$ where

$$SSDEF_CR = -(DEF_A/(2 \times (DEF_B - DEF_C \times CAPRISE^{DEF_D})))^2$$

Name	Units	Description	
SSDEF	mm	Subsoil deficit (Δ)	
CAPRISE	mm/day	Capillary rise (V)	
GWL	mm	Groundwater level (%)	

 $\label{eq:table 5.12}$ IMPLEMENTATION OF THE CORE FUNCTION V = $F_{\mbox{CAPRISE}}(\Psi, \Im)$

Equation:			
-----------	--	--	--

CAPRISE = $\exp(A1) \times GWL^{A2} (\log(PSI - GWL))^{A3}$

Name	Units	Description
GWL	තය	Groundwater level (%)
PSI	mm	Suction at top of subsoil (Ψ)
CAPRISE	mm/day	Corresponding capillary rise (V)

NOTE: This formula is used only when $A1 \ge 0$. Otherwise a binary search technique is used.

Table 5.13
OUTPUTS FROM THE SPRINKLING PROCEDURES

Name	Units	Description
SPRINK_AMOUNT	mm	Water effectively applied to root zone
SPRINK_REQUEST	mm	Water extracted (from surface or ground) for sprinkling
SPRINK_LOSS	mm	Extracted water that is not effectively applied
SPRINK_DOWN	mm	Water that is not effectively applied that flows to the subsoil

Table 5.14

SPRINKLING QUANTITIES IN THE CORE MODEL

"Request" Mode:

I = SPRINK_AMOUNT

I_NET = SPRINK_REQUEST - SPRINK_DOWN

if plot sprinkled from groundwater

groundwace

= -SPRINK_DOWN

otherwise

"Delivery" Mode:

1 = SPRINK_ALLOW × SPR_EFF

I_NET = SPRINK_ALLOW × (1-FRAC_DOWN)

if plot sprinkled from

groundwater

= -SPRINK ALLOW × FRAC DOWN

otherwise

where

 $FRAC_DOWN = (1-SPR_EVAP) \times (1-SPR_EFF)$

computed using the inputs passed to PLOTWAT by DISTAG, as is also described in Table 5.14. The distinction between the "request" mode and the "delivery" mode affects only the way in which the sprinkling variables of the core computations are defined.

5.3.3. An Overview of the Core Computation Scheme

In this section, we outline briefly the overall logic of the core computations. Details of the calculations are given in the next section.

<u>Capillary Rise vs. Root Zone Loss</u>. We follow different computational paths, one if capillary rise occurs, the other is root zone loss occurs.

Computations If Capillary Rise Occurs. If capillary rise occurs, we use a computation scheme, repeated three times. To begin, we make a preliminary estimate of capillary rise and of actual evapotranspiration. Then, we compute water balances for both the root zone and the subsoil.

- A root zone water balance computes θ^1 and $E_{\underline{A}}$.
- A subsoil water balance computes Δ^1 , ζ^1 , and D.

Next, we estimate the actual capillary rise, V.

Unless the actual estimate of capillary rise is nearly equal to the preliminary estimate, we make new preliminary estimates, and repeat the two water balance calculations and the estimation of actual capillary rise. We conclude by once again making new preliminary estimates, and repeating the two water balance calculations.

Computations If Root Zone Loss Occurs. If root zone loss occurs, a water balance is computed exactly once, first for the root zone, then for the subsoil

- A root zone water balance computes θ^1 , E_A , and V.
- A subsoil water balance computes Δ¹, 3¹, and D.

The subsoil scheme is the same as the one used when capillary rise occurs.

5.3.4. Details of the Core Computations

We now fill in the calculational details of the core computations.

Capillary Rise vs. Root Zone Loss. We assume root zone loss will occur if the initial root zone soil moisture, the rain, and the potential evapotranspiration are such that without additional

extractions of water the root zone soil moisture would exceed field capacity at the end of the timestep.

Field capacity is defined by the following expressions:

Suction at Field Capacity

$$\Psi_{FC} = \min(1000, \max(\mathfrak{T}^0 + \rho/2, \mathfrak{T}_i - \rho/2))$$

Moisture at Field Capacity

$$\Theta_{FC} = F_{THETA}(\Psi_{FC})$$

The symbol $% \mathbf{r}_{i}$ represents the groundwater level at the beginning of the growing season. Its presence in this formula is explained in Sec. 5.3.6.

Deciding whether capillary rise or root zone loss occurs involves the following:

Estimate Moisture

$$\theta_{\text{est}} = \theta^{\circ} + (\theta - E_{\text{p}})\delta$$

Condition for Root Zone Loss

$$\theta_{est} > \theta_{FC}$$

Condition for Capillary Rise

Computations If Capillary Rise Occurs. In Sec. 5.3.3, we explained that when capillary rise occurs the core computations involve iterations among four computational parts:

- 1. Preliminary estimates of capillary rise and actual evapotranspiration.
- 2. A root zone water balance.
- 3. A subsoil water balance.
- 4. A new estimate of capillary rise.

Here we will discuss each of these parts separately.

 Preliminary estimates V⁰ and A⁰ of capillary rise and evapotranspiration, respectively, are

V°: Capillary rise from previous timestep

A°: Potential evapotranspiration

2. A root zone water balance, shown below, estimates the final root zone soil moisture θ^1 and the actual evapotranspiration E_A :

Sprinkling

Use sprinkling procedure to compute I and I_NET

Soil Moisture

$$\Theta^{1} = \max(0, \min(\omega, \Theta^{0} + (R+I+V^{0}-A^{0})/\rho))$$

Evapotranspiration

$$E_A = E_P \times F_{EVAP}(\Psi)$$

where

$$\Psi = F_{PSI}((\Theta^0+\Theta^1)/2)$$

If the actual evapotranspiration differs from the preliminary estimate by more than a specified tolerance, the preliminary estimate is replaced by the estimate, and the root zone water balance calculations are repeated, until either the estimate is close enough to the preliminary one, or the calculations have been repeated more than a specified number of times.

3. A <u>subsoil balance equation</u> uses the preliminary estimate V^0 of capillary rise estimated by the root zone calculations. The net extraction from the subsoil due to sprinkling, I_NET was calculated in the process of computing the root zone water balance. We compute the final subsoil deficit Δ^1 , the final groundwater level δ^1 , and the rate of drainage, D.

The computation is complicated by the fact that drainage is a very fast process (especially in the lowlands) and so steady state conditions do not approximate the actual situation for long timesteps. Rather than break the whole core computations into many short intervals, we break up only the subsoil computations.

We begin by setting X^1 equal to X^0 , and we let D=0 to accumulate the drainage. We then compute a daily subsoil water

balance, shown below, for each day in the timestep. When finished, we let \mathfrak{F}^1 be the groundwater level \mathfrak{F}' observed at the end of the last day of computation. We divide D by the length of the interval, to convert it to a rate of flow.

Daily Drainage

$$D' = F_{DRAIN}(x')$$

Subsoil Deficit

$$W' = W' + V'' + D' + I NET$$

Groundwater Level

$$\chi^1 = FGWL (\Psi, V^0)$$

where

$$\Psi = F_{PST}((\theta^{\mathfrak{g}} + \theta^{\mathfrak{l}})/2)$$

Accumulate Drainage

$$D = D + D^{1}$$

4. To calculate actual <u>capillary rise</u>, we use the formulas displayed below. Notice the calculations involve one term associated with the root zone (average suction), and one term associated with the subsoil (average groundwater level). The capillary rise is also constrained so that the final moisture in the root zone does not exceed field capacity.

Average Suction

$$\Psi = F_{PSI}((\theta^{\mathfrak{o}} + \theta^{1})/2)$$

Average Groundwater Level

$$\chi = (\chi^0 + \chi^1)/2$$

Maximum Capillary Rise

$$V_{max} = (\theta_{FC} - \theta^{\circ})/w - R - I + E_A$$

Capillary Rise

$$V = \min(V_{\max}, F_{CAPRISE}(\Psi, \mathcal{E}))$$

Computations If Root Zone Loss Occurs. When root zone loss occurs, we assume capillary rise is equal in magnitude to just that flow necessary to cause the final root zone soil moisture to be at field capacity. These calculations follow. The subsoil calculations in this case are identical to those used when capillary rise occurs, with $V^{\mathfrak{o}}$ set equal to the root zone loss.

Evapotranspiration

$$E_A = E_P$$

Root Zone Loss

$$V = - (R-E_A) + (\theta_{FC}-\theta^0)\rho/\delta$$

Root Zone Soil Moisture

$$\Theta^1 = \Theta_{FC}$$

5.3.5. The Computation Scheme for Glasshouse Crops

The computations for water flows in plots containing crops grown under glass are displayed in Table 5.15. Potential and actual evapotranspiration are specified as data, capillary rise is zero, root zone loss is a fixed quantity, the amount sprinkled includes the evapotranspiration plus the root zone loss, and the state variables (root zone and subsoil deficits, groundwater level) never change. The other flows are computed in the same way as for open-air plots.

5.3.6. Some Additional Details

In this section we will discuss two small details that were passed over in the preceding discussion. The details are:

- The "practical" definition of field capacity.
- Groundwater level corrections for non-steady state conditions.

A "Practical" Definition of Field Capacity. In Sec. 4.2.1 we defined the field capacity of the soil at a particular depth as a function of the distance from that point to the groundwater level. When we speak of the field capacity of the entire root zone, we mean the total amount of water the root zone is able to hold against the force of gravity. To calculate this quantity we should integrate the soil moisture curve over the root zone when each point is at field capacity, but to simplify our calculations we assume that the field capacity of the root zone is the field capacity in the middle of the root zone multiplied by the root depth.

Table 5.15

WATER FLOW COMPUTATIONS FOR CROPS GROWN UNDER GLASS

Water_Flows

AVAP = NDAYS × CROPFACTOR

CAPRISE = 0

DRAINAGE = RZLOSS + RAIN

DRAINOUT = min(DRAINAGE, NDAYS × DRAIN MAXOUT/365)

DRAIN_SW = DRAINAGE - DRAINOUT

INFILT = 0

PVAP = AVAP

RZLOSS = NDAYS × DRAIN_UG/365

SEEPAGE_SS = NDAYS × SEEP_RATE × SEEP_OW_FRAC

SEEPAGE_SW = NDAYS × SEEP_RATE × (1-SEEP_OW_FRAC)

SPRINKLE = AVAP + RZLOSS

SPRINK_LOSS = SPRINKLE × (1-SPR EFF)/SPR EFF

Final Conditions

GWL NEW = GWL OLD

 $RZDEF_NEW = RZDEF_OLD$

SSDEF_NEW = SSDEF_OLD

The use of this definition of field capacity gives reasonable results when the groundwater level is from about 300 to 1000 mm under the root zone. When the groundwater level is deeper than 1000 mm, this assumption leads to incorrect computations of soil moisture levels, because the steady state conditions cannot really be said to hold during the short timesteps used. Therefore, we constrained the suction at field capacity to lie between 1000 mm and the groundwater level %, at the beginning of the growing season. This

constraint leads to the formula given in Sec. 5.3.4. One-half the root depth is added or subtracted where appropriate, to make all terms consistent with a depth measured from the bottom of the root zone.

Groundwater Level Corrections for Non-steady State Conditions. When the climatological conditions change rapidly from a rain surplus to a rain deficit (as is often the case in the spring), the steady state conditions assumed by our calculations do not apply. Our model then gives unrealistic "jumps" (up to a meter or more) in estimated groundwater levels. To avoid these jumps, we keep groundwater levels constant during periods where unsteady state conditions are likely to be more realistic. To detect such conditions, at the end of each timestep we check if the subsoil deficit and the groundwater level both increased or decreased in the same direction. If they did not, we kept the groundwater level fixed at its initial value.

We also constrained the change in groundwater level so that it never exceeded 20 times the increase in subsoil deficit (expressed as a water depth). When the subsoil deficit decreased, we computed how much of that decrease was due to flows from the subsoil other than those to and from the root zone (infiltration, seepage, etc). We then assumed that the groundwater level would decrease at least 20 times the decrease in the subsoil deficit (in mm) caused by these flows. In both of these cases, the number "20" was arbitrarily chosen.

5.4. THE PLOT SALT MODEL (PLOTSLT)

The computer implementation of the plot salt model is a relatively straightforward translation of the discussion in Sec. 4.3.2.

5.4.1. Inputs and Outputs

A list of the inputs and outputs of PLOTSLT is given in Table 5.16. There are only three output variables. The final concentrations of root zone and subsoil are used by PLOTSLT as the initial conditions for the next timestep. The concentration of the drainage is used by DISTAG to compute the salt flow to the district surface water. The plot damage model computes an average root zone salt concentration based on the initial and final root zone salt concentrations for the timestep.

Table 5.16
PLOT SALT MODEL INPUTS AND OUTPUTS

Name	Units	Description
		Inputs
Fixed Data		
NDAYS	days	Number of days in decade
RAIN	mm	Rainfall
RAIN CONC	mg/1	Salt concentration of rainwater
ROOTDEPTH	mm	Root depth of crop
LOAD RZ	(mg/m²)/day	Constant salt flow into root zone
SATCAP RZ	mm/mm	Saturation capacity of root zone
SATCAP SS	mm/mm	Saturation capacity of subsoil
SEEP CONC	mg/l	Salt concentration of seepage
SSDEPTH	mm	Effective depth of subsoil
LOAD SS	$(mg/m^2)/day$	Constant salt flow into subsoil
VOLRZ UG	mm	Root zone volume for crops under glass
VOLSS_UG	mm	Subsoil volume for crops under glass
December DIC	ሞልሮ	
Passed by DIS AVCONC SW	—	Salt concentration of district water
AVCONC_SW	mg/l	Sait concentration of district water
Computed by P	LOTWAT	
AVAP	mm	Actual evapotranspiration
CAPRISE	mm	Capillary rise
DRAINAGE	mm	Drainage from subsoil
INFILT	mm	Infiltration from surface water
RZDEF_NEW	mm	Final root zone moisture deficit
RZDEF_OLD	mm	Initial root zone moisture deficit
RZLOSS	mm	Root zone loss
SEEPAGE_SS	mm	Seepage to subsoil
SPRINKLE	mm	Total water withdrawn for sprinkling
SPRINK_LOSS	mm	Sprinkling water lost
SSDEF_NEW	mm	Final subsoil moisture deficit
SSDEF_OLD	mm	Initial subsoil moisture deficit
Computed Prev	ious Decade by	PLOTSLT
RZSALT OLD	mg/l	Initial root zone salt concentration
SSSALT_OLD	mg/l	Initial subsoil salt concentration
		Outputs
AVCONC OUT	ma/1	Average concentration of decises
RZSALT NEW	mg/l	Average concentration of drainage
SSSALT NEW	mg/l mg/l	Final root zone salt concentration Final subsoil salt concentration

5.4.2. Basic Equations

Open-Air Crops. PLOTSLT uses the basic salt model described in Sec. 4.3.1. It uses this model twice, first for the root zone, second for the subsoil. There are six inputs and two outputs associated with the basic salt model listed in Sec. 4.3.1.

In Tables 5.17 and 5.18 we show how the basic salt model is used by PLOTSLT for the root zone and subsoil salt balances, respectively. We will briefly explain some of these formulas.

For the root zone, the water flows are computed by PLOTWAT. The variable SPRINKLE is zero if the plot is not sprinkled. Since PLOTWAT computes the deficit in the root zone, we subtract this deficit from the total capacity of the root zone to find the total amount of water. The capacity is just the root depth multiplied by the saturation capacity of the root zone soil.

The inflow of salt to the root zone comprises three terms: the contribution of rain, an exogenous load, and salt from sprinkled surface water, if there is any.

The subsoil equations are not very different from those of the root zone. We assumed that groundwater sprinkling adds no salt to the root zone, so no salt is taken out of the subsoil if this kind of sprinkling is present. This fact explains why the term SPRINKLE is added to W UP.

The inflow of salt to the subsoil comprises four terms: root zone loss, seepage, infiltration from surface water, and the (artificial) subsoil load.

Glasshouse Crops. The computation of salt flows in plots with glasshouse crops is based on the root zone salt profile that we described in Sec. 4.3.2. The shape of this profile is fixed by specifying two parameters:

- Average salt concentration
- Leaching fraction

The leaching fraction does not change very much from one timestep to the next, and to make computations simpler, we use the leaching fraction of the current timestep instead of the more logical leaching fraction of the previous timestep.

Table 5.19 shows the computations. First, we determine the leaching fraction and the salt concentration at the top of the root zone. It is important to realize that this concentration is not the "real" concentration (which will be about equal to the concentration of the

Table 5.17
SALT FLOWS IN ROOT ZONE OF OPEN-AIR PLOTS

How Inputs to the Basic Salt Model Are Defined:

 $W_IN = RAIN + CAPRISE$

= RAIN + CAPRISE + SPRINKLE

if plot is unsprinkled

otherwise

W UP = AVAP

= AVAP + SPRINK LOSS

if plot is unsprinkled

otherwise

W_OLD = SATCAP_RZ × ROOTDEPTH - RZDEF_OLD

W_NEW = SATCAP_RZ × ROOTDEPTH - RZDEF_NEW

 $S_IN = RAIN \times RAIN_CONC + LOAD_RZ \times NDAYS$

if plot is not sprinkled from surface water

otherwise

= RAIN × RAIN_CONC + LOAD_RZ × NDAYS + AVCONC_SW × SPRINKLE

S_OLD = W_OLD × RZSALT_OLD

How Outputs (S_NEW and AVCONC) from Basic Salt Model Are Used:

 $RZSALT_NEW = S_NEW/W_NEW$

RZ CONC = AVCONC

NOTE: See Sec. 4.3.1 for description of inputs and outputs for the basic salt model.

Table 5.18
SALT FLOWS IN SUBSOIL OF OPEN-AIR PLOTS

How Inputs to the Basic Salt Model Are Defined:

W_IN = INFILT + RZLOSS + SEEPAGE SS

W_UP = CAPRISE

if plot is not sprinkled from groundwater

= CAPRISE + SPRINKLE

otherwise

 $W_OLD = max(1,SATCAP_SS \times SSDEPTH - SSDEF_OLD)$

W_NEW = max(1,SATCAP_SS × SSDEPTH - SSDEF_NEW)

S_IN = RZLOSS × RZ_CONC + SEEPAGE_SS × SEEP_SALT + INFILT × AVCONC_SW + LOAD_SS × NDAYS

S_OLD = W_OLD × SSSALT_OLD

How Outputs (S_NEW and AVCONC) from Basic Salt Model Are Used:

SSSALT_NEW = S_NEW/W_NEW

 $AVCONC_OUT = AVCONC$

NOTE: See Sec. 4.3.1 for description of inputs and outputs for the basic salt model.

Table 5.19
SALT FLOWS IN GLASSHOUSE PLOTS

Root Zone

LEACHFRAC = -CAPRISE/SPRINKLE

SALT_TOP = RZSALT_OLD × (1-LEACHFRAC)/(-ln(LEACHFRAC))

 $X_DRAIN = 1+CAPRISE/(2 \times VOLRZ_UG)$

RZ_CONC = SALT_TOP/(1-X_DRAIN × (1-LEACHFRAC))

 $TOT_RZ_SALT = -CAPRISE \times RZ_CONC$

TOT_SALT_IN = SPRINKLE × AVCONC_SW

RZSALT_NEW = RZSALT_OLD + (TOT_SALT IN - TOT_RZ_SALT)/VOLRZ_UG

Subsoil

SSSALT_NEW = SSSALT_OLD + (TOT_RZ_SALT+SEEPAGE_SS × SEEP_CONC - (INFILT+DRAINAGE) × SSSALT_OLD)/VOLSS_UG

AVCONC_OUT = SSSALT OLD

Name	Units	Description	
LEACHFRAC	mm/mm	Leaching fraction	
SALT_TOP	mg/l	Salt concentration at top of root zone	
X_DRAIN	mm/mm	Fraction of the root zone depth whose average concentration is that of the outflowing water	
RZ_CONC	mg/l	Average concentration of outflowing water	
TOT_RZ_SALT	mg/l	Total salt flowing out of the root zone	
TOT_SALT_IN	g	Total salt flowing into the root zone	

sprinkling water), but is just an aid to determining the salt concentration of the outflowing water. Next we determine the size of the slice of water that will leave the root zone during the timestep. The middle of this slice is assumed to have the average salt concentration of the slice. This concentration is calculated using Eq. (6) of Sec. 4.2.3. A mass balance equation for salt in the root zone then gives us the average concentration at the end of the timestep.

To compute salt concentrations in the subsoil, we invoke the mass balance equation.

5.5. THE PLOT DAMAGE MODEL (PLOTDAM)

The computer implementation of the plot damage model is a relatively straightforward translation of the formulas discussed in Sec. 4.4.

5.5.1. Inputs and Outputs

The inputs and outputs of PLOTDAM are given in Table 5.20. Four of the inputs are constant over time and describe the damage curves drought and salt as explained in Sec. 4.4.1 and 4.4.2, respectively. Three other damage parameters depend on the timestep. The remaining inputs to PLOTDAM are generated by PLOTWAT, PLOTSLT, and PLOTDAM itself (in a previous timestep.) The outputs of PLOTDAM are the salt damage, the total damage, and the survival fraction that is used in the next timestep.

5.5.2. Basic Equations

PLOTDAM consists of a drought damage calculation, a salt damage calculation, and a way to combine these two calculations into total damage. The drought and salt damage computation procedure was described in Sec. 4.4. These computations are summarized in Table 5.21.

5.6. DISTAG

5.6.1. Inputs and Outputs

The inputs to DISTAG that are read from data files are listed in Chap. 3. DISTAG uses outputs from the three plot models that have already been described. DISTAG outputs were listed in Table 3.6.

5.6.2. Basic Equations

DISTAG first computes a district water balance, then a district salt balance, and finally it aggregates damage and sprinkling costs.

Table 5.20
PLOT DAMAGE MODEL INPUTS AND OUTPUTS

Name	Units	Description
		<u>Inputs</u>
Fixed Data		
CROP VALUE	Dfl/ha	Money value of crop
NDAYS	,	Number of days this decade
Parameters Th	at Depend Onl	iy on Crop Type
SD	/(mg/1)	Slope of salt damage curve
DP		Point of maximum drought damage
MIN	mg/1	Point where salt damage begins
RP		Point where slope of drought damage curve changes
7)		-
	at Depend on	Crop and Timestep
DD RD		Drought damage fraction at point DP Drought damage fraction at point RP
REMAIN YIELD		Fraction of crop that remains to be
KEIRKIN_IIEED		produced
Computed by P.	LOTWAT	
AVAP	mm	Actual evapotranspiration
PVAP	mm	Potential evapotranspiration
Computed by P	LOTSLT	
RZSALT_OLD	mg/1	Initial root zone salt concentration
RZSALT_NEW	mg/l	Final root zone salt concentration
Computed Prev	ious Decade l	DY PLOTDAM
SURVFRAC_OLD	ha/ha	Initial survival fraction
		Outputs
SALT DAM	Dfl/ha	Salt damage
SURVFRAC NEW	ha/ha	Final survival fraction
TOT_DAM	Dfl/ha	Total damage

Table 5.21

PLOT DAMAGE MODEL

Equations:

Drought Damage

RATIO = AVAP/EVAP

Salt Damage

RZSALT = (RZSALT_OLD + RZSALT_NEW)/2

Total Damage

POT_YIELD = REMAIN_YIELD × SURVFRAC_OLD × CROP_VALUE
SALT_DAM = SD_FRAC × POT_YIELD
TOT_DAM = SALT_DAM + (POT_YIELD-SALT_DAM) × DD_FRAC
SURVFRAC_NEW = SURVFRAC_OLD × (1-SD_FRAC) × (1-DD_FRAC)

Name	Units	Description
RATIO		Potential evapotranspiration ratio
DD_FRAC		Drought damage fraction
SD_FRAC		Salt damage fraction
POT_YIELD	Df1/ha	Potential financial yield, taking previous damage and normal production patterns into account
RZSALT	mg/l	Average salt in root zone

The District Water Balance. We distinguish two major steps:

- Compute flows from plots.
- Compute flows within the district.

DISTAG uses PLOTWAT to calculate the plot flows in millimeters per unit of area for each plot. It converts these flows into a rate (m^3/s) and adds them up. The equations are given in Table 5.22.

Computations differ depending on whether DISTAG is formulating a "request" or a "delivery." For a "request" there are no constraints on the amount of surface water that may be withdrawn for sprinkling crops, but for a "delivery," DM may impose a constraint for open-air crops. When this happens, DM passes to DISTAG a so-called cutback fraction that equals the total amount of open-air surface water sprinkling that DM is willing to allow, divided by the total amount of such sprinkling originally requested. DISTAG indicates to PLOTWAT the fact that sprinkling is to be cut back by setting two "switches," SPRINK_ALLOW and SPRINK INDEX. Table 5.2 describes how this is done.

The computation of flows with the district are shown in Table 5.23.

The District Salt Computation. The district salt computation determines two quantities: the average concentration of the water extracted from the district by DM or flowing into the soil, and the amount of salt in the surface water of the district to be carried forward to the next timestep.

The basic salt model described in Sec. 4.3.1 is used for the district salt balance. One of the salt inflows to the district surface water is salt from draining plots, either because they are draining into the surface water system or because there is a positive seepage flow of which a part directly enters the surface water. The other possible contributions to the amount of salt in the district are extractions from the national distribution system, industrial discharges, rain, and urban runoff. Table 5.24 shows how the basic salt model is used to compute the district salt balance.

<u>Damages</u> and <u>Sprinkling Costs</u>. Finally, DISTAG aggregates crop damages and sprinkling costs for all the plots in the district. After the "request" and "delivery" modes have been completed, DISTAG computes the final results for the timestep using the formulas in Table 5.25.

5.6.3. The Demand Generator

DISTAG is a subroutine of DM. However, there are some useful applications of DISTAG that do not require computing interactions between districts:

Table 5.22
WATER FLOWS BETWEEN PLOTS AND THE SURFACE WATER SYSTEM

 $SPRINK_TOT = \Sigma^{0} \lambda \times SPRINKLE$

SPRINK SW = Σ^1 $\lambda \times SPRINKLE$

 $SPRINK_CUT = \Sigma^2 \lambda \times SPRINKLE$

SEEP SW = Σ^{0} $\lambda \times$ SEEPAGE SW

 $INFILT_SW = \Sigma^{0} \lambda \times INFILT$

 $\texttt{DRAIN_TOT} \; = \; \Sigma^{\,o} \;\; \lambda {\times} \texttt{DRAINAGE}$

 $\texttt{DRAIN_OUT} \; = \; \Sigma^{\,0} \quad \lambda {\times} \texttt{DRAINOUT}$

DRAIN SW = DRAIN TOT - DRAIN OUT

where

 $\lambda = PLOTAREA/(NDAYS \times 8640)$

 $\Sigma^{\mathfrak{a}}$: Sum over all plots in district

 $\Sigma^{\, 1} \colon \mbox{ Sum over all plots that use surface water }$

 $\Sigma^2\colon \mbox{Sum over all plots with open-air crops that use surface water$

Name	Units	Description
SEEP_SW	m³/s	Total seepage that flows directly into the surface water system
INFILT_SW	m³/s	Infiltration from surface water to subsoil
DRAIN_TOT	m^3/s	Drainage from subsoil
DRAIN_SW	m³/s	Drainage that flows into the surface water system

Table 5.23
DISTRICT WATER BALANCE COMPUTATIONS

URBAN_RAIN = URBAN_AREA \times RAIN/(NDAYS \times 8640)

URBAN_EVAP = URBAN_AREA × EVAP × URBAN CF/(NDAYS × 8640)

URBAN_RUNOFF = max(0,URBAN_RAIN - URBAN_EVAP)

 $RAIN_SW = WATER AREA \times RAIN/(NDAYS \times 8640)$

 $EVAP_SW = WATER_AREA \times EVAP/(NDAYS \times 8640)$

FLUSH = max(0,FLUSH_MIN - FLUSH_RED)

INFLOW = URBAN_RUNOFF + RAIN_SW + INDUST_DIS + SEEP_SW + DRAIN_SW

OUTFLOW = EVAP_SW + SPRINK_SW + INDUST EXT + INFILT_SW

DISCHARGE = max(FLUSH, INFLOW - OUTFLOW)

EXTRACTION = DISCHARGE - INFLOW + OUTFLOW

Name	Units	Description
URBAN_RAIN	m³/s	Rain falling on urban area
RBAN_EVAP	m^3/s	Potential evaporation from urban area
URBAN_RUNOFF	m³/s	Water running off urban area
RAIN_SW	m³/s	Rain falling on surface water
EVAP_SW	m^3/s	Evaporation from surface water
FLUSH	m³/s	Actual (minimum) flushing requested
INFLOW	m³/s	Total flow except for extraction from distribution system
OUTFLOW	m³/s	Total flow except for discharge to distribution system

Table 5.24 SALT CONCENTRATION OF SURFACE WATER

How Inputs to the Basic Salt Model Are Defined:

 $W_IN = (INFLOW + EXTRACTION) \times NDAYS \times 86400$

 $W_UP = EVAP_SW \times NDAYS \times 86400$

W_OLD = WATER_VOLUME

W_NEW = WATER_VOLUME

S_IN = (SALTCONC × EXTRACTION + INDUST_SALT × INDUST_DIS

- + RAIN_CONC × RAIN_SW + URB CONC × URBAN_RUNOFF) × NDAYS × 86400
- + Σ^{0} AVCONC_OUT × DRAINAGE × PLOTAREA × 10 + Σ^{1} SEEP_CONC × SEEPAGE_SW × PLOTAREA × 10

where

 Σ^{0} : sum over all plots that drain into district

 Σ^1 : sum over all plots where seepage is positive

 $S_OLD = SWSALT_OLD$

How Outputs (S_NEW and AVCONC) from Basic Salt Model Are Used:

 $SWSALT_NEW = S_NEW$

AVCONC SW = AVCONC

NOTE: See Sec. 4.3.1 for description of inputs and outputs for the basic salt model.

Table 5.25

AGRICULTURAL DAMAGE AND COSTS OF SPRINKLING

Damage:

 $\texttt{SALTDAM} \ = \ \Sigma^{\,0} \ \texttt{SALT_DAM} \ \times \ \texttt{PLOTAREA}$

 $TOTDAM = \Sigma^{0} TOT_DAM \times PLOTAREA$

Sprinkling Costs:

LABOR_COST = Σ^1 SPRINKLE × PLOTAREA × COST_LABOR ENERGY_COST = Σ^1 SPRINKLE × PLOTAREA × COST_ENERGY

where

- Σ^0 : Sum over all plots in district.
- Σ^1 : Sum over all sprinkled plots. (Separate summation for each crop.)

- Estimating district water requirements, given a certain amount of installed sprinklers.
- Determining what crop damages can be prevented if sprinkling is applied and the plots get all the water they request.
- Analyzing the conditions and status (water and salt flows, damages) of specific plots.

Neither DISTAG nor the plot models can stand alone. All four require a calling program to handle certain housekeeping functions, such as reading data, writing results, etc. These housekeeping functions are normally taken care of by DM. Occasionally (for example, in designing sprinkling scenarios) we needed to make water balance computations for isolated plots, but we did not need to compute the associated flows in the national distribution system. To enable us to make computations of this sort, without using DM, we created a stand-alone computer program called the demand generator (DEMGEN). DEMGEN handles the housekeeping necessary to call DISTAG (which in turn calls the plot models) and to write results of DISTAG and plot computations on files that can be used for subsequent analysis. DEMGEN can be thought of as a replacement for DM; however, it is not able to make any "distribution" computations, such as constraining delivery of water for sprinkling due to low river discharges.

Inputs and Outputs. DEMGEN uses the same 16 files as DISTAG (see Sec. 5.2). The other inputs are essentially the same as those described in Chap. 3. The parameters that are normally passed to DISTAG by DM (the flushing reduction, the cutback fraction, and the salt concentration of the extracted water) are specified as control variables to DEMGEN, and these specified values are used for all districts and all timesteps. It is also possible to control which districts and which timesteps are actually used. We can specify:

- The first and last district; any consecutive subset of districts can be specified in a single run (e.g., districts 13 through 58).
- The first and last year to be run (e.g., 1959 through 1964).

DEMGEN writes results from the district and plot models on two files. An output file called DSTCOMP contains the district results, and a file called PLTCOMP contains the plot results. Tables 5.26 and 5.27 give an overview of the values written on these files. These results can be processed by various analysis programs (e.g., standard statistical analytic packages such as SPSS or SAS) to generate results in a form that is useful to the analysis being carried out.

We might remark at this point that since DISTAG is not a stand-alone program, anyone can write a "main" program that uses it. Thus it would be possible to write another version that eliminates some of the

Table 5.26

VARIABLES WRITTEN ON FILE PLTCOMP

Name	Units	Description
RUN_ID		An integer identifying the run
YEAR		Year of record
rimestep		Timestep (decade) of record
PLOT		Index of plot
IRR_CODE		Irrigation code of plot
CROP_INDEX		Index of crop contained in plot
RAIN	mm	Amount of rain
PVAP	mm	Potential evapotranspiration
RZDEF_NEW	mm	Final root zone deficit
SSDEF_NEW	mm	Final subsoil deficit
RZSALT_NEW	${\sf mg/l}$	Final root zone salt concentration
SSSALT_NEW	mg/1	Final subsoil salt concentration
SURVFRAC_NEW	ha/ha	Final survival fraction
AVAP	mm	Actual evapotranspiration
DRAINAGE	mm	Total drainage from subsoil
CAPRISE	m m	Capillary rise
SEEPAGE_SS	mm	Seepage to subsoil
SPRINKLE	mm	Sprinkling
PSI	mm	Suction in root zone
AVCONC_OUT	mg/1	Average concentration of drainage

Table 5.27

VARIABLES WRITTEN ON FILE DSTCOMP

Name	Units	Description
RUN ID		An integer identifying the run
YEA R		Year of record
TIMESTEP		Timestep (decade) of record
IRR CODE		Irrigation code of plot
CROP INDEX		Index of crop contained in plot
RAIN	mm	Amount of rain
PVAP	mm	Potential evapotranspiration
RZDEF NEW	mm	Final root zone deficit
SSDEF NEW	mm	Final subsoil deficit
RZSALT NEW	mg/l	Final root zone salt concentration
SSSALT NEW	mg/l	Final subsoil salt concentration
SURVFRAC NEW	ha/ha	Final survival fraction
AVAP	mm	Actual evapotranspiration
DRAINAGE	mm	Total drainage from subsoil
CAPRISE	mm	Capillary rise
SEEPAGE SS	mm	Seepage to subsoil
SPRINKLĒ	mm	Sprinkling
PSI	mm	Suction in root zone
AVCONC OUT	mg/l	Average concentration of drainage
DIST		Index of district
URBAN RUNOFF	m³/s	Water running off urban area
RAIN ŚW	m³/s	Rain falling on surface water
EVAP SW	m³/s	Evaporation from surface water
DRAIN TOT	m³/s	Drainage from subsoil
LEAK TOT	m³/s	Leakage into subsoil
SPRINK_TOT	m³/s	Total water consumed for sprinkling
SPRINK_CUT	m^3/s	Surface water sprinkling that can be
		cut back in case of shortage
SALT_TODIST	g	Total salt discharged into district
SALT_FRDIST	g	Total salt discharged by district
TOTDAM	Df1m	Total damage to all plots
SALTDAM	Dflm	Salt damage to all plots
DISCHARGE	m³/s	Discharge to national system
EXTRACTION	m^3/s	Extraction from national system
AVCONC_SW	mg/1	Average salt concentration of water discharged from district
SALT_OUT	g	Total salt discharged to national system

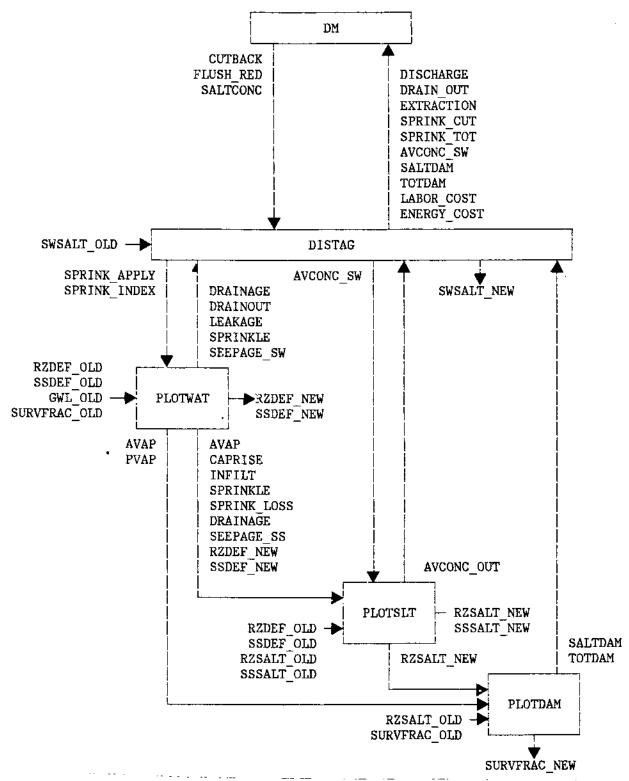


Fig. 5.1--Overview showing variables passed between DM, DISTAG, and the three PLOT models

limitations of DEMGEN (e.g., the fact that the salt concentration of the surface water must be a single constant specified in advance).

5.7. OVERVIEW OF DATA FLOWS AMONG THE MODELS

In describing the models in Secs. 5.3 through 5.6, we used many variables that were passed from one model to the next. Figure 5.1 presents an overview of these variables. It shows only the variables that control interactions among the models in either the "request" or "delivery" modes, and none of the fixed input data.

REFERENCE

5.1. Rijtema, P. E., <u>Soil Moisture Forecasting</u>, Report 513, ICW, Wageningen, 1969.

Chapter 6

DATA

In this chapter we describe the data files needed by DISTAG, and the data base assembled in order to use DISTAG for the PAWN analysis. All of the data are listed in conveniently formatted tables.

The description of the data files will be consulted by readers who are using DISTAG and need to develop new data files or modify current ones. The description and listings of the data are needed by those interested in examining detailed assumptions upon which the PAWN results are based. The data give a rather detailed picture of the agriculture and hydrology of the Netherlands, and may be useful for purposes other than PAWN altogether. On the other hand, this chapter is not essential to those who read the present volume to get an understanding of the theoretical basis for the models described.

We begin by describing those data that characterize the geography of the Netherlands, that is, the various characteristics of districts, subdistricts, and plots. Next we discuss parameters associated with various submodels—those associated with soils and crops, those that are used by the sprinkling models, and those used to compute basic drainage. We then discuss external supply data (rain, evaporation), and conclude with a discussion of many miscellaneous data, most of them single numbers, which are difficult to classify.

6.1. DISTRICTS, SUBDISTRICTS, AND PLOTS

The data that describe districts, subdistricts, and plots comprise the basic geographical description of the Netherlands used by DISTAG. In this section, we will first describe the basic input files containing these data, and then we will discuss the data themselves. We will explain how districts and subdistricts were chosen, and then describe how the data were obtained.

6.1.1. Input Data Files

There are four data files, one containing district data, two containing subdistrict data, and one containing plot data. These files are described in Table 6.1.

6.1.2. The Data

The District File. DISTFIL contains 13 data elements. An overview of these data for the situation treated by PAWN is given in Table 6.2. The district index and name are used only for administrative reasons and identification; the districts were numbered from 1

Table 6.1 DISTRICT, SUBDISTRICT, AND PLOT DATA FILES

<u>Fil</u> e	Field	Column	Format	Description	Source Code Identifier	Documentation
DISTFIL				DISTRICT GEOGRAPHY		
	-0040000000000000000000000000000000000	1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	F(2) F(3) F(4) F(4,1) F(4,1)	District index District name Index of weather station Index of drainage region Index of drainage region Intal area (ha) Urban area (ha) Open water area (ha) Piushing minimum (m³/s) Indistrial saft concentrationn Industrial extraction (m³/s) Industrial discharge (m³/s) Oischarge saft (mg/l)	DIST. DATA. WEATHER_STATION (IDIST) DIST. DATA. DRAINAGE_REGION (IDIST) DIST. DATA. URBAN_AREA (IDIST) DIST. DATA. WATER_AREA (IDIST) DIST. DATA. WATER_VOLUME (IDIST) DIST. DATA. FLUSHING_MINHOW (IDIST) DIST. DATA. FLUSHING_MINHOW (IDIST) DIST. DATA. INITIAL_SALT (IDIST) DIST. DATA. INDUST_EXTRACT (IDIST) DIST. DATA. INDUST_SALT (IDIST) DIST. DATA. INDUST_SALT (IDIST)	URBAN_AREA WATER_AREA WATER_VOL FLUSH_MIN INDUST_EXT INDUST_BIS INDUST_SALT
SUBDF1L				SUBDISTRICT GEOGRAPHY		
	-024506-000-00-00-00-00-00-00-00-00-00-00-00-	10 1 1 2 3 3 3 3 3 3 4 1 1 4 1 4 4 4 4 4 4 4 4 4	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Index of subdistrict Index of district Index of agricultural region Index of root zone soil Index of subsoil Highlands/lowlands code Fraction of district Infiltration coefficient Drainage coefficient Initial groundwater level (mm) Ditch level (mm) Seepage amplitude (mm/day) Salt concentration (ppm) Industrial GW withdrawal (mm/day) GW constraint (mm)	SUBD. DATA. DISTRICT_INDEX (ISUBD) SUBD. DATA. AGRI REGION (ISUBD) SUBD. DATA. AGRI REGION (ISUBD) SUBD. DATA. RZ_SOIL_INDEX (ISUBD) SUBD. DATA. SS_SOIL_INDEX (ISUBD) SUBD. DATA. HILO_CODE (ISUBD) SUBD. DATA. INFILTRATION_COFF (ISUBD) SUBD. DATA. INFILTRATION_COFF (ISUBD) SUBD. DATA. INTITAL_GWL (ISUBD) SUBD. DATA. SEEP_RATE (ISUBD) SUBD. DATA. SEEP_SALT (ISUBD) SUBD. DATA. SEEP_SALT (ISUBD) SUBD. DATA. SEEP_SALT (ISUBD) SUBD. DATA. SEEP_SALT (ISUBD) SUBD. DATA. GWL_INDUST (ISUBD) SUBD. DATA. GWL_DRINK (ISUBD) SUBD. DATA. GWL_DRINK (ISUBD)	INFIL_COEF DRAIN_COEF DITCH_LEVEL SEEP_RATE SEEP_SALT GWL_INDUST GWL_DRINK
SUB2F1L				SUBDISTRICT ENF!LTRATION DATA		
	F 00 87	1- 3 6- 9 10-14 15-18	F(3) F(4) F(5) F(4)	Index of subdistrict Fraction suppliable Infiltration rate (mm/day) Open water seepage fraction	ISUBD SUB2.DATA.INF_FRAC (ISUBD) SUB2.DATA.INF_RATE (ISUBD) SUB2.DATA.SEEP_OW_FRAC (ISUBD)	SUPP_FRAC INF_RATE OW_FRAC
PLOTFIL				PLOT GEOGRAPHY		
	t 33	1- 3 6- 7 8-13	F(3) F(2) F(2) F(6)	Index of subdistrict Irrigation code Index of crop Area (ha)	PLOT. DATA. SUBDISTRICT_INDEX (IPLOT) PLOT. DATA. SPRINK_CODE_(IPLOT) PLOT. DATA. CROP_INDEX (IPLOT) PLOT. DATA. PLOT_AREA (IPLOT)	IRR_CODE PLOTAREA

Table 6.2 DISTRICT DATA

PAWN Region 1: North												
DISTRICT DESCRIPTION	WEATHER STAT FON	DRA REG	TOTAL	CROPS NAT	AS (ha) NATURE	URBAN	WATER	WATER VOL	FLUSH	INIT - SALT	EXT	STRIAL DIS SALT
1 FRIELAND Friesland 2 HETBILDT Het Bildt 3 LAUWMEER Area around Lauwersmeer 4 UITHUIZN Uithuizen 5 EEMSKANN Eemskanaal BoezemNorth 6 OLDAMBT Oldambt 7 WESTWOLD Area around the Westerwoldse A 8 NWDRENTE Northwest Drenthe 9 WESKWART Westerkwartier 13 VOLENHOY Land van Vollenhove 14 NEPOLDER Northeast Polder 15 MASTBROK Mastenbroek	Leeuward Leeuward Eelde Eelde Eelde Eelde Eelde Eelde Dedemsv Leiystad	r · · · · · · · · · · · · · · · · · · ·	289896 15997 75320 16623 36923 36923 53759 527946 52621 48017 42960	217889 10948 48578 8240 28927 30885 43629 35846 29574 39332 39332	46690 3928 18896 3602 3457 5040 4082 17730 168461 17730 5862 6787	12708 438 2460 349 2425 2105 4074 3336 3623 1419 837	12609 683 5386 432 2114 1346 1974 1980 1989 4474 1762	168530 6085 70025 4860 24535 14125 14125 27172 21412 72125 25320	80.00 7	175 175 175 175 175 175 175 175		
Total for region			778374	556588	149379	35732	36675					
PAWN Region 2: Northeast Highlands												
DISTRICT DESCRIPTION	WEATHER STATION	DRA REG	TOTAL	CROPS	AREAS (ha) CROPS NATURE	URBAN	WATER	WATER VOL	FLUSH	INIT -	- X	IDUSTRIAL DIS SALT
10 NEDRENTE Northeast Drenthe 11 SEDRENTE Southwest Drenthe 12 SWDRENTE Southwest Drenthe 16 OVIJVECT Area around the Dinkel 17 DINKEL Area around the Dinkel 18 TWENTHE Twenthe 19 SALLAND Salfand 20 TWENTKAN Catchment area of Twenthe Canal 21 SHIPBEEK Schipbeek 24 BERKEL Berkel 25 OUDELJSL Area around the Oude LJssel	Eelde Dedemsv Dedemsv Dedemsv Dedemsv Dedemsv Dedemsv Dedemsv Minters	φφαιαιαιαιτε το πο	29301 45587 91104 12995 824409 824409 87408 27761 73787	21214 32428 65039 28597 13808 46823 33249 14099 14099 53424	4988 9377 20459 11303 8926 28372 10657 11323 16338	1929 25505 3167 1562 1268 5815 2890 2870 4615	1170 1277 2439 1533 407 1465 1282 930 457 1155	14610 15295 28320 17760 14450 16955 15080 9705 4940 19485		251 251 251 251 251 251 251 251		
Total for region			594428	385261	164563	30986	13618					
PAWN Region 3: Flevoland & Vetuwe	EATHE	DRA		- ;	~	 			+	- E	NoN1 -	STRIAL-
	STATION	REG	0	CROPS NAT	ÜRE	URBAN	WATER	7	Σ	-	EXT DIS	JIS SALT
22 IJSELGEB Area around the IJssel River 23 NEVELUWE Northeast Veluwe 26 ARNHEM Area around Arnhem 27 SEVELUWE Southeast Veluwe 28 SWVELUWE Southwest Veluwe 29 NWVELUWE Northwest Veluwe 30 FLEVLAND Flevoland	De Bilt De Bilt De Bilt De Bilt Oe Bilt Lelystad	00000r.	25648 52861 7690 18656 93517 58206 97806	11076 19787 2349 5539 34386 19350 54562	12432 28549 4142 10581 49064 33583	1648 3615 1024 2247 8256 4152 2255	492 910 175 289 1811 1121	5985 10310 2330 2960 15235 12175 38610		175 175 175 175 600		
Total for region			354384	147049	176676	23197	7462					

Table 6.2 (continued)

PAWN Region 4: North Holland	WEATHER	DRA		ARF	AS (ha)	! ! !	:	WATER	FLUSH		00% r	STRIAL-	t
	STATION	REG	OTAL	0	ROPS NATURE	URBAN	ΆΤĘ			SALT	EXT	EXT DIS SALT	F
31 WIERGMER Wieringermeer Polder 32 AMSTLMER Amstelmeer 33 MEDMBLIK Area of W.Friesland around Medemblik 34 HOORN Area of W.Friesland around Hoorn 35 SCHERMER Schermerboezem 36 WATRLAND Waterland 37 NZKANGEB Area around Noordzeekanaal	HOOFT NH HOOFT NH HOOFT NH HOOFT NH HOOFT NH		19938 25057 23916 9032 75265 7526	15406 18427 17653 5723 46742 4849	3476 3108 2854 1746 16494 1405 7917	263 1412 1834 1048 7227 320 7039	793 1575 1575 515 4802 952 2587	9725 28850 18862 5672 41472 13948 37115	00000 00000 00000 00000	2000 175 175 175 175			
Total for region			185377	115900	37000	19143	13334						
PAWN Region 5: Midwest and Utrecht													
DISTRICT DESCRIPTION	WEATHER STATION	DRA REG	TOTAL	CROPS	AREAS (ha)	URBAN	WATER	WATER 6	FLUSH MIN	INIT -	INDD	-INDUSTRIAL EXT DIS SALT	ı -
38 RIJULAND Rijnland 39 AMSTLAND Amstelland 40 GOO! 41 KROMRIJN Area around Kromme Rijn 42 LEIDRIJN Area around Leidsche Rijn 43 WOERDEN Woerden 44 LOPIKMPWAR Lopikerwaard 45 KRIMPWAR Krimpenerwaard 46 SCIELAND Schieland	Naaldwyk Naaldwyk De Bilt De Bilt Naaldwyk Naaldwyk Naaldwyk Naaldwyk		95287 24689 25973 38683 11546 1595 15931 15012 1600 27502	49251 14173 11260 16948 5944 11264 9444 9012	24434 5034 9080 15272 3763 4520 4550 2520 3656 3741	15082 4179 4179 5622 1278 1701 1088 22091 5910	6520 2482 1458 1458 841 1020 1389 1018	60000 26368 43805 4618 5490 8497 5117 11975	2.8 1.0 0.5 0.5 0.7	175 175 175 175 175 175			-133-
Total for region			289532	153609	16670	42214	17039						
PAWN Region 6: Large Rivers & Northern Delta													
DISTRICT DESCRIPTION	WEATHER STATION	DRA REG	TOTAL	CROPS	AREAS (ha) ROPS NATURE	URBAN	WATER	WATER F	FLUSH	INIT -	INDU	-INDUSTRIAL EXT DIS SALT	ı ⊢
48 VOORNE Voorne-Putten, part of Hoeksche Waard 49 GOEREE Northern part of Goeree-Overflakkee 50 IJSLMOND IJSSelmond 52 DORDRECT Area around Dordrecht 53 ABLASWAR Albiasserwaard 55 TIELWARD Tielerwaard 57 BETUWE Betuwe 59 RECMAASN Area on Right Bank of MaasNorth	Naaldwyk Vliss Naaldwyk Andel Andel Andel	1001091	30740 10493 17633 12355 29261 49219 35644 10103	19566 6221 11985 6537 19873 33870 225570 5900	7093 3253 3258 2584 2584 5168 10406 2320	1617 399 1511 2621 2621 2842 2852 1438	2464 620 929 613 1620 2101 1169 445	32577 6805 10487 7685 16650 20787 12670 6530	0.00-00	175 175 175 175 175 175			
Total for region			195448	126522	43085	15880	1966						

Table 6.2 (continued)

PAWN Region 7: West Brabant & Southern Delta													
DISTRICT DESCRIPTION	WEATHER STATION	DRA REG	TOTAL	CROPS	AREAS (ha) CROPS NATURE	URBAN	WATER	WATER VOL	FLUSH I	NIT -	EXT	-INDUSTRIAL EXT DIS SALT	A L 1 :
51 HOLNDIEP Area around Hollandsch Diep 54 BIESBOSH Biesbosch 74 MARK Area around the Mark 75 ROSENDAL Steenbergse and Roosendaalse Viiet 76 ZOOM Area around the Zoommeer 77 SCHOUWEN Schouwen	Oudenbos Oudenbos Oudenbos VIISS	.5555	41154 30436 52774 30838 65962 25911	29041 22680 31349 21371 45075	8311 3614 15824 5768 16357 5158	2078 2446 4738 2666 2416 971	1724 1696 863 1033 2114 1172	19900 17720 8590 11390 27470 14500	3	271 271 271 271 271			
Total for region			247075	168126	55032	15315	8602						
PAWN Region 8: Southeast Highlands													
DISTRICT DESCRIPTION	WEATHER STATION	DRA REG	TOTAL	CROPS	AREAS (ha) CROPS NATURE	URBAN	WATER	WATER VOL	FLUSH I	INIT -	EXT	-INDUSTRIAL EXT DIS SA	At SALT
56 DENBOSCH Area southwest of 's-Hertogenbosch 58 MAASWAAL Area between Maas and Waa! 60 RECMAASM Area on Right Bank of MaasMiddle 61 MASKANTE Maaskant East 62 MASKANTE Maaskant West 63 AA 64 DEPEEL dePee! 65 RECMAASS Area on Right Bank of MaasSouth 66 ROERMOND Area around Roermond 67 SLIMBURG Middle Limburg 68 MLIMBURG Middle Limburg 68 MLIMBURG Middle Limburg 69 EDOMMEL DommelEast 70 MDOMMEL DommelEast 71 WDOMMEL DommelNorth 73 DONGE Area around the Donge 71 Total for region 72 PAWN Region 9: Markerwaard (Proposed) 73 DONGE Area around the Donge 74 MARKWARD Markerwaard 76 MARKWARD Markerwaard	Gemert Andel Venio Gemert Gemert Gemert Venio Beek ZL Venio Beek ZL Venio Gemert Gemert Gemert Gemert Gemert Gemert Gemert Gemert Gemert Gemert Gemert	100 100 100 100 100 100 100 100 100 100	43658 22773 72777 25350 88811 48494 71349 71349 71349 71345 31073 33812 3456 306585 606585	27282 15171 26934 14765 36734 11986	10084 4139 4420 12635 7387 35010 17853 17853 18619 19018 11374 10374 1477 13355 11576 207299 5 207299 5	4066 2318 22323 22323 22594 225993 225993 225993 225993 225993 225993 3780 37094 3789 1150	2222 1145 288 810 810 613 1537 1334 657 1334 463 14107 1350	25155 16000 3975 3810 8390 1740 5700 6045 8760 16620 9980 8245 7515 9590 4625 4625	FLUSH 1	211 251 175 175 175 175 185 185 185 175 175 175 175 175 175 175 175 175 17	EXT	0.3 0.3 0.2 0.1 0.4 0.4 0.3 0.4 0.3	AL SALT
וחנקו נחנ ופאיהוו			,)	;	,) }						

through 77 and given a name that in most cases relates to their geographic location. Twenty-one different weather stations have been considered, and each district has been associated with one of these stations, as will be described in Sec. 6.5. Similarly, each district containing any part of the highlands has been assigned to one of 17 drainage regions, as will be explained in Sec. 6.4.

We will describe how the various areas and the volume of water were determined in Sec. 6.1.4. The flushing minimum reflects the minimum desired discharge for quality control in the districts. With a few exceptions only the districts with saline seepage are flushed. The desired flushing rates for a number of districts were derived from an inquiry by the Union of Waterboards [6.1]. For the districts with saline seepage for which no flushing rate was given, a flushing rate was estimated based on the total salt load.

The initial salt concentration of each district was arbitrarily set to 175 mg/l, except for a few districts with very high salt concentrations. For these districts, a higher initial concentration was specified based on observations. The industrial extraction or discharge reflects a constant flow out of or into the district waters because of actions of users other than agriculture. These extractions and discharges are set equal to zero in most places; in some highlands districts the industrial discharge entry was used to account for water flows into the district because of losses from adjacent highlands canals.

In the district files reflecting future scenarios, the industrial extraction or discharge entry is used to reflect changes in discharges to the surface water because of changes in groundwater withdrawals by industry or drinking water companies. (Except for some small losses, the groundwater withdrawn for these purposes eventually ends up in the surface water system.) The last data element, the salt concentration of the industrial discharge, allows for the specification of the salt flow into the surface water system because of users other than agriculture. It is used only in connection with the incremental discharges in future scenarios.

The Subdistrict Files. SUBDFIL and SUB2FIL contain 19 data elements. A listing of these data for the situation treated by PAWN is given in Table 6.3. The subdistricts were numbered from 1 through 143, and the district index associated with each subdistrict indicates the district to which the subdistrict belongs. The index of the agricultural regions indicates which of the 14 agricultural regions contains the subdistrict, as described in Sec. 6.1.5. Associated with each subdistrict is a root zone soil type and a subsoil type. Soil types were selected from a list of 20 standard soils as described in Sec. 6.2.1. The highlands/lowlands code indicates the landform of the district; the value 0 indicates a lowlands subdistrict, the value 1 indicates a low highlands subdistrict, and a value 2 indicates a high highlands subdistrict.

The fraction of the subdistrict is the area of the subdistrict divided by the area of the district containing the subdistrict; this number is not actually used by DISTAG.

