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Summary

Offshore wind energy generation is increasing all around the world. Consequently, developers find
themselves in deeper and deeper waters. Bottom-fixed wind turbines perform great in shallow waters;
however, they become economically unfeasible after 50-60 meters of water depth, found in many places
around the world close to large population centers such as the United States, China, Korea, and Japan.
Floating wind turbines could offer a solution here, as they can be used in much deeper waters.

Floating offshore wind turbines have challenges of their own. They are subject to much larger motions
compared to bottom-fixed turbines, and these motions affect aero-, structural-, and control dynamics.
These effects are hard to study experimentally; full-scale experiments are costly and only possible after
model-scale experiments have been executed. However, scaled models have their own challenges;
the hydrodynamic and aerodynamic effects have different scaling similitudes, leading to a mismatch
in scaling factors. A solution to this is to perform hybrid experiments, where one domain is simulated
numerically, and force/motion is applied by an actuator. Hardware-in-the-Loop (HIL) is a specific type
of hybrid experiment in which there is an emphasis on the feedback between the numerically simulated
and physical system.

In this study, a HIL methodology is used to numerically simulate the hydrodynamics and floating motion
of a floating offshore wind turbine (FOWT), to be able to do wind tunnel experiments and analyze the
effects of combined wind-wave action. A scaled wind turbine model is placed on top of a Hexapod,
a robot that is able to actuate the six degrees of freedom (6-DOF) motion of the FOWT. The scaled
wind turbine model has a fixed (zero) pitch rotor, designed for low-Reynolds-number wind speeds,
that is designed to be thrust-matched to the full-scale model. Force and acceleration sensors are
used to determine the aerodynamic forces and torques on the rotor, which are input to the numerical
simulation. The numerical simulation solves the equation of motion of the floating system, taking into
account radiation forces, user-defined sea state, mooring system, and the aerodynamic forces and
torques.

One challenge in HIL simulation is that the simulation has to be in real-time. This puts a computational
limit on the fidelity of the numerical simulation. By increasing the fidelity of the simulation, computational
time per timestep increases, and the size of the timestep decreases, which means more computational
power is required to be able to simulate in real-time. This creates a fine balance between fidelity and
computational efficiency that is not trivial to maintain.

The scope of this thesis is to model and analyze the effects of different mooring line representations,
each having a higher level of fidelity, in a linear, quasi-static, and dynamic approach. Additionally, the
fidelity of the sea-state is increased by including the second-order wave forces, as determined by New-
man’s Approximation. The modeling approach is verified against OpenFast, a mid-fidelity engineering
tool widely used in industry, for the numerical simulation of FOWTs.

The verified models are subsequently used in wind tunnel experiments to analyse the effect of aero-
dynamic forces on wind-wave action, as well as the effect of second-order wave excitation forces on
floater motion. The dynamic mooring line representation was, unfortunately, too computationally ex-
pensive to be able to test in real-time simulation. However, it is verified numerically, and some possible
solutions are offered for future research. The analysis of second-order forces shows that they signifi-
cantly affect the floater motion, especially in surging and pitching motion, leading to higher amplitude
oscillation in mooring tensions as well. The analysis of aerodynamic forcing in operational sea-states
finds that in mellow sea-states, aerodynamic forcing aggravates the motion of the FOWT. However,
as sea-state roughness increases, the aerodynamic forcing starts to act as a dampening effect. Addi-
tionally, a more fundamental study is done on the effect of wind speed on aerodynamic damping and
natural frequency for a range of wind speeds. Decay tests are done in surging, pitching, and yawing
motions. The results show that increasing wind speeds greatly affect the damping ratio in pitching in
yawing motion, and slightly less so in surging motion.



Nomenclature

List of Abbreviations

Abbreviation Definition

BEM Blade Element Momentum

CFD Computational Fluid Dynamics

CL Closed Loop

CoM Center of Mass

CPSD Cross Probability Spectral Density

DOF Degree Of Freedom

EOM Equation of Motion

FEA Finite Element Analysis

FOWT Floating Offshore Wind Turbine

HIL/SIL Hardware-in-the-Loop/Software-in-the-Loop

JONSWAP Joint North Sea Wave Project

LM Lumped Mass

MAP Mooring Analysis Program

NREL National Renewable Energy Laboratory

oL Open Loop

O&M Operations & Maintenance

QS Quasi-static

QTF Quadratic Transfer Function

RAO Response Amplitude Operator

RNA Rotor Nacelle Assembly

SWL Still Water Level

TLP Tension Leg Platform

TSR Tip Speed Ratio

WAMIT Wave Analysis MIT

wB Wave-Basin

List of Symbols

Latin Symbol Definition Unit
a Amplitude -
fn Natural Frequency Hz
Fr Froude Number -
F (wm, wm) Diagonal Terms of Difference-Frequency QTF N/m
H; Significant Wave Height m
K(w) Response Amplitude Operator as a function of angular frequency  N/m
L Length m
r Radius m
Re Reynolds Number —
Sx Power Spectral Density in surge m?/Hz
Soe Power Spectral Density in pitch degZ/Hz
Skx Cross Power Spectral Density of aerodynamic force and surge Nm/Hz
St Cross Power Spectral Density of aerodynamic moment and pitch N.m.deg/Hz
T, Peak Period s
U Velocity m/s
x Floater position in Surge m



y Floater position in Sway m
z Floater position in Heave m
Greek Symbol  Definition Unit
y" Peak Enhancement Factor —
4 Damping ratio —
n Wave Elevation m
o Spectral Width Parameter -
¢ Floater Inclination in Roll deg
obi Phase Angle deg
6 Floater Inclination in Pitch deg
0; Random Phase Angle of Stochastic Process deg
Y Floater Inclination in Yaw deg
) Angular Frequency rad/s
Q Rotational Velocity rad/s

Matrices Definition

A Added Mass Matrix

D Linear Damping Matrix

D@ Quadratic Damping Matrix

K Linear Stiffness Matrix

R Rotational Matrix

R, Rotational Matrix around x-axis

Ry Rotational Matrix around y-axis

Rotational Matrix around z-axis

State Vector =[xy z ¢ 6 Y]T

Velocity State Vector, time derivative of x
Acceleration State Vector, time derivative of x
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Introduction

Offshore wind energy generation has steadily increased over the last decade, but in water depths
of more than 50 meters, bottom-fixed wind turbines are no longer economically feasible due to the
increasing cost of offshore foundations. Floating wind turbines offer a solution for increasing water
depths, opening up locations where offshore wind turbines were previously impractical. In Europe, this
opens up many locations in the Atlantic and Mediterranean. Additionally, it opens up many locations
outside of Europe, close to large population centers, where bottom-fixed offshore wind turbines are not
feasible. This includes the US (west and east coast), Japan, Korea, and China (Arapogianni et al.,
2013; Barooni et al., 2022; Henderson & Witcher, 2010).

There are many challenges to overcome, however. A floating structure is required to give buoyancy and
stability to the turbine; nevertheless, the system will encounter much larger motions than its bottom-
fixed counterparts. These floating system motions influence the aerodynamics of the rotor, leading to
instabilities and generally inducing a loss of power production (Butterfield et al., 2007).

Additionally, the operation and maintenance of FOWTs require robust port infrastructure, which proves
to be a large hurdle to overcome. Currently, the maintenance on floating wind turbines is done in
port, but as floating wind parks move farther offshore, it can become prohibitively expensive to tow
the individual turbines all the way to port for maintenance. However, on-site maintenance requires the
development of new tools and support vessels. All in all, the installation, operation, and maintenance
(O&M) of floating wind is more complex and costly than its bottom-fixed counterparts. The extra costs
due to the floater, electrical power system, and O&M are, to an extent, offset due to the higher wind
speeds found at deeper water depths.

The three most commonly used floating configurations are: Spar-buoy, Semi-submersibles, and Ten-
sion Leg Platforms (TLP). These floater types differ in the stabilizing mechanism they use to stay afloat
(C. Wang et al., 2010). Spar-buoy-type floaters use a gravity-based stabilizing system. The floater
consists of a large ballast with its center of mass well below the center of buoyancy of the system,
ensuring that the system remains upright due to a large righting moment arm. The floating structure is
connected to the seabed using catenary or taut mooring lines to ensure that the structure does not float
away. Semi-submersible floaters consist of multiple large columns, connected to each other by slender
members. The stability of the system is generated by the columns, and a catenary mooring line system
is used to stay in place. The TLP-type floater consists of a floating platform that is connected to the
seabed using taut mooring lines. The stability of the system is derived from the tension in the mooring
lines. This type of floater can provide lower motion amplitudes than the other floater types (H. Wang,
2022).

In the early design stages of FOWTs, numerical simulations play a fundamental role. The design of
FOWTs consists of numerical simulations (low to mid-fidelity) and experimental testing (mid to high-
fidelity). In early development, industry uses numerical models for first indications of feasibility, power
production, system motions & loading. Experimental testing is required in later stages as a higher
fidelity testing method. Furthermore, many numerical models neglect certain effects for the sake of



simplicity or computational efficiency, or they fail altogether due to instabilities; experimental testing
is thus required to validate these numerical tools and provide a deeper understanding of the physical
system (Hmedi et al., 2023).

The experimental testing of floating wind turbines offers its own challenges. Scaled experiments regard-
ing hydrodynamics need to follow Froude number similitude to accurately scale the dominant loading.
The aerodynamic loads, however, should be scaled according to Reynolds number similitude. This
mismatch in scaling factors leads to a situation where either the hydrodynamic or the aerodynamic
loading is not representative of the real loading encountered by the full-scale system (Taruffi et al.,
2024). Multiple studies have been carried out to create a test environment that respects both the
Reynolds and Froude scaling in wave basin tests. Traditional wave-basin experiments account for this
mismatch in scaling in various ways. For instance, by making use of Froude-scaled wind, resulting in
higher aerodynamic forces and higher Reynolds numbers, though this also affects other aerodynamic
aspects, because the tip speed ratio of the design will not be maintained. Another possible solution
entails the use of a different airfoil geometry for the rotor blades, which performs better at low Reynolds
numbers.

Recently, Hybrid testing has proven to be a very useful technique for experimental testing of FOWTs.
In hybrid testing, a part of the physical system is replaced by sensors, numerical (real-time) simulation,
and actuators. Hybrid testing methodologies can be applied to FOWTs in two ways. Firstly, in HIL
Wave-basin (WB) experiments, the earliest campaigns replaced the rotor with cables to emulate a
static aerodynamic load on the rotor. Later studies used drag discs, propellers, and multi-fan setups
to replicate rotor thrust or Froude-scaled rotors with high wind speeds to match the rotor thrust. The
second approach consists of wind tunnel experiments, where the floater motion and wave-induced
forces are modeled numerically and applied to the turbine system by a robot at the base of the turbine
model. This allows for a detailed aerodynamic analysis that is generally not possible in WB experiments,
due to difficulty in accurately recreating the non-linearities in aerodynamic forcing.

Hybrid testing is not without its own challenges. A requirement for hybrid simulation is that it has to be
run in real-time, which creates problems when the computational load is increased past a certain point.
There is an intricate balance between fidelity and computational efficiency that is difficult to maintain. At
model scales, as fidelity increases, the size of the time step decreases, requiring more computational
power to be able to simulate in real-time. One of the motivations of this study is to analyze the effects
of increased fidelity in HIL wind tunnel experiments and to see how this affects computational efficiency
and real-time simulation. Additionally, it provides an opportunity to execute combined wind-wave tests
to analyze aerodynamic effects on the FOWT.

The report is structured as follows. A literature study is done in chapter 2, which discusses the varying
aspects of numerical simulation of floating turbines, challenges of (real-time) HIL simulation, and the
research objective and research questions central to this study. The study itself will focus on three
distinct parts. Firstly, it will discuss the numerical modeling aspects of HIL simulation that are the
foundation of this study, as presented in chapter 3. Secondly, these numerical models will be verified
using OpenFast as a benchmark, a numerical tool used widely in industry for the numerical modeling
of FOWTs (Jonkman et al., 2024), in chapter 4. Finally, the verified models will be used in HIL wind
tunnel experiments, where combined effects of wind-wave action will be tested, as well as aerodynamic
effects on system dynamics, in chapter 5.



Literature Study

A specific method of hybrid testing is Hardware-in-the-loop (HIL) testing. HIL testing puts emphasis on
the feedback between the numerical simulation and physical loading on the system. With regards to
FOWTs, this means that the floater dynamics lead to changes in aerodynamic loading, but also that the
aerodynamic loading on the turbine leads to changes in floater dynamics. So while prescribed motion of
the floater (such as sinusoidal motion) in a wind tunnel is considered hybrid testing, it is not considered
HIL testing. For HIL testing there needs to be a feedback between the physical and numerical loading
& motion. In literature it can also be found under the name Software-in-the-loop (SIL). The process
of actuators and sensors can be partially simulated, because the sensors and control hardware often
form integrated systems and actuators are difficult to simulate in real time (Bacic, 2005; Isermann et al.,
1999).

In the second half of the 20th century, HIL simulation was first utilized in the aviation industry for real
time flight simulation (Isermann et al., 1999). HIL simulation is particularly useful in this industry due to
the long development times, expensive prototype costs and potential danger in control system testing
with real prototypes. Having proven the usefulness in aviation, other industries were quick to adapt the
HIL methodology. Currently, HIL simulation has been used in a variety of industries.

For instance, HIL has been used in train development for the testing of pantograph dynamics (Collina
et al., 2004; Facchinetti & Mauri, 2009; Gil et al., 2024) and wheel slide protection systems (Pugi et al.,
2023). Similarly, the automotive industry has adopted HIL simulation for a variety of purposes, including
(but not limited to) anti-lock braking systems (K. Lee et al., 2004; Nauri et al., 2020; Suh et al., 1998),
testing of longitudinal vehicle dynamics (Verma et al., 2008), engine control (Isermann et al., 1999) and
hybrid electric/electric vehicle battery testing (Petersheim & Brennan, 2009)

HIL methodology also proves to be useful in Power and energy systems, more commonly referred
to as Power Hardware in the Loop (PHIL) (Edrington et al., 2015; Lauss et al., 2015). Applications
of PHIL include battery management system testing (Fleischer et al., 2016) and microgrid simulation
(Limpaecher et al., 2017; J. Wang et al., 2014).

In the last 20 years HIL testing has has been extensively used in the Wind energy industry, for instance
for testing of power control (Puleva et al., 2016) and certification testing (Kaven et al., 2022). Particularly
interesting are the HIL studies done on FOWTs. HIL simulation proves to be especially viable in this
research area due to the high costs of prototyping, and difficulty creating a representative physical
environment. There are two variations for HIL simulation of FOWTs, wave-basin testing (Carmo et al.,
2024; de Ridder et al., 2014; Du et al., 2016; Fontanella et al., 2020; Fowler et al., 2013; Hall et al.,
2018; Martin et al., 2014) and wind tunnel testing (Ambrosini et al., 2020; Bayati et al., 2013; Fontanella,
Facchinetti, et al., 2023; Giberti & Ferrari, 2015; Thinakaran, 2024).

These methods differ in the part of the physical system that is simulated. Wave-basin testing entails
the testing of a scale model floater and turbine tower, where the aerodynamic loading of the rotor is
simulated numerically and applied by actuators such as fans or cables. The wave-basin tank then
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applies real wave loading, and the (scale model) physical floater reacts as the real system would due
to combined hydrodynamic and aerodynamic loading.

In wind tunnel testing, the wave loading and floater dynamics are replaced with numerical simulation;
these forces and moments are then applied to an actuation system at the base of the turbine tower
model. Wind tunnel experiments provide valuable insight into the influence of the floating motion on the
aerodynamics of the turbine. Indeed, the choice of wind tunnel or wave-basin experiment comes down
to what part of the system one wants to accurately study. To be able to accurately study aerodynamic
phenomena or floater dynamics/mooring line forces in a HIL experiment, one needs to make sure that
the numerical simulation is accurate enough to represent a real scenario.

2.1. Wave Basin Experiments

Heather R. Martin et al. suggest a set of rules that determine the scaling of the floating offshore wind
turbine (Martin et al., 2014). The suggested rules are as follows:

* Froude number model scaling is commonly used in offshore engineering, as the gravity and
inertial forces are correctly scaled, which are the most dominant factors in hydrodynamics. The
Froude number is defined in Equation 2.1, where u is the wave propagation velocity, g is the local
gravitational acceleration, and L is the characteristic length.

Fr=— 2.1)

JoL

* Froude-scaled wind ensures that the ratio of wave to wind forces is consistent with the reference
model. This method, however, can only be used in cases where the aerodynamics are insensitive
to Reynolds number.

Tip Speed Ratio (TSR) similitude Employing the same TSR in the model as the reference makes
sure that the rotational speed is correctly scaled, in tandem with the natural frequencies of rotor
imbalance or tower interaction. Additionally, turbine thrust and torque will be correctly scaled if
TSR similitude is employed along a Froude-scaled wind. The TSR is defined in Equation 2.2,
where Q is the rotational velocity of the rotor, r is the rotor radius and U is the wind velocity.

rsp="Y 2.2
- (22)

The Reynolds number difference between reference and model scale does change significantly, the
initial study in the paper by Heather R. Martin et al. suggests that at a scale factor of 1 = 50, the peak
Power coefficient is off by an order of magnitude at only half the TSR, indicating a greatly reduced rotor
performance (Martin et al., 2014). The second half of their paper offers three possible solutions to the
Reynolds number dissimilitude, which aims to establish the correct rotor thrust.

* Increase model inflow wind speed.

+ Addition of leading edge roughness on the model blade to reattach the boundary layer around
the blade.

» Use a different blade geometry specifically designed for low-Reynolds use to capture the correct
thrust forces at the lower Reynolds number.

