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resulting Bayesian classes were well correlated to median 
grain sizes and the percentage of coarse material. The MLC 
method uses angular response information from five layers 
of training areas extracted from the Bayesian classification 
map. The subsequent PCA analysis is based on the transfor-
mation of these five layers into two principal components 
that comprise most of the data variability. These principal 
components were clustered in five classes after running 
an external cluster validation test. In general both meth-
ods MLC and PCA, separated the various sediment types 
effectively, showing good agreement (kappa >0.7) with the 
Bayesian approach which also correlates well with ground 
truth data (r2 > 0.7). In addition, sub-bottom data were used 
in conjunction with the Bayesian classification results to 
characterize acoustic classes with respect to their geologi-
cal and stratigraphic interpretation. The joined interpreta-
tion of seafloor and sub-seafloor data sets proved to be an 
efficient approach for a better understanding of seafloor 
backscatter patchiness and to discriminate acoustically sim-
ilar classes in different geological/bathymetric settings.

Keywords  Acoustic backscatter · Angular response 
analysis · Bayesian statistics · Sediment classification · 
Sub-bottom

Introduction

Acoustic mapping of seafloor sediments

The applicability and effectiveness of multibeam echo-
sounder systems (MBES) in mapping seafloor sediments 
has improved significantly in recent years. By characteriz-
ing the seafloor in terms of its geo-acoustic properties, sev-
eral studies have mapped benthic habitats (e.g. Brown and 

Abstract  This study applies three classification meth-
ods exploiting the angular dependence of acoustic seafloor 
backscatter along with high resolution sub-bottom profil-
ing for seafloor sediment characterization in the Eckern-
förde Bay, Baltic Sea Germany. This area is well suited 
for acoustic backscatter studies due to its shallowness, its 
smooth bathymetry and the presence of a wide range of 
sediment types. Backscatter data were acquired using a 
Seabeam1180 (180 kHz) multibeam echosounder and sub-
bottom profiler data were recorded using a SES-2000 para-
metric sonar transmitting 6 and 12 kHz. The high density 
of seafloor soundings allowed extracting backscatter layers 
for five beam angles over a large part of the surveyed area. 
A Bayesian probability method was employed for sedi-
ment classification based on the backscatter variability at 
a single incidence angle, whereas Maximum Likelihood 
Classification (MLC) and Principal Components Analysis 
(PCA) were applied to the multi-angle layers. The Bayes-
ian approach was used for identifying the optimum number 
of acoustic classes because cluster validation is carried out 
prior to class assignment and class outputs are ordinal cat-
egorical values. The method is based on the principle that 
backscatter values from a single incidence angle express 
a normal distribution for a particular sediment type. The 

 *	 Evangelos Alevizos 
	 ealevizos@geomar.de

1	 GEOMAR Helmholtz Center for Ocean Research, 
24148 Kiel, Germany

2	 Acoustics Group, ANCE, Department Control 
and Operations, Faculty of Aerospace Engineering, Delft 
University of Technology, Kluyverweg 1, 2629 Delft, 
The Netherlands

3	 Deltares, Princetonlaan 6, 3584 Utrecht, The Netherlands

http://orcid.org/0000-0001-7276-8666
http://crossmark.crossref.org/dialog/?doi=10.1007/s11001-017-9325-4&domain=pdf


290	 Mar Geophys Res (2018) 39:289–306

1 3

Blondel 2009; Brown et al. 2011). In general this approach 
exploits the affinity of benthic species for seafloor areas that 
exhibit certain sediment properties, particularly grain sizes 
or hardness of the sediment. These correlate to acoustic 
properties that correspond to particular backscatter inten-
sity levels (Collier and Brown 2005; Fonseca and Mayer 
2007; McGonigle and Collier 2014). Other examples for 
habitat mapping using acoustic information are given e.g. 
in Blondel et  al. (2006) who applied a multi-frequency 
approach to map deep sea corals; Ierodiaconou et  al. 
(2007) combined video and image analysis with MBES 
data for mapping algae and invertebrate biotopes; Le Bas 
and Huvenne (2009) investigated various methods for 
processing acoustic data for benthic habitat mapping and 
Che-Hasan et al. (2012a, b, 2014) used Angular Response 
Analysis (ARA) for classifying the seafloor and link this to 
benthic habitats. Additional to studies using seafloor back-
scatter, others integrated backscatter with sub-bottom pro-
filer (SBP) data as an approach for seafloor characteriza-
tion. Sweeney et al. (2012) utilized MBES backscatter and 
high resolution CHIRP data for interpreting a low back-
scatter feature on the New Jersey (USA) continental mar-
gin, whereas Fakiris et al. (2014) combined side-scan sonar 
data with 3.5  kHz SBP data for benthic habitat mapping 
in the Lourdas Gulf (Greece). Siemes et  al. (2010) used 
sub-bottom profiler data to investigate the reason for high 
seafloor backscatter data in areas with very fine sediment. 
The SBP data indicated the presence of gas in the area, 
which increase the measured seafloor backscatter strengths. 
Another example is given by Schneider von Deimling et al. 
(2013) who applied ARA on low frequency MBES data in 
conjunction with SBP data for identifying gas layers in the 
sediment of Eckernförde Bay (Germany). This shows that 
MBES and SBP datasets can complement each other for 
a better seafloor and sub-bottom property understanding. 
Acoustic seafloor classification results can be characterized 
further by correlating them to ground truthing but also SBP 
data if sub-seafloor reflectors have an expression on the 
seafloor, i.e. are partially exposed.

Objectives

This study investigates the usefulness of within-angle and 
between-angle variability of MBES backscatter values for 
seafloor classification based on MBES backscatter data 
derived from high density seafloor soundings. We apply 
a Bayesian probability method on backscatter values for 
each incidence angle and we compare its results against 
classification results based on multi-angle backscatter 
layers using Maximum Likelihood Classification (MLC) 
and Principal Components Analysis (PCA). The Bayes-
ian method uses the backscatter measurements per beam 

and classifies sediments at the resolution of the average 
beam footprint. Information about the backscatter angu-
lar response is not directly used; however the angular 
dependence (influence of the grazing angle) of the back-
scatter must not be removed from the data. In contrast to 
that, the traditional Angular Response Analysis (ARA) 
matches the measured angular responses to a set of mod-
elled angular response curves by varying the model input 
parameters until a maximum match is obtained. Tradi-
tional ARA results show only low spatial resolution since 
in most cases ARA is based on a fit of half of the swath 
of the MBES. In addition absolute backscatter strengths 
and thus well-calibrated MBES systems are needed for 
these backscatter measurements. In practice, backscatter 
measurements are often subject to imperfect calibration.

