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Summary

Over the last few decades the aerospace industry adopted carbon fiber reinforced polymers for lightweight
design of primary structures. Striving to improve structural efficiency the aerospace industry shows increas-
ing interest in variable-stiffness composite laminates. Advanced fiber placement is a hybrid manufacturing
technique that offers the flexibility of both filament winding and automated tape laying. With the devel-
opment of this novel system curved tows can be placed and a spatially variable-stiffness laminate can be
designed with continuous changing stiffness from point to point. The capability to produce variable-stiffness
composites is very promising and allows for sophisticated designs.

The increased design freedom to tailor a structure by in-plane stiffness variation leads to a challenging
design optimization problem. A multi-step framework is developed by the aerospace structures and materi-
als department at TU Delft to optimize variable-stiffness laminates. First the stiffness variation is optimized
in lamination parameter space, a parameterization that yields beneficial optimization properties. After the
optimal lamination parameters are obtained the corresponding fiber angle distribution is retrieved. This re-
trieval step proves to be a challenging exercise, especially when manufacturing constraints are included. An
extension to the framework includes sub-approximations in fiber angle space to assess retrieval. By addi-
tional optimization iterations in fiber angle space a true optimal fiber angle distribution is obtained.

Variable-stiffness laminate design can potentially save weight of structural components if the increment
in tailoring freedom leads to a significant performance boost. Based on this premise Airbus Defence and
Space wants to investigate how such design could improve the structural performance of an engine thrust
frame, a structural application that transfers the thrust loads from the rocket engine to the rest of the launch
system. The engine thrust frame is subject to cryogenic thermal loads, something not incorporated in the
available optimization framework. The goal of this work is to add thermal loads to the laminate analysis
routine and to adjust the optimization routine to incorporate thermal influences.

The optimization routine is based on sequential local approximations, these are re-evaluated to include
thermal influences. The approximations are gradient based and the thermomechanical governing equations
are used to perform sensitivity analyses to build the updated local approximations. For the strength and
buckling responses the thermomechanical sensitivities are derived using an adjoint displacement approach.
Implementation of the thermal analysis is verified by a design study of a simply supported rectangular plate
under uniform end shortening subject to thermomechanical loads. Results from the updated optimization
routine show similar design patterns as the reference papers. A stiffness variation that distributes loads to-
wards the restrained edges and away from the prone to buckling center area proved to be optimal. This design
study shows that variable-stiffness laminates have the design freedom to effectively optimize local properties
and global load distribution.

With the thermomechanical optimization framework in place the engine thrust frame is modeled. Con-
ceptual design optimization of the variable-stiffness laminate of the engine thrust frame under thermome-
chanical loads is performed to increase buckling resistance. Three models are studied to research the ther-
momechanical effects, namely a constant thickness, tapered thickness and stiffened tapered thickness de-
sign. The first two models are axisymmetric nullifying load redistribution to improve buckling performance.
Gains of 10-20% in buckling performance are established by adjusting local resistance to the critical buckling
modes.

The stiffened design has stiffened areas and load can be redistributed in circumferential direction, this
adds more freedom to tailor the design. The optimal variable-stiffness laminate distributes compressive
stresses towards the stiffened areas for the pure mechanical load case. A mismatch in the coefficient of ther-
mal expansion is used by the optimal variable-stiffness design for the thermomechanical load case. The
stiffened areas contract less than the bay regions, thus a stabilizing tensile stress is induced in the prone to
buckling bay regions. For both design cases improvements around 45% are obtained. Although this is signif-
icant it should be interpreted with care. Multiple simplifications regarding geometry and loads are applied
and the conceptual design study is bounded to research the potential of a variable-stiffness laminate design
for the engine thrust frame.
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1
Introduction

Nowadays carbon fiber reinforced polymers are an integral part of many aerospace applications. They are
often used for lightweight design of primary structures. For a long time only conventional laminates were
used, but with increasing knowledge and experience more and more non-conventional laminates are inves-
tigated and applied. Striving to improve structural efficiency the aerospace industry developed the advanced
fiber placement production technique. With this technique it is possible to place curvilinear tows, enabling
the production of variable-stiffness laminates. The design of such laminates is a challenge and over the last
decade an optimization framework is developed by the aerospace structures and materials department at TU
Delft. Airbus Defence and Space proposed to use this framework to create a conceptual design of a variable-
stiffness engine thrust frame. Due to the design and thermomechanical load conditions of the engine thrust
frame the optimization framework needs additional functionalities before it can be used.