Table 6.3 SUBDISTRICT DATA

PAWN Region 1: North

SEEP										_			_									,70		_			
INFL RATE SI	90	90	06.	90	90	90	90	06	06	90	06	06	06	06	90	06	06	06	06	06	6	0 06	06	06	06		
SUPP 11 FRAC R	0.50 0	_	_	000	_	_	.000.	0.60 0	0	0.91	0.87	_	o.	52 0.	10 0	0	70 0.	30 0	90 0.	50 0.	30 0.	17 0.	300.	00 00	00 00		
	860 0.											30 0.20							ö			900 0.	0	.	.		
SEEP	(4)		m						_		1600											ŏ					
SEEP	60.0	0.0	0.13	0.14	0.14		0.1	0.29	0.08	0.37	0.08	0.12	•								٠	. 10	•				
DTCH LEVŁ	1000	1250	1250	1000	1000	٠	1250	1250	1250	1250	1000	1250	1000	1000	1000	•	1000	٠	750	1000	٠	1250	1000	1250	750		
IN?T GWL	500					1800	900	900	900	900	800	006	800	800	800	1700	800	1800	400	800	1800	900	800	900	400		
DRA I N COEF	0.00375	0015	0255	0.00375	0375		0.00375	0.00255	.00375	10255	00075	06000	00075	00075	0.00375		0.00375		0.00375	0.00375		0.00375	0.00375	0255	0375		
11.						•		o.	o	o	Ö	ο.	ö	ö	ó												
INF IL COEF	0.0025	000.0	0.0017	0.0025	0.002		0.002	0.001	0.0025	0.001	0.000.0	9000.0	000.0	000.0	0,0025		0.0025		0.0025	0.0025		3.0025	0.0025	0.001	0.0025		
PCT DST	30				72	r											75				16	100) 0 1	0	50		
(ha)- IATURE	14007	11673	7003	6909	5603	2335	3928	18896	3602	2420	1037	4032	1008	4082	9264	7580	13297	4433	11523	2469	5469	5862	2715	2715	1357	149379	
AREAS (ha)- CROP NATURE	65408	55000	32481	28000	26000	11000	10948	48578	8240	16678	12249	23380	7505	43629	19658	16188	22188	7391	20646	4503	5133	39332	12940	13000	6513	556588 1	
AGRICULTURE REGION	North Sand	NorthPasture	NorthSeaClay	NorthPasture	NorthPasture	North Sand	NorthSeaClay	NorthSeaClay	NorthSeaClay	NorthSeaClay	Peat	NorthSeaClay	NorthSeaClay	Peat		North Sand	North Sand	North Sand	NorthPasture	North Sand	North Sand	H-IJ Potder	NorthPasture	NorthPasture	NorthPasture		
			(HULMCS)	•	Peat						LoMeCoSa							_	Peat								
SUBD LANDFORM ROOTZONE SUBSOII SOILTYPE TYPE	LoMeCoS*	BashCla*	LiteCla*	Peat	BashCla*	LoMeCoS*	Loam	LiteCla*	Loam	LiteCla*	HuLOMCS*			HULOMCS*				LoMeCoS*	Peat	LoMeCoS*	LoMeCoS*	SaCILoam	LoMeCoS*	LiteCla*	Peat		
LANDFORM	Lowland	Lowland	Lowland	Low!and	Lowland	Hi High	Lowland	Lowland	Lowland	Lowland	Lowland	Lowland	Lowland	Lowland	Lowland	Hi High	Lowland	High in		Low!and				Lowland	Lowland		
SUBD	_	2	(47)			. •		ω	0	5	Ξ		13				17	13	24	25			28	50	30	noi ge	1
DISTRICT	1 FRIELAND						2 HETBILDT	3 LAUWMEER	NZINHIIZN	5 EEMSKANN		6 OLDAMBT	•	7 WESTWOLD	8 NWDRENTE		9 WESKWART		13 VOLENHOV			14 NEPOLDER	15 MASTBROK			Total for region	

Table 6.3 (continued)

PAWN Region DISTRICT S	2: Northeast SUBD LANDFORM		Highlands ROOTZONE SOIITYPE	SUBSOIL TYPE	AGR + CULTURE REGION	AREAS	AREAS (ha)- CROP NATURE	PCT DST	INFIL	DRAIN	IN!T GWL	DTCH LEVL	SEEP AMP	SEEP SU	SUPP (N	INFL RATE SI	E P W
	22 22 20 20 20 20 20 20 20 20 20 20 20 2	LOW High High High High High High High High	HULLOMECOSS***********************************	LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA LOMECOSA	Peat North Sand North Sand North Sand North Sand East Sand East Sand East Sand East Sand East Sand East Sand East Sand	21214 13022 19406 26086 38953 7154 21443 3500 10308 16230 16	4988 3751 12825 12825 84184 8427 9830 18442 6694 18822 18822 18822 18328	004 004 004 004 004 004 004 004 004 004	00055 0025 0011	0.00075	800 800 1900 1900 2300 2300 2100 2100 800 800 800 800 800	1000			2000 2000 2000 2000 2000 2000 2000 200	000000000000000000000000000000000000000	
21 SHIPBEEK 24 BERKEL 25 OUDEIJSL		Lowland Lo High Hi High Lowland Hi High	LILOMCS: LOMECOS: LOMECOS: LiteCla: LoMECOS:	(LILMCS) LOMECOSA LOMECOSA (HULMCS) LOMECOSA	4 4 5 5 5	13224 40200 16842 30948	1,323 4084 12254 5782 10739	_	. 0017	0.00255	800 1700 800 1700 1700	1250			; ; ;	28888	
fotal for region PAWN Region 3: F DISTRICT SUBD	egion 3: Flevoland SUBD LANDFORM	oland IDFORM	& Vełuwe ROOTZONE SOLLTYPE	SUBSOIL	AGRICULTURE REGION	385261 1 AREAS CROP N	164563 (ha)- AATURE	PCT DST	INFIL	DRAIN	INIT	DTCH LEVL	SEEP AMP	SEEP SU	SUPP IN	INFL RATE SE	EE P
22 IJSELGEB 23 NEVELUWE 26 ARNHEM 27 SEVELUWE 28 SWYELUWE 29 NWYELUWE 30 FLEYLAND	252 LOW H H H H H H H H H H H H H H H H H H H	E E E E E E E E E E E E E E E E E E E	LiteC1a LiteC1a LomeC0S* LomeC0S* LomeC0S* LomeC0S* LomeC0S* LomeC0S* LomeCOS* SaC1Loam	(HULMCS) (HULMCS) (HULMCS) (HULMCS) (HULMCS) (LOMECOSA (LOMECOSA (LOMECOSA (LOMECOSA (LOMECOSA (LOMECOSA (LOMECOSA (LOMECOSA (LOMECOSA (LOMECOSA (HULMCS)	River Clay River Clay Central Sand Central Sand Central Sand Central Sand Central Sand Central Sand Central Sand	11076 6865 8665 2349 1700 1700 13839 13827 13623 5727 54562	12432 7137 7137 14275 4142 3174 7407 29439 19625 23508 10075	100 229 224 247 100 70 70 60 70 70 70 100	0.0014	0.00210	600 600 6700 800 800 800 6700 800 1400 1400	1250 1250 1250 1250		845 0	25 00 00 00 00 00 00 00 00 00 00 00 00 00	0 222222222222222222222222222222222222	
Total for region	gian					147049	176676										

Table 6.3 (continued)

PAWN Region 4:		North Holland	tand														
DISTRICT	subo	SUBD LANDFORM	ROOTZONE SO1LTYPE	SUBSOIL TYPE	AGRICULTURE REGION	AREAS CROP N	S (ha)- NATURE	PCT DST	COEF	DRAIN	IN:T GWL	DTCH LEVL	SEEP AMP	SEEP S CONC F	SUPP FRAC R	INFL RATE S	SEP EEP
31 WIERGMER 32 AMSTLMER 33 MEDMBLIK 34 HOORN 35 SCHERMER		Low land Low land Low land Low land Low land	LiteCla* LiteCla* LiteCla* Peat Peat Beat BashCla*	(HuLMCS) (HuLMCS) (HuLMCS) (HuLMCS) Peat Peat Peat Peat	H-iJ Polder Rest of NH Rest of NH West Pasture West Pasture West Pasture	15406 18427 17653 5723 14009 14009 9339	3476 3108 2854 1746 4948 4948 3299	5555 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.00255 0.00255 0.00255 0.00255 0.00375 0.00015	82220000	750	00.20	0	28888888	9898888	08
36 WATRLAND 37 NZKANGEB	628	Low land Low land Low land	Licumos: Peat SandCla* Peat	(nuches) Peat (HuLMCS) Peat	West Pasture H-13 Poider West Pasture	4849 4600 2500	1405 5146 2771		00025	00375	2000	750	. 25	2000 1 2360 0 . 0	2288		<i>.</i> .
Total for region	egior	_				115900	37000										
PAWN Region 5: Midwest and Utrecht	5: 1	didwest a	nd Utrecht														
DISTRICT	SUBD	SUBD LANDFORM	ROOTZONE SOILTYPE	SUBSO IL TYPE	AGRICULTURE REGION	AREAS CROP	(ha)- NATURE	PCT DST	INFIL	DRAIN	GWL	DTCH LEVL	SEEP AMP	SEEP S CONC F	SUPP I FRAC R	INFL RATE S	SEEP
38 RIJNLAND	70 71 72 72 73	Low land Low land Low land	SandCla# Peat LoMeCoS# BasnCla#	(HuLMCS) Peat LoMeCoS*	H-IJ Polder West Pasture Rest of SH West Pasture	24687 18956 3108 2500	12217 9773 1222 1222	350		0.00090 0.00375 0.15000 0.00375	, 0004 0004 0004	250 600 500 600	0.34	1370 1 880 1 200 1	9888	86.66 86.66	
39 AMSTLAND		towland Lowland	Peat BasnCla#	Peat Peat	P. B.				0025 0025	0.00375	001	600 600 600	2.14	1000		96.99	
40 G001 41 KRGMRIJN	77 77 78	Lowland Hi High Lowland	Peat LoMeCoS* LiteCla*	Peat LoMeCoSa (HuLMCS)	West Pasture Central Sand River Clay		9080 9164 6108		3025	0.00375	, 2008 800 800	6 00 250	62.0		388	388	
42 LEIDRIJN 43 WOERDEN		Lowland	BasnCia* Peat	<u>a</u>)	Pa Pa	5944 11264			0001	0.00015	100 100 100		-0.25			86. 86.	
		Low land Low land	BashCla* BashCla*	(SanCla) Peat (HulMCS)	West Pasture West Pasture West Pasture				0003 0025 0017	0.00015 0.00375 0.00255		262				3,8,8	
45 KRIMPWAR	ာထား	Lowiand	Peat Loam	5	20.00				0025	0.00375	009	000				88	
46 SCIELAND		Low!and Low!and	Peat SandCla*	Peat (BasCla)	#2 22				0025 0006	0.00375	902	000	0.57	800		8,6;	
47 DELFLAND		Low and Low and Low and	BasnCla* LitoMCS* SandCla*	Peat (LiLMCS) (BasCla)		11430 4301 1119	2431 936 374			0.00375 0.00165 0.00090	, 200 200 200 200 200 200 200 200 200 20	600 750 000			888 000	888	
fotal for region	eg ior	_				153609	76670										

Table 6.3 (continued)

Table 6.3 (continued)

PAWN Region 8: Southeas	t Highland	s													
DISTRICT SUBD LANDFORM	RM ROOTZONE SOILTYPE	SUBS01L TYPE	AGRICULTURE REGION	AREAS CROP N	S (ha)- P NATURE D	PCT	COEF	DRAIN	GWL GWL	DTCH LEVL	SEEP	SEEP SU	SUPP FRAC R	INFE RATE S	EEP.
56 DENBOSCH 104 Lowland 105 Lowland 105 High	d LiteCla* d LoMeCoS* h LoMeCoS*	(HuLMCS) LoMeCoSa	River Clay South Sand South Sand	13667 4085 9530	5043 1512 3529	85.5 0 0	.0025 0.	00255	800 900 700	1250 1250		0	1.00 0.05 0.05	888	
MAASWAAL 108		(HULMCS)	River	15171		000	.0017 0	.00255	800	1250		-		. 90	
Ξ		LoMeCoSa	South	5830		88		•	3500				00	96	
MASKANTE 112		LoMeCosa		1626								•		20	
AS MASKANTW 114 LOWISH	I LUMECOS:	(Hul MCS)	West P	0647		510	.0017 0	.00255	800	1250		· -	00	906	
115		LoMeCoSa	South Sand	2950		20		!	900	•		.0	50	.90	
116 ні ні		LoMeCoSa	South	4316		53		•	1800	•			(96	
Ξ: Ω:		LoMeCoSa	South Sand	11481		7.5 7.5	•	·	9061				200	3.5	
= 3	- CoMeccos:	LOMECOSA	South	4032		75	•		000				22	206	
120 Hi Hi		LoMeCoSa	South	22968		85,			2700				0	90	
E H		LoMeCoSa	South	3000		25			900			· ·	30		
122 HI HI		LoMeCoSa	South	8986		5		,	200				٥٥	88	
요.		LoMeCoSa	South Sand	9441		200		•	2004				••	30	
H H 421	T COMECUS.	LOMECOSA	South Sa	36548		20		-	500					> .	
126 Lo Hi		LoMeCoSa		4380		20.			900			0	.30 0	90.	
127 Hi Hi	_	LoMeCoSa	South	17655		80		••	2700			· ·		06.	_
F H		LoMeCoSa	South	4105		25			006			•		06,6	
129 Hi Hi		LoMeCoSa	South	12233		20	•		000					56	
Ξ: S:		Lowecosa	South Sand	3037) (•					•	20	
H	TOMOCOS*	LOMecosa	South	10067					007	•) C	00	
122 IS H		LOMPCOSa	South	2502		7			006				0	06.	
134 H H H		LoMeCoSa	South	14809		85.			1700			•	0	06.	
2	_	LoMeCoSa		3760		25			006				0	96.	
Ξ	_	LoMeCoSa	South Sand	11207		72			00/				>	3	
Total for region				328085 2	207299										
PAWN Region 9: Markerw	Markerwaard (Proposed	sed)													
DISTRICT SUBD LANDFORM	RM ROOTZONE SOILTYPE	SUBSOIL TYPE	AGRICULTURE REGION	AREAS CROP N	S (ha)- P NATURE D	PCT DST	INFIL	DRAIN	INIT GWL	DTCH LEVL	SEEP	SEEP SU	SUPP I	INFL RATE S	EEP G
78 MARKWARD 144 Lowland	d SaCILoam	(HULMCS)	H-1J Polder	28500	19000 1	100 0	.0025 0	.00375	006	1250	0:30	. 006	0	.90	
Total for region				28500	19000										
			•		,										

NOTE: Asterisks denote substitution soils. See note to Table 6.5.

The infiltration and drainage coefficients are used in the formulas relating the flow from surface water to subsoil (infiltration) or vice versa (drainage) to groundwater and ditches. Estimates of these parameters were obtained from contacts with the <u>Instituut voor Cultuurtechniek en Waterhuishouding</u> (Institute for Land and Water Management Research, or ICW). Initial groundwater levels and ditch levels (the latter is assumed to be constant within a subdistrict) were obtained from maps [6.2], various reports on reallotment, and contacts with the <u>Studiecommissie Waterbehoefte Lander Uninboum</u> (Study Committee for Water Demands of Agriculture and Horticulture, or SWLT). (Infiltration, drainage coefficients, and ditch levels are only relevant for the lowlands.) Seepage rates and seepage salt concentrations came from several reports [6.3,6.4].

The industrial and drinking water withdrawals in the subdistrict file have been set to zero for the files described here, because these discharges and extractions are accounted for by the parameters of the basic drainage model, described in Sec. 6.4; they can be used to account for changes from the current situation. The groundwater constraint was never used.

The fraction suppliable indicates what part of the subdistrict has a surface water system that can be supplied from the main system. Estimates for these fractions were obtained from the above-mentioned inquiry of the Union of Waterboards [6.1]. The infiltration rate is used to compute the infiltration losses from the highlands ditches and canals to the subsoil. It is expressed in mm/day and is applied to the part of the highlands that is suppliable from the surface water system. It is based on some very crude estimates of infiltration losses per unit of open water area and the open water area itself. The open water seepage fraction indicates what part of the seepage immediately flows into the surface water system. The general assumption is that all seepage flows to the subsoil and only indirectly to the surface water. So in most places this fraction is equal to zero. In the new polders in the IJsselmeer this assumption does not seem to be a good one, and so for these polders an open water seepage fraction was empirically determined, by using DISTAG to reproduce observed salt concentrations in the IJsselmeer.

The Plot File. PLOTFIL contains four data elements per record. These data are listed in Table 6.4. The subdistrict index specifies the subdistrict containing the plot; the irrigation code indicates whether the plot is unsprinkled (set equal to zero), or sprinkled from surface water (set equal to one) or groundwater (set equal to two). The index of the crop indicates the crop type. Finally, the area of each plot is given. In Sec. 6.1.5 we describe how these plots were defined.

6.1.3. Selection of Districts and Subdistricts

Districts were defined as hydrologic entities in the sense that all parts of a district discharge water to or extract water from the

Table 6.4 PLOT DATA

. 1. Sa	AL 27	3386 3224 647	33 45	3286	12 ay	AL 32	31		-142 17051		2 :	13	PO.	101AL 1008	را 15	38	55 52 52 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	τ.	13	<u> </u>	
Subd: /LoMeCo	101 WD			. 132	Subd Sand	GW TOT	.		. 150	•	2741	Subd: 13	בל	50. 50.	. 40	56	- 		. 851	 	
ANN Subd: 11 HULOMCS*/LOMECOSa	МS	273	• কল	280	BT SandCla*	MS.						7007	in Lointean	ž.			۰۵	ις.	7	 	
EEMSK	UNSP	3113 3224 647	4985	13006	6 OLDAMBT	UNSP 4032	4131 118	315 2220	15044 858	ħ69	27412	6 OLDAMBT	;	1008	4015	2600	- 3 3		8506		
Dist: 5 Lowland	CROP	Z C Z C Z C Z C Z C Z C Z C Z C Z C Z C	Cer Vgg	T0T	st:	CROP	Gra	sed Sug	cer	Vgo	T0T	St:		CROP	_ <u>_</u>	e C	- re 799	F.	TOT	! !	
Subd: 8 (HuLMCS)	TOTAL	24585 1276 3091	4728 14250 160	404 16	n2h29	 ;;		3602 2176	343 794	1210 3585	126	r CQ	11842	Subd: 10	ulMcs)	TOTAL	2420 7183	401	1572	6303 131 216	19098
EER Subd: ELIteCia*/(HuLMCS)	₹			• •		ZN Subo	₹				•		•	Ins Sul	18*/(H)	₹	٠.	•			
LAUWMEER LiteC	MS	196ż 500) }	16	2486	UITHUIZN Loam/	AS.				•=	10 t	9	EMSKANN	LiteCla*	MS	603	125	7.		725
	UNSP	22623 1276 2591	4728 14250 160	† 0 †		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		3602 2176	343 794	1210 3585	126		11836	: W	nd	SNO	2420	401	1572	6303 131 216	18373
Dist: 3 Lowland	CROP	S C C C C C C C C C C C C C C C C C C C	Sug Cer	V90 0 60 0 60	T01	Dist:	CROP	Nat Gra	Con	Sug Cer	062	у. Н Г	TOT	Dist:		CROP	Nat Gra	Con	Sug	Cer Vgo	101
† ; p	TOTAL	28000 28000 34069	d: 5	TOTAL	26000	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	o.S	TOTAL 2335	11000	13335	d: ر	,	3928	4318 344	1573	2387	100	سر	` ;	14876	
Subd /Peat	ĕ		Subd:	₹		Subd:	Cos*/Low			328	:pqns		§ ·								
FRIELAND Peat/	æ	• •	FRIELAND	MS.	5080	723 7080 	an a	₩S.	•	•	7		¥ ·	1257 37	1573			. E. π	٠ ;	2885	
1	UNSP	28000 34069	h 1	UNSP	20920	91.		UNSP 2335	10672	13007	2 HETBILDT	2	3928	3061 307	1705	2387	483 100		•	11991	
Dist: 1 Lowland	CROP	Nat Gra	Dist: 1 Lowland	CROP	Sra Gra	Disti	Hi High	CROP	Gra	T07	Dist: 2	L 0 * 1 d1	Nat	ors Con	Sed	Cer	790 Fru	766 766	-	101	
* * * *	* * * * *	d: 1 eCoSa	T07AL 14007 62000	733	484 1283 361	79415	d: 2 incla	FOTAL	11673 55000	66673		LMCS)	TOTAL	7003	743	2467	3759 103	200	88 88	13 39484	
* * * * *	* * * * * *	AND Subd: 1 LoMeCoS*/LoMeCoSa	₹				AND Subd: 2 BashCla*/BasinCla	3				AND SUBU: LiteCla*/(HuLMCS)	35				•			, .	
*****	** ** **	LOMECO	SW 4259			4259	LAND BashC1	AS.	6570	6570		LiteCI	MS	4023	224	÷ .	.00		202	13 5727	
**************************************	***************	1 FRIELAND			484 1283 361	75156	1 FRIELAND	UNSP		60103	110	I FRIELAND	UNSP	7003	519	2467	3759	344		33757	
##### PAWN B North	* * * *	Dist: 1 Lowland	۵.	Sed	Sug Cer Cut	T07	** 0	CROP		TOT		Lowland	CROP	Nat Gra	200	Sug	Ser Te	280	rri: Vgg	F1r T0T	1

GW TDTAL 2715 : 13000 : 15715

CROP UNSP SW Nat 2715 Gra 5420 7580 TOT 8135 7580

Table 6.4 (continued)

d: 30	T0TAL 1357 6500 10	7870	149179 365069 7026 365069 36947 36947 38225 82684 3892 731 1681 411 411 411 411 411 411 411 411 411 4	
Subd	§ · · · ·	· ! * · ! * · ! * · ! * · ! *	2274 369879 2274 369879 122 36947 15880 38225 38225 38225 110 6856 110 6856 110 6856 2515 705967	
BROK Peat/Pea	SW 10.	13 ****** region	42570 3054 3054 342 8743 1041 279 299 78	
IS MASTBROK	UNSP 1357 6500	7857 ##### for	UNOY UNSY STORY OF A 149379 Con 3972 4257 Con 3972 305 Sed 37137 874 Sed 37225 Cot 3892 Lip 582 Lip 583 Fir to 411 99 Fir to 411 59 Fir to	
Dist:15 Lowland	CROP Nat Gra Vgg Flr	TOT ****** Summary North	CGC Con Con Con Con Con Con Con Con Con Co	
26 CoSa	2469 2469 2619 1161 155	467 7602 : 27 : 27 : 27	TOTAL 5862 3485 5334 5334 7533 441 628 4081 1412 1412 1412 628 628 628 628 628 628 628 628 628 62	12259 12259 12259 15259 1528 528 15655 115655 117675 1078L
HOV Subd: 26 LoMeCoS*/LoMeCoSa	GW 1	46 . 425 760. DER Subd: 2 SaCILoam/(HuLMCS	SW GW TOTAL 5862 2793 3485 2793 3485 5334 5334 120 628 879 4083 237 1412 5440 45194 4440 45194 6683 6688 679 683 688 688 688 688 688 688 688 688 688	SW GW TOTAL 330 997 12259 : 528 330 997 15655 ROK Subd: 29 LiteCla*/(HuLMCS)
LoMeCo	MS	DER SaCILO	5048 2793 5334 120 879 237 24 14440	330 330 330 330 330 LiteCli
:13 VOLENHOV igh LoM	UNSP 2469 2194 1161 155	467 7177 	JNSP 2062 692 692 7538 7538 7638 1175 1175 1175 1175 1175 1175	UNSP S 10932 33 1528 528 14328 33 14328 33 14328 33 14328 33
Dist:13 Hi High	CROP Nat Gra Mil Sug Cer	Cut TOT Dist:14 Low and	CROP Nat Grat Con Sug Cour Cour Fru Vgg Fir Tot	CROP UNAT CENT OF UNAT CENT OF UT OF
1: 17 CoSa	TOTAL 13297 20961 137 279 811	. 35485 	101AL 44433 4208 1395 754 811 214 214 11824 d: 24 d: 24 11523 20637	232169 4; 25 60.058 701AL 2469 4503 6972
ART Subd: 17 LOMECOS#/LOMECOSA	₩	Sub Sub	£ t sub	Sub Sub
	%S	679 MART LOMECOS#	SW WHOV Peat/Pea SW SW 3223	~ <u>F</u> =
WESK	UNSP 13297 20282 137 279 811	34806 67 9 WESKWART	13 VOLET 17414	28937 13 VOLEI nd UNSP 2469 3525 5994
Dist: 9 Low!and	CROP Shar Con Sed	٠ ٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠٠ ٠	. :: <u> </u>	Figure 101 101 101 Dist: Cowlar CROP Nat Gra
d: 14 scosa	TOTAL 4082 6285 17577 319	2222 268 110 236 12 13	47711 d: 15 ecosa TOTAL 9264 9264 16575 2571 464 42 6 6 6 6 6 6 6 6 6 6 6 6 6	707AL 7580 6457 561 363 5192 176
OLD Subd: 14 HuLoMCS*/LoMeCoSa	%0 :11°		S#/LOM GW GW 413 413 6413 6413 6413 8413 8413	122 122 110 110
MOLD HuLoMO	SW 705 342	52	LOMECO SW SW SW 6 6 LOMECO LOMECO	AS
7 WESTWOLD	UNSP 4082 5469 17235 319	13252 268 268 110 236	528 NWDR NWDR 162 571 464 42 503	UNSP 7580 179 6335 561 3623 5192 5192 66
Dist: 7	CROP Nat Gra Mil Sed	sug Cer Cut Ygo Ygg	TOT 46 Dist: 8 Lowland CROP UNAt 16 Gra 16 Mil 2 Cut Tre Vgg TOT 28 High High	CROP Nat Con Mil Sed Sug Cer Vgo

Table 6.4 (continued)

**************************************	* :: 65 * :: - : - : *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	Dist:12 Lowland	SWDR	ENTE LOMECOS*		Subd: 22 LoMeCoSa	Dist:1 Lo Hig	17 DINKEL gh	oMeCoS*	Subd: 33 //LoMeCoSa	33 33 33	Dist:19 Lowland	SALLAND	ND LoMeCoS#,	Sut	1: 37 3CoSa
	•			CROP	UNSP	MS.	₩S	TOTAL	CROP	UNSP	ΝS	ĭ. ₹	07AL	CROP	UNSP	A'S	₹	TOTAL
9	NEDRENTE		pgn	Gra	24149	779		24928	Gra	3500		• •	500	Gra	8873	2074		20947
Lowland		HuLoMCS*/L	oMecosa	sed Vgo	813 137	208		137	T01	5732			5732	Sug	172	79		251
CROP UNSP		SW GW	TOTAL	TOL	12081	780		311270		7 DINKE		- Pquy	1	Fru Van	188	• 67		188
	30 406		2489	- 1	, į	2	. ;	2 - 1 - 1	;∓		LoMeCoS*,	_	SoSa	- L		, cu		o QI
			9339	St:	12 SWDR	ENTE	Sub	Subd: 23				١	;			10.0	•	1 + 0 0
	₹		142	H H	gh	LoMecos	S*/Lop	ecosa	CKO +	CASP	ž.	-	7. AL	101	22910	2304		707
Sug 369	2, 62		3694 5118	CROP	UNSP	MS.	ΑS	TOTAL	gra Gra	8008		316	8324	·s	SALL	AND	Subd: 38	1: 38
	34		134	Nat	12275	•		12275	<u>:</u> Σ	250			250	Hi High	_	LoMeCoS*	*/_LoM	CoSa
		•	251	S. C.	17592		1514	19106	ن د د د	365 225 825			250 250 250 250	CROP	dVNII	3	3	TOTAL
გნ~ ს		<u></u>	۵. د د	5 -	9287		294	9581	ے د — د	·		. ,	1	Nat	3523	; .		3523
		•	ļ.	Sug	3203	•	•	3203	ļ		•	ŗ	(Gra	7351		363	8714
oT 255		•		Cer	5408	•		5408	101	16685	•	317	1,002	۳ و د و	5.52 7.72 7.72 7.72			335 777
S 15.+2	FDRENTE	8	ubd: 20	y co	0621			1630	ist:1	8 TWENTH	<u> </u>	Subd: 35	35	cut.	1963			1963
Lo High	Col	LoMeCoS*/LoMeCoSa	oMeCoSa	. H			N	N	Hig	٦ ا	.oMeCoS*	/LoMe	oSa	· .		•	,	
,				TOT	71707		101	E1228	900	MCD	CLU	7.	TA		3 - 3 4	- - 	303	2016
CKOF UNS		NA CM		3	# # # # # # # # # # # # # # # # # # #		5 :		_ + C Z	9930		•	1930	Dist:20	TWENT	ΑĀ		39
Gra 11211	0		12167	ist	5	CI		d: 31	Gra	15843	387	· -	6230	Lowland		_		(LILMCS)
	m	₹	612	I	ligh	LaMeCo	/*s	LoMeCoSa			!	,				ć		
Vgo 21	£3		243	0	6	ā	ā	14101	OT.	-	387	. 26	26160	CROP	UNSP	MS.		101AL
TOT 16.4:	5.5	0.7	16773	S to a	ONSP	A.	<u>x</u>	2826 2826	Dist: 1	A TWENTH	<u>.</u>	Subde		Gra .	5410	708	707	6825
	10 00			Gra	6189	733		6922	ei H	, L	oMecos	*/LoMecos	o Sa	Con	201	124		325
ist:11 S	DREN	8	Subd: 21	Con	63	04		103			č	-	14.4	Sug	206	61		267
High	Ó	lecos*/L	oMecosa	Sed	59	100		621	Na +	18442	X O		1.AL	i de	1900			1900
		SW GW		0		873		9980		22129	 	055 23	3184	F 1.				N
Nat 5626	26 5	. 17.	5626 1258	: 7	1170 8	VECT	Suk	32	Ç 0 :- 2 ×	303 691		N O	375 780	101	37426	895	707	39028
	35			Hi Hig) 	_	*	LoMeCoSa		355			355	!			1	•
	37	. 117				710	3	TOTAL		1282			282	Dist:20	O TWENT h	KAN POMPCOS*	`	Subd: 40 LoMeCoSa
			3421	2 ×	8477	E .	5	8477		120			120		_			3
	35			Gra	12080		579	12659					-	CROP	UNSP	MS	₹	OTAL
		. 18		— i ₩	3775	•	•	3775	<u>-</u>			.	±†	kat Gra	2689 2664	500	•	2689
<u>-</u>		•		Cer	2260			2260	T01	47814	. 12	2	49035	1)		•	} }
	58	. 674	25	Soft Cont	1608		• •	1608	1 1 1 1				-	T0T	5353	200	•	5553
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		799 F-1			− m	- m										
				TOT	29337		583	29920										

Table 6,4 (continued)

	:23 NEVELUWE igh LoMeCoS*/LoN	UNSP SW GW	394	70 30 100				22413 . 527 22940	THE STATE OF THE S	nd br	100	4142	1638 1638				-	6489 . 6491	:27 SEVELUWE Subd:	9		3174 . 3174		4/84	:27 SEVELU	ign Lomecos"/	UNSP SW GW T				•		11243 . 3 11246
٠.	Dist Hi H	CROP	Nat Gra	M ::	Cer	Cut) <u>-</u>	TOT	1 4	_ د	000	Nat	Gra	Ger C	Cat	V99	-	T01	Dist	Lo H	CROP	Nat Gra		101	<u></u>	<u> </u>	CROP	Nat	η - Σ Ε	Cer	Cut	799 F-r	101
*****	PAWN Region 3: Flevoland & Veluwe ************************************		1JSELGEB Subd:	LiteCla*/(HuLMCS	UNSP SW GW	_	161	142	669			. 22245 742 521 23508		ist;23 MEVELOWE Subd: 44 owland liteCla*/(HulMCS)		UNSP SW GW T	4641 271 658 5	74 197 .		36 72 81	57 - 14 - 10 - 11 - 11 - 11 - 11 - 11 - 11	12636 581 785 140	t:23 NEVELUWE	LoMeCoS*/LoMeCa	UNSP SW GW T	3526 731 . 4257	*** **** ****	10563 /31 . 1139					
					CRO	Nat		Sug				TOT				CROP		Con		06A	_	101	Δ.	9 		Nat Gra		_				•	-4-4
	SL Subd: 49 iteC a*/(HuLMCS)	 35	1631 13159	550	1500	159 301	-	1927 22624	USL Subd: 50	pennaw/,co	GW TOTAL	. 10739 4000 23619	177 394					11562 115697	3	**********	ø	GW TOTAL		17426 276830 339 2414				- 0	٥,	, L	39	25	.34 19457 549824 *********
-		S	•	•	٠.	•	•	1	SL	o Mec	Š								·	***	lands	30	•	926 310	212	692 140	•				38	17	რ* რ*
	Dist:25 OUDELJS Lowland Li	P UNSP	Nat 5782 Gra 11528	Sug 550				TOT 20697	st:25 OUDEL	161	ROP UNSP	Nat 10/39 . Gra 19619 .	217		Cer 2174 .	3914		10075 TOT		****	igh land		164563	Gra 251478 7926 Con 1765 310	33297 2	1212 6 13545 1	'						TOT 521033 933 ***********
	Dist:25 OUDEIJ Lowland	TOTAL CROP UNSP	5378 Nat	416 Sug	Cut	11098 Vgo	2	TOT 20697	TOTAL Dist:25 OUDEL	1323 HI HIGH 12048	208 CROP UNSP	Nat 10/3 Gra 1961	Con 217	Sed	Cer 2174	7 Cut 3914 .		TOTAL TOT		****	Northeast Highland	CBOP IINSP	Nat 164563	12254 Con 1765 3	30257 Mil 33297 2	421 Sed 1212 6 313 Sug 13545 1	505 Cer 27035	2690 Cut	5728 Vgo	1 167 Fru 363 5 112 Tre 177	3 V99 3	4 Fir .	7 52454 TOT 521033 93
	Subd; 41 Dist:25 OUDEIJ eCoS*/LoMeCoSa Lowland L	OTAL CROP UNSP	Nat Gra	416 Sug	Cut	. 300 11098 Vgo	EK Subd: 42	/(LiLMCS) TOT 20697	OTAL Dist:25 OUDEL	1323 HI HIGH 2048	. 208 CROP UNSP	Nat 10/3 Gra 1961	Con 217	Sed 361	300 304 23422 309 301 .	Subd: 47 Cut 3914 .	OMECOS"/ COMECOSA	OTAL TOT	296 . 13224	2 2 3 4 13 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4	AND SUMMARY FOR THE SUMARY FOR THE SUMA	dSNII	Nat 164563	12254 Con 1765 3	30257 Mil 33297 2	Sug 13545 1	505 Cer 27035	2690 Cut	5728 Vgo	112 Tre 177	3 V99 3	4 Fir .	52454 TOT 521033 93
	Dist:25 OUDEIJ Lowland	SW GW TOTAL CROP UNSP	300 4406 Gra	416 Sug	. Cut	. 300 11098 Vgo	1 SHIPBEEK Subd: 42	LitoMCS*/(LitMCS) TOT 20697	UNSP SW GW TOTAL DISE:25 OUDED	. 1323 HI HIGH 504 12048	. 208 CROP UNSP	443 Nat 10/3 1399 Gra 1961	1	Sed	300 304 23422 309 301 .	KEL Subd; 47 Cut 3914 .	Loweros"/ Lomerosa	GW TOTAL	1296 . 13224	2 2 3 4 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	outz tzyo . Itaba summary for region	Subd: 48	Nat 164563	GW TOTAL Gra 251478 79 12254 Con 1765 3	5333 4924 30257 Mil 33297 2	90 421 Sed 1212 6 40 313 Sud 13545 1	65 505 Cer 27035	. 115 2690 Cut	5728 Vgo	. 91 167 Fru 363	3 3 799	4 Fir .	387 52454 TOT 521033 93

_
nued
contí
6.4
Table

501															146													
Subd: 6	TOTAL	2854	581	182	282	2814	193	39	N.	ubd: 62	4CS	TOTAL	1746	4210	470	16	17	7469	1	ened: 63	TOTAL	4948 1 4 009	18957	۱		TOTAL 4948	14009	18957
*	Œ.	•			•			•	•	ns		C.F.	•		•		•	•		su Peat	ΑS			ຸດ	25	₹.	•	. ! ! !
MEDMBL)K LiteC	MS	5027	192		1237	2206	ررد 19	39	7		LiteCla*	MS		1858 289	332	16	17	2814		SCHERMEK Peat/	ΝS	2267	2267	SCHERMER	/agr/	₩.	2267	2267
33 MEDiv	UNSP	2854	1487 1887 1887	182	282	608	622	•	11352	34 HOORN		UNSP	1746	2352	138	7.40	•	4655		oσ	UNSP	4948 11742	16690		2	UNSP 4948	11742	16690
Dist: Lowlan	CROP	Nat	Con	Sug	Cer	Vgo	7 20 7	F_7	TOT	Dist	Lowland	CROP	Nat	6 B B B	Vgo	7 66A	Ξ	TOT		Low fan	CROP	Nat Gra	T0T		TD	CROP ∦at	Gra	T0T
* * * * * *		50	ICS))TAL	3476	521	1034	5619	100	5	18882	09 :	ICS)	OTAL	108	350	398	356	1922	843 127	7 54	1535						
**************************************		Subd	*/(HuLMcs)	ĕ. T			٠ و٠				347 18		*/(Hulmcs)	ĭ Æ	•							. 21						
* * * * * * * * *		FR	Litecla*/	MS	554	434		•	149		878	ER	itecla	MS	• 20	119	398		759	3/4 ##	7 54	Q 1						
******* Region 4: Holland		VI FROMFR		JNSP	3476 784	1010	1034	5619	257	302	5657 2	AMSTL	_	JNSP	3108	•	_	2356	1163	463 83		5284 6						
* T + + T + + T + + T + + T + + T + + T + + T + + T + + T + + T +		Dist : 31	? 🖺	_	Na t		sed Sug			064	_	Dist:32	owland	CROP			Sed				V99 F) r	- !						
# ₹ 5 *	•			63	ᇎᅄ	00	ກທ	O	ر مە د	>	_	. 0	_		交(၁ပ	S	ာ ပ	∞;	≻╙	≻╙		ı					
PAWN Nort		ic		Ŭ								_		_														
			5196 L				169 169		288						5944		8762	5931	3071	1386 393	31							
Subd: 58 m/(HuLMCS)		38325		8335			169		345					176676 86056	98 5944	2455			81 3071		13 19 24 31							
LAND Subd: 58 SaCiLoam/(HuLMCS)	TOTAL	38325	5196 5196	8335			169		3298 342				TOTAL	176676 86056	98	2455	. 87		42 81	9 .		6914 3277 323725	=					
FLEVLAND Subd: 58	SW GW TOTAL	38325	98 5196 03 2185	607 53 5435	29059	70 . 2882		-	89247 3298 342		y for region	and & veluwe	UNSP SW GW TOTAL	76676 . 176676 78639 4612 2805 86056	4732 1114 98	867 93 2455	8675 . 87		142 81	94, 99	6 13 7 24	6914 3277 323725	=					
FLEVLAND Subd: 58 SaCiloam/(HulMCS)	P UNSP SW GW TOTAL	38325 . 38325 3666 31113 151 5260	917 98 5196 847 03 2445	8335 . 8335	29059 29059	70 . 2882	948	-	T 89247 3298 342		or region	oland & veluwe	UNSP SW GW TOTAL	176676 176676 78639 4612 2805 86056	4732 1114 98	000 30 030 1495 867 93 2455	8675 . 87	5931	2848 142 81	1174 166 46 393	7 24	313534 6914 3277 323725						
Dist:30 FLEVLAND Subd: 58 Lowland SaCiLoam/(HuLMCS)	CROP UNSP SW GW TOTAL	Nat 38325 38325 Gra 1666 11113 151 5260	Con 4181 917 98 5196	sed 1497 801 73 2427 Sug 8335 8335	Cer 29059 29059	55 Vgo 2812 70 . 2882	Sa Fru 948	. 1	TOT 89247 3298 342		Summary for region	Flevoland & veluwe	CROP UNSP SW GW TOTAL	Nat 176676 176676 32 Gra 78639 4612 2805 86056	Con 4732 1114 98	30 M11 000 . 30 030 30 30 30 30 30 30 30 30 30 30 30	Sug 8675 . 87	Cut 5931	Vgo 2848 142 81	Fru 1174 166 46 Tre 393	31 V99 . 6 13	7 a 13534 6914 3277 323725		10 (5) 1298	386 1039	ର ଓ ଓ		2002
Subd: 54 Dist:30 FLEVLAND Subd: 58 /LoMeCoSa Lowland SaCiLoam/(HuLMCS)	CROP UNSP SW GW TOTAL	Nat 38325 38325 Gra 1666 11113 151 5260	1181 917 (2) 7.500 4181 917 (3) 5196 1106 867 03 5166	sed 1497 801 73 2427 Sug 8335 8335	29059 29059	Subd: 55 Vgo 2812 70 : 2882	*/Lomecosa Fru 948 Tre 169	. 1	1 10529 TOT 89247 3298 342		Summary for region	Flevoland & veluwe	10 CROP UNSP SW GW TOTAL	Nat 176676 . 176676 33432 Gra 78639 4612 2805 86056	Con 4732 1114 98	Subd: 56 Mil 600 . 30 630 /LoMeCoSa Sed 1495 867 93 2455	Sug 8675 87	Cut 5931	3505 Vgo 2848 142 81	Fru 1174 166 46 Tre 393	1 V99 . 6 13	Subd: 57 /LoMeCosa TOT 313534 6914 3277 323725	OTAL	. 100/5 . 4298 		ର ର ୧୯ ସ	•	7007
Subd: 54 Dist:30 FLEVLAND Subd: 58	TOTAL CROP UNSP SW GW TOTAL	. 29439 Nat 38325 . 38325 . 20183 Cr. 1666 1003 151 5260	. 20183 Ora 2000 1443 57 58 5196	55 . 190 (49) 601 75 5457 Sug 8335 8335	013 . 50018 Cer 29059 29059	Subd: 55 Vgo 2812 70 . 2882	*/Lomecosa Fru 948 Tre 169	TOTAL V99	9629 0529 TOT 89247 3298 342		Summary for region	224 Flevoland & Veluwe	10 CROP UNSP SW GW TOTAL	Nat 176676 176676 3432 Gra 78639 4612 2805 86056	Con 4732 1114 98	Subd: 56 Mil 600 . 50 650 S#/LoMeCoSa Sed 1495 867 93 2455	Sug 8675 87	GW 101AL Cer 32371	3505 Vgo 2848 142 81	Fru 1174 166 46 Tre 393	547 . 37131 Vgg . 6 13	Subd: 57 eCos*/LoMeCosa TOT 313534 6914 3277 323725	TOTAL	, 10075 4298			•	-
Subd: 54 Dist:30 FLEVLAND Subd: 58 /LoMeCoSa Lowland SaCiLoam/(HuLMCS)	P SW GW TOTAL CROP UNSP SW GW TOTAL	9 . 29439 Nat 38325 38325 38325	3	Sug 8335 8335	1013 . 50018 Cer 29059 29059	SWVELUWE Subd: 55 Vgo 2812 70 . 2882	/Lomecosa Fru 948 Tre 169	SW GW TOTAL V99	. 1081 10529 TOT 89247 3298 342	**************************************	2124 Summary for region	. 224 Flevoland & Veluwe	10 CROP UNSP SW GW TOTAL	Nat 176676 176676 237 1005 33432 Gra 78639 4612 2805 86056	Con 4732 1114 98	Subd: 56 Mil 600 . 30 630 /LoMeCoSa Sed 1495 867 93 2455	Sug 8675 87	SW GW 101AL Cer 32371	547 . 13505 Vgo 2848 142 81	118 Fru 1174 166 46 Tre 393	547 . 37131 V99 . 6 13	NWVELUWE Subd: 57 LomeCoS*/LoMeCoSa TOT 313534 6914 3277 323725	SW GW TOTAL			(N (N)		
UWE Subd: 54 Dist:30 FLEVLAND Subd: 58 Lowland SaCiLoam/(HuLMCS)	P UNSP SW GW TOTAL CROP UNSP SW GW TOTAL	29439 . 29439 Nat 38325 . 38325	7297 666 . 20163 674 743 743 77 98 5196	8335 8335 8335	49005 1013 . 50018 Cer 29059 29059	st;28 SWVELUWE Subd: 55 Vgo 2812 70 . 2882	Lomecos*/Lomecosa Fru 948	P UNSP SW GW TOTAL V99	9448 : 1081 10529 TOT 89247 3298 342	737	2124 Summary for region	224 , 224 Flevoland & Veluwe	10 10 CROP UNSP SW GW TOTAL	Nat 176676 . 176676 . 176676 . 176676 . 176676 . 176676 . 176676 . 176676 . 176676 . 176676	Con 4732 1114 98	Subd: 56 Mil 600 . 50 650 S#/LoMeCoSa Sed 1495 867 93 2455	Sug 8675 . 87	23508 23508 Cut 5931	547 . 13505 Vgo 2848 142 81	118 118 Fru 1174 166 46 Tre 393	84 547 . 37131 V99 . 6 13	st:29 NWVELUWE Subd: 57 High LomeCoS*/LoMeCoSa TOT 313534 6914 3277 323725	P UNSP SW GW TOTAL	Ora 4298 4298	386 1039	0.01	· · · · · · · · · · · · · · · · · · ·	-

707AL 9164 6854 280 819 457

UNSP 9164 6097 3 819 146

CROP Nat Gra Cer Cut

GW TOTAL 1222 : 2500

SW 2101

UNSP 1222 399

CROP Nat Gra

1621

Table 6.4 (continued)

															- 1	47	_										
	†⁄ : po	TOTAL	9000	170	12466	bd: 75	4	TOTAL	3788	205 205	588	102	6741	72 · P4113		TOTAL	9080	10842 116	139	140	20	20340		JAN SUBU: // LOMECOS*/LOMECOSA	TOTAL	9164	280 280 819
	Subd /Peat	₹			•	Spqns	a*/Pe	₹		٠		•	٠			3			•	•			1 (S*/Lo	ĕS	. 1	159
	AND Peat/P	MS	500	170	1 69	AND	BasnCla*/Pea	MS	1265				1265		Peat/Peat	MS		923		- ~	20	946	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LoMeCo	ΧS	•	118
	9 AMSTI d	UNSP	8500		11772	9 AMSTLAND		UNSP	2523	205	588	102	5476	1000		INSP	9080	9919	139	140		19394	\ I	I KKOMKIJN In LOM	UNSP	9164	819
1 1	Dist:39 Lowland	CROP	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ь Т Т	101	Dist:3	Lowland	CROP	gra Gra	Con	Cer	۸go	T0T	0 77 4 4 7 7 0	Lowland	CROP	Nat	Gra Cer	Cut	Lre	# # - -	101		Dist:41 Hi High	CROP	Nat	C C C C
********	*******	1	AND Subd: 70	/ (marriage)	GW 101AL . 12217	7746	293	6802	633	1527	226	. 862	36904	Cubb. 74	5	GW TOTA!	9773	, \$8044 912		28729	Subd: 72	_omecos#/Lomecos*	GW TOTAL	3108	. 4330	١.	Subd: /3 */Peat
******	5: Utrecht *****		AND SandCiat		MS ·	962 1180	293		112	305	226	862	3969	0.84	Peat/Peat	AS.	5 -	2100 305		2405	AND	LoMeCoS+	MS	350	350		ANU BasnCla*/Peat
************	gion and ****		RIJNL	-	UNSP 12217	4879	10701	6802	521	1222			32935	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		d V				26324	B RIJNLAND	- -	UNSP	1222 2758	3980]_ Z
****	Midwest		ב בין	LO# 181	CROP Nat	Gra	Sed	Cer	BIB	Vgo	799	ا ۲	T0T	0.040.0	Lowland	CROP	Nat	G ra ⊤re			Dist:38	Lowlan	CROP	Nat Blb	T0T		Dist:38 Lowland
1	GEB Subd: 68 SandCla#/(HuLMCS)	TOTAL	1995 1995	707	1222 120	132	58	94/6	69 : pqnS		TOTAL	2771	0062	5271	*****			10TAL	71733	3685	7774	11708	7013	7279 1454	91 157	() () () () () () () () () ()	152900 *****
! !	Sn 1a#/(H	₹	• •			•		•	ns Sn	نه	₹	•	•	•	*****			₹	178	77) V	•	85	00			***** /0/
	NGEB SandC	MS.	391	,		•4	58	652	NGEB	Peat/Pea	MS	٠	•	•	*****	region	3	MS	19861	1210	3100	•	3429	4327 701	151 157		33648
	37 NZKAN nd	UNSP	1604	707	1222 120	132	• -	ħ606	NZKA:		UNSP	2771	2500	5271	**********	Summary for r		JASP 37000		2398	7774	11708	3502	2852 753		i	TOT 118545 3 ********
	Dist:37 Lowland	CROP	200 200 200 200	Sug	Cer Bib	062	ь II В II		Dist	Lowland	CROP	Nat	ر تع		* * * *	Summa	101	CROP	Gra	CO CO	Sug	Cer	9 1 1 1 1	Vgo Fru	V99 F1r		# ** ** **
;	d: 65 incla	TOTAL	3842	066	1353 2119	194		pq: 66	LMCS)	TOTAL	4313	142	2507	45	9	12684	bd: 67		TOTAL	1405	110	-		-			
	Sub/*r	₹0						Sub	лн)/*s	` 35	178		100			360	S	eat	3								
	NWER Subd: 65 BasnCła*/BasinCla	MS	1284	328			_	MER Subd: 66	LiLaMC	MS	2244		995 1204	45	Ď	453		t/P	AS	. (£ ††	-	17171				
	5 SCHERMER	UNSP	2599 2558 2558	212	1353	194	7	5 SCHERMER	Ā	UNSP			1253	-	•	778	WATR		UNSP	1405	110	•	5810				
	Dist:35 Lowland	CROP	kat Gra	Sed	Sug	Fru		Dist:35	Lowian	CROP	Sat Gra	Cut	06/ Vg0	7gg	<u>.</u>		Dist:3	Lowland	CROP	Nat	ora Cer	FIL	T07	! !			

Table 6.4 (continued)

AND Subd: 90 SandCla#/(BasCla)	TOTAL 374 214 243 662	######################################	**************************************	
S 19#/(1	§	 4 CW	159 311 311 1227	
LAND	SW 214:	**************************************		
7 DELFLAND d San	UNSP 374 243 662	######################################	*	
Dist:47 Lowland	CROP Nat Con Sug Cer	Summary Midwest CROP 76 Gra 96 Con 1	8.00 Cot Cot Cot Cot Mygo Fru ***	
98 :	TOTAL 1828 4179 308 131	d: 87 scla) scla) 1828 4443 327 1213	6673 6673 6673 ubd: 88 eat 707AL 2431 11430	1: 89 LMCS) TOTAL 936 706 22254 1341
Subd:		Subd: */(BasC GW TO	Subd: */Peat GW T0 . 11	Subd */(Lit. GW T
AND Peat/Peat	SW 696 308 131	AND Subd: 87 SandCla*/(BasCla) SW GW TOTAL 199 443 2294 1213	117 23 633 AND Subd BasnC1a*/Peat SW GW T 1735 : 1	AND Subd: 89 LiLoMCS*/(LiLMCS) SW GW TOTAL 592 706 2254 2254 1341 1341
SCIELAND	UNSP 1828 3483	SC + EL SC + EL 1828 244 33 1213 1971	174 457 120 6040 DELFL 0NSP 2431 9695	DELFL 0NSP 936 414
Dist:46 Lowland	CROP Nat Gra Vgg	Dist:46 Lowland CROP Nat Con Sed Sug	1 3 - G	Dist:47 Lowland CROP Nat Vgo Vgg
82	TOTAL 1395 2850 4245	LMCS) LMCS) 1395 2426 359 36 4191	d: 84 d: 84 7242 7242 6 9291	TOTAL 504 971 112 123 228 303
Subd: */Peat	35 · · ·	SW GW TOTAL SW GW TOTAL 363 . 1395 8 . 359 3 3 4 4191	Subd Subd Subd	§ · · · · ·
WAR Subd BasnCla*/Peat	SW 425 425	Litecla SW 363 363 374	# t / P 1	sw 112 161 273
1 12			17:4	
3	UNSP 1395 2425 3820	NSP 3395 359 359 359	KRIMP 1422 KRIMP KRIMP	UNSP 504 859 112 123 228 142 142
Dist:44 LOPI	İ	4	t:45 KRIMP land UNSP 2016 6406 6406 1:45 KRIMP	CROP UNSP Nat 504 Gra 859 Con 112 Sug 123 Cer 228 Vgo 142 TOT 1968
	CROP UNSP Nat 1395 Gra 2425 TOT 3820	CROP UNSP Nat 1395 Gra 2063 Fru 359 Vgg :	707 707 100 Dist:45 KRIMP 707 100 Dist:45 KRIMP 80 Dist:45 KRIMP 80 Gra 6406 909 74L FIR 6422 984 101 B422 12 Dist:45 KRIMP 6 LOWIAND	CROP Nat Gra Con Sug Cer Vgo
	CROP UNSP Nat 1395 Gra 2425 TOT 3820	CROP UNSP Nat 1395 Gra 2063 Fru 359 Vgg :	429	CROP Nat Gra Con Sug Cer Vgo
Subd: 78	GW TOTAL CROP UNSP 6108 Nat 1395 7000 Gra 2425 1500 TOT 3820	0 . 14646 Lowland Subd: 79 CROP UNSP Nat 1395 Nat 2063 Nat 2063 Nat 2063 Nat 3763 Vgg 359 FIF 128 TOT 3817	#3	Subd: 81 Gra Subd: 81 Gra Cla*/(SanCla) Sug CW TOTAL Cer 1860 Vgo 3798 TOT
Dist:41 KROMRIJN Subd: 78 Dist:44 LO Lowland LiteCla*/(HuLMCS) Lowland	GW TOTAL CROP UNSP 6108 Nat 1395 7000 Gra 2425 1500 26 TOT 3820	14646 Lowland Subd: 79 CROP UNSP Cla*/(SanCla) Rat 1395 GW TOTAL Fru 359 GW 3763 V99 S324 FIF 128 FIF 129 TOT 3817	43 43 43 43 43 43 43 43 43 43 43 43 43 4	. 15784 CROP Nat Subd: 81 Gra Cla*/(SanCla) Sug GW TOTAL Cer 1860 Vgo . 3798 TOT

Table 6.4 (continued)

*****	****	*******************	*****	*****	-	- i			- 1					- 1					1 1
PAWN Region 6: Large Rivers & Northern Deita ************************************	gion (ivers	6: & Nort *****	:hern ****	Deita *****	Dist:50 Lowland	50 IJSLM nd		Loam/(LiLMCS)	od: 93	Dist:53 Lowland	53 ABLASWAK nd Pea	SWAK Peat/Pea	ı	Subd: 98	Lowland	of BELUNE Id	الا tecl	LiteCla*/(HuLMCS)	(FWCS)
				!	CROP	UNSP	MS	₹	TOTAL	CROP	UNSP	SW	™	TOTAL	CROP	UNSP	MS	₩S	TOTAL
1 4 4 6 7 6			7470	10	3 a c	1050	714		2664	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	3980	•	•	3980	S C	9407	4575	1242	15224
01.35.140			200		500		- 0		1750	2 2			•	2			. 60	!	383
Lowiand	_	/maon	1. LI	6	SHO	2007	(60		2004	n n	-	r	•	r	Sug	833			833
CROP	INCP	MS	3	TOTAL	n C	3537			3537	TOT	5014	7	•	5018	Cer	1414	•	-	1414
	7003	5	5	7093	GT.	163			163		1		-	-	Cut	551	•		553
	5272	- 088	-	6231	Λαο	8.53	549	. ,	1402	Dist:55	55 TIELWARD	4ARD	Sut	Subd: 102	Vgo	136	104	9	331
	1775	785		2560	Fru	262	15	•	377	Lowland	g	LiteCl	LiteCla*/(HuLMCS)	LMCS)	Fru	1902	861	752	3515
	30	63		102	799	•	72	•	72					•	Tre	84	20	1 3	177
	2896	•	•	2896	7 <u>-</u>	•	16	•	16	CROP	UNSP	S	35	TOTAL	V99		7.7	•	7.4
Cer	5000	•	•	5000						Nat	5203	•		5203	<u></u>		98	•	68
	420	•	•	420	TOT	12832	2361		15193	Gra	7747	3000	111	11518	!	!			•
BIb	79	94	•	110		1 1 1 1 1 1			ł	Con	•	242	•	242	T01	23380	6115	2128	31623
05/	938	825	•	1763	Dist:52	52 DORDR	RECT	Snt	Subd: 95	Sug	757	•		757					1 1 1
Fru	223	127		350	Lowfand	nd	Loam/	LiLMCS)	3)	Cer	1201	•	•	1201	Dist:59	9 RECMAASN	VASN		Subd: 109
Vaq		111	•	11						Cut	536	•	•	536	Lowiar	ō	LiteCla*	a*/(H0	/(HuLMCS)
7.4		23	•	23	CROP	UNSP	AS.	ફે	TOTAL	Vgo	72	58	52	155					
		•			Nat	2584		•	2584	Fru	1462	730	309	2501	CROP	UNSP	š	₹	TOTAL
T0T 2	23790	2869	•	26659	Gra	768	398		1166	Tre	59	37	<u>.</u>	112	Nat	969	•		969
;	٠	1 1 1 1	-		Con	206	510	•	1016	Vgg	•	17		17	Gra	825			825
Dist:49	GOERE	LLI L	Sul	bd: 92	Sug	1146	•	•	1146	7 L	•	25		25	Sug	268	•		268
Lowland		Loam/(LiLMCS)	L L LMC		Cer	2022		•	2022						Cer	519	•	•	519
i i i					Vgo	515	315		830	T01	17037	4109	1121	22267	Fru	149	• 1	•	6 1 1
CROP	UNSP	MS.	₹	TOTAL	Fru	216	91	•	307	1 1 1	i				96 <u>7</u>	•	~ .	٠	~.
Nat	3253	•	•	3253	667	•	∓	•	† †	Dist:55	55 TIELWARD	ARD	,	Subd: 103	<u>-</u>	•		•	1
	1357	•	•	1357	-	•	S)		ζV	Lowland	<u> </u>	Basnc≀a≖,	8×)/*8	/(sancia)	FOF	24.57	-		0770
	1259		•	1259	TOT	7767	1361		1010	acac	OSMA	A.	7	TOTAL	5	642	-	.	0011
	20.5		•	707		1121	- 1		7121	2 + 62	5003	2	5	5003	Distri	O RECMAASN	NSA	a di	Subditto
200	25.5	•	•	1300	7		3	ans:	Subd: 96	2 2	8873	6566	•	15439	High High		LoMeCoS*	_	/LoMeCoSa
) = - - -			•	100	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		BashCla*	\sim		7 2 2	730	637		1367		1			
3 0	3	۰۸		2		2				i	1	!		!	CROP	UNSP	ΥS	₹	TOTAL
n ⊆ 		-		-	CROP	UNSP	AS.	₹	TOTAL	T0T	14806	7203	٠	22009	Na t	1624		• !	1624
					Nat	2845	•	•	2842	1	1111111				Gra	3234		458	3692
	9471	m		4246	Gra	9201	1435		10636						Cut	436	•	•	436
; ; ;		! !	1 1 1 1	h 	2	700	•		707						101	5294	•	458	5752
					T0T	12303	1435	•	13738						1				

GW TOTAL 1292 14993

6285

CROP UNSP SW Nat 1292 . Gra 4463 530 TOT 5755 530

TOT 12303 1435 , 13738

Dist:53 ABLASWAR Subd: 97

Lowland BasnCla*/(SanCla)

Table 6.4 (continued)

***	****************	****	*****	*****	Dist:54	H BIESB		pgns	66 : p	Dist: 74	74 MARK	Subd: 138	gns	d: 138	Dist:76	M00Z 9/	pqns	gns	d: 141
Summar	Summary for region	region	egion . Nonthonn	100	Lowlar	힏	Loam/(LILMCS	_	_	rf.	Lomeco	s*/Lom	ecosa	LOWIN	<u> </u>	Loam/(L	1 E 3 C 3	_
ra rāk	אואפו	8	2	מפונש	CROP	UNSP	MS	Ϋ́S	TOTAL	CROP	UNSP	M.S.	₹	TOTAL	CROP	UNSP	MS	χS	TOTAL
_	UNSP	MS	₹	TOTAL	Nat	1446	٠		1446	Na≎	13450			13450	Na t	15315			15315
Nat	43085	٠	•		Gra	1561	431		1992	Gra	14989	•	2645	17634	Gra	4951			4951
	55790	18107	2471		Con	267	624		1191	Sug	826	•		1188	Con	5928			2728
	4493	2815	•		Sug	1761			1761	Cer	766	•	113	1107	sed	038			5538
	39	63	•	102	Cer	3130			3130	Cut	3739			3/39	Sug	8265			8265
	9163	•	•	9163	οδλ	747	246		993	۸go	1164			1817	Cer	14528			14528
	15705	•	٠	15705	ı					Fru	138	•		191	8 1 2	583			583
	2106	•	٠	2106	101	9212	1301		10513	Tre	295		266	833	\g0	3680			3680
	254	94	•	300	1 1 1 1			1 1 1 1 1		Vgg				123	Fru	3444			3444
	3814	1851	116	5781	Dist:5	Dist:54 B!ESB	BOSH	Sub	Subd: 100	<u>۔</u> ب				17	۸gg		56		56
	5304	2561	1061	8926	Lowland	g	LoMeCoS*,	S*/LOM	/LoMeCoSa						ا		9		ø
Tre	143	87	59	289						TOT	35867	•	4232	40099					;
	•	328	•	328	CROP	UNSP	MS	₹	TOTAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					TOT	57332	32		57364
) [_]		146	•	146	Nat	1084			1084	Dist:75	75 ROSENDA	DAL	Sub	Subd: 139		1			
	•	•			Gra	5566	425	٠	5991	Lowland	פַ	Loam/{	LILMCS	_	Dist:	:76 Z00M			Snpd:142
101	39896	26004	3707	169607	Cut	731	•	•	731						Lowlar	덜	LoMeCoS*,	✓Vo¥	/LoMeCoSa
****	*****	*****	*****	***********	200		37	•	37	CROP	UNSP	ΝS	₹	TOTAL					
****	*****	****	*****	*************	ь <u>н</u>	•	. ~		200	Na t	2019			2019	CROP	GNSP	MS	35	TOTAL
		7			=		3		3		40 Y	305		1000	Na +	1042			1042
LAWN P	eg ion		4 1 1	200	101	7301	0.01		7967	5 0	700	700		1070	3 6	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	•	•	1 00
West E	West Bradant & Southern Deita	20C 20C	110011	100 to 10		- 00		• !	1000	000	000	2 5	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- 0	2 2) a
****	****	***			1 .					000	0 5	, N		- (5 :	100			700
					Dist:54	H BIESB	OSH		Subd: 101	sng o	2000			200	cut	673			5/5
1 1		1 1 1 1	1 : 0		Lowlan	2	Liteur	а*/(ни	/(HuLMCS)	5 0 1 1 1	3008	. ;		3008	of A	- 0			0
Dist:5	Dist:51 HOLNDIEP		: Subd:	10d: 94	0	60	č		14701	0 (0)	2000	72.0		100	TOT	0307			9707
Lowlan	₽	Loam/		(2)	CROF	NO.	X O	<u>₹</u>	101AL	0 2 2	925	, , , ,		140	2	4000		.	4000
000	0.000	5	ξ	TOTAL	Nat	100	967		2108	5	000	ţ		<u>}</u>	+	7 SCHOUWEN	243	Suhd	
7 P P P P P P P P P P P P P P P P P P P	2237	20	5	10.1AL	2 5	286	333		618	TOT	9910	1430		11340	pue No		7	I SI MCS	?
ء د ک تا	603	125	471	9008		1198	1	•	1198	1	2	, ,) - - -		ļ.	-		
5 6	700	3.5	- 0	2000	n (1981	•		1861	Diete	A ROSENDA	190	di S	Suhd · 140	CROP	dVNII	30	3	TOTAL
33	2	1 - 1	100	2000	200	- c	.001	•	617	ï	40	* OMPCOS*	`	OMPCOSa	- K	5158		,	5158
nac onc	27.0	2	0	1040)))	107	2		700						2.0	2042	•		2002
S S S	7503	•	•	7503	3 - -	7		-	-	CROP	dSNI	MS	3	TOTAL	COD	3043			3043
5 5	2000	•		1275	TOT	6619	1200		7918	- K	3749		1	3749	Sug	3297			3297
2 4	- 5 - - 5 - - 1 - 5 - - 1 - 5 -		٠.	167	- 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	٠ ;	1 - 1 - 1	בייני	5703		033	6636	Cer	7273		, .	7273
2 2	7 7	100	7 - 0	7107		1 4		400	Subd: 127	2 0	200		24	200	3 5	316		•	21.0
o6,	1717	170	707	40.0	10.00		COMP	7000	- 60 000		100	•	2 7	200	2 -0	250			9 0
יי בי	522	23.	₹ (686	Lo Hiy	Ξ.	Lumeru	omecas*/Lamecas	ecnoa	ond Sold	1540		2	000 000 000 000 000	2 (2)	2022	•		2053
2	g C	t (20.		6	į			S	7.5			7 0 0 0	26.7	200			000
799	•	64	•	46	CROP	UNSP	X.	3	101AL	cnt	1321		• (327	D : 1	662	٠.		N N
<u>د</u> ا	•	o,	•	ð,	Nat O	23/4	. 0		23/4	ogy Ves	2/0		1 7 7 7	700	D 4		at ro		† "
TOT	20005	2001	1956	27250	5 C	180	400 780 780		2,50	50 50		•	2 VC	ליל	<u>:</u>		,		,
	35577	- 000		3 1 2 1	202	177	423		600		•	•	,	>	TOT	23761	7		23768
					, P		;		! -	TOT	14044		1755	15799	1 1			1 1	1