The increase of model inflow wind speed breaks the TSR similitude between the model and the ref-
erence. However, tests show that the wind turbine damping is not greatly affected by the increase in
wind speed, though this might not be true for all damping effects. The addition of leading edge rough-
ness is advised to be used as a complementary measure rather than as a solution on its own. The
final recommendation is that a specifically Reynolds number designed blade is used in tandem with
the Froude scaled winds to be able to match the required thrust forces, as this will better capture wind
turbine damping effects. Similar methods of thrust matching by using a redesigned turbine blade were
also employed in (de Ridder et al., 2014; Du et al., 2016; Fowler et al., 2013).
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A different approach can be employed, where instead of using a scaled rotor with physical wind inflow,
a hybrid numerical setup is used for the aerodynamic loading (Carmo et al., 2024). In this approach,
a HIL method is used to emulate the aerodynamic thrust by the rotor using a numerical simulation of
the aerodynamic forces and moments, and applying them to the model using a single ducted propeller.
Other studies have used different actuation methods such as cables and winches (Bachynski et al.,
2016; Sauder et al., 2016).

2.2. Modeling Techniques for HIL Wind Tunnel Testing

HIL wind tunnel testing of FOWTs is quite a new technique, first developed at Politecnico di Milano
(Ambrosini et al., 2020; Giberti & Ferrari, 2015). (Ambrosini et al., 2020) provides an overview of some
of the challenges and technical aspects associated with HIL testing of FOWTs in a wind tunnel. Their
experimental setup has a 2-DOF system in the surge and pitch direction. They note five distinct aspects
that ought to be taken into account when designing HIL wind tunnel experimental tests. Though these
problems are specific to their experimental setup, it is important to take note of these issues.

» Scaling issues Scaling proves to be challenging due to the number of devices that need to be
installed on the turbine while also accurately representing the natural frequency, mass, moment
of inertia, and center of mass of the system. Additionally, difficulties arise in accurately measur-
ing the forces on the system, as the load cell and acceleration measurements are taken at the
bottom of the tower, thus measuring the inertial loads of the system in tandem with the desired
aerodynamic loading.

* Numerical issues In real-time simulation, computational efficiency is of the essence. The imple-
mentation of hydrodynamic forcing was done in the frequency domain, and each time step, an
inverse cosine Fourier transform is performed to get the contribution in the time domain. Addi-
tionally, time domain wave history and time step size are crucial for both the final solution as well
as simulation stability.

+ System characterization A series of experimental tests were executed to determine the required
inertial properties: Mass, moment of inertia, and center of gravity. This is done experimentally to
account for design and manufacturing discrepancies. The values found in the process account
for the tower, turbine, and dynamometer.

» Force correction For the numerical simulation of the floater, accurate values for aerodynamic
and inertial loading are required. As mentioned before, the load cell is at the bottom of the tower,
measuring both inertial loads and aerodynamic loads at the same time. It would be possible to
measure the contributions directly if a Froude scaling were applied (thus the acceleration scaling
is equal to 1), and mass, inertia, and length are all perfectly scaled. If these conditions are not
met, a force correction has to be applied to calculate the contribution of the aerodynamic forces.
This requires accurate measurements of the mass and inertia of the tower and Rotor-Nacelle
Assembly (RNA).

» Measurement & Signal processing The design of the turbine model requires filtering of the
output response due to the location of the eigen frequency of the fore-aft bending moment on the
frequency spectrum. This additional filter introduces a phase shift and a time delay.

2.2.1. Force correction Methodology

Two force correction methods are mentioned in (Ambrosini et al., 2020), A measured acceleration
approach and a simulated state approach. The measured acceleration approach makes use of two
accelerometers, one installed at the bottom of the tower and one installed at the top. With both ac-
celeration measurements, the force correction can be calculated. The acceleration is measured at the
same time as the force signal from the dynamometer; thus, no additional time lag is generated using
this method. The simulated state approach works under the assumption that simulated positions and
accelerations accurately represent the real positions and accelerations of the system. If a time delay
is introduced to the system in actuation or measurement systems, then this method can introduce an
extra time delay that acts like positive or negative damping.

This extra damping can be negated by synchronizing the force correction with the force signal. The
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time delay introduced per actuator needs to be known. This can be acquired by executing a number
of imposed motion tests where only one actuator is used at a time. The simulated state input signal
can then be synchronized to the physical model by a series of filters and time delays, as described in
(Ambrosini et al., 2020).

The proposed methods were used in a 2-DOF system, which greatly simplifies some of the dynamics.
Nonetheless, the methods used are not solely applicable to 2-degree-of-freedom systems and can
be extended for use in full 6-DOF experiments. M. Belloli et al. also make use of a simulated state
approach in their 6-DOF wind tunnel test, mentioning that accurate measurement of the current position
and acceleration is a tough task (Belloli et al., 2020).

2.2.2. Aerodynamic Damping

The usage of HIL testing in wind turbine testing allows for the experimental analysis of the effects of
aerodynamic damping on wind turbine operations. For wind turbines, aerodynamic damping forms
the single largest contribution to damping in the system.(C. Chen & Duffour, 2018) have found that
aerodynamic damping values, both predicted and measured, vary substantially across multiple studies
of on- and offshore wind turbines. It is clear however, that the damping in fore-aft motion is an order of
magnitude larger than that in side-to-side motion.

J. Chen and Hu, 2018 have done experimental wave-basin tests on the effect of aerodynamic damping
on an OC4 semi-submersible floating wind turbine. In their test, they did not implement a HIL approach,
however. They chose to do model-scale tests in a wave-basin, with a Froude-scaled model, leading to a
non-Reynolds-scaled blade. To match the rotor thrust, they employed a 'adjusting wind speed method'.
In their experimental tests, they compared wave cases without wind against wave cases with varying
levels of inflow wind. They found that the aerodynamic damping results in a reduction in resonant
response at the low-frequency range, with little effect in the wave-frequency range. Additionally, they
found in comparison between parked conditions and operating conditions that the induction induced by
the rotor impacts the aerodynamic damping.

Yang et al., 2023 have done frequency domain analytical tests, which they verified versus experimen-
tal wave-basin model tests. In the paper, they discuss the dynamic characteristics of aerodynamic
damping in surge and pitching motion. They note an increase in aerodynamic damping as wind speed
increases up until rated wind speed, after which the damping ratio decreases again for increasing wind
speed, in both surging and pitching motion.

Besides experimental studies, there are also analytical studies that have analyzed the effect of aero-
dynamic damping. Meng et al., 2022 have done a numerical study based on an aerodynamic damping
matrix derived from the linearisation of aerodynamic forces at the tower top. They make use of the Blade
Element Momentum (BEM) theory to calculate the aerodynamic forces on individual blades. The sum-
mation of total forces at the tower top results in an aerodynamic damping matrix in 6-DOF. They found
that aerodynamic damping has a great influence on the resonant motion response in surge, pitch, and
yaw.

2.2.3. Hydrodynamic Modeling

In HIL wind tunnel tests, the floater dynamics and wave forcing need to be simulated numerically.
The simulation can be formulated in a number of different ways, with varying degrees of fidelity. The
different aspects of numerical modeling of the hydrodynamics of floating structures are discussed in
the next chapter separately, concluding with a summary of hydrodynamic aspects used in wind tunnel
HIL experimental setups.

2.3. Hydrodynamics

This section covers some of the aspects of numerically modeling hydrodynamic forces and floater dy-
namics. The first section will go over some of the distinguishable components of the hydrodynamic
forcing on a floating structure. subsection 2.3.2-2.3.4 covers formulations for the modeling of hydro-
dynamic forces used in literature. subsection 2.3.5 discusses the effect of higher-order hydrodynamic
forces. In subsection 2.3.6, the use of CFD modeling in the simulation of hydrodynamic forcing on
floating structures is discussed. subsection 2.3.7 presents different formulations for the simulation of
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regular and irregular waves, and wave spectra. subsection 2.3.8 discusses different approaches for
the numerical modeling of mooring lines. Finally, subsection 2.3.9 discusses the hydrodynamic formu-
lations used in previous wind tunnel HIL experimental setups for the study of FOWTs.

2.3.1. Hydrodynamics Force Components
The hydrodynamic forcing on a floating structure can be separated into different contributions. The
following contributions can be distinguished.

* Froude-Krylov The Froude-Krylov (FK) force is generated due to the unsteady pressure field
generated by the undisturbed waves.

« Diffraction The diffraction force comes from the effect that the structure has on the incident wave,
distorting the wave field.

» Radiation Radiation forces are generated due to an oscillating body in still water.

* Viscous drag Viscous drag is generated due to the viscosity of the fluid. The force is proportional
and opposite to the relative velocity between the structure and the fluid, leading to a damping
force.

» Vortex-Induced Forces Vortex-induced forces are generated due to the shedding of vortices due
to flow separation over the structure. These vortices induce oscillating forces in line with the flow
and transverse to the flow. The generated oscillating pressure field can induce large oscillations
on the structure if the vortices are shed symmetrically (typically around a bluff cylinder) and at a
constant frequency close to the natural frequency of the structure. This could cause problems for
catenaries or mooring lines of TLPs.

2.3.2. Potential Flow Theory
In potential flow theory, the flow is assumed to be irrotational, inviscid, and incompressible. Apply-
ing these limits to the Navier-Stokes equations will provide an equation called the Laplace equation,
denoted in Equation 2.3 (Lin, 2008).

V-u=V(-Vp) =-V2¢ =0 (2.3)

The potential flow method can be used when the expected effect of viscous forces is small and when
the characteristic length of the body (D) is large compared to the wavelength (L). The FK force can be
obtained by integrating the pressure distribution around the body.

Numerical solvers such as WAMIT use linear and second-order potential flow theory to analyze float-
ing bodies. The panel method is used to solve the fluid pressure around the submerged body, while
diffraction and radiation problems are solved separately (C. Lee, 1995). The resulting hydrodynamic
parameters can be used in time domain analyses such as OpenFast or OrcaFlex.

2.3.3. The Morison Equation
The Morison equation is an empirical relation that describes the inline force due to an oscillatory flow.
The equation consists of two distinct parts, the inertial force and the drag force.

1
F(t) = pC,Vu+ EpCdAulul (2.4)

Where p is the density of the fluid, V is the volume of the body, u is the undisturbed velocity, and C,
is the drag coefficient, which is a function of Reynolds number, skin roughness, and body shape. The
Morison equation can be used when the influence of drag forces is significant and the characteristic
length of the body (D) is small compared to the wavelength (L)

Often, potential flow methods are combined with Morison methods. Forinstance, floating structures that
consist of slender parts can be modeled using Morison’s equation, while the other parts are modeled
using potential flow methods. Another way of combining these methods is using potential flow methods
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for the calculation of the wave forces and adding the Morison Drag equation to account for viscous
effects (Otter et al., 2022).

2.3.4. Cummins’ Equation

A different time domain approach is proposed by Cummins (Cummins, 1962). This approach uses a
convolution integral approach to describe the time history of the fluid memory effects. The frequency-
independent coefficients make this approach suitable for transient processes. The retardation functions
in this approach are linked to the velocity potential function. T.F. Ogilvie found a way to calculate these
retardation function from the hydrodynamic parameters, such that they could be calculated from the
frequency domain (Ogilvie, 1964). However, the convolution functions make this a cumbersome and
computationally expensive option. Cummins’ equation is presented in Equation 2.5.

t
[M+ M,]%(t) + f K(t — 1)x(7)dt + Cx(t) = £ (¢) (2.5)
0

Where M is the mass matrix, M, is the added mass matrix, K(t) is the retardation function matrix, C
is the restoring matrix, %€ (t) is the wave force. x(t), %(t) and %(t) are the displacement, velocity and
acceleration vectors respectively.

Since then, studies have focused on avoiding these convolution terms by replacing the frequency-
dependent hydrodynamic parameters with constant coefficients or by replacing the retardation functions
with state-space models (T. Duarte et al., 2013; Taghipour et al., 2008).

In literature, a number of different methods have been used to model the radiation force time his-
tory. Frequency response functions of the floating structure are obtained from standard codes such as
WAMIT, which are based on linear theory. For non-linear effects such as viscous effects, this linearity
assumption breaks down. One way to overcome this is to apply higher-order frequency-domain ap-
proaches based on Volterra series. The problem with these frequency techniques lies in the fact that
they only apply to steady-state processes, while transients are also of interest. Furthermore, higher
order techniques are difficult to implement and computationally expensive (Taghipour et al., 2008).

F. Liu et al., 2017 propose a different method to solve the frequency domain equation, by representing
the frequency domain convolution terms in the Laplace domain. This new representation aims to find a
replacement for the retardation functions based on the estimated frequency-dependent damping matrix.

Lu et al., 2022 propose a state-space model approach. They estimate the rational part of the transfer
function by using a quasi-linear regression method and use this to build the state-space model. The
inputs to this system are the wave forces on the floating structure, while the outputs are the displace-
ments of the floating structure.

The retardation effects of the radiation force can be calculated directly in the time domain by fitting a
state-space model. This requires the system identification of the state-space model. T. Duarte et al.,
2013 describes the time domain identification process used within FAST to determine the state-space
matrices. This state-space method allows for comparable results while providing a computationally
more efficient method.

2.3.5. Higher Order Hydrodynamics

Second-order hydrodynamic forces can be separated into three components: mean drift loads, difference-
frequency loads, and sum-frequency loads. These second-order components are generally an order
of magnitude lower in amplitude than the first-order loads. However, floaters and offshore systems are
often designed such that the first-order loads do not act at the resonant frequency of the structure, but
for the second-order forces this is not necessarily the case.

Mean drift loads are generated due to an interaction between first-order motion and the first-order
wave field, resulting in a mean offset of the body to its undisplaced position. Difference- and sum-
frequency loads are generated due to the same phenomenon, but they differ in the frequency of the
force; difference-frequency loads have a frequency that is lower than the first-order wave excitation
forces, while the sum-frequency loads have a frequency that is higher than the first-order wave exci-
tation forces. difference-frequency loads (also known as slow varying drift forces) are generated as
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a result of the interaction between waves of different frequencies. These (generally small amplitude)
forces can generate large displacements in catenary-moored floating wind turbines if the frequency
coincides with the resonant frequency of the structure.

sum-frequency forces are generated in a similar fashion; the contribution of these forces is often im-
portant in cases where “ringing” or "springing” effects are prone to occur, which for FOWT is often the
case in configurations with taut mooring lines such as TLP concepts (Matha et al., 2011).

Bayati et al., 2014 have investigated the effect of second-order excitation effects on a floating semi-
submersible FOWT. WAMIT was used to solve the first and second-order hydrodynamics problems in
the frequency domain. Applied to the OC4-DeepCwind semi-submersible and NREL 5 MW reference
turbine. (at the time of writing their paper) Fast was not configured to utilize the second-order quadratic
transfer function (QTF) calculated by WAMIT. Assessment of the paper was conducted within WAMIT
only.

The results show a comparison between the Response Amplitude Operator (RAO) to the first-order
forces and the second-order forces. The comparison shows that in surge, the second-order forces
are significantly smaller in magnitude than the first-order effects; however, the surge motion is largely
dominated by second-order difference response.

In pitch, the second-order forces are also significantly smaller than first-order, just like in surge. How-
ever, the motion response is not dominated by second-order effects like in surge. The motion response
does show a peak at the lower frequency second-order forces; however, this motion amplitude is sig-
nificantly smaller than at the first-order peak. (order of 10 smaller)

The heave responses tell a similar story to pitch. However, the motion response of the second-order
effects is, while still smaller, not nearly as small as in the pitch response. (order of 3 smaller)

The paper concludes that, even though WAMIT likely overestimates the response of the system due
to a lack of viscous drag, "the frequency content of second-order difference-frequency loads cannot be
neglected in the dynamic analysis of such a system”.

Karimirad, 2013 has carried out a dynamic response analysis of FOWT with a spar-buoy type floater,
using a combination of Simo-Riflex, HAWCZ2, and FAST. In this study, the effects of higher-order hydro-
dynamics are investigated by comparing different hydrodynamic approaches within Simo-Riflex. The
comparison shows that the mean drift forces, while small, excite the resonant frequency of the heave
motion, resulting in large motion amplitudes. However, little difference is seen in the other motion
responses. Regarding the second-order sum and difference forces, a similar relation is found; second-
order forces are significantly smaller than the first-order forces. The motion response, however, is
significantly influenced in the heave direction.

The inclusion of second-order forces is often dependent on the type of system that is being researched.
As mentioned, the "springing” and "ringing” effects in systems with taut mooring lines are caused by the
second-order sum-frequency effect. Difference-frequency and mean drift forces lead to large motion
in surge for floaters with catenary-type mooring line systems. Thus, a study of a TLP concept would
be suitable for including the second-order sum-frequency force, while in floater types with catenary
mooring line systems, it would be better to include the second-order difference-frequency force and
mean drift force.

2.3.6. CFD Modeling

One distinction between CFD and potential flow modeling is the ability of CFD to compute the viscous
damping at the natural frequency. This is calculated using free decay tests and is of importance due to
the reliance of potential flow methods on externally calculated viscous (damping) forces (Zhang et al.,
2024). Besides viscous effects, CFD also offers the ability to take into account other non-linearities
such as turbulence effects and wave-breaking.

In potential flow solvers, viscous damping is introduced as an external forcing term, as they are inher-
ently incapable of reproducing this effect. CFD generally solves the flow by solving the continuity and
Navier-Stokes equation for incompressible viscous flow. Turbulence in the flow is added using one of
a few different types of turbulence models. Y. Liu et al., 2017 uses a two-equation k — w shear stress
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transport (SST) turbulence model, for instance. For wave generation, a wave generation module is
included, which allows the modeling of various wave types. Additionally, a quasi-static mooring line
model is used. At the start of a time step, the fairlead tension components are estimated using the last
time step values, and then an iterative approach is employed to calculate the current values.

Difficulties arise in the mesh deformation due to the large body motions of the system, inherent to fully
coupled FOWTs. When modeling the hydrodynamics of the floater, a cylindrical sliding mesh can be
used such that the rotation of the inner cylindrical mesh represents the pitching motion of the floater.

PF underestimates the added mass at low frequencies by over 10% (Li & Bachynski-Poli¢, 2021). QTF
determined from CFD shows that at the surge natural frequency, the magnitudes are similar, at higher
frequency (around the pitch natural frequency), the CFD QTF shows a larger magnitude. Furthermore,
they find that all numerical models (CFD & SIMA) underestimate the damping present compared to the
experimental data, though the CFD model does perform significantly better than the PF solvers.