This chapter will start with a short motivation why lightweight design is so important in the aerospace
industry in section 1.1. This is followed by a brief overview why carbon fiber reinforced polymers are one of
the main load bearing materials in section 1.2. Section 1.3 introduces variable-stiffness laminates and section
1.4 will state the project objective. At last an overview of the report structure is provided in section 1.5.

1.1. Motivation for Lightweight Design
According to the U.S. Department of Transportation fuel consumption accounted for 28.1% of operative cost
for American airliners in 2014 [1]. A way to reduce fuel consumption and cost is to strive for lightweight
design. By vertical force equilibrium lighter aircraft require less lift to maintain altitude. A reduction in lift
reduces wing surface and this lowers the loads imposed on the structure, most specifically the root bending
moment. This will lead to weight saving of structural components for well designed aircraft. Furthermore the
corresponding reduced drag requires less thrust by horizontal force equilibrium. This relates to higher fuel
efficiency, that is more distance can be traveled per amount of fuel. The weight saving of structural compo-
nents and fuel lead to another weight saving iteration. This is known as the ’snowball effect’ and emphasizes
the importance of lightweight driven design for aircraft. Lee et al estimated that a reduction of 1% of the gross
weight of an aircraft reduces fuel consumption by approximately 0.75% [2].

Spacecraft is, similar to aircraft design, also driven by weight. For launchers evaluating the well-known
Tsiolkovsky rocket equation clearly shows that a high mass ratio is advantageous in relation to the delta-V
budget. To launch a lighter rocket less propellant is required and a snowball effect similar to aircraft design
can be initiated to reduce the space bus size to account for the reduced propellant requirements. Alternatively
a higher payload fraction could be applied.

1.2. The Road to Carbon Fiber Reinforced Polymers
Many engineering solutions are copied or derived from nature. Looking for load bearing structures in na-
ture our bones and skeleton comes to mind. Cortical bone tissue is a fiber-composite where collagen protein
fibers are dispersed in a mineral apatite matrix. The collagen fibrils add strenght, fracture thoughness and
elasticity to the bones. Due to the fibrous nature the material properties are anisotropic and our body uses
this to improve the mechanical properties of the bone based on the load conditions. For regions supporting

1



2 1. Introduction

tensile loads the fiber orientations grow in longitudinal direction and compressive loading results in trans-
versely oriented fibrils [3].

Similarly wood is also a fiber-composite. Wood is made from hollow elongated organic cells and the load
bearing capabilities stem from the cell wall. The walls are made from cellulose polymer microfibrils in a lignin
matrix. Wood yields anisotropic material properties, since the fiber orientation and cell elongation are pri-
marily in the load direction [4].

In the beginning of the 20th century a material with low density and relatively high stiffness and strength
properties was sought for by aircraft pioneers. Due to the small dimensions and low speeds of early aircraft
wood and fabrics were perfect and cheap solutions to build the frame and wings respectively. The anisotropic
properties of wood were used to its advantage in wired braced frameworks. The maturing of aircraft design
came with an increment in weight and speed and the specific properties of wood could not meet the new
requirements. During the 30s the industry started to implement aluminum alloys that showed superior spe-
cific properties. Different alloys have been developed and the aerospace industry has been dominated by
isotropic material design to the end of the 20th century.

Table 1.1: General material properties of an aluminum alloy, GFRP and CFRP [5].