Table 6.4 (continued)

Subd:117 /LoMeCoSa	TOTA	8753	10/40	340	1,000	20234	Subd: 118	lecosa	14 14 6	101AL	20771	372	1938	1668	7397	800	305	28	<u>.</u>		60438	Subd: 119	/LoMeCoSa	TATAT	2678	2132	006	1000	6710								
Sub S*/Lov	3	į .	•			•	Sub	LoMeCoS*/LoMeCoSa		3		181			٠,		~ c	0 8	Š		5263		`	č	¥ .	•	•	•		, t , t , t							
LoMeCoS*	3	5 .	7207	152	2 7 7	1050		LoMeCo	ŧ	ž	•	•		•	•	•	•	•			٠	님	LoMeCoS*	3	¥ ·	1193	720	418	2331) I							
S3 AA Jh	GONII	8753	9533	188	, 0	0000	53 AA		4	UNSP	17250	191	1371	1668	7397	676 10	7 7 7 7	130			55175	3d∃G	gh	9	2678	939	180	582	1,370	- I							
Dist:63 Lo High	goad	Nat	Gra	V90	F	2	Dist:6	Hi High	0	CKOP	ב מ ע	2 5	Sug	Cer	cnt Cnt	067	- F	- S	n ← —		101	st:	Lo Hig	6	Na t	Gra	Cou	۸go	TOT								
d:113 eCoSa	TOTAL	10108	12505	1991	1489	2 2 2 3 3 3	151	335	<u>.</u>	#	21761		Subd: 114	/(Hulmcs)		TOTAL	3694	246	674	984	114	11184		Subd:115	Сомесоза	TOTAL	1477	2850	202		Subd: 116	TOTAL	2216	2630	9/91	~	6532
NTE Subd:113 LoMeCoS*/LoMeCoSa	3	5 1	3070	389		190	94	118	<u>8</u>	.	7,000		Sub	_	i	₹		٩,٠	5 .	•		87		1	-	ĕ			•	•	1 *	<u> </u>		665	٠.	\ -	675
ANTE LoMeCo	70	.	•		•		•		•				WIM	LiteCla*	i	X.		200	} -	•		1362	1 1 1	ANT W	Lomeco	ΝS		538	3	63	KANTW		5	•	•		•
1 MASKANTE	INCD	10108	9435	1602	1489	290	105	217	•		10760	1004	2 MASKANTW			UNSP	3694	4209	674	984	114	9735		62 MASKANTW	<u>=</u>	UNSP	1477	2312	•	37	62 MASK	d VN	2216	1965	1676		5857
Dist:61 Hi High	9090	Nat	e c	Sug	Cer	Zac	Fru	1re	66×		101	- 1		Lowland		_		B 50	Sug	Cer	Fru	TOT		:::	6 H 0	CROP	Nat	ر د د	06 A	T0T	Dist:6	- 4	Nat	Gra	Cut	7 - -	T0T
Subd:106 LoMeCoSa	TOTAL	3529	7057	380	() () () () () () () () () ()	13029	Subd: 108	(HuLMCS)		TOTAL	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	386	854	457	1125	12	6	10310	١.	Subd: 111	/LoMeCoSa	TOTAL	4420	3259	201 543	835	389	7 C	Ö =	<u>+</u> ~	10250	- 0	2000	TOTAL	2527	1636	7818
•	Š	È.	1170	219		-1369	Sut			₹	.,,,,	_	•		304		٠	15.65		Sut	os*/Loh	3	• 1	352	L 49	346		128	9 7	,	691	`		₹ G		•	
OSCH LOMeCoS*	ð	ĸ.	•			• ! ! !	WAAL	LiteCla#/	į	X.	. 1. 1	3427	•		569	2	ο.	71017		AASM	LoMeCoS*	MS	• !	2 th th	110	56		125	0		832	ANT		MS	•		
SE DENB	CONI	3529	5887	161	1	0/911	MAA	<u> </u>		ONSP	4139	1010	854	457	252	•	•	13608	- 1	Æ	Ę	UNSP	4420	2457	367	745	389	191	90	• •	8727	1 MASK	=	UNSP	2527	1676	7818
Dist:56 Hi High	9000	Nat	Gra	790 Vgo		0	Distr	Lowland		CROP	Na t	ב ב ב	y and	Cut	Fru	667	<u>د</u> _	TOT		Dist:	Hi High	CROP	Nat	Gra	Con	Cer	Cut	Vgo	r.u	۲. ۲. ۲	i	۔ نہا	3	CROP	Na t	ت د	T0T
* * * *	Delta	TOTAL	55032	15850	1726	22666	8797	1114	15830	5440	951	787	5	23158	****	****		****		1 5 2 1	3:104	MCS)	TOTAL	5043	9270	826	1214	767	7,7	59	18710	1:105	acoos acoos	TOTAL	1512	4082	5597
****	Southern D	¥ 5		351				12						7243 2	****	*****		****		1 1 1	SCH Subd: 104	a*/(Hu	₹		177	: '			•		177	Subd: 105	3" / CUM	ΑS			. !
****** region	Sout	MS		2639	789			55	1818	197	77.	9 0	0	TOT 205965 9950 7243 223158	*****	******************		High lands				LiteCl	ΜS	•	5456 555		•	394	4/5	200	03	լ տ		MS		969	969
*	æ														+	*	w.	U13		ŀ	ВС																:
**************************************	rabant 8	UNSP	55032	12860	859	22158	0000	1047	12641	5146	652	•	•	05965	****	*****	eg í on	Southeast Hi			<u> </u>	0	UNSP	5043	3814	826	1214	96	282	• •	11497	Dist:56 DENBO	_	UNSP	1512	3389	4901

Table 6.4 (continued)

d:129 leCoSa	101AL 8530 6229 478 941 1055	495 103 23 5 20763	Subd:130 LoMeCoSa W TOTAL	2074 3537 5611	Subd: 131 /LoMeCoSa	TOTAL 8300 8170 481	782 937 3282 326	125	22530	
CL Subd: 129 OMECOS#/LOMECOSA	GW 942 174 206	136 22 23 23 508	EL Subd:130 LoMeCoS*/LoMeCoSa SW GW TOTAL	524 524	Sub Sub	GW 1157 161	157	4 1222	1607	
EL LOMeCo	As		EL Lomeco SW		EL LOMECOS*	ж				
:69 EDOMME	UNSP 8530 5287 304 735 1055	359 81	10 E	2074 3013 5087	:70 MDOMME igh	UNSP 8300 7013 320	625 937 3282 253	103 90	20923	
Dist:69 Hi High	CROP Nat Gra Con Sug Cer	V90 Fru V99 FIR	1 # # # # # # # # # # # # # # # # # # #	⊣ a t	Dist His	CROP Nat Gra Con	Sug Cer Cut	Fru Tre Vgg Flr	T0T	
JRG Subd:126 LOMECOS*/LOMECOSa	TOTAL 3003 2635 945 800 7383	Subd:127 LoMeCoSa W TOTAL	7816 2514 2845 2509 150	1038 362 279 123	29670	EL Subd:128 LOMECOS#/LOMECOSA SW GW TOTAL	2844 4105 6949			
Sustantia	3	1 \ 0 (1433 826	273 74 65 123	2848	%5 07/*80	600	 - 		
BURG Lowec	SW 1401 857 534 2792	BURG Lomecos*				1EL LOMECI SW				
68 MLIMBURG gh LoM	0003 3003 1234 88 266 4591	58 MLIM gh UNSP 12015	6383 1688 2509 115	765 288 214	26822	69 EDOMME gh UNSP	2844 3505 6349			
Dist:68 Lo High	CROP Nat Gra Con Vgo	Dist; Hi Hig CROP	Gra Sug Cer Blb	Vgo Fru Vgg	T01	Dist: Lo Hi	Nat Gra TOT	1 1 1		
Subd:123 LoMeCoSa	⊢	Subd: 124 /LoMeCoSa GW TOTAL	2735 2010 2721 523 256	156	4 14534 Subd:125	TOTAL 21619 17271	1664 4969 7278 2774	230 2358 1 3	58167	
OND Subd:12 LOMECOS*/LOMECOS	§ · · · ·		390 390	m → t Ω	pqns Subd	399	200	· · છ	603	
TOND	SW 302 210	LOMECOS*			URG	S. 52			229	
66 ROERMOND gh LOM	UNSP 681 269 60 100	S ROERN N UNSP 6128	2174 1620 2721 523 183	121	1347U 67 St.IMB 6h	21619 16643	1464 4969 7278 2774	230 2358	57335	
Dist:6 Lo Hig	CROP Nat Gra Con Vgo	Dist:60 Hi High CROP Nat	Gra Sug Cer Cut	7. Y	Dist:	razo arto	Sug Cer Cut	Vgo Fru Vgg Flr	101	
Subd:120	15175 15175 10500 329 3128 3600 2993	179 1325 459 267 163	3 38143 Subd:121 LoMeCoSa	TOTAL 2719 2500	300	202	TOTAL 8157 2166 437	1598 2127 910 1073	2552 128 19	17143
Sul Sul	GW 1717 148 846	342 93 163 253 253	344	. 35 · ·		_ \	GW 558 109	ω η υ	33 128 19	1277
1	¥8 · · · · · ·	• • • • • •	ASS Loweco	SW 234	145	ASS LoMeCoS*				
64 DEPEE gh	UNSP 15175 8783 181 2282 3600 2993	137 978 366 205	1700 RECMA	2719 2719 2286	67 155 5227	7 i 2	UNSP 8157 1608 328	1359 2127 910 914	219	15866
Dist:	CROP Nat Gra Con Sug Cer Cut	8 B B B B B B B B B B B B B B B B B B B	TOT 34 Dist:65 Lo Biath	CROP Nat Gra	Con Vgo	Dist:65 Hi High	CROP Nat Gra	Sug Cer Cut Vgo	Tre Vgg	T07

Table 6.4 (continued)

NOTE: Asterisks denote substitution sails. See note to Table 6.5.

national distribution system in the same way. The internal details of surface water movements within a district are regarded as unimportant from a national water management standpoint. The selection of districts for the PAWN analysis was the result of a lengthy discussion between members of the PAWN team and employees of different departments of the Rijkswaterstaat. Proposals were made on the basis of an existing division of the country used by an earlier computer model of the distribution system [6.5], taking into account other relevant divisions such as waterboards, drainage, and water supply regions, etc. After a number of iterations a reasonable compromise was achieved between reality (level of detail) and practical considerations (data available, computational costs). Seventy seven districts were so identified (see Fig. 2.3).

Within the 77 districts we distinguished 143 subdistricts. Within a given district, more than one subdistrict was defined when different soil types existed, when there were different landforms, or when seepage rates were different. The possible soil types were selected from a list of 20 standard soils [6.6]. The allocation of soil types to (parts of) districts was based on soil maps [6.7] and a general knowledge of and experience with the Dutch situation. (See Sec. 6.2.1.) The distinction between lowlands and highlands is relatively easy because the theoretical line dividing the low Northwest from the higher Southeast is well-defined. The low and high highlands were defined on the basis of the average groundwater level. The low highlands is that part of the highlands with an average groundwater level less than one meter below the surface, and the high highlands is the remaining part.

Information about groundwater levels in the form of areas by groundwater table class was provided by the Landinrichtingsdienst (Land Development Department). These data were available by municipality. In total, eight groundwater table classes have been distinguished, each reflecting a certain range of groundwater levels. We assumed the area associated with the first three classes to be the low highlands. The estimates of the low and high parts of the highlands districts were then obtained by summing the low highlands areas for all municipalities in the district. This procedure leads to a very crude approximation of the actual situation.

6.1.4. Urban Area, Surface Water Area and Volume, and "Nature"

Primary Municipality Data. Many steps were taken to derive the data described above. The primary source of the data consists of statistics on land use published by the Central Bureau voor de Statistick (Central Bureau of Statistics, or CBS). The most recently available data at the time we were assembling these files were for 1975, and consisted of a detailed breakdown of all kinds of land uses by municipality. Table B.1 shows these data, aggregated into six broad categories, by municipality.

Urban area represents the CBS category called "city area," consisting partly of gardens, parks, recreational areas, and the like, and not exclusively land that is impervious to the vertical flow of water, as we have defined the term "urban area." On the other hand, the "noncity" data in the CBS statistics do contain land that does qualify as "urban": roads, airports, scattered buildings, etc. We felt it was reasonable to assume that these "mistakes" compensate, so we used the CBS value for "city area" to represent what we call "urban area." The surface water value in the CBS data represents all bodies of water that are wider than 6m. Unfortunately, this area includes some parts of "outside" waters such as the North Sea, the Waddenzee, and some of the estuaries in Zeeland. Moreover, the CBS surface water areas include areas that must be treated by DM (e.g., the major rivers) separately from the districts. For these reasons, we corrected the surface water areas to reflect our needs. Woodland areas were recorded to be included in the "nature" category. The cultivated area provided by CBS in these statistics includes not only the actual cash crops but also ditches, pathways, verges, yards, and scattered buildings around the fields: the so-called "gross" cultivated area.

Derivation of District Data from Municipality Data and Other Sources. Using a map, we determined the fraction of each municipality lying in each district (Table B.2). We assumed first that the various land-use components are homogeneously distributed over the area of the municipality. Using this assumption, we converted the CBS data into data describing the districts, shown in Table B.3. We then made additional changes to the district data. First of all, we corrected the surface water areas to account for the problems involving the nondistrict waters and to include bodies of water narrower than 6m. We consulted maps [6.8] and estimated, for each district, what fraction of the total surface area consisted of bodies of water narrower than 6m--typically this area was estimated to be from 1 percent to 3 percent of the total area. We also used these maps to estimate what part of each district consisted of water in polders, and water in boezems. (This distinction is relevant only in the lowlands.)

The "net" cultivated area (actual cash cropland) by district was obtained from other sources, as described in Sec. 6.1.5. Using the total area of each district, the urban area, the area of the surface water (corrected as described above) and the net cultivated area, we computed a balance term that we called "nature." This term includes woods, heath, marshes, and also such areas as gardens, recreational areas, verges, etc. The area of "woods" and gross cultivated area compiled from the municipality data were not used, but did serve as a rough check on our allocation procedures.

To estimate the volume of the surface water system of each district, we assumed:

 Bodies of water broader than 6 m in polders have an average depth of 1.25 m.

- Other bodies of water broader than 6 m have an average depth of 2 m.
- Bodies of water narrower than 6 m have an average depth of 0.5 m.

The results of the computations of surface water areas and volumes and of "nature" area by district are given in Table B.4. The estimates for water areas and volumes are really very crude, as they are based on simple map observations and conversions, and a number of rough and arbitrary estimates. Therefore for some individual districts fairly large errors should be expected.

6.1.5. Agricultural Data

Detailed information about crop areas by region is collected every year by CBS (e.g., Refs. 6.9 through 6.11). More than 100 different crop types are distinguished in these statistics. Crop inventories are available by province, by municipality, and by two types of agricultural regions: for 14 aggregate regions distinguished by the Landbouw Ekonomisch Instituut (Agricultural Economics Institute) or for a more detailed breakdown of these 14 regions into 122 small agricultural regions. For the primary crop data we used the crop inventory for the 122 agricultural regions for the year 1976 (the most recently available data at the time.) The total areas by crop type were held constant for the entire analysis.

<u>Selection of Crop Types</u>. We aggregated the 100 different crop types treated in the CBS statistics to 13 aggregate "types," taking into account such characteristics as root depth, length and time of the growing season, crop value, susceptibility to drought and salt damage, etc. The 13 types considered are

- 1. Grass
- 2. Consumption potatoes
- 3. Milling potatoes
- 4. Seed potatoes
- 5. Sugar beets
- 6. Cereals
- 7. Cut corn
- 8. Bulbs
- 9. Vegetables grown in open air
- 10. Pit and stone fruits
- 11. Ornamental trees
- 12. Vegetables grown under glass
- 13. Flowers grown under glass

Grass alone makes up 60 percent of all cultivated area. Potatoes and sugar beets make up almost entirely the CBS category "tuber and root crops." Because of differences in value and growing season a

distinction between consumption, milling, and seed potatoes is needed. Other tuber and root crops are not considered separately, and are allocated proportionally across the three kinds of potatoes and sugar beets. Cut corn represents the CBS category "green fodder," of which cut corn actually comprises 97 percent of the entire category. "Cereals" is the name we give to all the remaining CBS "arable" crops, 83 percent of which are actually cereals.

What we call "bulbs" includes all open-air flower production, although bulbs comprise 93 percent of this category. Pit and stone fruits comprise a "pure" CBS category; apples and pears are by far the most important individual crops. The crop type "ornamental trees" includes the CBS categories "tree cultures" and "perennial plants." "Vegetables grown in open air" includes all the remaining horticultural categories, including vegetables, seed onions, small fruits, and horticultural seeds. Vegetables make up almost 70 percent of this group, but there are many different types.

Vegetables and flowers under glass are almost pure CBS categories. The categories "trees and fruits under glass" are included in these two crop types, but they make up less than 2 percent of the area containing glasshouse crops.

Primary Crop and Irrigation Data. The primary crop data shown in Table B.5 were compiled from CBS statistics. The entry called "other" reflects the temporarily unoccupied cultivated land (i.e., fallow land.)

Table B.6 contains primary information about irrigated areas in 1976. The data in this table are obtained from an inquiry carried out by ICW [6.12]. The table contains crop areas broken down by three main crop groups (grass, arable crops, and horticultural crops), four types of irrigation (sprinkling from surface water, sprinkling from groundwater, surface irrigation from surface water, surface irrigation from groundwater), and the 122 agricultural areas. As we mentioned in Sec. 2.3.2, we did not make a distinction between sprinkling and surface irrigation.

Conversion of Crop and Irrigation Data to PAWN Districts. Using a map, we estimated what fraction of the crop area of each of the 122 agricultural regions fell in each district. We also estimated what fraction of the land irrigated from surface water and what fraction of the land irrigated from groundwater fell in each district. These three fractions are given in Table B.7. Because some parts of an agricultural region may or may not have access to good quality surface water or groundwater, we could not assume that irrigated areas are distributed homogeneously over the agricultural region. Based on very crude information [6.13] about surface water supply possibilities and groundwater availability, the conversion fractions for total crop areas were adjusted at several places to obtain a more realistic allocation of sprinkled areas.

Conversion of Crop and Irrigation Data to Subdistricts. The 143 subdistricts that were distinguished are described in Table B.8. The conversion of the district crop and irrigation data to subdistricts was very difficult, and some arbitrary choices were made. From the conversion of crop areas to PAWN districts we knew what crop areas in the districts came from what agricultural regions. In most cases a unique soil type from the range of standard soils that were used in defining the subdistricts could be associated with each of the 122 agricultural regions. In subdistricts that were distinguished because of differences in soil types, crops could be assigned to these subdistricts by considering the soil types of the agricultural regions that contributed to the district. In addition, a few simple rules were used: only grass grows in peat soils, potatoes grow in clay soils rather than sand, etc. Allocating crops to subdistricts that were distinguished only by landform was more difficult. We used more or less arbitrary rules of thumb. For example, we assumed grass, consumption and seed potatoes, and horticultural crops were more likely to be found in the low parts of the highlands than the high parts, while crops like milling potatoes, cereals, sugar beets, and cut corn would be found in the higher parts.

The irrigation data for subdistricts were obtained in more or less the same way. Knowing the contribution of each of the 122 agricultural regions to the total surface water and groundwater sprinkled area of a district, we found it relatively easy to allocate these irrigation data to subdistricts distinguished by soil type. For allocations to the low and high parts of the highlands, we assumed surface water sprinkling occurred in the low parts, groundwater sprinkling in the high parts.

In allocating crop and irrigation areas to the subdistricts, we tried to avoid creating many small areas in many places. Small crop and irrigation areas within a district were allocated to only one subdistrict and were sometimes moved to a nearby district containing a larger area of the same crop and sprinkling type.

The results of these conversion procedures are given in Table B.9. This table shows the vegetation areas for the 143 subdistricts broken down into four main categories: nature, grass, arable crops, and horticultural crops. The non-nature area is broken down further into the 13 crop types. Sprinkled areas from both surface water and groundwater are given only for the three major open-air crop groups, grass, arable crops, and horticultural crops, as the ICW inquiry did not contain information about individual crop types.

<u>Selection of Plots</u>. A plot is an area with a single crop type, soil type, drainage characteristic, and sprinkling condition. Except for crop and sprinkling type, all these properties are associated with the subdistrict. In Table B.9 the areas devoted to each crop and the total sprinkled area broken down into three major categories are given for each subdistrict. It is a relatively small step to define the plots from this table. What needs to be done is to allocate the sprinkled areas to individual crop types within the two categories containing more than one crop: the arable crops and the horticultural crops.

We assigned weights to the arable crops and the horticultural crops that reflected the likelihood that the crop would be sprinkled. These weights were based on a mixture of crude data and practical considerations derived from discussions with agricultural experts.

For arable crops on nonsandy soils, we know that milling potatoes, sugar beets, cereals, and cut corn are hardly ever sprinkled. Therefore, we assigned sprinkling weight zero to these crops. We assumed a given hectare of seed potatoes would be twice as likely to be sprinkled as a given hectare of consumption potatoes, since seed potatoes are roughly twice as valuable as consumption potatoes.

For arable crops on sandy soils, we know that milling potatoes, sugar beets, and cereals <u>are</u> sometimes sprinkled. Using relative crop values, we estimated that milling potatoes and sugar beets were about a third as likely to be sprinkled as seed potatoes, and cereals a tenth as likely. It is not regarded as very likely that cereals are ever sprinkled, but cereals represent a number of crops, so we assigned a small positive sprinkling weight to this crop type.

For horticultural crops the same set of weights was applied to all soils. The weights were based on information provided by Reinds and Van Hemert [6.14]. An overview of the irrigation weights by crop group is given in Table B.10.

The allocation of sprinkled areas to crop types was the final step in deriving the basic agricultural data. However, the initial number of plots was very large, and many of the plots were very small. Simple aggregation routines were applied to combine the smaller plots with more or less comparable larger ones. The final results of these manipulations are shown in Table 6.4.

6.2. SOIL AND CROP PARAMETERS

The plot water, plot salt, and plot damage models, explained in Chaps. 4 and 5, use a number of parameters that depend on the soil types and the crop type of the plot. We will describe the files and the sources of these parameters in this section. To organize our discussion, we will first discuss those parameters that depend only on the soil types, then those that depend only on the crop type, and finally those that depend on both the soil type and the crop type.

6.2.1. Soil Types and Soil Parameters

<u>Selecting Soil Types</u>. A map has been published containing as many as 156 different soil types in the Netherlands [6.7]. To make our computer implementation practical, we needed to select a rather limited number of soil types, based on the following criteria:

- Data about any soil type selected must be available.
- Different soil types should be distinguished if properties that affect water requirements and groundwater/surface water interactions are significantly different.

Papers by Rijtema [6.6] and Bloemen [6.15] contain a full description of 20 homogeneous standard subsoils. We matched each of the 156 soil types in the above-mentioned map to a root zone and subsoil type chosen from this list of 20. Initially, only nine different soil types and 16 different root zone/subsoil combinations were selected.

In some places, the root zone soil and the subsoil are technically of the same type. However, we found that in some of these places we were unable to accurately estimate capillary rise, because the subsoil was in fact inhomogeneous (e.g., clay lenses). In such places, we assumed a different subsoil type, although we used the parameters associated with this subsoil only for calculating capillary rise. For other calculations, we used the properties of the root zone soil.

We discovered that the soil moisture capacity of the root zone soil types described by Rijtema were considerably lower than those estimated by an interim report of SWLT [6.16]. Apparently, the properties reported by Rijtema hold only for subsoils, and root zone properties are generally different because of cultivation activities and the presence of roots and organic materials. The moisture-holding capacities of Rijtema's soils seemed to be lower than the capacities estimated by SWLT by a factor of 1.5 for sandy soils, and by a factor of from 2 to 3 for clay soils.

To adjust for this problem, we changed the parameters affecting the root zone soil moisture retention properties for three sand soils and three clay soils. Because the 20 soil types in Rijtema's paper were the only soils for which complete data were easily available, we used these data. For each of the 6 soils that we wanted to change, we selected a substitute from the 20 soil types in Rijtema's paper that improved the moisture retention properties by the necessary amount, but which still had a pF-curve of roughly the same shape.

The soil types and root zone/subsoil combinations that were finally used are presented in Table 6.5, together with the total surface area of each combination. Soil types marked with an asterisk are the ones that received substitute root zone properties. Subsoil types placed between parentheses are those for which only the properties governing capillary rise are used.

Soil Parameters. For each plot, the plot water model (PLOTWAT), described in Chap. 4, requires 15 parameters characterizing the root zone/subsoil combination of the plot. These parameters are contained in three input files, SOILFIL, COEFFIL, and SCAPFIL, which are described in Table 6.6. Each of the three files contains 26 records, one for each soil type. Although only 9 soil types were actually used, data from all 20 soil types in Rijtema's paper were placed in these files, and the 6 additional soil types described above were added later.

Table 6.5 SOIL TYPE IDENTIFIERS AND AREAS

ROOT ZONE SOIL TYPES SHORT FORM LONG FORM	SUBSOIL TYPES SHORT FORM L	ES LONG FORM	AREA
amy medium coarse sand*	7 LoMeCoSa	Loamy medium coarse sand	1372605
ight clay*	-5 (HuLMCS)	(Hum, loamy med. coarse sand)	409106
nao.	-6 (LiLMCS)	(Light toamy med. coarse sand)	229743
eat	20 Peat	Peat	221621
andy clay loam	-5 (HuLMCS)	(Hum. loamy med. coarse sand)	185581
um. loamy med, coarse sand*	7 LoMeCoSa	Loamy medium coarse sand	95712
asin clay*		Basin clay	79311
asin clay*	20 Peat	Peat	73910
ight loamy med, coarse sand*	-6 (LiLMCS)	(Light loamy med. coarse sand)	69687
oam .	13 Loam	Loam	58167
11tv clay*	~5 (HuLMCS)	(Hum, loamy med, coarse sand)	46650
asin clay*	-18 (SanCla)	(Silty clay)	43659
iiity clay*	18 SiltClay	Silty clay	27412
Light loamy med. coarse sand*	-5 (HuLMCS)	(Hum, loamy med, coarse sand)	12684
ifty clay*	-19 (BasCla)	(Basin clay)	8166
oamy medium coarse sand*		Loamy medium coarse sand*	4330

		ਰੂਰੂ
		san
		rse es
		coarse sand
	_	Hum, loamy med. Hum, loamy med. Laom Loess loam Loess loam Loess loam
٠ <u>.</u>	Substituted	Hum, loamy Hum, loamy Laom Loess loam Loess loam Loess loam
ю —	Ť.	2 2 8 8 8
*	nps	Hum. Hum. Laom Loess Loess
Substitutions (marked with *) are:	S	エエコシココ
pe		
ark		
5		
ons		
ij		
įţ	nat	CS + 4 - 1
bst	Originat	LoMeCoS* LiLOMCS* HutoMCS* LiteCla* SiltCla* BasnCLa*
Sul	o	Lol Frida Siring Ba

Table 6.6 SOIL CHARACTER:STICS DATA FILES

File	Field	Column	Format	Description	Source Code Identifier	Documentation
SOILFIL				SOIL MOISTURE PARAMETERS		
	- 0	1-2	F(2)	Index of soil type	ISOIL	
	um=	20-27		The parameter ALHPA (1/mm) The parameter K-nill (mm/dav)	SOLL, DATA, ALPHA (1801L)	ALPHA
	ተጥ	36-43		The parameter PSI-A (mm)	SOIL, DATA, PSIA (1SOIL)	PSIA
	9 ~ '	44-51 52-69	F(8) F(8,3)	The parameter PSI-max (mm) Saturation capacity, (ratio)	SOLL, DATA, PSIX (1801L) SOLL, DATA, SATCAP (1801L)	SATCAP
	x	11-01		Wilting point (ratio)	501L, 5A1A, W. LITT (1501L)	, L
COEFFIL				SOIL MOISTURE RELATIONSHIPS		
	- (1-2	F(2)	Index of soil	ISOIL	
	VΩ	20-29	F(10,5)	A for		PF_A
	⇒ u	30-39	F(10,5)	٥٥	<u> </u>	PFB DFF∆
	000	50-59	F(10,5)	6 6 6		DEF_B
	~ 8	60-09 70-79	F(10,5) F(10,5)	ပဓ	SOIL.EMP_COEFS.DEF_C (1SOIL) SOIL.EMP_COEFS.DEF_D (1SOIL)	DEF_C DEF_D
SCAPFIL				CAPILLARY RISE PARAMETERS		
	⊢ 04€	3-12 13-22	F(2) F(10,4) F(10.4)	index of subsoil type Parameter Al Parameter A2		A1 A2
	-3+	23-32	F(10,4)	Parameter A3	SOIL, SIMCAP, A3 (1SOIL)	A3

The 15 soil parameters (other than root depth) associated with each combination are listed in Table 6.7. The definitions of the parameters and the way they are used are explained in Chaps. 4 and 5. We point out that the parameters ALPHA, KNULL, PSIA, PSIX, A1, A2, and A3 depend on the subsoil type; the parameters SATCAP, WILTPT, PF A, and PF B depend on the root zone soil type; the parameters DEF A, DEF B, DEF C, and DEF D depend on the root zone soil type for some combinations (those for which the subsoil type is enclosed in parentheses) and on the subsoil type for others.

The parameters contained in the file SOILFIL are all taken from Rijtema [6.6]. The parameters in the file COEFFIL are used to evaluate the functions $F_{\rm PSI}$, $F_{\rm THETA}$, and $F_{\rm GWL}$ described in Sec. 5.3, while the parameters in the file SCAPFIL are used to evaluate the function $F_{\rm CAPRISE}$. We have already explained how these parameters were obtained (in Sec. 5.3.1).

6.2.2. Crop Parameters

In Sec. 6.1.5 we explained how 13 different crop "types" were selected for the agricultural analysis. Three data files contain data for these crop types, described in Table 6.8. VALUFIL contains crop values in thousands of guilders per hectare. CFACFIL contains crop factors, relating potential evapotranspiration to open water evaporation. The parameters of the crop damage model for both drought and salt damage are contained in DAMFIL.

Crop Values. An overview of the crop types, their total areas, and values for both an average and an extremely dry year are given in Table 6.9. Crop values for an average year were obtained from actual data for the year 1975. The values for the extremely dry year were based on observations for the actual year 1976. Other files have been created for years of still different dryness, based on an interpolation between the average and extremely dry year described here. Appendix A describes how crop values were obtained and how the interpolation was carried out.

<u>Crop Factors</u>. Crop factors by crop and decade are displayed in Table 6.10. For open-air crops, the potential evapotranspiration is obtained by multiplying the open water evaporation by the appropriate crop factor. For those crops that are only in the field during the growing season, a "crop factor" for bare soil is used outside the growing season. For glasshouse crops, the crop factor <u>is</u> the potential evapotranspiration (mm/day). Initial estimates for these crop factors were obtained from Hellings [6.17] and other sources and were revised after discussions with the agricultural experts of SWLT.

<u>Damage Parameters</u>. In Sec. 4.4 we explained how the damage parameters are used. Estimates for these parameters were generally not readily available. Using information from the literature on the subject

SOIL PARAMETERS FOR SOIL COMBINATIONS ACTUALLY USED

A3	2.2208 2.275 2.1775 2.1775 2.1775 2.1775 2.1775 2.1775 2.1775 2.1775 2.1775 2.1775 2.1775 2.1775
A2	-3,0581 0,0000 0,0000 1,2,0259 1,2,0259 1,3,0581 1,1,268 1,1,268 1,1,268 1,1,268 1,1,268 1,1,268 1,1,268
A1	16.9946 0.0000 13.2363 13.2363 11.7474 11.7474 11.2363 13.2363
DEF_D	0.38597 0.38597 0.588597 0.588597 0.58965 0.55901 0.55901 0.55907 0.55907 0.55907 0.55907 0.55907 0.55907 0.55907 0.55907
DEF_C	1.98963 1.98963 4.42919 9.79020 72.26849 7.26849 7.26849 3.31224 3.31224 42.94133 9.79020
DEF_B	2.33365 2.33365 3.80685 3.15404 3.15400 3.15400 2.34407 2.75169 2.75169 3.72048 3.72048 3.72048 3.72048
DEF_A	100.78629 100.78629 148.55872 143.76340 132.50705 158.31252 158.31252 158.31252 158.31252 111.29831 111.29831 269.84424 111.29831 111.29831 111.29831 111.29831
PF_B	1.94209 3.07209 6.59880 6.16259 1.94209 1.94209 1.70523 1.70523 1.70523 1.70523 1.70523 1.70523 1.70523
PF_A	-0.08648 1.04189 1.95011 1.550
WILTP	0.0098800.0098800.0098800.0098800.00989800.009899999999
SATCP	00000000000000000000000000000000000000
PSX	20000 20000
L PSA	
KNULL	60000000000000000000000000000000000000
ALPHA	0.00562 0.00231 0.00269 0.00378 0.00269 0.00562 0.00269 0.00269 0.00269 0.00269 0.00269 0.00269
E SUBSOIL	(LILMCS) Loam (HULMCS) Peat LOMECOS# LOMECOS# LOMECOS# (LILMCS) (HULMCS) (HULMCS) (HULMCS) (SanCla) BassinCla Peat
ROOT ZONE	Loam Sacilcam Peat Lomecos* Lomecos* Lilcomcos* LiteCla* SandCla* SandCla* BasnCla* BasnCla*

Table 6.8
CROP CHARACTERISTICS DATA FILES

File	Field	Field Column Format	Format	Description	Source Code Identifier	Documentation
VALUFIL				VALUES OF CROPS		
	-08	1- 2 4-11 12-18	F(2) A(8) F(7,2)	Index of crop Crop name Value of crop (thousands of Dfl/ha)	ICROP VALDATA.CROP_VALUES (±CROP)	CROP_VALUE
CFACFIL	1 2 3 4-40	1- 3 5-12 25-28 29-172	F(3) A(8) F(4) 36 F(4)	CROP FACTORS Index of crop Crop name Crop factor code Crop factors, per decade (IDEC)	ICROP. CROP. CFAC. CODE (ICROP) CROP. CROPFACTOR (ICROP, IDEC)	CROPFACTOR
DAMFIL				CROP DAMAGE MODEL PARAMETERS		
	Record	1 1-5 6-10 11-15	F(5) F(5) F(5)	Index of crop Reduction point Death point	ICROP DAMAGE.WATER.REDUC_POINT (ICROP) DAMAGE.WATER.DYING_POINT (ICROP)	REDUCE_POINT DYING_POINT
	Record 2 1 2-15	2 1-5 6-185	F(5) F(5)	Index of crop Reduction damage, per decade (IDEC)	ICROP DAMAGE.WATER.COEF.REDUC_DAM (ICROP,IDEC)	REDUC_DAM
	Record 3 1 2-15	3 1-5 6-185	F(5) 14 F(5)	Index of crop Remaining yield, per decade (IDEC)	ICROP DAMAGE, WATER, COEF, REMAIN_YIELD (ICROP, IDEC) REMAIN_YIELD	REMAIN_Y1ELD
	Record 4 1 2-15	4 1- 5 6-185	F(5) 14 F(5)	Index of crop Death damage, per decade (IDEC)	ICROP DAMAGE.WATER.COEF.DYING_DAM (ICROP, IDEC)	DY ING_DAM
	Record 5	5 1-5 6-10 11-20	F(5) F(5) F(10)	Index of crop Minimum salt concentration Salt damage slope parameter	ICROP DAMAGE, SALT, MIN_CONC (ICROP) DAMAGE, SALT, DAM_SLOPE (ICROP)	MIN CONC DAM SLOPE

Table 6.9

CROP TYPE IDENTIFIERS, AREAS, AND VALUES

	DESCRIPTION "Nature" (everything except cash crobs)	AREA ha 928704	AVERAGE YEAR PR Df!/ha	RICES Drim 0	DRY YEAR (1976) Dfl/ha	<u>ج</u>
Grass		1252497	3000	3757	2000	6262
Consumpt	ion potatoes	59204	10000	592	16250	396
Millina	Milling potatoes	71625	3830	274	5830	418
Seed pot	atoes	27493	13500	371	20300	558
Sugar be	ent s	127507	5200	663	5200	663
Cereals	Cereals (and others)	269986	3150	850	3150	850
Cut corn		89305	3600	321	0009	536
Bu) bs	Bubs	13228	27400	362	30140	399
Vegetabl	es arown in aben air	55657	15600	868	20280	1129
Pit and	stone fruits	30331	10400	315	10400	315
Ornament	broamental trees	5464	42800	212	42800	212
Vegetab	Venetables grown under glass	4596	232000	1066	278400	1280
Flowers	lowers grown under glass	3266	485000	1584	412250	1346

Table 6.10 CROP FACTORS

DECADE	MATURE	GRASS C	CONSPOT M	ILLPOT	SEEDPOT S	SUGARBT C	CEREALS C	CUTCORN	BULBS V	VEGOPEN	FRUIT	TREES V	VEGLASS F	FLOWERS
	0.70 0.70 0.70	0.70 0.70 0.70	0.80 0.80 0.80	0.70 0.70 0.70	0.70 0.70 0.70	0.70 0.70 0.70	0.50	0.50						
	0.70 0.70 0.70	0.70 0.70 0.70	0.80 0.80 0.70	0,70 0.70 0.70	0.70 0.70 0.70	0.70 0.70 0.70	0.80 1.00 1.20	0.80 1.00 1.20						
	0.70 0.70 0.70	0.70 0.70 0.70	0.60	0.60	0.60	0.60	0.60	0.60	0.40	0.70 0.70 0.70	0.70	0.70 0.70 0.70	1.50 1.80 2.20	1.50 1.80 2.20
	0.80 0.80 0.80	0.80 0.80 0.80	0.40 0.30 0.20	0.40	0.40	0.40	0.40	0.40	0.70 0.70 0.70	0.80	0.80	0.80	2.60 3.00 3.40	2.60 3.00 3.40
	0.80	0.80 0.80 0.80	0.40	0.40	0.40	0.40	0.70 0.80 0.90	0.40	0.80 0.80 0.80	0.80	0.80	0.80	3.70 4.00 4.10	3.70 4.00 4.10
	0.80	0.80 0.80 0.80	0.70 0.80 0.90	0.70 0.80 0.90	0.70	0.70 0.80 0.90	1.00 1.00 0.90	0.70 0.80 0.90	0.80 0.80 0.70	0.80 0.80 0.80	0.80 0.80 0.80	0.80	4.20 4.30 4.20	4.20 4.30 4.20
	0.80 0.80 0.80	0.80 0.80 0.80	0.90	0.90 0.90 0.90	0.90	0.90	0.90	0.90	0.60	0.80 0.80 0.80	0.80	0.80	4.10 4.00 3.80	4.10 4.00 3.80
	0.80 0.80 0.80	0.80 0.80 0.80	0.90 0.80 0.70	0.90 0.80 0.70	0.00 0.10	0.90 0.90 0.90	0.60	0.90 0.90 0.90	0.00 0.00 0.00	0.80	0.80	0.80 0.80 0.80	3.50	3.50
	0.80 0.80 0.80	0.80 0.80 0.80	0.60 0.50 0.40	0.60	0.20	0.90 0.90 0.90	0.20	0.90	0.20	0.80	0.80 0.80 0.80	0.80	2.70 2.50 2.10	2.70 2.50 2.10
	0.70 0.70 0.70	0.70 0.70 0.70	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.70 0.70 0.70	0.70 0.70 0.70	0.70 0.70 0.70	1.70	1.30
	0.70 0.70 0.70	0.70 0.70 0.70	0.70 0.80 0.80	0.70 0.70 0.70	0.70 0.70 0.70	0.70 0.70 0.70	0.70 0.50 0.50	0.70 0.50 0.50						
	0.70 0.70 0.70	0.70 0.70 0.70	0.80 0.80 0.80	0.80	0.80 0.80 0.80	0.80 0.80 0.80	0.80 0.80 0.80	0.80 0.80 0.80	0.80 0.80 0.80	0.70 0.70 0.70	0.70 0.70 0.70	0.70	0.50	0.50

(discussed below), we made a complete set of initial estimates and sent them to the Ministry of Agriculture for comments. We then used the comments and suggestions that were returned to change the initial estimates. The final results are listed in Table 6.11.

Recall that for each of the thirteen crop types there are seven data elements, four that are independent of time and three that can vary by timestep. The parameters that are independent of time are:

- The reduction point (RP): the ratio of actual evapotranspiration to potential evapotranspiration (E_A/E_P) where the slope of the drought damage curve changes.
- The dying point (DP): the value of $\rm E_A/E_P$ where maximum drought damage begins to occur.
- The critical salt concentration (MIN): level of the salt concentration in the root zone where salt damage begins.
- The salt damage slope (SD): the amount of salt damage if MIN is exceeded by one unit (mg/l) during one timestep of the growing season.

The time-dependent parameters are:

- The reduction damage (RD): the damage fraction if $\rm E_A/\rm E_p$ is equal to RP.
- The dying damage (DD): the damage fraction if $E_{\Delta}/E_{\rm p}$ is equal to DP.
- The remaining potential yield (YELD): the yield that
 is still to be produced as a fraction of the potential
 annual yield.

We estimated values for all these parameters for both open-air crops and crops grown under glass. However, since crops grown under glass always receive all the water they need in our analysis, the drought parameters associated with these crops were never used.

Originally, the estimates discussed with the Ministry of Agriculture were made for a timestep of one month. The parameters DP and DD were then estimated for all open-air crops to be 0.2 and 1.0, respectively. These estimates reflected the belief that the entire crop would die if the actual evapotranspiration were less than 20 percent of the potential evapotranspiration for an entire month. When these values were used for timesteps as short as a decade, we found that the damage model predicted far too much damage. Therefore we developed parameters that caused the model, when run for decades, to make monthly estimates consistent with our original intention. Values of 0.0 and 0.7 for DP and DD, respectively, were finally chosen.

-169-

Table 6.11 PARAMETERS OF THE DAMAGE MODEL

		8	<u> </u>	rrrrr	· · · · · · · · · · · ·	LLLLLL		
RN	, 0000000.	RD YELD	00000	000000		-885.93	2.5.7. 2.7.7. 0.00	000000
CUTCORN	0.	8	000000	000000		90000000		00000
		00		r		~~~~ <u>~</u>	<u> </u>	rrrrr
rs	0 1000 .000017	RD YELD	000000	000		- 800 04.00 000	000000	000000
CEREALS	o.	S.	000000	000000	4000000	30000	000000	000000
		QQ		riririri	<u> </u>		rrrrrr.	iririri
ΒŢ	6007 007 0000000.	RD YELD	000000	000000		.60 .60	2000.300	000000
SUGARBT	0.	AD.	000000	000000	9999999	9999999	440.000	000000
		QQ	riririr.	riririr.	ininini	riririri	riririri	· · · · · · · · ·
10	6. 0 700 0.000033	YELD	000000	000000	1- 6- 4- 1- 6- 6-	.30	00000	000000
SEEDPOT	0.	8	000000	000000	.03 .03 .07	.07 .07 .03 .03	000000	000000
		DO	<i>i</i>	riririri.	riririr.	rrrrrr.	riririri.	riririri
10	0 700 .0000025	RD YELD	000000	000000	~	1 1 1,90 1,50	on o o o o	000000
MILLPOT	0.	RD	000000	00000	0.0000000	90.00.00. 70.00.00.	%00000	000000
		00			riririri.	ririri.	riririri.	
ĮQ.	0 700 .000025	YELD	000000	000000		.90 .50 .50	ő. 000000	000000
CONSPOT	o.	RD	000000	000000	0.000000	90. 70. 70. 80.	.00000	00000
		OO		ririri.		ininini	·····	<i>iiiiii</i>
SS	.6 0 1000 000012	YELD	000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.83 .78 .67 .62 .56	2233 2233 2233 2233 233	71. 20. 00 0	000000
GRASS	(RP) (MIN) (SD)	RD	000000	000.00.	2000000	2000000	200.00	000000
	Reduction pnt. Death pnt. Minimum salt Salt slope	Decade	Jan 1 2 3 3	Mar 2 Apr 3 3 3	May 1 2 2 Jun 1 3 3	Jul 1 2 2 3 4ug 2 3	Sep 1 2 2 0 ct 1 3	Nov Dec 1322 3221

Table 6.11 (continued)

		8		~~~~			*** *** *** *** ***	
RS	.000017	RD YELD					*** *** *** *** ***	
FLOWERS	0.	RD	800. 800. 800. 800. 800.	800. 800. 800. 800. 800. 800.	800. 800. 800. 800. 800. 800.	800. 800. 800. 800. 800. 800.	800 800 800 800 800 800	8000 8000 8000 8000 8000 8000
		QQ	.					
SS	200 200 200 7	RO YELD						
VEGLASS	0.	8	800 800 800 800 800 800	800. 800. 800. 800. 800.	800000000000000000000000000000000000000	8000.00 8000.00 8000.00	000. 000. 000. 000. 000. 000.	800000000000000000000000000000000000000
		9		· · · · · · · · ·		·····	<u> </u>	
S	. 0000017	RD YELD	000000	000	*		000	000000
TREES	.00	RD)	000000	0000000	888888	9999999	888000	000000
		OO		rrrrrr.	<i>iiiiiii</i>	riririri.	rrrrrr.	
Ė	.6 0 1000 .000000	RD YELD	000000	000			- 009: 000: 000:	000000
FRUIT	90.	. O3	000000	0000000	20.00.00.00.00.00.00.00.00.00.00.00.00.0	0000000	6000	000000
		OO			rrrirr	rrrrrr	· · · · · · · · ·	,,,,,,
E	500 500 5000.	YELD	000000	000999	666666	9999999	666666	000000
VEGOPEN	ŏ.	RD ,	000000	0000.05		0000000	20. 20. 20. 20. 20. 20. 20.	00000
		DO		~~~~~ <u>~</u>			<u> </u>	· · · · · · · · ·
BS	. 000025	YELD	000000		1.85. 1.05. 1.55.	000000	000000	000000
BULBS	(RP) (MIN) (SD)	, QA	000000	0000000	800000000	9.00 8.00 9.00 9.00	000000	000000
	Reduction pnt. Death pnt. Minimum salt Salt slope	Decade	⊏ପਲ⊹ପ୍ର	- a m - a m	-a≈-a≈ >> c	_ a _ a _ a	4 D	+0m+0m > 0
	Re Mi∸ Sa	De	Jan Feb	Mar Apr	May Jun	Jul	Sep Oct	Nov Dec

To estimate RP and RD, we accepted the following principle: if the actual evapotranspiration for the entire growing season is equal to 60 percent of the potential evapotranspiration, then 40 percent of the crop will be damaged. We set RP equal to 0.6, and then computed the values for RD that met this principle. In determining values for RD, we distinguished crops with specific drought sensitive stages from crops without such stages. For crops without such stages, we assumed RD was constant for all timesteps during the growing season. For the other crops, weights were applied to certain timesteps, based on the relative severity of drought over time. For cereals and potatoes, these weights were estimated from information provided by Hellings [6.18]. Estimates for cut corn and bulbs were based on information provided by LEI and the Laboratory for Research on Bulbs, respectively.

The parameters YELD, MIN, and SD are very crop specific, and we made separate estimates for each crop type [6.19-6.34].

6.2.3. Parameters Depending on Soil Types and Crop

For each plot, there are four parameters that depend on the crop type and soil types of the plot. These are contained in two files, RDEPFIL and PSIFIL, which are described in Table 6.12. RDEPFIL contains root depths, and PSIFIL contains soil moisture tension parameters.

Root Depths. Root depths vary with crop type, but also may vary from one soil to the next. Table 6.13 lists the root depths used, and contains a root depth for every root zone soil/crop combination. These depths were estimated with the help of agricultural experts of SWLT.

Soil Moisture Tension Parameters. Two parameters in the file PSIFIL (PSI_ALPHA and PSI_BETA) control the simple sprinkling model described in Sec. 4.2.1. The remaining parameter (PSI_REDUCE) controls the reduction in actual evapotranspiration that occurs as the soil dries out. The value for PSI_REDUCE was selected after a discussion with experts of SWLT--as it turned out, the same value was selected for all crops and all soils. For the sprinkling model, PSI_ALPHA was set equal to PSI_REDUCE, and PSI_BETA was set equal to something close to PSI_ALPHA, thus keeping the soil moisture of the root zone of a sprinkled plot close to the critical level, and varying between narrow bounds.

The program can accept different values of PSI_ALPHA, PSI_BETA, and PSI_REDUCE for different root zone soil types; we used the same values for all soils. We set PSI_ALPHA and PSI_REDUCE equal to 3.7 and PSI_BETA equal to 3.6. (We use millimeters instead of centimeters, the usual unit of measurement for suction. Therefore, the values for PSI_ALPHA and PSI_REDUCE are one unit larger then some readers would expect.)

Table 6.12 PARAMETERS THAT DEPEND ON SOIL AND CROP

=	:					ı	-172-	RS	3330000
tatio		PTH		۷_	a .	RED		FLOWERS	๛๛๛๛๛
Documentation		ROOTDEPTH		L0G_PS1_A	LOG_PSI_B	18d 901			300 300 300 300 300
Dod		Æ		77	ב	יר די		TREES VEGLASS	00000
								TREES	000000
						ROP)		FRUIT	400 600 600 600 600 600
		(00)		CROP)	CROP)	11.10			
2		ISOIL SOIL, ROOTDEPTH (ISOIL, ICROP)		SOIL PSIDAT.LOG_PS!_A (SOIL,1CROP)	PSIDAT.LOG_PSI_B (ISOIL,ICROP)	REDUCE(SOIL, ICROP		VEGOPEN	000000
ldentifier		1081)		8 I S	B (18	REDUC		BULBS VE	3000000 3000 3000 3000
l.,	1	ЭЕРТН		PSt	PSI_	- 1		BUL	נים נים נים נים נים
rce Code	1	L ROOTI		L AT. LO(AT, L00	PSIDAT, LOG PSI	ΥPE	TCORN	800 800 800 800 800 800
Source		1801 801L		15011 PS1D	PSID	PSID	01.	rs cu	400 800 700 800 800 800
5		_					. 6.13 (MM) BY SOIL TYPE	CEREALS CUTCORN	∓∞∼∞∞ ∞
		.zone soil type per crop type (ICROP)	TERS	ii type aipha per crop (ICROP)	(ROP)	per crop (JCROP)	Table 6.13 PTHS (MM)	SUGARBT	400 800 800 800 800
		type type (TENSION PARAMETERS	do	per crap (ICROP)	lop (Таb!е DEPTHS		000000000000000000000000000000000000000
		soil srop t	SION F	s Jer CI	יר פרס	ber c	ROOT C	SEEDPOT	33333
MINARILE ENS		t zone		type pha	beta pe	reduce	u .	LPOT (00044000
	PTHS	r rooi oths,	STURE	S	psi be	psi re		Ξ̈	000000
Description	ROOT DEPTHS	Index of root Root depths, I	SOIL MOISTU	Index of Log of ps	Blank Log of p	Blank Log of r		GRASS CONSPOT	0007777
č	8 8	_	so	1n 2) Lo	81 2) Lo	B1.		ASS C	0000000
Forms	500	F(2) 14 F(4)		F(2) 14 F(4,2)	X(2) 14 F(4,2)	X(2) 14 F(4,			
								NATURE	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
om Too	3	1- 2 3-62		1 1-2 3-58	2 1-2 3-58	3 1- 2 3-58		_	
7 0	שׁ	1 2-16		Record 1 2-15	Record 3	Record 1 2-15			
L			1	R	Re	Α.		ROOT ZONE	* * * * * * * * * * * * * * * * * * *
	RDEPFI		PSIF1L)T 2	LoMecos* Litecla* Loam Peat Basncla* Saciloam

6.3. SPRINKLING PARAMETERS

Sprinkling parameters are contained in two files. COSTFIL contains parameters from which the cost of sprinkling can be computed. SPRFIL contains the parameters of the sprinkling procedure described in Chap. 5 of Vol. XIII. These files are described in Table 6.14.

The cost of sprinkling a plot depends on the crop type, whether the plot lies in the lowlands or the highlands, and, if the plot lies in the highlands, whether the water is taken from the surface or the ground. Costs also vary with region, because type and size of farms vary with region and hence, type and size of sprinkler installation used. We assigned each subdistrict to one of 14 LEI agricultural regions, as shown in Table B.11. Volume XIII explains how data describing these regions were used to obtain our sprinkling cost parameters. Both energy and labor cost parameters are displayed in Table 6.15.

The file SPRFIL contains two parameters for each root zone/crop combination. They are displayed in Table 6.16. Volume XIII explains how these parameters were derived.

6.4. BASIC DRAINAGE PARAMETERS

As we explained in Sec. 2.1.2, gravity causes water to flow from the saturated zone of the highlands into brooks and streams. The phenomenon is called <u>basic drainage</u>. We assume that in any subdistrict, the rate of basic drainage is a simple function of the groundwater level:

DRAINAGE = CONSTANT + COEFFICIENT × GROUNDWATER LEVEL.

Therefore, we assigned to each highlands subdistrict two <u>basic</u> <u>drainage parameters</u>, the constant and coefficient in the above expression.

It was impracticable to estimate a different pair of parameters for each subdistrict. Instead, we partitioned the highlands into 17 drainage regions based on geohydrologic properties (see Fig. 6.1), and then we divided each drainage region into a "low" part and a "high" part. For each part (low or high) of each drainage region we estimated a single constant and a single coefficient. We describe how we made these estimations below. The parameters so obtained are contained in the file DRANFIL, described in Table 6.17, and displayed in Table 6.18. Each highlands subdistrict was assigned to one of the drainage regions—this assignment is also indicated in Table 6.18.