To counteract these drawbacks, we propose using 
empirical ARA (Beyer et  al. 2007). This method is not 
dependent on absolute backscatter measurements and 
uses seafloor patches that are significantly smaller than 
half the swath width, which is considered a novelty in 
the field of backscatter processing and interpretation. 
The empirical ARA is based on stable, but not absolute 
backscatter measurements and is applied as an alternative 
to traditional ARA because of its insensitivity to system-
atic biases (Lurton and Lamarche 2015) and thus offers 
better backscatter processing opportunities for seafloor 
classification. Hughes Clarke (1994) and Parnum (2007) 
highlight the necessity that data for ARA should ideally 
be derived from small scale homogeneous patches of the 
seafloor to better resolve sediment differences. The strat-
egy most often used to maximize class separability in 
traditional ARA studies is to combine them with back-
scatter mosaic segmentation results (Fonseca et al. 2009; 
Che-Hasan et al. 2012a, b; Rzhanov et al. 2012). Angular 
responses derived from segments representing homoge-
neous acoustic types are assumed to provide better dis-
crimination capability. However, segmentation of back-
scatter mosaics relies on subjective settings selected by 
the user which has at the end implications for the selec-
tion of soundings belonging to a segment specific ARA 
response. In this study, we set the minimum dimensions 
of seafloor patches for extracting the ARA to 5 × 5  m 
assuming that within these patches sediment variability 
is minimal/not existing. This selection is justified by the 
high density of soundings per seafloor unit.

By comparing the performance of the different back-
scatter classification approaches we aim to test their suit-
ability in resolving a wide range of sediment types using 
only the raw backscatter data and their angular depend-
ence. Classification results are being assessed and charac-
terized using grain size and SBP data.
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Methodology

Study area

Eckernförde Bay (Eck Bay) has a diverse marine ecosys-
tem and has been partially assigned as Site of Community 
Importance (SCI) under the Nature 2000 habitats directive. 
The study area has two basins with maximum depths of 
20–30 m separated by the Mittelgrund area, a local eleva-
tion feature with a minimum depth of 8 m. Approximately 
99% of the slope values in the entire area range between 
0 and 5 degrees, which translates into a smooth seafloor 
morphology.

The entire area shows a high variability of sediment 
types, ranging from coarse sand with pebbles and boulders 
to silty clay. According to Jensen et al. (2002), Mittelgrund 
represents a relict morainic sill and is composed of glacial 
and marine sediments with variable thicknesses; predomi-
nantly Mittelgrund consists of glacial till and sands (Jensen 
et al. 2002).

Earlier geological, geochemical and geophysical studies 
in the area showed that the marine continuation of a glacial 
sand aquifer is responsible for freshwater seepage at places 
where the overburden sediments are not sealing due to 
coarser grain sizes (Jensen et al. 2002; Müller et al. 2011). 
Whiticar (2002) realized that the presence of pockmarks in 
Eck Bay is caused by this freshwater seepage and not, as 
suggested for several other pockmarks, by methane ebulli-
tion (Hovland and Judd 1988). In general, the southern part 
of the bay is formed by an incised channel filled with sedi-
ments of several meters of thickness whereas the northern 
part of the bay holds sediments with a vertical extent that 
could not be determined by the performed sub-bottom pro-
filing because of gas blanking with free gas accumulating 
1–2 m below the seafloor (see also Jensen et al. 2002). The 
deeper parts of the bay contain finer sediments (mainly silt) 
under highly anoxic geochemical conditions due to high 
organic matter concentrations (Whiticar 2002). Nittrouer 
et  al. (1998) and Bentley et  al. (1996) described the fine-
scale stratigraphy of the deeper parts as areas in which 
most of the sediment consists of pelletized layers between 1 
and 10 cm thickness alternating with slightly coarser (10% 
silt-sand) storm layers. Consequently, the study area con-
tains a broad spectrum of seafloor sediment types, which 
in conjunction with the smooth seafloor bathymetry offers 
a excellent opportunity for dedicated MBES backscatter 
studies.

Multibeam data

The study area was surveyed using MBES between 2012 
and 2015 onboard RV Alkor and RV Littorina. On both ves-
sels, an ELAC Seabeam 1180 MBES was used operating 

at 180 kHz. The surveys mainly covered the wider area of 
Mittelgrund whereas towards the west the data get sparser. 
In particular the 2012 surveys covered a narrow 1 × 10 km 
corridor from the northern part of Mittelgrund to the 
northernmost coast of Eck Bay with a dense line spacing 
(20–50 m) as part of a 3D seismic survey. This survey plan 
yielded dense soundings per seafloor area for various inci-
dence angles (Fig. 1). The MBES data were corrected for 
sound speed and tidal effects using the ELAC-HDPPost 
software. The complete processed data were exported 
as ASCII data for further analyses in GIS software pack-
ages. In addition raw backscatter data for each beam were 
extracted from the sonar files. They were used for acoustic 
classification using two unsupervised and one supervised 
methodologies; these are described below. The bathymetry 
grid and the backscatter mosaic of the area were generated 
using a 2 by 2 m cell size.