Property Unit Aluminum GFRP CFRP
Density kg/m3 2700 1800 1600
Stiffness GPa 69 39 181
Ultimate Tensile Strength MPa 276 1062 150

The use of anisotropic materials by load bearing structures in nature shows that isotropic material design
is not the most efficient. With increasing flight speeds and the start of the space age even better material
properties were demanded. Anisotropic glass fiber reinforced polymers (GFRP) have been available since the
30s and showed increased design flexibility and great strength, but the accompanied low stiffness made it not
suitable for mass adoption. A better fiber bed was researched and in the 50s graphite fibers were applied with
excellent properties. It took another decade before high performance continuous carbon fiber reinforced
polymers (CFRP) were manufactured using rayon as the starting compound. General material properties of
aluminum, GFRP and CFRP are given in Table 1.1. Due to the better material efficiency of CFRP aluminum
alloys are slowly being replaced in the aerospace industry to increase the structural efficiency of air- and
spacecraft, this trend is supported by Figure 1.1.

Figure 1.1: Implementation of composite structures in aircraft is illustrated by an incremental trend. From Kassapoglou (2010) [6].

1.3. Variable-Stiffness Composite Laminates
A CFRP laminate is build from multiple plies that are stacked together, this is illustrated in Figure 1.2. Initially
only conventional ply orientations of 0, ±45 and 90 degrees were used due to manufacturing constraints. A
conventional quasi-isotropic laminate is often used as a reference design. Even though quasi-isotropic lam-
inates already benefit over aluminum by a higher specific strength and stiffness, it can be further improved
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by tailoring the laminate design to take advantage of the anisotropic ply properties and to increase material
efficiency. Tailored correctly this results in an increased structural performance, allowing a capable design
with less material and reduced weight.

With the development of automated tape laying (ATL) machinery manufacturers show more interest in
non-conventional laminate production. A wider range of fiber angle orientations can be considered for lami-
nate design and a larger design space is addressed. To further increase the design space the aerospace indus-
try shows interest in variable-stiffness laminate design.

Figure 1.2: Laminate constructed from multiple plies with different orientations. From Jones (1980) [7].

Varying the laminate thickness is the most straight-forward mean to vary the stiffness of a laminate and to
further tailor the design. Local thickening by additional plies can alter the stiffness at these regions, the same
holds for ply drops. Another way to design a variable-stiffness laminate is by intra-ply stiffness variation.

A feasible way to manufacture intra-ply variable-stiffness for conventional laminate design is to create
discrete patches with independent fiber orientations, this is illustrated in Figure 1.3 (left). The result is a dis-
crete variable-stiffness laminate. Taking the limit of this approach with infinitesimal patches results in contin-
uous variable fiber paths, also illustrated in Figure 1.3 (right). With this method a spatially variable-stiffness
laminate can be designed with continuous changing stiffness from point to point [8, 9]. This approach holds
more design freedom and avoids stress concentrations between patches.

Production techniques were not capable to produce such designs for a long time. Unlike filament wind-
ing that can change the tow orientation on the go, ATL is limited to straight fiber paths. Advanced Fiber
Placement (AFP) is a hybrid that offers the flexibility of both filament winding and ATL. AFP is a relatively
new production technique with only 20 operational machines in 1999 [10]. With the development of this
novel system curvilinear fiber paths can be placed, thus it is feasible to manufacture intra-ply variable stiff-
ness panels nowadays [11–13]. Potentially this can save weight of structural components if the increment in
tailoring freedom leads to a significant performance boost. Theoretically it is possible to reduce stress con-
centrations by designing the fiber paths in a way that stresses are distributed to less loaded areas [14–17].