We estimated the basic drainage parameters in two steps:

Table 6.14 SPRINKLING DATA FILES

<u>Tile</u>	<u>Field Calumn</u>	Format	<u>Vescription</u>	Source Code Identifier	Doc <u>umentation</u>
SPREIL			SPRINKLING MODEL PARAMETERS		
	Record 1 1 1- 2 2-15 3-58	F(2) :4 F(4,3)	Index of soil type Sprinkling start per crop (ICROP)	ISOIL SPRDAT.SPR_START (ISOIL,ICROP)	SPR_START
	Record 2 1 1-2 2-15 3-58	×(2) 14 F(4,3)	Blank Sprinkling gift per crop [ICROP)	SPRDAT.SPR_GIFT {ISOIL,ICROP}	SPR_GIFT
008) (1)			SPRINKLING COSIS		
	Record 1 1 1-2 2 3-4 3-15 5-74		Agricultural inde. "Type" of sprinkling (HTYPE) Energy casts per drap (ICROP)	TAGR COST.ENERGY_COST (TAGH, FTYPE, HOROP)	COST_ENERGY
	Record 2	Χ(2) Χ(2) 14 <u>Γ(5)</u>	Blank Blank <u>Labor costs</u> per crop_(ICR <u>OP)</u>	COST.LABOR_COST { LACR, LTYPL, LCROP]	COSI_LABOR

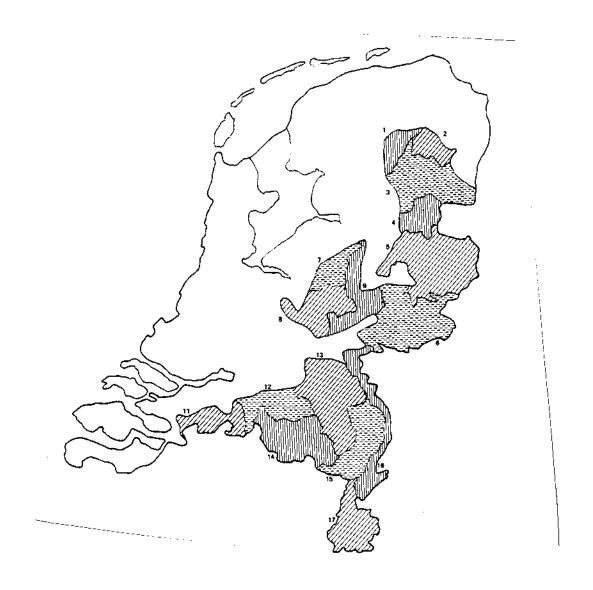


Fig. 6.1--Drainage regions

	COSTS
6.15	ING
p le	I K
Ta	SPR

AREA	TYPE		GRASS		SPOT	Mith	POT	SEED	요-	SUGARBI	RBT	<u>ж</u>	ALS (CUTCORN		₩	88	8	Z	44	RUIT	-	REES
NorthSeaClay	Low		591		655	0	50		100	50	50	0	(0	50		_		_		555 1	062	0	0
	H I SW		1026		869 886	00	00	_	<u>~</u> ∞	00	00	00	00	00						614 511	919 915	00	00
H-IJ Polder	Lov Hisw		452		476	00	00		\circ	00	00	00	00	000				·		627 562	965 783	000	000
SW Sea Clay	H i G¥ F S S S S S S S S S	532	384 1213 1203	574 574	455 1005 015	000		657 480 510	694 521 344	000	000	000	200	-	200	594 9	2888	287 561 515	177	738 562 337	815 102 676	0 144	0.5
River Clav	# 30 H 10 H 1		1233 784		830 830	00		•	92	200	5	-	<u>α</u> ,					CU	25 25 25	327 1	670 729		2038 2384
	H SE		1091		1160	00	00	00	00	25.2	831 834	00	സസ	00	00	00	00	$\alpha \alpha$		332 1	749 759	31	39
oess.	Low H:SW		1723		00	00		00	00	00	00	00	00	00	00	00				00	00	00	00
	를 등		2133		2005	0		0	0	0	0	0	O	0	0	0	0			0	0	0	0
NorthPasture	LOW		458		00	00	00	00	00	00	00	00	00	00	00	00	00			00	00	00	00
	H.		633		0	0				0	0	0	0	0	:	0	0	0		0	0	0	
West Pasture	Low		247		625	0	0	,	S	0 (0 (0 (0	0 (r,	را د	S C	883		0	0	7.	374
	MS H		993 998	767	786	00	00	656 J	095 104	00	- 0	00	00	50	n, m	25 - 18 42 - 18	835	340 1	733 811	00	00	307 365 265	たせ
North Sand	No.		812		623	0			N C	0	0	0	0	0	0	00	0	0	00	00	00	00	00
	X (130		2,00	0 48	2 2		200	> C	> C	00	50	-	> C	00		309.2	15.0	-	0 0	00	- C
Fast Sand	¥ 2		208		996	90		90	+ 0		9		99	. 0	0	0	-	0	30	0	0	0	0
)	H SW		200		1237	0 70	01	7	0	612 12	237	0,4	237	00	0	00		0 216 27	0 10		00		0 (2)
	H CM		722		<u>6</u>	رور ور		-		nc	~ c	ი <u>«</u>	~ c) (.	00		и <u>-</u> с		-	007	~ c	, T
central sano	H SW		245		00	00		00	00		יי טייט	99	00	0	0	00	0	0	00	550	975	0	0
	¥5 ;		1954		0	685		00	00	9	Фп	327	808	00	00	00		0 5	೦ಸ	ი ი ი	846	00	٥٥
south sand	MO H		202		7,77	0) C		- 6	- c	- 0.	109	00	0	00	00			. <u> </u>	730	0	0
			1222	32	2057	0				35		32.2	157	0	m	20 17	98	08	28	-	724	333 2	37
Peat	Low		977	00	00	784	489		489	00	00	00	00	00	00	00	00	00	00	0	00	-	00
	3 O		2801		> C	906			477) C	0	> C	- C	00	00	00	00	0	00	0	0	0	0
Rest of NH	3		568	٠.	664	0			199	0	0	0	0	0		52		∞	84	LC.	734	O	0
	HI SW		644		428	0	0		428	Ó	0	0	0	0		53	_	3	10	332 1	741	0	0
	H;C₩		648	. ~	425	0			425	0	0	0	0	0		ი (۰,	m (800	O.	730	0	0
Rest of SH	Fo¥		0		0	0		0 (0	0	0	0	0 (۰ د		0 2	_ \	æι	\mathbf{N}	- (-	٥ د	> <
	AS I		00	00	00	00		٥٥	-	00	> c	5 C	> c	> <	200	50 212(0		356 -	787	> <		> C	> 0
NOTES: EN	HIGW : Energy	⊃ <u>ö</u>	w	=	ր)/ha,	Ëc	Lab	္မ	sts (C	Dflm/r	nm/ha.	>	5	-		ţ	^	*	D	>	>	5	>

Table 6.16

START-GIFT SPRINKLING MODEL PARAMETERS

SOIL/PARAMETER	CROPS GRASS	CONSPOT	MILLPOT	PS GRASS CONSPOT MILLPOT SEEDPOT SUGARBT CEREALS CUTCORN	SUCARBT (SEREALS (UTCORN	BULBS VEGOPEN	FGOPEN	FRUIT	TREES
Loamy medium coarse sand* "START" "GIFT"	0.293 0.025	0.225	0.265	0.265	0.275	0.270	0.270	0.270	0.245	0.245	0.245 0.030
Light clay* "START" "GIFT"	0.232 0.025	0.190	0.205	0.205	0.220	0.205	0.205	0.205	0.205	0.190	0.210
Loam "START" "GIFT"	0.205	0.230	0.230	0.245	0.225	0.225	0.225	0.215	0.215	0.210	0.215
Peat "STARI" "GIFI"	0.575 0.025	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590
Basin clay* "START" "GIFT"	0.232	0.190	0.205	0.205	0.220	0.205	0.205	0.205	0.205	0.190	0.210
Sandy clay loam "START" "GIFT"	0.245	0.265	0.265	0.275	0.240	0.240	0.240	0.260	0.245	0.265	0.260 0.025
<pre>Hum, loamy med, coarse sand* "START" "GlFT"</pre>	0.248	0.205	0.230	0.230	0,245	0.225	0.225	0.225	0.215	0.215	0.210
Light loamy med, coarse sand* "START" "GIFT"	0.293 0.025	0.225	$0.265 \\ 0.025$	0.265	0.275	0.270	0.270	0.270	0.245	0.245	0.245
Silty clay* "START" 0.232 0. "GIFT" 0.025 0. NOTE: Asterisks denote substitution soils.	0.232 0.025 itution soi	0.190 0.025 1s. See	0.205 0.025 note to	0.205 0.025 Table 6.	0.220 0.025 .5.	0.205	0.205	0.205	0.205	0.190	0.210

Table 6.17 BASIC DRAINAGE FILE

File	Field	Co lumn	Format	Field Column Format Description	Source Code Identifier	Documentation
DRANFIL				BASIC DRAINAGE PARAMETERS		
	-	1- 2	F(2)	Index of drainage region	IDRAN	
	Q	3-11	F(9,4)	Constant term in low highlands	DRAN. DATA, BD_CON (IDRAN, 1)	BD CON LOW
	m	12-21	F(10,4)	Coefficient term in low highlands	DRAN.DATA.BD_COEF (IDRAN, 1)	BD_COEF_LOW
	7	22-30	F(9,4)	Constant term in high highlands	DRAN. DATA. BD_COM (IDRAN, 2)	BD_CON_HI
	7	31-40	F(10.5)	Coefficient term in high highlands	DRAN. DATA. BD_COEF (! DRAN, 2)	BD_COEF H1

Table 6.18 BASIC DRAINAGE REGIONS AND PARAMETERS

	SHLANDS	64790 1	749 AREA 29920		29920 29920 39900				SHLANDS	126	AREA	17002	15102	92237 129682		SHLANDS	609	AREA	52454 41687	94141 111449
	HIGH HIGHLANDS	3.4464 -0.0009749	SUBD	32					HIGH HIGHLANDS	2,9499 -0,0008026	SUBD	34 36	38 41			HIGH HIGHLANDS	2.855 -0.0009509	SUBD	48 50	-
REGION 4	ILANDS	133	AREA 9980	0866		EGION 5		HLANDS	57	AREA	5732	5553	37445	EGION 6	ILANDS	145	AREA	17308	17308	
DRAINAGE REGION 4	LOW HIGHLANDS	1,7559 -0.0010133	SUBD	31				DRAINAGE REGION	LOW HIGHLANDS	2.801	SUBD	33	04		DRAINAGE REGION	LOW HIGHLANDS	2.394 -0.0013541	SUBD	24	
		CONSTANT COEFFICIENT	DISTRICT	16 OVIJVECT	TOTAL					CONSTANT COEFFICIENT	DISTRICT		19 SALLAND 20 TWENTKAN	TOTAL			CONSTANT COEFFICIENT	DISTRICT	24 BERKEL 25 OUDEIJSL	TOTAL
	HIGH HEGHLANDS	2.694 -0.0008353	SUBO AREA	6 13335 18 11824		32761 32761			HIGH HIGHLANDS	3,5222 -0,0013156	SUBD AREA	16 23768	23768 23768			HIGH HIGHLANDS	4,2825 -0,0015113	SUBD AREA	21 25032 23 51228	76260 93033
DRAINAGE REGION 1	LOW HIGHLANDS	2.5707 -0.0024565	SUBD AREA			Ф		DRAINAGE REGION 2	LOW HIGHLANDS	5.6378 -0.0051499	SUBD AREA		0		DRAINAGE REGION 3	LOW HIGHLANDS	2.3517 -0.0016139	SUBD AREA	20 16773	16773
		CONSTANT COEFFICIENT	DISTRICT	7 FRIELAND O WESWAART		TOTAL				CONSTANT COEFFICIENT	DISTRICT	8 NWDRENTE	TOTAL				CONSTANT COEFFICIENT	DISTRICT	11 SEDRENTE 12 SWDRENTE	TOTAL

Table 6.18 (continued)
BASIC DRAINAGE REGIONS AND PARAMETERS

	HIGH HIGHLANDS	1528	AREA		00			HIGH HIGHLANDS	9419	AREA 9	40099 15799	55898 62972		HIGH HIGHLANDS	8619	AREA	13059 26161 19889	59109 70358
	HIGH H	2.8199 -0.0011528	SUBD					н нэгн	2.5745 -0.0006746	SUBD	138 140			HIGH H	2.4782 -0.0008619	SUBD	106 134 1 36	
DRAINAGE REGION 10	LOW HIGHLANDS	3534	AREA		0	ɔ		LOW HIGHLANDS	983	AREA	7074	4/0/	DRAINAGE REGION 12	LOW HIGHLANDS	739	AREA	4595 6654	11249
DRAINAGE	LOW HIC	2.3828 -0.0023534	SUBD				DRAINAGE REGION 11	TOM HIC	1.6546	SUBD	137		DRAINAGE	LOW HIC	2,1399 -0,0019739	SUBD	133 135	
		CONSTANT COEFFIC!ENT	DISTRICT		TOTAL				CONSTANT	DISTRICT	74 MARK 75 ROSENDAL	TOTAL			CONSTANT COEFFICIENT	DISTRICT	56 DENBOSCH 72 NDOMMEL 73 DONGE	₹AI
	GHLANDS		AREA	15802	15802 52933			GHLANDS	10	AREA	33432 17574	51006 101024		IGHLANDS		AREA	22940 11246	34186 50454
	нісн нісн	4.6126 -0.0024429	SUBD	57	- 1,	`	нісн нісн	2.0262 -0.0002356	SUBD	55			HIGH HIGH	6.0378	SUBD	46 53		
REGION 7	HLANDS	900	AREA	37131	37131	EGION 8	HLANDS	.22	AREA	50018	50018	REGION 9	ILANDS	935	AREA	11394 4874	16268	
DRAINAGE REGION	LOW HIGHLANDS	2.1435	SUBD	26			DRAINAGE REGION 8	LOW HIGHLANDS	2.9729 -0.0027422	SUBD	74€		DRAINAGE REGION 9	LOW HIGHLANDS	2.9839 -0.0028935	SUBD	45 52	
		CONSTANT COEFFICIENT	DISTRICT	29 NWVELUWE	TOTAL				CONSTANT COEFFICIENT	DISTRICT	28 SWVELUWE 41 KROMRIJN	TOTAL			CONSTANT COEFFICIENT	DISTRICT	23 NEVELUWE 27 SEVELUWE	TOTAL

Table 6.18 (continued)
BASIC DRAINAGE REGIONS AND PARAMETERS

	HIGH HIGHLANDS	773	AREA	5752 10250 17143 14534	47679 55020		SHLANDS	304	AREA	58167	58167							
	HIGH HI	1.8978 -0.0002773	SUBD	110 111 122 124	!		HIGH HIGHLANDS	3.0465 -0.0002304	SUBD	125								
DRAINAGE REGION 16	HLANDS	723	AREA	5719	7341	REGION 17	HLANDS		AREA		0							
DRAINAGE	LOW HIGHLANDS	1.4571	SUBD	121		DRAINAGE REGION 17	LOW HIGHLANDS	00	SUBD									
		CONSTANT COEFFICIENT	DISTRICT	59 RECMAASN 60 RECMAASM 65 RECMAASS 66 ROFRMOND	₹			CONSTANT COEFFICIENT	DISTRICT	67 SLIMBURG	TOTAL							
	H HIGHLANDS	2.7892 -0.0009587	D AREA	3 31751 6 6532 8 60438	98721 131200		H HIGHLANDS	2.431 -0.0009689	D AREA		2 33831	77124 89684		H HIGHLANDS	2,037 -0,0003959	D AREA	0 38143 7 29670	67813 81906
13	HIGK	2.7	oans 1	113		14	HIGH	2.4:	OBUS	129			15	H16H	2,037 -0,000	ans	120	
DRAINAGE REGION 13	LOW HIGHLANDS	1,7866 -0,0014588	AREA	7818 4427 20234	32479	DRAINAGE REGION 14	LOW HIGHLANDS	2.2237 -0.0016728	AREA	69469	000	12560	DRAINAGE REGION 15	LOW HIGHLANDS	7 241	AREA	6710 7383	14093
DRAINAG	FOM H	1.786	SUBD	112 115 117		DRAINAGE	LOW H	2.223	SUBD	128	0.51		DRAINAG	LOW H	3.4167 -0.00241	SUBD	119 126	
		CONSTANT COEFFICIENT	DISTRICT	61 MASKANTE 62 MASKANTW 63 AA	TOTAL			CONSTANT COEFFIC!ENT	DISTRICT		70 MDOMMEL 71 WDOMMEL	TOTAL			CONSTANT	DISTRICT	64 DEPEEL 68 MLIMBURG	TOTAL

- 1. We determined representative groundwater levels for both high and low parts of the 17 drainage regions.
- We estimated the drainage parameters by "calibrating" the plot water model so that it accurately replicated these groundwater levels.

In step 1, we obtained bimonthly groundwater level data from 224 wells from the period 1953-1977 [6.35]. We assigned each of these 224 wells to one of the 17 drainage regions. Wells with an average groundwater level less than 100 cm below the soil surface were assigned to the "low" part of the drainage regions, and the remaining wells were assigned to the "high" part. Thus, we obtained 34 sets of measured groundwater levels, with several individual wells in each set. Within each set, the individual observations were averaged to obtain a "representative" time series of groundwater levels for the part (low or high) of the drainage region to which the set of measurements belonged.

In step 2, we developed a special version of the plot water model that read the groundwater measurements developed in step 1 as data, and calculated the basic drainage as a balance term after all other water flows were calculated. We ran this model for the years 1967 through 1976, and we obtained a time series of groundwater levels (measured) and amounts of drainage (computed) for each part of each drainage region. From this time series, we calibrated the model by estimating the drainage parameters using ordinary least squares regression.

The correlation coefficient between measured groundwater levels and calculated drainage was not very high. Analysis showed that the groundwater levels computed by the plot water model were not very sensitive to changes in the slope of the basic drainage function, as long as the parameters were chosen so that the model correctly predicted long-term average groundwater levels. We used this fact to make some adjustments in the derived basic drainage parameters in order to obtain better water flow calculations in some districts. We will discuss these adjustments in Chap. 7.

It is important to note that by calculating the basic drainage as a balance term, after all other flows are calculated, the drainage includes all terms not otherwise accounted for. In particular, basic drainage includes extractions of groundwater by industries and drinking water companies. If we assume these extractions are not affected by changes in the groundwater level, then we can suppose they are embedded in the constant term (α) of our basic drainage function.

If we had used information about groundwater extractions by industries and drinking water companies to estimate the basic drainage parameters, the constant term would have been different, and we would have had to account for these extractions explicitly in the model. However, if these extractions are constant over the year, and if the extracted groundwater is ultimately discharged into the surface water

of the district from which it is drawn (both reasonable assumptions), then dealing explicitly with these extractions would have led to exactly the same computations as we now obtain.

Industrial and drinking water company extractions can be specified as inputs to DISTAG. When we want to deal with situations in which these extractions are different from what they were when the parameters of the basic drainage equations were estimated, we can adjust the parameters by specifying the differences (positive or negative) from the present case.

Agricultural extractions from groundwater (for sprinkling) that are not constant over time are dealt with by an explicit term in the calculation of water balances, the term I_NET in the description of the "core" model of Sec. 5.3.

6.5. EXTERNAL SUPPLY

We use the term <u>external supply</u> to denote certain time-varying quantities that are governed by climate rather than by Dutch water management. These factors include precipitation, open water evaporation, river discharges, and salt loads at the Dutch border. DISTAG uses only rain and open water evaporation.

Each district is assigned to one of fourteen weather stations; we explain these assignments in Sec. 6.5.1. External supply data are read from a file called ESFILE, described in Sec. 6.5.2. In Sec. 6.5.3 we describe the source of the data, and the manner in which missing data were imputed.

As mentioned in Sec. 2.4, the basic timestep is called a $\frac{\text{decade}}{\text{two decades}}$. Each month of the year contains three decades; the first two decades are exactly ten days long, and the third contains as many days as are needed to complete the month.

6.5.1. Assignments to Weather Stations

For the purpose of recording, reporting, and analyzing weather data, the Netherlands is partitioned into fifteen regions, shown in Fig. 6.2. Rain and open water evaporation measurements are published for each region [6.36]. The rain data consist of areal averages over many stations in each region. The evaporation data consist of computations based on the Penman formula [6.37] for a single point in each region. We assigned each PAWN district to one weather station using a map supplied by KNMI. One of the KNMI regions consists almost entirely of North Sea islands that were not analyzed by PAWN, so this region was not used.

Table B.12 lists the fourteen weather regions used, and indicates which districts are assigned to each region. The table also gives surface areas.

Fig. 6.2--Weather stations

In addition to the areal averages at the fifteen regions, point measurements were available for five weather stations, located near the municipalities of den Helder, Vlissingen, Maastricht, Groningen, and De Bilt. These point measurements were used to impute missing areal measurements, as described below in Sec. 6.5.3. Finally, a synthetic series for the IJsselmeer was available, though never used in the PAWN analysis.

6.5.2. External Supply File

External supply data used by DISTAG--rain and evaporation--are contained in a file called ESFILE, described in Table 6.19. External supply data used exclusively by DM--river discharges, salt concentrations--are described in Vol. XI. ESFILE contains two records for each decade; the first record contains rain data; the second contains evaporation data. In addition to external supply data, each record indicates the year and the number of days in the decade. It also contains two fields, one called period, the other called timestep. For PAWN, both period and timestep were identical to the index of the decade. Two fields allow greater flexibility. For example, they allow us to use files containing mixtures of monthly and decade data.

Each record contains 21 measurements. The first 5 correspond to the 5 stations where point measurements were available. The sixth corresponds to the synthetic IJsselmeer data. The last 15 correspond to the 15 KNMI weather regions.

As mentioned in Vol. I and elaborated in Vol. II, five years were chosen for extensive analysis. The external supply data corresponding to these five years are displayed in Tables 6.20 through 6.24.

6.5.3. Data Sources

Areal rain data for the 15 weather stations were available [6.36] from 1961 through 1978; areal evaporation data were available from 1971 through 1978. Point measurements of rain and evaporation for five stations were available from 1930 through 1975, in the form of a computer tape prepared by RWS [6.5]. We used the station data to impute the regional data for all the years from 1930 through 1978.

To impute the missing regional data, we expressed the rain for each region as a linear combination of the rain at three stations:

REGION =
$$A \times POINT_a + B \times POINT_b + C \times POINT_c$$

where REGION denotes the decade rainfall at a given region, and POINT denotes the decade rainfall at station \mathbf{x} . The stations were chosen and the coefficients were estimated from the years for

Table 6,19 EXTERNAL SUPPLY FILE

tifier Documentation		DECADE NDAYS TA) RAIN	TA} EVAP
Source Code Identifier		WEATHER. YEAR WEATHER. PERIOD WEATHER. TIMESTEP WEATHER. NDAYS	WEATHER.EVAP (1STA)
Description	RAIN AND EVAPORATION DATA	Literal "R" (for "Rain") Year Decade Decade Number of days in decade Rain (mm), per station (iSTA)	Literal "E" (for "Evaporation") Year Decade Decade Number of days in decade Evaporation (*STA)
Format		A(1) F(3) F(3) F(3) 21 F(3)	A(1) F(3) F(3) F(3) Z1 F(3)
Field Column Format Description		Record 1 1- 1 2 2- 4 3 5- 7 4 8-10 5 11-13 6-25 14-76	Record 2 2 2-4 3 5-7 4 8-10 5 11-13 6-25 14-76
File	ESFILE	-	-

RAIN AND EVAPOTRANSPIRATION (mm) BY DECADE AND WEATHER STATION FOR EXTERNAL SUPPLY SCENARIO DEX **Table 6.20**

	Z EV	n w m	0 to 00	123	22 30 30	43 41 38	42 50 68	666 43 35	35 41 41	23 20 17	15	904	-0-		81 73
	Beek RA	32 32 32	30	2 7 13	ω N νο	18 22 22	<u>.</u> €-6	200 #3	01 6	33 13 29	18 12 4	37 14 29	31 6		54 26
	_ ≧	≄೮೮	ഗയഗ	12 14 22	3333333	45 43 38	44 47 68	70 43 37	33 43 43	139	75	4-4			83
	RA I	41 29 29	18 5 18 1	2 8 2	8-0	13	ထလက	22 2	2-1-	23 10 22	18 17 3	40 16 24	32 11 7		220
	£2	らなら	~~5	13	20 31 33	229	65£	70 40 36	33 44 40	158	10 6	314	0-0		81 74
	Gemer RA E	46 17 23	2 <u>4</u> -	. 01 61	v-0	13 20	700	0 \$ 5	10	28 16 21	€ 85.4	33 14 21	38 13 10		524
	os EV	944	767	14 13 24	23 30 34	せなな	48 46 65	66 42 39	555	24 18 17	13	ちこみ	011		84 76
	Oudenbos RA EV	38 10 25	25-	17 17	ლო -	r 0 t	4 E 80	27	≻ 08	35 37 10	24 16 9	11 19 22	44 14 16		50 24
	s s E <	4	7-55	15 23	23 34	43 43 43	97 97 97	65 44 47	43 50	30 19 16	13	~~~	₩-0		88
	<u>×</u> &	29 6 24	3 16	23	95-	8 9 5	4 5 6	0 6 71	7 0 9	44 40 11	31 14 8	14 22 25	37 16 20		49 23
	- ≥	ちらり	273	14 14 22	22 30 33	45 40 36	46 46 68	67 41 37	38 43 46	22 18 16	712	りひせ			82 74
	Andel RA EV	54 19 20	4 12 1	217	6 00	11 th	8 7 7	O전환	44	34 14 14	13	12 21 21	39 15 14		22
	rs EV	ლ ი –	57	12 14 20	31	45 40 38	43 43	38	3¢ 40 40 40	20 18	9	4− 0	-00		76
	Winte RA	58 28 27	2 <u>1</u> 9 .	るるだ	00	14 12	9 10 10	22 20 20	10	20	20 111	20 11 19	34 22 7		23.21
	급급	540	995	13	20 30 31	40 38 38	452 653	666 40 35	35 41 43	181	500	10 00 to	000		78
	De Bi RA	22 22 22 24 25	17	7 20	90-	25.5	o. 85 ₹	0 17 27	27 6	28 12 16	17 10 5	19 21 21	41 13		25
	ξŞ	∞∞~	8 7 8	14 13 24	23 34	t 23	6 7 6 7 7 7 7	666 444 455	42 43 46	28 18	114	9119	988		87
	Naaldwyk RA EV	35₹	127	9 1 1 2 1	-123	4 9 10	23.9	5¢ 40	60 <i>~</i>	50 31 15	29 14 10	10 16 26	51 24 22		55 24
	Βζ	おせる	wow	5 # 1	21 29 30	38 38	43 42 60	64 37 36	31 38 38	20 17 14	5 5 5	サーの	000		74 68
	Dedem RA	72 23 25	2 19	9 3 18	7 0	35 44 35	7 20 11	0 17 28	101	23 25	20 12 4	19 7 21	35 32 11		57 26
	E q	v_0v	999	13 14 19	22 28 34	36 44 44	45 45 61	66 41 48	37 41 45	26 17 15	500	€00	-8-		82 74
	Lelystad RA EV	61 13 17	14 14	947	30K	7 9 14	2 t 4	0 10 24	51 4 9	35 15 17	17 6 7	13 8 22	25 12 12 12		49 22
	돌	∞∞~	~ ∞ ∞	3 - 4 - 5 - 3 - 3 - 4 - 5 - 5 - 5	23 29 34	40 43 41	48 46 63	66 42 42	37 40 41	23 48 15	527~	986	203		83 74
	Hoorn RA	61 13 23	91 16	7 - 7 - 81	∞	12 t	262	0 12 27	£1 0 ST	47 31 14	23 8 13	14 10 25	73 21 18		55 23
	Eelde RA EV	e 4 -	405	12 13 20	22 27 31	37 40 34	45 78 28	63 38 38	31 41 38	21 18 14	9~2	≯~ €	000		73 68
	RA	78 22 24	24 24 2	7 12	40 0	7 14 26	16 20 1	0 15 24	85 o 55	28 13 16	24 12 4	18 5 26	46 42 17		59 24
		⇔ € −	すらろ	11 18	25 24 28 28	338 338	43 43 61	6 6 7 9 9 9	33 40 38	20 15 14	5 x 2	ა – ო	0-0	_	72 67
1976	Leeuwa RA E	76 18 23	21 2	2 Z 4	~ ~ ~ ~	12 23	7 18 1	26.00	₹ 0 \$	37 13 8	23.88	23 26	32 32 19	(C)	55 22
YEAR:		Jan 1 2 3	Feb 1 3	Mar 22	Apr 1	May 1 2 3	Jun 1	Jul - 22	Aug 1 2 3	Sep 1	0ct 1 2 3	Nov 1 2 3	Dec 1 2 3	TOTALS	YEAR GS

50 SCENAR 10 SUPPLY EXTERNAL FOR STATION WEATHER AND DECADE β (E) EVAPOTRANSPIRATION AND RAIN

SCENARIO SUPPLY **EXTERNAL** FOR STATION WEATHER AND DECADE ₽ (IIII) **EVAPOTRANSPIRATION** AND z

ġ

Table

감

SCENARIO SUPPLY EXTERNAL FOR STATION WEATHER DECADE AND ₽ (mm) EVAPOTRANSPIRATION AND z

ø

Table

김

Ã SCENARIO SUPPLY EXTERNAL FOR STATION WEATHER 6.24 AND Table DECADE չ (IIII EVAPOTRANSPIRATION AND z

which both regional and station data were available, using a stepwise multivariate regression procedure. Similarly, we expressed the evaporation at each region as a linear combination of evaporation at two stations, using the same procedure. The estimates are displayed in Table 6.25.

6.6. MISCELLANEOUS PARAMETERS

Table 3.1 listed a number of parameters that are not contained in any of the input files. These parameters are given default values in the program, although the values can be changed without recompiling the program. In this section, we will discuss these parameters and discuss how the values were obtained.

DRAIN_MAXOUT: The maximum amount of basic drainage from the high highlands that drains directly into the distribution system. The reason it was necessary to include this term is explained in Sec. 7.3.1. We set it equal to 60 mm/year, basing this estimate on a comparison of computed and observed flows from the high highlands.

DRAIN_UG: This parameter controls the amount of flushing of the root zone of glasshouse crops. We set it equal to 200 mm/year.

LOAD_RZ: The root zone salt load due to diffuse sources of salt such as fertilizers, pesticides, etc. We set it equal to $6 \text{ mg/m}^2/\text{day}$ [6.4].

LOAD_SS: The subsoil salt load due to those diffuse salt loads that do not affect the root zone (e.g., salt spread on roads to melt ice). We set it equal to $12 \text{ mg/m}^2/\text{day}$ [6.4].

RAIN_CONC: The salt concentration of rain. We set it equal to 8 mg/l.

RAIN_SURP: The average rain surplus over the year (the difference between rainfall and evapotranspiration). We set it equal to 250 mm. (Rain and open water evaporation data are reported in Ref. 6.38. We assumed an average crop factor of 0.8.)

SPR_EFF: The sprinkling efficiency factor, the amount of sprinkling that actually enters the root zone divided by the amount extracted for that purpose. We set it equal to 0.85 [6.39].

SPR_EVAP: The fraction of the "lost" sprinkling water that evaporates (the remaining "lost" water soaks into the subsoil). We set it equal to 0.4 [6.39].

SPRINK_CAPACITY: The maximum amount of sprinkling that can be applied to any sprinkled field per unit of time. Based on Dutch sprinkling system characteristics, we set it equal to 4 mm/day.

Table 6.25

COEFFICIENTS FOR IMPUTING RAIN AND EVAPORATION DATA FOR REGIONS
FROM POINT MEASUREMENTS

			· · · · · · · · · · · · · · · · · · ·							
	Point Measurement Stations									
-	Den Helder	Vlissingen	Maastricht	Groningen	De Bilt					
Precipitation										
KNMI Region										
De Kooy	0.6627	0.0838		0.2253						
Leeuwarden	0.2901			0.4992	0.1997					
Eeld e	0.0378			0.8031	0.1178					
Hoorn NH	0.5286			0.1418	0.3056					
Lelystad	0.1924			0.3495	0.4261					
Dedemsvaart			0.1697	0.4384	0.3582					
Naaldwijk	0.2279	0.3026			0.4960					
De Bilt			0.1086	0.2519	0.6541					
Winterswijk			0.2893	0.2631	0.4038					
Ande1		0.1752	0.1804		0.6179					
Vlissingen	0.0779	0.7071			0.1951					
Oudenbosch		0.4165	0.2111		0.3787					
Gemert		0.1588	0.4087		0.3930					
Venlo			0.6072	0.0987	0.2085					
Beek ZL			0.8853	0.0313	0.1129					
Evaporation										
KNMI Region										
De Kooy	1.0000									
Leeuwarden	0.3968			0.6004						
Eelde				1.0000						
Hoorn NH	0.5512				0.4944					
Lelystad	0.5188				0.5258					
Dedemsvaar				0.5520	0.4189					
Naaldwijk		0.7697			0.2500					
De Bilt					1.0000					
Winterswij			0.2915		0.6781					
Andel		0.2234			0.7879					
Vlissingen		1.0000								
Oudenbosch		0.3640			0.6378					
Gemert		0.5075			0.5100					
Venlo		0.6931			0.3262					
Beek ZL		1.0000								

URB_CONC: The salt concentration of water that is discharged from urban areas. We set it equal to 50 mg/l.

VOLRZ_UG: The "active" volume of the root zone used to make salt balance computations for glasshouse crops. Because of the almost complete control of the root zone soil moisture, we assumed this to be a constant volume, estimated equal to 150 mm.

VOLSS_UG: The "active" volume of the subsoil used to make salt balance computations for glasshouse crops. This volume was also assumed to be constant and was estimated to be 500 mm. The effect of this parameter on the computed surface water salt concentration is very limited.

SSDEPTH: The "active" subsoil depth for the purpose of making salt balance calculations for open-air crops. We set it equal to 1000 mm, based on inspection of the behavior of the model.

In addition to the variables described here, there are a number of others. Some of these are related to the sprinkling model that is described in Vol. XIII. The remaining ones have to do with the control of the computer program (number of iterations, tolerances, etc.) and since they have nothing to do with the physical modeling, we will not discuss them.

REFERENCES

- 6.1. Unie van Waterschappen, <u>Inventarisatie Watervoorziening</u>

 <u>Waterschappen</u> (Water Supply Inventory of Waterboards), 1979.

 This document contains the results of an inquiry with respect to the current and expected water supply situation.
- 6.2. Commissie Onderzoek Landbouwwaterhuishouding Nederland, Reports, 1958.
- 6.3. Rijkswaterstaat, Directie Waterhuishouding en Waterbeweging, <u>Een Globale Berekening van de Kwel en Infiltratie in Noord-Holland</u>, <u>Friesland en Groningen</u> (A Rough Analysis of Seepage and Infiltration in Noord-Holland, Friesland, and Groningen), Nota WH-77.20, 's-Gravenhage, 1977.
- 6.4. Instituut voor Cultuurtechniek en Waterhuishouding (Institute for Land and Water Management Research), <u>Hydrologie en waterkwaliteit van het middenwestelijk deel van Nederland</u> (Hydrology and Water Quality for the Midwestern Part of the Netherlands), Wageningen, 1976.
- 6.5. Rijkswaterstaat, Directie Waterhuishouding en Waterbeweging,
 Brochure Water Management Model (WAMAMO), Nota WH-77-05,
 's-Gravenhage, 1977.
- 6.6. Rijtema, P. E., Soil Moisture Forecasting, Report 513, ICW, Wageningen, 1969.
- 6.7. Stichting voor Bodemkartering, <u>De Bodem van Nederland:</u>
 <u>Toelichting bij de Bodemkaart van Nederland Schaal 1:200000</u>
 (The Soil of the Netherlands, Explanation for Soil Map of the Netherlands, Scale 1:200000), Wageningen, 1965.
- 6.8. Rijkswaterstaat, Directie Waterhuishouding en Waterbeweging, Afdeling Waterstaatkartografie, <u>De Waterstaatkaart</u> (Water

- Map), a series of 1:50000 scale maps, published in various years, covering the entire nation.
- 6.9. Centraal Bureau voor de Statistiek/Landbouw Economisch Instituut, Landbouwcijfers 1976 (Agricultural Data 1976), The Hague, 1976.
- 6.10. Centraal Bureau voor de Statistiek/Landbouw Economisch Instituut, Tuinbouwcijfers 1976 (Horticultural Data), The Hague, 1976.
- 6.11. Centraal Bureau voor de Statistiek, <u>Statistiek van de Landen Tuinbouw 1975</u> (Statistics of Agriculture and Horticulture 1975), The Hague, 1976.
- 6.12. de Wilde, J. G. S., and Th. J. Linthorst, <u>Beregening en Bevloeiing</u> in <u>Nederland in 1976</u> (Sprinkling and Surface Irrigation in the Netherlands in 1976), Report 973, ICW, Wageningen, 1977.
- 6.13. The information consisted of a rough map indicating ranges of surface water supply possibilities based on an inquiry by the Landrichtings Dienst (Land Development Department) and a global notion of groundwater availability. In the course of the study more information became available, but it was not possible to redo all of the basic data processing using the improved information.
- 6.14. Reinds, G. H., and A. K. van Hemert, <u>Beregening en Bevloeiing in Relatie tot de Bedrijlsstruktuur</u> (Sprinkling and Surface Irrigation in Relation to Farm Structure), Report 1035, ICW, Wageningen, 1978.
- 6.15. Bloemen, G. W., <u>Berckening van de Capillaire Stijghoogte voor een Aantal Nederlandse Standaardgronden op Basis van Textuurkenmerken</u> (Computation of Capillary Rise for a Number of Standard Dutch Soils on the Basis of Textural Characteristics), Report 857, ICW, Wageningen, 1975.
- 6.16. van Boheemen, P. J. M., <u>De Klimatologische Hydrologische en Bodemkundige Behoeftebepaling</u> (Climatological, Hydrological, and Soil-Scientific Determination of Agricultural Water Demand), SWLT Document No. 14, 1977.
- 6.17. Hellings, A. J., <u>Het Verband Tussen Waterverbruik en Opbrengst bij Gewassen met Duidelijke te Onderscheiden Gevoelige Perioden</u> (Water Use and Yield for Crops with Specific Drought Sensitive Stages), ICW, Wageningen,
- 6.18. Hellings, A. J., <u>Het Verband Tussen Waterverbruik en</u>
 Opbrengst bij Gewassen Zonder Duidelijke Gevoelige Stadia
 (Water Use and Yield for Crops without Specific Drought Sensitive Stages), ICW, Wageningen.
- 6.19. Bierhuizen, J. F., and C. Ploegman, "Zouttolerantie van tomaten" (Salt Tolerance of Tomatoes), <u>Mededelingen Derektie Tuinbouw</u>, 30, 1967, pp. 302-310.
- 30, 1967, pp. 302-310.

 6.20. Bik, A., "Welke Eisen moet men aan de Kwaliteit van Gietwater Steller," (What Should the Requirements for the Quality of Sprinkling Water Be?), Vakblad voor de Bloemisterij, 24 1969, p. 1783.
- 6.21. Couwenhoven, T., "De verzilting en het gebruik van sproeiwater in de akkerbouw" (Salinization and the Use of Sprinkling Water for Arable Crops), <u>Bedrijfsontw</u>. ed. Akkerbouw, 2, 1971) pp. 53-63.
- 6.22. van de Ende, J., "Kwaliteitsnormen voor het gietwater" (Quality Standards for Sprinkling Water), Bedrijfsontw. ed. Tuinbouw, 1, 1970, pp. 45-51.
- 6.23. van de Ende, J., and C. Sonneveld, "Zout gietwater bij kasteelt in West Nederland" (Saline Sprinkling Water for Glasshouse Crops in the West of the Netherlands), Landbouwkundig tijdschrift, 80, 1968, pp. 348-353.

- 6.24. Landbouw Ekonomisch Instituut, <u>Vade mecum voor de Glastuinbouw</u> (Handbook for Glasshouse Horticulture), The Hague, 1978.
- 6.25. Landbouw Ekonomisch Instituut, <u>Vade Mecum voor do Tuinbouw</u> in de Open Grond (Handbook for Horticulture in the Open Air), The Hague, 1977.
- 6.26. Ploegman, C., and J. F. Bierhuizen, "Zouttolerantie van komkommers" (Salt Tolerance of Cucumbers), <u>Bedrijfsontw. ed. Tuinbouw</u>, 1, 1970, pp. 32-39.
- 6.27. Ploegman, C., and G. G. M. van der Valk, "De invloed van zout bereginingswater op de ontwikkeling van vijf graden tulpen C.V. Apeldoorn" (The Effect of Saline Sprinkling Water on the Development of Tulips), <u>Bedrijfsontwikkeling 3</u>, 1972, pp. 1061-1063.
- 6.28. Ploegman, C., <u>Invloed van infiltratie met chloridehoudend</u>
 oppervlaktewater op het chloridegehalte en de produktie
 bij tulpen (The Effect of Infiltration with Saline Surface
 Water on Salt Concentration and Production of Tulips), Report
 881, ICW, Wageningen, 1975.
- 6.29. Ploegman, C., <u>Invloed waterkwaliteit bij kasrozen</u> (The Effect of Water Quality on Glasshouse Roses), Report 913, ICW, Wageningen, 1976.
- 6.30. Proefstation voor de Rundveehouderij, <u>Handboek voor de</u> Rundveehouderij (Handbook for Cattle Breeding), Lelystad, 1977.
- 6.31. Proefstation voor de Akkerbouw en de Groenteteelt in de Vollegrond, <u>Kwantitatieve Informatie voor de Akkerbouw en Groentetellb in de Vollegrond</u> (Quantitative Information about Arable and Open-Air Vegetable Crops), Lelystad, 1977.
- 6.32. Sonneveld, C., and J. van de Ende, "De invloed van zout gietwater bij de slateelt onder glas" (The Effect of Saline Sprinkling Water on Lettuce under Glass), <u>Tuinbouw Mededelingen</u>, 32, 1969, pp. 139-148.
- 6.33. Sonneveld, C., and J. van de Ende, "De invloed van zout gietwater bij de tomatenteelt onder glas" (The Effect of Saline Sprinkling Water on Tomatoes under Glass), Bedrijfsontw. ed. Tuinbouw, 2, 1971, pp. 43-51.
- 6.34. Sonneveld, C., and J. van de Ende, "De Invloed van zout gietwater bij de teelt van peper en paprika onder glas" (The Effect of Saline Sprinkling Water on Peppers and Bell Peppers under Glass), Landbouwkundig Tijdschrift 86, 1174, pp. 241-246.
- 6.35. Dienst Grondwaterverkenning TNO, Archief van Grondwaterstanden, Afdeling Geohydrologisch en Geofysisch Onderzoek, Verslag over het jaar 1971 (Report for the Year 1971), Delft, 1971.
- 6.36. Koninklijk Nederlands Meteorologisch Instituut, <u>Maandelijks</u>
 Overzicht der Weersgesteldheid (Monthly Overview of the Weather), various years.
- 6.37. Hillel, Daniel, <u>Fundamentals of Soil Physics</u>, Academic Press, New York, 1980.
- 6.38. Bruin, H. A. R. de, Neerslag, openwaterverdamping en potentieel neerslagoverschot in Nederland.

 Frequentieverdelingen in het groeiseizoen (Rain, Open Water Evaporation, and Potential Rain Surplus in the Netherlands. Frequency Distributions for the Growing Season), Koninklijk Nederlands Meteorologisch Instituut, Report W.R. 79-4, De Bilt, 1979.
- 6.39. Baars, C., Ontwerpen van Regeninstallaties (The Design of Sprinkling Installations), Agricultural University, Wageningen, 1972.

Chapter 7

EVALUATION OF DISTAG

Any model approximates reality. It may be very accurate in some respects, and very inaccurate in others. In this chapter we report on the accuracy of DISTAG. The chapter should be read by people interested in judging the accuracy of the PAWN results, as well as by readers interested in technical aspects of DISTAG.

7.1. INTRODUCTION

Throughout PAWN, we continually reexamined and attempted to improve DISTAG. Data and parts of models were changed many times, although not all problems were solved in a completely satisfactory way. While much time was devoted to testing the model, we lacked sufficient time and data to do a complete validation and sensitivity analysis. This chapter contains only a limited discussion of these matters.

In many instances, we were helped by Dutch agricultural experts, contacts with whom were coordinated by the Ministry of Agriculture and Fisheries. Contacts with the agricultural experts of SWLT¹ were especially important.

DISTAG computes many quantities. Since it was developed for the PAWN analysis, it should be more accurate for quantities that are critical to the PAWN analysis. In areas where PAWN is less concerned, the accuracy of DISTAG is less important. We discuss the quantities for which high accuracy is desired in Sec. 7.1.1.

There are three standards by which we evaluate DISTAG:

- Theoretical basis of the model.
- Comparisons between computations and actual measurements.
- Sensitivity of results.

These three standards are defined more completely in Sec. 7.1.2 through Sec. 7.1.4.

7.1.1. Where Should DISTAG Be Accurate?

As Vol. I describes in much more detail, PAWN is a study of the national water management system of the Netherlands. It emphasizes the nation as a whole, not local regions, and considers time intervals of about a year. Therefore DISTAG needs to make accurate estimates when the estimates are aggregated over rather large regions and long intervals of time.

The specific estimates made by DISTAG and used by PAWN are:

- Discharges into and extractions from the nodes of the distribution system.
- · Salinity in each district.
- Crop damage over large regions.
- Groundwater levels, averaged for the year and for large geographical regions.
- Sprinkling quantities and costs.

In this chapter, we will discuss the accuracy of the first four of these five estimates. The fifth estimate, sprinkling quantities and costs, is discussed in Vol. XIII.

7.1.2. Theoretical Basis of the Model

A model is theoretically sound if it is based on well-accepted and appropriate physical laws. (Alternatives to such a model include strictly empirical ones, or models based on statistical analyses.)

When practical, a theoretically sound model is preferable to an empirical or statistical one. First, such a model provides better insights. Second, it gives more reliable results when it is applied to situations for which no measurements of the real world exist, either because the measurements have never been taken or because the new situation has never before existed.

On the other hand, a model based purely on theory can have two disadvantages. First of all, such a model may need more data than can be gathered. Second, it may be so complicated that the costs of development and application become too high.

DISTAG is for the most part based on physical laws, but it contains some parts that are largely statistical (e.g., the basic drainage functions) or empirical, and it contains some computational shortcuts. Furthermore, it deals with rather large aggregates, for which the underlying scientific principles can only be regarded as approximations.

In following sections, we will point out those parts of DISTAG that are soundly based on scientific principles, and then we will discuss the uncertainties. We deal with uncertainties in three ways. First, we can sometimes validate the model by comparing its computations with actual measurements. Second, we can calibrate the model (estimate an uncertain parameter) by making similar comparisons. Third, we can examine the sensitivity of its computations to various assumptions. These three aspects, validation, calibration, and sensitivity analysis, are discussed briefly in the next three subsections.

7.1.3. Validation

When a model of some "real world" situation is found to replicate actual measurements of that situation, we say the model is <u>valid</u>. While a valid model is necessary if one is to accept conclusions based on it, it is not sufficient. For example, a strictly statistical model may replicate the real world measurements upon which it is based rather well, but it may be impossible to adapt the model to a new situation. However, a theoretically based, valid model may be expected to produce estimates that are reasonably close to real world measurements for many different situations.

When we compare model results with measured data, we encounter two major difficulties:

- Existing measurements do not always coincide with what is being modeled.
- Measurements are not always available or accurate.

Many of our computational results are highly artificial. They apply to modeling units such as districts, subdistricts, and plots that were specifically defined for the PAWN analysis and cannot always be associated with actual geographical entities. The plot, for example, corresponds to a scattered collection of fields containing the same crop type, and the crop types themselves are mostly aggregates of individual crop types. The surface water system of a district is regarded as a single body of water, but the actual volume of water to which this body corresponds may consist of a collection of ditches and boezems that are not always connected together. Crop damages are expressed as a fraction of an estimated potential annual yield, whereas the actual potential yield varies from year to year. Time-dependent variables are computed as a constant over a timestep of about ten days, while in reality they may vary widely over much shorter intervals.

Actual data are limited, and their accuracy may sometimes be questioned. Flows in the big rivers and major canals are measured frequently and quite accurately, but not so in the smaller waterways and at the less important discharge/extraction points. Estimates of flow volumes may be based on pumping hours or fuel costs, and certain flows are only measured up to the point where unmeasured emergency drainage facilities begin to operate. Small-scale phenemona-infiltration losses from ditches, capillary rise, salt concentration in root zones--are rarely measured, and are sometimes nearly impossible to measure. Crop damage cannot be measured in a way that is fully comparable to our model results, because actual crop production levels depend on things not related to water management circumstances (e.g., damage due to disease, wind, hail, frost, etc.). Much of the available crop price information is based on quantities or

values supplied by auctions, and so it is confounded with market effects (e.g., imports, exports, price supports, etc.).

7.1.4. Calibration

DISTAG contains some parameters that do not correspond to well-defined measurements (e.g., the parameters of the damage model). One way to estimate these parameters is to use the model and, by trial and error, find values such that the model results more or less agree with comparable measurements. Such a process is called <u>calibration</u>. All the problems with measured data that were discussed above apply to the use of measurements for calibration. In addition, one is faced with the problem of trusting the calibrated model when it is later used in a different situation.

7.1.5. Sensitivity Analysis of Results

When a model contains uncertain assumptions, we can run the model with alternatives to these assumptions and compare its results. If the results do not change very much under different assumptions, we can use the model believing that the exact assumptions may not matter very much anyway. If the model results are sensitive to assumptions, then we need to treat conclusions derived from the model with caution. Using sensitivity analysis, we may learn how and under what conditions our conclusions will change.

7.2. THEORETICAL BASIS OF THE MODEL

In this section, we will discuss the scientific and technical aspects of the four main classes of DISTAG estimates: discharges and extractions, salinity, crop damage, and groundwater levels.

7.2.1. Discharges and Extractions

Discharges and extractions from a district are computed using the plot water model (PLOTWAT) and DISTAG itelf. We discuss each in turn.

The Plot Water Model. The model treats two layers (root zone and subsoil) in one dimension, and all possible flows between the layers, between the root zone and the atmosphere, and between the subsoil and the surface water system. At its core is the steady state relationship between soil moisture tension at the interface of the root zone and the subsoil, the groundwater level, and capillary rise. This part of the model is based on the model of Rijtema [7.1], which is generally accepted and has been used in several other studies. Actual evapotranspiration is calculated as a function of available root zone soil moisture and potential evapotranspiration. Drainage from the subsoil is based on Darcy's law.

In the course of the PAWN study, one of our colleagues, J. De Haven, suggested that drainage calculations based strictly on Darcy's law using gravitational head differences may seriously underestimate lowlands drainage. This suggestion is discussed in App. C.

We point out several uncertainties embedded in the plot water model.

- Basic drainage in the highlands is treated with a model derived from a statistical analysis of historical data.
- A simple iteration scheme was introduced to compute capillary rise in order to reduce computing costs.
- An empirical function was developed to simplify calculation of capillary rise.

We will discuss these uncertainties below.

Water Flow Calculations in DISTAG. With respect to water flow calculations, DISTAG is largely an administrative model. It uses PLOTWAT to compute plot water flows, adds these flows up, adds in flows to and from the surface water system and the urban area of the district, and computes a net discharge or extraction. Mass balances always hold.

Three assumptions built into DISTAG may be questioned. First, we have assumed that level control is absolute. That means flows into and out of the district are determined in such a way that the volume of water in the district remains constant. In practice, such a situation does not occur everywhere, especially in drought years.

Second, we have assumed that urban runoff is available within the district in which the urban area occurs. In some places, however, this flow goes directly into the national system, or the sea. However, the flow is small, and practically nonexistent in dry periods, when the accuracy of the computations is most critical.

Third, we have assumed that only part of the basic drainage generated in a district is available within that district. The remaining part is assumed to flow out of the district as a groundwater flow, where it eventually ends up in the rivers and bigger streams of the national distribution system. The amount that flows out has been estimated on the basis of measurements of net discharges and extractions from rather large areas and is subject to uncertainty, if not controversy.

7.2.2. Salinity in District Waters

The salinity of the water discharged into the surface water of a district is computed by PLOTSLT using the basic salt model. DISTAG then uses the basic salt model to compute the salinity of the district surface water itself, and then estimates how much salt flows out in

the discharged water. The distribution model uses these flows to estimate salinities at nodes.

The Plot Salt Model. The model is quite simple. It assumes salt mixes perfectly in the root zone and in the "active" layer of the subsoil, and uses the basic salt model, described in Sec. 4.3.1. Mass balance is always maintained, so if the inputs to the model are correct, we can only question the time phasing of the outputs.

The size of the "active" volume of the subsoil is uncertain, and its value somewhat affects the rate at which salt passes through the plot. The sensitivity of salt concentrations and damages to this active volume is described in Sec. 7.4.6.

Salt Computations in DISTAG. As with the water flow computations, DISTAG mostly performs a bookkeeping function with salt flows.

The assumption that salt mixes completely in the district waters is probably too simple, because, at least in the lowlands, these waters consist of polder ditches and boezem waters that are not directly connected together, and flow rates are quite different in different places.

7.2.3. Crop Damage

Crop damages are computed <u>only</u> in plots. DISTAG merely adds them up. Therefore, we need to consider only the plot damage model.

The drought damage model is based on two very simple assumptions:

- Drought damage depends primarily on the ratio of actual evapotranspiration over potential evapotranspiration.
- The smaller this ratio, the greater the damage.

Similarly, the salt damage model is based on two assumptions:

- Salt damage depends primarily on the salt concentration of the soil moisture in the root zone.
- Below a certain point, no damage occurs. Above that point, the greater the concentration the greater the damage.

Our damage models are simple implementations of these assumptions. The dynamic simulation over time and the fact that we consider different crops, each with specific features (e.g., growing season, drought sensitive stages), make the model somewhat complex. Much more complex and detailed crop yield models do exist, but they seemed neither feasible nor appropriate for PAWN.

7.2.4. Groundwater Levels

Groundwater levels are computed by PLOTWAT, and averaged over subdistricts by DISTAG. How accurate these levels are depends on how accurate PLOTWAT is in computing them.

The computation of groundwater levels is based on the same theoretical model used to calculate capillary rise. In the lowlands the levels are strongly related to the water levels in the surrounding ditches. In the highlands, they depend on the basic drainage functions, which were estimated by a statistical procedure that used the match between measured and calculated groundwater levels as an estimation criterion.

In order to improve estimates of basic drainage, the basic drainage parameters were changed. In Sec. 7.3.4 we show that the plot water model still gives reasonable estimates of groundwater levels.

There is some question as to whether in the high highlands the dependence of groundwater levels on capillary rise should be maintained. We discuss this problem in Sec. 7.4.3.

7.3. COMPARISONS BETWEEN COMPUTATIONS AND ACTUAL MEASUREMENTS

7.3.1. Water Flow Computations

It is difficult to compare computational results at the level of a plot with measured data because hardly any data exist at this level. Therefore we used DISTAG to evaluate the models on the basis of larger flows.

Water Flows in the Highlands. Section 6.4 describes how we initially estimated the parameters of the basic drainage model. These parameters were later changed, and the ones actually used for the PAWN analysis were developed as follows. In addition, several other changes to the original formulation of DISTAG were made.

When we compared calculated flows with measured flows for a number of small rivers in Drenthe, Overijssel, Gelderland, and Noord-Brabant, using the original basic drainage parameters, we found two serious discrepancies:

- The calculated annual flows were larger than the measured ones.
- The variation of the calculated discharges over the year was not as great as the measured ones--typically computed winter discharges were too small and summer discharges were too big.

After some investigation, we identified several features of the model which, when changed, resulted in lower discharges.

- We originally assumed that the amount of rain entering the root zone was equal to the amount specified in the external supply data file. In fact, a small fraction of the rain that falls evaporates immediately—the process is called <u>interception</u>.
 We installed the capability of reducing the rain by a fraction, called the interception fraction.
- When plants die, they do not transpire, and we had originally reduced the potential evapotranspiration from the land by multiplying it by the survival fraction. However, a small amount of evaporation continues from the surface of the bare soil. We added this evaporation term to our water balance calculations.
- 3. Not all drainage from a highlands district necessarily flows into the surface water system of the district itself. Instead, it may flow deep underground and enter the surface water system of some other district. We installed a feature in DISTAG that removed a certain constant amount of drainage each timestep, if enough drainage were available. This drainage (called "outside drainage") is passed as an output to the distribution model, so that it can be added to the distribution system where it seems appropriate.
- 4. The basic drainage functions were recalibrated to cause a stronger variation of discharges over the year. In this recalibration we used the fact that the average computed groundwater levels are not very sensitive to the slope of the basic drainage functions, which enabled us to change the behavior with respect to generated discharges without affecting the computed groundwater levels very much.

Table 7.1 and Figs. 7.1 and 7.2 show the computed and measured discharges for the catchment areas of the Vecht in Overijssel and the Dieze in Noord-Brabant, respectively, for the years 1973 through 1976. The location of these areas is shown in Fig. 7.3. The model still seems to produce too much drainage in the Vecht during dry periods. In the Dieze area, the model seems to underpredict drainage somewhat in dry periods. During wet periods, the model computes discharges that are far larger than the ones observed. However, we can attribute this last observation to the fact that in times of high discharges, emergency drainage facilities were used, and the flows in these facilities were not added to the measurements.

Given the uncertainties that still surround the drainage computations and the fact that in most areas the computed water balances tend to underestimate shortages, special care should be taken in:

Predicting peak demands in the highlands.

		Ve	cht	Die	eze
Year	Month	Measured	Computed	Measured	Computed
1973	Jan	7.7	11.0	10.1	10.5
	Feb	30.0	26.2	21.8	28.7
	Mar	22.1	22.5	12.7	24.5
	Apr	23.3	19.8	17.9	23.6
	May	12.5	12.3	13.7	15.3
	Jun	0.5	6.3	7.5	9.4
	Jul	-0.8	7.9	4.5	11.6
	Aug	-0.6	4.6	4.4	3.7
	Sep	1.4	6.5	3.6	5.1
	Oct	9.1	7.6	8.2	6.5
	Nov	14.5	13.9	9.4	9.4
	Dec	39.9	36.8	18.8	24.8
1974	Jan	32.5	33.3	17.7	33.8
	Feb	28.2	27.7	22.4	47.6
	Mar	18.1	19.0	20.2	32.4
	Apr	1.0	10.7	8.5	19.4
	May	-1.8	9.8	8.2	15.6
	Jun	-2.0	6.1	5.3	9.5
	Ju1	0.3	5.4	7.0	7.0
	Aug	-1.0	1.5	7.0	3.9
	Sep	0.6	4.1	11.2	9.5
	Oct	7.9	13.8	20.0	20.7
	Nov	74.7	31.5	33.6	48.5
	Dec	58.0	56.2	30.7	78.1

Table 7.1 (continued)

		Ve	cht	Die	eze
Year	Month	Measured	Computed	Measured	Computed
1975	Jan	49.8	49.9	29.1	59.7
	Feb	32.1	35.7	24.5	40.1
	Mar	27.2	29.1	26.5	36.4
	Apr	29.1	31.2	23.3	32.9
	May	12.9	18.1	10.6	18.6
	Jun	0.2	12.2	9.8	18.0
	Ju1	-0.2	11.3	6.6	9.6
	Aug	-2.5	5.1	3.9	3.7
	Sep	-1.5	4.6	4.5	4.1
	0ct	-1.1	0.5	5.5	0.5
	Nov	-0.7	4.4	8.6	9.1
	Dec	2.4	5.4	9.9	6.5
1976	Jan	25.2	35.8	22.4	26.8
	Feb	22.4	20.9	16.5	19.9
	Mar	8.9	11.6	10.8	11.1
	Apr	0.2	4.1	8.2	5.0
	May	-3.2	3.7	5.5	4.9
	Jun	-1.5	1.2	2.5	1.2
	Ju1	-0.4	1.3	1.6	0.4
	Aug	-1.3	0.5	0.2	-1.8
	Sep	-0.7	2.3	2.8	2.9
	Oct	-2.4	1.2	3.4	2.2
	Nov	-1.3	2.4	5.2	7.7
	Dec	0.4	16.9	8.8	19.7

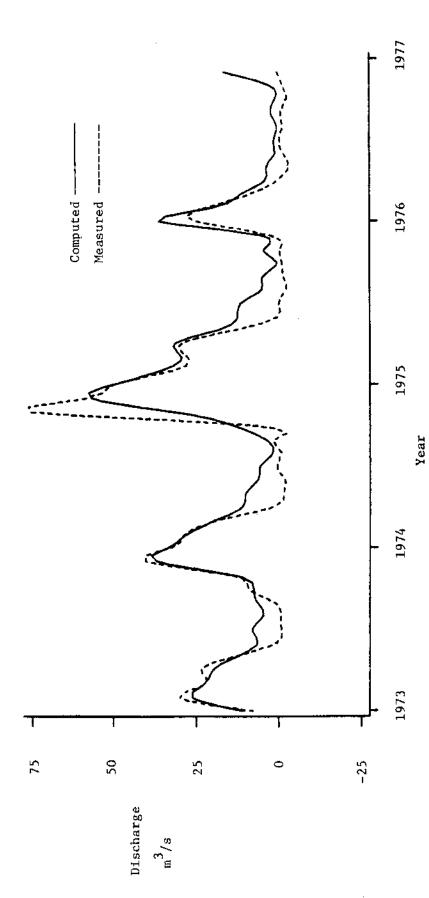


Fig. 7,1--Comparison of measured and computed discharges of the Vecht, 1973-1976

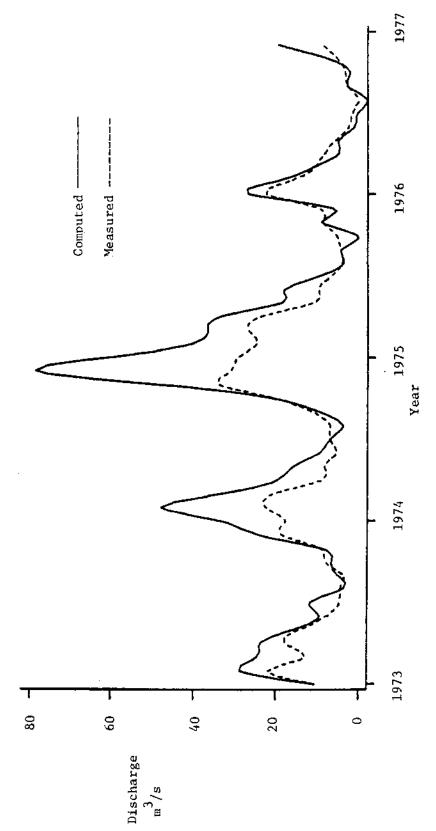


Fig. 7.2--Comparison of measured and computed discharges of the Dieze, 1973-1976

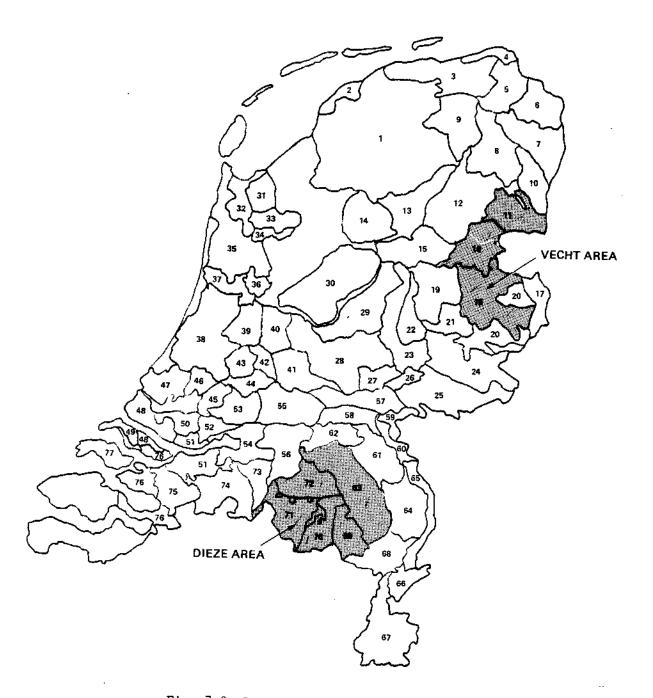


Fig. 7.3--Location of the Vecht and Dieze areas

- Evaluating highlands policies when demands are low.
- Determining impacts of highlands policies on groundwater levels and river discharges.

Some sensitivity analysis has been carried out for the basic drainage functions, which we discuss in Sec. 7.4.

We should emphasize that the measured and computed water flows in both the lowlands and the highlands are subject to some degree of uncertainty. Moreover, in the highlands it is difficult to match the actual watersheds with PAWN districts. Therefore, discrepancies between computed and measured flows might be observed even if the models did a perfect job.

<u>Water Flows in the Lowlands</u>. Measurements were available for four lowlands regions:

- Rijnland
- Friesland/Groningen
- Flevoland
- Schermerboezem

The districts comprising these regions are shown in Fig. 7.4.

In Rijnland, we had seven years of observations (1970-1976). The computed and measured flows matched reasonably well for the years 1972 through 1976. The overall annual discrepancies were always smaller than 1.5 m³/s with an average annual (absolute) flow on the order of 15 m³/s. Moreover, both the average annual discrepancies and the discrepancies by decade had varying signs, so there does not seem to be any systematic error. The match between computed and measured flows was not as good for 1970 and 1971, but it was later discovered that some measured flows were subject to big errors in those years. Table 7.2 and Fig. 7.5 show the measured and computed discharges for Rijnland for the years 1973-1976. The match is generally reasonable. Water shortages in 1973, 1974, and the slightly dry year 1975 are predicted well, although sometimes overestimated just a little. The peak shortages in the extremely dry year of 1976 are underestimated to a large degree. The main reason for this underestimate is that the levels of the ditches were raised in the summer, which caused an extra temporary demand. Because DISTAG always treats the water volume as fixed, it does not reflect this situation. (A rise of 20 cm over a period of a month in Rijnland roughly corresponds to a water flow of $5 \text{ m}^3/\text{s.}$)

In Friesland and Groningen only two years of data were available, 1975 and 1976. The comparisons between measured and computed data are given in Table 7.3 and Fig. 7.6. As with Rijnland, the match is reasonable. Again, we find that shortages are predicted well in 1975, but underestimated in 1976 because of the raised water levels in summer. Because of the large water areas in Friesland and Groningen, the raised levels account for considerable extra demand.