Bayesian unsupervised classification based 
on individual beam angles

The raw backscatter data were processed in Matlab using 
the unsupervised Bayesian classification technique devel-
oped by Simons and Snellen (2009) and Amiri-Simkooei 
et  al. (2009). This technique is based on the central limit 
theorem; applied to backscatter analysis, this means that 
the backscatter intensities of a specific type of seafloor 
will have a Gaussian distribution when examined at a sin-
gle beam angle or a number of adjacent beam angles. This 
technique fits a number of Gaussian curves to the histo-
gram of backscatter values recorded for the beam(s) under 
consideration over the entire study area. For areas with 
more than a single sediment type, the total backscatter 
histogram can be approximated by a number of Gaussian 
curves, each Gaussian corresponding to a certain sediment 
type. To find the number of Gaussians that are minimally 
needed to obtain the best possible agreement between the 
measured and the modelled histograms, the x2 criterion 
regarding the best fit to the entire histogram is considered. 
The minimum number of Gaussian curves that satisfy the 
x2 criterion, represents the optimum number of classes that 
can be discriminated based on the backscatter response 
(Amiri-Simkooei et  al. 2009; Siemes et  al. 2010; Snellen 
et  al. 2013). For determining this number, outer beams at 
about 40° incidence angle are considered because the num-
ber of scatter pixels in the beam footprint is high, result-
ing in the best possible discrimination of sediment types. 
The derived number of Gaussian curves is then used to fit 
the histograms for all other incidence angles. Based on the 
resulting fits, acceptance regions of backscatter values are 
obtained for each incidence angle (or set of adjacent beams 
grouped as ‘one’ incidence angle) by applying the Bayes 
decision rule for multiple hypotheses. Each acceptance 
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region corresponds to a certain acoustic class. The main 
advantages of this technique are: (1) that no absolute sonar 
calibration is needed, (2) that it accounts for ping-to-ping 
variability, (3) that it can resolve different seafloor charac-
teristics along the swath and (4) that it performs a statis-
tical control on the optimal number of seafloor classes. A 
detailed description for applying the Bayesian approach to 
classify soft sediments can also be found in Alevizos et al. 
(2015). The final class assignment is performed for each 
beam and results can be exported as ASCII files and further 
analysed in GIS software packages.

Empirical angular response analysis and MLC based 
on angular layers

The angular dependence of seafloor backscatter var-
ies with the physical properties of the substrate (Fonseca 
and Mayer 2007) and this has been used in many studies 

providing semi-quantitative information on surficial sedi-
ment properties (Beyer et al. 2007; Lamarche et al. 2011; 
Rzhanov et  al. 2012; Huang et  al. 2013). Although the 
methodology constitutes a robust and physical model 
approach, it tends to lack sufficient spatial resolution when 
applied to most MBES datasets. Since half of the sonar 
swath is usually considered as a single measurement for 
ARA, the resulting classification patches are at least a 
few tens of meters in size, even in shallow water (in 10 m 
water depth half of a 130° wide swath is 22 m). In addi-
tion, the traditional ARA approach requires MBES cali-
bration. In the literature, approaches have been presented 
to compensate for these drawbacks; empirical approaches 
have been examined (Beyer et al. 2007) and strategies have 
been suggested to improve the spatial resolution of ARA 
(Fonseca et al. 2009). In this study, we follow an alterna-
tive approach that exploits the high sounding density of the 
used MBES surveys (Fig.  1) for extracting and utilizing 

Fig. 1   Overview map of the study area with bathymetry and contours, sediment samples locations, and the high density line-spacing survey 
(black rectangle). Soundings in the legend of the right image refer to a 5 × 5 m area
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the backscatter angular dependence without losing spatial 
resolution. The high density of the seafloor ensonification 
in most of the study area allowed the extraction of angular 
backscatter measurements from selected 5 × 5  m seafloor 
patches (training areas) which are assumed to have a homo-
geneous sediment cover. Each of these patches includes 
several hundreds of evenly spaced soundings (Table  4, 
“Appendix”). The selection of seafloor patches was based 
on existing ground truth data (sediment samples) and the 
results of the Bayesian classification (Fig.  2). The high 
geo-acoustic resolution of the Bayesian approach (Alevizos 
et  al. 2015) produces acoustic classes that discern minor 
differences between similar sediment types. In this regard, 
each extracted angular profile has a unique geometry rep-
resenting different types of sediment (Fig.  2; Table  4, 
“Appendix”). Instead of the traditional ARA, where the 
full measured angular profile is used for a fit with a mod-
elled angular profile, here we use the empirical ARA. The 
scheme for the resulting supervised acoustic classification 
was developed analogous to multispectral imagery classi-
fication. The measured backscatter intensity was gridded 
into individual layers, using the Inverse Distance Weighted 
(IDW) algorithm on the data points from individual beams 
at 20, 30, 40, 50 and 60 degrees of beam incidence angle 
(Fig. 2). In the end, five angular backscatter intensity lay-
ers with 5 × 5 m grid cell size were produced for the same 
area with small differences in overlap due to variable beam 
coverage. These layers were classified using the Maximum 
Likelihood Classification (MLC) algorithm implemented 
in ArcMap. The MLC considers that backscatter inten-
sity values of a certain seafloor type follow a Gaussian 

distribution. This applies for most of our training sample 
data (Table 4, “Appendix”) given that they are derived from 
local homogeneous areas.

The MLC algorithm is commonly used for multispectral 
satellite image classification and is also applied in seafloor 
mapping. Erdey-Heydorn (2008) and Calvert et al. (2014a, 
b) applied MLC in order to classify benthic habitats using 
multiple layers of bathymetry, bathymetric derivatives and 
backscatter data. The supervised approach chosen in this 
study is similar to the approach described in Che-Hasan 
et  al. (2012b) who used 71 individual angular response 
layers with a set of supervised algorithms including the 
MLC. They considered half of the sonar swath for the ARA 
whereas in this study angular data from 5 × 5  m patches 
(training areas) are used in the MLC as a priori knowledge.

Because data acquisition in 2012 and 2014–2015 took 
place with different sonar configurations, we performed a 
comparison before classification. The comparison (Fig. 3) 
was based on separate examinations of soundings from two 
seafloor patches (5 × 5 m) with different sediment types that 
have been surveyed in 2012 and 2014–2015. These two 
patches were the only places sufficiently ensonified dur-
ing all previous surveys. Although using two patches only 
may not be sufficient for statistical assessment of all ground 
truth locations, they provide an indication regarding the 
stability of the backscatter measurements over the differ-
ent years and surveys. After validating the backscatter sta-
bility for two different seafloor types (gravel and sand) we 
hypothesize that the stability also holds for other seafloor 
types in the study area.