The authors conclude that CFD simulations can provide a more accurate estimation of the non-linear
hydrodynamics. This would reduce under underprediction of low-frequency dynamic response that is
present in potential flow solutions and show better agreement with experiments. CFD could then be of
interest in the generation of the hydrodynamic parameters used in the real-time simulation.

2.3.7. Sea States

Hydrodynamic forcing on the floater is caused by incident waves on the floating structure. Waves can
be modeled numerically as either regular waves or irregular waves. Regular waves are the simplest
waveforms, consisting of a pure sinusoidal wave with constant amplitude (a), frequency (w), and phase
angle (¢).

n(t) = asin(wt + ¢) (2.6)

Typically, irregular waveforms are represented by a spectral model. In such a model, the wave ele-
vation of the irregular wave is approximated by a linear superposition of regular sinusoidal waves, as
presented in Equation 2.7

n

n(t) = Z a;sin(wt + ¢;) 2.7)

i=1

Common formulations used to model irregular sea states are the Pierson-Mokowitz (PM) spectrum and
the JONSWAP spectrum. The PM spectrum assumes a fully developed sea state, that is, wave-wave
interaction is neglected, and it is assumed that the wave state remains constant over time (Moskowitz,
1964). The PM spectrum is modeled using Equation 2.8

5/f,\"
S(f) = ag?(2m)~*f Sexp (‘Z (7’") ) (2.8)

Where « is the Philips constant and f,, is the peak frequency.

During the Joint North Sea Wave Observation Project (JONSWAP) Hasselmann et al., 1973 found that
in reality, the wave state is never fully developed. The JONSWAP spectrum adds an extra factor to
the PM spectrum to account for the ever-developing sea state. This extra factor is called the peak
enhancement factor.

5/ \"
S() = ag?(2m)~f Sexp (‘z (7’") )yr (2.9)

Ry
r = exp (—%) (2.10)



2.3. Hydrodynamics 11

Where y" is the peak enhancement factor. For a peak enhancement factor of 1, the JONSWAP spec-
trum is equal to the PM spectrum, and thus a fully developed sea state.

Another aspect of sea states is directionality or directional spreading. In many cases, sea states are
modeled using unidirectional wave fields. However, the different waves that form an irregular wave
field all have different headings (T. Duarte et al., 2014). Multidirectional wave states are often modeled
using spreading functions (T. Duarte et al., 2014; Young, 2017).

Engineering tools such as OpenFast offer wave loading with both PM and JONSWAP spectra as well
as multidirectional wave states. Generally, using the JONSWAP spectra is preferred due to the more
realistic approach to the development of sea states.

Sharma and Dean, 1981 found that the use of a multidirectional wave state will reduce the total wave
loading on the floater; that is, a multidirectional randomly generated wave state, summed over all piling
of the structure, generates less total force than a unidirectional train of waves with the same one-
dimensional spectrum. For single pilings, it was found that the total force on the structure reduces to a
factor of 0.61 for a uniformly distributed wave over the half-plane.

Additionally, it is noted that the use of directional effects can and should be used in the design of floating
structures. The use of unidirectional wave states overstates the wave forcing on the offshore structure
to provide a less realistic picture, requiring an over-engineered design, thus costing the manufacturer.

The directionality of the sea state can also cause wind-wave misalignment. Philippe et al., 2013 shows
that this non-linear effect can excite motion in different modes if the waves and wind are misaligned.
The study shows the RAO of a spar-buoy type floating wind turbine for different wave directions. The
misalignment causes spectral peaks in sway, roll, and yaw.

Bachynski et al., 2014 have studied the effect of wind-wave misalignment for different floater types.
They have found that the wind-wave misalignment causes increased motion in the system. Of all con-
sidered floater types, the TLP has the lowest standard deviation in the considered degrees of freedom.
The spar-type and semi-submersible-type floaters show larger standard deviations for increasing mis-
alignment in the sway, roll, and yaw motion.

Besides the effect on motion, the authors note that the highest loading on the structure in terms of
tower base stress is caused by the aligned cases. Further studies by Barj et al., 2014 also note that
the highest loading on the tower occurs in aligned wind-wave cases, except for tower-base side-to-side
bending mode, which is greatly affected by the misalignment. Fatigue analyses show similar results.

2.3.8. Mooring Lines

As mentioned before, different floating systems configurations use different mooring line systems.
Semi-submersible type floaters typically use catenary mooring line systems, while TLP type floaters
use taut mooring line systems. Spar-buoy type floaters can use either depending on the design. TLP
floaters (and some spar-buoy types) rely on the mooring system for the stability of the floating system,
while other types rely on stability provided by the floating platform itself. Advantages of taut mooring
lines include reduced platform motion and shorter mooring cables. Though the cables do need to carry
much larger loads due to the required pre-tension.

Mooring Line Models

In numerical simulation, there are several ways to model the effects of a mooring line system on the
dynamics of a floating body, they can be divided into three categories: a linear, quasi-static, or dynamic
approach. The difference between these types of models lies in the fidelity and computational cost of
the modeling approach, where increasing fidelity becomes more computationally expensive.

Linear Approach

Linear mooring line models (also known as linear force-displacement-velocity models) are the simplest
type of mooring line model. The mooring line is represented as a simple mass-damper-spring system
where the Damping and stiffness matrix represent the total stiffness and damping capabilities of the
system, and no information about individual lines is available (Borg et al., 2014). This simple approach
is often used in the early design process, when little information regarding the setup is known and
doesn’t provide a particularly accurate mooring line model.
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Quasi-Static Approach

In a Quasi-Static (QS) approach, at each time step, the catenary equation is solved as if the solution has
reached a steady state value. This method rests on two assumptions: That inertia effects are negligible
compared to drag, and that the line can at any time be approximated as a quasi-static catenary (Bauduin
& Naciri, 2000).

This approach is a mid-fidelity method that is mostly used in cases where the goal of the simulation is
connected to global system dynamics of the floating structure, and not necessarily the mooring system
itself. In cases where the loads on the mooring lines are of interest, the transient response of the
mooring lines and the vibrations carried by the cables are not reproducible by such a quasi-static model
(Bauduin & Naciri, 2000).

Dynamic Approach

Whereas QS approaches calculate a steady state at each time step, dynamic models also capture
transient effects. Dynamic mooring line models differ in the following way: the formulation accounts
for inertia, internal damping, and viscous & drag effects. Additionally, it allows for the propagation
of transverse and longitudinal effects (vibrations), which allows the model to capture vortex-induced
vibrations (VIV). Furthermore, a dynamic approach provides the ability to measure ultimate and fatigue
loads in mooring lines.

Within dynamic models, three groups of models can be distinguished; Finite Element Method (FEM)
models, Finite Difference (FD) models, and Lumped mass (LM) models (Masciola et al., 2014). The
governing formulation of the mooring line is a partial differential equation (PDE); the type of dynamic
model follows from the method of solving the PDE. Two methods of solving the PDE are discussed in
(Masciola et al., 2014):

Galerkins method can be used to eliminate spatial derivatives and transform the equation into a ODE,
which leads to a FEM model. This FEM model has a mass matrix with off-diagonal terms, if these
off-diagonal terms are eliminated, the model becomes a LM model. The second approach is a Taylor
series expansion of differential terms to obtain derivatives around an operating point, which leads to an
FD approach. According to (Masciola et al., 2014), the LM and FEA models are inherently less prone
to numerical errors due to the conservation of energy flux.

Hall and Goupee, 2015 found that for platforms with small responses, the fidelity of the mooring line
model does not significantly impact the motion response of the structure. However, for the mooring line
forces themselves, it is important.

Zhong et al., 2024 have done a comparison between three dynamic and three quasi-static mooring line
models. They present similar results, in a CFD analysis coupled to an FEM mooring line analysis and 3
quasi-static models. The difference in total axial loading of the mooring lines differs quite substantially
between the FEM and quasi-static models, but the total motion of the floater remains quite similar.
Additionally, they note that between the dynamic models, the FEM and LM models are better suited to
be used in a coupled numerical approach than the FD model due to computational costs.

2.3.9. Hydrodynamic Formulations Used in HIL Experiments
Previous HIL experiments done by the Politecnico di Milano have used Cummins’ equation to solve the
dynamics of the floater, both in 2-DOF (Ambrosini et al., 2020) and 6-DOF (Bayati et al., 2018).

The required hydrodynamic parameters were obtained from the potential flow solver WAMIT, which
also accounts for the radiation and wave excitation forces. The study also takes into account viscous
forces, based on Morison drag forces, and Mooring line forces in a dynamic lumped mass method
based on the formulation used in the MoorDyn module of FAST/OpenFast (Bayati et al., 2018).

Ambrosini et al., 2020 have also included the second-order diffraction forces. Specifically, the second-
order difference-frequency contribution is accounted for, while the sum-frequency is omitted. The sum-
frequency contribution is negligible compared to the first-order and cannot excite the system. The
mooring line system in their study is modeled using a look-up table; the corresponding forces due to
displacement in the respective degrees of freedom were obtained from numerical analyses using FAST.
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Fontanella, Facchinetti, et al., 2023 also note the importance of including the second-order difference-
frequency component. They also used a slightly different approach to the viscous forces. Instead of
including Morison drag forces, a quadratic and linear damping term is added to the 6 DOF equation of
motion. These damping terms were identified using a wave-basin experiment. The mooring lines are
modeled using a linear approach to save computational effort.

Recently, TU Delft has created a HIL setup for wind tunnel testing. The setup consists of a 1:148 scale
model of the DTU 10 MW reference turbine (Bak et al., 2013). Taruffi et al., 2024 presents the effect of
prescribed motions on the loading of the rotor.

Thinakaran, 2024 presents the HIL setup with complete coupling between the (physical) aerodynamics
and (numerically simulated) floater dynamics. The floater design is the TripleSpar floater (Lemmeretal.,
2020). The study obtains the hydrodynamic parameters of the floater from WAMIT. The hydrodynamic
radiation force is modeled using a state-space approach, similar to the one used in OpenFast and
WAMIT. Only first-order hydrodynamic forces were considered. The mooring line system is modeled
using a linear approach that is presented in the definition of the floater; a 6x6 stiffness matrix is found.
Viscous damping is modeled using a linear diagonal damping matrix and a contribution from the drag
part of the Morison equation using an estimated drag coefficient of 0.61.

The experiments consisted of a number of steps. The first step was to test the static case, to make
sure that the wind turbine design itself is performing as it is supposed to, regardless of the HIL setup.
The second step was to perform a comparison between an open-loop test and a closed-loop test. This
comparison is required to determine whether or not the HIL setup is performing adequately. These
tests are done using decay tests to allow for easy comparison using the frequency and damping values
in all degrees of freedom.

The final step consists of the simulation of irregular wave states. The JONSWAP spectrum was used
for wave generation, with a gamma value of 3.3. The experiments only considered unidirectional sea
states and no wind-wave misalignment.

2.4. Concluding remarks

Based on the research presented in the previous chapters, it can be established that the hydrody-
namics and floater modeling of the TU Delft HIL setup uses fairly simplified formulations. Other HIL
experimental setups from Politecnico di Milano have used higher fidelity modeling techniques for the
representation of the mooring line system, and included the contribution of higher-order hydrodynamic
forces.

It is known that the use of higher fidelity modeling techniques for the mooring line system will provide
a more realistic response of the floater, but previous HIL experiments have not compared the use of
the different mooring line formulations to assess the effect on overall system dynamics. Additionally,
these different modeling approaches offer insight into mooring line ultimate and fatigue loads that are
not available in stiffness matrices or lookup tables.

Additionally, the sea states considered did not include multidirectional effects. The unidirectional sea
state does provide the highest loading on the system but also overestimates the loading encountered
in a realistic setting. For FOWT, it is ever more important to design according to actual conditions that
will be encountered; overstating the encountered forces will lead to costly, over-engineered designs
that could economically hurt the floating system.

Hardware-in-the-loop wind tunnel testing provides a good testing environment for the analysis of aero-
dynamic effects on floater dynamics. The effect of aerodynamic thrust and torque can be accurately
simulated on scaled wind turbine designs, such that the effects of wind-wave interaction and aerody-
namic damping can be quantified.

To improve the fidelity of the TUDelft HIL simulation of a FOWT and research the effect of more
complex metocean conditions on the dynamics of the system.

This goal will be met by incorporating the effects of second-order hydrodynamics. Additionally, a com-
parison will be made using different formulations for the mooring line system. The effects of aero-
dynamic damping will be investigated in the wind tunnel with a combination of wind-wave cases and
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decay tests in multiple degrees of freedom for a range of operating wind velocities. Finally, the following
research questions will be answered:

Research Questions
1. To what extent do the higher-order wave forces affect the dynamic behaviour of the FOWT system
in a hybrid testing environment?

2. Does the inclusion of a quasi-static or dynamic mooring line system significantly affect the FOWT
system dynamics? Does the increase in fidelity justify the increase in computational cost?

3. What is the effect of aerodynamic forces on the damping and natural frequency of a floating
offshore wind turbine?



Methodology

This chapter will present the methodology that the work is based on. Firstly, section 3.1 will present
the wind turbine and floater model that will be considered in this study. Additionally, it will introduce
the verification tool used later on to verify the results. The experimental setup of the HIL experimental
wind tunnel tests and the required hardware will be presented in section 3.2. The theoretical basis of
this study will be discussed in section 3.3. A method is presented to calculate the pre-determined first-
and second-order wave forces acting on the floating platform. Additionally, the mathematical repre-
sentations for the quasi-static and dynamic mooring line model will be discussed. Finally, section 3.4
will cover how these mathematical models are implemented into the Simulink model. Furthermore, the
architecture of the Simulink model is presented, discussing the subsystems it contains.

3.1. Wind Turbine and Floater Characteristics

The wind turbine model considered in this study is the DTU10MW wind turbine, a design used pri-
marily as a publicly available reference turbine for research purposes (Bak et al., 2013). As part of
the LIFES50+ research project, publicly available FAST v8 (precursor to OpenFast) models have been
created according to this reference turbine. As the name suggests, the reference turbine is designed
for a rated power production of 10 MW, at a rated wind speed of 11.4 m/s. A summary of the most
important characteristics can be found in Table 3.1

Table 3.1: Summary of characteristics of the DTU10MW wind turbine.

Parameter Value

Rating 10 MW

Control Variable speed, collective pitch
Rotor Diameter 178.3 m

Hub height 119 m

Cut-in, Rated, Cut-out wind speed 4 m/s, 11.4 m/s, 25 m/s

Cut-in, Rater rotor speed 6 RPM, 9.6 RPM

Rotor Mass 229 tons

Nacelle Mass 446 tons

Tower Mass 605 tons

The floater considered is the SWE-TripleSpar Floating platform (Lemmer et al., 2020), specifically de-
signed for use with the DTU10MW wind turbine as part of the LIFES50+ project. The semisubmersible
floater consists of three concrete cylinders, connected by a steel tripod. A verification study of the
structural mechanics of the Triple Spar floater was done by Manolas et al., 2018. The structural charac-
teristics of the TripleSpar are summarized in Table 3.2. The mooring system consists of three catenary
(slack) mooring lines, consisting of steel chain at the bottom, and polyester at the upper part of the
mooring line.
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Table 3.2: Summary of characteristics of the TripleSpar Floater.

Part Parameter Value
Elevation above SWL 25 m
Platform CoM below SWL 3597 m
Platform total mass 28268 tons
Length 65 m
Distance to centre 26 m
Columns Diameter 15 m
Elevation above SWL 10.5m
mass (per column) 3279.5 tons
Thickness 0.5m
Heave Plates Diameter 22.5m
Mass 1639.3 tons
. Total Height 15m
Tripod Mass 948.36 tons

OpenFast

The implementation of both wave forcing and mooring models will be verified using OpenFast v3.5.4
as a benchmark (Jonkman et al., 2024). OpenFast (previously known as FAST v8) is an open-source,
mid-fidelity engineering tool widely used in industry for the modeling of (floating) wind turbines. It con-
sists of an overarching structure, which couples modules for aerodynamic, hydrodynamic, control, and
elastic structural dynamics, for the simulation of non-linear aero-hydro-servo-elastic dynamics in the
time domain. The definition of the TripleSpar floater includes a repository with OpenFast input files,
using the DTU10MW wind turbine. Though the input files had to be updated to a newer version of
OpenFast, this allows for verification of the developed numerical simulation in this study. The mathe-
matical representations of the mooring models will be adapted from the Mooring Analysis Programme
(MAP++) and MoorDyn, which are submodules that can be used within OpenFast to model quasi-static
and dynamic mooring lines, respectively.

3.2. Experimental Setup

This section aims to provide an overview of the experimental setup used in the HIL wind tunnel tests.
The setup will be discussed in terms of subsystems and components, as well as the wind tunnel and
logistics of the setup. A visual overview of the system and its components can be found in Figure 3.1.

3.2.1. Open Jet Facility

The experimental setup will be tested in the Open Jet Facility (OJF) to generate the aerodynamic loads
on the wind turbine model. The OJF is a low-speed wind tunnel that has a maximum wind speed of 35
m/s. The OJF is used for the testing of scaled-wind turbine models because of the low required wind
speed at model scale, and a large octagonal nozzle of 2.85 x 2.85 m that reduces the influence of wall
effects (“The Open Jet Facility”, 2025). The wind tunnel is powered by a 500 kW motor in a horizontal
loop wind tunnel design, achieving a turbulence level of 0.5% at a distance of 1 m, and a turbulence
level of less than 2% at 6 m. The Wind turbine model will be located 3.1 meters away from the nozzle
opening for safety. If it were any closer, then the rotor would be in front of a door. Even though this
door would be closed at all times during operation, this could be potentially hazardous if there are any
issues with the rotating equipment, especially at the high rotational speeds that are required at model
scale. Additionally, the Hexapod will be positioned on top of a pneumatic table, allowing the rotor hub
to be positioned in the middle of the nozzle, with the help of a laser level.