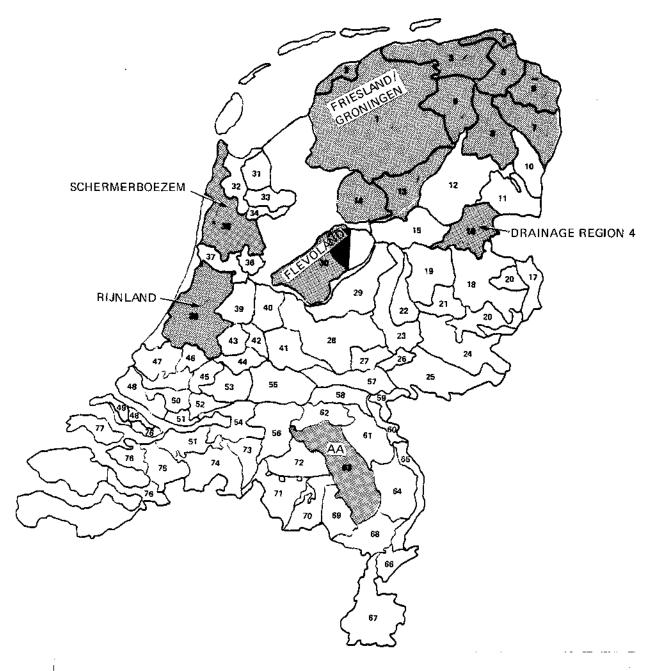


Fig. 7.4--Location of Rijnland, Friesland/Groningen, Schermerboezem, Flevoland, and drainage region 4

Table 7.2

MEASURED AND COMPUTED DISCHARGES FOR RIJNLAND (m³/s)

Year	Month	Measured	Computed
1973	Jan	8.1	5.0
	Feb	22.8	18.6
	Mar	6.1	3.8
	Apr	6.1	5.0
	May	4.5	2.7
	Jun	-5.4	-3.8
	Jul	-0.1	0.1
	Aug	-6.4	- 3.5
	Sep	8.2	5.0
	Oct	28.5	20.9
	Nov	23.8	28.0
	Dec	28.5	24.6
1974	Jan	17.6	17.6
	Feb	15.5	12.4
	Mar	13.1	13.6
	Apr	- 3.7	-2.5
	May	-1.5	-4.3
	Jun	-1.2	-2.9
	Jul	3.3	0.0
	Aug	-0.6	-0.5
	Sep	14.2	16.5
	Oct	51.9	48.8
	Nov	35.5	36.6
	Dec	32.4	28.7

Table 7.2 (continued)

Year	Month	Measured	Computed
1641	HOHEH	neasured	Compaced
1975	Jan	30.3	28.9
	Feb	10.1	8.2
	Mar	17.5	20.3
	Apr	16.9	13.3
	May	-2.4	-2.7
	Jun	-0.9	-2.0
	Jul	-4.5	- 5.0
	Aug	-6.3	-4.6
	Sep	4.1	2.4
	Oct	1.9	-0.4
	Nov	16.1	19.9
	Dec	13.4	12.0
1976	Jan	24.2	29.7
	Feb	11.4	5.2
	Mar	3.9	3.5
	Apr	-3.4	-2.6
	May	-6.9	-6.9
	Jun	-7.0	-7.3
	Ju1	-15.3	-9.7
	Aug	-13.8	-8.3
	Sep	6.2	3.9
	Oct	5.9	2.2
	Nov	7.6	5.5
	Dec	20.7	25.6

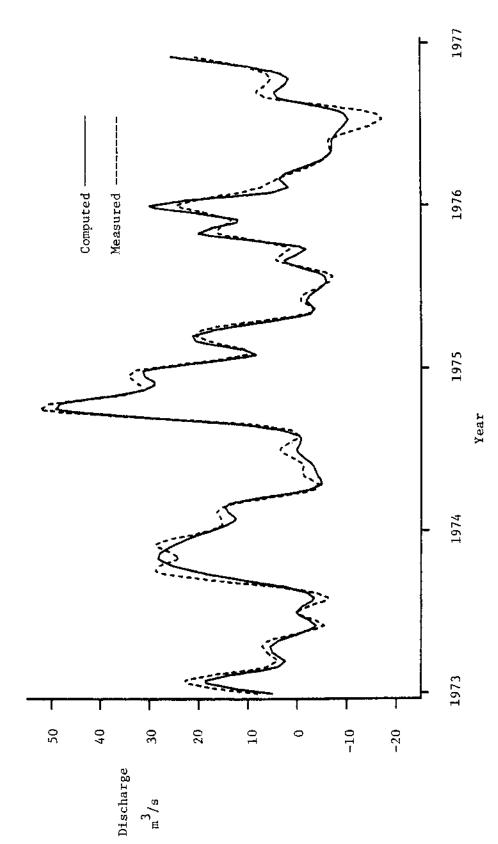


Fig. 7.5--Comparison of measured and computed discharges from Rijnland, 1973-1976



Fig. 7.6---Comparison of measured and computed discharges from Friesland/Groningen, 1975-1976

Table 7.3

MEASURED AND COMPUTED DISCHARGES
FOR FRIESLAND/GRONINGEN
(m³/s)

Year	Month	Measured	Computed
1975	Jan	180.8	116.3
	${f Feb}$	83.4	81.6
	Mar	60.3	57.8
	Apr	84.4	80.6
	May	32.9	36.0
	Jun	-6.2	-1.9
	Ju1	0.5	-4.4
	Aug	-17.7	-20.2
	Sep	4.4	-3.3
	Oct	8.1	1.8
	Nov	44.4	77.4
	Dec	82.6	91.2
1976	Jan	181.1	223.1
	Feb	108.7	73.2
	Mar	32.0	27.4
	Apr	-7.6	1.8
	May	-10.6	-7.8
	Jun	-20.1	-23.8
	Ju1	-54.1	-28.4
	Aug	-44.7	-25.7
	Sep	-2.4	-6.1
	Oct	8.6	-2.3
	Nov	21.3	17.0
	Dec	90.5	153.0

In Flevoland the computational results are greatly affected by the assumed rates of seepage. The observed discrepancies between computed and measured flows could have been eliminated if we had slightly changed the seepage rates and the fraction of seepage directly flowing into the surface water. Because the amount of seepage and the phenomena related to seepage flows are subject to a great deal of uncertainty, there is no reason to question the model's basic behavior because of these discrepancies, although perhaps the input data could have been improved.

In Schermerboezem the measured discharges were always substantially greater than the ones computed by DISTAG. On the basis of rough annual water balance computations, it appears that the measured data are not consistent. However, discussions with the local experts failed to turn up any explanations for these inconsistencies.

After examining these lowlands discharges, we believe that DISTAG computes lowlands water flows with sufficient accuracy for PAWN. However, as the example of Schermerboezem shows, there is always the possibility of substantial discrepancies at some locations, caused by the omission of specific conditions or erroneous inputs.

7.3.2. Salinity Calculations

The salt concentrations observed in national and regional waters result from complicated interactions among the many parts of the system. The only meaningful way to compare calculated salt concentrations with measured ones is to look at the results of the Distribution Model, which deals with interactions between districts and the distribution system. We compared the situation observed in 1976 with that predicted by our models. The match seemed reasonable with respect to

- The overall picture of salty and less salty regions.
- Salt concentrations at nodes and districts.

However, these findings are based on rough indications rather than solid comparisons. There are a number of reasons why a more thorough validation could not be carried out:

- The model's level of aggregation is not appropriate for localized aspects of salinity.
- Measurements are often done at specific locations that are not representative of larger parts of the system.
- Parts of some boezems are associated with nodes of DM, whereas other parts and polder waters are associated with district water. Therefore computed salt concentrations are not always comparable with measurements.

 Measured data are very sparse in time, while salt concentrations may vary considerably over time.

In Figs. 7.7 and 7.8 we compare measured and computed chloride concentrations for the districts Delfland and Rijnland for the year 1976. In Delfland, measured data were available for a few months of the summer [7.2], for both the entire boezem of Delfland and for the Westland area separately. Westland is the most important glasshouse area in the Netherlands. We compare the measured values with computed ones for both the district and the DM node that represents Delfland. As can be seen in Fig. 7.7, the order of magnitude is roughly the same.

For Rijnland we also compared the measured boezem chloride concentration [7.3] with the computed concentrations for both the district and the DM node. As Fig. 7.8 shows, computed chloride concentrations are lower in the first part of the summer half-year and quite a bit higher in the second part. The overall averages are roughly the same. Within the limitations mentioned above, we believe the model results agree reasonably with actual measurements.

7.3.3. Crop Damage

For reasons outlined in Sec. 7.1, it is not possible to make any direct comparisons between computed and observed crop damage. We compared our model to the "real world" by considering more global information.

It was never our aim to have models that accurately predict <u>absolute yields</u>. Instead, we wanted a flexible instrument to estimate agricultural <u>damages</u> caused by <u>changes</u> in the quantity and/or quality of available water. Such damages are computed by <u>comparing</u> yields in different situations. Hence it can be expected that systematic errors cancel when numbers that reflect two different situations are subtracted. We will discuss drought damage and salt damage separately.

<u>Drought Damage</u>. We paid the most attention to (very) dry years, in which substantial crop damage occurred, especially 1976 because it is the most extreme and recent year. From some general literature and information [7.4-7.7], we learned:

- In 1959 the average yield reduction of arable crops was around 12 percent.
- In 1959, in the driest part of the country, yield reductions were around 35 percent.
- In 1976, in the peat areas of Groningen and Drenthe yield reductions for arable crops (mostly milling potatoes) were around 30 percent.

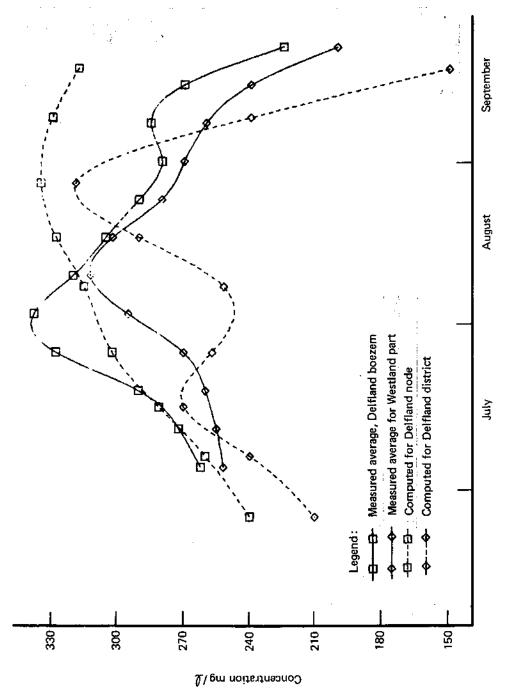
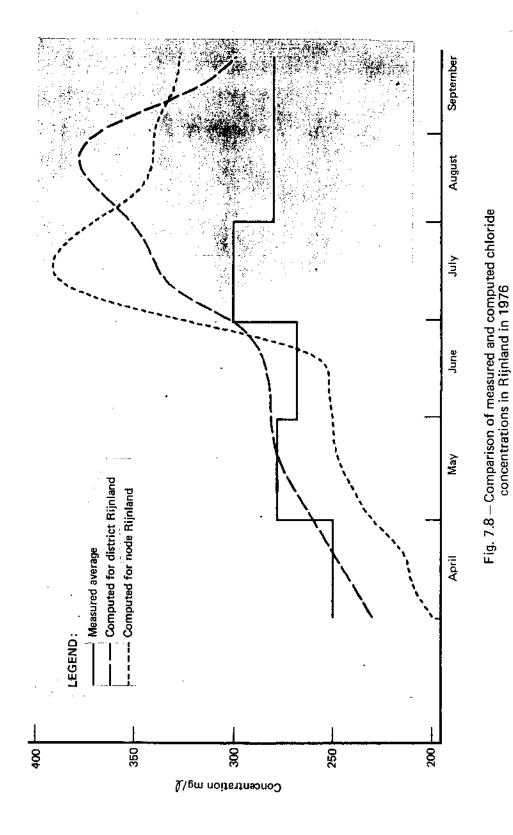



Fig. 7.7 – Comparison of measured and computed chloride concentrations of Delfland in 1976

- In 1976 there was "quite some" damage to fodder crops (grass, cut corn) and considerable damage to milling potatoes. Consumption potatoes suffered less damage, and seed potatoes still less. Cereals and sugar beets suffered damages on sandy soils, but sometimes there was an above normal production on clay soils. This latter observation is consistent with the experience in other dry years.
- In 1976, at some critical locations, crops were destroyed completely.

There are two problems involved in comparing estimates of our model with actual observations:

- Observed damages are expressed as comparisons with the "normal" situation, yet even in the "normal" situation some damage will occur.
- In dry years, there is generally more sun, and therefore the potential production of certain crops may be higher, even if the drought damage is higher too.

Here is an example involving these two problems:

Suppose "normally" 10 percent of the potential yield is damaged, and in some dry year, 40 percent of the potential yield is damaged. Suppose further that in the dry year the potential production is 125 percent of the potential production in the normal year. Then the observed damage (i.e., the difference between the observed production of the two years, normal and dry), expressed as a percentage of "normal" yield, is

```
(100 - 0.1 \times 100) - (125 - 0.4 \times 125) = 15 \text{ percent.}
```

We ran DM for the years 1967, 1959, and 1976. We adjusted the computed damages using the procedure illustrated in this example, assuming:

- 1967 was a "normal" year.
- Potential production in 1959 was 20 percent above normal.
- Potential production in 1976 was 25 percent above normal.

Using these rather crude assumptions, we computed the following yield depressions for arable crops:

For 1959:

Consumption potatoes
Milling potatoes
Seed potatoes
Sugar beets
Cut corn
Cereals

1 percent
24 percent
10 percent (increase in production)
7 percent
23 percent
2 percent

• For 1976:

Consumption potatoes
Milling potatoes
Seed potatoes
Sugar beets
Cut corn
Cereals

16 percent
40 percent
40 percent
(increase in production)
9 percent
46 percent
11 percent

These observations are not inconsistent with our general impression of the actual situation. For milling potatoes and cut corn the calculated damages seem high. (High calculated damages were also observed for some other crops.) The model indicates that in 1976 in a number of highlands districts some crops were almost totally destroyed. In fact, crops were occasionally destroyed totally in 1976, but never on really large areas. Hence, we feel the model probably overestimates damage, at least for some crops at some locations.

<u>Salt Damage</u>. Open-air crops do not generally suffer salt damage, because

- Most open-air crops are not very sensitive to salt.
- Salt brought into the root zone by sprinkling (the main source of salt) is diluted and flushed out by rain.

Glasshouse crops do suffer salt damage, because they <u>are</u> very sensitive to salt, and salt is <u>not</u> diluted and flushed out by rain. As a rough indication of this fact, the Experimental Station for Crops under Glass at Naaldwijk has estimated that in an average situation about 10 percent of the potential annual yield of glasshouse crops is damaged by salt in the midwestern part of the Netherlands.

Except for a few specific locations, where the salt concentration of the seepage water is very high, our model predicts very little salt damage to open-air crops. The model predicts that about 10 percent of the glasshouse crops are damaged by salt in normal and moderately dry years, and around 15 to 20 percent are damaged in an extremely dry year (like 1976). These results indicate that our model seems to be sufficiently accurate for PAWN.

7.3.4. Groundwater levels

Table 7.4 and Fig. 7.9 give a comparison between observed and computed groundwater levels for the "high" part of drainage region 4, for the years 1973-1976. The location of this region is shown in Fig. 6.1. The computations were based on the basic drainage functions described in Sec. 7.3.1. The match between computed and measured groundwater levels is reasonable, despite the changes to these functions. The discrepancies are on the order of 5 to 15 cm, while the match over time looks fairly close. Overall, the computed groundwater depths tend to be a little higher (i.e., further below the soil surface) than the observed ones.

7.4. SENSITIVITY OF RESULTS

Uncertainties in the model that could not be resolved by comparing its estimates with actual measurements have been examined by testing the sensitivity of its predictions to assumptions. The specific areas reported in this section are:

- The capillary rise iteration scheme
- The empirical capillary rise function
- The groundwater function
- Basic drainage functions
- Damage model parameters

7.4.1. The Capillary Rise Iteration Scheme

In Sec. 5.3.4 we described the iteration scheme used to compute water flows in a plot when capillary rise is positive. In our scheme, we always stopped after three iterations. An alternate would have been to continue the iterations until the flows stabilized (e.g., until capillary rise in successive iterations differed by less than, say, 0.1 mm/day).

An earlier implementation of the model used this alternative iteration scheme. The number of iterations depended mainly on the starting value given to capillary rise. During changing weather conditions (spring or fall), it was difficult to find good estimates, and it often took many iterations until stable values were reached. We found, however, that if we stopped after three iterations regardless of how much the estimate of capillary rise was changing, the resulting "error" did not affect the aggregated results of the model. An overestimate of capillary rise in one timestep leads to a bigger subsoil deficit, a deeper groundwater level, and a decrease in root zone suction. The deeper groundwater level and decrease in root zone suction leads to a lower capillary rise in the next timestep. Thus, an "error" in one timestep is compensated for in the next. Moreover, these "errors" happen mainly in the spring, and during that period there is normally enough water stored in the root zone so that plants

Table 7.4

MEASURED AND COMPUTED GROUNDWATER
LEVELS IN DRAINAGE REGION 4
(mm)

Year	Month	Measured	Computed
1973	Jan	2720	2499
	Feb	2405	2259
	Mar	2363	2343
	Apr	2370	2347
	May	2517	2508
	$_{ m Jun}$	2660	2564
	Jul	2740	257 0
	Aug	2548	2578
	Sep	2765	2601
	0ct	2485	2677
	Nov	2242	2412
	Dec	2065	2076
1974	Jan	2145	2090
	Feb	2247	2212
	Mar	2320	2382
	Apr	2570	2479
	May	2632	2511
	Jun	2660	2557
	Ju1	2620	2681
	Aug	2655	2741
	Sep	2630	2753
	Oct	2430	2550
	Nov	2156	2187
	Dec	1915	1698

Table 7.4 (continued)

Year	Month	Measured	Computed
1975	Jan	1772	1780
	Feb	1935	2052
	Mar	2158	2185
	Apr	2183	2196
	May	2073	2391
	Jun	2323	2451
	\mathtt{Jul}	2392	2463
	Aug	2420	2514
	Sep	2540	2663
	Oct	2560	2755
	Nov	2588	2761
	Dec	2510	2745
1976	Jan	2188	2159
	Feb	2118	2323
	Mar	2423	2539
	Apr	2453	2637
	May	2538	2653
	Jun	2560	2664
	Jul	2595	2669
	Aug	2595	2667
	Sep	2678	2679
	0ct	2833	2729
	Nov	2825	2754
	Dec	2698	2457

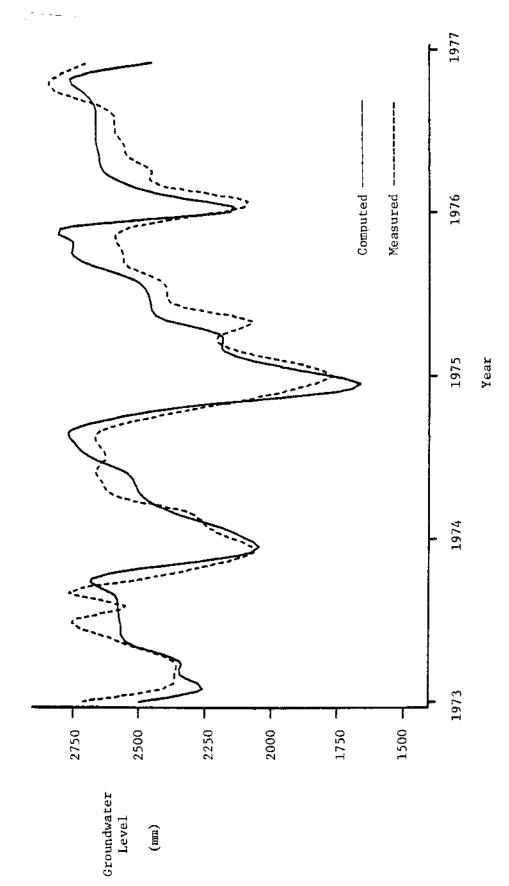


Fig. 7.9--Comparison of measured and computed groundwater levels for high highlands part of drainage region 4

do not suffer drought damage anyway. Thus the damage calculations of the model are not affected by this simplification of our model.

Two examples illustrating the differences between the full iteration scheme and the limited one actually used in the analysis are given in Table 7.5.

7.4.2. The Capillary Rise Function

To reduce computational costs, we derived a formula that gives the capillary rise as a function of the root zone suction and groundwater level. The formula is described in Sec. 5.3.2. The alternative to using the formula is also described in Sec. 5.3.2--this alternative involves solving a complicated nonlinear equation.

The simple formula gives values that are within 0.05-0.1 mm/day of the complicated alternative. This difference is small enough for most purposes, but in some cases it makes a difference, especially:

- During extremely dry periods in the lowlands.
- When the groundwater level is deep (more than 150 cm from the soil surface).

During dry years the capillary rise is of vital importance for the lowlands. Even a slight change in the estimated capillary rise causes a big change in the estimated damage. In Rijnland, for example, the simple formula overestimated the capillary rise by about 10 mm for a plot containing potatoes in 1959. This overestimate caused a decrease in damage from 20.1 percent to 17.6 percent.

Such an effect, however, is very local. Differences as large as these are not seen when looking at results derived from larger areas, containing a mix of crops, soil types, landforms, etc.

The ability to use either the simple formula or the alternate computation scheme allows the user of DISTAG to choose the more accurate scheme when considering local matters.

The problem associated with deep groundwater levels is discussed next.

7.4.3. The Groundwater Function

In comparing the simple capillary rise function with the more complicated alternative for highlands districts, we found big differences. These differences involved groundwater levels and drainage, not capillary rise itself or crop damage. In PLOTWAT calculations, the groundwater level depends among other things on capillary rise (see Sec. 5.3), and for some soil types the computed groundwater level is very sensitive to small changes in capillary rise when the ground-

Table 7.5

DIFFERENCES BETWEEN FULL ITERATION AND LIMITED ITERATION SCHEMES
FOR CAPILLARY RISE COMPUTATIONS FOR THE YEAR 1976,
IN RIJNLAND AND AA

		Ful1	Limited	
District	Variable	Iteration	Iteration	Difference
RIJNLAND	E _A /E _P	75.4%	75.6%	- -
	Shortage	168.0 mm	166.9 mm	
	Survival fract.	0.44	0.44	
	% damage	28.2%	28.3%	
	Damage	33.75 Dflm	33.80 Dflm	0.16%
	Discharge/decade		~ ~	<.2 m ³ /s
AA	E _A /E _P	64.8%	64.7%	
	Shortage	114.3 mm	113.9 mm	
	Survival fract.	0.26	0.26	
	% damage	39.3%	40.2%	- -
	Damage	93.71 Dflm	93.79 Dflm	0.08%
	Discharge/decade			<.1 m ³ /s
				

NOTE: The first four variables in each district summarize what happened to a grass plot lying in the district. The last two variables summarize what happened to the entire district.

Table 7.6

THE SENSITIVITY OF GROUNDWATER LEVEL TO CAPILLARY RISE FOR LOAMY MEDIUM COARSE SAND

Capillary Rise	Groundwater Level	
	Subsoil	Subsoil
	Deficit 100 mm	Deficit 200 mm
0.06 mm/day	1319 mm	1862 mm
0.03	1410	2043
Difference	91 mm	181 mm

water level is deep. An example is given in Table 7.6 where ground-water levels are computed for different values of capillary rise and subsoil deficit. As it turns out, a change in capillary rise of only 0.03 mm/day results in a drop in the groundwater level of nearly 20 cm.

In the highlands, a small change in the groundwater level may lead to a big change in drainage. For example, in the district Aa (see Fig. 7.4), located in drainage region 13, if the groundwater level below the soil surface is increased by 10 cm, then the drainage from that district will decrease by almost $2 \text{ m}^3/\text{s}$.

A small difference in capillary rise of 0.03 mm/day as given in the example should not have such a large effect on groundwater level. That it does in our model is caused by our assumption that steady state conditions hold. When the groundwater level is deep, it takes much longer than the ten-day timestep used in our analysis for steady state conditions to occur. Future implementations of PLOTWAT should take this problem into consideration. A solution might be to make groundwater level computations in the high highlands (where deep groundwater levels are found) independent of capillary rise.

7.4.4. Basic Drainage Functions

In our discussion of the water flow computations for the highlands (in Sec. 7.3.1), we noted that in some places we computed more drainage than is actually observed. We experimented with a different set of basic drainage parameters to learn about the extent to which drainage is affected by changes in these parameters.

In our experiment, we defined a set of drainage parameters with these properties:

- When the average annual groundwater level is used, the average annual rain surplus (average rain minus average actual evapotranspiration) drains out.
- The slope is twice as steep as the ones originally used.

Using these experimental parameters, we should observe the same annual drainage, but the variation over the year will be increased. We will observe more drainage when groundwater levels are high (spring and fall), but less in summer. Problems associated with drought will increase.

In Table 7.7 and Fig. 7.10 we compare actual measurements, with estimates using the original drainage parameters and the experimental ones for the Vecht area in Overijssel, for the years 1973 through 1976. We see that the experimental parameters do a better job in predicting low discharges, and the high discharges are more pronounced.


Table 7.7

MEASURED AND COMPUTED VECHT DISCHARGES FOR TWO VERSIONS OF BASIC DRAINAGE FUNCTIONS (m³/s)

			Comp	uted
Year	Month	Measured	Old Parameters	New Parameters
1973	Jan	7.7	11.0	7.1
	Feb	30.0	26.2	30.9
	Mar	22.1	22.5	24.7
	\mathtt{Apr}	23.3	19.8	19.4
	May	12.5	12.3	9.0
	Jun	0.5	6.3	1.8
	Ju1	-0.8	7.9	3.5
	Aug	-0.6	4.6	0.4
	Sep	1.4	6.5	3.3
	Oct	9.1	7.6	12.4
	Nov	14.5	13.9	26.7
	Dec	39.9	36.8	47.3
1974	Jan	32.5	33.3	35.6
	Feb	28.2	27.7	25.8
	Mar	18.1	19.0	16.5
	Apr	1.0	10.7	6.3
	May	- 1.8	9.8	4.8
	Jun	-2.0	6.1	2.9
	Jul	0.3	5.4	3.9
	Aug	-1.0	1.5	0.6
	Sep	0.6	4.1	3.7
	0ct	7.9	13.8	18.9
	Nov	74.7	31.5	38.9
	Dec	58.0	56.2	66.4

Table 7.7 (continued)

-				
			-	outed
Year	Month	Measured	Old Parameters	New Parameters
1975	Jan	49.8	49.9	52.3
	Feb	32.1	35.7	35.8
	Mar	27.2	29.1	24.3
	Apr	29.1	31.2	33.5
	May	12.9	18.1	12.8
	Jun	0.2	12.2	5.2
	Jul	-0.2	11.3	5.9
	Aug	-2.5	5.1	2.4
	Sep	-1.5	4.6	3.6
	0ct	-1.1	0.5	0.0
	Nov	-0.7	4.4	4.4
	Dec	2.4	5.4	9.8
1976	Jan	25.2	35.8	45.2
	Feb	22.4	20.9	23.3
	Mar	8.9	11.6	7.5
	Apr	0.2	4.1	0.5
	May	-3.2	3.7	1.0
	Jun	-1.5	1.2	-1.9
	Ju1	-0.4	1.3	-1.9
	Aug	-1.3	0.5	-2.3
	Sep	-0.7	2.3	0.7
	0ct	-2.4	1.2	1.1
	Nov	-1.3	2.4	3.0
	Dec	0.4	16.9	30.4

 $^3/s$

Fig. 7.10--Comparison of measured Vecht discharges with discharges computed using original, and new versions of the basic drainage parameters

The interesting question is what the effects are on computed groundwater levels and damages. In Table 7.8 and Fig. 7.11 we compare the observed and computed groundwater levels for drainage region 4 (see Fig. 6.1). We consider both versions of the basic drainage functions for the years 1973 through 1976. We observe that the performance of the new basic drainage function does not seem to be much worse than the original one. In general, the new basic drainage function shows a little less variation in low and high groundwater levels.

The effect of the experimental basic drainage parameters on computed damages is very small. The largest difference for any year in the entire Vecht area is less than 2 percent of the computed damages.

Looking at separate districts, we find that estimated water demands are still less than those actually observed, even in timesteps where the basic drainage is reduced to zero and hence is not contributing to supply. This means that the behavior of the basic drainage functions can only in part account for the local underestimates of demands. There must be other reasons to fully explain the observed discrepancies.

We conclude:

- Changing the slope of the basic drainage functions could improve estimates of generated discharges.
- The effect of this change on estimated groundwater levels would not be very great.
- Damage estimates are quite insensitive to changes in the basic drainage functions.
- The discrepancies in discharges from the highlands would only be partially resolved by adjusting the basic drainage functions.

7.4.5. Damage Parameters

In Sec. 4.4 we described the theoretical background of the damage model, and in Sec. 6.2.2 we explained how the estimates for the various damage parameters were obtained. The values of these parameters have a very direct influence on the computed potential agricultural benefits and hence on the results of the entire analysis. However, as was pointed out in Sec. 6.2.2, we are quite uncertain about the "correct" values of these damage parameters. Existing estimates in the form required for PAWN were hardly available. Many had to be assumed, and a validation based on real world observations was only possible to a limited extent. Therefore we need some insights into the effect of different assumptions on damage estimates, especially for the drought damage parameters. (The salt damage model is so simple that the effects of changing the parameters are obvious.)

Table 7.8

MEASURED AND COMPUTED GROUNDWATER LEVELS FOR DRAINAGE REGION 4 FOR TWO VERSIONS OF BASIC DRAINAGE FUNCTIONS (mm)

			Comp	outed
Year	Month	Measured	Old Parameters	New Parameters
1973	Jan	2720	2499	2548
	Feb	2405	2259	2322
	Mar	2363	2343	2476
	Apr	2370	2347	2445
	May	2517	2508	2574
	Jun	2660	2564	2612
	Jul	2740	2570	2614
	Aug	2548	2578	2615
	Sep	2765	2601	2621
	Oct	2485	2677	2497
	Nov	2242	2412	2327
	Dec	2065	2076	2215
1974	Jan	2145	2090	2310
	Feb	2247	2212	2423
	Mar	2320	2382	2510
	Apr	2570	2479	2576
	May	2632	2511	2587
	$\overline{\mathtt{Jun}}$	2660	2557	2589
	Jul	2620	2681	2607
	Aug	2655	2741	2644
	Sep	2630	2753	2636
	0ct	2430	2550	2438
	Nov	2156	2187	2246
	Dec	1915	1698	1995

Table 7.8 (continued)

			Computed	
Year	Month	Measured	Old Parameters	New Parameters
1975	Jan	1772	1780	2178
	Feb	1935	2052	2374
	Mar	2158	2185	2389
	Apr	2183	2196	2392
	May	2073	2391	2530
	Jun	2323	2451	2575
	Jul	2392	2463	2577
	Aug	2420	2514	2581
	Sep	2540	2663	2584
	Oct	2560	2755	2633
	Nov	2588	2761	2651
	Dec	2510	2745	2607
1976	Jan	2188	2159	2147
	Feb	2118	2323	2465
	Mar	2423	2539	2606
	Apr	2453	2637	2637
	May	2538	2653	2643
	\mathbf{Jun}	2560	2664	2647
	Ju1	2595	2669	2649
	Aug	2595	2667	2647
	Sep	2678	2679	2643
	Oct	2833	2729	2647
	Nov	2825	2754	2582
	Dec	2698	2457	2294

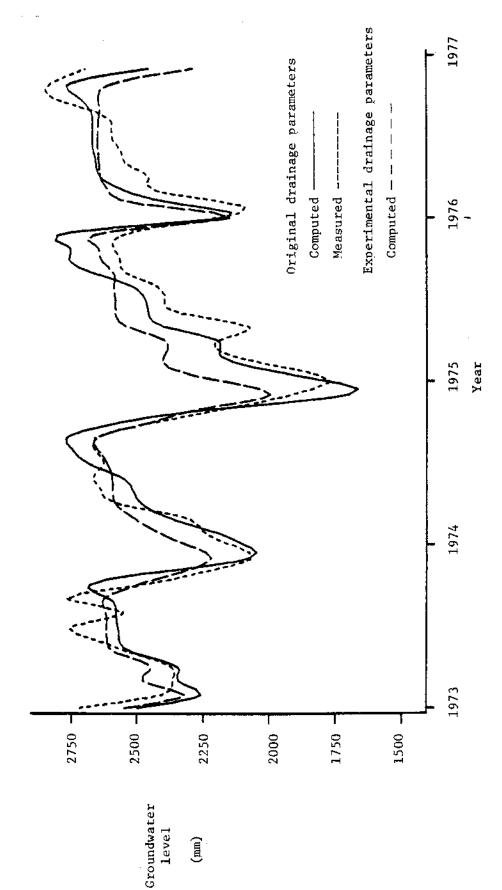


Fig. 7.11--Comparison of measured groundwater levels in drainage region 4

To this end, we made computations for years of different dryness, varying two essential parameters: reduction point (RP) and dying damage (DD). RP is the ratio of actual over potential evapotranspiration at which the slope of the drought damage curve is assumed to change (see Fig. 4.10). DD is the drought damage fraction at dying point (DP), which is the value of this ratio where the maximum drought damage in the timestep occurs (for decades, DP was set to zero). The original values for RP and DD were 0.6 and 0.7, respectively (see Sec. 6.2.2).

We experimented with RP values of 0.5 and 0.7, and DD values of 0.5 and 1.0, for three different years: an average year (1967), a moderately dry year (1943), and an extremely dry year (1976). Changing the DD value affects only the steeper part of the drought damage curve (beyond RP). Changing the value of RP (assuming the damage fraction at the shifted RP remains the same) affects both the steeper and less steep part of the curve (see Fig. 4.10). The results of these experiments are summarized in Table 7.9. They apply to a district in the province of Drenthe, containing a low highlands and a high highlands subdistrict, which was arbitrarily selected.

Table 7.9 shows--for each of the 15 cases (3 years and 5 variations on RP and DD)--the total drought damage as a percentage of total crop value and the percent change of the damage relative to the base case (with RP = 0.6 and DD = 0.7).

For the average year 1967, changing DD makes no difference at all. Apparently, the steeper part of the drought damage curve is never used. Changing RP, however, has quite an effect. There is a substantial reduction in damage if RP is set to 0.5. The increase in damage if RP is set to 0.7 is much greater, however. This is because the steeper part of the curve is now brought forward, so that it is actually used in the average year, causing a more than proportional increase in damage.

The same effects can be observed in the moderately dry year (1943). Changing DD, while RP remains 0.6, now starts to have a small effect, indicating that the steeper part of the curve is used to some extent. Changing RP now has a large effect, especially if RP is <u>increased</u>, because of the reason given above.

In the extremely dry year, the effect of changing DD is substantial. This is because the steeper part of the damage curve is much more used. Relatively, the effect of changing RP is less than in the moderately dry year. Because the absolute damage in the dry year is much greater, the damage computed for timesteps later in the growing season is very much influenced by damage in previous timesteps (the survival fraction). This has a stabilizing effect on the damage computations, because the potential contribution of subsequent timesteps to the total damage gradually decreases. The effect of changing the damage parameters under these extreme conditions is therefore limited.

Table 7.9
SENSITIVITY ANALYSIS OF DROUGHT DAMAGE PARAMETERS

	19	67	19	43	19	76
	(D.	50)	(D	10)	(D	EX)
Damage		Change		Change		Change
Parameters	Pct	from	Pct	from	Pct	from
RP DD	Damage	Base	Damage	Base	Damage	Base
0.6 0.7 (base)	6.1		17.0		45.2	
0.5 0.7	4.9	-19	12.7	-25	36.9	-18
0.7 0.7	8.0	+31	25.1	+47	52.5	+16
0.6 0.5	6.1	0	16.2	-4	39.8	-12
0.6 1.0	6.1	0	18.1	+6	52.0	+15

Table 7.10

SENSITIVITY OF DISTRICT WATER SALT CONCENTRATION AND SALT DAMAGE TO SUBSOIL DEPTH

				Subsoil	Depth		
		1000	mm	3000	mm	10000	mm
Salt	Concentration						
1973	Minimum	163	mg/l	162	mg/1	162	mg/l
	Average	217		212		209	
	Maximum	277		258		209	
1974	Minimum	194		186		181	
	Average	257		250		245	
	Maximum	288		286		282	
1975	Minimum	185		179		175	
	Average	221		236		240	
	Maximum	245		272		280	
1976	Minimum	208		190		179	
	Average	266		253		246	
	Maximum	310		298		292	
Salt	Damage						
	-0-	10000			D. 6.1	1 (0 0 0	D. 6.1
1973		48030	Dflm	47258		46983	Dflm
1974		88033		84200		82256	
1975		79483		86078		87398	
1976		95745		93727		92306	

We conclude:

- Changing DD causes very little change in damage estimates except in extreme droughts, when the effect is only moderate.
- Changing RP causes fairly large changes in damage estimates, especially in moderately dry years.

There is some uncertainty about DD, as it reflects the behavior of crops under serious drought conditions over relatively small timesteps, while DISTAG is probably too aggregated for this purpose. We see, however, that this parameter does not seem to be the most critical element.

The values for RP and the associated reduction damage fraction (RD) are not so uncertain. Changing RP to 0.5 means that drought damage would be 40 percent if $\rm E_A/E_D$ were 0.5 for the entire growing

season. Similarly, changing RP to 0.7 means that drought damage would be 40 percent if $E_{\Delta}/E_{\rm p}$ were 0.7 for the entire growing season.

We believe that the actual drought damage is clearly within those bounds. The largest error would be made if RP is indeed greater than 0.6, which would increase damage substantially. However, the results of the damage model indicate that computed damages are high rather than low. Hence the error is more likely to be in the other, less sensitive, direction.

7.4.6. Active Volume of Subsoil

The active volume of the subsoil that is used in the salinity computations is expressed by a subsoil depth that indicates the layer of soil holding the active volume. For lowland areas this subsoil depth is more or less arbitrarily set equal to 1000 mm. Such a relatively shallow mixing zone causes the subsoil salt concentration to respond fairly quickly to changes in salt inflows and outflows. The sensitivity of computed salt concentrations and damages to this assumption was tested by comparing DISTAG calculations for Rijnland with subsoil depths of 1000, 3000, and 10,000 mm for the years 1973 through 1976. As Table 7.10 shows, the differences in average salt concentrations and salt damages are moderate. The differences are always below 10 percent and usually considerably below. We should remark that the absolute numbers in this example are not realistic. The computations were based on a constant salt concentration of the inlet water equal to 200 mg/l and not on the actual salt concentrations of these waters for these particular years.

NOTE

1. <u>Studiecommissie Waterbehoefte Land- en Tuinbouw</u> (Study Committee for Water Demands by Agriculture and Horticulture).

REFERENCES

- 7.1. Rijtema, P. E., <u>Soil Moisture Forecasting</u>, Report 513, ICW, Wageningen, 1969.
- 7.2. Beraadsgroep Watervoorziening 1971, <u>Jaarverslag 1976</u>, <u>Deelrapport 5, Hoogheemraadschap van Delfland</u> (Annual Report of the Delfland Waterboard for 1976, Part 5).
- 7.3. Beraadsgroep Watervoorziening 1971, <u>Jaarverslag 1976</u>, <u>Deelrapport 4</u>, <u>Hoogheemraadschap van Delfland</u> (Annual Report of the Delfland Waterboard for 1976, Part 4).
- 7.4. v.d. Berg, C., Enige Landbouwkundige Aspekten an de Droogte in 1959 (Some Agricultural Aspects of the Drought of 1959), Committee for Hydrological Research, T.N.O., Proceedings and Information No. 7, Proceedings of the Technical Meeting 16, The Hague, 1962.
- 7.5. Provinciale Waterstaat van Groningen, Letter with comments about water shortages and damages in peat areas of Groningen and Drenthe, Groningen, September 1979.
- 7.6. Landbouw Ekonomisch Instituut, <u>Bedrijfsuitkomsten in de Landbouw Boekjaren 1973/74 t/m 1976/77</u> (Farming Results in Agriculture--Financial Years 1973/74 through 1976/77), Publication 3.78, The Hague, 1978.
- 7.7. Landbouw Ekonomisch Instituut, <u>Van Bedrijfsuitkomsten tot</u>
 <u>Financiele Positie</u> (From Farming Results to Financial
 Position), Publication 3.82, The Hague, 1978.

Appendix A

DETERMINATION OF CROP PRICES

by N. A. Katz

In Sec. 6.2.2 we briefly mentioned that crop values for an average year, and for an extremely dry year were obtained from actual data, and that values for years of other dryness were obtained by interpolation. This appendix describes our data and explains the interpolation technique.

A.1. INTRODUCTION

In DISTAG, agricultural damages are determined in a relative way, i.e., they are expressed as a fraction that indicates the reduction of potential yield on a per hectare basis. In order to convert these fractions into financial terms, we need to establish a money value per hectare of crop. (We call this value a price in most of this volume.) The values of most crops vary from one year to the next due to changes in production levels in countries participating in the same market and related market responses. The relations involved here are complex, and there are so many dimensions to this problem that results are in fact unpredictable. Yet there seems to be a significant relation between the value of certain crops and the dryness of the year, where the value tends to increase as the year gets drier. We attempted to take this phenomenon into account by associating different crop values with years of different dryness, i.e., years with a different external supply scenario. The method that was used will be described in this appendix. It is based on the following principle. We estimated crop values for an average and an extremely dry year, based on market observations of recent years (1975 and 1976). Crop values for years of different dryness were then obtained by interpolation, using a weighted average drought damage fraction as an index to characterize the dryness of the year. In Sec. A.2 we will explain how the values for the average and extremely dry year were obtained. Section A.3 describes how the interpolation was done. Section A.4 summarizes the final results for the years that were actually used in the analysis.

Two remarks should be made at the outset. First it must be made clear that this procedure is only a very crude approximation of what might happen in reality. Its main merit is that a number of crop value scenarios are obtained that are somehow consistent and that are probably more realistic than a single set of average values.

Second, there may be a difficulty in interpreting these results. Because of the way they are used, the numbers that are determined should be regarded as potential crop values per hectare. There are in fact two reasons why these potential values may vary for different years:

- Changes in crop prices.
- · Changes in potential physical yield.

These two effects are closely connected. To the extent that high potential yields result in actually higher yields, they may adversely affect prices because of an increase in supply. On the other hand, in years where severe drought damage occurs, prices may rise, while in the same time potential yields are high. Potential crop values in that case are favorably affected by both phenomena. The values for the average and extremely dry year were based mainly on market observations of prices. Given the uncertainties about potential yield changes and the way they interact with prices, we made no explicit assumptions about these matters. As a result, there may be some inconsistencies in our estimates. We recommend that these topics be subject to further study.

A.2. CROP VALUES FOR AN AVERAGE AND AN EXTREMELY DRY YEAR

Crop values for an average year were based on the year 1975, as it was the most recent and a more or less normal (although a little dry) year. We chose a fairly recent, rather than an earlier year, so that there would be less change in the structure of prices over the different crops between then and now. To determine the measure per hectare, we divided the total production values for each of the 13 crop types considered by the total area occupied by each crop type. Total values were meant to reflect production values to the farmers and were based on various statistics [A.1, A.2, A.3, A.4]. Unfortunately, the information was not always readily available or it was ambiguous. The main difficulties were:

- Production values are sometimes given by calendar year, sometimes by book year (e.g., May to May).
- Sometimes they represented producer's prices (e.g., bulbs, trees, arable crops) and sometimes market prices.
- Production values are mostly based on auction supplies only (e.g., vegetables, flowers, fruits), ignoring those sold elsewhere and, thus underestimating total production.
- Little information was available for crop types that are not normally sold in markets (e.g., grass).

To supplement published information, we consulted several crop-raising and pricing handbooks [A.5, A.6], and we met with a number of farm experts from the Ministry of Agriculture and the Agricultural Economics Institute (LEI).

Finally, to reflect the fact that actual yields were necessarily less than potential yields, we increased our price (value) estimates by 10 percent. This increase of 10 percent is not completely arbitrary, since the yield from horticulture under glass in the midwest of the Netherlands is about 10 percent less than potential yield due to salt damage. The values obtained in this way represent our best guess concerning the potential crop values for an average year. An overview of these values is given in Table 6.9.

For the extremely dry year, we based our estimates on observations of market conditions in 1976, which is the driest year in our 50-year data base. The main sources were Refs. A.3 and A.4 and personal correspondence with LEI. We based our estimates on 1976 data, but did not attempt to replicate 1976 prices. We tried to construct a set of realistic scenario assumptions about market conditions in an extremely dry year. We considered each crop type separately, but in several instances common assumptions were adopted.

Grass and Cut Corn. We based the value of these crops on the cost of substitute fodder, a cost that increases substantially in dry years. We obtained estimates of 0.60 Dfl per starch unit in the average year and 1.00 Dfl in the extremely dry year. So we multiplied our average-year value estimate by a factor of 1.67 to represent the dry year.

Consumption Potatoes and Seed Potatoes. These are major export crops for the Netherlands. Historically, prices have been cyclic. Analysis of data for the last 20 to 25 years indicates a three-year cycle, with two years of low prices followed by one year of high prices. But that pattern has been occasionally interrupted by the intervention of a very dry year. In 1976, which historically should have been a low-priced year, prices were higher than ever before, substantially higher than in 1975, the most recent high-priced year. If the 1976 dryness had occurred during a year when the price of potatoes was expected to be high, there is no estimate of how high the price would have risen.

Our average-year prices for potatoes reflected the three-year cycle. We set that price one-third of the way between the historical trend for low-priced and high-priced years, as they would be expressed in 1975 Dfl. Then we desired to use the same procedure for the dry-year price, so we computed the relation between the actual 1976 (marketwide average) price and the trend of the low-priced-year prices expressed in 1976 Dfl. This yielded a factor of 1.63 for consumption potatoes and 1.5 for seed potatoes. We then applied those factors to our average-year prices to synthesize what we believe to be reasonable dry-year prices.

Milling Potatoes. The EEC supports the price of these potatoes by supporting the price of starch, the most important product. Historically, the Dutch price has nearly always remained at the support level. During the Europe-wide drought of 1976, however, the market price was well above the support level because the supply of consumption and seed potatoes was not large enough to meet the demand for current consumption. The normally undesirable milling potatoes were being used as food. As those circumstances may occur again in the next extremely dry year, we decided to set the dry-year price about 50 percent above the average-year price, approximating the relationship that held in 1976.

Sugar Beets and Cereal Grains. Since the EEC supports the prices of these crops at levels above those reached in 1976, we assume their value will be the same in the extremely dry year as in the average year.

Bulbs. This is another major export crop for the Netherlands. Most bulbs (e.g., tulips, hyacinths, narcissuses, and crocuses) are early season crops, but about 30 percent of the Netherland's bulb crop area is devoted to summer varieties (primarily lilies and gladioluses). 1976 was the driest year on record, but the drought was concentrated in the summer months. The near-normal winter precipitation yielded about average crops and prices. That may simply have been a fortuitous accident, but it represents the most reliable drought experience we have to examine. We incorporated it into our pricing scenarios, but with a slight hedge against the drought occurring earlier in the year, by assuming that bulb prices in the extremely dry year would be about 10 percent higher than in the year of average dryness.

<u>Vegetables in the Open Air</u>. Vegetable prices increased in 1976. The average effect was on the order of 30 percent. Therefore, we assumed the dry-year values would be about 1.3 times the average-year values.

Pit and Stone Fruits. In 1976 the pear crop was larger than usual, perhaps from the extra sunshine. This large crop depressed the prices of both apples and pears, although the combined yield was apparently near normal. Not knowing how to deal with that phenomenon, or how to forecast sunlight in future years, we retained the average-year value estimate for use in dry years.

Ornamental Trees. There was no apparent drought effect on this crop in 1976, so we again assume a single estimate will suffice for both types of year.

<u>Vegetables under Glass</u>. The price of most of the crops grouped under this heading increased 1976, but by widely varying amounts. We estimate the average changes can be captured by using a 1.2 factor.

Flowers under Glass. The price of flowers dropped in 1976. We are not sure why, but the decline probably represented a slackness in demand that more than balanced any decrease in supply. We estimate a value for this crop in the extremely dry year that is only 85 percent of the average-year value.

A.3. CROP VALUES FOR OTHER YEARS

In the previous sections we described how crop values were determined for an "average" year and an "extremely dry" year. Ideally, similar methods could be used in assigning values to crops in other years. In reality, however, this is not possible. It is more than likely that for a given year we are interested in, historical data is unavailable or, if it does exist, is impossible to adjust into monetary units comparable to the crop values one already has. Such was the case in

PAWN, and so it was necessary to devise an analytical procedure that could be used in determining crop values for any external supply scenario. A description of the methodology of such a procedure follows, after which, the results of an application of the procedure are presented.

A.3.1. Methodology

Any procedure to calculate crop values for a year with a given external supply scenario must make use of information which can be computed by the PAWN agricultural models, as well as known crop value data. this point we know the values of crops in two years, an average one and an extremely dry one. What we need to do then is find a variable (or variables) which will allow us to make a linkage between an external supply scenario and these known crop value scenarios. Such a variable would need to give an indication of the severity of the external supply scenario based on its effect on agriculture. We would then be able to associate the average-year crop values with years in which this variable takes on a particular value, e.g., its average over many external supply scenarios. Similarly, the crop values for the extremely dry year would be associated with external supply scenarios where the variable took on an extreme value. For external supply scenarios where our variable fell somewhere in the middle, we might estimate crop values by performing some sort of interpolation on the known crop values. We would then be left only with the problem of what to do about external supply scenarios where the value of the chosen variable was in the direction of the other extreme (i.e., a wetter than average year).

The above is a rough outline of the procedure used in this analysis. The variable selected as the indicator of the severity of an external supply scenario was "physical crop damage" in the Netherlands, i.e., the percentage that physical crop yield was below its "optimum" level.

To perform the analysis in the most straightforward manner, we would have liked to compute this physical crop damage for many years using the plot file containing all plots in the Netherlands in 1976. However, such a procedure was deemed to be prohibitively expensive. Instead, a sample of plots from the 1976 plot file was selected and was used to represent agriculture in the Netherlands. (The sample was originally drawn for use in the calculation of sprinkler scenarios. A detailed discussion of the selection of the sample is in Vol. XIV.)

The sample was selected by first creating four categories of crops: grass, potatoes, arable crops other than potatoes, and horticultural crops. Glasshouse crops were not included in the sample because they are always sprinkled and suffer no shortage damage. The country was then broken up into areas representing the cross product of drainage regions and weather stations. Within each of these areas, the largest plot in each of the four crop groups was selected for inclusion in the sample (subject to certain minimum size requirements). A total of 77 plots were thus selected. They encompass 30 percent of the cultivated area of the Netherlands (not counting nature plots). Table A.1 gives an overview of the sample by crop group.

Table A.1

OVERVIEW OF SAMPLE OF PLOTS

Crop	Area in the	Area in the	Area in Sample of
Group	Netherlands	Sample of Plots	Plots as a Percent
	(thousand ha)	(thousand ha)	of Netherlands' Area
Grass	1252	416	33
Potatoes	158	41	26
Other arable	487	108	22
Horticultura	1 104	40	38
All groups(a)	2002	605	30

⁽a) Columns may not sum due to rounding.

In selecting the 77 plots, no attention was paid to whether or not they were sprinkled. A separate procedure was used to create an unsprinkled portion and a surface water sprinkled portion. This was done based on the split in the 1976 plot file within the drainage region/weather station area from which the sample plot came. Groundwater sprinkling was combined with surface water sprinkling. This procedure yielded a total of 136 plots. Table A.2 gives a comparison between the proportion of sprinkled and unsprinkled areas in the 1976 plot file and the sample plot file by crop group. As can be seen, there is very close agreement. This sample plot file was used in the remainder of the analysis.

Table A.2

COMPARISON OF SPRINKLING IN THE NETHERLANDS
WITH SPRINKLING IN THE SAMPLE OF PLOTS

	Percent of Area	Percent of Area
Crop	Sprinkled in	Sprinkled in
Group	Netherlands	Sample of Plots
Grass	15	14
Potatoes	23	22
Other arable	1	1
Horticultural	29	24
All groups	12.9	12.6

To determine an "average physical crop damage" and a "maximum physical crop damage," we ran the DEMGEN model for 19 years, 1960-1978, on the sample plot file. These were the values we would associate with crop

prices for an average year and those for an extremely dry year. The period 1960-1978 was chosen because these were the only years for which complete weather data for 21 weather stations were available.

Once DEMGEN was run, its output was processed to determine the yearly total physical crop damage in the Netherlands. This was done by first determining in each year the physical crop damage to each sample plot. Then, again for each year, we calculated the physical crop damage to each crop group. The damage associated with a sample plot in a group was weighted based on the area the plot represented in the 1976 plot file. Finally, for each year, the total physical crop damage in the Netherlands was computed. Here, each crop group was weighted according to its area in the 1976 plot file. We thus were left with 19 numbers, each representing the total physical crop damage in the Netherlands in a year. The average of these values became the average physical crop damage; the maximum value became the maximum physical crop damage.

At this point, by making two further assumptions, we will be in a position to compute crop values for any external supply scenario. The first assumption has to do with years in which physical crop damage is less than average. When this occurs, we will assign the average-year crop values to the external supply scenario. In fact this is not a very important assumption. As we are interested only in problems related to water shortage, external supply scenarios that are wetter than average were never actually used. The second assumption relates to how to interpolate between crop values for the average year and those for the extremely dry year. Because we have no information to suggest one method over another, we used linear interpolation.

We now have all the elements necessary to compute crop values for any external supply scenario. The formula we use is:

VALUE = AVG_VAL + maximum of 0 or

(DRY_VAL - AVG_VAL) * (DMG_PCT - AVG_DMG_PCT) (MAX_DMG_PCT - AVG_DMG_PCT)

where:

VALUE is the crop's value in years with the given external supply scenario.

excernal supply scenario.

AVG VAL is the crop's value in an average year.

DRY VAL is the crop's value in an extremely dry year.

DMG_PCT is the total physical crop damage in the
Netherlands in years with the given external
supply scenario. This is computed by running
DEMGEN on the sample plot file for the desired

year and then using the procedure outlined above to calculate damage in the country as a whole.

AVG_DMG_PCT is the total physical crop damage in the Netherlands in an average year.

MAX_DMG_PCT is the total physical crop damage in the Netherlands in an extremely dry year.

A.3.2. Results

The results of the estimation of physical crop damage in the Netherlands for several years are displayed in Table A.3. The estimates were made by DEMGEN, described in Sec. 5.6.3. It is clear from looking at the table that only rarely is physical crop damage for an individual year significantly higher than the average yearly physical crop damage. The average damage for the period 1960-1978, 6.1 percent, was assigned to variable AVG_DMG_PCT in the formula described above. The physical crop damage in 1976, 36.1 percent, was assigned to variable MAX_DMG_PCT.

Table A.3

PHYSICAL CROP DAMAGE IN THE NETHERLANDS BY YEAR

	Percent		Percent
	Physica1		Physical
Year	Crop Damage	Year	Crop Damage
1943	11.0	1969	3.3
1959	26.7	1970	10.7
1960	4.4	1971	6.7
1961	1.0	1972	0.0
1962	3.5	1973	11.4
1963	0.9	1974	7.2
1964	4.4	1975	10.4
1965	0.1	1976	36.1
1966	0.7	1977	5.0
1967	4.6	1978	4.6
1968	0.7	19-year	
		averag	e 6.1
		averag	

The actual PAWN analysis was based on only four years of the external supply scenario's ranking in dryness from average to extremely dry. Table A.4 summarizes the crop values for the years that were actually used, which are 1967 (D50), 1943 (D10), 1959 (D05), and the extremely dry year 1976 (DEX). As it turns out, crop values in the 10-percent dry year (D10) are not very much higher than average. Looking at the 5-percent dry year (1959), there is a considerable difference.

Table A.4

CROP VALUES FOR DIFFERENT YEARS
(In Df1)

	D50,	DEX	D10	D05
Crop	(1967)	(1976)	(1943)	(1959)
Grass	3000	5000	3330	4380
Consumption Pot.	10000	16250	11030	14300
Milling Potatoes	3830	5830	4160	5210
Seed Potatoes	13500	20300	14620	18180
Sugar Beets	5200	5200	5200	5200
Cereals	3150	3150	3150	3150
Cut Corn	3600	6000	3990	5250
Bulbs	27400	30140	27850	29290
Vegetables (OA)	15600	20280	16370	18820
Fruits	10400	10400	10400	10400
Trees	42800	42800	42800	42800
Vegetables (UG)	232000	278000	239590	263650
Flowers (UG)	485000	412250	472990	434950

REFERENCES

- A.1. Produktschap voor groenten en fruit, <u>Jaarverslag 1976</u> (Producers' Association for Vegetables and Fruits, Annual Report 1976), The Hague, 1976.
- A.2. Produktschap voor siergewassen, <u>Jaarverslag 1976</u> (Producers' Association for Ornamental Crops, Annual Report 1976), The Hague, 1976.
- A.3. Landbouw Ekonomisch Instituut/Centraal Bureau voor de Statistiek, <u>Tuinbouwcijfers 1978</u> (Agricultural Economics Institute/Central Bureau of Statistics, Horticulture Statistics 1978), The Hague, 1978.
- A.4. Landbouw Ekonomisch Instituut/Centraal Bureau voor de Statistiek, Landbouwcijfers 1977 (Agricultural Economics Institute/Central Bureau of Statistics, Agriculture Statistics 1977), The Hague, 1977.
- A.5. Proefstation voor de Akkerbouw en Groenteteelt in de Vollegrond,

 Kwantitatieve Informatie voor de Akkerbouw en de Groenteteelt

 in de Vollegrond (Experimental Station for Arable Crops and

 Vegetables in the Open Air, Quantitative Information for Arable

 Crops and Vegetables in the Open Air), Lelystad, 1977.
- A.6. Proefstation voor de Rundveehouderij, Handboek voor de Rundveehouderij (Experimental Station for Cattle Breeding, Handbook for Cattle Breeding), Lelystad, 1977.