Principal components analysis using angular layers

This method is derived from satellite image analysis and 
allows for utilizing a dimensionally reduced dataset (fewer 
layers of information) to describe the data variability in a 
more effective way. The basic concept is to use a set of spa-
tial layers as input and transform them into a new uncor-
related set of layers via orthogonal linear transformation of 
the initial set of layers. The transformed layers are fewer 
in number and represent an ordinal set of principal com-
ponents. The first two principal components often account 
for the maximum in data variability and thus can be classi-
fied using a standard clustering algorithm such as k-means. 
The principal components do not contain the clusters them-
selves, but their combination has the potential for produc-
ing clustering patterns. Before the use of k-means, a cluster 
validation test is performed to estimate the optimal number 
into which the principal components can be clustered. The 
Principal Component Analysis (PCA) has been repeatedly 
applied for seafloor classification using acoustic datasets. 
One example is the study of Preston (2009), who applied 
PCA to a set of textural layers produced from MBES 

Fig. 2   Angular responses plot of selected 5 × 5 m patches belonging 
to different acoustic sedimentary classes. Ground-truth sample num-
ber in brackets indicates from which locations the responses were 
extracted. These were used as training areas (a priori knowledge) for 
the MLC. Black rectangles indicate the selected angles for producing 
the angular layers
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backscatter. Other examples are from Amiri-Simkooei et al. 
(2011) and Eleftherakis et  al. (2014), who applied PCA 
to a set of MBES bathymetry derivatives and backscatter 
statistics to discriminate riverbed sediments. In the present 
study we apply PCA to the set of five MBES backscatter 
angular layers described above and use the first two princi-
pal components in conjunction with the k-means clustering 
algorithm to classify the seafloor. Cluster validation was 
performed using the C–H criterion (Calinski and Harabasz 
1974).

Sub‑bottom profiler data

A sub-bottom-profiler (SBP) survey in 2015 was designed 
to cover areas with variable seafloor backscatter responses 
seen in previous MBES surveys. The SBP survey was run 
with a SES-2000 system (Innomar) recording 12 and 6 kHz 
simultaneously with the Innomar SIS© software. The sys-
tem was mounted at the side of the vessel on a stable pole. 
The acquisition occurred during good weather conditions; 
in total 25 km of SBP data including two profiles along the 
minor and major axes of the Mittelgrund were acquired 
(Fig. 4a). Pre-processing included applying a bandpass fil-
ter along with stacking and smoothing based on two con-
secutive traces for data enhancement and gain adjustment. 
In another step, the bottom reflector, the acoustic base-
ment reflector, and the top of an acoustic turbidity reflector 
were digitized and exported for further analysis using Fle-
dermaus 3D viewer. The term ‘acoustic basement’ is here 
referred to as the continuous reflector beyond which the 
acoustic signal does not penetrate any further. The digitized 
reflectors were further analyzed using ArcGIS and EXCEL. 

In particular, we used the SBP navigation to extract the 
depth and acoustic class information from the Bayesian 
classification results for the two along and across Mittelgr-
und SBP lines (Fig.  4a). Visual interpretation of the SBP 
data was enhanced by draping the classification results on 
the SBP profiles.

Sediment grain size analyses

Sample locations were selected by visual examination of 
the processed backscatter map (Fig. 4a) and acoustic clas-
sification results, with the aim of sampling as many dif-
ferent acoustic classes as possible for a robust validation. 
In total, 22 sediment samples were collected using a Van-
Veen grab and a multi-corer. The samples were weighed 
and separated with 500  µm, 2 and 6.4  mm sieves. The 
fine fraction <500 µm was measured using a laser particle 
analyzer (Analysette-22 NanoTec, Fritsch©). We extracted 
the median and mode of each, the fine and total fractions 
and integrated the results of the particle analysis with the 
weight of the sieved fractions. This was achieved by con-
verting the grain sizes of the fine fraction into weight 
assuming spherical particles.

Results

Backscatter analysis with the Bayesian approach indicates 
the existence of five acoustic classes (AC1-AC5, Fig.  4b, 
c). It is noteworthy that an intrinsic feature of the Bayes-
ian classification is that it outputs sequential classes; here 
this means that an increasing class number represents 

Fig. 3   Comparison between soundings from seafloor patches at sediment sample locations investigated during different surveys (2012 mobile 
SeaBeam 1180 on RV Alkor; 2014–2015 fixed installed SeaBeam 1180 on RV Littorina)
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increasing backscatter intensity. Based on this we corre-
lated the Bayesian classes against the derived grain size 
parameters (Table 1). Bayesian classes were also used for 
comparison with the classification results of the other two 
approaches and for the interpretation of the SBP data.

Bayesian classification and correlation 
with ground‑truth data

The Bayesian method yielded five classes, expressed by 
Gaussian distributions holding a central dB value (Fig. 4c). 
The number of classes resulted from applying the x2 

criterion for the Probability Density Functions (PDFs) fit-
ted to the backscatter histograms of beams with incidence 
angles of 38° and 40°. Using these two neighboring beams 
simultaneously for class validation, the robustness of the 
optimum number of classes is increased with better x2 val-
ues and a better separation of the fitted PDFs (Fig. 4c). The 
suitability of incidence angles from the middle range of 
the swath is related to the significant different backscatter 
behavior of different sediment types in this range of inci-
dence angles (for further explanation, see Discussion para-
graph). The geo-acoustic resolution of the Bayesian clas-
sification (Alevizos et  al. 2015) made it possible to map 
storm deposits within the upper ten centimeters of clayey/
muddy sediment in the central area of the northern deep 
part of the Eckernförde Bay (samples 9, 10, 11, Fig. 4b) as 
the two separate acoustic classes AC2 and AC3. In general 
the sediments in the northern deep part have been described 
by Nittrouer et al. (1998) and Bentley et al. (1996) as sedi-
ments consisting of pelletized layers between 1 and 10 cm 
thickness alternating with slightly coarser storm layers 
(10% silt-sand).