Figure 1.3: Discrete patches of material (left) and continuous variable fiber paths (right). Two ways to create variable-stiffness laminates.
From IJsselmuiden (2011) [18].
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1.4. Research Objective
The capability to produce variable-stiffness composites is very promising and allows for sophisticated de-
signs. Airbus Defence and Space is interested in variable-stiffness laminates and wants to investigate how
such design could improve the structural performance of an engine thrust frame (ETF). An optimization
framework is developed by the aerospace structures and materials department at TU Delft to optimize variable-
stiffness laminates. The engine thrust frame is subject to thermal loads, something not incorporated in the
available optimization framework. Before a design study can be executed thermal loads should be imple-
mented in the laminate analysis routine and the optimization framework. Therefore the research is split into
two research objectives:

1. Implementation of thermal loads in the laminate analysis routine and incorporation of the correspond-
ing influences in the optimization framework.

2. Modeling and conceptual design optimization of the variable-stiffness laminate of the engine thrust
frame under thermomechanical loads.

The first objective is to include thermal analysis in the existing framework. The existing framework also
includes thickness optimization. Ply densities will be included in the thermal laminate and optimization
analysis to prepare the framework for thickness optimization in future work. However, thickness optimization
is outside the research scope and will not be used for the design application in this project. After the existing
framework is updated to work with thermomechanical load conditions the newly obtained routine will be
verified.

Only then the conceptual design optimization of the ETF is executed. The design problem is split in three
design cases and complexity is added to the model by every design iteration. First a constant thickness design
is considered, followed by a tapered thickness design. Finally stiffeners will be added to model a stiffened
tapered design.

1.5. Report Structure
First a state-of-the-art background is given in chapter 2. This includes a brief explanation of the AFP pro-
duction technique and its characteristics, followed by a historic overview of variable-stiffness optimization
based on different parameterizations. Composite laminate analysis is treated in chapter 3, including ther-
mal analysis. The implementation in the linear finite element and buckling analysis is also discussed. The
optimization framework is discussed in chapter 4 and the influence of thermal loads is explained. After the
framework is updated the optimization routine is verified in chapter 5. The conceptual design results of the
ETF are thoroughly discussed in chapter 6. After the results are discussed a conclusion of the project is drawn
in chapter 7 and finally recommendations for future work are given in chapter 8.
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Relevant background information about variable-stiffness panels will be discussed in this chapter. The Au-
tomated Fiber Placement (AFP) machine will be addressed in section 2.1 to describe its working principle
and how the characteristics influence fiber steering. Over the past two decades many studies have been
performed to research variable-stiffness panels by fiber steering. Different parameterizations are used to de-
scribe the design. The optimization problem is influenced by the chosen parameterization, therefore the
different parameterizations will be discussed in section 2.2.

2.1. The Automated Fiber Placement Machine
Nowadays most companies involved with composite manufacturing adapted Automated Fiber Placement
technologies. Although all machines will be different they are all based on the same working principles [19].
All machines have a creel; a storage chamber to store tows or slittape on bobbins. The creel has controlled
conditions and come with tension regulated bobbin unwinding systems. A tow feeding system feeds the tows
to the placement head with regulated tension. A schematic of a general placement head is given in Figure 2.1.

Figure 2.1: A schematic of a placement head for automated fiber placement machines. From Evans (2001) [19], adjusted by Lopes et al
(2008) [20].

The most notorious improvements during its maturing are the switch from soaked to prepreg systems
and development of cut, clamp and restart (CCR) technology. The former improves the quality of the resin
fiber bed and the latter gives the possibility to cut and restart tows on the fly [10]. The head is capable to feed
individual tows with controlled tension by the tenstion regulated unwinding system. This differentail pay out
is one of the key features and important to allow different tows to conform the shape of the mold individually.
The CCR technique allows to control the width of the fiber band by adjusting the amount of tows that are
placed. After the CCR system the tows are flattened and fed as a collimated fiber band which will be heated
before the compaction rollers presses the band firmly on the mold and previous layers [19]. Depending on

5
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the type of polymer the heating is normally done by infra-red or laser heating devices for thermosets and
thermoplastics respectively [21]. Multi-axial range of motion allows the head to follow complex band paths
which are given as an input to the placement machine.