3.2.2. Wind turbine model

The wind turbine model used in this study is a 1:148 scale model of the DTU10MW reference turbine
(Bak et al., 2013), paired with a velocity scaling of 1:3. The scaling factors can be seen in Table 3.3.
The aerodynamic design was not performed in this study, rather the same model was used from earlier
studies (Thinakaran, 2024) and (Taruffi et al., 2024). The aerodynamic design of the rotor was done
in an earlier study by Politecnico di Milano (Fontanella, Da Pra, & Belloli, 2023). This design does not
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Figure 3.1: Overview of the wind turbine model and Hexapod in the wind tunnel test section.

follow the geometrical scaling of the original aerodynamic design of the DTU10MW wind turbine; the
design philosophy instead aims to match the thrust generated by the rotor, since the thrust force plays
a large role in the overall system dynamics of a floating wind turbine. The Rotor Nacelle Assembly
(RNA) is mounted on top of a cylindrical, aluminium tower, with a first fore-aft bending mode at 12.5
Hz. This is substantially higher than the 1p and 3p frequency, such that it is not excited during testing.

3.2.3. Sensing and Actuation

2 triaxial MEMS accelerometers are applied to the wind turbine model, one at the top of the nacelle
and one at the bottom plate in front of the tower. In the numerical simulation, only the output from the
accelerometer at the tower top is used; the second one at the tower bottom can still be used to verify
the motion tracking of the Hexapod.

The load cell is located in between the RNA and the tower top. From this load cell, aerodynamic
forces can be measured along with gravitational and inertial forces of the RNA above it. The motor
(model:Maxon EC-4pole 30 200W) that drives the rotor is capable of working as a motor or as a gen-
erator. It is connected to the rotor shaft by a gearbox (model: Maxon GP32 C5.8:1) and an Oldham
coupling. For startup of the rotor, the motor is used to get the rotor up to the required rom (480 at rated
wind speed), then in power production mode, the motor will work as a generator and generate power.
To this end, the generator is connected to a braking resistor (model:Maxon DRS70/30) to dissipate
energy. A motor controller (model: Maxon Escon70/10) is required to set different operating conditions
of the rotor, the motor encoder (model: Maxon HEDL 5540) measures actual speed and current, which
allows for determining rotor torque. However, the torque measured at the motor is generally lower than
the actual rotor torque, due to mechanical losses in the gearbox and electrical losses in the generator.
Thus, it is preferable to measure the rotor torque using the load cell.

The actuation of the floater dynamic motion is done by a 6-DOF parallel kinematics robot produced by
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Table 3.3: Scaling factors of the model scale DTU10MW wind turbine.

Parameter Value

Length A 1/148
Velocity Ay 1/3

Mass A = 23 1/1483

Time A =4/, 3/148
Frequency Ar =1/ 148/3
Acceleration Ay = A, /2, 148/32

Force Ap = Apdq  1/(3% x 1482%)
Torque Ar =g, 1/(3% x 1483)
Reynolds Number 1,4, 1/444

Froude Number  1,/\/4, V148/3

Quanser, referred to as 'Hexapod’ hereafter. The Hexapod has the ability to actuate payloads of up to
100kg. The workspace of the Hexapod is defined as the allowed distance in translational and rotational
DOFs that the platform can move. If all other DOFs are kept in home position, the Hexapod is able
to actuate +7.4 cm in surge, +11 cm in sway, +5 cm in heave. For rotational degrees of freedom, it
allows for approximately +15 degrees in roll and pitch and +25 degrees in yaw.

The Hexapod has its own designated computer to handle the computation of the inverse kinematics
based on the desired position and inclination of the floater, as calculated in the numerical simulation. It
then outputs its commanded position as well as the actual position to the data acquisition system. These
data points can then be compared to make sure that the Hexapod is able to follow the commanded
position. The Hexapod also comes with its own scripts and Simulink models for calibration, homing to
its 0-position and operation using sinusoidal prescribed motion, though the latter will not be used in this
study.

3.2.4. Real-time Simulation Machine

The Simulink model of the floater dynamics will be run on a dedicated real-time machine, the DSpace
MicroLabBox 1302. This real-time machine manages the signals from the accelerometers, load cell,
hexapod, motor, and control systems. Additionally, this device runs the numerical simulation that solves
the floater dynamics and outputs the signals to the Hexapod. The DSpace takes all analog signals at
a sampling frequency of 1000 Hz. At the same time, all logged signals are sent to a Human-Machine
interface in real-time, such that the signals can be visualized during the tests, and commands can be
sent to the numerical simulation. The human-machine interface is set up in the control room of the
OJF, such that the system can be safely commanded during operation of the wind turbine. During a
simulation, commands can be sent for the application of wave forces or external forces on the system.
Additionally, the controller of the motor can be commanded from the human-machine interface to be
able to control the rotor speed.

To run a Simulink model on the DSpace, the Simulink model has to be "built and deployed”. The
simulation of different mooring models cannot be commanded during a simulation; instead, when a
Simulink model is built, the preferred model has to be chosen beforehand. Similarly, for wave cases,
when the model is built, the time history of the pre-generated wave case is loaded into the model. If a
simulation has to be run with a different mooring model or wave case, this process has to be redone.

3.3. Theoretical basis

The mathematical representations the work is based on have been briefly discussed in the literature
study; a more elaborate overview will be given here. First, a quick overview of the floater dynamics
and the local reference system of the numerical simulation will be given. subsection 3.3.2 will present
the methodology of generating the time history of wave forces, from the JONSWAP spectrum, for both
first- and second-order wave excitation forces. The mathematical representation of the quasi-static and
dynamic (lumped-mass) mooring model is discussed in subsection 3.3.3.



3.3. Theoretical basis 19

3.3.1. Floater Dynamics

The basis of HIL simulation lies in the numerical simulation of the dynamics of the floating platform. To
this end, a Simulink model solves the Equation of Motion (EoM) that describes the dynamics of this
system. In essence, this EoM will take the form of Equation 3.1.

M+ A& + DWx + D@x? + Kx = F, (%, X) (3.1)

Where M is the mass matrix, A is the added mass matrix, DV and D® are the damping and quadratic
damping matrix respectively, and K is the stiffness matrix. The state vector x contains the current
position of the floater, % and % indicate the velocity and acceleration vector, respectively. The state
vector contains 6 DOFs, consisting of the three translational DOFs Surge (x), Sway (y) and Heave
(2), as well as the three rotational DOFs, Roll (¢), Pitch (8) and Yaw (y). Figure 3.2 shows the
coordinate system used in this study.
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Figure 3.2: Schematic of the rotations used in the current study.

F.,. are the external forces acting on the floater. The contributions taken into account in this study can
be found summarized below.

1. A(x) Added Mass

2. Fgero Aerodynamic forces
3. F, ., Radiation

4. Fgyif Diffraction

5. F.00r Mooring Forces

The mass, damping, stiffness, and added mass matrices are obtained from the definition of the TripleSpar
floater and from the definition of the DTU 10 MW wind turbine (Lemmer et al., 2020), (Bak et al., 2013).
These matrices thus define the properties of the system. Viscous forces are not applied specifically;
instead, their effect is accounted for by an additional damping matrix. The aerodynamic force is applied
physically in the wind tunnel, by rotor operation. However, the measured forces by the load cell will
have to be corrected in the numerical simulation. The remaining external forces in radiation, diffraction,
and mooring forces are numerically simulated. The radiation forces will be modelled in the form of a
state-space system, as used in the previous study by (Thinakaran, 2024). The diffraction and mooring
forces are the main point of interest in this study, and their implementation will be explained in more
depth in the next section.

3.3.2. Sea State & Waves

Ocean wave measurements of wave elevation can generally be modeled as a stationary stochastic
process with a narrow-banded spectral density. Furthermore, in the analysis of ocean waves, it is
common to represent the surface elevation as a linear superposition of linear (airy) waves (Young,
2017). The mathematical representation of the first-order solution of this superposition is shown in
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Equation 3.2. This equation is based on the assumptions that the ocean waves can be considered an
incompressible, inviscid, and irrotational fluid. (Jensen, 2001).

Additionally, each sinusoidal wave considered here is a linearly independent sample from a stochastic
process, where the solution is found to a homogeneous linear differential equation with homogeneous
boundary conditions.

n
R (X, £) = Z a;sin(kX — wit + 6;) (3.2)

i=1

This equation is a function of space and time. For single body analysis, it is common to simplify the
equation to only vary over time, which would reduce to Equation 3.3:

n

hD(t) = Z asin(w;t + 6) (3.3)

i=1

Where a;, w;, and 6; are the amplitude, angular frequency, and random phase angle of the i-th wave
component. The amplitude of the individual wave components can be found with the relation shown in
Equation 3.4. The phase angle 0 represents a random sample of the stochastic process h in t. The
amplitudes a; can be calculated based on the wave spectrum according to Equation 3.4.

a; =+/25(w;)Aw (3.4)

Where Aw is the spacing in the angular frequency discretization. These amplitudes are then the con-
nection between the frequency domain wave spectrum and the time domain wave elevation.

Wave Spectra

There are a variety of frequency domain spectra that could be used to represent the energy distribution
of a sea state. In engineering applications, the most commonly used are the Pierson-Moskowitz spec-
trum or JONSWAP spectrum, as discussed earlier in subsection 2.3.7. In this study the JONSWAP
spectrum was used to model the sea state to account for a developing sea state.

This study makes use of the Wave Analysis for Fatigue and Oceanography (WAFO) MATLAB Toolbox
to determine the frequency spectra according to the JONSWAP spectrum (Brodtkorb et al., 2000). The
Toolbox offers functions to directly compute a JONSWAP spectrum based on an input of significant
wave height (known as Hg or H,;,, this study will continue with Hy), peak period (T, ), and desired wave
time history duration. The duration has to be given beforehand, since it determines the required (an-
gular) frequency discretization, that is, an array of discrete values of w. The formulae for the frequency
spectrum are given in Equation 3.5 and Equation 3.6.

2

S(w) = (Agfs) wﬂ_se(_m )V” (3.5)
14

2

b= e‘%%‘l) (3.6)

Where A, is a normalization factor, w, is the peak angular frequency, which is equal to ZT—” y" is

14
the peak enhancement factor. ¢ is the spectral width parameter, which can take one of two values
depending on the value of w. When w is less than or equal to w,, o = 0.07; when it is more than wy,,
o = 0.09.
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First-Order Wave Excitation Force

The forces caused by wave action on a floating platform can be calculated based on a Response
Amplitude Operator (RAO). The RAO gives the transfer function of wave excitation force for a given
frequency spectrum & heading direction for all six degrees of freedom. This RAO is determined by using
boundary integral equation methods, also known as panel methods, to solve the velocity potential and
fluid pressure on the floating body. Typically, numerical solvers such as WAMIT or Ansys Aqwa are
used to this end.

The unit of the transfer function is generally given in terms of non-dimensionalised force per unit of
elevation, where the elevation is the height of the water wave at a given point in time and space. Fur-
thermore, the RAQ is given for a range of frequencies and incident angles, and if the data is sufficiently
dense, it can be interpolated to give data for any given frequency value within the range or any incident
angle.

The time domain solution of the response function of the floating body due to a given wave spectrum
is then found with the real part of the inverse Fourier transform of the RAO and frequency spectrum of
the wave state.

n

FO(¢) = Z a;K (wp)cos(w;t + ; + 6,) (3.7)
i=1

Where a;, w; and 6; are the same as in Equation 3.3, and K (w;) is the RAO for the frequency w; and
¢, is the associated phase angle.

Second-Order Wave Excitation Force

The solutions to the first-order wave functions were found using a linearisation of the first order. Using
a similar method at the second order gives the solution to the second-order problem. As mentioned
before in subsection 2.3.5, the magnitude of these solutions will be an order of magnitude smaller, but
could result in a significant response in certain scenarios. The standard way of calculating the Force
response on the floating body can be found using a Quadratic Transfer Function (QTF) as opposed to
the linear transfer function required for the first-order force response.

The determination of these RAOs and the determination of wave forces both take up a considerable
amount of time. Thus, it is in some cases convenient to use what is known as the Newman Approxima-
tion. This approximation aims to emulate the effect of second-order forces using only the second-order
mean drift forces, which can be determined from the results of only the first-order solution. This greatly
reduces the computational effort compared to using the full difference QTFs.

This study will use the Newman Approximation to study the effects of higher-order hydrodynamics. This
is implemented in a similar manner as the first-order forces. The exact formulation used can be seen
in Equation 3.8, taken from the formulation used in the HydroDyn module of OpenFast as presented
by T. M. Duarte et al., 2014.

[ N
FP ) = % Zam,/ZF,;(wm,wm)-eiwmf - (3.8a)
m=1
B © N F (0m,om)>0
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N
R Zam 2 (@ o) - €L0mt (3.8b)
m=1

F (0m,wm)<0

Where F; (wn, wy,) is the diagonal terms of the second-order difference QTF, which are defined as
the mean drift loads. The mean drift loads can be determined by programs such as WAMIT or Ansys
Aqwa. This study uses the output of Ansys Aqwa, as provided in the definition of the TripleSpar floater
(Lemmer et al., 2020).
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3.3.3. Mooring Line Representation

The mooring Line representations considered are of a linear, quasi-static, and dynamic nature. The
physical data used in the analysis of these systems is given in the definition of the TripleSpar Floater
(Lemmer et al., 2020).

Linear Representation

The linear mooring line model is the simplest mooring model considered. This model consists of a
6x6 stiffness matrix that is added to the Equation of Motion (EOM) that describes the floater dynamics.
This is the only term in this system that gives the system stiffness in terms of surge and sway, that is,
a restoring force based on a displacement from the zero position, since this term is not present in the
hydrostatic matrix.

Quasi Static Representation

The quasi-static mooring line model used in this study is based on the representation used in the
Mooring Analysis Program (MAP++) that can be used in combination with OpenFast to do numerical
simulations on FOWTs, as presented by Masciola et al., 2013. The model makes use of a catenary
equation to solve for the tension at the fairlead at each of the mooring lines. To this end, the approach
takes into account line extension and seabed contact.

If the mooring line is sufficiently long, part of the mooring line will be in contact with the seabed. For
such a line, a catenary equation can be used to represent the line starting from the point where the
mooring line lifts off the seabed. The location where the mooring line lifts off the seabed can be found as
described in the paper by Zhong et al., 2024. A schematic overview of the mooring line representation
can be seen in Figure 3.3
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Figure 3.3: Schematic Overview of a mooring line in the Quasi-static mooring line model, in the x(s) — z(s) coordinate system.

Solving Equation 3.9 for p gives the length of the line that is in contact with the seabed, where L is the
total length of the line, X the horizontal distance between the anchor and fairlead, and H the vertical
distance between the anchor and the fairlead.

[«-») o | _ __2H
(L-p)=—H — —_ =

e P pp— 1=0 (3.9)
The value of p then indicates the length of the line (starting from the anchor) that is lying on the seabed.
From the value of p, the horizontal tension at any point in the line can be found by using the catenary
parameter, as found in Equation 3.10 and Equation 3.11

(L —p)* — H?
a=—

o (3.10)
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T, = aW (3.11)

Where W is the net weight of the mooring line in the fluid medium per unit length.

The cartesian coordinates of the fairlead and anchor position are transformed into a 2 dimensional
plane, where the X(s) is the horizontal plane of the mooring line and Z(s) the vertical plane, both as
a function of s, which represents the location along the unstretched length of the line. The piecewise
equations for X(s) and Z(s), as well as the tension T(s), are shown in Equation 3.12.

s for0<s<y
X(s) ={S + ¥ 24 [s — 25y + ¥4 fory<ss<p (3.12a)
w(s-p) s
p+ = smh [ ™ ]+E 2EA[)/ p?] forp<s<L

for0<s<p

Z(s) = Th[ /HW(S )2 ] W(ZSE;) forp<s<l (3.12b)

max [Ty, + CgW (s — p), 0] for0<s<p

JT5+[W(5—P)]2 forp<s<L

T(s) = (3.12¢)

y ify=0

0 otherwise
the global 3-dimensional reference system before they can be applied to the floater. Additionally, the
moment arm to the Center of Mass (CoM) of the floater needs to be established to determine the re-
sultant moments. A 3-dimensional overview of the mooring system and forces is shown in Figure 3.4a.
Figure 3.4b shows a close-up of the fairleads where the z-axis is drawn on the same scale as x and y.

Where y = p — CT—hW and 1 = . The tension forces need to be transformed back to
B
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Figure 3.4: Visual representation of the discretization of the mooring system, produced by the quasi-static model.

Dynamic Representation

In subsection 2.3.8 it was noted that there are a few methods to derive a dynamic representation of
individual mooring lines. In this study, it was chosen to use a Lumped Mass (LM) model to represent the
mooring lines. The exact modeling method was taken from (Hall & Goupee, 2015). In LM models, the
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mooring line is split up in N equally spaced segments and N + 1 nodes at the end of each segment. The
location of each of the nodes is defined in terms of a vector r; in Cartesian coordinates from the origin of
the global reference system. The global reference system has its origin in the 0 position of the floater,
at the intersection between the platform and the turbine tower. The location of the mooring anchors is
then defined from this point. Properties of the line segments are defined in terms of unstretched length
[, mass density p, Young’s modulus E and internal damping coefficient C;,,;.

The model takes into account the effect of internal tension and damping forces, hydrodynamic forces
in terms of Morison drag loads, weight and buoyancy, and seabed interaction loads. The nodes form a
system of connected differential equations, where each of the nodes is affected by the segments it is
connected to.

The boundary conditions are set at the anchors and fairlead. At each of these nodes, there is only
one connected segment. Additionally, there are constraints that restrict the motion of the fairlead and
anchor. For the anchor, the location is fixed. The total tension in the line at the anchor is counteracted
by an equal and opposite force, thus remaining in place. Any effects of movement of the anchor due to
seabed elasticity are not taken into account. As for the Fairlead, the location and velocity of the node
are dependent on the location and velocity of the floater. The exact implementation will be discussed
separately in subsection 3.4.5.