Acoustic classes AC2 and AC3 (sediment samples 9 and 
11) show only a small increase in coarse material (0.5–4%) 

Fig. 4   a MBES backscatter mosaic of the study area (2012–2015 
surveys) with sediment sample locations and SBP track lines (green). 
Red rectangles enclose the SBP profiles shown in the correspond-
ing annotated figures. b Bayesian unsupervised classification map 
with locations of sediment samples. c Density functions fitted to the 

MBES backscatter raw data from beams with incident angles 38 and 
40 (port side) representing five major acoustic classes (curves are 
color-coded for their respective classes). Black squares indicate the 
intersection points of adjacent curves

Table 1   Pearson’s correlation coefficients for linear regressions of 
acoustic classes with grain size parameters

Grain size parameter Correlation 
coefficient

Median (<500 µm) 0.71
Mode (<500 µm) 0.73
2–500 mm percentage 0.75
6.3–2 mm percentage 0.67
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within a generally fine grained matrix (Table  5, “Appen-
dix”). We interpret these as storm deposits in which the 
coarse fraction produces the slightly stronger backscatter in 
the central deep part of the bay.

In an additional step, each class was correlated with dif-
ferent parameters of the grain size results (median, mode, 
and coarse fraction percentages, see Table  1) validating 
the acoustic clustering. In particular the percentage of the 
coarse sand fraction (2 mm–500 µm) along with the mode 
and the median grain size of the fine fraction (<500  µm) 
show high correlation coefficients with the five classes 
(Table 1). However, the lower the class number (lower dB 
values) the greater is the ambiguity (class overlap between 
classes 1 and 2 in Fig. 4c).

ARA‑MLC and PCA classification using multi‑angle 
layers

The MLC algorithm used the angular information from 
soundings of homogeneous training areas (Fig.  2). The 
data of these training samples partially satisfy the basic 
assumption of the MLC concept that a particular sediment 
type expresses a normal distribution of backscatter values 

(Table 4, “Appendix”). Only samples from classes AC1 and 
AC2 show a different distribution, but these classes also 
hold much fewer data points. During the MLC process-
ing, the mean vector (Fig. 5b) and the covariance matrix of 
all angular layers are estimated from the training set. This 
information is then used for assigning classes to the rest 
of the data. The clear separation of the angular backscat-
ter response curves in Fig. 5b enhances the performance of 
the supervised classification, hence minimizing class over-
lap. The small standard deviation for class AC1 and AC4 
might be responsible for the small areas assigned to these 
classes. It was found that AC4 occupies more small patches 
compared to the results of the two unsupervised methods 
(Fig. 5a, b) and shows a more abrupt transition from AC5 
to AC3, particularly in the northern part of the bay. Data 
gaps in the final ARA-MLC classification map are due to 
unclassified pixels that did not hold sufficient overlap with 
all angular layers.

The PCA results were clustered in five classes (as 
derived from the C-H criterion) using the k-means algo-
rithm (Fig. 5c). Figure 5d shows these five classes in which 
the first two principal components of soundings from 
the 5 × 5  m patches of all sediment sample locations are 

Fig. 5   a Classification map of the supervised ARA-MLC method 
with locations of sediment samples, b angular mean and standard 
deviation of backscatter values for each class of the training sample 
soundings. These data were derived from the “signature file” pro-
duced in ArcMap that is used by the MLC algorithm for assigning 

classes using the angular layers 20–60 degrees, c classification map 
of the PCA method clustered with the k-means algorithm including 
locations of sediment samples, d scatterplot of the first two principal 
components of soundings from all sediment sample locations. PC1 
and PC2 resulted from the combination of five angular layers
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plotted. The k-means clustering of the PCA results pro-
duced classes without ordinal character. It was observed 
that the spatial extent of each class corresponds very well 
with the spatial extent of the Bayesian classes that are ordi-
nal. Hence the PCA and k-means classes were reclassified 
to correspond to the Bayesian ordinal classes order.

Acoustic class description and sub‑bottom 
interpretation

SBP data show an acoustic basement with a continu-
ous high-amplitude reflector. The depth of this reflec-
tor is lowest on top of Mittelgrund where it corresponds 
to the seafloor surface; it increases to 1–2  m along its 
slopes and rapidly deepens with increasing distance from 
the Mittelgrund (Fig.  6a). It is not possible to track the 
acoustic basement in the northern part of the bay because 
of gas blanking (Fig. 6a, symbol g), but we assume that 
acoustic basement lies several meters below the fine-
grained sediment cover. Interpretation of the SBP data 
is supported by the Bayesian acoustic classes that cor-
respond with the proximity of the acoustic basement to 
the seafloor (Fig. 7; Table 2); the shallower the depth of 
acoustic basement, the higher the backscatter intensity. 
This is rather related to geological factors and not to 
the limited (<10  cm) penetration of the high frequency 
(180  kHz) acoustic signal (Ferrini and Flood 2006). 
Three distinct acoustic layers can be identified between 
the seafloor and the acoustic basement. The uppermost 
acoustically transparent layer of 0.5–1  m thickness is 
found along the southern and northern flanks of Mittelgr-
und (Fig. 6a). Directly below, a 0.5–1 m thick layer with 
chaotic reflectors can be observed. This layer reaches the 
seafloor mainly on the shoulder of Mittelgrund, where it 
is locally covered by the uppermost acoustically transpar-
ent layer (Fig. 6a, enlargement). Away from Mittelgrund, 
a more than two meters thick layer with parallel reflec-
tors covers the northern and southern basins of the bay. 

In the north, this layer is blanked by free gas accumula-
tions approximately 2 m below the seafloor (Fig. 6a sym-
bol g). Apart from continuous reflectors, sparse or dense 
hyperbolic reflectors were found as the uppermost acous-
tic layer in the westernmost part of Mittelgrund (Fig. 6b 
enlargement, symbol h).

When overlaying the Bayesian acoustic classes on the 
sub-bottom profiles, AC3 mostly overlays the transparent 
uppermost layer on the Mittelgrund flanks (Fig.  6a, b). 
AC4 corresponds with the outcrop of the chaotic reflec-
tor layer at the southern flank of Mittelgrund (Fig.  6a). 
Away from the flanks, AC4 corresponds to hyperbolic 
reflector layers (Fig.  6b, symbol h). It is assumed that 
AC5 (highest backscatter intensity) covers a large por-
tion of the shallowest part of Mittelgrund, which mainly 
consists of glacial till. There is no layering visible in the 
SBP data from this area due to the very hard reflection at 
the seafloor surface (Fig.  6a, b). It should be noted that 
AC3 away from the Mittelgrund also appears as patches 
within AC2 (Figs.  4b, 6a). AC1 covers the deeper parts 
of the area and locally alternates with AC2. The top of 
the acoustically opaque layer in the northernmost part of 
the profile is highlighted in Fig. 6a. In the southern part, 
acoustic blanking occurs only locally in the deeper part 
of a paleo-channel (Fig. 6a).