Appendix B SUPPLEMENTARY DATA TABLES

Table B.1

																		-2	!50	0-																				
	S	0	11057	0	809	0	3231	2	0	0	1261	070	0	436	52		100	0	Ξ'	00		0	675	0 ;	7.0	0	0	12986	00	O;	75	1642	Ç	1615	4196	1800	150		>	33597
	CULT	2123	207762	8995	2598	6925	7438	672	8335	622	9064	1404	5397	6280	716	11238	6168	199€	510	5789	00001 8104	3934	6345	6951	3246	18772	3216	918	10137	1023	289	12140	5737	100	6439	19571	2897	13005		282698
	SOOOM	æ	2331	140	139	m (0 m	, C	69	- 0	250 5	\ -‡	₽	246	- 1	727	29	-	0;	33	5%	! w	21	~ `	2/166	2075	~	53	198	5	a ;	030	25	282	<u>+</u>	Σ α	2 - ₹	. 0, 0	J	9575
	WATER	45	16955	122	651		3321	22	183	5,59	2616	22.75 14.70	99	1230	901	13.13	2041	70	138	949	100	64	1664	119	2302	324	124	13015	71/4	85	151	1364	999	1694	4251	591	28.7	2402	;	52548
	URBAN	149	14572	773	167	140	248	156	542	279	198	212	95	250	271	200 041	167	111	12	166	1363	146	228	588 7	187 518	892	99	207	894	451	50	208	151	20	143	8 010 070 040	2,6	284	î	13837
	TOTAL	2373	249490	10349	6377	7333	5698 11140	938	9466	983	12505	1730	5626	8940	1173	13955	8646	5934	202	6892	7269	4298	8578	7758	10986	23051	3476	16888	12724	1679	495	10/80	6718	5103	11140	22839	3331	16020	2	387027
MUNIC:PALITY DATA (ha)	MUNICIPALITY	Zuidhorn	Total Groningen	Achtkarspelen	Ame tand	Baarderadeel	Barradeel Rildt het	Bolsward	Dantumadeel	Dokkum	Domiawersta:	υ	Franckeradeel	Gaasterland	Harlingen	Heerenyeen	Hemelumer Oldeferd	Hennaarderadeel	Hindeloopen	<u></u>	Koliumeriand c.a.	Leeuwarderadeel		Menaidumadee)	Oostdongeradeel	Obsterland	Rauwerderhem	Schiermannikoog	Spalfinger!and	Sneek	Staveren	Terschelling Tiotion/etamadael	Utingeradeel		Westdongeradeel	Weststellingwerf Wonseradool	Working	Wymbritseradeel	36.00	Fotal Friesland
	Q.	00	170	0	3181	0	203	540	557	0 ;	915	00	0	0	0	453	}	0	0	0	> C	0	0	0	0 6	20	0	0	00	0	0	11.4.6	530	574	839	887	o c	656	0	ķ
PRIMARY	CULT	1788	2708 2109 2050	4153	6444	10043	4395	3208	2982	2221	3286	4074	3033	3651	5437	27070	5911	3484	2347	5723	1604	3808	1883	2798	2176	3913	2011	4045	1203	14511	10341	2345	2863	4963	6291	2502	14826	1802	2551	3686
	MOODS	0	v≨r	34,	50	114	W 0	- 1	6	-	ۍ ډ	30 15	, a	277	122	N V	116	2	65	66	- ~	73.	O	ο,		~	~u	9	ρ.~	746	114	C2 V	0 00	9	245	9 :	200	100	စ္	2
	WATER	2,00	¥55	37	3258	162	24.5 5.85	404	576	J.	942	207	3.0	393	577	627	£ %	78	22	37	- ac	52	38	8	550	134	20	25	7 %	514	140	13	258	734	2211	902	200	680	35	35
	URBAN	77	542	201	136	191	143	640	65	†††	121	281	105	526	934	υ. υ.α	1147	100	116	295	7 K	173	135	178	62	0 4	74	211	2 K	549	986	ر ا	136	166	68	26	627	72	129	85
	TOTAL	1875	2517 2517	4505	8248	11013	1966	4004 4005	3777	2349	4596	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3242	5070	7306	33.14	5449	3726	2591	6278	1702	4127	2110	3125	799	3503 4152	2149	4416	1,66	15873	11976	2454	3648	6717	8863	3638	16601	2925	2797	3898
	MUNICIPALITY	Adorp	Aduard Appingedam Baria	Bedum	Beerta	Bellingwedde	Bierum Boom Ton	DOUT, TEN	Eenrum	Ezinge	Finsterwolde	Groningen	Grioskark	Haren	Hoogezand-Sappemeer	Kantens	KIOUS CET DOITE!	Leens	Loppersum	Магиш	Meeden	Mideolda Mideolda	Muntendam	Nieuwe Pekela	Nieuweschans	Nieuwolda Oldehove	Oldekerk	Oosterbroek	Oude Peketa Scheemda	Slochteren	Stadskanaai	Stedum	Hermunten Mithuizen	Uithuizermeeden	Ulrum	Usquert	Veendam	Warffum	Winschoten Winsum	Zandt, ¹t

Table 8.1 (continued)

NO	0000000	1514 0 0 2700 110	, , , , , , , , , , , , , , , , , , ,	130 130 130 30 80 80 80 125 160 155 80 80 80 80 80 80 80 80 80 80 80 80 80
CULT	372 5294 6795 3756 14911 3823 2804 8448	4153 5876 6918 6894 3616 41920 4725	11932 11 2222 11 2222 11 665 16595 12 173 5194 6912 7772 7772 7834	802 7384 296664 7348 865 2648 10212 3002 2931 10378 663 2938 34485 5266
WOODS	9 1523 1522 1972 1472 0 345 2926 772	1569 1963 1210 2080 133 628	3865 10366 10366 2992 1416 1414 1414 1414 1414 1414 1414 141	234 491 491 15659 2752 4296 4296 1772 172 172 172 172
WATER	157 427 35 279 76 76 77	1650 59 47 47 31 3667 234	219 1 1 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2	251 291 295 201 2596 2596 2597 2602 2602 2603
URBAN	402 129 416 307 802 62 192 636	150 150 150 150 115 115	280 280 280 280 280 280 280 280 280 280	1625 18464 265 102 102 1372 1372 157 157 159 159 165 165 165
TOTAL	809 10540 10540 14109 18414 1423 13850 13850	6587 10175 9229 3956 50120 1510 6283	1882 13.8842 13.8609 13.8609 14.7372 10.362 10.568 8288 8288	1270 10109 392763 38341 1056 36112 36112 3699 17640 17640 2758
MUNICIPALITY	Goor Gramsbergen Haaksbergen Hardenberg Hasselt Heino Heilendoorn	Holten Kampen Losser Markelo Nieuwleusen Noordoostpolder Oldenzaal	Ommen Naaite Rijssen Stad-Delden Staphorst Steenwijk Tubbergen Urk Vriezenveen Weerselo Wijhe Wijsselham Josselmuiden	Zwartsluis Zwolle Totał Overijssel Aalten Ammerzoden Apeldoorn Apeldoorn Apeldoorn Arnhem Barneveld Barenburg Besed Bergh Bergh Bergh
Q	00000000	0000000	***********	£000000000000
CULT	7651 3355 12695 10658 3245 5987 4109 4489	20621 3064 3413 5241 4804 951 7524	11935 2661 2661 2661 3731 3731 10656 27369 27369 27369 27386	8279 4657 2259 6312 6312 6318 9728 10711 6572 1694 2044 2044 2044 2044
WOODS	813 343 1250 1250 1250 59 2672 1325 1325	1002 654 372 1039 543 543 2034	2579 23320 23320 2543 1543 1543 1544 1610 1610 1610	27219 2989 27219 295 1491 2572 302 4152 1172 1315 1315 1349 460 1194 2349
WATER	78 2140 219 70 57 50 73 73	587 224 101 145 741	3.5 8.6 8.6 9.6 10.8 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	3664 154 154 174 107 107 107 107 107 107 107
URBAN	281 830 630 396 427 112 112 241	2848 163 201 253 795 277	2004 2004 2004 2004 2004 2004 2004 2004	12099 1427 1428 822 722 722 723 1245 1293 1293 1293 140
TOTAL	9243 5530 16725 13043 4057 6810 7512 6882 2558	28540 4059 4142 7614 6455 11463	14777 6879 6879 10486 11413 6026 6081 10942 13677 13677 13677	268452 3882 3882 3874 1417 2788 4208 14047 13228 8842 3842 3842 3651 14158
MUNICIPALITY	Anloo Assen Beilen Borger Coevorden Dalen Diever Dwingelo	Emmen Gasselte Gieten Havelte Hogeveen Meppel Norg	Odoorn Oosterhesselen Peize Roden Roden Ruinerwold Schoonebeek Schoonebeek Sleen Smide Vledder Vries Westerbork Wijk, de	Zuidwolde Zweioo Total Drenthe Almelo Ambt Delden Avereest Bathmen Borne Brederwiede Dalfsen Denekamp Deventer Diepenheim Diepenheim Diepenheim Diepenheim

Table B.1 (continued)

Q.	0 140 0 0 0 0	28 114	80	50 80	69	90,1	75	00	00	200	140	130	0 125	3.5°	110	90	9°	0	0 0 0 0	00	00	70	5772	099	000	00
CULT	10074 2461 3610 758	3092 3092 5144	1456 5441	1551 2100	863	1786	1159	153 5475	1020 4580	1159	4537	903 10462	3877	1603	2416	2009	549	6228	752	7205	3303	783	329675	2254 1717	984	2123 859
MOODS	2027 10 33 7	6630 428	383 1590	212	2636	1583	5.	1606 680	178 78	967	7.60	810	1265 141	45 187	120	172	0	644	- - 5	523	о r.	0	89109	36	1630	1016
WATER	225 213 124 17	100 145	183 68	131	108 84	122	150	42	118	138	229	151 300	22	80	163	-0	26	187	137	ر در	7.7	115	12081	258	12:	æ <u>├</u>
URBAN	311 155 194 118	313	1949 453	58 121	268 568	645	7.8	34 142	156 126	336	294	584 584	107	5,59	563	110	127	150 150 150 150 150 150 150 150 150 150	136 136	222	124	570	35100	138	700 704 704	709
TOTAL	12905 2962 4209 1037	12963 6503	4439 9888	1746 2621	1114	4720	1456	2801 6530	1385 5026	1796	5256	1147	5726 2907	1853	3068	2348	782	7279	3544	8173	3632	1650	513129	3078	3331	2302 2699
MUNICEPALITY	Lochem Maasdriel Maurik Maillingen a/d Rijn	Nesde Nunspeet Nijkerk	Nijmegen Oldebroek	Ophemert Overasselt	Pannerden Putten	Renkum	Rossum	Rozendaal Ruurio	Scherpenzeel Steenderen	Tiel Whorden	Valburg	Varik Voorst	Vorden Vuren	Waardenburg	Wanel	Wariisveid Wehi	Westervoort	Wisch	Wijchen Zaltebommel	Zelhem	Zoelen	Zutphen	Total Gelderland	Abcoude Amerongen	Amerstoort Baarn	Benschop Bilt, de
ND	30 200 70	008	00	100	S _C	85	35	175	0 188	80	32	0 0 0 0 0	00	100	300	120	232	, w , r, r, r	900	0	8	140 25	300	909	200	90
CULT	1311 4782 3010 6108	983	621 879	184 588	924	1536	2880	2658 1551	9786 3122	3553	2177	582 2176	1507	1015	680	1682	1343	1055	4082 481	4010	2061	2937	629	410	3448	6305 3512
		~~%	ณีณ์					_														•••	-	- ⊷ m		
WOODS	327 40 1472							Ī						2 2	1 7 6	1373 40								628	Z 6	332
WATER WOODS		100 202	72 45	9 0 0	1 17	<u> </u>	ງ ນີ້ ຄຸນ	18 9819	928 935	0 0	4189	30 30	18				1293	0 0	2216 2	612	4 K	5	58-7	628		
	327 40 1472	23 100 136 202	38 72 30 45	2 19 164 10	131 1	158	254 49 5	315 18 28 9819 1	57 928 281 935	187 0	54 4189	62 11 146 30	26 18 38 148	174	52.	232	350 1293	75 8	144 2216	8 612	153 43	161 5	24 6 5 7 8 7 8 7	99 7	700 61	94,5
WATER	37 9 62 327 476 40 117 1472	66 23 100 279 136 202	159 38 72 347 30 45	128 2 19 105 164 10	172 131 1 637 43 540	111 158 44	329 324 45 287 49 5	185 315 18 1742 28 9819 1	267 57 928 398 281 935	384 187 0	833 54 4189	50 62 11 173 146 30	210 26 18 1490 38 1148	212 174	184 12	527 4 84 232	706 350 1293	77 77	518 144 2216 34 150 2	139 8 612	224 514 25 67 153 43	215 161 5	171 6 58	115 72 628	16/ 266 191 61	352 5 193 94

_	
Palin	
٠.	
front	
_	
-	
α	
9	
α	

S	1650	17	0	00	2	0	6,	52.	ຸ ⊂	0	33	٦,	၅၀	7.	68	- 6	33 26 E	9	00	0	0	0	0	o ţ		0	0	369	~ (0		7.7	59	0	0	20°	0	0	0 ;	25
CULT	4027 1242	4545	3677	32	1555	2366	687	449	1146	667	1771	197,	1116	603	1803	0	2171	1102	1167	955	832	1829	14600	2136	- ~ - ~	2844	1483	2421	776	2012	010	176	214	2234	777	645 914	2068	125	1083	969
MOODS	243			~ ≅				•	_	.		67	741	• • • • • • • • • • • • • • • • • • •	89	12	5 5 4	<u> </u>	559	,-	49	107	109	t ac	1270	9	136	8	m ;	1040	- 6	9 4	334	9	9	0 40	5.	214	o (οN
WATER	3701 185	274	20	153 4	65	9.5	9	31	<u> </u>	- 55	246	⇒ [25	88	131	= ;	ر د د	156	761	115	205	140	435	43	- 07	£ 1	56	593	بر ا		- - -	2,00	69	276	189	170	320	25		178 188
URBAN	7416	284	132	243	394	124	554	316	000	136	39	†09	2 2 1 1 1	227	329	80	9.50	770	155	103	1790	96	1320	39	1133	530	393	883	43	1310	- c	- L - L	457	85	22	101	210	393	115	128
TOTAL	20765	5257 906	3925	7207	3355	2615	1915	1055	1007	875	2128	810	1912	1217	2346	196	3041	1000 1000 1000	2000	1237	3212	2748	18535	2393	06/2	3820	2143	5089	1032	4630	1349	2300	1626	2914	1021	738	2707	1237	1271	302 922
MUNICIPALITY	Amsterdam Andijk	Anna Paulowna Avenhorn	Barsingerhorn	Beemster Reprehenser	Bergen	Berkhout	Beverwijk	Blaricum	Bloemandaal Blokkar	Bovenkarspet	Broek in Waterland	Bussum	Callantsoog Cachricum	Diemen	Edam-Volendam	Egmond aan Zee	Egmond-Binnen	0	מ מ מ	×	Haartem	Haar⊦emmer¦iede	Haariemmermeer	Harenkarspel	Heemskerk Hoometodo		Heiloo	Helder, Den	Hensbroek	Hilversum	Hoogkarspel	Hoogwoup	HIIIZEN	lipendam	Jisp	Katwoude and emper	Langedijk	Laren	Limmen	marken Medemblik
QN	00	ئى م	00	0 0	ွင	140	0	0	-	00	0	0	00	0	0	0	0	2	, C	0	00	0	90	00	> c	0	0	0	0	٥	0	30	00	0		545	0	0	0	00
CULT	3225	2749	969	1030	2057	5337	2535	1754	1283	3393	2463	1895	0/9	897	1914	3028	46	777	~ C C C C	949	1073	1568	2341	1030	1000	950	2294	2881	1345	2065	2420	1221	1400	981		90873	1362	692	1847	1859 2704
WOODS	131 178	2 2	1172	1021	3.5	26.	25	10	2 - 2	1512	77	86	090	1293	124	464	٥,	9 7	_	N V2) m	139	1324	رم د د	100	19	19	142	w.	9	606	<u> </u>	21	2285	! !	19219	137	5	ဆေး	23
WATER	710	87	_∞	15	200	228	235	88	, ca	, K	35	175	1337) 1	367	34	, و دم	7	2	7 7	30	Ξ	108	⇒ ;	200	17	1106	84	10	181	26	140	n n n	1,		6729	1140	10	519	2112
URBAN	179 195	241	238	380	147	130	102	75	443	391	125	153	183	148	298	279	888	7270	707	000	55	80	344	75	853	200 200	176	297	1 9	116	216	20 m	, c	1234	!	14557	91117	57	66	904 835
TOTAL	3391 3756	3215	2226	2643	2341	5892	2943	1949	1794	30VV	2739	2379	2649	2536	3176	4054	147	3065	320	1104	1162	1849	4310	1093	4614	1791	3671	3498	1433	2408	3671	1940	1532	4868)	139543	3328	795	2550	3091 4246
MUNICIPALITY	Breukelen Bunnik	Bunschoten	Doorn	Drieb, Rijsenburg	ECHINES Harmalen	Houten	Kamerik	Kockengen	Langbroek	Leersum	Linschoten	Loenen	Loosdrecht	M D L K	Maarsen	Maartensdijk	Montfoort	Mijdrecht	Nieuwege in	NIG CEVECTIC	Polshroek	Renswoude	Rhenen	Snelrewaard	Soest	Utrecht Veenendaal	Vinkeveen c.a.	_	Willeskop	Wilnis	Wondenberg	Wijk bij Duurstede	700001d	Zegve+0	,	Total Utrecht	Aalsmeer	Abbekerk	Akersloot	Alkmaar Amstelveen

Table 8.1 (continued)

Z	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	,000	000	000	7320 1650 0	ňο	4635	٥٥	650 650	300	ž.	120	0	9	135 135	1329 70	0000000	0
CULT	35 692 227 1575 1183 2135	1359 1674 1002	3267	1059 269	886 1194	4548 4589 2700	2087	4660 4660 582	397 881	746 1863	912	1304 1566	890	3136	†0†	860 1377	2689 807 283	720 720 720 720 720 720	1371
MOODS	0 2 5 5 5 5	- 0 9 1	20	บีดฉี	~ 0-	511 16	₹ ;	100 t	1 5	m ₪ •	215	- r- r	12,	~ 0	20	28 61	27 8 54	33 23	-
WATER	23 20 20 20 23 233	2 5 8 8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	745	35 68 75 68	87 56	1792	7.00	5000 253	115	1300	165 165 165	, 5 5	989	13.	99	10 217	1432 129 85	, 23 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	m
URBAN	324 324 334 168	239 239 250 250	380	33 170	471 1098 121	1482	36,36	292 351	1051		120	130	333	191	M C/	33 69	260 219 72	272 333 404 375	
TOTAL	75 831 333 2172 1249 2590	1552 1966 1155	3817	1135 559	1488 2628	8947 3026	1102	12066 1281	1619 1046	811 3282	21/2 6676 1751	1550	1076	3489	638	944 1794	4623 1195 563	1347 782 554 1393 1016	1470
MUNICIPALITY	Ammerstol Arkel Asperen Baarendrecht Benthuizen Bergambacht	Bergschenhoek Berkel, Rodenrijs Berkenwoude Riejswijk	Bleskensgraaf c.a. Bodegraven	Boskoop Brandwijk Brielle	Capelle a/d IJssel Delft	Dirksland Dordrecht Driebruaden	Everdingen Geervliet	Gressenburg Goedereede Gorinchem	Goud <i>a</i> Gouderak	. ਹ	Gravendeel, 's- Gravenhage, 's-	Gravenzande, s- Groot-Ammers Haastrocht	Hagestein Hardiov Giessendem	υф		Hei-, Boeicop Heinenoord	Hełlevoetsluis Hendrik-ldo-Ambacht Henkelym	Hillegom Hoogblokland Hoornaar Katwijk Kedichem	Klaaswaa
9	925 1500 80 0	0000	000	000	939	> O C	2374 0	000	67 111	00	စ္ကဝဒ္	250	000	0	, 6	50	9627	00200	25
CULT	1113 1294 1111 901 953	4218 1116 1101	326 561	1943 831 1551	4248 1189	553	10684	1471 1471 1402	1629 3119	1154 1745	1237	18162	1144	4987	3346	608 6252	186411	1580 915 557 2129 4243	413
WOODS CULT	0 1113 2 1294 37 1111 428 1017 12 901 0 953			10 1943 2 831 12 1551		1 553 1 553 1 1481	-	10 6 1471 0 1402			16 1237 2 1235	_	1 1144	44 4987		1 608 140 6252	11409 186411	10 1580 0 915 9 557 18 2129 1243	ī.
sdoo		~ o ~ ¢		ភិហពី	961	71 	627		532 6	<u>;</u> ه ٦	50,		- -	7 7 9	, V w	140	11409 18	00687	15
Moods	30 0 1021 2 1 1683 37 1 341 428 1 268 12	~ o ~ ¢	75.88 75.88 75.88	ភិហពី	252 9 71 961	24 20 20 20 20 20 20 20 20 20 20 20 20 20	627	332 10 135 6 37 0	632 532 205 6	121 6	151	1569 768 1	356 1	946	335 319	140	25622 11409 18	10 0 9 18 27	34 15
WATER WOODS	30 0 1021 2 1 1683 37 1 341 428 1 268 12	208 101 7 66 25 0 106 327 7	75.88 75.88 75.88	268 90 10 433 57 2 251 51 12	91 252 9 210 71 961	28 13 2 96 76 1 76 6	471 2756 627 1 37 15 2	333 135 6 78 37 0	1130 632 532 224 205 6	70 40 1 219 121 6	99 151 16	263 1569 768 1	160 356 1	1650 846 44	132 335 3	82 1 1 262 202 140	33845 25622 11409 18	189 10 6 0 105 9 411 18 197 27	51 34 15

Table B.1 (continued)

Q	002	80	90	2000	30	0	0	0	C.	9	0	25	o į	52	120	9		000	00) C	3)	g°	> (•	0	•	-	, د	20	0		0		0	0	٥ (> <	0 ;	1365	200	0	100		27027	(146
CULT	2344 1249	1551	1883	000	551	422	914	381	345	640	2707	644	839	857	1403	7242	1020	470	0000	7075	747	707	- 0	, ,	000	1081	200	2303	330	0 0	707	1504	700	- C	7	7 6	7917	0007	1902	2930	1513	285	654	,	210969		1286
MOODS	24	43	316	72.	- m	-	28	10	≉	56	1,4	-	31	<u> </u>	ão 3	7	171	500	241	40	۰ د	? [,	n (⊃;	- 1	2,	<u>.</u>	0,70	020		– u	J-	<u>+</u> -	t v	9	200	77). O	_	7	-	18		5528	Ć	2.5
WATER	943 123																																												45458		205
URBAN	187	572	171	250	200	149	609	201	22	248	166	158	46	336	322	1 -	0 10	0,00	000	000	001	000	830	۰ (200	7	200	323 223	100	133	707	2	9	0 0		- t	9 1	477	138	25	68	54	612		43103		36
TOTAL	3574 1647	2532	3084	3165	626	909	1818	661	377	1995	3003	683	939	1389	2043	2/83	1001	2032	40	070	0701	# - C	7000	777	034	797	1120	2926	400	5000	1217	207	94-70	222	7007	1001	7747	3314	2258	4508	2223	337	1633		332556	1	4971 1689
MUNICIPALITY	eeuw	Ridderkerk	Rockanje	Rotoring	Rijnsaterwoude	insbur	Rijswijk	Sašsenheim	Schelluinen	Schiedam	Schipluiden	Schoanhoven	Schoonrewoerd	Sliedrecht	Spijkenisse	Stolwijk	Streetkerk	strijes Tionbouse	Lecalover	Valkenourg	- 1	2	Vlaardingen		Voorburg	Voornout	voorschoten	Waddinxveen	Warmond	Wassenaar	Wateringen	West mad s	Woeruen Vanst annage	espiranow.	WI JII GAB ruen	Zeverinoveri	Zevennuizen		Zoeterwoude	Be	Zuidland	rte	Zwijndrecht		Totai Z. Holland		Aardenburg Arnemuiden
욧	500	0	9 °	00	-	0	0	0	90	55	0	0	0	0	69	0 (0662	0	00	0	00	0	o (o	ο̈́	0) ;	120	.	-	0	00	0	0	Š	0 (3669	722	0	0		511	0	85	0	55	0 0
CULT	898 467	133	990	1001	678	783	2773	1259	1967	1863	699	196	672	2153	310	1347	7220	966	7 7	200	752	27.8	1821	200	1533	2018	200	919 919	# 12 P	56.	1453	200	600	V 1	2000	200	6328	1523	794	1216	1162	899	1326	463	1075	649	385 2885
MOODS	α 5	φ.	ကျ		7.6			13	23	114	-	177	ο.	0	es	3,	xo o	0	N C	× c	2/0	N	٥٥	٥	<u> </u>	50	- 1	Э Т (N (٥ (0;	333	7.	•	2	~ t	9 !	741	۷.	9	39	0	ď	7	_	53	8 17
WATER	12	113	85	2 2	30	7.5	107	79	224	115	00	58	57	61	163	E (2631	ţ	<u>.</u>	Z C	יי זע	÷:	19	3,	211	[]	5	253	6.	2 0 [72,	920	200	2,	1691	25	3789	857	29	22	272	537	155	151	28	104	71 59
URBAN	91	468	27	100	1135	283	365	92	151	1,2	185	337	61	131	335	17	289	ς, C, C	n c	403	80	S,	633	χ, 20,	191	179	88	129	17	5,	5,50	375	062	<u>.</u> ;	142 010	27.78	ردر. درد.	250	30	62	253	32	330	391	32	201	93 318
TOTAL	1029	829	1154	1700	2343	1209	3624	1453	2410	2265	893	1608	810	2442	910	1542	8/11	(31	, 63	1496	1470	1/85	2531	1338	1918	3529	966	1280	61	875	1543	3709	7.54	1085	2612	6/7	16591	3271	862	1318	1819	1488	1822	1092	1149	1054	585 3346
MUNICIPALITY	Koudekerk a/d Rɨjn Krimpen a/d Lek	a/d	Langerak	Leerbroek	Leeruall	Laidendorn	Leiderdam	Leimuiden	Lekkerkerk	Lexmond	Lier, de	Lisse	Maasdam	Maasland	Maassluis	Meerkerk	Middelharnis	Moerkapeile	Molenaarsgraat	Monster	Moordrecht	Mijnsheerenland	Naaldvijk	Nieuw Beijerland	N∮euwerkerk IJssel	Nieuwkoop	Nieuwland	Nieuw Lekkerland	Nieuwpoort	Nieuwveen	Noordeloos	Noordwijk	Noordwijkerhout	Nootdorp	Numansdorp	Oegstgeest	Oostflakkee	Oostvoorne	Ottoland	Oud-Aiblas	Oud-Beijerland	Oudenhoorn	Ouderkerk IJssel	ht	Piershil	Poortugaal	Puttershoek Pijnacker

Table B.1 (continued)

QN	0000	986 0 0 0 0	150		000	0.	252	00	0	0	0 0	0	0	233	00	0	0	>0	150	75	0	0	> <	792	0	1048	> c	0	145	00	> c	2650	25
CULT	1961 2331 1432 7614	4314 1825	735	2339	2995 364	4827	2626 247	1220	4393	4530	1328	455	1407	2083	2126	5698	1505	1731	3019	1592	3875	V477	2803	2885	541	2554	1320	1812	4763	2924	3100	1874	1476
MOODS	691 75 1535	107	83.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	846 27,7	431 1131	183	:1°	41	765	1230	645	- 60	79	128	157	297	981	800 700 700	12	59	2321	1 K 2 3 3	1454	121	395	202	1727	124	25	1591	1501	645	10
WATER	87 75 87	1081 13	33 14 14	800	23.7	800	305 77	0 (∞ ¹	979	50	ī.	257	٥.	9	116	25	407	153	8 2 3	_	2,0	1185	0	1100	25. 27.	16	232	t.	200	3108	39
URBAN	107 107 592	109 444 7447	2/3 78 126	313	94.	647	103	183	300	509	197	52	6	294	143	132	291	1162 84	1420	246	220	2 - 2	135	125	94	133	161	190	147	425	011	310	65
TOTAL	4051 2991 2116 11800	2462 2462	3350 854 854	3609	3599	5900	4 5 5 5 5 5 7	1403	5724	7121	2571	524	1809	2859	25.00	3403	3895	4788 2648	5531	2130	6819	3015	4073	4408	1070	4457	1027	2574	5419	5219	5500	6034	1634
MUNICIPALITY	Budel Chaam Cuyk c.a. Deurne	Diessen Dinteloord, Prins Dongen	Drunen Dungen, den Dussen	Eersel First	Erp Fro	Etten-Leur	∤ijnaart Heijningen Geertruidenberg	Geffen	Gement	Gilze, Rijen	Goirle	Gravenmoer, 's-	Haaren	Haisteren	Haps	Heeswijk-Dinther	Heeze	Heimond Helvoirt	Hertogenbosch, 's-	Heusden	Hilvarenbeek		Hooge lass Mierde	Hooge, Lage Zwaiuwe		Klundert	Leende	Lieshout	Lith	toon op Zand	Luyksgestel	Made, Drimmelen	Megen c.a.
QN	2469 2782	850 850 679	3529 1123 1186	2855	27.0	2605	13/34	778	5978	9546	148	18569	4381	124	070 0705	6616	92312	110	0	0	0	0 (50	45	923	0	00	0	0	0	<u>ک</u>	२०	0
CULT	6422 13250 6012 763	14 / 2 4118 8216	6997 9431 3313	3654	2382	18652	8128	1790	10043	11079	2294	1919	3485	029	105	1974	155213	00111	1305	4125	4747	4049	37.50	2528	1340	3405	1205	1941	1975	2104	3061	3179	2560
SGOOM	112 25. 25.	57 71	271	1,60	36,	5,0	9 Q 7 K	17	105	13	77	75	515	23	, o	ν.	2393	o R	182	1081	711	877	2038	152	1091	1391	178	174	992	752	121	775	936
WATER	103 5160 2585 2823	878 852 859	3631	2868	2 K Å	2760	302	812	6347	9370	164	18669	6444	160	80/	7006	95535	97E	2,7	_	33	-	7 6	105	1083	59	me	3.0	20.	72	- -	72	75
URBAN	353 497 165 65	98 98 618	266 482	115	284	534	360 248	17	713	321	191	642	363	9	104	* -	8079	070	126	302	295	186	27.0 U 4.	17.	608	314	216	280	429	271	18. 18.	2, 2, 4, 4,	2089
TOTAL	7230 19470 8970 3774	2634 5412 10182	11189 13871 1073	6830	3268	22500	24329	2902	3407	21462	2939	22172	10288	066	5269	06121	274495	9104	1672	5665	7031	7641	5631	2948	4719	5255	1335	7513	3577	3331	3456	5126	6055
MUNICIPALITY	Axel Borssele Brouwershaven Bruinisse	Domburg Duiveland Goes	Hontenisse Hulst	Kapelle Kortgene	Mariekerke Middelburg	Oostburg	Reimerswaal Sas van Gent	Sint Philipsland	Sluks Terneuzen	Tholen	Valkenisse	veere Vlissingen	Westerschouwen	Westkapelle	Wissenkerke	Zierikzee	Total Zeeland		Aarburg Aarte-Rixtel	Alphen c.a.		Baarte-Nassau	Bakel c.a.	Beers C. a.	Bergen op Zoom	Bergeijk	Berghem Bessel	Berke-Enschot Rerlikim	Best	Bladel c.a.	Boekeí	Boxmeer Boxte l	Breda

_	
-	
₹	3
- 3	í
- q	ì
_	3
-	í
2010	,
+000	•
- 0	۰
- 5	:
٠.	7
ſ	3
_	•
_	
_	
•	
	4
~	
ш	
α	
- 4	r
_	
Tahla	
-	4
đ	ì
- 0	_
	Ī

8	50 40 1820 1235 851 100 0	0 0 13103	0.00	3000	0 0 0 0	00%%0	500 o 2	0000	80°5	၀တ္လွဝ	, , , ,
CULT	1557 44557 1614 5476 7266 1339 44315 2538	3784 7332 345191	207 2401 781	1322 2179 924	243 543 6243	653 1014 804 58	360 690 5402 608	117 1436 392	1842 274	836 3039 1812	5127 530 1516 5183 383 2097
MOODS	413 452 237 237 172 412 475 475	873 68393	1371	2342 213	21 80 2656	225 260 260	55 997 42	27 38 0	1383 0	141 856 176	190 197 1060 521
WATER	122 133 212 127 1327 217 2	36 38 19512	106	355 100 100 100 100 100 100 100 100 100 1	0 4 275	70 70 44 10	£0 <u></u> \$9	± 82 €	37 27 28 28	052	140 10 10 110
URBAN	1484 142 309 309 58 94 225 231 205 119	220 326 42568	186 59	390 227 137	11 85 328 27	74 169 53 494	85 77 423 98	157	56 56 52	208 208 100	1246 320 84 122
TOTAL	2358 1869 1869 1089 3116 4503 5149 3447	4942 8943 510558	289 4203 901	2919 1861 2912 1398	281 747 1094 <i>7</i>	1539 1163 1257	534 857 7159 819	332 1853 1219	4977 696 2107 359	1089 4365 2126	2029 1076 3447 6920 687 2938
MUNICIPALITY	Waalwijk Wanroij Waspik Werkendam Westerhoven Willemstad Woensdrecht Woudrichem	Zevenbergen Zundert Total N. Brabant	Amstenrade Arsen, Velden Baexem	Beek Beesel Belfeld	Bemelen Berg, Tarblijt Bergen	Bingelrade Bocholtz Born Broekhuízen Brunssum	Bunde Cadier, Keer Echt Eisloo	Eijgelshoven Eijsden Geleen	vennep Geulle Grathem Grevenbicht	Gronsveld Grubbenvorst Gulpen	haelen Heel c.a. Heerlen Helden Herten Heythuysen
S	0,000%000%0	0000	0000	0000	0000	0000	0000	203	000	000	00000
	-							7			
CULT	1400 3661 2115 2115 3124 1314 2185 1348 817	1272 2516 4552 4477	1554 1570 877 3003			2104 4208 3123 2773 3605	1758 5516 6035 1658	1			2522 2904 4547 2509 939
WOODS CULT	672 1400 728 3661 373 2115 707 3124 500 2484 518 2185 88 1348 10 817			2971 324 1510 3463	2153 1103 4164			2145	2304 1037 3525 4558	1971 2742 3497	
		720 1212 1222 944	989 126 126	87 2971 1245 324 26 1510 413 3463	538 2153 469 1103 186 4164	201 208 201 206 201 201 201 201 201 201 201 201 201 201	124 655 1247 476	42 2145 1 1176 147 7721 7	2304 1037 3525 4558	464 1971 1436 2742 78 3497	213 213 69 69
WOODS	672 728 373 707 703 518 10 88 88	65 720 67 1212 122 1222 15 944	46 49 11 12 12 12 12 12	56 81 2971 2 1245 324 188 26 1510 123 413 3463	2 538 2153 4 469 1103 58 186 4164	24 289 2 1094 12 368 9 1068 22 459	36 124 34 655 131 1247 34 476	97 42 2145 17 1 1176 102 147 7721 7	43 27 6304 1 212 1037 71 1148 3525 3 607 4558	2 464 1971 104 1436 2742 44 78 3497	27 536 26 1465 78 1213 21 127 440 30 698
WATER WOODS	30 672 68 728 34 373 30 707 199 3 500 29 518 6 88 30 897	219 65 720 186 67 1212 762 122 1222 149 15 944	1034 46 99 116 49 986 186 11 16	184 56 84 2971 89 2 1245 324 197 188 26 1510 136 123 413 3463	154 2 538 2153 113 4 469 1103 1100 58 186 4164	247 289 447 2 1094 141 12 368 176 9 1068 367 22 459	171 36 124 242 34 655 242 131 1247 353 34 476	197 97 42 2145 77 17 1 1176 336 902 147 7721 7	178 43 29 2304 118 1 212 1037 2666 71 1148 3525 454 3 607 4558	175 2 464 1971 649 104 1436 2742 436 44 78 3497	237 26 1465 295 78 1213 370 21 5 479 127 440 343 30 698

Table B.1 (continued)

_	00000000		-230-	
QN	00000000	300500000000	1870 4380 4890 8150 17420	217157
CULT	916 1317 1360 382 478 478 551	2866 2866 2866 2866 2866 2866 272 272	149845 16256 24007 17096 57359	2515997
WOODS	119 177 150 150 17 27 27	2312 7342 7342 7342 734 1650 102	27908 3796 3261 796 7853	308097
WATER	85 85 85 85 85	22 22 22 23 24 25 25 25 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	4252 4805 5362 8939 19106	313817
URBAN	74 153 210 373 70 148 101	1268 1268 820 820 58 143 143 583 777 77	21943 1180 1072 3 2255	260422
TOTAL	1207 1746 2199 1042 685 1008 8007 807	2333 22535 14677 14676 22535 2252 2252 2565 3565 1910	220929 28957 35044 51232 115233	3695359
MUNICIPALITY	Stramproij Susteren Swalmen Tegelen Thorn Ubach over Worms Ulestraten	Valkenburg-Houthem Valkenburg-Houthem Ven lo Venraij Viedrop Voerendaai Wesem Wittem Wille	Total Limburg Dronten Gostelijk Flevoland Zuidelijk Flevoland Totał ljpołders	Total Nation
QN				000000000000000000000000000000000000000
CULT	2972 2972 338 740	2858 3858 31699 31699 2842 5111 5722	252 680 680 905 7552 1613 1613 1613 1613 1613	950 950 950 950 950 950 950 930 930 930 930 930 930 930 93
MOODS	269 693 28 28 120 29 146		****	
		20 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +	2 2 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
WATER	### 0 4 0 5 %		129 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
URBAN WATER	-20004024	2112 219 219 24 24 24 24 24 30		4 5 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	289 11 122 115 435 69 86 0 90 14 13 0 786 25	84 83 83 83 83 84 83 83 83 83 83 83 83 83 83 83 83 83 83	110 36 66 127 73 73 129 57 63 63 63 63 63 63	4 5 7 6 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table B.2
PERCENTAGE OF MUNICIPALITIES IN PAWN DISTRICTS

						٠	•	•	•	•	•	٠	•		•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•			
9	٠.	•					٠	•			•					•									•									•	•			
Ŋ				•		٠	•	•			•					•	•								•		•							•	•			
4		•		•		•		•								•					٠		•		•	٠,						•		•				
m		•			50						•		•			30				8								80			•	•		•				
cts 2	.80		100				50	20			•						•			•									•	•				•				
Districts 1 2	100 20		•	200	200	100	80	800	80	100	100	100	96	38	100	70	100	96	100	- 6	85	100	100	100	35	80	100	50	000	35	80	35	25	10	10			
Pro Municipality	Achtkarspelen Baarderadeel	Barradeel	Bildt, het	Dantingadee	Dokkum	Doniawerstal	Ferwerderadeel	Francker	Franckeradeel Gaasterland	Harlingen	Haskerjand	Reerenveen	Hemelumer Oldererd	nendaaluelaueel Hindeloopen	Idaarderadeei	Kollumeriand c.a.	Leeuwarden	Leeuwarderadee: ems+erland	Menaldumadeel	Dostdongeradeel	Ooststellingwerf Oosterland	Rauwerderhem	Sloten	Smallingerland	Sheek	Tiet.jerksteradeel	Utingeradeel	Westdongeradeel	Weststellingwerf	Monseradeel	Workum Everbaitee	11124			LJsselham			
Pro	Ē																																Š	òò				
																				_	_																	
7					• 9	•	•	٠	•			•	. 5	2	٠.	•	•	•	•	9	100			ລຸ	200	•	100	•	٠	٠	•		300°	100	•	10		•
6 7					. 04 60 10	•	•	20										. 001		040	. 100 100	000		20 30	۱۵۲	001	. 100		80					. 100		90 10		
5 6 7					04 09		30			100	20							. 100	. 100	,		000		,										100		. 90 10		
	• •		30						01	100	_		•					100	100	,		200		,		100		•	50							90 10	10 90	
3 4 5	30				Ot 09	09		. 80	01 06		_	•	•							,		2001		,				•	50			·		100			٠	
ts 2 3 4 5	•		30		04 09	09		. 80			. 20									,		2001		,				. 20	50			·		100	04		٠	•
3 4 5	•		30		01 09	09		. 80	01 06		. 20									,		00		,				. 20	50			·		100	04		٠	•

PERCENTAGE OF MUNICEPALITEES IN PAWN DISTRICTS Table B.2 (continued)

			ਟੋ ਹੈ
			21 100 100 100 20 20 30
16		20 	20 30 60 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12	96		46
cts			icts 18 70 40 30 90
Districts 10 11	30.		District 17 18 . 70 . 40 . 90 . 90 . 90 90
۵			10
Pro Municipality	Or Beilen Borger Coevorden Daien Dwingelo Emmen Gasselte	Hoogeveen Meppel Odoorn Oosterhesselen Roide Ruiner Ruinerwold Schoonebeek Sleen Smilde Westerbork Wijk, de Zuidwolde Zweloo Ov Avereest Daifsen Gramsbergen Hardenberg Ommen	Pro Municipality Ov Almelo Ambt Deiden Avereest Bathmen Borne Dalfsen Denekamp Deventer Diepenveen Enschede Goor Haaksbergen
14 15			
_			100 100 100 100 100
13 14 1	70 00 00 00 00 00 00 00 00		
rricts 3 9 13 14 1	10 50		100 100 100 100 100
13 14 1	20 20 11.		100 100 100 100 100
rricts 3 9 13 14 1	.000	tingwerf 100 20 100 100 100 100 100 100 100 100	Breesu Breesu Balfsen Genemuiden Hasselt Kampen Noordoostpolder Noordoostpolder Noordoostpolder Staphorst Stemwijk Urk Urk 1.5selham Zwartsluis Zwartsluis

ned)
(contin
B.2
Table

	0.00 d.	30			• •	• •	• •		• •	٠.	٠.	•	•	• •		٠	• •	•	٠	٠,	•	• •	Ċ
54	50 60 80	29	50.50	} • •	٠.	100	.00	00	÷0	58	100	•	•		٠.	•		- 6	30		•	• •	٠
2		28	6	.60	٠ ٠ ٥	· .			.09	.01	٠.	•		₹ .	80	35	36	10	25	30	100	86	90
20		27	• • •	. 60	٠٠,	₹.			- •		٠.	100	50		50	•			•		٠		
19		56	10.	. 20	30	- •		٠.				.00	10			-		•	•				
icts 18		icts 23	50		3 .	٠.,	. an	. 08	50		20 .	, T	1	10	20	•		٠	•				
Districts 17 18		Districts 22 23	6	} · ·) ·	20	50	٠.		•		.06		•	- •	•					
	۶ - ال		uiden rn	<u> </u>	D.			٠ جنن	ken	ъ .	₩		- to	ızası	gen	u e		a o	ten			de	
Pro Municipality	Winterswijk Wisch Zeihem Zevenaar Zutphen	Pro Municipality	Jsselmuiden Angerlo Aneidoorn	Arnhem	Brummen Doesburg	Etburg	Epe Ermelo	Harderwijk Hattem	Keerde Koevelaken	Nunspeet Níjkerk	Oldebro Putten	Renkum Rheden	Rozendaa	scnerpenzee Voorst	√ageningen Zutohen	Ame rongen	Baarn	Bilt, de	Bunschoten	Leersum	Leusden	maarrii Renswoude	Rhenen
δ M		ó Æ		Z & &	žĞ.		7	¥ £	포모	žž	ᅙᄯ	~ *	. Z	หั ≻	₹ Z	-	2 83	<u>~</u>	<u> 전</u> 1	ت ت	֓֞֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֜֜֜֜֓֓֓֓֡֜֜֜֜֜֜	ž Ž	赱
ā	ව	ď.	86													Ut							
Š							٠.	00	۰.	00	00	٠,	, .		00	0			ō	. 0		. ⊙	0
25 to			 	 			.0 80	. 198 100		. 100 70 100	00 100 	100			100		 	•	06	. O		. 100.	. 100
77							20 80		. 60 . 100	100		. 90				98			. 90				100
21 24								90		100	100						30						100
20 21 24	· · · · · · · · · · · · ·	20 10		20 50			20	90															100
19 20 21 24	0 100	20 100 +0					20	90									30						100
19 20 21 24	20	40 . 20 90 . 10		80 20 50 50 50			20										30						
20 21 24	0 100	40 . 20 90 . 10					20							. 001		06	30						
19 20 21 24	doorn 20	zaal	100 10 10 10 10 10 10 10 10 10 10 10 10	80000	veen . 100 .				09 . 07		Doetinchem 100	06 . 0t 90	20 80	Groenio	Aerdt Kennel	orde	30		den		100		ervoort

Table B.2 (continued)

Note Properties 100	_	Pro Municipality	District 22 23	icts 23	56	27	28	29	30	Pro Municipatity	Districts 31 32	s 33	34	35	36	37
10 National Control Contro	> 7	eenendaa l	•	٠	•	•	100	•	•	•		•	•	100 100	80	• •
Langament Lang	Ň	eist					10,			Katwoude		•	•	100	• • •	•
Figure F	മ	laricum	•	٠	•	•	50	-	•	Landsmeer Langediik		•		100	₹.	
Properties 100 Michael 1 100 Michael 100 Monticipelity 100 Monticipelity 100 Monticipelity 100 Monticipelity 100 Monticipelity 100 Monticipelity 100 100 Monticipelity 100 Monticipelity 100 Monticipelity 100 100 100 Monticipelity 100	= =	ı j zen					2			Limmen		(•	100	•	•
## Propries	Ξ.	ıren	•	•		•	3	•	- 6	Medeablik	-	000	•	•	•	•
Districts Districts 31 32 33 44 35 36 37	õ	onten	•	•	•	•	•	•	200	MIDWOUG Monningender		3	•	٠,	٠	٠
Districts 31 32 33 34 35 36 37 Opperations 31 32 33 34 35 36 37 Opperations 100 100 School 100 100 School 100 100 100 100 100 100 100 100 100 10	ర⊼	stelljk Flevoland		٠.	•				36	N ibb i xwoud		100		3 .	} .	٠.
Districts 31 32 33 34 35 36 37 Openeer 1100 100 Openeer 1100 100 Openeer 1100 100 Openeer 1100	í		•	•		•	•			Niedorp	. 100	•	٠	•	٠	•
100 100	- 5		40.00							000alli 00s+zaan	001	•	•	•	.02	.08
100 100	₹	uniciparity	31.	32.5		34	35	36	37	Opmeer	04	-04	20			} •
100 100	-									Opperdoes	•	100	٠	•	•	•
100 Schagen 100 Schagen 100 School 100 School 100 10	4	bbekerk	-	•	001	•	. 6		•	Dudendray		3	•	100.	•	•
100 Schemer 100 Schemer 100 School 100 School 100 School 100	ਰ ∢	Kersloot	•	•		•	35	•	•		100	•	•	3	•	•
100 100 Sint Maarten 40 60 60	18	rymaa. Byterdam	•						.09	Schermer			•	100	•	•
100 100 Sint Maarten 40 60 100	ā	10000 TK			100	•	•	•	•	Schoorl		•	•	04	•	•
100 100	÷₹	nna Paulowna		00	•	•	•	•	•		017	•	•	9	•	•
100 Sijbekarspel Sijbekarspel 100	8	venhorn		•	100	•		٠	٠			• (•	100	•	•
100 Uitgeest Ui	ĸ.	ırsingerhorn	•	00	٠	٠	• 6	٠	•	Sijbekarspel		100	•	•	•	•
100 100 Velsen	g,	emster	•	•	•	•	200	•	•			3	•	100	•	•
100 Verbulizer 100 Verbulizer 100 Verbulizer 100 Verbulizer 100 Verbulizer 100 100 Verbulizer 100 100 Verbulizer 100 100 Verbulizer 100 Verbul	g c	rgen	•	•	•	.00	2	•	•			100	•	3	•	•
50 50 Venhuizen 100 100 Warmenhuizen 100 70 Wieringen 100 70 Wieringen 70 80 Wognum 70 Wojnum Wojnum 70 Wojnum Wojnum 70 Wojnum Nojnum 70 Zaanstad 50 Zaanstad 50 Zaanstad 50 Zaanstad 100 70 Zaanstad Zaanstad 100 100 100 20 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <t< td=""><th>36</th><td>rknout vorsi ik</td><td>•</td><td></td><td>•</td><td>00.</td><td>•</td><td>•</td><td>100</td><td>Velsen</td><td></td><td>3 .</td><td></td><td></td><td>٠.</td><td>90</td></t<>	36	rknout vorsi ik	•		•	00.	•	•	100	Velsen		3 .			٠.	90
100 Warmenhuizen 100 Wervershoof 100 Wieringermeer 100 Wieringermeer 100 Wieringermeer 100 Wognum 70 Wognum 70 Wognum 70 Wagnum 70 Zaanstad 50 Zeevang 70 Zwaag 100 10 2 ipe 10 100 10 100 10 2 ipe 10 100 10 100	0 6	OKKEL			20	20.			3 .	Venhuizen			100			
100 Wervershoof 100 Westwoud 100 Wieringermeer 100 Wognum 70 Wognum 70 Wognum 70 Wognum 70 Wognum 70 Zaanstad 50 Zwaag 100 Zwaag 100 10 2 jpe 10 100 100 100 100 100 100 100 100 100 100 100	8	venkarspet			100		•	•	•	Warmenhuizen		•	•	100	•	•
Mestwood Westwood Westwood Meringermeer 100	ĕ	oek in Waterland	•	•		٠		100	•	Wervershoof		100	•	•	•	٠
Migram 100 Migram 100 70 30 100 Mognum Mognum 100 70 30 100 Mognum 100 70 30 100 1	8	Hantsoog	•		•	٠	001	•	•	Westwoud		200	•	٠	•	•
Mormer 100 Wormer 70 30 100 Mormer 70 30 100	۵,	Istricum	•		•	•	25	•	•	Wieringen		•	•	٠	•	•
100 100	۱ ا لا	tam=Volendam	•	•		•	200		•	MICH INCOME		70	30.	•	•	•
de	U) L	jaona-binnen Jenison	•		100	•	00	•	•	110122 10122	•	2	3	100		•
e 70 Zaanstad Forward	ď	foliations		•	3	•	100	•	•	Wildewormer		•		50	50	•
de 70 30 Zeevang Zwaag Zwaag Zwaag Zijpe 100 Zijpe I00 Z		cottebroek			100		· ·			Zaanstad		•	٠	20	•	50
70 30	÷	arlemmerliede			•	•		•	20	Zeevang		٠	٠	100	•	•
10 : 80 : 10 Zijpe	7	renkarspel		70	•	•	30		•	Zwaag		•	100	٠	•	٠
. 10	ž	eemskerk,	٠	•	•	•	8	٠	10	Zijpe		•	•	100	•	•
en : : : 100 : : : 100 : : 38 39 40 46 : : : : 100 : : : : : : : : : : : : : :	Ť.	e rhugowaa rd		10	•	٠	8	•	•							
ef	≖.		•	•		•	90	•	٠	the Management of the Control of the	40,44					
ef 100	Ξì	stder, Den	•	٠		•	3	٠	•	AT LEGISTICS TO LEGISTICS	38 30		77	17		
. 10 90	Ĕ,	ansurous Soaks sesse	•	3	100	•		•	•				}	•		
Breukefen . 20	žž	oogka raper oogwoud		-0	8			٠.			. 100		•	•		
	. 노	orn				00	•		•		. 20		•	•		

continued)
t in
0
E.3
_
2
_

Districts 38 39 40 46 47	001 0001 0001 0001 0001 0001 001 001	100	100 100 100 100 100 100 100 100
Pro Municipality	ZH Hazerswoude Hilegom Katwijk Koudekerk a/d Rijn Leiden Leiderdorp Leidschendam Leimuiden	Lisse Maasland Moerkapelle Moordrecht Naordrecht Nieuwerkerk lysse: Nieuween Nieuween Noordwijk	Ungstgeest Pijnacker Reewijk Rotterdam Rijnsburg Rijnsburg Rijswijk Sassenheim Schiedam Schiedam Schiedam Schiedam Valkenburg Voorschoten Warmond Warmond Wassenaar Wateringen Woubrugge Zevenhoven Zevenhizen Zevenhizen
24 9			
94 04	.0000 .0 .		
	220 110 100 100 100 100 100 100 100 100		
Districts 38 39	100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100
Pro Municipality	Ut Kockengen Loenen Loosdrecht Maarssen Maartensdijk Mijdrecht Nigtevecht Vinkeveen c.a.	Nations Nationeer Amstelveen Amstelveen Amsterdam Bennebroek Blaricum Bloemandaat Bussum Diemen Graveland, 's-Haarlem Haarlemeer	Heemskerk Heemstede Hiversum Huizen Laren Muiden Naarden Naderhorst den Berg Ouder-Amstel Uithoarn Weesp ZH Aar, Ter Alkemade Alphen a/d Rijn Bertkel, Rodenrijs Berkel, Rodenrijs Berkel, Rodenrijs Berkel, Rodenrijs Briskoop Capelle a/d IJsset Driebruggen Gouda Gouda

_
┰
ā
~
\neg
_
_
-
Ξ
0
5
•
೭
ت
ت
ت 2:3
ت
ت 2:3
ت 2:3
. B.2
. B.2
ble B.2 (
le B.2 (

		59	• •		•		•		•		2	• 9	0		٠			100	30	10	•	100	•	•	•		•	•	٠.
		57	20		•		965	100		100	, .			.00	100	32		٠.					100			-01		•	
		55	.00		000	100	•		99			100	.00		•		.02		. 0	3 .	100	•		99	36	8		•	
45	000 000 000 000 000 000 000 000 000 00	53	•••			• •		• •	•	- 		٠.									٠.	٠	٠	•	-		• 6	38	80
1 1		52													•				•		•		•				٠	•	- •
143	001	50																	•		•	•	•						
cts 42		cts 49																											
Districts 41 42		Districts 48 49			•		•			. ,		•	•		•	•		•	•	٠.	•		•				100		
Pro Municipality	Ridderkerk Stołwijk Vlist Woerden	Pro Municipality	Arnhem Beesd Remme I	Buren	Buurmalsen	Culemoory Deit	Dodewaard Fobteld	Elst	Est, Opijnen	Geldermalsen Gendt	Groesbeek	Haaften	Herwen, Aerdt	Heteren	Huissen	Kesteren	Maurix	Millingen a/d Rijn	Nijmegen	Opnement Panne rden	Tie	Ubbergen	Valburg	Varik	Vureft Waa ndenbisne	Zoelen	Abbenbroek	Albiasserdam	Ammerstol
r q	HZ	ď	99																								HZ		
45		• • •	• • •						•	•		•	•			•			8	901	70	•	00	50	2 5	90	100	30	100
71		• • •	• • •	• • •	. W 5		. 6	202	6	100			•	100		.00	3 .		•	•		•	•	80	•		•	٠	
43	• • • • •	• • • • •		• • •	50		•		10		100	70	•			٠	100		٠	.09	, .	90	٠	•	•		•	- 6	⊇ •
icts 42	30.		8 8	3 • •		20	•	80	•				85	3		•				•		•		•	•		•	•	
Districts 41 42	90.	866	100	100 50	ζ.		50			φ.	·	30	80		-01	100		90	•			•	•	•	•			•	
Pro Municipality	Ut Amerongen Benschop Bilt, de Breukefen Bunnik	Cothen Doorn Drieb, Rijsenburg	Harmeten Houten Kamerik	kockenyer Langbroek Persum	Liverschoten	Lopik Maarssen	Maartensdijk	Nieuwegein	Oudewater	Polsbroek Rhenen	Snelrewaard	Soest		Vlauten – De Meern Willeskop	Woudenberg	Wijk bij Duurstede	Zeoveld	Zeist	ZH Bergambacht	Berkenwoude Rodeoraven	Capelle a/d Lassel		Gouderak	Haastrecht	Hendrik-Ido-Ambacht	Krimben a/d Lex Krimben a/d J.Lssel		Nieuwerkerk iJssel	Njeuwkoop Ouderkerk IJssel

Table B.2 (continued)

Ρr	Pro Municipality	Districts 48 49	cts 49	50	52	53	55	57	59	Pro	Pro Municipality		Districts 48 49	icts 49	50	52		55	57	59
ΗZ			•	•		100	• •			ΥZ	Ottoland		٠	•		•	100			
	Asperen			- 6		-	100				Oud-Albias	3	- 0		٠,	•	20			
	Baarendrecht			2	•	٠٥					Oudenhoorn	2	200		2					
	Deryamoacus Rieckensaren			•		86			•		Papendrecht		3			100				
						100					Piershil		100	•			•			
	Brie≀le	100		•							Poortugaal			٠.	100					
	Dirksland		80								Puttershoek		•		20	20				
	Dordrecht				80		•				Rhoon		•	•	100 100	٠,				
	Everdingen			-		-	100				Ridderkerk		- (10	10				•
	Geervliet	30		9	•	- ;					Rockanje		26							٠
	Giessenburg		• (•	<u>-</u>	100					Rozenburg		70							
	Goedereede	•	100								Schoonbayed		•				36			•
	Corinchem			•		200					Schoonrevoerd	Ţ	•				•	.001		
	Coughing and	100			•	3					Sliedrecht	3	•		• .		. 0	,		
	Cravendee '*	3	•	•	٠,						Spijkenisse				50		, .			
	Groot-Ammers		•			100					Streefkerk		•			-	001			
	Hagestein						100				Strijen		•	•		10				
	Hardinx, Giessendam			•	Ĩ.	100					Tienhoven					٦.	00			
	Heenvijet	100									Vianen						-	100		
	Heerjansdam	•		50	20						Vierpolders		100				•			
	Hei-, Boeicop					<u>~</u>	100				Viist			٠	• •		09			
	Heinenoord		•	100							Westmaas		•	•	100		• (
	Hellevoetsluis	100			• !						Wijngaarden	7		•			00			
	Hendrik-1do-Ambacht				8		• •				zuid-peijeri	and			001					
	Heukelum	•		•	•		100				Zuidland		3		•					
	Hoogblokland	•			- ;	90					Z:d moott		200							•
	Hoornaar	•			-	_ `	٠,			2	Zwijnareciit		•			3				•
	Kedichem			•		<u>-</u>	9		•	NB	onderibosca		•					20		
	Klaaswaal			30		. 601	-													
	Latigatan					ď	. 6			o d	Municipality		Distr	icts						
	Leerdan .					· ~	00						51 54	24	7,	15	92	11		
	Technology and the second					-	100													
	Maasdam	•		70						ZH	Dirksland		•					20		
	Meerkerk			•	<u>-</u>	100					Dordrecht			50						
	Middelharnis	9		,							Gravendee!,	-8-	50							
	Molenaarsgraaf	•			ŕ.	100					Klaaswaal		2.	•						
	Mijnsheerentand		•	100							Maasdam		30				•			
	Nieuw Beijerland	100		•		•	•		•		Middelharnis		- 6	•	•		1 0			
	Nieuwland				•		100				Numansdorp		100			•	. (
	Nieuw Lekkersand					001					Contrakkee		- 0			•	2			
	Nieuwpoort	•				000					Spijkenisse Strijen		28							
	Noordeloos Occesionickoo				•	3				70	atrijen Brouvershaven		2	•	•	•	•	٦.		
	Oostriakkee Oostvoorde	35								7	Bruinisse	.	•		•			000		
	00357001110	2		•		•					,		•	•	•			}		

_
panu
Ξ
cont
ō
೭
.2
_
.2
B.2 (

Districts 51 54 74 75 76 77	90 100 100 1100 1100 1100 1100 1100 110	Districts 56 58 61 62 70 71 72 73	100		100		100			30	_		· 0 1	10 90		20 80			01 . 01		100			. 100	. 100	. 100	. 100			04
Dist 51		Dist 56	100	• •	•	100	•	•	100		•	200	3.	• •	100	•	100	100		•	•	٠	9	•	٠	•	•	• • •	100	-01
Pro Municipality	NB Woudrichem Wouw Zevenbergen Zundert	Pro Municipality	Ge Ammerzoden Appeltern	Batenburg	Bergharen Beuningen	Braket	Dreumel	EWIJK	Hedel	Heerewaarden Heumen	Horssen	Kerk∀ijk Moodaio	Nijmegen	Overasseit	Rossum	Tailohen Wijohen		NB Aalburg	Alphes C.a. Baarle-Nassau	Beers	Bergeijk	Berghem	Best Best	Bladel c.a.	Boxmeer	Boxtel	CUVK C.a. Diessen	Dongen		Dungen, den Aussen
7.7	001				•				•									•												
92	000	• • •	.0		•				٠.	Σ.		٠		•	100	100	•		100											.0
75			90	• •	9		•		• (χ.	•	100		•	•		•	٠		•	100	20	•		100	•	•		•	•
74		20.	ğ .	00 100 100	•	70	•	50.	•	.09	3.	•		100		ģ.	20	30	υς	•	٠	35	3	• •	•	- (2		•	•
ricts 54		• • •	• •		.08	3 .	•00		20	•	50.		30		٠	Š.	•	٠		100	٠	•	100		•	30		88	90	•
Districts 51 54		• • •	• •	• •	9	30	100		•	30	22		202	٠	• •	→ ·		20	ς,		•	•	•	100	•	02	30	٠.	•	100
Pro Municipality	Duiveland Middenschouwen Reimerswaal Sint Philipsland Tholen	Westerschouwen Zierikzee Alphen c.a.	Baarie-Nassau Bergen op Zoom Berge	breda Chaam	Dinteloord, Prins	russen Etten-Leur	Fijnaart Heijningen	geertaldeng Gilze, Rijen	Gravenmoer, 's-	Halsteren Hoeven	Hooge, Lage Zwaluwe	Kuijbergen	Klundert Made, Drimme≯en	Nieuw Ginneken	Nieuw Vossemeer	oosternout Ossendrecht	Oudenbosch	OudenNieuw Gastel	Prinsenbeek Purte	Raamsdonk	Roosendaal, Nispen	Rucphen	Kijsbergen SerandaCanatio	Standdaarbuiten	Steenbergen	Terheijden	Teteringen	waajwija Waspik	Werkendam	Willemstad

Table B.2 (continued)