For each of the nodes, the weight of half of the segment before and after the node of interest are
applied. Again, at the anchor and fairlead, there is only one segment connected to the node, so only
one segment is taken into account. Each node i is connected to the previous segment i — 1 and the
next segment i + 1. The weight at each node is calculated by taking half the previous and half the
following segment. The weight of each segment can be calculated according to Equation 3.13

T
Wisija = 7d%1ow = P)g (3.13)
The total weight at the node is then:
1 .
W; = EWi—1/2 + Wit1/2)€, (3.14)

Where &, is the unit vector in the z direction. The tension in cable segments is caused by the elongation
of the line segment from its unstretched length. This particular model does not does not take into
account negative tension (i.e. compression), when the length of a line segment is shorter than the
original unstretched length, the tension is zero.

The vector force of the tension in the segment i+1/2 is then:

1 1
Tisrjs = End? (7 = | (141 — 1) (3.15)
4 Lo lries —

Internal damping forces are caused by a strain rate, that is, a change in length compared to the last
time step. The internal vector force can then be calculated by Equation 3.16

T . T -1
Citv12 = CintZdZEHl/Z (_||rl'+—1 — rl”> (3.16)
l l

Where ¢€;, 1/, is the strain rate, which can be calculated according to Equation 3.17
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. de 0 (||riyq — x|
€i+1/2= 57 T 37 (% (3.17a)
1 1 0 5 X ,
T 20|rips — x| Ot [(irs = 2% + Giva = ¥)* + (2131 — 2] (3.17b)
i+ L
11 ' _ . ' ' '
AT [(ivr = 2) Gipr = %) + Qiwr = V) Oivr — Vi) + (Ziv1 — 2) Zig1 — Z0)]
i+ L

(3.17¢)

The previously stated equations only state the contributions of the following segments. The contribu-
tions of the preceding segments can be calculated in the same manner, swapping the indices i+1 for
i-1. This concludes the total internal forces in the mooring line. For the external forces, it is important
to look at local velocities and normal and tangential directions, necessary for the calculation of drag
forces and added mass.

The tangent direction at any node can be calculated as the vector passing through the 2 adjacent
nodes, which can be seen in Equation 3.18.

Fiyp — i

U= Tt —rial 5.18)
To this end, tangential and normal components of relative velocity between the medium and the mooring
line can be determined as follows. In still water, the relative velocity between the water and the mooring
line is equal to —t;. The tangential component can be determined from the projection of the relative
velocity on the tangent direction, i.e. (—f; - q;)q;- The normal component is (¥; - q;)q; — t;. In the
following equations, the subscript ;; and ,, ; will indicate the tangential and normal directions of the ith
segment, respectively.

1 e L
D,; = EPWCD,ndl”(ri -q)d; — 1|[(F; - 4)d; — 1] (3.19a)

1 A A
D;; = EpWCD,tT[dl”(_ri Q)4 |1[(—1; - ;)4;] (3.19Db)

Where Cp,, and Cp; indicate the drag coefficient in the normal and tangential direction, respectively.
Similarly, added mass forces are calculated in normal and tangential directions, as is done in Equa-
tion 3.20.

T

a,¥; = pra,nZdzl[(i;i - q;)q; — 1] (3.20a)
.. n .. A A
agf; = pra,tZdzl[(_ri - q,)d;] (3.20Db)

The last external force that is accounted for is the reaction force of the seabed. This is a vertical force
that ensures that the mooring line does not sink through the seabed. To this end, it is only applied when
z; < zp,¢ Itis calculated according to Equation 3.21.

B; = dl[(zpoc — z)kp — ZiCp] €, (3.21)

The mass of the individual nodes is defined in a 3x3 matrix. In the integration scheme of the equation
of motion, the added mass is added to this matrix to be able to calculate the acceleration terms. The
mass matrix is defined in Equation 3.22, where | is the 3x3 identity matrix.

TL'

m; = 4dzlpI (3.22)



3.4. Implementation In Simulink 26

The total contribution of the added mass for each individual nodes can be found by factoring out the
acceleration term in Equation 3.20. This leads to the expression in Equation 3.23

7T A A A A
a; =a,; ta;; = Pdezl [Ca,n(l —di4;) + Ca,t(qiqiT)] (3.23)

The final EOM can be seen in Equation 3.24

[m; +a;]#; = Tiy1/2 — Ti—1/2 + Ciz1/2 = Ci—1/2 + Wi + B; + D, ; + Dy (3.24)

The acceleration vector ¥; on the left-hand side can be separated by dividing both sides by the total
mass matrix [my + ay]. This results in the acceleration vector for all nodes. With these results, a
time variant state space system can be made, which can be used to solve the system of equations
systematically. The state vector of this system consists of the location and velocity of every node, that

N

is [: ] The Solution of this system will be the derivative of this vector, i.e. ™ itis important to

N N
remember that each vector ry contains N vectors of size 1 by 3 (x,y, z) coordinates. This means that

the total size of the state vector for a single mooring line becomes 2N by 3, where N is the total nodes
in the mooring line.

It is now easy to see that the size of the matrices becomes quite substantial for increasingly small
discretizations of the mooring line, which drastically increases the computational time of the dynamic
system. Additionally, for numerical stability of the dynamic system, a sufficiently small time step has
to be taken. This time step is up to an order of magnitude smaller than for a quasi-static system,
and multiple orders compared to a linear system. Herein lies the problem with dynamic mooring line
systems for use in real-time simulation systems: a combination of (comparatively) computationally
expensive calculations, with small time step requirements, can limit the usage of dynamic mooring line
representations in real-time simulation.

3.4. Implementation In Simulink

The simulation of the floating body dynamics is solved in MATLAB Simulink. This section will describe
the architecture of the Simulink files to describe how the mooring line representation and wave forces
are implemented. To this end, it is important to note that the verification and HIL tests use slightly
different versions, due to the nature of their setup.

This study will differentiate the Simulink architecture in 3 ways: Standalone, Open-Loop (OL), and
Closed-Loop (CL). The standalone Simulink variant can be run on any machine, real-time or not, and
has no connection to any hardware or sensing equipment. This simulation then only provides infor-
mation on the numerical modeling of the floater & hydrodynamics. This version of the Simulink model
is used in the verification stage of the research, where the mooring line and wave representations will
be verified against results from OpenFast simulations. The Standalone model, with no connection to
any hardware, can be run at full-scale and model-scale. That is not the case for the open-loop and
closed-loop variants, which can only be run at model-scale. A schematic overview of the Simulink and
physical system can be found in Figure 3.5

The open-loop and closed-loop use the same architecture, which is run on the real-time simulation
machine and connected to the hardware and sensing equipment. The difference lies in the settings.
The Open Loop simulation, as the name suggests, does not "close the loop”. That is, there is no force
feedback from the sensing equipment. The goal of this simulation is to produce the same results as
the Standalone model, where no force feedback is possible. This is done to provide a check for the
actuation of the hardware and to provide a reference for the closed-loop simulations.

The closed-loop simulations use the real-time machine as well as all hardware and sensing equipment
connected and working. The force feedback of aerodynamic and inertial forces of the turbine is thus
taken into account (after correcting due to scaling laws). These closed-loop simulations are used for
most of the experimental wind tunnel tests. The differences in Simulink modeling will be discussed in
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more depth in this section. The differences in experimental setup will be discussed in detail in the next
section.

The actual Simulink model that is being solved is in each case the same. The Simulink model consists
of a number of subsystems and layers. The subsystems each concern themselves with their associated
external force on the dynamic system. The layers on top of the main simulation loop are required to
manage inputs and outputs. It is the layers above and inputs that are different between the standalone,
OL, and CL versions. For instance,the aerodynamic forces subsystem is present in the standalone
model, but its input (and thus output) is zero.

In the following sections, the architecture that is discussed is the same between the standalone, OL,
and CL versions. They will provide an overview of the subsystems and how the formulations discussed
in section 3.3 are implemented herein. The dynamics solver, aerodynamic, and radiation subsystems
are not quite the focus of this study, but they will be briefly discussed here for clarity.

3.4.1. Floater Dynamics Solver Subsystem

This subsystem solves the dynamics of the floater, i.e. the EOM presented in subsection 3.3.1. The
inputs of this subsystem consist of the total summation of all external forces and moments on the floater,
aerodynamic, diffraction, radiation, and mooring forces. This force and moment vector consists of the
summation of forces in the 3 translational DOFs and moments in the 3 rotational DOFs. The properties
of the system (mass, stiffness, and damping) are read from the MATLAB workspace. The outputs from
the system consist of the position, velocity, and acceleration vector of the floater, in all 6 DOFs.

3.4.2. Aerodynamic Forces and Force Correction

In subsection 2.2.1, it was presented that due to scaling law issues, it is necessary to correct the forces
measured by the load cell, such that only the aerodynamic contribution is taken into account in the
numerical simulation. The load cell measures contributions of not only aerodynamic induced force, but
also from other sources. The contributions can be summarized as follows:

» Aerodynamic forces from wind acting on the rotor.

+ Gravitational forces due to the weight of the RNA above the load cell.

+ Inertial forces due to acceleration in translational degrees of freedom.

» Forces caused by the tangential and centripetal acceleration due to rotational acceleration.

» Torque caused by the acceleration of the wind turbine model in rotational degrees of freedom
» Tangential acceleration of the induces a torque at the load cell.

For applying correct aerodynamic forces and torques in the HIL simulation, all other contributions need
to be removed from the total measured forces by a force correction methodology. The force correction
methodology itself was outside the scope of the thesis. The methodology presented here is a short
summary based on the work done by Thinakaran, 2024.

The equation for measuring acceleration is given in Equation 3.25. The translational acceleration mea-
surements can be directly measured from the 3-DOF MEMS accelerometer that is present in the model,
however, the rotational degrees of freedom cannot be directly measured.

posit
o] [%] /[ 0 é é 0
Ameas =R71-| =1[ 0 [+ Y + 9 x(R 0 ) + 0 X 9 X<R 0 > (3.25)
-9 |Z / h Y Y h
QAgrav ‘;n;-n—; Qtangential
Qcentripetal

Where R is the rotation matrix to move from a rotating frame to a fixed reference frame: R = R,RyRy,
i.e. the product of the rotation matrices in yaw, pitch, and roll, respectively. The definition of these
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rotation matrices can be found in Equation 3.26. The external forces are applied in a rotating frame;
however, the final dynamics solution requires a fixed frame, such that these forces have to be trans-
formed back to the fixed frame.

1 0 0 cos() 0 sin(8) cos(y) -—sin(yp) O
R,=|0 cos(¢) —sin(¢) ], R, = 0 1 0 , R, =|sin(¥) cos(®) 0] (3.26)
0 sin(¢) cos(¢) —sin(8) 0 cos(6) 0 0 1

The aerodynamic contribution can be determined from the load cell, by subtracting the force correction
factor from the total measured forces. The equation for the total measured forces can be seen in
Equation 3.27.

posit

Fox 0 MX 0 0 é é 0
Frmeas = |Fay +R7'| + 0 |- MY -M 9 X (R 0 ) -M 9 X 9 X<R 0 )
Fy, -Mg MZ P h Y ¥ h
Faero Fgrav Ftrans Ftangential
Fcentripetal

(3.27)

Correcting for the aerodynamic torques is not trivial, since the 3-DOF MEMS accelerometer cannot
directly measure the angular acceleration. The torque estimation thus depends on translational accel-
eration and the double-derivative position vector. This expression is provided in Equation 3.28, where
z;. is the moment arm between the center of gravity of the RNA and the load cell.

]x‘é —Mameas(¥) X 2ic Tax

Tmeas = —R 7! ]yH + | —Mameas(X) X z;c | + Tay (3.28)
]zl/) 0 Ta,z
Tinertia Tmass Taero

The aerodynamic force can be calculated by subtracting the correction factor from the total measured
force(Faero = Fmeas — Fcorr), @nd the correction factor can then be found, simply taking the expression
shown in Equation 3.29. The aerodynamic torque can be calculated by subtracting the correction factor
from the measured torque (T zero = Timeas — Tcorr- 1 h€ €Xpression for the correction factor in torque can
be determined similarly, as done in Equation 3.30

Feorr = =M - Qmeas (3.29)
]x¢ —Mameas(y) X zic
Teor = —R7" 0|+ ~Mameas(x) X zic (3.30)
I 0

The correction of inertial forces requires knowledge of instantaneous acceleration at the tower top.
Currently, only a 3-DOF accelerometer is installed, allowing for measurement of acceleration in trans-
lational degrees of freedom. Correcting then, for the rotational degrees of freedom requires derivation
using the translational degrees of freedom, which induces a time delay. The previous study by Thi-
nakaran, 2024 found that the induced time delay was 0.7 seconds, which is too much to be able to
accurately correct for the torque induced by the moment of inertia. Additionally, the actual value of the
moment of inertia of the RNA is not known. In an iterative approach, it was determined that the best
results were found assuming the value for moment of inertia to be zero.
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This still gives good results in terms of corrected torque in roll and pitch, where other contributions
outweigh this effect. However, in yaw, this is not the case, as can be seen by the fact that measured
torque on the load cell is only affected by inertia and aerodynamic torques, not by mass, as pitch and
roll are. It is found that in yaw, the current force correction methodology is not quite good enough
to closely match the open-loop results. A solution to this problem would be to measure the angular
acceleration directly and get a good estimate of the moment of inertia of the RNA. However, this would
require a 6-DOF accelerometer, which is not within the scope of the current project.

3.4.3. Radiation Subsystem

The Radiation forces on the system are caused by the motion of the structure in the fluid medium. This
motion creates disturbances in the surrounding water, i.e. radiated waves. These radiated waves, in
turn, influence the motion of the floating structure itself in the form of a damping force.

In subsection 2.3.4, it was shown that there are a few options for modeling the effects of radiation
for floating platforms; this study will use a state-space representation. The definition of the TripleSpar
floater provides frequency-dependent damping coefficients, calculated by the hydrodynamic panel code
WAMIT (C. Lee, 1995). These damping coefficients can be used to generate a state-space system
according to system identification techniques such as the ones presented by T. Duarte et al., 2013.
Using the state-space method eliminates the need for the calculation of the impulse-response function
or memory matrix, which reduces computational time. The resulting state-space system contains 38
states, and as input requires the 6-DOF velocity vector.

3.4.4. Diffraction Subsystem

The Diffraction force due to wave elevation can be implemented quite simply. It was shown in sub-
section 3.3.2 that a time history of wave elevation and diffraction force can be determined from basic
parameters of a sea state, which does not depend on the location and inclination of the floating sys-
tem. This allows for a time history of diffraction forces to be determined beforehand and to be applied
at every time step. This principle applies to the first-order as well as the second-order forces.

3.4.5. Mooring Line Implementation

For the mooring line implementation, two separate subsystems are made, one for the quasi-static
mooring representation and one for the dynamic representation. The linear mooring line representation
does not require a separate subsystem, since the effect of the mooring line representation is modelled
as a stiffness matrix, which is directly added in the floater dynamics solver.

The data for the mooring line system is implemented by MATLAB scripts, which are able to read a
MoorDyn input file and use this information to build the mooring models. A first script is used to read
all line information (anchor and fairlead points, line material properties, etc.) into a MATLAB struct. For
the quasi-static model, this struct is then used in the initialization of the simulation. For the dynamic
model, a first estimate of the location of all mooring nodes is required. To this end, a separate MATLAB
script is made that runs the quasi-static model. The location of the mooring nodes is then output and
used as the initialization of the dynamic model, together with information on the material properties of
the mooring line. This is only required before the first time step, to find initial values for the location of
all mooring line nodes.

Quasi Static

The flowchart in Figure 3.6 shows an overview of the quasi-static mooring subsystem as it is imple-
mented in the Simulink model. The quasi-static model only takes the current floater position as input.
Information about line properties and anchor positions is read in from the MoorDyn input file during
initialization of the simulation. For each of the 3 mooring lines, the mooring model is run in parallel.

The first step is to determine the position of the fairlead in the global reference system, based on the
position and inclination of the floater. The vector of each fairlead from the zero-position has to be
rotated to account for the inclination of the floater in all rotational degrees of freedom. This is done by
using the rotation matrices as depicted in Equation 3.26.

Where R,, R, and R, are the rotation matrices around x, y, and z , respectively. ¢, 6, and i are the
current rotational positions of the floater: roll, pitch, and yaw, respectively. The actual location of the
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ith fairlead (r;,;) in cartesian coordinates, is found by taking the position of the floater, and rotating the
moment arm of the ith fairlead to the center of the floater rf,;rcqq,i, @S done in Equation 3.31.

= [X, Y, Z]Floater + RzRnyrfairlead,i (331 )

This gives the location of the fairlead in the global reference system, which is used in the quasi-static
solver to solve the catenary equation and calculate tension forces, as described in subsection 3.3.3.
This tension and moment vector is calculated separately for individual mooring lines and added together
before being output to the floater dynamics solver.

Dynamic

In the dynamic mooring subsystem, not only the floater position, but also the velocity is necessary.
The position of the fairleads in the global reference system is determined in the same way as shown
in Equation 3.26 and 3.31. The velocity vector (in Cartesian coordinates) of the fairleads is found by
multiplying the angular velocity of the floater with the vectors of the fairlead moment arms, as shown in
Equation 3.32.

1.'n,i = [%, 9, Z]Fioater + Qrfairlead,i (3.32)

Where Q is the angular velocity tensor, defined in Equation 3.33.

0 -y 6
a=[4y 0 —¢ (3.33)
-6 ¢ 0

Where ¢, 8, and v are the angular velocities in roll, pitch, and ya,w respectively. The velocity and
location of the fairleads give the boundary condition at the end of the mooring line. That is, in the total

state vector [:N] the fairleads are found at the nth index, whereas the anchors are found at the first.
N
In every time step after the first, the location and velocity of individual nodes along the line are updated

from the derivative of the state vector, which is calculated in the solver. The anchor and fairlead points
are not updated this way, as the anchor is fixed and the fairlead is constrained by the floater motion.
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Assessment

This chapter will present the verification steps that were taken to assess the methodology presented in
the previous chapter. For the simulations, data is required for the wind turbine and the floater. The Def-
inition of the TripleSpar floater by (Lemmer et al., 2020) contains an OpenFast repository that contains
all the files required to run OpenFast simulations with the data of the TripleSpar floater and DTU10MW
wind turbine. This same data is used for the Simulink simulations to provide a good comparison.