In the following we present the characteristics of each 
Bayesian class along with their relationship to SBP inter-
pretations and ground truth data following Folk’s sediment 
classification (Folk 1954):

Acoustic class 1 (AC1) mud/clay

According to two ground-truth samples this class rep-
resents the top of anoxic mud and clay deposits covering 
mainly the deep parts of the study area, where thick (>2 m) 
sediment accumulations exist with parallel reflectors in 
SBP data (Fig. 6a).

Table 2   Summary sedimentological and acoustic description of the Bayesian classes (mbs: meters below seafloor)

Bayes class Central dB value Backscatt-ering factors SBP units % Coarse 
(>500 µm)

Jensen et al. (2002) Depth of 
acoustic base-
ment (mbs)

1 −70.3 Grain size – – Littorina mud (with gas) >>2
2 −68 Grain size – ≤1 Littorina mud (with gas) >>2
3 −61 Grain size, shells Uppermost transparent 

layer
1–4.1 Late glacial sand (fine 

fraction)
0.5–2

4 −55.9 Grain size, epibenthos, 
shells

Chaotic layer, hyperbolae 15 Late glacial sand (coarse 
fraction)

0–0.5

5 −50.9 Grain size, epibenthos, 
shells

Acoustic basement >>20 Subsurface: quaternary 
sand, exposed: Littorina 
sand and gravel/till

0 (or few cm)
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Acoustic class 2 (AC2), gravelly/sandy mud

Based on grain size analysis of five samples, this class rep-
resents muddy and clayey sediment, similar to AC1, but 
holds a small percentage (<1%) of coarse grained material 
(including clasts, shells and shell fragments). This class is 
mainly found in the deep basin of the bay and at the foot of 
Mittelgrund.

Acoustic class 3 (AC3), sand

According to nine samples, this class consists of at least 
80% fine sand (Table 2) with varying percentages (1–20%) 
of coarse sand and a small amount (<1%) of gravel-sized 
particles. Seafloor patches of this class are found in the 
deep basin, on the flanks of the Mittelgrund and within the 

pockmarks SW of Mittelgrund (Fig. 4b). According to the 
SBP data interpretation (Fig. 6a, b) class AC3 is character-
ized by the presence of a thin (up to 1 m) transparent acous-
tic layer on both the northern and southern flanks of Mittel-
grund. Grab samples from this class consistently recovered 
bivalves (Macoma balthica, Astarte sp.), numerous tubes of 
Pectinaria worms and several Ophioura specimens. This 
indicates that the backscatter character of AC3 might also 
be affected by the presence of macro-benthos.

Acoustic class 4 (AC4), gravelly sand

Sediments of this class (four samples) include a moderate 
amount (5–30%) of coarse sand, a small amount of gravel 
(1–8%) as well as shells and occasionally pebbles in a 
medium sand matrix (>50%). This class is related to a thin 

Fig. 6   a Sub-bottom profile (location on Fig. 4a) crossing the minor 
axis of Mittelgrund. In the southern part the incised paleo-channel 
is clearly visible, filled with a well layered sediment package. In the 
northern part, gas trapped in the upper 1–2  m of sediment (g) pre-
vents the signal from penetrating into the deeper sediment layers 

(Jensen et  al. 2002). Acoustic class 3 dominates the Mittelgrund 
flanks, b sub-bottom profile (location on Fig.  4a) along the western 
tip of Mittelgrund. Acoustic class 4 correlates to hyperbolic reflectors 
(symbol h, enlarged image)
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layer of chaotic reflectors outcropping at the southern part 
of Mittelgrund (Fig.  6a, b) and to the presence of hyper-
bolic reflectors at the westernmost slope of Mittelgrund 
(Fig. 6b, symbol h).

Acoustic class 5 (AC5) sandy gravel

Two sediment samples of this class are characterized by the 
coarsest sediments recovered from the study area, consist-
ing of 30–40% medium sand, at least 60% coarse sand and 
2–14% gravel. Shells and pebbles are also present in the 
samples and we assume that the top of Mittelgrund corre-
sponds to the exposed acoustic basement (Fig. 6a, b).

Discussion

Angular response classification, comparison of single 
with multi‑angle approaches

In this study we examine the within-angle and between-
angles backscatter variability using different methods for 
defining seafloor acoustic classes with high spatial reso-
lution. The Bayesian method is employed to estimate the 
optimum number of classes; this approach performs clus-
ter validation before the final assignment of classes. This 
is an advantage compared to other unsupervised methods, 
which usually require some kind of external cluster vali-
dation tool (Verfaillie et  al. 2009). However, the assump-
tion of the Bayesian method—that the backscatter values 
within each seafloor type should have a Gaussian distri-
bution—has been criticized because seafloor sediments or 
benthic habitats appear multi-modal by nature (Che-Hasan 

et al. 2012b). Sediment inhomogeneity in the study area is 
evident and different seafloor types can generate a similar 
backscatter response. For example, AC3 (sand) seems to be 
the same class as gravelly/sandy mud. The same is true for 
AC4; here the backscatter is the result of either boulders on 
the seafloor or coarse sediments from exposed layers. This 
ambiguity is also addressed in Eleftherakis et  al. (2014). 
Therefore we suggest that combining various sensors such 
as MBES and parametric SBP along with sufficient ground 
truth data can offer a better discrimination of sedimentary 
classes.

In the study area the majority of the bathymetric surface 
has a slope of less than five degrees, so that no specific cor-
rections of backscatter values are needed to account for the 
true grazing angle. This reduces pre-processing efforts con-
siderably. The reference incidence angles used to drive the 
Bayesian classification lie in the mid-range of the MBES 
swath, this is in agreement with previous studies using the 
backscatter angular dependence (Lamarche et  al. 2011; 
Hamilton and Parnum 2011; Che-Hasan et  al. 2014) and 
also with studies using the Bayesian approach (Alevizos 
et  al. 2015). The selection of middle range beams is well 
suited for obtaining a realistic number of classes (best fit 
of five Gaussian curves according to the x2 criterion) and 
hence to reliably differentiate various seafloor types. The 
good performance of the Bayesian classification using inci-
dence angles of 38° and 40° is also supported by Lamarche 
et al. (2011), stating that reliable backscatter measurements 
from angles closer to the nadir (<20°) are hindered by 
specular reflection that dominates the backscatter, whereas 
measurements in the outer range (>60°) are prone to strong 
angle dependencies and thus are less coherent.