73	. 55 .	• •	•		•	•	•		69	}	•	•	•	٠.		•	•	. 08	} •	•	9	•	100	} -		- 0	3		۰۵		300	5.5		9	•	•
72	٠.,		1 0			•	•		89	3	•	•	•		•	•	•	. o	į.	•	•	•	•		•	•				•		•		•	•	•
71	100		•			•			47	5	•	•	•		٠	٠	٠	•		•	•	•				•		•			•	•		•	•	
70	001 50			3	100	•	•		99	3	•		•			•	•	•		•	•	٠	•		•	•	٠	•	•	•	•	•		•	٠	•
62									65	3	٠	٠	•				•	•		•			-			•					•	•		•		
19		06		.00		٠.	3		79		•					•							-											٠	٠	•
ícts 58	• • •		•			•	•	4	2.5	3	•	•	.00	30	001	00	8	3	.00	90	•	100	9	.00	90	100		00-	2	100	3	50	80	-	약;	2 2
Distrícts 56 58		100	09			10	•		60 63	3	30	28	م	• •		•	•	•	٠.	•	٠	•		٠.	•	•	•		•	•				•	٠	•
Pro Municipality	NB Valkenswaard Veldhoven Vessem c.a.	Vierlingsbeek	Vught	Maaria Manroii	Westerhoven	Wordrichem	766 917	200	Fro Maniciparity		Ge Groesbeek	Heumen	NIJEGED NR Aarle-Rixtei		Bakel c.a.	Beek c.a.	Berlikum 80000	Budel	Deurne	Dungen, den	Eindhoven	Erp	Geldrop	Gemert	Heesch	Reeswijk-Dinther	Heeze			Letine	Maarhooze	Minrio Co	Nistetrode	Nuenen c.a.	Nuland	Oss Rosmalen
73	20	05	20	50						.01	100				80						•	10		30	•						•	• .			30	
72 73	. 20 100 .		20	50	30 .						. 100				. 80					•	•	50 10		30										50		
			80 . 20	50	_					90 . 10	•	001			80							40 50 10												20		
72	001			50	_		01				•	. 100			. 80	001									•							000		20	10	•
71 72	20 .		80	50	_				30		•		•			. 100	001			60						06	•	. ,				000		. 50	10	
61 62 70 71 72	20 .		80								•		•	100						9							90	. ,				000		. 50	30 10	01
61 62 70 71 72	20 .		80			. 100					•		•							9							90	. ,				000		. 50	30 10	01 .
62 70 71 72	20 .		80						36 30	06	•		•							9							90	. ,					Sint-Oedenrode		30 10	

Table B.2 (continued)

Hunsel	Σ	Pro Municipality	Districts 60 63	icts 63	ħ9	65	99	29	68	69	Pro Municipality	Districts 60 63	s 64	4 65	99 :	19	89	69
### 100 10	÷ ç	arjk Findel	•	20	•	•	•	•						• •		100	100	•
100 100	in it	-Michielsgestel	• •	202	•					· • C	Kerkrade		•			100	.001	•
100	Some	ren		28						٠	A CONTRACTOR OF THE CONTRACTOR					100	3 .	• •
the control of the co	egh	e.	•	100	•		•				Limbricht		•	•	1		•	•
### ### ### ### ### ### ### ### ### ##	ē.	lingsbeek	٠	• 0	0.						Linne		•	•	000		•	•
### 100 100 Mastricht 100 100 Mastricht 100 100 Mastricht 100 100 Meric Hansum 100 Meric	eel	and	•	20				٠.			Maaspracht		100	٠	œ G		•	•
100 Mergraten 100 Mergraten 100 100 Merkelbek 100	12 5		•			100		3 .			Maastricht		3 .		•	100		
## 100 Meersan 100 Meersan 100 1	Baexem		•		•				00		Margraten		•	•	•	100	•	•
100 100 Meric 100 Meric 100 10	eeg	den	•	•	•		•		00		Meerlo-Wanssum		100	•	•	• 6	•	•
100	Beek		٠	•		- 0	•	8			Meerssen Moliok Hoskoobosob		•	•	100	3	•	•
100 Ministrate 100 Ministrate 100 100 Ministrate 100 100 Ministrate 100 100 100 Ministrate 100 Mi	9 -	7.00	•	•		36					Morke Theek		•	•	3	100	•	•
Minetifort 100	- e	200	•			3		90			Weile		· ·	• •			.09	• •
10 90 100 Montfort 100 1	2 6	Terblift	• •					00			Mheer		•	•	•	100	•	•
Munok c.a. 100 Munok c.a. 100 10	ero	en	10		•	90					Montfort		•	•	100	•	•	•
Munstergeleen 100 Mederweert 20 100	ņ	etrade	٠	•	٠			00			Mook c.a.	100	•	•	•	٠	٠	•
100 Nederweert 20 60 Nieuwenhagen 100 100 Nieuwenhagen 100 100 Nieuwenhagen 100 100 Noorbeek 100 100 Nuth	och	01tz	•		•	•	٠.	00			Munstergeleen		•	•	•	100	- (- (
100 100 Nieuwenhagen 100 Nieuwenhagen 100 Nieuwenhagen 100 Nieuwenhagen 100 Nuth 100	Born		٠					00			Nederweert	. 20	•	•	•	٠	09	N
Newwenhagen Newwenhagen 100	roe	khuizen	٠	•	100		•	•			Weer		•	•	•	• (100	•
Notewated Notewated Notewated Notewated Note N	Ē.	ssum	٠		٠	•		00			Mieuwenhagen		•	•	•	000	•	•
Nuth Cobbicht c.a. Nuth Cobbicht	Bunde		•	•	•	•		000			Nieuwstadt		•	•	•	200	•	•
100 100	200	-	•					96			100 H		•	•	•	200	•	•
100) - -	ş	•				-				Obbicht c.a.		•	•	•	001	•	•
100 100 Posterholt 100	7	o choven	•	•				88			Ohe. Laak			•		100		
100 Rosterholt 100 Rosterholt 100 Rosteren 100 Schaesberg 100 Schimmert 100 Schimmert 100 Schimmert 100 Schimmert 100 Schimmert 100 Schimmer 100 Schi	, v	den	٠.				• •	00			0 i rsbeek	•	•	•	•	100	•	•
100 100 Roasen 100 Roasen 100 Roasen 100 Schaesberg 100 Schimmert 100 Schimmert 100 Schimmert 100 Schimmert 100 Schimmert 100 Schimmer	Geleen		•	•	•		٠.	00			Posterholt		•	•		•	٠	•
Roggel Rosteren 100 Schaesberg 100 Schimmert 100 Schimmert 100 100 Schimme	enn	de	100		-						Roermond		•	8	2	٠	•	•
Mosteren Schamert 100 Schamert 100 Schinmen	enl	_e	•				Έ.		• (Roggel		•	٠	•	• (100	•
Schinmert 100 Schinmert 100 Schinmert 100 Schinmer 100 Schinweld Schenum 100 Simpelveld Sint Odilienberg Sittard Spaubeek 100 Stevensweert	rat	hem	•		•	•			9		Koosteren		•	•	•	3	•	٠
Schinmert 100 Schinmer 100 Schinmer 100 Schinnen Schinnen Schinnen 100 Schinveld 100 Sevenum 100 Simpelveld 100 Sint Geertruid 100 Sint Odilienberg 100 Sittard 100 Shaubeek 100 Spaubeek 100 Stein	ze S	enbicht	•				•	90			Schaesberg		•	•	•	36	•	•
Schinveld Schinveld Sevenum 100 Schinveld Sevenum 100 Simpelveld 100 Simpelveld 100 Sint Gentruid 100 Sint Adilienberg 100 Sint Adilienberg 100 Sint Adilienberg 100 Spaubeek 100 Stein 10	5.	sveld	•		• (•	50			SCHIMMETT		•	•	•	36	•	•
schill sevenum (100 sevenum (100 sevenum (100 sevenum (100 simpelveld (100 simpelveld (100 sint Geertruid (100 sint Odilienberg (100 sint Odilienberg (100 sint Odilienberg (100 stein (100	윤.	benvorst	•	•	3	•		- 0					•	•	•	2 6	•	•
Simperved C.a. Simperved Sint Geertruid Sint Odilienberg Sittard Sittard Sittard Sint Odilienberg 100 Sittard 100 Stevensweert 100	<u>a</u> .	en	•	•					٠,		SCHINGIN		100	•	•	3	•	•
Sint Gentuid 100 1	9	en	•					•	28		oeverior or man or contra		3		•	100	•	
Sint Odilienberg 100	ee	, a .	•		•				3		C:::::::::::::::::::::::::::::::::::::		•	•	•	200	•	
Sittard Sintard Sittard Sittard Sittard Sittard Sittard Sittard Sittard Sittard Sittard Spaubeek 100 Spaubeek 100 Stein Stein 100 Stein	ב ט ט	:: :::::::::::::::::::::::::::::::::::	•	•					٦.		Sint Odillenberg		•	•	100	3	•	
Sjenaken slenaken stein spaubeek stein stevensweert stein stramproij strampro	2 t		•	-	2	•	.001				Sittard		• •	•		100	•	
Spaubeek 100	- c	hilyeon	•				}		.00		Slenaken					100		
Stein Stein	oen Oen	sbroek							} •		Spaubeek		•	•	•	100	•	•
Stevensweert 100	Horn								00		Stein	•	•	•	•	100	•	•
	Horst	يد	•	•	100						Stevensweert	•	•	•	•	100	•	Ť
	S In	berg	•		•		-	00			Stramproij	•	•	•	•	•	100	•

69					•									9				•	,
68	•			100	•				•	•		•		9	100		•	•	
19	100	•	•	•	100	100	100 100	100	300	•	•	•	100	•	•	100	100	100	
99	•	•	•	٠	•	•	٠	•	٠	•	•	100	•	•	•	٠	٠	٠	•
65		100	100	٠	•	٠	•	•	•	20	•	•			•	•		•	•
1 79	•	•	•	•	•				•	Š	100	٠	٠	•	•	•	•	,	•
63 63						•		•		•	•								
0.stricts 60 63	•	•		•	•			•	•		•	•					•	,	•
Pro Municipatity	Li Susteren	Swalmen	Tegelen	Thorn	Ubach over Worms	Ulestraten	Urmond	Vaals	Valkenburg-Houthem	Venio	Venraij	Viodrop	Voerendaal	Weert	Wessem	Wittem	Wiltre	Wijnandsrade	

Table 8.3 FINAL URBAN, WATER, AND OTHER AREAS (ha)

Q.	302 72 0 18 231 302 332	3605	6443	1767 1905	928 1214	19748	()()	3584	2085	27826	82609	940 736	201 354	402	233 458	171	320	00	000	4411	145491
CULT	22141 8934 14345 14120 11466 13269 24132	204733	നയെ	8032 8032 25079	41858 29509	6520 159516		25885	23132	7.7	176864	32465 17805	702	928 307	462	173	897	693	22724 23565 19001	412709	2385714
MOODS	8549 316 1100 188 121 144	17375	543 91	273 273	1390	1378		1510	2790	- 10 10	15260	3464 974	2132	1795 10861	7054	3153	5394	6826	9237 4775 5730	84180	301352
WATER	757 630 625 501 1264 1220	22419	8644 7542	2133 2133 2110	2099 1969	820		4950	(7)	28545 21772	65319	- Ν	- N	- M-C	\circ	200	ഠഹ	N۳	283 394 154	11667	234782
URBAN	5622 1278 1701 1088 2091 2263 5910	42214	က္ကေ	2621 2600 2600	ထောမ.	⊐ დ	, ,	2446	265	77	14441	4066 2318	1323	2597	2993	1190	2329	2628	2864 2864 3780	57094	238687
TOTAL	39636 11854 18728 16227 15425 16933 28679	303842	84	19820 14144 30750	69	80 08		34627	299	983 711	284674	37	20	57.	86	,50	90	11	37073 34233 34233 30861	610934	3403091
DISTRICT	41 KROMRIJN 42 LEIDRIJN 43 WOERDEN 44 LOPIKWAR 45 KRIMPWAR 46 SCIELAND	Midwest and Utrecht	8000	50 IJSLMOND 52 DORDRECT 53 ABLASWAR	50 ~	ر م		51 HULNDIEP 54 BIESBOSH	4 50	91~	West-Brabant & South	ယ်လ	0 +-	N m	at tr	10/	~ @	60	71 WDOMMEL 72 NDOMMEL 73 DONGE	Southeast Highlands	Total Nation
ON	7992 3883 7825 1791 847 5464	000	2722 1625	32149	00	000		20.5	197	9	831	160 288 121	0	vo.	-		550 691	470	1295 403 1061	4658	540 180 1628
CULT	251870 14923 67358 11007 32094 35776 455634	42275	36361	659418	52	70203 33952 16978	33,	268	88	69		15218 26386 2846	629	77.	055	٠.	_ 10	m v	57657 6176 9338	140924	64109 17900 14317
MOODS	8346 427 427 185 228 939	יואית	2224 1955	29709	1 2	9379 3929 4185	. KO (222	36.	541	62626	6251 16273 2589	9	200	, 0	1 ,	800	57	23.71 16 848	4136	2956 370 3404
WATER	25490 4086 10948 1971 1853 6007	929	3748 2307	63011	584 594	1075 673 161	642	337	261 615	1066	6868	395 672 218	304	1205	22.66	, ,	1569	1335	7450 5461 1128 3635	14985	7988 2771 5510
URBAN	12708 2460 2460 2425 2105 4074	3623	837 1958	35732	1929 2505	3167 1562 1268	5815	2483	1882 2870	4615	30986	1648 3615 1024	2247	4152	23107	3	263 1412	1834	7227 320 7039	19143	15082 3000 4179
0TAL	m O so a m M vo	250	222	36	22	00928 13016 14502	15	43.03	382	722	88/	5864 2889 7970	985	015	2 1	- 5	928	# F	78185 7974 26513	92422	99608 25884 30868
ĭ	311693 19880 83248 14414 37773 45635 53096	529	507 507 448	8248	293 455	909 430 77 77	822	263	73,6	- ,	5948	222	186	יתי פעת	3733	,	25	75.	287	192	9,00

Table B.4 SURFACE WATER AREAS AND VOLUMES, NATURE AREAS (Areas ha, volume $1000\mathrm{m}^3$)

"NATURE"	38150 3885 18367 3555 3720 4721 3118 10249 3611 4830	112858	2868 6667 11053 7366 4729 18802 5325 7361 7361	101762	6159 12243 1551 4475 24360 14328 29895	93011	2681 2902 2643 1682 13850 1383	32190
TOTAL	368530 6085 70025 4860 24535 14125 19710 27172 72125 72125 72125	671814	14610 15295 28320 17760 4450 16995 15080 9705 4940 12045	158645	5985 10310 2330 2960 15235 12175 38610	87605	9725 28850 18862 5672 78605 13948	192777
-VOLUME	90530 3025 17565 7415 5265 11710 5732 6765 7785	163064		O.	5415	5415	7550 6862 2172 38605 3948 9115	68252
WATER\ BOEZEM	278000 3060 52460 17120 8860 8600 21440 14650 64340	478570		0	6760	6760	21300 12000 3500 40000 10000 28000	114800
. SURFACE TOTAL	26609 683 5386 432 2114 1346 1974 1989 4474 1762	50675	1170 2439 1533 407 1465 1285 930 457 1155	13618	492 910 175 289 1811 1121	7462	793 1575 1575 515 6472 952	15004
-AREA POLDER	12700 530 2763 1258 903 1574 632 859 1257	23706		0	783	783	1045 975 340 4472 452	8471
BOEZEM	13900 153 2623 2623 856 4443 4400 1130 3217	24542		0	••••••••••••••••••••••••••••••••••••••	338	1065 600 175 2000 5000 1400	5740
DISTRICT	1 FRIELAND 2 HETBILDT 3 LAUWMEER 4 UITHUIZN 5 EEMSKANN 6 OLDAMBT 7 WESTWOLD 8 NWDRENTE 9 WESKWART 13 VOLENHOV 14 NEPOLDER 15 MASTBROK	North	10 NEDRENTE 11 SEDRENTE 12 SWORENTE 16 OVIJVECT 17 DINKEL 18 TWENTHE 19 SALLAND 20 TWENTKAN 21 SHIPBEEK 24 BERKEL 25 OUDEIJSL	Northeast Highlands	22 IJSELGEB 23 NEVELUWE 26 ARNHEM 27 SEVELUWE 28 SWVELUWE 29 NWVELUWE 30 FLEVLAND	Flevoland & Veluwe	31 WIERGMER 32 AMSTLMER 33 MEDMBLIK 34 HOORN 35 SCHERMER 36 WATRLAND 37 NZKANGEB	North Holland

Table B.4 (continued)

DISTRICT	BOEZEM	-AREA POLDER	SURFACE TOTAL	WATER BOEZEM	VOLUME	TOTAL	"NATURE"
38 RIJNLAND 39 AMSTLAND 40 GOO! 41 KROMRIJN 42 LEIDRIJN 43 WOERDEN 44 LOPIKWAR 45 SCIELAND 47 DELFLAND	3900 950 420 150 170 170 70 1400 670	6520 2012 3838 841 411 1017 749 1056 618	10420 2962 4258 991 561 1187 819 1018	90000 19000 8400 3000 3400 1400 6660 8000	60000 19368 43405 4618 2490 2497 8717 9780 3975	150000 38368 49805 7618 7618 11897 7117 16440 11975	20955 4615 6602 6692 3419 3411 4455 3470 3095
Midwest and Utrecht	7213	18063	25276	156260	161988	318248	58166
48 VOORNE 49 GOEREE 50 IJSLMOND 52 DORDRECT 53 ABLASWAR 55 TIELWARD 57 BETUWE 59 RECMAASN	1000 172 300 250 250 420 910	1464 448 629 363 1200 1191	2464 620 929 613 1620 2101 1169	20000 3440 6000 5000 8400 12050	12577 3365 4487 2685 8250 8737	32577 6805 10487 7685 16650 20787 12670 6530	64.79 3.149 2.061 2.088 4.891 4.891 8.642 9.33
Large Rivers & Northern	3052	5295	1966	54890	40101	114191	37385
51 HOLNDIEP 54 BIESBOSH 74 MARK 75 ROSENDAL 76 ZOOM 77 SCHOUWEN	600 466 	1124 1230 ; ;	1724 1696 863 1033 1349	12000 9320 	7900 8400	19900 17720 8590 11390 17530	7363 2079 9384 2940 7009 4480
West-Brabant & Southern	1566	3026	7837	31320	20800	89630	33255
56 DENBOSCH 58 MAASWAAL 60 RECMAASM 61 MASKANTE 62 MASKANTW 63 AA 64 DEPEL 64 DEPEL 65 RECMAASS 66 ROERMOND 67 SLIMBURG 68 MLIMBURG 69 EDOMMEL 71 WDOMMEL 71 WDOMMEL 72 NDOMMEL	633	1991	2226 1145 288 810 810 6110 1537 1382 1382 1382 1382 1382 1384 670 654	12700	12455	25155 16000 3975 3975 9810 8390 16645 16620 16620 9980 9590 4625	6391 3070 2252 7940 5574 24070 10668 16439 16439 8630 16439 8651 8551 8551
Southeast Highlands	635	1591	14107	12700	12455	159095	120684

Table B.5
PRIMARY CROP DATA
(ha)

			_,,,			
OTHER	11 22 22 22 23 24 25 25 25 25 25 27	320	36 32 22 2 4 135	236	35 36 10 10 10 01 0	104
FLOWR (05400000-5	34	ひ つ つ ひ む ひ ひ	19	7 1 20 0 0	30
VEGUG 1	L##00000-000#	39	£00000	34	000000 000000	62
TREES \	0 0 0 1 1 1 1 2 3 4 4 4 4 1 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1	346	0 1 3 3 7	/ 4	23 10 21 21 3	74
FRUIT	400 000 000 000 000 000 000	185	100 64 28 1 0	194	000000-0	-
VEGOA	513 895 824 129 129 16	1453	359 359 468 13	606	16 125 28 28 20 417 8	612
BULBS	4 <u>-</u> -0040-4004	21	25 72 4 0 0	119	r-1000000	12
CUT	39 204 11 137 611 20 20 30 132 14 14	1541	0 10 67 67 263	340	22 1587 526 53 82 137 200 74	2681
CEREA	2278 17722 1735 4108 8914 8742 925 47 47 5621 4985	60695	2387 4003 481 76 10 585	7542	164 7194 854 98 26 4127 7842	21519
SUGAR	6049 6049 289 1955 1120 2049 137 137 343 343 647 1674	16562	1725 2580 360 43 0 289	4997	4748 276 276 80 80 2955 5665	14490
SEED	377 3950 102 104 264 37 37 18 0 60 60	5002	1573 2193 242 13 13	4637	1753 193 16 272 191 191	2485
MILL	0 19 521 523 3883 34 46 9760 3146	25003	0 0 0 0 533	537	0 13373 1172 243 243 6960 14405 2156	38328
EAT	235 775 535 858 858 858 111 111 111	2253	344 538 140 32 1	1122	29 461 113 18 94 17	740
GRASS	4588 10880 5498 2435 1745 10699 16416 2374 3386 1945	65408	4318 32823 45383 47703 3436 79046	212709	6827 38583 23275 2396 9693 7319 2929	91968
TOTAL	8180 41315 7684 7436 13602 18211 11979 21999 12311	178862	10984 42678 46746 47956 3469	233442	7239 67886 26422 2952 9848 21912 31752 5095	173106
AGRICULTURAL REGION	Humsterland Hogeland Centrale Bouwstreek Cost-Fivelgo Niew-Oldambt Cud-Oldambt Centrale Wiedestreek Zuid. Westerkwartier Goorecht Westerwolde Woldstreek	TOTAL Graningen	Het Bildt Weide-en Bouwstreek Kleiweidestreek Veenweidestreek Eilanden De Wouden	TOTAL Friesland	Weidegebied Noorverve Centraal Zandgebied Dieverderdingspel Hoogeveen Zuidwest Weidegebied Hondsrug Veenkolonien Smilde	TOTAL Drenthe

Table B.5 (continued)

OTHER	27 27 1 86	121	82.50	337 204	8 0 0 0	265 6	6 17	868	27355 2735 2735 2735 2735 2735 2735 2735	104
FLOWR	08-1-21	18	, to 000	£ 8 9	~00	ი ნო	&L 0 \	189	36 31 4500004	79
VEGUG	0 2 2 2 2 2	23	5 0 19 19	7.8 7.	5-2	- 50 0	∞ ≠	215	20 50 13 00 13 00 13	114
TREES	16 8 8 11 77	136	9 9 9 9	241 7	504	23.48 25.55	65 12 39	552	25.00 20 45.00 45.	132
FRUIT	133 32 0 3 3 4	181	122 19 373 539	4960 1094 542	823 265 0	6 73 100	10 7 0 221	9055	1668 95 95 12 432 432 43 175	2966
VEGOA	112 12 12 55 42	228	108 197 176	112 65 275	52 129 230 230 230 230 230 230 230 230 230 230	257	48 12 57	1373	39 39 4 4	181
BULBS	040-00	15	≈ -≈0	<u>-</u> 4 5	40F	r-∞°	⊅ ₩Q₽	79	-1-4000vs	33
CUT	411 191 617 217 1020 11230	13686	894 956 1051	727 192 270	207 129 136	2325 841 574	5525 3564 1190 403	19099	405 17 128 71 26 712 712 566	1937
CEREA	126 51 182 450 2265 3205	6279	500 289 970 309	1841 323 225	233 393 75	816 803 942	2460 2167 853 759	13958	91 44 7 23 7 7 7 7 8	564
SUGAR	109 34 38 57 1191	2111	243 344 532 178	1092 187 124	139 139 3	21 70 126	421 274 151 359	4403	20 20 6 0 6 17	151
SEED	2 4 14 16 58 133	227	24 0 0	ი დ დ	000	000	55 122 11 28	360	00000000	0
3 I ΓΓ	54 0 71 805 3984 1949	6863	21 00 0	20 0 1	-00	209 90 224	258 59 16 0	910	8,0000000	26
EAT	51 36 69 16 721	953	137 56 92 48	288 80 543	28 16 31	223 176 143	407 272 77 121	2714	100 100 100 100 100 100 100 100 100 100	176
GRASS	7650 29957 23972 6850 14389 98535	181353	11139 7721 9826 2818	20676 9556 7733	6446 4313 8320	27867 13006 4095	43883 21482 6878 5231	210990	8507 5178 13857 6564 10504 3010 11309	64223
TOTAL	8558 30462 24989 8452 23043 116690	212194	13220 9530 13088 4335	30109 11870 10098	8047 5278 8593	31599 15148 6276	53150 28095 9202 7157	264195	10866 5390 14296 7381 11000 3059 12238 6456	70686
AGRICULTURAL REGIOM	Oist en Wijhe Westelijk Weidegebied Oostelijk Weidegebied Giethoorn Steenwijkerwol Zand-en Veengebied Salland en Twente	TOTAL Overijssel	Westelijke ljsseistreek Oostelijke ljsseistreek Lijmers Oostelijke Betuwe	Midden-Betuwe Westelijke Betuwe Bommerelerwaard	Land van Maas Waal-Noord Land van Maas Waal-Zuid Moordeliike Veluwe	Westerlijke Veluwe Oostlijke Veluwe Veluwezoom	Noordelijke Achterhoek Zuidelijke Achterhoek Oude IJssel-Gebied Rijk van Nijmegen	TOTAL Gelderland	Kromme Rijn-Streek De Ronde Venen Veenweidegebied Gebied van IJssel Oude R Lopikerwaard Eemland Zandgbied Heuvelrug	TOTAL Utrecht

Table 8.5 (continued)

OTHER	200 322 322 1222 1322 1322 1322 1322 132	867	22 22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	1084
FLOWR	2011 2011 2011 2012 3011 3011 3011 3011	692	113 16 17 17 17 18 18 18 18 18 14 14 14 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	2008
VEGUG	00 <u>0</u> 000000-000000000000000000000000000	116	266 277 777 777 779 841 10 10 10 10 1646	3058
TREES	08527000-1-034500-1-0	138	23 23 23 23 23 23 23 24 25 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	η66
FRUIT	21 133 133 14 25 166 10 11 11 11 12 13 14 15 16 17 18 17 18 18 18 18 18 18 18 18 18 18	1613	76 92 61 222 222 8827 8827 9 0 0 0 0 149 414 877 877	2674
VEGOA	152 498 548 542 7042 705 705 712 713 713 713 713 713 713 713 713 713 713	7785	757 403 10488 10888 3245 137 137 137 137 137 148 159 150 150 150 150 150 150 150 150	9828
BULBS	1542 4046 272 272 121 121 114 114 11495 212 212 212 212 212 383 383 383 383	7731	7 3 3 10 10 10 10 15 15 15 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	3752
CUT	33333333333333333333333333333333333333	1488	255 252 260 240 2560 2560 2560 2560 2560 2560 2560 256	1238
CEREA	1822 5619 5619 5699 137 137 1061 1578 185 185 185 185 185 185	18388	2723 2238 5138 1107 8452 5031 357 105 1107 1107 1107 1107 1107 1107 110	21977
SUGAR	1243 4034 3364 3364 3364 173 173 173 174 170 170 170 170 170 170 170 170 170 170	11516	1689 1268 290 614 4810 3147 3147 202 202 202 202 210 31	12877
SEED	1009 1800 82 82 22 22 21 24 183 10 10 10 64 64 62 62 62 64 64 64 64 64 64 64 64 64 64 64 64 64	5127	398 288 283 123 44 50 00 00 00 00 00 00 00 00 00 00 00 00	721
WILL M	000000000000000000000000000000000000000	18	00000000000000	0
EAT	1524 1860 1860 1960 1960 1960 1960 1960 1960 1960 19	5463	605 1033 2133 2292 2292 110 133 133 133 14 14	10678
GRASS	2823 1338 2523 2523 1742 1742 1742 1742 1754 1754 1754 1754 1754 1754 1754 1754	89819	3041 4287 1117 1117 4117 1435 6107 10674 443 7888 13668 10646 10948	95683
TOTAL	8993 15329 14742 1010 10179 10179 10179 1726 1738 1738 1738 1738 1738 1738 1738 1738	149761	9871 9586 2809 24895 17364 11906 1028 8001 16173 10711 17250 11191 6692	166572
AGRICULTURAL REGION	Amsteldieppoiders Wieringermeerpoider Haarlemmermeer 1J-Polder Aalsmeer Amstelland Land van Zijpe Noord, West-Friesland Waterland Droogmakerijen 1 Gein Texel en Wieringen Gooiland Noord-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Suidelijk West-Friesland Bangert Oostelijk West-Friesland	TOTAL N. Holland	Droogmakerijen Rozenburg-Oost.Voorne Voornse Duinstreek Ijsselmonde Hoeksche, Dordsche Waard Goeree en Overflakkee De Vennen Rijnland Boskoop Land van Gouda Woerden Delf-en Schieland Krimpenerwaard Alblasserwaard Vijfheerenlanden Bollenstreek	TOTAL Z. Holland

OTHER	25 14 14 19 699 68	848	8	507	8 97 290 26	421	27 130 447	409	6114
FLOWR	m000~00m	23	<u>0500000000000000000000000000000000000</u>	101	3 24 47	75	2¢ 0 0	77	3292
VEGUG	ლ050 <u>г</u> ∞−∓	39	2017 2017 2017 2017 2017 2017 2017	044	148 321 4	474	در ۱ 0	9	4620
TREES	ターこのの書った	93	23 697 697 697 737 1000 142	1753	46 175 629 24	874	34 135 0	169	5308
FRUIT	249 73 73 278 164 152 2980 240 644	4780	766 200 200 126 126 193 106 171 171 168 168	2617	2306 561 690 156	3713	1412 948 0	2360	30339
VEGOA	1394 1111 476 851 1833 816	7477	3502 444 802 142 358 2081 1689 1422 591 617	13179	230 2879 3432 356	6897	4081 2882 0	6963	56885
BULBS	165 37 181 14 14 240 32	069	235 0 0 1 4 4 4 4 4 4 4 4 4 2 2 3 3 4 4 2 2 3 4 4 2 2 4 2 3 4 4 2 3 4 4 3 4 4 4 4	420	7 177 56 14	254	587 41 0	628	13754
CUT	272 34 177 180 411 959 737	3025	670 407 73 340 198 612 832 1781 4146 8849 6849 6849 5326 3389	36118	2774 5134 2276 523	10701	441 225 32	869	91558
CEREA	6267 809 3255 3118 4814 9459 12931	55957	8671 2658 2658 1094 743 11979 2599 8477 1311 1620 1620 1620	25016	7278 4455 5317 2721	19771	7538 12041 17018	36597	288263
SUGAR	2668 2966 1520 1413 2462 4228 4228	22752	4529 1759 1759 1759 1759 1749 1749 1749 1749 1865 1865 1865 1865 1865 1865 1865 1865	18210	4969 4288 3996 2010	15263	9333 8335 0	17668	141000
SEED	56 53 25,9 730	1150	942 151 190 190 190 190 191 191 191 191 191	1202	12 19 30 23	84	5334 2455 0	7789	28784
MILL	0000000	0	020000000000000000000000000000000000000	7	0000	0	000	0	71692
EAT	2365 212 1800 1035 878 3014 1630	14148	3202 344 923 923 356 375 775 775 775 775 775 775 775 775 775	9246	1652 1612 1500 270	5034	3485 5196 0	8681	61388
GRASS	1775 88 1391 203 4128 3185 2655	17431	4423 4048 1876 1876 4743 4743 6015 1226 13748 11766 13748 22086 22086 13065 4548	175676	17271 20295 11664 3306	52536	7051 5219 41	12311	1270107
TOTAL	15251 1805 9805 6614 13767 27539 22820 31012	128413	27042 7166 8016 8016 8016 7240 7240 7243 17021 17021 17021 335514 335514 18828 7003	284672	36557 39864 30248 9434	116103	39352 37608 17538	86446	2073104 1270107
AGRICULTURAL REGION	Schowen en Duiveland Sint Phifipsland Tholen Noord-Beveland Walcheren Zuid-Beveland West Zeeuwsch-Vlaanderen Oost Zeeuwsch-Vlaanderen	TOTAL Zeeland	Noordwesthoek Westelijke Langstraat Biesbosch Oostelijke Langstraat Land van Altena Maaskant Land van Bergen op Zoom Noordweste, Zandgronden Land van Breda Westelijke Kempen Meijerij Oostelijk Peelgebied Zuidelijk Peelgebied	TOTAL N. Brabant	Zuid-Limburg Westelijk Noord-Limburg Noordelijke Maasvallei Land van Montfort	TOTAL Limburg	Noordoostpolder Oostelijk Zuidelijk Flevoland	TOTAL iJpoiders	NATIONAL TOTALS

Table B.6
PRIMARY IRRIGATION DATA
(ha)

00	0	00	0	00	0	00	0	0	0	0 (00	0	0	0	0.700	0	00	n n	1
00	0	00	0	00	00	00	, _C	0		Õ	00	0	0	#	-000	0	004	O	-
00	0	-0	0	00	0	00	òψ	ıζ	0	ő	00	0	_	F	N.≠0	00	# 0	0	10
ជួស	. = 0	00	29	00	0	00	04	06	89	58	_ `	00	80	166	ν <u>τ</u> ος	0	<u>-</u>	0	25
00	00	50	0	00	0	00	0	0	0	0	00	0	0	0	223 27	00	00	0	250
νo	0	00	0	0 0	0	90	0	21	15	27	50	-0	, rv	68	0004	- -	25 14	N	42
00	0	-0	0	00	0	51	or-	58	0	0	00	00	12	12	92 10	0	25 26 26 26	0.	186
51	,- (0	1,	٥,	20	205 55	59	692	1595	1180	318	- C	110	3203	3 276 10	00	135 230	53	683
00	0	> 0	0	0	00	00	00	0	0	0	00	00	0	0	1354 528	Z 0 Z 0	00	0	2084
35	· - ·	√ 1	23	43	ğ 0	60	38	339	24	723	1540	9/05	2289	7685	800°	380	89 154	92	750
0	0	00	0	0	00	95	16	111	0	0	0		328	328	251 251 211	~0	81 34	23	620
334	181	37	56	835	382 10	380	148	3328	1200	2650	4620	086	2947	13397	17 752 211	134	242 308	69	1747
438 803	96#	24	122	878	494 10	797	313	††9 †	2960	4638	6203	, cox	5700	24864	80 2967 997	219 315	632 767	225	6402
Humsterland Honeland	Centrale Bouwstreek	Oost-Fivelgo Niewinidamht	Oud-Oldambt	Centrale Wiedestreek	Zuid, Westerkwartier Goorecht	Westerwolde	woldstreek Veenkolonien	TOTAL Graningen	Het Bildt	Weide-en Bouwstreek	Kleiweidestreek	Veenweldestreek Filanden	De Wouden	TOTAL Friesland	Weidegebied Noorverve Centraal Zandgebied Dieverderdingspei	Hoogeveen Zuidwest Weidegebied	Hondsrug Veenkolonien	Smilde	TOTAL Drenthe
	and 438 334 0 35 0 51 0 6 0 12 0 0 8 803 472 0 39 0 287 0 0 0 5 0 0	438 334 0 35 0 51 0 6 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	438 334 0 35 0 51 0 6 0 12 0 0 0 803 472 0 39 0 287 0 0 0 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0	438 334 0 35 0 51 0 6 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	438 334 0 35 0 51 0 6 0 12 0 0 803 472 0 39 0 287 0 0 0 0 0 24 19 0 5 0 0 0 0 0 0 47 37 0 10 0 0 0 0 0 0 122 56 0 23 0 14 0 0 0 0 878 835 0 43 0 0 0 0 0 0 0	438 334 0 35 0 51 0 6 0 12 0 0 803 472 0 39 0 287 0	438 334 0 35 0 51 0 6 0 12 0 803 472 0 39 0 287 0	438 334 0 35 0 51 803 472 0 39 0 287 496 484 0 7 0 1 24 19 0 5 0 0 47 37 0 10 0 0 47 37 0 14 0 0 464 385 0 43 0 0 10 10 0 0 0 0 797 380 95 60 0 205 252 171 0 17 0 55 313 148 16 38 0 59	438 334 0 35 0 287 0 6 0 12 0 0 803 472 0 39 0 287 0 0 0 0 0 0 24 19 0 10 0 0 0 0 0 0 24 19 0 10 0 0 0 0 0 0 122 56 0 23 0 14 0 0 0 0 128 835 0 43 0 14 0 0 0 0 0 0 164 382 0 43 0 14 0 0 0 0 0 0 0 10 10 0	438 334 0 35 0 287 0 0 0 0 5 0<	438 334 0 35 0 287 0<	treek 438 434 0 35 0 287 0 6 0 12 0 0 0 1	438 334 0 35 0 287 0<	Freek 438 334 0 35 0 287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H438 H472 0 35 0 287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	438 334 0 35 0 287 0 0 0 0 12 0 0 0 44 0	438 334 0 35 0 287 0 0 0 12 0 0 0 44 0	Freek Light State	438 347 0 51 0 6 0 12 0 0 9 0 9 0 9 0 </td

Table B.6 (continued)

	SPRINKLE TOTAL SURFACE GROUND	-GRASS	IRRIGA FACE	119	SPRINKL SURFACE G	-ARABLE KLE GROUND	CROPS IRR/GATE SURFACE GROU	ATE	SURFACE	NKLE GROUND	LTURE IRRIG SURFACE	ATE
897	Č.	o ts	0	51	28	19	0	!~	13	6/1	0	-
0464	9		5802	0	101	υŝ	OJ G	0	გ -	υţ	-	_ (
	9		281	00	29	27 0	o v	> C	σα	<u>7</u> 0		-
	500		15	ا ٥٠	02	85	<u> </u>	0	90	12	00	000
5627 2579 257		-	3	2(190	96	0	٥		<u>~</u>	5	0
21985 9554 5175		5	6174	108	604	330	22	± 3	133	53	0	1,4
477	~	9	101	0	62	114	0	0	74	87	_	0
0	~	0	0	0	0	155	0	0	0	-	0	0
0	÷	ထ	0	9	0	131	0	∞.	0	280	0	19
125	6	~	0	က လ ပ	6;	43	0	u.	83	195	0	117
1416	Ņ,	٠,	7,0	20	- [0-	⊃ c	<u> </u>	1004	2 1	0 70	700
3088	00	ים פי	1357	> 0	200	7,0	22	0	5 L	- 0	707	
1636	~~		200	280	25	2.6	<u> </u>	^	330	9	tc	196
2218 1303 23	, -		434	80	90	? =	0	.0	101	- 18	61	-
313	~		88	0	. #	3	-	0	0	0	0	0
227	À.	~	0	27	10	10	0	0	91	16	o j	0
783	(n)	_,	117	01	e 1	11	- (0	34	11	20	9
1021	ν, r		מכ	n c	5	y 0	00		200	× ×	00	
1001	3 %] =	-	- 0	176) er	0	10	74	0	0
	ŠŘ		12	0	0	292	0	0	0	6		.0
209	<u>د</u>		0	53	58	134	0	-	35	81	0	19
51291 20474 16325	čú	7	4155	1438	1395	1572	42	30	3123	1206	458	1073
4277 2830 31	_	= 0	0	90	181	20	00	Φ C	552	61	00	221
845	0		160	0	20	00	00	00	61	0	33	0
1024	0		6,5	0	0 -	00	00	0	6 1	00	æ ;	00
0 1501 6151 234 67 0	00		152	00	4 w	00	00	0	U 00	0	† - 7	-
	25		_0 134	222	13 30	8 57	010	RO	23	⊅ 22 ±	56 26	<u>6</u> 0
10740 6867 974	7.		1096	312	544	85	ū	13	692	107	105	240

Table B.6 (continued)

REGION	TOTAL	SURFACE	KLE GROUND	SS= IRRIG SURFACE	ATE GROUND	SURFACE	ARABLE IKLE GROUND	CROPS IRRIG SURFACE	ATE GROUND	SURFACE	HORTICA WKLE GROUND	JLTURE IRRIG SURFACE	ATE GROUND
Amsteldieppolders Wieringermeerpolder Haarlemmermeer jJ-Polder Aalsmeer Amstelland Land van Zijpe Land van Zijpe Noord, West-Friesland Waterland Droogmakerijen 't Gein Texel en Wieringen Gooiland Noord-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Bangebied Geestmeramba	2879 3225 1368 1368 3359 3359 3677 577 1001 177 1073 1222 1335	1004 1004 1001 1001 1003 1003 1003 1103 11	0	31 33 33 33 34 34 35 37 37 37 37 37 37 37 37 37 37 37 37 37	00000000000000000000000000000000000000	1964 1125 1125 1239 1239 1230 130 130 131 131 131 131 131 131 131 1	£ 0,500000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	25.25.25.25.25.25.25.25.25.25.25.25.25.2	000000000000000000000000000000000000000	000000000000000000000000000000000000000	7,2000000000000000000000000000000000000
Oostelijk West-Friesland TOTAL N. Holland	37090	19690	230	1692	95	6102	359	32	N C	8609	-	: 1	129
Droogmakerijen Rozenburg-Oost.Voorne Voornse Duinstreek Ijsselmonde Hoeksche, Dordsche Waard Goeree en Overflakkee De Vennen Rijnland Boskoop Land van Gouda Woerden Delf-en Schieland Albiaserwaard Albiasserwaard Vijfheerenlanden Bolienstreek	1391 657 4431 1756 3938 2318 2318 2310 1120 1120 1279	525 4326 1666 1106 113 1024 1711 1767 1771 1776 1776 1776 1776 177	000000000000000	23 0 0 4 29 10 59 112 1065 6666 185	000000000000000000000000000000000000000	675 136 136 1926 1926 133 133 130 140 190 190 190 190 190 190 190 190 190 19	00000000000000000	000000000000000	0000000000000000	223 212 222 223 223 223 223 223 223 223	0000000000000000		0000000000000000
TOTAL Z. Holland	23893	10895	0	4495	0	4459	0	8	0	3908	0	128	0

Table B.6 (continued)

REGION	TOTAL	SURFACE C	KLE GROUND	SURFACE G	ATE GROUND	SURFACE G	ARABLE HKLE GROUND	CROPS IRRIGATE SURFACE GR	ATE GROUND	SURFACE	-HORTICU KLE GROUND	LTURE !RRIGA1 SURFACE ((TE
Schowen en Duiveland Sint Philipsland Tholen Noord-Beveland Walcheren Zuid-Beveland West Zeeuwsch-Vlaanderen Oost Zeeuwsch-Vlaanderen	10 62 74 86 86	0800000	n03000 <u>ಹ</u> 0	0000000	20-100600	00000047	00000045	0000000	00000400	0040000	00N0800m	0000000	40 40 15 66 23
TOTAL Zeeland	336	39	25	0	30	19	13	0	20	21	13	0	156
Noordwesthoek Westelijke Langstraat Biesbosch Oostelijke Langstraat Land van Aitena Maaskant Land van Bergen op Zoom Noordweste, Zandgronden Land van Breda Westelijke Kempen Meijerij Oostelijke Peelgebied Zuidelijk Peelgebied Land van Cuyk	3744 687 687 775 2362 349 349 4719 3249 6221 6221 6822 1504	690 237 1874 1015 1068 1068 1068 1068	277 28 29 11885 1362 1362 3320 3472 1847 1847 1847 1847	2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	22 0 0 0 0 182 261 267 707 199 199	1722 3927 3927 1359 175 176 176 174 28	193 193 100 100 100 100 100 100 100 100 100 10	00000 # 00000000	7 4 4 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	869 116 128 128 28 23 10 231 27 70	97 702 101 702 1692 128 128 151	00000200000000	89 00 00 00 00 00 00 00 00 00 00 00 00 00
TOTAL N. Brabant	41380	8674	18487	297	802	3653	3587	34	195	2293	3202	19	137
Zwid-Limburg Westelijk Noord-Limburg Noordelijke Maasvallei Land van Montfort	828 7430 7163 1629	229 1095 2094 302	57 2555 1396 561	0000	342 330 0 0	69 648 1306 210	1511 871 390	0000	53 0 0	36 336 838 58	783 559 108	0 0 27 0	75 54 0
TOTAL Limburg	17050	3720	4569	52	672	2233	2789	20	171	1268	1459	27	70
Noordoostpolder Oostelijk Zuidelijk Flevoland	14411 3639 0	4789 1363 0	151	259 80 0	000	8082 1714 0	191	45 70 0	000	1230 63 0	070	900	000
TOTAL IJpolders	18050	6152	151	339	0	9626	191	115	0	1293	-	9	0
TOTAL NATION	257725	104537	46995	27074	5502	32888	9182	604	694	21621	6181	819	1823

Table B.7 PERCENTAGE OF AGRICULTURE REGIONS IN PAWN DISTRICTS

PAWN Region: North Districts:	1 FRIELAND 2 HETBILDT 3 LAUWMEER 4 UITHUIZN	Humsterland 30 30 25 50 50 50	PAWN Region: North (cont) Districts: 8 NWDRENTE 9 WESKWART 13 VOLENHOV 14 NEPOLDER	Humsterland 20 25
	N 5 EEMSKANN	20 20 20 30 30 30 50 50 100 20 20 45 100 100 100	R 15 MASTBROK	50 50 70 70 70 80
	6 OLDAMBT	50 50 100 100 100 70 70 70		
	7 WESTWOLD	30 30 100 100 100 100 90 100 100	·	

PAWN Region: Northeast Highlands

	OUDELJSL
	25 0
	EL
	24 BERKEL
	PBEE 10 1 10 1 1 1 1 1 1
	21 SHIPBEEK 10 10 15 5 5 5
ECT : 30 :	
16 OVIJVECT 30 30 30 90 90 100 6 6 15	20 TWENTKAN 20 20 15 10 10 30
16 (30 30 90 90 90	20 L 20
20 80 80 60 50 10 10	Region: Northeast Highlands (cont) icts: 18 TWENTHE 19 SALLAND NKEL 18 TWENTHE 100 100 100 10 10 10 10 10 10 10 12 40 40 15 12 12 40 12 40 10 12 40 40 15 12 12 40 10 10
SWDRENTE 50 20 70 80 60 60 10 10 100 100	19 SALLAND 10 100 100 100 100 100 100 100 100 100
21 04 06 06 01 100 100 100	19 100 100 30 30 12 12
11 SEDRENTE 30 30 75 10 10 10 10 10 65 30 70 30	St H
SEDRI 0 30 0 10 0 10 0 10 0 10	Northeast \$ 18 TWENTHE 40 40 19
	No. ::
Districts: 10 NEDRENTE 10 10 25 60 70	Region icts: NKEL
Districts: 10 NEDRENT 10 10 2 60 7	PAWN Regio Districts: 17 DINKEL
10 10 6	
Agricultural region Dr Centraal Zandgebied Dieverderdingspel Hoogeveen Zuidwest Weidegebied Hondsrug Veenkolonien Smilde Ov Zand-en Veengebied	Agricultural region Ov Oist en Wijhe Westelijk Weidegebied Oostelijk Weidegebied Salland en Twente Ge Oostelijke IJssefstreek Lijmers Noordefijke Achterhoek Zuidelijke Achterhoek Oude IJssef-Gebied

Table B.7 (continued)

PERCENTAGE OF AGRICULTURE REGIONS IN PAWN DISTRICTS

PAWN Region: IJsselmeerpolders and Veluwe

Districts:

٥			a	
FLEVLAND			37 NZKANGEB	20. 20
FLE	100 100		NZK	20 20 20 20 20 20 20 20 20 20 20 20 20 2
30				
29 NWVELUWE	100		36 WATRLAND	
NWVE			WATR	
29	.08		36	
UWE			MER	
28 SWVELUWE	100 100 100 30 30		35 SCHERMER	
28			35 8	
JWE				700 700 100 100 100 100 100 100 100 100
EVELI			OORN	700 770 110
27 SEVELUWE	46.		34 HOORN	700 700 100
NHEM			DMBL	
26 ARNHEM			33 MEDMBLIK	
	20 20 20	and		
NEVELUWE	0.00	North Holland	32 AMSTLMER	100 100 100 100 100 100 100 100 100 100
3 NE	050 050	ırth	AMS	20 20 20 30 30 30 30
3 23				
22 IJSELGEB	30	Region: icts:	ERGMER	100 100 100
ıJSE	30 30	PAWN Re Distric	31 WIEF	100
22	30	PAV Dis	31	
	Ge Westelijke IJsselstreek Noordelijke Veluwe Westelijke Veluwe Oostlijke Veluwe Veluwezoom Ut Eemland Zandgbied Heuvelrug NH Gooiland IJ Oostelijk			Amsteldieppolders Wieringermeerpoider Haarlemmermeer [J-Polder Land van Zijpe Noord, West-Friesland Auterfand Droogmakerijen Texel en Wieringen Noord-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Bandgebied Geestmeramba Zuidelijk West-Friesland Bangert Oostelijk West-Friesland
uo	ssels luwe luwe lwe lowe		u	lers (Jest nger land and stme
reg	Flev		regí	poold meer meer meer miler memer memer Mest West
ıral	Lijke Lijke Sidoog Lijke Lijk		ıral	diegenale de la
su ! tı	Westelijke Noordelijk Westelijke Oostlijke Veluwezoom Eemland Zandgbied Heuvelrug Gooiland Oostelijk		յս I tւ	Amsteldieppolders Wieringermeerpoider Haarlemmermeer (J-P- Land van Zijpe Noord, West-Friesla Waterland Droogmakerijen Texel en Wieringen Noord-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Suid-Kennemerland Bandgebied Geestmer Zuidelijk West-Frie Bangert
Agricultural region	Ge Westelijke IJsselsti Noordelijke Veluwe Westelijke Veluwe Oostlijke Veluwe Veluwezoom Ut Eemland Zandgbied Heuvelrug NH Gooiland IJ Oostelijk Flevoland		Agricultural region	NH Amsteldieppolders Wieringermeerpold Haarlemmermeer (J Land van Zijpe Noord, West-Fries Waterland Droogmakerijen Texel en Wieringe Noord-Kennemerlan Zuid-Kennemerlan Gestmersmabschied Geestm Zuidelijk West-Fr Bangert
-			•	

PAWN Region: Midwest and Utrecht

	•				
	Districts:				
Agricultural region	38 RIJNLAND	39 AMSTLAND	40 0001	46 SCIELAND	47 DELFLAND
Ut De Ronde Venen Veenweidegebied NH Haarlemmermeer IJ-Polder Aalsmeer Amstelland 't Gein Gooiland Zuid-Kennemerland Zuid-Kennemerland Zuid-Kennemerland Bovennen Rijnland Boskoop Land van Gouda Woerden Delf-en Schieland Boilenstreek	86 86 86 100 100 100 20 20 20 20 20 20 30 30 30 30 30 30 90 90 100 100 100 40 40 40 40 40 40 100 100 100 100 100 100 100 100 100	100 100 100 20 20 20 80 80 80 50 50 50 10 10 10 10 10 10	100 100 100 50 50 50 50 50 50 50 50 50 50 50 50 5	70 70 70 70 70 70 70 70 70 70 70 70 70 7	
	Districts:				
Agricultural region	41 KROMRIJN	42 LEEDRIJN	43 WOERDEN	44 LOPIKWAR	45 KRIMPWAR
Ut Kromme Rijn-Streek Veenweidegebied Gebied van IJssel Oude R Lopikerwaard Heuvelrug ZH IJsselmonde Land van Gouda Woerden Krimpenerwaard	100 100 100 25 25 10 70 70 60 	01 01 01 06 60 60 0	20 20 20 5 5 10 30 30 30 60 60 60	10 10 20 70 70 70 70 70 70 10 10 10	20 20 20 275 75 75 75

Table B.7 (continued)

	PAWN Region: Lower		rivers and Northern Delta	Delta					
	Districts:								
Agricultural region	48 VOORNE	49 GOEREE	50 IJSLMOND	52 DORDRECT	53 ABLASWAR	55 TIELWARD	57 BETUWE	59 RECMAASN	
Ge Lijmers Oostelijke Betuwe Midden-Betuwe Westelijke Betuwe Rijk van Nijmegen ZH Rozenburg-Oost.Voorne Voornse Duinstreek Ljsselmonde Hoeksche, Oordsche Waard Goeree en Overflakkee Krimpenerwaard Albiasserwaard	80 80 80 100 100 100 20 20 20 20 20 100		20 20 20 50 50 50 30 30 30	30 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20	15 15 15 15 15 100 100 100 100 100 100 1	40 40 40 100 100 100 100 100 100 	100 100 100 60 60 60 60 60 60 60 60 60 60 60 60 6	30 30 60	
	PAWN Region: West		Brabant and Southern Delta	Delta					-2
Agricultural region	Districts: 51 HOLNDIEP	54 BIESBOSH	74 MARK	75 ROSENDAL	M00Z 97	77 SCHOUWEN			285-
ZH Hoeksche, Dordsche Waard Goeree en Overflakkee Ze Schowen en Duiveland Sint Philipsland Tholen Zuid-Beveland NB Noordwesthoek Westelijke Langstraat Biesbosch Oostelijke Langstraat Land van Altena Land van Altena Land van Bergen op Zoom Noordweste, Zandgronden Land van Breda	20 20 20 	10 10 10 10	30 30 50 30 30 30	40 40 40 40 40 40 40 40 40 40 40 40 40 4	20 20 100 100 100 100 100 100 100 100 10	20 20 100 100 100 			

69 EDOMMEL 73 DONGE 68 MLIMBURG 72 NDOMMEL 66 ROERMOND 67 SLIMBURG 8 71 WDOMMEL 100 70 MDOMMEL 65 RECMAASS 62 MASKANTW 100 PAWN Region: Southeast Highlands (cont) 61 MASKANTE 64 DEPEEL 100 PAWN Region: Southeast Highlands 58 MAASWAAL 63 AA 56 DENBOSCH 100 60 **60 RECMAASM** 9 Districts: Districts: 100 100 000 82 Land van Maas Waat-Noord Land van Maas Waat-Zuid Rijk van Nijmegen B Oostelijke Langstraat B Meijerij B Meijerij B Meijerij B Mostelijke Kempen Noordelijk Peelgebied | Zuidelijk Peelgebied | Zuidelijk Noord-Limburg Westelijk Noord-Limburg Noordelijke Maasvaflei Land van Montfort Westelijke Kempen Meijerij Oostelijke Kempen Noordelijk Peelgebied Land van Cuyk Agricultural region Agricultural region Ge Bommerelerwaard Maaskant 옆 g g _

Table B.8 (NITIAL DEFINITIONS OF SUBDISTRICTS

PAWN Region: North

LANDFORM	Lowlands Lowlands Lowlands Lowlands Lowlands High highlands	Low lands Low lands Low lands Low lands	Low fands Low fands Low fands Low fands	High highlands Lowlands High highlands Lowlands Lowlands High highlands	Low lands Low lands Low lands Low lands
SUBSOIL TYPE	Loamy medium coarse sand Basin clay {Hum, loamy med. coarse sand} Peat Peat Peat	(Light loamy med, coarse sand) (Hum, loamy med, coarse sand) (Light loamy med, coarse sand) (Hum, loamy med, coarse sand)	hum, loamy med, coarse sand Silty clay Hum, loamy med, coarse sand Hum, loamy med, coarse sand Loamy medium coarse sand	Loamy medium coarse sand Loamy medium coarse sand Loamy medium coarse sand Peat Loamy medium coarse sand	(Hum. loamy med. coarse sand) Loamy medium coarse sand (Hum. loamy med. coarse sand Peat
ROOT ZONE SOIL TYPE	toamy medium coarse sand Basin clay Light clay Peat Basin clay	Light clay Light clay	Hum, foamy med, coarse sand Silty clay Hum, loamy med, coarse sand Hum, loamy med, coarse sand foamy medium coarse sand	Loamy medium coarse sand Loamy medium coarse sand Loamy medium coarse sand Loamy medium coarse sand	Loany medium coarse sand Sandy ciay loam Loany medium coarse sand Light ciay
FRAC	0.300 0.250 0.150 0.130 0.120	1.000 1.000 1.000 1.000	0.300 0.800 1.000	0.450 0.750 0.750 0.150	0.400
SUBD	ーののせらく		- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	2528474	
DISTRICT	1 FRIELAND	2 HETBILDT 3 LAUWMEER 4 UITHUIZN 5 EEMSKANN	6 OLDAMBT 7 WESTWOLD 8 NWDRFNTF	9 WESKWART 13 VOLENHOV	14 NEPOLDER 15 MASTBROK

PAWN Region: Northeast Highlands

		1			
DISTRICT	SUBD	FRAC	ROOT ZONE SOIL TYPE	SUBSOIL TYPE	LANDFORM
10 NEDRENTE 11 SEDRENTE		1.000	Hum, loamy med, coarse sand Loamy medium coarse sand	Hum, loamy med. coarse sand Loamy medium coarse sand	Lowfands Low highlands High highlands
12 SWDRENTE	225	0.400		medium coarse	Lowlands High bighlands
16 OVIJVECT	350	0.250	medium coarse	medium coarse	Low highlands
17 DINKEL	3 8 2	0.250	medium coarse	medium coarse	Low highlands High highlands
18 TWENTHE	36.5	0.350	medium coarse medium coarse	medium coarse medium coarse	Low highlands High highlands
19 SALLAND	37 38	0.650		coarse sand coarse sand	Lowlands High highlands
20 TWENTKAN	6 5 5 5 7	0.700 0.100	Light loamy med, coarse sand Loamy medium coarse sand Loamy medium coarse sand	(Light loamy med, coarse sand) Loamy medium coarse sand toamy medium coarse sand	Lowlands Low high∮ands High highlands
21 SHIPBEEK 24 BERKEL	745	1.000	loamy med, coamed medium coarse		Lowlands Low highlands High highlands
25 OUDELJSL	56.50	0.350	clay medium coarse	loamy medium	Lowlands High highlands
PAWN Region:		Flevoland & Ve	e) uwe		
DISTRICT	SUBD	FRAC	ROOT ZONE SOIL TYPE	SUBSOIL TYPE	LANDFORM
22 iJSELGEB 23 NEVELUWE		1.000 0.250 0.250	Light clay Light clay Loamy medium coarse sand Loamy medium coarse sand	(Hum, loamy med, coarse sand) (Hum, loamy med, coarse sand) Loamy medium coarse sand	Lowtands Lowtands Low highlands High highlands
26 ARNHEM 27 SEVELUWE	25.25	1.000	clay		Low!ands Low highlands
28 SWVELUWE	S T	0.600	coarse	Loamy medium coarse sand	Low hightands
29 NWVELUWE	700	00.700	medium coarse	medium coarse	Low highlands High highlands
30 FLEVLAND	58.	1.000	clay loam		Lowlands

Table B.8 (continued)

PAWN Region: North Holland

LANDFORM	Low lands	Lowlands Lowlands Lowlands		LANDFORM	owlands owlands owlands	Low lands Low lands	High highlands Low∤ands	Lowlands Lowlands Lowlands	Lowlands Lowlands owlands	Lowlands	Lowlands	Low lands Low lands
SUBSOIL TYPE	loamy med. coarse sand) loamy med. coarse sand) loamy med. coarse sand) loamy med. coarse sand) n clay loamy med. coarse sand)	coarse sand)		SUBSOIL TYPE	(Hum, loamy med, coarse sand) Lo Peat Coarse sand Peat		y medium coarse sand . toamy med. coarse sand)	ty clay) ty clay)	Peat (Hum. loamy med. coarse sand) LC Pear	ht loamy med, coarse sand)	(Basin ciay) Lo Peat Lo	nt loamy med. coarse sand) in ciay)
ROOT ZONE SOIL TYPE	Light clay Light clay Light clay Peat Peat Basin clay Light loamy med, coarse sand		ltrecht	ROOT ZONE SOIL TYPE	Silty clay Peat Coarse sand	Peat Basin clay	~ 13	Basin clay Peat Basin clay	Basin clay Light clay Peat	Load Load Peat	Sílty clay Basin clay	
FRAC	1.000 1.000 1.000 0.300 0.200 0.200	1.000 0.650 0.350	Midwest and Ut	FRAC	0.300	0.650	0.600	1.000 1.000 0.400	0.300	0.200	0.500	0.250
DISTRICT SUBD	31 WIERGMER 59 32 AMSTLMER 60 33 MEDMBLIK 61 34 HOORN 62 35 SCHERMER 63 64 65	36 WATRLAND 67 37 NZKANGEB 68 69	PAWN Region: Midw	DISTRICT SUBD	38 RIJNLAND 70 71 72 73	39 AMSTLAND 74		42 LEIDRIJN 79 43 WOERDEN 80 44 LOPIKWAR 81	82 93 115 KRIMPUAR AN	SCIELAND	DELFLAND	

Table B.8 (continued)

PAWN Region; Large Rivers & Northern Delta

SUBSOIL TYPE LANDFORM	Light loamy med, coarse sand) Light loamy med, coarse sand) Light loamy med, coarse sand) Lowlands Light loamy med, coarse sand) Lowlands Salty clay) Lowlands Lowlands Ann loamy med, coarse sand)	Totally med. coarse sand) toamy med. coarse sand) toamy med. coarse sand) medium coarse sand	SUBSO:L TYPE LANDFORM	(Light loamy med, coarse sand) (Light loamy med, coarse sand) (Loamy medium coarse sand (Hum, loamy med, coarse sand) (Hum, loamy medium coarse sand (Loamy medium coarse sand (High High High High lands (High Loamy medium coarse sand) (High High High lands	sand)
	(Light (Light (Light Peat (Silty)			sand sand sand	
ROOT ZONE SOIL TYPE	Loam Loam Loam Basin clay Basin clay Pestin clay		& Southern Delta ROOT ZONE SOIL TYPE	Loam Loamy medium coarse sand Light clay Loamy medium coarse sand Loamy medium coarse sand	Loamy medium coarse sand Loamy medium coarse sand Loamy medium coarse sand
FRAC	1.000 1.000 1.000 0.550 0.250	00.500	PAWN Region: West-Brabant DISTRICT SUBO FRAC	0.300	0.650 0.900 0.100 1.000
SUBD		SN 103 107 SN 109 110	on: Wes	SH 99 100 101 137 138	
DISTRICT	48 VOORNE 49 GOEREE 50 IJSLMOND 52 DORDRECT 53 ABLASWAR	55 TECLWARD 57 BETUWE 59 RECMAASN	PAWN Regic	54 BIESBOSH 74 MARK	75 KUSENDAL 76 ZOOM 77 SCHOUWEN

High highlands
Low highlands
High highlands
Low highlands
Low highlands
Low highlands
Low highlands
Low highlands
High highlands
Low highlands
High highlands
High highlands
Low highlands
High highlands
Low highlands
High highlands
Low highlands Lowlands High highlands Lowlands Lowlands LANDFORM y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand
y medium coarse sand (pues medium coarse sand) medium coarse sand medium coarse sand sand sand coarse coarse coarse coarse coarse coarse coarse coarse medium medium medium med i um medium medium medium SUBSOIL TYPE (Hum.)