The wave generation for first and second-order wave forces is discussed in section 4.1, and verified
with the wave generation in OpenFast. Verification of the linear, quasi-static, and dynamic mooring
models, in terms of natural frequency, damping ratio, and magnitude of mooring forces, is presented in
section 4.2. Additionally, the experimental setup is verified. To this end, the open-loop and closed-loop
models are tested in decay tests to verify that the sensing/simulation/actuation loop is working correctly
in section 4.3. Furthermore, the scaled wind turbine model is verified by reproducing the wind turbine
thrust, torque, and power curves.

4.1. Wave Forces

The wave forces are generated according to the method as presented in subsection 3.3.2, with a
Significant wave height Hs of 1.67 meters and a Peak period T,, of 8 seconds. Additionally, the wave
heading is chosen to be 0 degrees, i.e., the wave is propagating in the surge (x) direction. For second-
order wave forces, the Newman approximation is used. The wave cases examined in this study are
taken from a conference paper, presenting the numerical simulation of the DTU10MW reference wind
turbine, mounted on the LIFES50+ OO-star Wind Floater Semi 10 MW, in Fast v8 (Pegalajar-Jurado
et al., 2018). A selection of wave cases was taken from this study that represent wave cases found in
the regular operation of the FOWT. These cases are part of a set of load cases representative of Design
Load Case 1.2. The cases that will be examined in this study are presented in Table 4.1. However, in
the verification of the wave forces, only the first wave case will be considered. In chapter 5, the other
wave cases will also be considered.

Table 4.1: Wave cases considered in verification of wave forces on floater dynamics.

Case WC1 WC2 WC3 | WC4
. 2.2 3.04 4.29
8 8 9.5 10

The results are compared to the results produced by OpenFast, which uses the same parameters.
Figure 4.1 and 4.2 shows the first- and second- order wave excitation force respectively in the time
domain. The OpenFast and MATLAB time domain results will never be quite the same, due to the
nature of random wave states. However, it can be seen that the order of magnitude of the wave forces
is quite similar. Nevertheless, a more accurate comparison can be made in the frequency domain.

34
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Figure 4.1: First order wave excitation force - Comparison between the MATLAB script and the OpenFast generated wave.
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Figure 4.2: Second order wave excitation force - Comparison between the MATLAB script and the OpenFast generated wave.
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Figure 4.4: Second order wave excitation force in frequency domain - Comparison between the MATLAB script and the OpenFast

generated wave.

The frequency domain spectra of the generated waves are shown in Figure 4.3 and 4.4 for first- and



4.1. Wave Forces 37

second-order, respectively. For the first-order forces, it can be seen that the frequency spectra closely
match. Additionally, it should be noted that the order of magnitude of the forces is quite considerable
in surge and pitch degrees of freedom, slightly less in heave, and almost negligible in sway, roll, and
yaw; which is expected for a wave with a heading of O degrees, acting on a symmetrical floater.

For the second-order forces this trend is similar. Although at the higher end of the frequency spectra
from 0.15 to 0.25 Hz, the OpenFast second-order forces are reduced to 0. This is caused by a filter
option that OpenFast uses at the higher end of the spectrum, such that only the lower end of the
frequency spectrum is taken into account; no such filter was implemented in the MATLAB script.

If such a filter is applied, the spectral results match more closely. The applied low-pass filter is an
infinite impulse response filter, with a steepness value of 0.8. The time domain result can be found
in Figure 4.5, and the frequency domain result can be found in Figure 4.6. It can be seen that the
magnitude of the second-order forces more closely matches the OpenFast results, though there is still
some discrepancy in terms of heave force (F,) and roll moment (M,.) in the 0.2 - 0.25 Hz range.
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Figure 4.5: Time domain comparison of second-order forces between OpenFast and the filtered MATLAB-generated wave force.
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Figure 4.6: Frequency domain comparison of second-order forces between OpenFast and the filtered MATLAB-generated wave
force.

This discrepancy is more easily distinguished in a Power Spectral Density graph, as shown in Fig-
ure 4.7. The heave force spectral density clearly shows a broad peak at roughly 0.2 Hz that is not
present in the OpenFast result. It is reduced by the filter, but not enough to match the OpenFast result
as closely as the other degrees of freedom.
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Figure 4.7: PSD of second-order wave excitation force in all degrees of freedom. Note the logarithmic y-axis.
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4.2. Mooring Lines

The verification in this section is done by comparing the Simulink simulations to OpenFast simulations.
For the Simulink side, the standalone model is used. Verification of the mooring line representations
is done by comparing free decay tests of the standalone Simulink model to simulations done using
OpenFast. Free decay test allows for the analysis of the stiffness and damping in single degrees of
freedom by displacing the system initially. The result is an oscillating motion of the system, with which
the damping and natural frequency can be determined.

4.2.1. Natural frequency & Damping
An important distinction to be made here is the difference between the damped frequency and the
natural frequency of an oscillation. The relation between the two is shown in Equation 4.1.

fa
fn= (4.1)
n (—1 _ ZZ
Where f,, is the natural frequency, f; is the damped frequency, and ¢ is the damping ratio. Two common
methods of determining these parameters are the logarithmic decrement method and the Hilbert trans-
form method. The logarithmic decrement method determines the damping and damped frequency

by using the height of the peaks and time difference between peaks, as shown in Equation 4.2 and
Equation 4.3.

fa=7 (4.2)

Where T, is the damped period, i.e., the time difference between the peaks.
5

( — 2n _ (43)
1+ 2y

Where 6§ is the logarithmic decrement, which can be calculated according to Equation 4.4

Value(Peakl)
6=1o <—) (4.4)

Value(Peak?2)

This method is the most common method of determining the damping and natural frequency of an
oscillation, but it has some flaws. In this case, the chosen peaks often matter for determining the
damping ratio, where for instance taking the first two peaks or the second and third peaks will result in
different values. This makes it difficult to determine what the actual damping ratio of the oscillation is.

The second method, using the Hilbert transform, does not suffer from this problem as much. In essence,
the Hilbert transform is a method of applying a 90-degree phase shift to the original signal. Then,
combining this signal with the original signal, an envelope can be made along the original signal. Then,
using curve fitting techniques, the original curve can be estimated by an exponential function, which is
characterized by the natural frequency and damping ratio of the original signal. This is the method that
is used in this study to determine the damping and natural frequency of decays in this study, and the
exact method is as follows.

The Hilbert transform of a signal can be calculated according to Equation 4.5.

x(t) = lfoo O

e e Td‘r (4.5)

The resulting signal %(t) is a complex-valued signal that has a phase lag of 90 degrees compared to
the real signal x(t). The envelope of the real and complex signal can be determined by taking the
vector sum of the two signals, as shown in Equation 4.6.
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1X1(2) = Vx(£)? + %(2)? (4.6)

The envelope of the decaying oscillating signal can be characterized as an exponential function, as
shown in Equation 4.7

|X|(t) = Ay exp~$@n 4.7)

The value of the exponent {w,, can be determined by using curve fitting techniques. In this study, a least
squares fit of an exponential function is made to find the value of {w,,. Figure 4.8 shows an example of
a surge decay, with the Hilbert transform and the fitted curve. For the determination of the fitted curve,
it should be noted that not the entire signal is taken into account. The first and latter parts of the signal
are not useful due to the beginning and ending of the Hilbert transform not providing physical results.
In black, the envelope that is considered is indicated, and the fit shows great conformity.

5 Original signal, Hilbert transform and curve fitting to find {w

Original signal
4 Hilbert transform
Envelope of amplitude
fitted curve
5
5 ”{}F’T;‘R‘j‘ﬂv_—/—n‘ e -
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Figure 4.8: Example of a surge decay signal with the Hilbert transform, the amplitude envelope, and the fitted curve.

To find the individual values of ¢ and w,,, we also require the value of the damped angular frequency w,.
This can also be found using the Hilbert transform, this time using the total phase. For any sinusoidal
function, the phase of the signal can be found using the formulations in Equation 4.8.

$(6) = wat + o $(t) = tan™" (%) (4.8)

From these relations, the damped angular frequency can be found by determining the derivative of the
phase signal, as done in Equation 4.9.

)

Ya = —gp

(4.9)

From the total phase, a least squares linear fit is used to determine the slope of the curve, giving the
derivative of the phase, thus the damped angular frequency of the signal. Using the same example
signal as before, Figure 4.9 shows the phase diagram. The original phase is given on a domain of
[-m =], which doesn’t lend itself to curve fitting. Adding the contributions together gives a better
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starting point, indicated as ’phase total’ in the figure. Similarly to the previous step, one should be
careful with what part of the signal is considered for the curve fitting, as more chaotic signals can show
significant jumps in phase, which could introduce an error in the estimation of frequency.

Phase diagram of signal
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Figure 4.9: Phase diagram of the example signal, showing the process of determining the damped natural frequency from the
Hilbert transform.

Then the natural frequency of the system can be found by rewriting Equation 4.1, as done in Equa-

tion 4.10.
Wy, = /wé + ((wy)? = 2nf, (4.10)

Finally, the damping ratio can be determined from Equation 4.11

7= §n 4.11)

Wn

4.2.2. Standalone Decay Tests

The Simulink simulations will be verified by a comparison to OpenFast simulations. To this end, Decay
tests are done in all six degrees of freedom in OpenFast and Simulink. For the OpenFast settings, the
features of ElastoDyn, ServoDyn, HydroDyn, and MoorDyn modules are enabled. That is, InflowWind
and AeroDyn modules are not considered in the analysis, to be able to make a good comparison to
the standalone Simulink model, which also does not consider the aerodynamics. Additionally, wave
modeling was not incorporated in either the standalone Simulink or the OpenFast simulation. The
simulations were run for 3600 seconds to give time for all degrees of freedom to decay.

The initial conditions (IC) considered are shown in Table 4.2, as well as the natural frequencies and
damping ratio determined by the Hilbert transform method. The results from the OpenFast simulations

Table 4.2: Damped & natural frequency and damping ratio of the DTU10MW wind turbine & TripleSpar floater in the OpenFast
Decay tests.

Surge Sway Heave Roll Pitch Yaw
IC|4(m) 4(m) 1(m) 2(Deg) 2 (Deg) 2 (Deg)



4.2. Mooring Lines 42

were used as a baseline; if the resulting natural frequency and damping did not match, stiffness and
damping values were added to match the results. That is, if the natural frequency result of the Simulink
simulation was too high, negative stiffness was added to decrease the frequency. Similarly, linear
and quadratic damping were used to match the damping ratio of the results. This procedure was
done for all three mooring line representations: Linear (Lin), Quasi-static (QS), and Dynamic mooring
representations (Dyn). The additional stiffness and damping matrices can be found in Appendix A.

As for Simulink, the standalone model was used at model scale. The results were then upscaled again
to full scale to be able to compare to the OpenFast results. The time step required for a stable simulation
differs between the models. At model scale, the total simulation time is approximately 73 seconds. At
this scale, the linear and quasi-static mooring representations were run using a time step of 0.0025.
The dynamic representation, however, requires a much smaller time step for numerical stability. The
maximum required time step ended up being 5e-5 (1/20000) at model scale.

The discretization of the mooring lines was the same for both quasi-static and dynamic representa-
tions, at 20 segments and 21 nodes. This number of nodes was also found to be the optimal amount
according to a study by Bayati et al., 2018. This translates to an unstretched segment length of 30 me-
ters at full scale, or approximately 0.2 meters at model scale. This segment length provided the best
balance between numerical stability and computational time, as decreasing segment length makes the
computational time (for the dynamic model specifically) increase dramatically.

A comparison of the natural frequency and damping ratio between the OpenFast simulations and the
Simulink simulations can be found in Table 4.3. The comparative differences between OpenFast and
Simulink are shown in Table 4.4

Table 4.3: Natural frequency and damping of the DTU10MW wind turbine & TripleSpar floater in the OpenFast Decay tests.

Ope a
ooring MoorDyn Lin QS Dyn
DO fa ¢ fa ¢ fa ¢ fa ¢

o[B8 0.0058 0.0484 | 0.0058 0.0534 | 0.0058 0.0533 | 0.0058 0.0516

3 0.0058 0.0488 | 0.0058 0.0532 | 0.0058 0.0532 | 0.0058 0.0507
=\=88 0.0594 0.0732 | 0.0597 0.0727 | 0.0593 0.0720 | 0.0598 0.0751
RO 0.0389 0.0558 | 0.0394 0.0546 | 0.0394 0.0562 | 0.0393 0.0580
P 0.0390 0.0558 | 0.0392 0.0533 | 0.0396 0.0587 | 0.0386 0.0603
3 0.0133 0.0240 | 0.0133 0.0240 | 0.0133 0.0233 | 0.0131 0.0253

Table 4.4: Difference in natural frequency and damping compared to the baseline OpenFast simulations. Natural frequency and
damping are calculated using the Hilbert Transform method.

OpenFast Simulink
Mooring (BRI i Dyn
fa ¢

-0.0% +6.5%
-01% +4.1%
+0.8% +2.6%
+1.0% +3.8%
-1.0% +8.1%
-1.0% +5.3%

A time history comparison of the decay tests using the linear, quasi-static, and dynamic models can be
seen in Figure 4.10, 4.11, and 4.12, respectively. Also included in the figures are the fitted curves of
the damping and natural frequency from the Hilbert transform. It should be noted that the time axis for
the heave, roll, and pitch decays is shortened to 1200 seconds to provide a better visual comparison.
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Figure 4.10: Comparison of decay tests between OpenFast and Simulink using the linear mooring representation.
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4.2. Mooring Lines 44

Decay comparison between OpenFast and Simulink - Dynamic Mooring Model
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Figure 4.12: Comparison of decay tests between OpenFast and Simulink using the dynamic mooring representation.

For the linear case, good agreement is found especially in terms of natural frequency, with at most 1.3%
difference in roll. In terms of damping, the agreement is still quite good, but especially in surge and
sway, the damping is a bit higher for the Simulink results. In the roll and pitch degrees of freedom, it is
noticeable that the OpenFast result shows an oscillation at the sway and surge frequency, respectively,
that is more pronounced than the Simulink results. This is likely caused by a stronger coupling between
the roll-sway and pitch-surge degrees of freedom compared to the Simulink model.

The quasi-static model and the dynamic model show similar results to the linear one in terms of surge
and sway. However, for the roll and pitch decays, the models show more agreement in terms of coupling
in roll-sway and pitch-surge, respectively.

4.2.3. Mooring Force Comparison

To get a better look at the workings of the mooring models specifically, a comparison is made in terms of
mooring line tension. To this end, the previously shown decay tests are used, this time presenting the
mooring tensions at the fairleads for individual mooring lines. The tension values are output from the
OpenFast simulation directly. For the Simulink results, the individual vector components of the force in
x, y, and z at the fairlead are added together, such that the magnitude of the vector gives the tension.

Firstly, the quasi-static model is examined. The results from the surge decay and pitch decay are shown
in Figure 4.13a and 4.13b respectively. For the sake of brevity, this section only considers these decays
as they are the most interesting; the results for the other decays are presented in Appendix B. The
tension in the second and third line completely overlaps in these graphs, both for the OpenFast and
the Simulink simulation, due to the symmetry plane of these mooring lines going through the x-axis.
The most obvious take-away from these graphs is that the quasi-static slightly overestimates the total
tension at the fairlead by approximately 10%. The overall shape of the graphs also shows a very good
comparison, especially in the surge.

In Figure 4.13b, it can be seen that the oscillation frequency of the largest oscillation amplitude is in line
with the frequency of the surge motion. The smaller amplitude, higher frequency component that can
be seen in the first 200 seconds of the graph indicates the amplitude of the oscillation in fairlead tension
due to a change in pitch angle. The amplitude of this oscillation is very comparable between OpenFast



4.2. Mooring Lines

45

Mooring tension at fairlead - Surge decay

Mooring tension at fairlead - Pitch decay

- <108 Using the Quasi Static Mooring Model 28 X 10° Using the Quasi Static Mooring Model
Simulink - Mooring line 1 Simulink - Mooring line 1
[ Simulink - Mooring line 2 Simulink - Mooring line 2
Simulink - Mooring line 3 Simulink - Mooring line 3
OpenFast - Mooring line 1 2.7 OpenFast - Mooring line 1
OpenFast - Mooring line 2 OpenFast - Mooring line 2
OpenFast - Mooring line 3 OpenFast - Mooring line 3
26 ‘\ "
L NN O e~ - "'l“,’ d NN — = - _ _
— / A — 1 (T - = = ~
z b z M
c c ‘L
8 225
w w
c NN P T K [ PN NN p
[ 9 A X XA - [ ,If 3 ( /,‘ 9 B e
| il
24 Il‘ |1V 24|
v
[\
2.3 2.3
22 . L . . 22 L . L ,
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (s) Time (s)

(a) Surge Decay (b) Pitch Decay

Figure 4.13: Mooring tension at the fairleads in surge and pitch decay, using the quasi-static mooring model. Note that the
responses of the second and third mooring lines completely overlap, because they are symmetrical in the x-axis.

and Simulink. The higher amplitude, lower frequency response caused by the pitch-surge coupling is
more prominent in the OpenFast result than the Simulink, just like it was noted in subsection 4.2.2.

The mooring tension response in surge and pitch decay from the dynamic mooring model is shown in
Figure 4.14a and 4.14b. Again, only surge and pitch are shown here; the other tension figures can
be found in Appendix B. The offset in steady-state fairlead tension identified in the quasi-static model
is no longer present in the dynamic representation. The dynamic model shows very good agreement
both in surge as well as pitch. As noted before, the difference in oscillation amplitude in pitch is caused
by the difference in pitch-surge coupling. Furthermore, in the pitch decay, it becomes evident that the
Simulink response is more chaotic as the floater reaches steady state.

It should be noted, however, that the dynamic representation in Simulink generates a spike in mooring
tension in the first time step that is not found in the OpenFast simulation. This spike in tension is
immediately dissipated and does not influence the dynamics of the system significantly, so this was
deemed acceptable.
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Figure 4.14: Mooring tension at the fairleads in surge and pitch decay, using the dynamic mooring model.