Figure 2.2: Curved tows have compression on the inside and tension on the outside. This limits the minimum curvature of a fiber to
avoid local buckling. From IJsselmuiden (2011) [18].

2.1.1. Characteristics
The fiber placement technique has characteristics directly related to the design of composite structures. It
is important to know what these limitations are since they influence the feasible design region. The most
important characteristics are listed:

• Curvature: This is a geometric constraint on the design by the tows rather than the machine itself. A
tow is curved by in-plane bending and local compression and tension are present at the curve, this is
illustrated in Figure 2.2. Alternatively in-plane angle variation by shearing is researched [22].

The smaller the turn radius the higher the compression becomes and local buckling can occur [19, 23,
24]. Although it might be possible for the placement head to turn with a small radius this could cause
excessive local buckling of the tows which reduces the local load bearing capabilities of the structure.
A minimum curvature constraint is introduced on the design to avoid this. The minimum curvature is
affected by the tow size, smaller tow width can follow smaller radii but will slow down the manufactur-
ing process. For an 3.2mm tow or slit tape a minimum turn radius of 625mm is suggested in literature
[19, 24].

• Minimum cut length: This is a geometric constraint by the machine. With the CCR technology fiber
placement machines can cut and place tows on the go. The minimum cut length determines the short-
est tow the machine is able to place. The minimum cut length depends on the design of the machine
and is given by the distance between the cutting mechanism and the compaction roller [19]. In the
design this limitation has to be accounted for that every tow in the design can be placed. If tow lengths
smaller than the minimum cut length are present in the design the machine is not able to place and a
resin rich pocket without fiber content is produced instead.

• Mold size and shape: This is a geometric constraint by the machine. The mold and placement machine
should not collide and this influences suitable mold sizes and shapes. This is important to consider
for concave designs since chances of collision are inherently more present. Fiber bridging should be
considered if the turn radius of the mold becomes steep [19]. Tackiness helps to avoid fiber bridging.
Since Thermoplastic resin systems have less tackiness it is essential to lower the tension forces of the
bobbins to avoid fiber bridging [25].

• Deposition Rate: This is a capacity and productivity constraint by the machine. Deposite rate depends
on the fiber band size and the speed of the placement head. The band size is determined by the amount
of tows and the tow width. More and larger tows results in a larger surface area covered by one iteration.
However this limits steering and consequently diminishes the advantage of AFP.

2.1.2. Future Development: In-situ Consolidation
Traditionally epoxy is used in the aerospace industry, however a shift is noticable towards thermoplastic poly-
mers due to their better toughness, fracture resistance and low cost production cycles [25, 26]. Curing and
consolidation takes place in an autoclave, but the usage of autoclaves results in costly and slow production
cycles and is considered to be a bottleneck for AFP [25]. New in the field are the new generation AFP machines
that are able to use thermoplastic polymers with similar production speeds as thermoset polymers [21].



2.1. The Automated Fiber Placement Machine 7

For a long time in-situ consolidation with AFP was thought to be unfeasible. This idea was based on
classical reptation theory introduced by Gennes. One of the assumptions in raptation theory is that it takes
time to establish proper diffusion of polymer chains. In-situ consolidation comes with quick application of
pressure causing shear thinning. This enhances diffusing significantly, thereby ultrasonic vibrations can be
used to further improve diffusion [25]. Another aspect of reptation theory is that pressure is important to
ensure intimate contact. However, the influence of pressure on bond strength is proven to be limited [27],
although pressure is still important to reduce the inter and intra-laminate void content [28].

Development of diode laser heating devices result in very short and effective heating times with a narrow
affected heating zone [21]. Polymer degradation due to repeatedly high temperature heating by in-situ con-
solidation is overstated due to this short heating time and small heat affected zone [25].