Losany m

Losany m (Hum. Loamy Loamy sand ctay medium coarse medium coarse coarse coarse coarse COATSO COATSO COATSO COATSO COATSO coarse coarse coarse coarse coarse coarse ROOT ZONE SOIL TYPE clay medium medium medium medium medium medium medium medium clay medium medium medium medium medium medium medium medium medium medíum medium loam Light
Loamy
PAWN Region: Southeast Highlands 0.500 0.150 0.150 0.150 0.250 SUBD MAASWAAL RECMAASM MASKANTE SLIMBURG MLIMBURG MASKANTW 56 DENBOSCH 65 RECMAASS ROERMOND WDOMMEL NDOMMEL EDOMMEL MDOMMEL 64 DEPEEL DONGE DISTRICT ¥ 58 60 61 63 99 63 69 70

Table B.9
SUBDISTRICT CROP/IRRIGATION DATA (ha)

North
Region:
PAWN

																				~	24						
	₹	0	0	0	0	0	0	0	0	0	0	Φ	0	0	'n	0	2	0	0	5	0	0	0	0	0	0	41
URE	MS	0	0	68	0	0	0	93	5 th	0	0	0	0	0	72	0	0	0	0	34	٥	0	1236	0	63	0	1590
TICULT	REES	94	0	0	0	0	0	0	Z	0	0	0	0	133	188	42	0	0	Ξ	16	Ö	0	34	0	0	+	489
IR HOR	FRUIT	0	0	88	0	0	0	100	8	20	2	0	47	0	9	0	0	17	0	16	0	0	1432	0	16	0	1824
OPEN A		0	0	366	0	0	0	458	459	106	195	0	949	0	110	0	86	32	0	84	0	0	4081	0	69	0	9599
! ! !	BULB														0												728
	3	0	0	0	0	0	0	0	0	0	0	0	0	0	58	0	122	0	0	0	0	0	0	38	0	0	218
	ΑS	0	0	1438	0	0	0	1610	500	0	122	0	0	0	284	0	0	84	0	0	64	0	8127	80	0	0	12258
1 1 1	CORN	361	0	0	0	0	0	0	160	<u>-</u> +	131	0	858	0	268	†9 † r	0	0	214	0	0	194	441	528	0	0	3933
CROPS	CEREA	1283	0	3759	0	0	0	2387	14250	3544	6303	4985	15044	2600	13252	0	5192	811	811	0	0	731	7538	153	0	0	82643
ARABLE	SBEET	484	0	2467	0	C	0	1725	4728	1210	1572	249	2220	750	5557	0	3623	0	754	0	0	155	9333	0	0	0	35225
)	SEEDP	733	0	2009	0	0	0	1573	3016	794	872	0	315	0	230	0	561	279	0	0	83	0	5334	0	0	0	15805
	MILLP	247	0	0	0	0	0	0	75	0	0	3224	0	4015	17577	2571	6457	0	1395	0	0	1161	0	20	0	0	37072
1	CONP	0	0	743	0	0	0	344	1276	343	401	0	118	0	. 68	0	179	137	0	0	0	99	3485	99	0	0	7247
-	₹	0	0	0	0	0	328	0	0	0	0	0	0	0	111	413	G	0	0	0	0	425	0	166	0	0	2274
3RASS	#s	4259	6570	4023	0	5080	0	1257	1962	0	583	273	147	0	705	0	۵	619	0	3223	818	0	5048	330	7580	0	42597
GRASS-	TOTAL	62000	55000	22692	28000	26000	11000	4318	24585	2176	7183	3386	4131	0	6285	16575	0	20961	4208	20637	4503	2619	7051	12259	13000	6500	365069
SUBD NATURE		14007	11673	7003	6909	5603	2335	3928	18896	3602	2420	1037	4032	1008	4082	9264	7580	13297	4433	11523	2469	2469	5862	2715	2715	1357	149379
180		-	~	m	=	2	9	۲-	&	6	10	Ξ	72	8	14	15	16	17	8	54	25	26	27	28	59	30	_
S	•	3ND						10	FER	NZI	XXX		3T		2,0	ATE.		ART		<u>^</u> 0			JER.	30K			
RICT	· • •	FRIELAND						HETBILD.	LAUWMEER	ULTHUIZN	FEMSKANN		OLDAMBT		WESTWOLD	NWDRENTE		WESKWART		VOLENHOV			EPOLI	MASTBROK			ل_
DISTRICT	! :	<u>-</u>						2		□			9		7	€		3		13 V(15 M			TOTAL

AIR HORTICULTURE AIR HORTICULTURI FRUIT TREES 250 50 50 50 55 55 2882 2882 2882 3062 BULB 405000000000 1624 1992 0 898 1399 699 447 407 673 230 0 462 0 2124 0 2124 257 26729 SEEDP SBEET CEREA CO 5118 0 4933 5408 385 0 1282 2260 2690 1000 2389 27365 32371 ----ARABLE EEDP SBEET (3694 3427 3427 3203 1137 142 0 185 0 0 0 99 0 8335 8761 SEEDP 2455 MILLP CONP MILLP 9339 9054 9054 9581 3775 234 234 230 309 309 309 313 313 33 0 0 90 90 110 110 0 0 0 34009 COMP 128 212 0 0 59 0 81 198 118 2183 533 533 1514 1514 1516 316 316 316 316 300 504 504 4924 4000 2725 406 9199 9199 7799 733 9 9 199 732 271 731 0 0 0 817 547 1443 ---GRASS-Highlands 2489
12167
12167
12167
19106
6922
12659
3350
8350
8351
8714
16825
12864
4406
112048
113159
23619 Veluwe 9471 5570 4257 6920 1700 2725 20183 13505 4298 æ PAWN Region: Northeast 712432 7137 7137 7137 114275 4142 3174 7407 29439 19625 23508 10075 4988 3351 3751 2826 2827 2827 2827 2827 6630 9930 18352 18352 1935 11323 11323 11323 10339 PAWN Region: Flevoland NATURE 64563 SUBD NEDRENTE SEDRENTE SHIPBEEK Berkel IJSELGEB NEVELUWE ARNHEM SEVELUWE SWDRENTE TWENTKAN FLEVLAND SWVELUWE NWVELUWE OV! JVECT SALLAND OUDELISE TWENTHE DINKEL DISTRICT DISTRICT TOTAL TOTAL 8 30 2 9 17 8 53 25 <u>6</u> 20 52 222

Table B.9 (continued)

	.¥5	4000000	18 2 0 0	236		₩S	0000	000	311	000	000	000	000	311
	TURE	306 1177 3798 922 0 0	2199 15 47 0	8464		TURE	399 300 350	, 580,	585	529	080	161 0 140	292	2458
	HORTICULTURE T TREES	స్థారం	11 0 0	33		HORTICULTUR T TREES	0 <u>6</u> 0 0	27 0 47	33	၀၀္က၀	000	00%	2002	1108
	AIR HO FRUIT	583 549 549 0 0	200	1480		Air HO FRUIT	157 0 0	2°00 2000 2000	424 1500	330 194 0	359 0	75 0 72	300,	3222
	-OPEN VEG	498 843 2814 470 0	2496 15 125 0	7261		-OPEN VEG	1527 0 0	700.	3008	32 30 0	000	303 0 574	659	3280
	BULB	04170	2284 31 120 0	8669		BULB	571 0 3108 0	. 0 5. E	00	000	000	00~	, 6,7 0	3799
	: ₹	347 0 0 0 0 0	0000	347		₹	0000	.000	, 8 0	000	000	000	000	99
	MS	1964 1465 272 52 0 0 1100	229 0	5087		MS	1473 0 0	9800	118 93	000	000	82 00 103	368	2719
	CORN	77 868 30 00 00	142 0 0	317		CORN	203	T(J 100	8 019 0	000	000	00%	00%	1463
	CEREA	2356 282 282 0 0 0 2119	_	11656		CEREA	6802 0 0	588 99	280 0	000	000	228	662	10626
	ARABLE SBEET	4034 1498 182 0 0 0 1353	28 707 0	7802		ARABLE SBEET	4079 0 0	2962	00	000	000	123	243	5954
	SEEDP	1398 1398 416 85 0 0 990	0000	6894		SEEDP	293 0 0	000	00	000	000	000		620
	MILLP	0000000	0000	0		MIELP	0000	000	00	000	000	000	0000	0
	CONP	1521 350 422 66 0 0	395 392 0	3616		CONP	2132	205	086	.000	000	112 0	2100	3220
	- G		178 0 0	259		₹	0000	000	757	000	000	000	0000	757
	GRASS	473 3526 5027 1858 2267 2267	2244 438 391 0	19775	. د	-GRASS	962 2100 0	500 1121 855	3177	720 1656 570	425 363 836	112 696	1735	17929
pui	TOTAL	1338 9902 10877 4210 14009 3882	4313 4738 1995 2500	71733	Utrecht	TOTAL	7746 18044 0	3788 3788	6854	5324 10984 3798	2850 2426 7242	971 4179	11430	114978
North Holland	NATURE	3476 3108 2854 1746 4948 4948	3299 1405 5146 2771	37000	est and	NATURE	12217 9773 1222	3272 1762 0080	9164	3763 4520 1860	1395 1395 2016	504 1828	2431 936 374	76670
	SUBO N	62 62 63 64 64 64 64	66 67 68 69 69		Midwest	SUBD N	70 71 72	22.22	27.5	80 80 81	82 84 84	882	88 8 00 0 00 0	
PAWN Region:	DISTRICT S	31 WIERGMER 32 AMSTLMER 33 MEDMBLIK 34 HOORN 35 SCHERMER	36 WATRLAND 37 NZKANGEB	TOTAL	PAWN Region:	DISTRICT S	38 RIJNLAND	39 AMSTLAND	41 KROMRIJN	42 LEIDRIJN 43 WOERDEN 44 LOPIKWAR	45 KRIMPWAR		47 DELFLAND	TOTAL

Table B.9 (continued)

PAWN Region: Large Rivers & Northern Delta

A5	3 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1295	A5	324 00 972 459 48 00	1803
TURE	996 0 0 6664 406 43 0 0 797 797 1015	4515	TURE	905 246 0 100 423 373 0 0	2047
HORTICUL T TREES	00000000000000000000000000000000000000	583	HORT∤CUL T TREES	118 171 1758 758 37 37	1015
AIR HO FRUI∓	350 100 377 232 243 243 0 0 2500 1367 3515	8833	AIR HO FRUIT	689 0 0 0 1407 1191 410 1656 299	3652
-OPEN VEG	1763 1300 1402 830 17 17 123 123 243	5756	-OPEN VEG	3154 993 993 615 600 1793 1401 1029 2543 461	14632
BULB	000 000 000 000 000	327	BULB	167 100 100 104 113 413	978
#5 	000000000000000000000000000000000000000	175	M5	261 0 0 475 314 0	1050
AS.	848 813 910 31 32 386 386	3109	MS	1580 624 332 187 187 705 0	3428
CORN	420 163 83 83 0 551 551	2189	CORN	1229 0 725 0 3739 1321 873 316	8203
CROPS	5000 2012 3537 2022 49 0 1112 1414 519	15665	CROPS CEREA	7593 3130 11861 1107 3068 1549 8853 834 7273	35268
ARABLE SBEET	2896 12599 2004 1146 122 0 757 757 268	9185	ARABLE SBEET	4279 1761 1198 1188 1812 866 4775	19176
SEEDP	200000000000000000000000000000000000000	102	SEEDP	640 0 0 0 64 447 206 81	1438
MILLP	000000000000000000000000000000000000000	12	MILLP	0000000000	9
CONP	2560 1357 1750 1016 18 0 242 0 224 224 0 224 0 224 0 224 0 224 26 0 66	7233	CONP	3025 1191 618 367 1079 600 4120 3043	14043
#5 1	24 0 0 0 0 777 1242	2495	elta GW	671 0 0 0 2645 933 933	6424
GRASS	865 330 1404 1404 530 3000 6566 4575 4575	0 18052	& Southern Delta GRASS OTAL SW G	1258 4431 4231 8647 988 988 305 0	4274
TOTAL SW	6231 2664 1166 10636 4993 3980 11518 15439 15224 15224	3692 76368	⊢	8006 1992 2108 3733 17634 1000 6636 858 2062	53060
SUBD NATURE	32533 32593 32593 32593 12592 1034 1034 5203 9053	1624	: West-Braba SUBD NATURE	8311 1446 1084 1084 2374 2019 2019 3749 9381 1042 5158	86064
SUBD 6	201 201 201 201 201 201 201 201 201 201	2	: West	94 100 100 137 138 140 141 141	
DISTRICT	48 VOORNE 49 GOEREE 50 IJSLMOND 52 OORDRECT 53 ABLASWAR 55 TIELWARD 57 BETUWE 59 RECMAASN	TOTAL	PAWN Region: West-Brabant DISTRICT SUBD NATURE -	51 HOLNDIEP 54 BIESBOSH 74 MARK 75 ROSENDAL 76 ZOOM 77 SCHOUMEN	TOTAL

PAWN Region: Southeast Highlands

	₹	0	0	219	304	96	0	287	0	0	67	0	519	0	244	0	224	0	108	25	0	447	⊃	158	0	11/	106	0	199	0	135	3555
TURE	MS.	866	0	0	515	151	0	0	7.	100	0	152	0	418	0	87	0	58	0	36	534	0	0	0	0	٥	13	φ.	Φ,	0	0	2984
RTICUL	TREES	C	0	83	22	78	0	202	0	0	[+	0	190	¢	267	0	252	0	24	94	0	196	0	26	0	Ξ	[†	0	120		19	1753
AIR HC	FRU1T	ħ69	0	0	1125	118	0	151	134	0	0	0	352	0	459	0	276	0	156	2306	0	362	0	103	0	20	52	0	115	0	72	6528
0PE₩	VEG	7100	0	297	88	366	С С	414	0	100	99	300	1018	1000	1325	300	1073	100	256	230	800	1038	Φ.	495	0	326	564	0	397	Ö	248	10991
	BULB	33	0	0	0	0	07	0	0	0	0	0	₹.	0	96	0	29	0	14	~	0	82	0	23	0	11	10	0	10	0	0	409
	Š	177	0	0	71	141	0	621	107	0	0	0	748	0	466	0	348	0	390	79	0	826	0	380	0	318	355	0	1€0	0	183	5889
	MS.	555	0	0	154	234	28	0	248	0	0	241	0	720	0	133	0	210	0	69	857	0	0	0	0	0	48	0	0	0	0	3497
	CORN	0	0	2093	457	389	0	3959	0	0	1676	0	7397	0	2993	0	910	0	523	2774	0	2509	0	2904	0	3282	3641	0	2597	0	2471	40575
CROPS	CEREA	1214	0	0	854	835	0	1489	186	0	0	0	1668	0	3600	0	2127	0	2721	7278	0	2845	0	1055	0	937	1060	0	396	0	200	29563
ARABLE	SBEET	826	0	0	386	543	0	1991	674	0	0	0	1938	0	3128	0	1598	0	2010	6964	0	2514	0	941	0	782	904	0	397	0	478	24079
	SEEDP	92	0	0	17	0	53	0	0	0	0	0	0	0	54	0	0	0	37	12	0	0	0	0	0	0	0	0	0	0	0	241
	MILLP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1 1 1 1	CONP	862	0	0	91	201	0	711	182	0	0	372	372	900	275	200	904	270	0	1652	945	0	0	478	0	481	470	0	224	0	204	9290
1111	₹	0	0	1170	1261	355	0	3070	0	0	665	0	3895	0	1717	0	558	0	561	399	0	1433	009	942	524	1157	1844	0	1041	350	710	22252
SRASS	MS.	5456	969	0	3457	744	0	0	1159	538	0	1207	0	1193	0	214	0	302	0	229	1401	0	0	0	0	0	254	0	0	0	0	16553 22252
GRASS	TOTAL	9270	4085	7057	12328	3259	5291	12505	5428	2850	2630	10740	21145	2132	10500	2500	2166	571	2735	17271	2635	7816	4105	6229	3537	8170	12709	2592	10402	3760	7224	203642
SURD NATURE		5043	1512	3529	4139	4420	2527	10108	3694	1477	2216	8753	26257	2678	15175	2719	8157	681	6128	21619	3003	12015	2844	8530	2074	8300	14770	2003	11352	2894	8682	207299
SUBD		104	•	106	108	111					116	117	118	119	120		'	123	•	•	*	•	128	129	130	131	132	133	134	135	136	
DISTRICT		56 DENBOSCH			58 MAASWAAL				62 MASKANTW			63 AA		64 DEPEEL		65 RECMAASS		66 ROERMOND		67 SLIMBURG	68 MLIMBURG		69 EDOMMEL		70 MDOMMEL		71 WOOMMEL	72 NDOMMEL		73 DONGE		TOTAL

Table B.10
IRRIGATION WEIGHTS FOR DEFINING PLOTS

ROOT ZONE SOIL TYPE	CONSPOT MICLPOT SEEDPOT	LPOT SE	RABLE CRI EDPOT SUI	CROPSSUGARBT CEREALS CUTCORN	EALS CU	TCORN	BULBS VEGOPEN FRUIT	RTICUL OPEN	TURE
Loamy medium coarse sand* Light clay* Loam Peat Basin clay* Sandy clay loam Hum. loamy med, coarse sand* City clay med, coarse sand*	υ	maaaaaaa	5000000050	m000000mc	+000000-0	00000000	∞∞∞∞∞∞∞∞ ∞∞∞∞	\$\$\$\$\$\$\$\$\$	~~~~~~

NOTE: Asterisks denote substitution soils. See note to Table 6.5.

Table B.11

AGRICULTURAL REGIONS AND AREAS (ha)

8 L 20 L 28 L 20 L 2	4 DEPEEL 119 5 RECMAASS 121 6 ROERMOND 123 6 MLIMBURG 126 9 EDOMMEL 128	70 MDOMMEL 130 22530 71 WDOMMEL 132 33831 72 NDOMMEL 133 4595 73 DONGE 135 6654 74 MARK 137 7074 75 ROSENDAL 140 15799 76 ZOOM 142 4068 AREA OF REGION 500805	Region: Peat 5 EEMSKANN 11 13286 7 WESTWOLD 14 47711 10 NEDRENTE 19 26202 11 SEDRENTE 20 16773 AREA OF REGION 103972	Region: Rest of NB 33 MEDMBLIK 61 20507 34 HOORN 62 7469 AREA OF REGION 27976 Region: Rest of SH 38 RIJNLAND 72 4330 47 DELFLAND 89 5237 AREA OF REGION 9567
10 - 8 9 - 10 €	25 27 37 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3	36 9 SALLAND 38 0 TWENTKAN 38 40 40 1 SHIPBEEK 42 4 BERKEL 47 5 GUDEIJSL 50 REA OF REGION 3	- - - ひろうろうろう - ろうしょうり	· r ~
Region: Loess 67 SLIMBURG 125 58167 AREA OF REGION 58167 Region: NorthPasture 1 FRIELAND 2 66673 5 31603	5 MASTBROK 28 . 29 . 29 . 29 . 20 . 20 . 20 . 20 . 20	WATRLA NZKANG RIJNLA AMSTLA GOO? LEIDRI WOERDE LOPIKW	ίς ±æ∽ασααντ	
Region: NorthSeaClay 1 FRIELAND 3 39484 2 HETBLLDT 7 39484 3 LAUWMEER 8 67474 4 UITHUIZN 9 71842 5 EEMSKANN 10 19098 6 OLDAMBT 12 27412 AREA OF REGION 188699	Region: H-IJ Polder 14 NEPOLDER 27 45194 30 FLEVLAND 58 92887 31 WIERGMER 59 18882 32 AMSTLMER 60 21535 37 NZKANGEB 68 9746 38 RIJNLAND 70 36904 46 SCIELAND 77 36904 46 SCIELAND 78 7500 AREA OF REGION 279321	gion: SW Sea Cl KRIMPWAR 85 VOORNE 91 GOEREE 92 IJSLMOND 93 HOLNDIEP 94 DORDECT 95 BIESBOSH 99 ROSENDAL 139 ZOOM 141	SCHOUMEN 143 A OF REGION 2 ION: River Cla SALLAND 37 JSELGEB 43 HEVELUME 44 POUDELISE 49	

Table B.12

	_ 1		,,,					,		_	-29	y –	_				*			-			
	TOTAL		102366	TOTAL			185988	TOTAL					336804	TOTAL			126958	TOTAL		89264			
	VEG	9474 61432 23768	7/976	VEG	37352 26294	26543	164501	VEG	37366	22143 80672	27772 28141	33831	300190	VEG	10250	44853 22862 37053	115018	VEG	16156 58167	74323			
	MS.	620 2114 1172	3906	MS	1724 1696	463 863		MS	2226	610	733 670	654 736			288	648 498 1134		NS.	573 1382	1955		-	
	URBAN	399 2416 971	3786	URBAN	2078	3780 4738	15708	URBAM	4066	2597 6602	262 8 5001	2482 2864	28638	URBAN	1323	2993 2727 2329	9372	URBAN	1190	12986			
(VEG) AREAS(ha)	VIissingen	49 GDERÉE 76 ZOOM 77 SCHOUWEN	⊢	Oudenbosch	51 HOLNDIEP 54 BIESBOSH	73 DONGE 74 MARK 76 DOSEMBAL	—	Gemert	56 DENBOSCH 61 MASKANTF	62 MASKANTW 63 AA		71 WDOMMEL 72 NDOMMEL		Venlo		64 DEPEEL 65 RECMAASS 68 MLIMBURG		Beek Z.L.	66 ROERMOND 67 SLIMBURG	TOTAL			
ISTRICTS TO WEATHER STATIONS AND VECETATION COVERED LAND	TOTAL					273245	TOTAL					321238	TOTAL		144216	TOTAL				59355			
SATHER S	VEG	73685 19207 9707	15784 14094	11532	20591 26659 15193		VEG	23508 48336 6491	16120	52933 20340	32220		VEG	69762 64311		VEG	9121 25041	31623	8220	37591 1			
IS TO WE	MS	6520 2482 561	1020	1389	2464 929		MS	492 910	289	1121	841	7097	MS.	1155 1503			613			7093 1			
OF DISTRICTS TO WEATHER (SW) AND VEGETATION COVE	URBAN	15082 3000 1278	1701	2091 2263	5910 1617 1511	35541	URBAN	1648 3615	2247	4152 4179	5622	30743	URBAN	2870 4615	7485	URBAN	2621 2600	2852	1438	14671			
ASSIGNMENT OF SURFACE WATER (S	ΑζίΨοισα	38 RIJNLAND 39 AMSTLAND		45 KRIMPWAR		<u> </u>	De Bilt	22 IJSELGEB 23 NEVELUWE 26 ADNUSM			41 KROMRIJN	TOTAL	Winterswijk	24 BERKEL 25 OUDEIJSL		Andel	52 DORDRECT 53 ABLASWAR			TOTAL			
(SW), SI	TOTAL		305893	TOTAL				358169	TOTAL					185377	TOTAL		195823	TOTAL					516507
URBAN	VEG	264579 14876	279455	VEG	67474 11842 32384	35925 47711	26202 26202	321537	VEG	18882	20507	63236	15017	152900	VEG	45194 92887 47500	185581	VEG	41805 85498	46743 39240	22734 75195	43316 55679 25422	475532
	NS.	12609	13292	.¥S	5386 432 2114	1346	1989		MS	793	1575	4802	2587	13334	MS	1986 2664 1350	000	#S	1277 2439	4474 1762 1533	1465	1282 930 457	16026
	URBAN	12708 438	13146	URBAN	2460 349 2425	2105 4074	3350 3623 1929	20301	URBAN	263	1834	7227	7039	19143	URBAN	837 2255	4242	URBAN	2505 3167	1419	1268 5815	2483 2890 1882	54645
	Leeuwarden	1 FRIELAND 2 HETB!LDT	TOTAL		3 LAUWMEER 4 UITHUIZN 5 FFMSKANN		8 NWDRENIE 9 WESKWART 10 NEORENIE		Hoorn N.H.	31 WIERGMER 32 AMSTLMER	ma	35 SCHERMER 36 WATRLAND) P-	†0TAL	Lelystad	14 NEPOLDER 30 FLEVLAND 78 MARKWARD		Dedemsvaart		13 VOLENHOV 15 MASTBROK	0 ~ 0		TOTAL

Appendix C

LOWLANDS UNDERGROUND WATER AS A PHYSICOCHEMICAL SYSTEM

by J. C. De Haven

C.1. INTRODUCTION

As mentioned in Chap. 7, DISTAG may underestimate drainage in the lowlands, because its calculations are based on Darcy's law using only gravitational head differences. In this appendix, we wish to draw attention, more explicitly than in the past, to a possible alternative sink for fresh water in the Netherlands. This possible loss of fresh water does not appear to be accounted for in the water balance analyses for the Netherlands that I have seen. In particular, I believe that there may be a significant, dynamic flux of fresh water across the underground freshwater/saltwater boundary, driven by large physicochemical forces. The upper water layer cycles out to sea on top of the lower, more concentrated saltwater layer which is also continuously renewed from the sea and moves inland. These dynamic processes, ultimately involving underground movement of fresh water to the sea, should contribute significantly to the steady state hydrological situation of the lowlands. Inasmuch as the lowlands are hydrologically connected with the higher lands, uncounted water loss in the former should be reflected in uncounted percolation from the latter areas.

Present models of freshwater/saltwater interactions in coastal regions will be briefly reviewed along with some of their inherent assumptions which may have caused this infiltration water loss to be underestimated in the lowlands areas. An attempt is made to evaluate the effects of the postulated osmotic phenomena on the predicted magnitude of this freshwater movement. Tentative results indicate that the net downward freshwater flux in the lowlands may be over thirty times as large as that computed from conventional physical head differences.

C.2. MODELS AND ASSUMPTIONS ABOUT FRESH-SALT INTERACTIONS IN COASTAL AREAS

As might be expected, the first investigator to formalize coastal water relations was a Dutchman, Badon-Ghyben, in 1889. This was followed shortly later by the treatment of the German, Herzberg. Currently applied models are dynamic extensions of these studies. Water flows are assumed to be steady and two-dimensional, and to obey Darcy's law that stipulates that the velocity of flow is proportional to the potential gradient in the flow direction. Boundaries between fresh and salt water are assumed to be impenetrable, and the forcing potential is assumed to be hydrologic pressure. The several underlying water pools--brackish and saltwater--are assumed to be stagnant with respect to exchanges with each other and with the sea, though their boundaries with each other and

with fresh water may move one way or another in response to hydrologic pressure changes [C.1-C.5]. As may be expected from these assumptions, models incorporating them would predict essentially zero underground percolation loss of fresh water to the sea in the lowlands.¹

Models incorporating these assumptions may yield qualitatively acceptable predictions of freshwater movements in coastal regions where the land elevations are high with respect to sea level, and where, therefore, hydrological pressure heads are important driving potentials. It is questionable, however, if such models may not seriously underpredict freshwater infiltration and subsequent flow to the sea in lowlands delta regions such as exist in much of the Netherlands. An attempt will be made here to indicate how these assumptions may need to be modified to more correctly predict freshwater flow in these latter circumstances. The modified assumptions involve complex physicochemical phenomena whose implications for hydrology are just beginning to be recognized.

An important reason why the questionable assumptions mentioned above have been employed is that no satisfactory models incorporating these more complex phenomena have yet been constructed. An attempt will be made in this appendix to describe these complexities as they may affect water losses for the lowlands and to use best available data to make estimates as to the magnitude of the corrections that should be applied to infiltration losses in water balance calculations.

C.3. SOME PHENOMENA THAT SHOULD BE TAKEN INTO ACCOUNT IN COMPUTING WATER BALANCES

In computing water balances of lowlands areas, inland from the seas, Dutch hydrologists have properly attempted to compute the total flows into each separate area from hydrologically upstream areas, and net flows out of the areas in terms of surface and underground flows, withdrawals, net precipitation, and infiltration of water from upper to lower zones (e.g., Ref. C.6). Computation of this latter infiltration amount, as presently accomplished, may be subject to an error that could have a significant influence on water balance determinations. The possible sources of this error will be explored here.

In areas for which water balances are to be determined, a number of bore holes of different depths are constructed to measure physical water heights and to take undisturbed sediment samples for laboratory determination of vertical resistance to water movement. This vertical resistance factor is also computed indirectly by the residual water flow required for obtaining balance. It is assumed here that factors determining the other water flows are better known (e.g., horizontal underground flows through test-well measurements). However resistance is determined, vertical water flow is computed as

$$v_{z} = \Delta h/c \tag{1}$$

where $\mathbf{v}_{\mathbf{z}}$ is vertical flow in meters per day, $\Delta \mathbf{h}$ is the measured difference in heights of water in steel-lined bore holes having inlet slots at different depths (m - NAP), and c is resistance (in days). Volume of flow is determined by multiplying $\mathbf{v}_{\mathbf{z}}$ by the appropriate

hydrologic area. In lowlands areas an unusual phenomenon appears in that the water levels in the test tubes extending to great depths may be close to or higher than the water levels in tubes extending a shorter distance into water-bearing strata. As a consequence, vertical infiltration computed from Eq. (1) is very small or even upward in flow (seepage). A conventional explanation for these high water levels from deep tubes is that they reflect high hydraulic pressures from distant, higher land and aquifers that are separated horizontally and continuously by impenetrable layers from the upper aquifers and phreatic water. An alternative explanation, developed here, is that these high tube water levels reflect interference with the complex osmotic phenomena of the measuring bore tube. As a result of these phenomena, the undisturbed and effective water heads are much different from those currently measured between the underlying fresh and deeper brackish water. Thus, a much larger effective Ah must be used to compute the actual vertical water leakage downward. The Ah must reflect both the physical difference in water potential and the chemical water potential difference between the upper and lower layers. The latter potential operates by reason of the semipermeable nature of the sedimented aquifer soils and the difference in the chemical potential of water between relatively low-salinity upper layers and high-salinity lower layers. Drilling test holes through the sedimented aquifer structure short-circuits one basis for the osmotic phenomena, the semipermeable membrane, and allows water height to reflect only the small Δh represented by physical forces.

Generally, the semipermeable nature of sedimented aquifer structures is not taken into account in studies of hydrodynamic dispersion (e.g., Bear in Ref. C.7). Semipermeable means that the membrane or other structure is more permeable to water than to other substances such as electrolytes or organic substances. In fact, measurement methods conventionally used to study hydrodynamic movements in aquifers are such that these chemical influences on water movements will not be sensed. The incorrectly low water potential difference measured by test bore holes has already been mentioned. Other misleading measuring devices are the use of dissolved electrolytes or organic dyes as tracers to measure water flow in soils and aquifers. These substances are not true tracers of water movement, but will yield low results because, in comparison with water, they are selectively retained on the soil and sediment structures. An adequate tracer of water flow must be very water-like in chemical nature. Tracers such as deuteria or tritia may fit this requirement. There may be others.

In laboratory model studies of interactions between fresh and salt waters in aquifers, care must be taken that the porous medium used is not an inert material like washed quartz [C.8], but materials at least treated to reflect the semipermeable nature of the in situ sediments.

Also, in these studies, purified water must not be used, but, rather, water having the complete chemical nature of the raw water is necessary. The need for these characteristics will become clear from a description of sediment-like semipermeable membranes in the following section.

C.4. THE SEMIPERMEABLE NATURE OF SEDIMENTS

The implications of sediments as semipermeable membranes were first impressed on the present author by papers on so-called dynamically formed membranes used for hyperfiltration or reverse osmosis. In these processes, fresh waters may be produced by forcing solutions, even sea water, through semipermeable membranes at high pressures. 2 The dissolved substances remain on the solution side, and fresh water appears on the other side of the membrane. Highly successful membranes for this purpose have been made from porous tubes of highly inert substances such as sintered glass or porcelain. These inert tubes are treated with very small amounts of one or a combination of substances such as iron or aluminum hydrous oxides, clays, humic acid, and other organic compounds [C.9], to develop their highly successful semipermeable characteristics. In practice, these doctoring substances are added to the input water flows, and the membranes become self-healing. The resemblance of these dynamic semipermeable membranes to the natural, unconsolidated sediments of aquifers is remarkable. One should note that the natural waters flowing through these structures contain hydrous metal oxides, humic acids, clays, and organic compounds, all substances found by experience to be effective in maintaining semipermeability.3

The detailed mechanisms of these membranes operating to separate water and dissolved substances under potential differences is not known. They are not simple sieving mechanisms because the pore diameters of useful membranes are much larger than the diameters of the dissolved substances that are retained. It is believed that processes such as selective adsorption or repulsion within the membrane pores, as well as chemical activity differences caused by high pressure gradients, are involved in the separation of water and dissolved substances.

The phenomena involved may be more apparent if one considers an inverted glass U-tube with the ends sealed, containing in one leg concentrated salt solution and in the other an equal amount of dilute salt solution. Bridging the two solutions in the tube is saturated water vapor. Temperature is everywhere equal and maintained so by heat transfer with the environment. This system is, of course, highly out of equilibrium because the escaping tendency (or almost equivalently the vapor pressure, or the activity) of water in the dilute solution is higher than that of the concentrated solution. This system will attempt to reach equilibrium by means of water evaporating from the dilute solution and moving through the vapor phase of the semipermeable membrane to condense in the concentrated solution. Ultimately, at equilibrium, both solutions will be at equal concentration, but the formerly concentrated side will have increased in volume as the result of water movement to it from the now smaller, dilute side.

Consider now the effects of relaxing the equal temperature constraint in this conceptual U-tube system. Imagine that the temperature of the originally more concentrated solution side is maintained at a somewhat higher level than the dilute side. What now is the effect upon the differential chemical potentials of water in the two sides and on the direction of water flow? Rather amazingly, the escaping tendency of water is very sensitive to small differences in temperature. For example, if our two solutions have concentrations of 5000 ppm and 200 ppm C1- at equal temperatures, the driving water potential from the dilute to the more concentrated solution will be about 7.20 atmospheres (74.4 m water height). If, however, the temperature of the concentrated solution is held one degree centigrade hotter than the dilute solution, then the water-driving potential will be reversed and the net water potential in the direction of the dilute solution will be approximately 100 atm - 7.20 atm = 92.8 atm (960 m water height). 4 The dilute solution will now increase in size as water moves to it from the concentrated solution. The new steady state will occur when the latter solution becomes very concentrated (128,000 ppm sodium chloride).

It will be recalled that without input of energy, in both the inverted U-tube and in the real hydrologic system, the several gradients and net water flows would come to equilibrium with zero net water flows and no concentration or temperature gradients. The energy to drive the real hydrologic system and maintain it in disequilibrium comes ultimately, of course, from the sun through its chemical unmixing of salt and water in evaporating sea water, and the subsequent precipitation of fresh water on the land surface.

In the uniform temperature inverted U-tube, steady state could be maintained by continuously introducing fresh water to the dilute side and removing brackish water from the other leg. The continuous introduction of fresh water by percolation is an obvious characteristic of the natural system. Not so obvious is the apparently complex circulation of brackish and more concentrated salt water that appears to occur at higher and lower depths in lowlands near the sea. Physical model results [C.8] and direct observation [C.10] indicate that the upper less-salty water flows outward to the sea on top of a more salty lens that intrudes landward from the sea. The initial intrusion from the sea appears to be mediated by tidal action. Unless the salty intrusion is greatly reinforced by the described osmotic forces, the intrusion distance would be short.

The U-tube physical model becomes more realistic if the tube is firmly packed with aquifer sediment over its entire length. Fresh water still enters in one leg and salt water exits from the other. The sediment is wetted and water moves from one leg to the other. The packed sediment is not as perfect a semipermeable membrane as is the previous water vapor phase. Some salt will begin to move from the concentrated solution side toward the dilute leg, even in the uniform temperature case. However, the salt moves more slowly than does the water in the opposite direction. There is cross coupling between the water and salt

flows so that at steady state there will be a constant band of decreasing salt concentration rising above the concentrated solution within the sediment, as well as a constant net flow of fresh water to the saltier leg.

Nonuniform temperatures, with the concentrated side being hotter, should importantly alter this pattern. Now, the net flow of water is reversed. This reversal should positively couple the salt and water movement in the same direction so that the salt-concentration gradient should widen and rise. Flow-out of the saltier leg should be reduced, and water levels should rise in the fresh side. In the real lowlands, the tendency toward such a change of states should be observable between summer and winter. The deeper waters tend to change less in temperature with seasons than does the near-surface water. Thus, in winter, the deep water may be somewhat warmer than surface water. As described above, this should result in a decrease or reversal in net vertical water flow, reduced underground flow out of the hydrologic unit, a rise in salt concentration in lower waters, and a widening of the underground concentration gradient band. As a result of these phenomena, increased pumping should be required in polders in winter. This increased pumping requirement should be above the additional water present in the winter because of the reduced evapotranspiration losses.

Equation (1), above, which defines vertical seepage, must be modified to account for the effects of the additional groundwater potential gradients described. A possible modification is as follows:

$$v_s = (\Delta h_g + \Delta h_c + \Delta h_t)/c$$

where $\mathbf{v}_{\mathbf{S}}$ and \mathbf{c} are as previously defined, and

 Δh_g = conventional hydraulic potential difference due to gravity

 $\Delta H_{_{_{\mathrm{C}}}}$ = water potential difference due to concentration (salinity) difference

 Δh_{t} = water potential difference due to temperature difference.

Because these potentials are algebraically additive, care must be taken to see that signs for the several Δh are consistent. In Ref. C.6 where Eq. (1) is presented, the convention is that Δh is the difference in water height below sea level. Here Δh is positive (and v_s is positive downward) when the lesser height below sea level is subtracted from the greater height below sea level. This is usually the bore-hole height of the upper level water subtracted from the level in the bore hole to the lower level. To be directionally consistent, Δh_s should be the water-height equivalent of the upper water potential subtracted from the lower water potential

equivalent when each are computed as described here. 5 A similar convention should be used for computing Δh_{\pm} .

The following methodologies for computing osmotic influences are based on some simplified assumptions relating to the phenomena involved. More rigorous models are not warranted at present because of the sparsity of the required data. For example, computation of the escaping tendency of water from solutions requires knowledge of the nature and amount of the dissolved substances. For many underground waters in the Netherlands, only dissolved chloride ion concentrations are given. An approximation for converting the difference between two solutions given in parts per million (or its equivalent, mg/l) of Cl to ppm of total dissolved substance is to multiply the former by 1.50.6 We are still confronted by a weight measure of average dissolved substance which has little import for computing chemical effects on water activity. We must assume some chemical form for the solute -- this is chosen as sodium chloride having a molecular weight of 58.45 grams per mole, and completely ionized to yield an ideal solution. Further, one osmolar (1/2 molar) solution of sodium chloride is assumed to have an osmotic pressure of 23.22 atmospheres at 10C. These assumptions combine to yield a conversion factor of 0.0082, which may be used to multiply differences of concentrations in ppm (or mg/1) of C1 $\bar{}$ to give Δh in meters of water-height difference.

pressure-difference equivalent of a temperature gradient on water activity. From Table 2.2 and App. 4 of Ref. C.11, we find that a difference of IC (in the vicinity of 10C) alters the escaping tendency (activity) of water by about the same amount as a pressure difference of 100 atmospheres, or equivalently a water height of 1034 m. Measurements of the in situ temperature difference between deep underground water and near surface water are required. These data do not appear to be widely available.

C.5. MEASUREMENT DIFFICULTIES

Previously it was noted that conventional test bore holes filled with water tend to mask the upper and lower level pressure differences caused by salinity and temperature gradients, particularly as the water in the tube becomes mixed. Measurement of in situ water activity at depths in aquifers presents problems. Perhaps after the appropriate sensing or sampling devices are installed in a newly drilled or driven test hole the tube could be refilled with the sediment that was removed (or equivalent material), and raw surface water allowed to seep continuously down the filled tube in an attempt to maintain the original conditions. Total water activity effects might be measured by vapor pressure sensing (differential thermometry). For measurement of salinity effect alone, conductivity or

freezing-point depression should be suitable. Measurement of Cl-concentration alone is not satisfactory because there is a different relation between Cl- and total dissolved solids for each water.

In an attempt to compensate for the lack of temperature gradient measurements, one might assume as a first approximation that over a four-season year the temperature gradients change in a pattern that just compensates vertical water losses and gains through this influence. We are left then with the salinity gradient influences for which at least some C1- concentration measurements are available (e.g., Ref. C.6). These might be converted and used to correct the present infiltration-loss estimates.

C.6. COMPUTATIONS OF WATER BALANCES THAT INCLUDE OSMOTIC POTENTIAL GRADIENTS

Reference C.6 contains information about the midwest Dutch lowlands that can be used to check the reasonableness of the assumptions presented here as well as to derive some correction factors. As example, Ref. C.6 contains data on the Cl- concentration at different depths for a number of test borings in the Haarlemmermeerpolder. This is an important subbasin of the midwest Netherlands lowlands region. Figure 38 from Ref. C.6 is reproduced here (Fig. C.1) to show these data.

Before making use of these data, it is necessary to eliminate some because of known peculiarities in the location of the test bores. Test holes G96 and G95 shown to the left in this figure are in a region of strong lateral, underground, freshwater flow and are not typical. Test holes G98, G99, and G104 penetrate regions in which strongly impenetrable layers separate upper and lower aquifers. Vertical water movement is thereby locally limited by the physical barrier. These test-hole data are also not used in the following quantitative analysis. Four test holes remain in the data. These are G97, G100, G101, and G109, which are located variously to cover the subbasin area. A first task is to convert parts per million of C1- to osmotically meaningful units. We wish the water-escaping tendency or osmotic pressure to be in units of hydraulic water head. For this purpose the following equation is used:

$$m_{H_20} = 0.0084 \text{ (ppm + 210).}^7$$

There are 36 measurements of C1- concentration given for the four test bores. These concentration measurements, converted to equivalent osmotic water heights by the above formula, are compared with the actual measured depths for each measurement point by linear regression. The straight line best expressing the relation between estimated osmotic water height and actual water height above the measurement point is

$$y = -10.92 + 1.13x$$

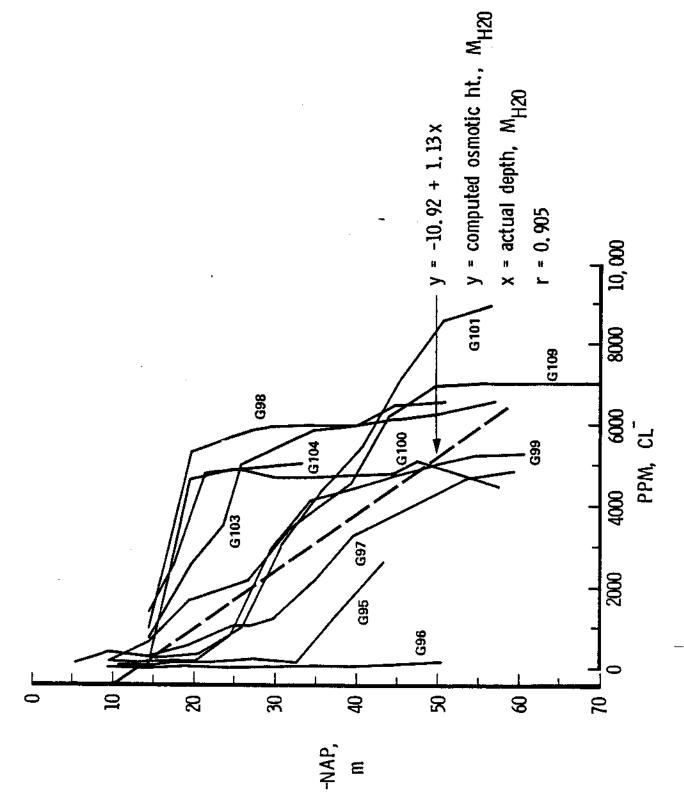


Fig. C.1--Osmotic relations in polder groundwater

where y is computed osmotic height and x is measured water depth to the point. The correlation coefficient, r=0.905, indicates a relatively good fit. This relation indicates that for locations in the lowlands where anomalous intrusions of fresh water or impervious layers do not occur locally, the escaping tendency of the underground water, as indicated by the concentration of dissolved substances, is well correlated with the overlying water pressure head. Conversely, one may make a pretty good prediction of total dissolved substance at any depth in such regions. The line of best fit is shown dashed in Fig. C.1.

The average relations described above mask another related phenomenon. That is, if one looks at the C1- concentration of the lower points reported in the above figure and the distance inland for the acceptable test bore holes, one notes the tendency for the holes toward the sea to have higher bottom concentrations than those farther inland. Even the test bore holes that are distorted by the impervious layer appear to have bottom concentrations that move toward this pattern as sample points move downward from the shadow of the impervious intrusion. Of the acceptable test bores, C10 is the nearest to the sea and G97 is farthest inland in this subbasin. Data from these bore holes will be used in simple models from which an attempt will be made to compute net average downward water flow for the region.

C.7. MODELS AND COMPUTATIONS

Figure C.2 is a schematic showing conceptual water movements within and between water layers having the osmotic properties indicated by test bores G101, G97, and the averages for all of the acceptable bores. First, there appear to be two different layers of underground water--an upper and lower parcel--that have different characteristics. The upper layer appears not to exhibit osmotic head differences in the horizontal direction, so it should be driven in the seaward direction by the conventional hydraulic gravitational forces as applied in Ref. C.6. From both the chemical composition of the water and the nature of the sediments as presented in this reference, the upper layer appears to be about 25 m thick, and the bottom layer about 35 m.

The lower layer appears to have a quite different osmotic nature. Data from bores G101 and G97 indicate that the water at the bottom has osmotic water-head equivalents of 77.36 m seaward and 39.96 m landward. This potential gradient suggests that this lower layer moves landward as suggested (but not quantified) by several of the previous references for such seacoast regions.

There is another disequilibrium apparent in the data for this lower layer. The computed average value for the osmotic water head at 60 m depth is 56.88 m or 6562 ppm Cl-. However, these values in the landward G97 bore are 35.96 m or 4500 ppm Cl-. Water moving into this zone should move upward in the layer, in comparison to the net downward cycle of water in the seaward portion. Quantitative

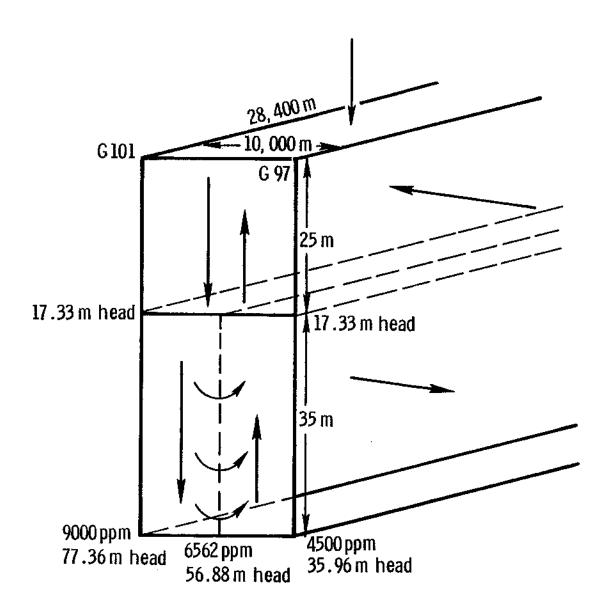


Fig. C.2--Model of conceptualized movements in overlying and underlying water parcels in the lowlands as influenced by osmotic forces (dimensions highly distorted)

differences between these two water fluxes should give the net water movement as the layer traverses this subbasin. 9

This net downward water movement may be computed from the indicated differences in osmotic heads in the vertical direction and the reported vertical resistance factor for this subbasin. The net movement q_1 - q_2 may be computed as follows:

$$q_1 = F_1 v_{z1}$$

$$q_2 = F_2 v_{22},$$

where q_1 is downward flux in the seaward half of the parcel, q_2 is upward flow in the landward half; further,

$$v_{\alpha 1} = (h_1 - h_2)/c$$
, and

$$v_{z2} = (h_2 - h_3)/c$$
,

where h_1 and h_3 are the seaward and landward effective osmotic heights and h_2 is the predicted osmotic height for 60 m depth, c is the vertical resistance factor of the subbasin, here 3200 days, and F_1 and F_2 are the specific areas involved, here 1.42×10^8 m² for each half of the parcel. Because the movement from the downward moving half to the upward moving half of the parcel

from the downward moving half to the upward moving half of the parcel could take place anywhere along their vertical interface, the arithmetic average of the osmotic head differences is used to compute the vertical water movements. Given the above assumptions and data,

$$q_1 - q_2 = 4.54 \times 10^5 \text{ m}^3/\text{day} - 3.84 \times 10^5 \text{ m}^3/\text{day}$$

$$= 70,000 \text{ m}^3/\text{day}$$

The conventional physical head differences were ignored in making these calculations because they are small (~1/2 m) with respect to the osmotic heads. The downward water movement computed in Ref. C.6 for this subbasin is 2248 $\rm m^3/day$, or about 3.2 percent of the 70,000 $\rm m^3/day$ computed here using osmotic heads.

C.8. AN ALTERNATIVE MODEL

For those who are uncomfortable with the use of osmotic heads and countermoving vertical water currents as mechanisms for explaining and computing net vertical water movements, the following, alternative model

is based primarily on mass balances and conventionally computed movement of the upper layer. We have now the upper layer flowing seaward to the extent of 99,000 m3/day.10 The depth of this upper layer in this subbasin is about 25 m; the average salinity is about 500 ppm C1- ((200 + 1000)/2). The lower layer is moving landward through this subbasin and has an average thickness of 35 m and an average salinity of 3875 ppm C1-((9000 + 4500)/2 = 6750, 6750/2 = 3875 ppm Cl-). In each subbasin between the sea and the landward extent (30 to 40 km) of this osmotically driven counterflow, each upper unit volume of water will be exchanging with the lower layer in attempting to reach osmotic equilibrium. At some inland extent, osmotic forces will become smaller than physical forces and the latter will dominate underground flow conditions. Until this inland position is reached, however, water from the upper layer will have a net movement downward. The osmotic potential for this movement will be greater near the sea and become much less in the landward direction as the intruding seawater becomes diluted by the vertical-moving fresh water. 11 For the present purpose of computation, the subbasin described is assumed to represent an average state between other water subbasins landward and seaward from it. average salinity concentration of the upper layer reflects, therefore, 11 water exchanges that have occurred upstream (landward), and the salinity concentration in the lower layer reflects all exchanges that have occurred upstream (seaward) of this average subbasin position.

To compute the freshwater exchange in this subbasin 1, we note that there is a concentration gradient in the lower layer, from sea to landward. The average concentration in the seaward boundary is 5000 ppm ((9000 + 1000)/2), and the average concentration in the landward boundary is 2750 ppm ((4500 + 1000)/2). All of the water for diluting the average cubic meter moving landward in the lower layer must come from the upper layer and its inputs. The upper layer does not change concentration in moving seaward; therefore, downward water losses must be compensated for as the upper layer moves through the subbasin. reduce the lower layer concentration from 5000 ppm to 2750 ppm in steady state requires 0.82 m2 of water to be added to each average daily m3 in the lower layer, and a similar amount of water to be delivered from each average daily m³ of the upper layer. 12 The net freshwater movement downward should thus be 0.82 × 99,000 m3/day, or 81,180 m3/day. This value compares favorably with 70,000 m³/day computed on the basis of osmotically induced fluxes and the previous model. These computed downward water movements are 31 to 36 times the movements computed on the basis of physical pressure heads in Ref. C.6.

C.9. CONCLUSIONS

The author wishes to emphasize the tentative nature of these conclusions. They are based on scanty data that may have been measured in a manner that distorts, upward or downward, the importance of the described phenomena. The diffusive water movements discussed here seem to be universally dismissed as unimportant in the hydrology literature. Indeed, they may be unimportant in most inland regions

where physical gradients promoting horizontal flow overwhelm those diffusive movements. In flat seacoast regions it appears, however, that the osmotic potentials and diffusive flows should be considered in water balance analysis. Seasonal changes in these osmotic potentials and their induced hydrologic flows, as mediated by temperature changes, may be especially important. Such unmeasured temperature effects may, indeed, nullify the conclusions on vertical flow described here. Very little theoretical treatment of the influence of temperature gradients on transport of water exists in the literature. The most complete treatment known to the author is by D. C. Spanner in Ref. C.16.

NOTES

- 1. Dutch hydrologists include vertical movements in computing water balances, but retain the assumption that the driving forces are purely physical in nature (e.g., Ref. C.6).
- 2. The potential difference between pure water and seawater is about 27.5 atmospheres. Consequently, pressures higher than this must be applied to the seawater side of a membrane to force pure water from the seawater. In practical devices, pressures in excess of 80 atmospheres are used to yield high flows.
- Water used in physical models of these phenomena should also contain these substances, as noted above. Other deficiencies in the physical models, upon which the idea of the unimportance of vertical diffusive movements of water are based, are as follows: the models are very shallow (h l m) so that the important pressure effects on water activity are only minutely operating; some models were operated for too short a period (2 hr) for diffusive forces to show up at these low potential differences; and temperatures of freshwater and seawater inputs were not controlled. The physical models of Nomitsu et al. 4012, as well as others $\Psi \emptyset$ ⁸, exhibited these deficiencies. Nomitsu et al. Y012 in 1927 developed dynamic mathematical models for hydraulic flows near the coast which are essentially equivalent to the currently used models. These authors make the following statements based on these inadequate physical experiments: "According to our experiments, fortunately the diffusion velocity is negligibly slow compared with the velocity of the groundwater. If the diffusion velocity were tolerably great compared with that of the freshwater current, the boundary curve would be so much disturbed that our theory would be dealt a fatal blow." The present author proposes that this latter condition pertains for the Dutch lowlands.
- 4. In anticipation of large gasps of disbelief at the magnitude of such forces operating in infiltration and the implications for water loss through this pathway, one must recall that the vertical resistance to vertical movement is very large. This resistance to flow attenuates drastically the impacts of large net driving potentials. For example, present estimates of

- underground percolation loss to the sea from the Netherlands are on the order of 0.1 percent of input water using the small hydraulic potentials. The potentials described here might increase these movements by one to two orders of magnitude from a loss of 1 to 10 percent, depending upon season.
- 5. Some confusion can occur about signs because of the conventions used. Thus, osmotic pressure is usually defined as the hydrostatic pressure required to prevent the entrance of the pure solvent (water) through the membrane and into the solution. We are concerned here with the negative of this effect, i.e., the relative escaping tendency of water from two solutions of unequal concentration.
- 6. The basis for this conversion is described in Refs. C.13 and C.14. The factor 1.50 is for groundwater.
- 7. This equation is derived from measurements made in Dutch groundwaters and reported in Ref. C.13, plus the following additional factors to convert pressure equal to 0.36×10^{-3} micromhos; one atmosphere equals 10.34 m water height. The formula from Ref. C.13 is (ppm + 210) 2.25 = micromhos.
- 8. These positions are shown in Fig. 1 of Ref. C.6.
- 9. The water at a salt concentration of 4500 ppm could indeed have the same in situ activity as water at a salt concentration of 6562 if the temperature of the 4500-ppm volume were somewhat higher than that for the 6562-ppm volume. It is assumed in the following calculations that laboratory salinity measurements were made on sampled water and that all salinity measurements were made at equal temperatures at the surface.
- 10. Ref. C.6, p. 32.
- 11. The initial force driving seawater inland is thought to be tidal action Y0¹²\ Y0¹⁵. This force is believed to extend directly inland only a few thousand meters or less. However, the osmotic forces described here could cause an extension of this movement inland of 30 to 40 km.
- 12. Because of the difference in volumes between upper and lower layers, this assumption requires that the flow rate through the lower layer is about 0.71 of the upper layer.
- 13. Seasonal changes in temperature gradients may also be an important force in determining nutrient movements between sedimented bottoms and bulk water in Dutch freshwater lakes.

REFERENCES

- C.1. Glover, R. E., "The Pattern of Freshwater Flow in a Coastal Aquifer," J. Geophysical Res., 64 (4), 1959, pp. 457-459.
 C.2. Henry, H. R., "Salt Intrusion into Freshwater Aquifers," J.
- C.2. Henry, H. R., "Salt Intrusion into Freshwater Aquifers," J. Geophysical Res., 64 (11), 1959, pp. 1911-1919.

 C.3. Wentworth, C. K., "The Process and Progress of Saltwater
- C.3. Wentworth, C. K., "The Process and Progress of Saltwater Encroachment," <u>Intl. Assn. of Scientific Hydrology</u>, 34, 1951, pp. 238-248.

- Van Dam, J. C., "Partial Depletion of Saline Groundwater by Seepage," J. of Hydrology, 29, 1976, pp. 315-339.
- Bogomolov, G. V., et al., "Analogous Modeling of Aquiferous Systems in Coastal Zones," in Symposium on Modeling Techniques, C.5. A.S.C.E., San Francisco, September 1975, pp. 1505-1515.
- Wergroep Midden-West Nederland, Hydrologie en Waterkwaliteit van Midden West-Nederland, Institute voor Cultuurtechniek en Waterhuishouding te Wageningen, 1978.
- DeWiest, R. J. M. (ed.), Flow through Porous Media, Academic Press, New York, 1969.
- Cahill, J. M., "Hydraulic Sand-Model Study of the Cyclic Flow of C.8. Salt Water in a Coastal Aquifer," Geological Survey Research, 1967, pp. B240-B244.
- Kraus, K. A., A. J. Shor, and J. S. Johnson, "Hyperfiltration with Dynamically Formed Meranes," Desalination, 2, 1967, pp. 243-266.
- Cooper, H. H., "Hypothesis Concerning the Dynamic Balance of Fresh Water and Salt Water in a Coastal Aquifer," J. Geophysical Res., 64 (4), 1959, pp. 461-467.
- Garrels, R. M., and C. L. Christ, Solutions, Minerals and Equilibrium, Freeman, Cooper & Co., 1965.
- Nomitsu, T., Y. Toyohara, and R. Kamimoto, "On the Contact C.12. Surface of Fresh- and Salt-Water under the Ground near a Sandy Sea-Shore," Memoirs of the College of Science, Kyoto Imperial University, Series A, Vol. X, 1926-1927, pp. 279-303.
 MR-132A (unpublished PAWN memorandum), "Costs of Water Quality
- Changes (TSD and TH) for Municipal and Industrial Users," March 1978.
- MR-143 (unpublished PAWN memorandum), "Data for S.D. Model:
- Industry," April 1978.

 DeRiddler, N. A., and K. E. Wit, "A Comparative Study on the C.15. Hydraulic Conductivity of Unconsolidated Sediment," J. of Hydrology, 3, 1965, pp. 180-206.
- C.16. Spanner, D. C., "The Active Transport of Water under Temperature Gradients," in R. Brown and J. F. Danielli (eds.), Society of Experimental Biology, Symposium VIII, Active Transport and Secretion, Academic Press, New York, 1954.