4.3. Physical Model Verification

The previous sections have focused on the verification of aspects of the numerical simulation. This
section will focus on the physical part of the experimental setup, i.e. verification of the performance of
the wind turbine model, and verification of the Simulation in open-loop and closed-loop.

Unfortunately, it was not possible to test the dynamic mooring model representation due to restrictions
in real-time simulation. As mentioned in subsection 3.3.3, the dynamic model forms the limiting factor
in terms of time step for the solving of the dynamics of the system. The required time step to run
the dynamic model reduces to 5e-5 s at model scale, which the real-time simulation machine was not
able to keep up with. (Bayati et al., 2018) used the same numerical representation as OpenFast and
this study in their dynamic mooring line representation. However, in their modeling approach, they
consider the different contributions (Weight, tension, damping, et cetera) differently at certain nodes
along the line. Their resulting model can resolve the dynamics at a time step of 8e-4 s at model scale,
compared to the 5e-5 s at the model scale in this study. This implementation could have worked in this
study as well; however, it was not possible to do thorough testing due to time limitations. For the wind
tunnel tests, only the quasi-static and linear mooring model was used. For the analysis in the following
sections, it will be noted in the text whether the quasi-static or linear model was used, or both. The
text itself will only discuss either the linear or quasi-static model, but the data using the other mooring
model will be presented in the appendix.

In the experimental campaign, files containing the simulation setup, Simulink model, and properties
of the system had to be transferred to a computer to be able to build the Simulink model to be run
on the real-time machine. In this process, a mistake was made in selecting the properties file of the
floater. Previously, this properties file contained all stiffness and damping values related to the floater,
which included the linear mooring system. Because the quasi-static and dynamic mooring systems
already account for this stiffness, it was removed from the new properties file. However, when the new
files were transferred to the computer, the wrong properties file was included. The old properties file
was used, thus accounting for the mooring system twice. This increased the stiffness of the system,
especially in sway and surge, which makes comparison to the previous analysis in terms of natural
frequency inconsistent. This mistake was only discovered at the end of the experimental campaign,
unfortunately, and the restricted time availability in the wind tunnel made it impossible to redo these
experiments.

That is not to say that no analysis can be made of the results; comparisons between open- and closed-
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loop can still be made, since the stiffness difference is applied in both open- and closed-loop. Addition-
ally, the goal of the open- and closed-loop comparison is to verify the HIL setup itself, not the analysis of
the system dynamics. Additionally, comparisons between wind & no-wind cases can be made, as well
as effects of wind speed on damping & natural frequency, as will be done in the next chapter. In these
analyses, the effect of aerodynamics is central, and the effect of slightly higher stiffness is not detri-
mental to the analysis of wind action and rotor operation. It has to be taken into account that the system
used in the experimental campaign has a higher stiffness than the Standalone model tests, which do
have the correct values, which unfortunately means that no connection to the full-scale benchmark can
be made.

4.3.1. Open-Loop vs Closed-Loop

Comparison of open-loop and (no wind) closed-loop tests is used to verify that the HIL system is work-
ing accordingly. That is, all systems that could only be tested using the physical system, i.e., force
feedback, force correction, actuation, and latency of the system. The comparison between open-loop
and closed-loop allows for verifying the compensation of inertial forces in the force correction proce-
dure. To reiterate, the difference between Open- and closed-loop is in the feedback of forces measured
by the load cell. Since the numerical simulation running on the real-time machine already incorporates
the effect of mass and inertia of the wind turbine, it is required to subtract this contribution from the
measured forces and moments at the load cell.

Decay tests are done at two initial conditions, as can be seen in Table 4.5. The initial conditions
are applied as external forces or moments to the floater, depending on the degree of freedom. The
initial conditions are applied, after which artificial damping is added to eliminate any transients. When
a steady state is reached at the desired initial condition, the artificial damping is removed, and the
recording of the decay is started. After a few seconds, the external force is eliminated, and the system
will decay in the desired degree of freedom. The table also shows the approximate offset in millimeters
or degrees at model scale (offset,,;;), as well as the offset at full scale (offset) in meters or degrees
to provide a point of reference. The results discussed further in this section are all at model scale.

Table 4.5: Initial conditions of Decay cases used in HIL simulation.

Heave Roll Pitch Yaw

Force/Moment (N/N.m)

Offset,,,s (mm/deg) 27 27 6.5 2 2 2
Offset;s (m/deg) 3.99 3.99 0.96 2 2 2
Force/Moment (N/N.m) 8 8 60 15 15 1.5
Offset,,s (mm/deg) 65 65 16.5 5 5 5
Offsetss (m/deg) 9.62 962 24 5 5 5

The resulting decay graphs for the large displacement, and using the quasi-static mooring model, in
time and frequency domain are shown in Figure 4.15 and Figure 4.16, respectively. For the sake of
brevity, only the large displacement is shown here; the small displacement graphs and the graphs for
the linear mooring model can be found in Appendix C. The time domain response in Figure 4.15 shows
good agreement in all degrees of freedom, though there seems to be a very slight difference in natural
frequency in the yaw case. The frequency spectra in Figure 4.16 show very good agreement in terms
of location of the peaks on the frequency band, even for the yaw case. In terms of peak height, there
is a slight difference, but this is not significant.

The decay statistics for open- and closed-loop are shown in Table 4.6, for both initial conditions, using
the quasi-static mooring model. The decay statistics for the linear mooring model can also be found
in Appendix C. The results were gathered using the Hilbert transform method shown before in sub-
section 4.2.1. For comparison, the difference between open- and closed-loop is shown in Table 4.7.
In this table, the open-loop result is taken as baseline, and the percentage difference in the closed-
loop to open-loop result is shown. The largest differences can be found in the roll and yaw decay,
where the closed-loop results show a deviation in the damping ratio compared to open-loop. In terms
of natural frequency, the decays show very good agreement, with all frequencies being within 2% of
the open-loop result.
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The difference in the yaw decay can be explained by the force correction of rotational degrees of
freedom. As mentioned before in subsection 3.4.2, the correction methodology in rotational degrees of
freedom does not correct for the inertial forces, because no acceleration measurement is available in
rotational degrees of freedom. This is true for roll and pitch as well, but the effect is not as noticeable
there because other contributions overshadow the effect of the inertial forces, but this is not the case
in yaw.

Table 4.6: Decay stats of HIL decay tests, open-loop vs closed-loop, using the quasi-static mooring model.

\ open-loop closed-loop open-loop closed-loop

| ¢ fn ¢ fn ¢ fn ¢ fn
SIUGEE 0.039 0.393 0.039 0.394 0.056 0.394 0.055 0.395
SEVAS 0.039 0.394 0.039 0.395 0.056 0.394 0.054 0.396
WEVEE 0.084 3.002 0.086 2969 0.121 3.102 0.120 3.075
ZCIEEE 0.075 1.958 0.069 1.962 0.093 1.993 0.111 1.970
HIChEE 0.062 2.010 0.065 2.024 0.095 2.034 0.095 2.047
Yaw 0.018 0.903 0.024 0.891 0.025 0.904 0.030 0.892

IC1 IC2

open-loop closed-loop open-loop closed-loop

{ fu ¢ fn ¢ fu ¢ fn

- - +0.7% +0.1% - -1.2% +0.1%
- - +0.9% +04% - -3.3% +0.5%
- - +2.8% -11% - -1.1%  -0.9%
- - -7.3% +0.2% - +19.4% -1.1%
- - +4.8% +0.7% - +0.1% +0.6%
- - +27.8% -1.3% - +17.3% -1.4%

4.3.2. Wind turbine Thrust Curves

The performance of the wind turbine is first tested in static cases, in terms of produced thrust, torque,
and power at various operating points. Static cases, in this case, mean a test case in which the HIL
simulation is not running, and no floater dynamics are simulated, such that only the wind turbine perfor-
mance is tested. The thrust (F;) and torque (T, ) are determined by the load cell, where thrust is equal
to the force in the x-direction. The torque can be measured as the roll components of the measured
force. Power (P) produced can be determined in 2 ways: calculated or measured power. The calcu-
lated power can be determined by using the rotational speed and the torque, i.e. P = T, X w,, where
w, is the rotational speed of the rotor. The measured power can be determined from the encoder of
the motor/generator, though this value will generally be substantially lower due to mechanical losses in
the gearbox and machinery, and electrical losses in the motor.

As mentioned before in subsection 3.2.2, the scaled wind turbine model is a thrust-matched scale
model of the DTU10MW turbine. The goal of recreating the rotor thrust at model scale is then the most
important factor, which is what we find in Figure 4.17. At the rated wind speed of 4 m/s, the scale
model will under-predict the aerodynamic torque and power generation of the full-scale turbine, but
the difference is acceptable for the purposes of this study. Additionally, because no pitch control is
available to control aerodynamic loads on the wind turbine model, the thrust, torque, and power keep
increasing above the rated wind speed, contrary to the reference wind turbine.
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Figure 4.15: Comparison of open-loop vs closed-loop - IC2 - Using Quasi-static mooring model
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Results

This chapter will present the results from the numerical modeling presented in the previous chapters.
Firstly, section 5.1 will present the effect of second-order wave forces on floater motion, as well as
mooring line tension at the fairlead, simulated in the standalone Simulink model. The rest of the chapter
will present the HIL wind tunnel results, where in section 5.2 the effect of aerodynamic forcing on
the system was tested in combination with wave cases, subject to both first- and second-order wave
excitation forces. Finally, a more fundamental study is done on the effect of aerodynamic damping
on surging, pitching, and yawing motion in section 5.3. For a variety of wind speeds, decay tests are
done in these degrees of freedom to quantify the increase in aerodynamic damping for increasing wind
speeds.

5.1. Wave Action on Floater in Standalone

This section will present the interaction between wave forces on the floater, in the standalone model,
to be able to compare the dynamic mooring model to the quasi-static mooring model. With established
confidence in the mooring line representations, the effect of the first- and second-order wave forces
can be investigated. To this end, simulations were run in Simulink and OpenFast, with wave forces
of different values of significant wave height (H,) and peak period (T},), here referred to as weak and
strong. Additionally, a comparison is made between the different mooring line models. The wave cases
considered are the first and fourth wave cases presented in Table 4.1.

The floater displacement for the weak and strong wave forces is shown in Figure 5.1 and 5.2 respec-
tively. Pictured are the displacements in surge and pitch, since these are most affected by the wave
forces in 0-degree heading. This figure shows only the Simulink results for the quasi-static model. A
comparison between the linear, quasi-static, and dynamic mooring line model is shown in Figure 5.5
and 5.6.

The weak wave forces comparison in Figure 5.1 shows that the inclusion of second-order forces greatly
affects the displacement of the floater. Both Simulink and OpenFast simulations show a mean offset
in surge that is consistent with the inclusion of the mean drift forces that Newman’s Approximation is
based on. Pitch shows similar results; the inclusion of second-order forces causes a mean offset in the
negative pitch direction, though compared to surge, this is only a small offset. The strong wave forces
are shown in Figure 5.2. The comparison in surge shows that the oscillation subjected to second-order
forces is closer in magnitude compared to the small wave forces. This might be caused by a difference
in stiffness between OpenFast and Simulink at smaller displacements. The OpenFast and Simulink
models were matched to each other using decays with an initial condition of 4 meters in surge, very
comparable to the magnitude of the oscillation in the strong wave forces, thus providing a better match.

Frequency spectra can provide more insight into the results. These can be found in Figure 5.3 and 5.4.
The frequency spectrum is split into 2 distinct regions, from 0 to 0.025 Hz and from 0.025 to 0.25 Hz, to
better visualize the results. The contribution of the first-order wave forces is mostly found around the
peak period of the generated sea state, i.e., around 0.125 and 0.1 Hz for the weak and strong cases,
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respectively. The effect of second-order forces can be seen at the natural frequency of the surge and
pitch frequency, at approximately 0.006 Hz and 0.04 Hz. In these frequency regions, there is a clear
peak in floater displacement caused by the inclusion of second-order forces.

A comparison between the different mooring models is presented in Figure 5.5 and 5.6, for the weak
and strong wave forces, respectively. The models show very good agreement in surge and pitch. In
terms of magnitude, the dynamic model shows a slightly larger amplitude in surge, while the quasi-static
and linear models show slightly larger amplitudes in pitch, but these differences are negligible.

Finally, the mooring force components of the dynamic mooring model in reaction to first, and first- and
second-order wave forces are shown in Figure 5.7 and 5.8 respectively. For this case, only the reaction
to the strong wave forces is shown for the sake of brevity. The dynamic mooring line model shows very
good agreement with OpenFast in terms of mooring force components, though the data is a bit more
chaotic, likely caused by the sampling rate of the output data of OpenFast. It can be seen that the
mooring line forces are much more variable when the second-order forces are included, caused by the
larger oscillation amplitudes of motion of the floater.
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Figure 5.3: Frequency spectra of floater displacement in reaction to weak first- and second-order wave forces.
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5.2. HIL Combined Wind-Wave Cases

The previous section compared the wave action on the floater for first and second order forces, as well
as comparing the different mooring line models in a standalone simulation. This section will present
the HIL wind tunnel experiment results, where the closed-loop model presented in subsection 4.3.1, is
used with wind to measure aerodynamic effects in combined wind-wave cases.

One of the main use cases of HIL wind tunnel tests is to be able to create a representative environment
for the analysis of combined wind-wave action. Combined wind-wave cases are presented here for
a number of real-world operating conditions to establish the effects of aerodynamic loading on the
dynamics of the system.

The effect of wave forces on floater dynamics is examined for both first-order and first- and second-order
cases. The severity of the wave cases is determined by their significant wave height and peak period.
The wave cases presented here are taken from (Pegalajar-Jurado et al., 2018), and are representative
of design load case 1.2. For each of these wave cases also a wind speed is chosen that corresponds
to the severity of the wave case, since in real-world conditions, wave severity is related to wind speed.
The wave cases 1 through 4 are shown in Table 5.1, where Us and Uy, is the wind speed at full scale
and model scale respectively, and w, s and w, s is the rotor rotational speed at full scale and model
scale respectively.

The waves were generated at a length of 7200 seconds (2 hours) at full scale, which translates to
roughly 145 seconds at model scale. The results are saved approximately 15 seconds after applying
the wave forces, such that transients of startup effects are gone. Furthermore, the simulation is not run
for more than the length of a single wave because the repetition of wave force time histories introduces
non-physical effects. As a final note, the wave generation used for these cases uses the same seed
for the generation of random angles.

Table 5.1: Wave cases considered in verification of wave forces on floater dynamics.

Case
H; (m)
Ty (s)
Urs (mis)

Ups (mM/s)
wr,fs (rpm)
wr,ms (rpm)

The results saved by the simulation are all at model scale, for better reference to the results shown in
chapter 3 and chapter 4, the results are scaled up to full scale. The surge and pitch displacement for
wave cases 1 & 2 can be seen in Figure 5.9 and for wave cases 3 & 4 in Figure 5.10 in the time domain.
The wind causes a mean offset in surge direction, which causes the wind turbine model to drift outside
the workspace of the Hexapod at high wind speeds. To combat this effect, a (non-physical) offset in
surge is applied during the simulation. In the results shown here, the mean offset in surge is removed.

For analysis, it is easier to look at the results in the frequency domain. The power spectral density
is shown in Figure 5.11 for WC 1 & 2 and in Figure 5.12 for WC 3 & 4. The graphs are split into a
low-frequency domain and a wave-frequency domain to provide a better visualization of the results. In
the low frequency range of Figure 5.11, it can be seen that the inclusion of second-order forces greatly
affects the surge and pitch displacement. However, in WC 3 and 4, the second-order forces mainly
influence the surge displacement, as the influence of the second-order forces in the pitch degree of
freedom in the low frequency range is minimal.

The effect of aerodynamic forces in wave cases is also investigated; the wave cases 1 through were
repeated without wind to provide a comparison. To this end, the Cross Power Spectral Density (CPSD)
is used. The absolute value of the CPSD of the aerodynamic surge force & surge, and aerodynamic
pitching moment & pitch can be seen in Figure 5.13 and Figure 5.14, for wave cases 1 and 4, respec-
tively. Only wave cases 1 and 4 are shown here for the sake of brevity; figures for wave cases 2 and
3, as well as results using the linear mooring model, can be found in Appendix D. The CPSD gives an
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indication of the correlation between two signals. l.e., if the signals are correlated, a peak is present
in the frequency domain. The magnitude of a peak indicates to what extent. At the wave frequency,
the influence of the wind is negligible, as the motion of the floater is dominated by the hydrodynamic
loading, which can be seen in the agreement between the wind and no-wind cases.

However, in the low frequency range, the effect of aerodynamic forces can be seen. The results of
WC 1 clearly show that the wind cases have significantly higher values for the cross-spectral density
in the low frequency range, indicating that the aerodynamic force and moment have a strong influence
on the displacement of the floater. The results of WC 4, however, paint a different picture. In the
frequency range of 0 - 0.02 Hz, the wind and no-wind cases closely align, indicating little influence due
to wind. However, at the 0.02 - 0.05 Hz range, the no-wind cases show a higher peak, indicating that
the wind adds a damping effect to the system. The results in WC2 and WC3 show a transition from wind
adding energy in the surge and pitch frequency (as in WC1) and subtracting energy from the system,
by providing extra damping to the system (as in WC4). These results indicate that the effect of wind
in a wave case depends on the considered wave case. In relatively mellow seas, the effect of wind
increases the motion of the system in surge and pitch degrees of freedom. In harsher seas, however,
the wind acts as a damping factor and reduces the total motion of the floating platform. However, it
should be noted that the wind does induce a mean offset from the 0 position, both in surge and pitch.
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2
s, (m?Hz)

2
S, (deg?/Hz)

Surge Low Frequency

T T T T T T T T T
First Order - WC3
First + Second Order - WC3
First Order - WC4 3
First + Second Order - WG4

0.006 001 0015 002 0.025 003 0035 004 0.045
Frequency (Hz)

0.05

Pitch Low Frequency

T T T T T T T
First Order - WC3

First + Second Order - WC3 |
First Order - WG4 \
First + Seoond Order - WC4

001 0.015 002 0025 003 0035 004 0.045
Frequency (Hz)

0.05

XX

S (mZHz)

2
S, (deg?iHz)

Surge Wave Frequency

First Order - WC3
First + Second Order - WC3
First Order - WC4 E
First + Second Order - WG4
\
Wb,
M\ ,V\N\
b
107 v ‘w‘%’h{\/ V“\[rﬂf\‘!ﬁ/
‘,J‘ ‘ﬁlﬁw\mmﬂh
10-4 L
10-5 I I i
0.05 0.1 015 0.2
Frequency (Hz)
Pitch Wave Frequency
102 T T
First Order - WC3
First + Second Order - WC3
10 First Order - WC4 3
First + Second Order - WC4
W I
0 A 4
10 V\M’\A‘ 4 M
107 By 3
‘”/ ‘} W MM
o 4
" Ww ”‘Jw
YA [ /’”\a/\f W,
107 ¢ 1)[
IR ﬁ
Mipltgmih
. | r
10

0.1 015 0.2 0.25

Frequency (Hz)

Figure 5.12: Power spectral density of floater position at low frequency and wave frequency, for wave cases 3 and 4.