Although thermoplastic in-situ consolidation AFP machines are commercially available the quality is still
sub-par compared to autoclave post-processing of both thermoset and thermoplastic composite structures
[25]. Accudyne systems, NASA, and the university of Delaware performed a series of studies to research the
most important parameters to get in-situ consolidation to a next level [29–31]. The void content after in-situ
consolidation was too high to compete with autoclave quality. The supplied tows need better surface rough-
ness and resin rich tow surfaces to reduce interlaminar void content to create full layer to layer weld strength.
A new experimental placement grade tow shows improvement in strength of 7% compared to commercial
available tows and slittape. This is promising and could close the gap with autoclave processes.

2.1.3. Parallel and Shifted Fiber Bands
The main design decision regarding manufacturing of variable-stiffness laminates is how the fiber courses are
given as input to the placement machine. For varying fiber paths in one spatial direction the first technique is
to apply parallel courses [32]. Adjacent courses follow the trajectory of the reference course, this is illustrated
in Figure 2.3 (left). The advantage is that adjacent fiber bands are perfectly aligned and no gaps or overlaps
are present. The disadvantage is that the courses deviate from the optimum reference course. Furthermore
the steering constraints can be voided.

Figure 2.3: Parallel fiber courses (left). Shifted fiber courses with gaps (middle). Shifted fiber courses with overlap (right). From Gurdal
and Tatting (2006) [32].

Another technique is to shift the reference course, illustrated in Figure 2.3 (middle). In contrast to the
parallel technique the curvatures of the optimum reference path are contained, however resin filled gaps are
now present. These gaps have no fiber content and reduce the mechanical properties of the structure. Alter-
natively adjacent courses can overlap to elminate resin filled gaps, this is given in Figure 2.3 (right). Although
this yields favorable properties more material is added by local thickening and the weight of the structure
increases. To prevent thickening accumulation and evenly distribute the properties over the panel ply stag-
gering is applied [12].

Tow-Drop and Overlap Techniques
The AFP machine comes with differential control of tows and the control of the bandwidth by the CCR tech-
nique. It is therefore possible to prevent overlap of shifted fiber bands by dropping tows one by one at the
boundary of adjacent band courses. This is referred to as the tow-drop method and is illustrated in Figure 2.4
(left). As a reference the tow courses for the overlap method without tow-drops are given in Figure 2.4 (right).

With the tow-drop method it is important to indicate the coverage of the tows [33]. The percentage of cov-
erage indicates how much the tows overlap previous placed fiber courses at the boundary curve before they
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Figure 2.4: Manufacturing with tow-drops to prevent overlap (left) and without tow-drops with full overlap and local thickening (rigth).
From Gurdal and Tatting (2005) [33].

are cut. A coverage of 0% indicates that the tow is cut once the leading edge reaches the boundary curve. The
result is that there is zero overlap and small resin rich gaps are present. A coverage of 100% indicates cutting
once the trailing edge reaches the boundary curve. The result is full coverage and no gaps but small overlaps
are present. The coverage is illustrated in Figure 2.5 for 0, 50 and 100% coverage. Note that there is some local
thickening of tow-drop with 100% coverage, but limited compared to a fully overlap manufacturing method
where tows are not dropped.

Figure 2.5: Coverage percentage for the tow-drop production technique. From Gurdal and Tatting (2005) [33].

Croft et al performed coupon and laminate tests to show the influence of gap and overlap defects on the
ultimate strength [34]. Overlap placement show minor improvements in tensile and compression strength,
whereas tow-drop techniques show improvements in shear strength.

2.2. History and Parameterization of Variable-Stiffness Laminates
Intra-ply stiffness variation can be established by spatially varying the material properties within a ply. There
are multiple ways to optimize a laminate with spatially varying fiber orientations. Suitable optimization al-
ghorithms to design variable-stiffness laminates depend on the choice of parameterization. Three parame-
terization methods can be distinguished, namely discrete stiffness represenation, functional representation
of fiber paths and the direct stiffness approach [18].