Results from methods using angular layers (ARA-MLC 
and PCA) are compared to the Bayesian classification map 
which serves as reference, by examining their contingency 
matrices using Cohen’s kappa as a measure of agreement. 
Usually contingency maps are produced by the combina-
tion of a classification map and a ground truth (reference) 
map for the same area. In this case the Bayesian classifica-
tion map has the role of the reference map and is compared 
with the two multi-angle approaches. The relative agree-
ment between the classes is assessed via the percentages 
of accurately classified pixels (Bayes_acc, PCA_acc and 
ARA-MLC_acc; Table  3) for each method. For the PCA 
and ARA-MLC methods, PCA_acc and ARA-MLC_acc 
represent the respective percentage of pixels in agreement 
with the Bayesian class, while Bayes_acc represents the 
reliability of this agreement. As an example from Table 3, 
93% of the pixels classified as class AC1 by the PCA 
method are in agreement with the Bayesian results. As the 
Bayesian approach has 22% more pixels identified as AC1, 
the Bayes_acc value only gives 78% reliable agreement 
compared to the PCA classification for AC1. Additionally, 

Fig. 7   Boxplot illustrating the relation of Bayesian acoustic classes 
to the depth of the acoustic basement below the seafloor
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the agreement between the three methods can be assessed 
using the classification results for each sediment sample 
location in Table  5, “Appendix”. The contingency tables 
show that both the PCA and MLC approach produce com-
parable results with good agreement relative to the Bayes-
ian method (Table 3). However, there are some fluctuations 
in the agreement between some acoustic classes. The high-
est overall agreement occurs between the unsupervised 
methods (Bayes and PCA). We observed that for classes 
AC5 and AC4, the PCA method generally agrees with the 
Bayesian approach, whereas there are minor differences 
regarding the percentage of pixels classified as classes AC1 
to AC3 (Table  3). In contrast, the ARA-MLC approach 
shows a lower degree of agreement with the Bayesian 
map, particularly for classes AC1 and AC4. Despite these 
observations, the high Cohen’s kappa values indicate that 
seafloor patches were classified consistently and that class 
assignments do not occur by chance.

The high sounding density allowed producing separate 
backscatter mosaics from selected angles. Between 20 and 
60 degrees incidence angle there is little overlap between 
adjacent angular profiles, so beam angles from that range 
were selected to produce angular layers used by MLC 
and PCA. In this regard, the Bayesian classification was 
useful in quantifying the separation between the angular 
responses, hence maximizing the discrimination capabil-
ity of the training set for the MLC. This highlights that 

Bayesian classification and ARA are a good complemen-
tary tool set. The Bayesian approach examines backscatter 
variability along a “narrow corridor” of middle range inci-
dence angles quantifying the difference between angular 
responses in a statistically robust way.

The combination of empirical ARA with the MLC 
algorithm provides an automated sediment classification 
tool that depends on acoustic properties of the seafloor 
area under investigation. Sufficient ground truth infor-
mation is required for both the classification and valida-
tion processes. In this study, applying empirical ARA to 
data from non-calibrated MBES was possible because the 
angular response profiles of the different sediments were 
sufficiently separated (Figs.  2, 5b). The backscatter val-
ues for the areas of training samples 7 and 9 (for classes 
AC1 and AC2 respectively), are not normally distributed 
and they are considerably skewed (Table 4, “Appendix”). 
The less good performance of the empirical ARA-MLC 
method for these two classes can be interpreted as a result 
of lack of normal distribution which is a prerequisite for 
the MLC method. Che-Hasan et  al. (2012b) suggested 
that the MLC method does not work for sediments with 
a high degree of homogeneity. However, it has to be 
mentioned that they incorporated 71 different variables 
in their MLC, while it has been suggested that MLC is 
not suitable for data with high dimensionality and using 
only a limited amount of training data (Benediktsson 

Table 3   Contingency matrices showing the number of pixels classified and the relative accuracy percentages for the three methods (numbers in 
bold: Bayes_acc, PCA_acc, and ARA_MLC_acc)

Bayes—PCA 
(kappa = 0.91)

Class 1 Class 2 Class 3 Class 4 Class 5 PCA_acc

Class 1 114,642 9054 13 0 0 0.93
Class 2 31,990 64,667 1769 2 0 0.66
Class 3 109 8285 121,610 27,591 86 0.77
Class 4 4 23 3607 62,012 24,605 0.69
Class 5 0 2 13 5261 114,517 0.96
Bayes_acc 0.78 0.79 0.96 0.65 0.82

Bayes—ARA-MLC 
(kappa = 0.76)

Class 1 Class 2 Class 3 Class 4 Class 5 ARA-MLC_acc

Class 1 41,237 81,878 592 0 2 0.33
Class 2 26,179 60,997 11,249 0 3 0.62
Class 3 299 14,081 134,397 6182 2722 0.85
Class 4 2 1843 15,231 18,247 54,928 0.20
Class 5 1 534 145 985 118,128 0.99
Bayes_acc 0.61 0.38 0.83 0.72 0.67
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et al. 1995). Considering our data, it is not clear whether 
the low performance of the empirical ARA-MLC method 
is an algorithm shortcoming or if a poor data quality is 
the reason. Once more, if training samples with continu-
ous angular backscatter responses can be used, the per-
formance of the MLC for sediment differentiation can be 
more reliably evaluated. It is also suggested that future 
studies should make use of more than five angular layers 
in order to examine the capability of MLC to adequately 
classify (better discriminate) similar seafloor types.

The PCA and k-means approach, based on multi-angle 
layer information appears to discriminate the different sedi-
ment types in the study area efficiently (Fig. 5d). Although 
the five angular layers are highly correlated (r2 > 92%), the 
resulting first two principal components are uncorrelated 
and describe more than 95% of the between-angle back-
scatter variability. The spatial correspondence and agree-
ment between the Bayesian and PCA classification maps 
can also be assessed by their contingency matrix.