5.2.

HIL Combined Wind-Wave Cases

61

SrN m/Hz)

Sto(N.m  deg/Hz)

Full scale Cross Spectral Density of Positions and Aerodynamic Loading, subject to WC1 Using the Quasi-static mooring model

Surge Low Frequency
T T T

10° T
1st order

5 1st + 2nd order
107 ¢ 1st order, no wind 3

N 1st + 2nd order, no wind
10t L 4
|/ i
\ /Y ]/\\ Vot OvaN
AN DA

10% ¢ ‘l | L Ry Ve /NZ
! AT Y
If VAT -

[ | \ -‘v// \/\/\/‘/\ \/\/\\\ 1
10 | Y
100 E J
100 . . . . L . . . L

0 0005 001 0.015 002 0.025 003 0.035 004 0045 005
Frequency (Hz)
Pitch Low Frequency
107 i : T : ; , T
1st order

1st + 2nd order
1st order, no wind
1st + 2nd order, no wind .4

v

0

0.005

002 0025 003 0035 004 0045 005

Frequency (Hz)

001 0.015

Spe (N -m/Hz)

Sto(N.m - deg/Hz)

Figure 5.13: Cross Spectral Density of aerodynamic surge force
inclination, subjected to WC1.

Spa(N - m/H2)

Figure 5.14: Cross Spectral Density of aerodynamic surge force

Sre(Nom - deg/Hz)

Surge Wave Frequency
T

10°
1storder
1st + 2nd order
10% F 1st order, no wind 4
Tl 1st + 2nd order, no wind
ha
lﬁ‘\‘\ﬁ- ﬁ,
s LY n}‘ Y
107 F | |
(H
102 |

“"W\f“”wl

10k

0.05 0.1 0.15 0.2 0.25
Frequency (Hz)
N Pitch Wave Frequency
10 T T T
1storder
7 | 1st + 2nd order
107 F 1st order, no wind E
1st + 2nd order, no wind
10 F\
| Vf H “\
10° F
10°

10° H
102 L . .
0.05 0.1 0.15 0.2 0.25
Frequency (Hz)

& surge position, and Aerodynamic pitching moment & pitch

Full scale Cross Spectral Density of Positions and Aerodynamic Loading, subject to WC4 Using the Quasi-static mooring model

Surge Low Frequency

1st order

1st + 2nd order

1st order, no wind

1st + 2nd order, no wind

10* F {
. . . . L . . . L
0 0005 001 0015 002 0.025 003 0.035 004 0045 005
Frequency (Hz)
Pitch Low Frequency
10? . : : . T : : : T
1st order

=]
®

107 |

1st + 2nd order
1st order, no wind
1st + 2nd order, no wind

002 0025 003 0.035 004 0045 005

Frequency (Hz)

001 0.015

inclination, subjected to WCA4.

Sen(N m/H=

Sre(N.an - deg/Hz)

Surge Wave Frequency

108 T T .
1st order
7 1st + 2nd order
10 1st order, no wind
1st + 2nd order, no wind

0.15
Frequency (Hz)

0.1

0 Pitch Wave Frequency
10 T T T
1st order
1st + 2nd order
1st order, no wind
1st + 2nd order, no wind| 4

0.15
Frequency (Hz)

0.05

& surge position, and Aerodynamic pitching moment & pitch



5.3. Aerodynamic Damping 62

5.3. Aerodynamic Damping

Aerodynamic forces affect the natural frequency and damping ratio of the system. Aerodynamic forces
have comparatively larger effects on floating wind turbines than their bottom-fixed counterparts, though
the magnitude of their effects is found to vary quite substantially (C. Chen & Duffour, 2018). However,
few studies have been able to experimentally quantify the effects of aerodynamic damping on the
dynamics of floating wind turbines, partly due to difficulties in accurate modeling. HIL experiments such
as this study prove invaluable to be able to experimentally test these combined aero- and hydrodynamic
effects. There are some limitations to keep in mind; the current setup has limitations in terms of control
strategies. The lack of pitch-control or torque-control makes the setup less than ideal for comparison
to real-world applications, especially for wind speeds above rated, where pitch or torque control are
normally invaluable for limiting aerodynamic forces. The current setup keeps the rotor at a constant
speed, which has to be manually set, and is increased linearly with wind speed to maintain constant
TSR.

The previous section showed that aerodynamic forces can act as a damping mechanism in certain
wind-wave scenarios. This section will aim to quantify the effect of aerodynamic damping on surging,
pitching, and yawing motion of floating wind turbines. The effect of aerodynamic damping is analyzed
with a multitude of decay tests, with increasing wind speed, to determine the effect of aerodynamic
forces on the damping and natural frequency of motion in surge, pitch, and yaw. This study is more
of a fundamental study, in that high wind without waves is not quite physical, although other floating
aspects are of course still applied (radiation forces, mooring forces). However, this is a good opportunity
to isolate the aerodynamic damping effect on a floating wind turbine and analyze the effects. To this
end, decay tests will be done using wind speeds of 0 - 5 m/s. It was decided not to go higher than 5 m/s,
since at a wind speed of 6 m/s the rotational speed of the rotor would be 720 RPM (i.e. 12 Hz), which
would get dangerously close to the natural frequency of the tower at 12.5 Hz. The natural frequency
and damping of the motion can be determined in the same way as before, using the Hilbert Transform.

The time domain results for the range of decays in surge, pitch, and yaw can be seen on the left side in
Figure 5.15. The color gradient of the results indicates an increase in wind velocity from blue to red. In
surge, the effect of an increase in wind speed is not particularly noticeable in the time domain until the
motion has almost decayed, at which point the high wind cases show more chaotic motion as a result
of the aerodynamic forces. In surge and yaw, however, the effect is more pronounced. Already in the
first peaks, there is a noticeable difference between the no-wind and wind cases, with a clear increase
in damping as the wind speed increases. This effect is more clearly visible in the frequency domain.

The right side of Figure 5.15 shows the frequency spectra. The surge spectrum does show a slight
decrease in the height of the peak at the surge natural frequency. The pitch and yaw spectrum, however,
show quite substantial decreases in the peak at their respective frequency. Additionally, the peak in
pitch frequency moves slightly to the right on the frequency band, indicating an increase in stiffness in
this degree of freedom.

The Hilbert Transform method was used to determine the damping ratio and natural frequencies for
each decay. The results are plotted in bar graphs. Figure 5.16 shows the damping ratio in the figures
at the top, and the natural frequency of each decay in the bottom figures. The damping ratio of surge,
pitch, and yaw is influenced by the wind speed. There are some outliers, however, in general, a trend
can be seen in all degrees of freedom, but in surge at 4.5 m/s and in pitch at 4 and 5 m/s, the damping
ratio does not quite fit this trend. In pitch at rated wind speed, the damping ratio increases by up to
70%, to 0.13, quite a stark increase. In yawing motion, the effect is even stronger. At rated wind speed,
the damping ratio in yawing motion increases by up to 100% to 0.065, and shows an increasing trend
at wind speeds above rated.

The natural frequency shown on the lower half of Figure 5.16 confirms what was mentioned before, the
natural frequency in surge and yaw is quite constant in relation to wind speed, but pitch shows a slight
increase in natural frequency for increasing wind speed, indicating an increase in stiffness in the pitch
natural frequency.
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Conclusion

The aim of this study was to develop a higher fidelity modeling approach for the TU Delft HIL floating
wind turbine system. This was done by implementing higher-order hydrodynamic formulations and the
development of a quasi-static and dynamic mooring model. Additionally, the goal was to analyze these
systems in wind tunnel experiments.

The research objective was split into separate research questions, the answers to which are imperative
to realizing the research goal. This section will conclude the study by answering the research questions
and discussing the assumptions and decisions made during the thesis. Finally, some suggestions for
future research are proposed.

To what extent do the higher order wave forces affect the dynamic behavior of the FOWT system
in a hybrid testing environment?

The second-order difference-frequency wave excitation forces were considered using Newman'’s ap-
proximation. This approximation gives a balance between computational time and accuracy, providing
a low-cost alternative to the full quadratic transfer functions required for the full difference-frequency
second-order forces. The implementation of the calculation of the second-order forces was verified ver-
sus the forces generated by OpenFast, and a good agreement was found. The analysis finds significant
increases in floater displacement, in surge and pitch specifically, in wave cases including second-order
forces. Besides the increase in oscillation magnitude, there is also a mean drift (or zero-frequency)
component causing a mean offset of the zero position. It is therefore recommended to include these
contributions in numerical simulations of this kind to accurately model the sea state. It should be noted
that the effect of the second-order forces depends on the floater type considered. In this case, for
the slack-moored Triple Spar Floater, the second-order difference-frequency wave forces are of impor-
tance. However, for taut-moored floater platforms such as TLPs, it is known from literature that the
sum-frequency wave excitation forces play a large role.

Does the inclusion of a quasi-static or dynamic mooring line system significantly affect the
floater dynamics? Does the increase in fidelity justify the increase in computational cost?

The quasi-static mooring model was implemented using a catenary model, as it is implemented in the
Mooring Analysis Programme (MAP++). The dynamic mooring model was implemented as a lumped-
mass model, using a similar implementation to the one used in the MoorDyn subroutine of OpenFast.
Both models were verified against OpenFast results in decay and wave tests. The models both use
MoorDyn input files as input to generate the mooring representation in Simulink. The Hilbert Transform
method was used to match the natural frequencies and damping of the Simulink results to the OpenFast
results. The mooring tension components at the fairlead show that the Simulink implementation of the
dynamic mooring line model shows great agreement with the dynamic model used in the MoorDyn
subroutine of OpenFast. The quasi-static model fairlead tensions are approximately 10% higher in
magnitude than the OpenFast results, but give acceptable results.

The quasi-static mooring model, however, produces these results at a much larger time step than the
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dynamic mooring model. The quasi-static model was able to produce these results at a time step of
0.025 seconds at model-scale, while the dynamic model required a minimum time step of 5e-5 seconds
to reach a stable simulation. This also made it impossible to use the dynamic model in the HIL wind
tunnel tests, as the real-time simulation machine was not able to simulate in real-time at this small of a
time step. It can be concluded that the dynamic mooring representation is not a viable approach in this
particular HIL setup, at least not in its current form. There are possibilities, though, to make it possible
to run a dynamic model, but revisions are necessary, either in the numerical modeling approach or in
the physical setup.

Nevertheless, the quasi-static model performed well in the HIL tests. The current setup allows for
determining fairlead and anchor reaction forces, giving more information about the mooring system
than in the previous setup. Furthermore, this setup allows for rapid testing of different types of mooring
configurations, requiring only an input file in the format of a MoorDyn input file, though some revisions
might be required for the testing of more complicated mooring line setups such as interconnected lines
or net configurations, which might require to be solved using a dynamic approach.

What is the effect of aerodynamic forces on the damping & natural frequency of a FOWT, in a
hybrid testing environment?

The Hardware-in-the-Loop system was tested in the OJF wind tunnel to analyze the effects of aerody-
namic damping on the floating wind turbine in surging, pitching, and yawing motion. Decay tests were
executed in these degrees of freedom for a range of wind speeds. The results show a slight increase
in the damping ratio in surge, with an increase in the damping ratio of 50% at rated wind speed in
pitching motion, and almost doubling the damping ratio at rated wind speed in yawing motion. The
aerodynamic damping did not significantly increase the natural frequency of the surging and yawing
motion; the pitching decay did see a slight increase in natural frequency, suggesting that the aerody-
namic damping could increase the natural frequency of the pitching motion by up to 10% at rated wind
speed.

In wave cases, it was found that the aerodynamic force has an aggravating effect in relatively mellow
sea states, increasing oscillation magnitude in surge and pitch. However, as the harshness of sea
states increases, the effect of aerodynamic forces starts to work as a damping mechanism, reducing
the observed oscillation magnitude. In this research, it was only tested how this affects sea states with
wind speeds up to the rated wind speed; however, for pitch-controlled wind turbines, the aerodynamic
thrust force decreases after the rated wind speed, which means that this trend might be reversed
above rated, but as of now the current set-up is not able to analyze this accurately, as no pitch control
is currently present.

Suggestions for future work

Due to limitations in time and available resources, not every aspect has been modeled as accurately as
it could have been. Additionally, some wind tunnel test cases have been omitted due to time constraints
in the wind tunnel. Some suggestions are presented here that could be taken into account in future
studies.

» The dynamic mooring model was not able to run at the required time step for real-time simulation;
future works could look into improving the computational efficiency of the dynamic model, for
instance by employing a similar strategy as done by (Bayati et al., 2018), where they don’t take
into account all force contributions for certain line sections, which reduces computational load.

» Add compatibility for more complex mooring line setups, like net formations or interconnected
lines. However, this might require a dynamic mooring line representation. For real-time simula-
tion, this problem would have to be solved first.

» The second-order difference-frequency wave excitation forces were included in terms of New-
man’s approximation; future studies could look into the difference between using this approxima-
tion and using the full difference-frequency quadratic transfer function.

Study the effects of wind-wave misalignment and multidirectional waves. Multidirectional waves
require data from the floater in all directions. For the TripleSpar floater, at the time of this study,
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only wave forces from 180 and 0 degrees heading were available, which was not dense enough
to provide a good interpolation of data for the other directions.

The force correction methodology currently measures the forces only in the 3 translational de-
grees of freedom and calculates the torques in the rotational degrees of freedom based on these.
Measuring the torques directly could improve the methodology by reducing inaccuracies, thus
creating a more robust force correction.

Previous research has looked into adapting the current modeling approach to a 15 MW wind
turbine reference turbine. It was not possible at the time due to a multitude of circumstances, but
if more resources could be dedicated to these problems, this might be solved.

The current wind turbine model has no control system, and the motor is set to a fixed speed.
Various levels of control could be added to improve the functionality of the wind turbine and better
represent real turbines. This could be done in terms of pitch control (collective or individual). This
would allow for the accurate testing of operational wind speeds between rated and cut-out speeds,
where some control measure is typically required for reducing aerodynamic forcing on the rotor.
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Additional Stiffness & Damping Matrices

The matrices presented here contain coefficients in the 6 DOFs of the system. The matrices contain
only diagonal entries. These entries are, in order of first row to last: surge, sway, heave, roll, pitch
and yaw. The units of these coefficients are for stiffness (K) N/m in translational DOF, and N/rad in
rotational DOF respectively. For DV and D(®), the units in translational and rotational DOF are: N.s/m,
N.s/rad and N.s?/m?, N.s?/rad?, respectively.
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Quasi-static Mooring
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Mooring Tension Figures
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Figure B.2: Mooring tension at the fairleads in all DOFs, using the dynamic mooring model.



OL vs CL figures

Table C.1: Decay stats of HIL decay tests, open-loop vs closed-loop, using the linear mooring model.

closed-loop open-loop closed-loop
g A ¢ ¢ Fy

0.395 0.039 0.393 0.054 0.396 0.055 0.394
0.407 0.038 0.393 0.053 0.395 0.055 0.394
2989 0.086 2992 0.121 3.083 0.118 3.094
1.938 0.069 1.989 0.103 1.963 0.100 2.003
2.029 0.065 2.010 0.089 2.062 0.093 2.034
0.907 0.024 0.887 0.025 0.909 0.029 0.887

IC1 IC2

closed-loop open-loop closed-loop

g E, { F g E,
-04% -0.5% - - +1.0% -0.6%
+21% -3.5% - - +3.1% -0.4%
+1.0% +0.1% - - -1.8% +0.3%
+1.4% +2.6% - - -34% +2.0%
+8.2% -1.0% - - +5.1% -1.3%

+34.3% -2.2% - - +16.7% -2.4%
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Decay in all degrees of freedom for small initial condition
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Figure C.1: Comparison of open-loop vs closed-loop - IC1 - QS mooring model
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CPSD Figures

Full scale Cross Spectral Density of Positions and Aerodynamic Loading, subject to WC1 Using the Quasi-static mooring model
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Figure D.1: Cross Spectral Density of aerodynamic surge force & surge position, and Aerodynamic pitching moment & pitch

inclination, subjected to WC1.
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Full scale Cross Spectral Density of Positions and Aerodynamic Loading, subject to WC2 Using the Quasi-static mooring model
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Figure D.2: Cross Spectral Density of aerodynamic surge force & surge position, and Aerodynamic pitching moment & pitch
inclination, subjected to WC2.

Full scale Cross Spectral Density of Positions and Aerodynamic Loading, subject to WC3 Using the Quasi-static mooring model
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Figure D.3: Cross Spectral Density of aerodynamic surge force & surge position, and Aerodynamic pitching moment & pitch
inclination, subjected to WC3.
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Full scale Cross Spectral Density of Positions and Aerodynamic Loading, subject to WC4 Using the Quasi-static mooring model
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Figure D.4: Cross Spectral Density of aerodynamic surge force & surge position, and Aerodynamic pitching moment & pitch
inclination, subjected to WC4.
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