2.2.1. Discrete Stiffness Representation
This parameterization approach uses design variables related to the stacking sequence, that is the fiber ori-
entation of each ply or subsets of plies. This is directly related to the stiffness properties of the laminate by
classical laminate plate theory. This approach is intuitive, since it is a bottom-up design process commonly
applied to design traditional composite panels.

One of the first propositions to design variable-stiffness panels is based on discrete stiffness representa-
tion. In 1989 Hyer and Charette researched curved fibers around a center hole to improve the mechanical
properties of a panel under tensile loads [8]. To obtain a spatially varying fiber path the structure is dis-
cretized into a mesh grid. For all elements the fiber angles were aligned with the local principle stress direc-
tions and improved in-plane behavior was obtained. In a follow-up study Hyer and Lee modelled the same
quarter plate and used a gradient search optimization routine to maximise the buckling load for uniform end
shortening [9]. To limit the amount of design variables every element is represented by a (±45|θ6)s stack-
ing sequence. A radial mesh of 6 elements and a mesh that refines each radial element in 3 elements are
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modeled. The optimal fiber orientations are given in Figure 2.6. Compared to a quasi-isotropic design the
buckling resistance was improved by a factor of 1.85 and 2.96 for both mesh grids respectively. Nagendra et al
implemented constraints to ensure continuity and smoothness of the fiber angle orientations. The buckling
improvement factor was reduced to 1.72 for the 6 element mesh grid [35].

Figure 2.6: Discretization of a quarter plate into 6 radial elements (left) and 18 elements (right). For the given fiber orientations a buckling
resistance improvement of 1.85 and 2.96 compared to an isotropic design was found respectively. From Hyer and Lee (1991) [9].

In 1991 Pedersen applied optimallity criteria based on strain energy to optimize for both thickness and
fiber orientations [36]. Thickness optimization results in a uniform strain energy distribtution and orienta-
tion optimization improves the stiffness by strain minimization. In 2004 the work was extended to include
manufacturing considerations into the thickness optimization. With a black and white formulation plies are
either fully present or not at all [37].

In 2003 Setoodeh and Gurdal optimized a plate with a center hole under tension and shear loading by
Cellular Automata [38]. To get a smoother variation of fiber orientations the design variables are defined at
the nodes instead of the elements. To get the stiffness at the elements the nodal results are simply averaged.
This approach is used before in topology optimization using cellular automata to avoid checkerboard results
[39]. Pattern matching is applied is applied to generate smoother designs. Improvements of 50% and 72% in
compliance was obtained for shear and tensile loads respectively. In a follow-up study the previous study was
extended to include topology optimization [40].

Defining the stacking sequence at discretized locations the number of design variables increase rapidly
with increasing mesh densities. To ensure a manageable design space the degree of discretization is limited.
Structural responses are related to the stiffness matrices of the laminate. The stiffness properties have a non-
linear relation with the fiber angle orientation. Therefore most structural responses behave in a non-convex
way in the fiber angle design space and the design result can be a local optimum [9, 41, 42].

2.2.2. Functional Representation of Fiber Paths
The disadvantages encountered with discrete stiffness representations led to functional representation of
fiber paths. Parameterization is related to the fiber paths. At discrete points the stacking sequence can be
derived as a function of the fiber paths and the stiffness matrix can be computed.

Linearly Varying Fiber Orientations
Inspired by the idea of variable-stiffness laminates Gurdal and Olmedo were the first to introduce a pa-
rameterization based on a curvilinear fiber paths in 1992 [14, 15]. A simple parameterization that only lin-
early varies the orientation along one spatial direction was introduced due to limitations of processing tech-
niques and in an effort to use realistic manufacturable fiber paths. The general form of the spatially varying
fiber angle is given by Equation 2.1 and illustrated in Figure 2.7. Corresponding fiber paths are denoted as
< φ, (T0 | T1) >, where φ indicates the direction of linear variation and T0 and T1 represent the fiber orienta-
tions at the center and edges of the panel respectively.