Joint interpretation of sub‑bottom structures 
and seafloor acoustic classes

Overlaying the Bayesian acoustic classes on SBP data and 
considering the results from Jensen et al. (2002) and Whiti-
car (2002) a good understanding of the wider Mittelgrund 
area stratigraphy can be supported. Acoustic class AC5 
near Mittelgrund, maps the exposed acoustic basement 
(Fig.  6a, b) of glacial till or Littorina sand and gravel as 
described by Jensen et  al. (2002) (Table  2). Other acous-
tic classes could be attributed to specific sub-bottom lay-
ers that pinch out at the seafloor, determining the seafloor 
backscatter (Table  2). Jensen et  al. (2002) suggest that 
only one sediment type covers the glacial till on the Mit-
telgrund flanks, whereas the acoustic classification of this 
study could define two different seafloor types on the flank 
areas. These two classes (AC3 and AC4) can be linked to 
a finer and coarser fraction of Late Glacial sand as identi-
fied by Jensen et  al. (2002). In this respect the layer with 
a chaotic character reaching the seafloor in the proximity 
of the Mittelgrund shoulder is related to AC4, representing 
the coarser fraction of Late Glacial sand (Fig. 6a, enlarge-
ment). AC3 which is related to the upper transparent reflec-
tor that covers large part of the Mittelgrund flanks probably 
represents finer material from Late Glacial sand deposits 
and seems to be an important substrate for the local benthic 
communities. Jensen et  al. (2002) describe these deposits 

as laminated or massive fine sand and silt that marks the 
transition into the basin. We assume that patches of AC3 
in the deep basin (Fig. 6a) represent the coarser material of 
the storm deposits mentioned earlier (Nittrouer et al. 1998). 
AC3 also comprises the seafloor within the pockmarks SW 
of Mittelgrund (Fig. 6b) and vibrocore samples from within 
a pockmark in the same area (Jensen et al. 2002) confirm 
the existence of sand and gravel. Class AC1 can be sim-
ply characterized as Littorina mud (Jensen et  al. 2002), 
but AC2 may be interpreted in two ways. Its occurrence at 
the foot of Mittelgrund is probably associated with depos-
its that are also characterized as Littorina mud whereas its 
appearance in the deep part of the basin possibly represents 
the finer fraction of sediments deposited during storms 
(Nittrouer et al. 1998).

Bayesian acoustic classes correlate with the maximum 
penetration depth of the SBP signal (the depth of the acous-
tic basement; Fig. 7). This paradoxical relationship between 
hydro-acoustic signals, with large difference in sediment 
penetration, highlights the connectivity of the two acoustic 
datasets in terms of their geological implications. It can be 
assumed that the depth of the acoustic basement is related 
to geological processes (e.g. transgressional erosion, sedi-
mentation, reworking) that have taken place in the area and 
affect the coarseness of the surficial sediment. Accordingly, 
the variability in coarseness is reflected in the acoustic clas-
sification of the seafloor surface backscatter. It is inferred 
that areas with softer sediments allow a greater penetra-
tion of the SBP acoustic signal, which explains the relation 
between acoustic classes and acoustic basement.

Conclusions

Using gridded layers of MBES backscatter from vari-
ous beam incidence angles proved useful for sediment 
class differentiation for both supervised and unsupervised 
approaches. These gridded layers were obtained from sur-
veys resulting in high density soundings per seafloor area 
enabling to resolve acoustic classes in a higher spatial 
resolution than traditionally achieved. Single-angle analy-
sis of raw backscatter data was performed using Bayesian 
statistics. This method performs cluster validation autono-
mously; the results correlated well with grain size analy-
sis and provided a useful classification map for comparison 
with two multi-angle methods.

Combining multi-angle backscatter layers with empirical 
ARA-MLC gave promising results for discerning sediment 
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classes at high spatial resolution. This is particularly inter-
esting, as traditional ARA methods lack spatial resolution. 
The high density of soundings in the area supported the 
extraction of distinct angular backscatter responses from 
smaller seafloor patches; compared to other ARA studies 
described so far, the resulting maps are significantly more 
detailed. This is an advancement of the traditional half-
swath and BS mosaic segmentation approaches, maximiz-
ing the between-class separation.

The applied empirical ARA method could be applied to 
uncalibrated sonar data once the extracted angular meas-
urements were consistent for each seafloor class/type, and 
clearly separated from each other. PCA using multi-angle 
layers resolved the same number of classes as the Bayesian 
approach, highlighting the consistency of results between 
all three approaches.

The incorporation of high resolution SBP data helped to 
characterize acoustic classes and added valuable informa-
tion on the vertical and horizontal distribution of exposed 
stratigraphic layers. The acoustic classes representing fine 
sediments correlated with areas of a deeper SBP signal 
penetration.

We can summarize that dense MBES backscatter 
measurements offer the advantage of extracting angu-
lar responses from fine-scale seafloor patches without the 
need to perform backscatter mosaic segmentation. In this 

way, not only the spatial resolution of classification maps 
is improved but also the sedimentary classes are optimally 
separated. Future MBES survey planning may need to con-
sider the acquisition of such high density of soundings per 
seafloor area, which would offer the possibility for accurate 
ARA-based seafloor classification on footprint-scale.
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Table 4   Population statistic 
features and frequency 
distributions (x axis: backscatter 
(dB), y axis: frequency) of 
soundings from five sediment 
sample locations (5 × 5 m 
patches)

Training areas (5 × 5 m)

Sample_no.: 1
Acous�c class: 5
Type: sandy gravel
Number of soundings: 1517
Mean dB: –48.1

Distribu�on

Sample_no.: 18
Acous�c class: 4
Type: gravelly sand
Number of soundings: 1442
Mean dB: –53.9

Sample_no.: 3
Acous�c class: 3
Type: sand
Number of soundings: 782
Mean dB: –61.8

Sample_no.: 9
Acous�c class: 2
Type: (gravelly/sandy) mud
Number of soundings: 312
Mean dB: –64.4

Sample_no.: 7
Acous�c class: 1
Type: mud and clay
Number of soundings: 287
Mean dB: –71.7
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