In the same year Gurdal and Olmedo evaluated the buckling response of variable-stiffness panels with
curvilinear fiber paths [16, 17]. For a simply supported rectangular plate under uniform end shortening with



10 2. State-of-the-Art Background

Figure 2.7: Fiber path by linearly varying the fiber orientation. The fiber paths is defined by parameters φ, T0 and T1. From Gurdal et al
(2007) [16].

straight transverse edges it is shown that load is distributed from the middle towards the edges. The edges
are more restrained from buckling by the boundary conditions than the middle region, hence the critical
buckling load is increased. This study proves that redistributing load by global design can be more beneficial
than local optimization for bending stiffness. Improvements up to 80% over straight fiber laminates were
found for panels without adding weight. This effect increases for larger aspect ratios.

θ
(
x ′)=φ+ (T1 −T0)

d
x ′+T0 (2.1)

In the previous studies manufacturing constraints on curvature imposed by the tow placement machines
were not included. However, this introduced parameterization allows for easy implementation of manu-
facturing constraints and consequently this was done by Waldhart et al [43]. Results for the same buckling
application now only yield 44% improvement over the optimal straight fiber design. Thereby an updated for-
mulation of the fiber paths allows for truly parallel fiber paths within a ply, causing the stiffness also to vary
in y-direction for < 0,(T0|T1) >. The parallel fiber paths do not distribute the stresses to the transverse edges
as effective as the shifted fiber paths do, therefore reducing the critical buckling load.

Figure 2.8: Ideal design (left) vs a design with tow drop and staggering corrections (right) for < 0,(0|80) >. From Lopes et al (2010) [44]

In 2007 Lopes et al studied the buckling and first ply failure of panels with linearly varying fiber orien-
tations by finite element analysis (FEA) [20]. They used the LaRC0# failure criteria developed by Langley
Research Center for fiber reinforced laminates. This failure criterion is able to assess different failure modes
and is suitable for computational analysis [45]. The loads corresponding to first ply failure increased by 34%
and 25% for tow-drop and overlap tow placement respectively. In a follow-up study a rectangular plate with
a center hole was optimized for first ply failure [44]. An improvement of 20% for an optimal variable-stiffness
design was obtained over the optimal straight fiber baseline panel. Applying manufacturing corrections to
account for tow-drop and staggering yields and improvement of roughly 13%. The differences between the
ideal and manufacturable design are illustrated in Figure 2.8.

Blom et al investigated the influence of the tow-drop technique on the strength and stiffness of variable-
stiffness panels [46]. By FEA and the LaRC0# failure criteria the influence of tow-drops, staggering, tow-width



2.2. History and Parameterization of Variable-Stiffness Laminates 11

and laminate thickness are investigated. In most cases damage is initiated at tow-drop areas. Reducing the
tow width to reduce gaps and using a staggered design improves the strength.

Experimental Results
Wu et al manufactured two panels based on the optimal design found by Waldhard with tow-drop and overlap
techniques with the Viper Fiber Placement System from Cincinnati Machines [11]. The result of both tech-
niques are given in Figure 2.9, note that the overlap regions caused a weight increment of 20%. For uniform
end shortening an excellent correlation between experimental data and analysis was found for linear pre-
buckling. Larger differences were found for non-linear post-buckling. Including thermal pre-stresses caused
by curing in the analysis improved the buckling and failure prediction. Compared to a conventional baseline
design of ±45o an improvement of 28% was measured for the failure load of a panel with overlaps and 8% for
a panel with ply drops. These values are corrected for weight differences, however local thickening stemming
from the overlap technique functions as a stiffened design which improves the load carrying capability of the
panel.

Figure 2.9: Panels manufactured with the tow-drop (left) and overlap technique (right). From Gurdal and Tatting (2002) [47]

In two follow-up studies the commercial FEA routine STAGS (Structural Analysis of General Shells) from
Lockheed Martin and the OLGA (Optimization of Laminates using Genetic Algorithm) optimization routine
from ADOPTECH were integrated [32, 47]. The obtained automated analysis routine is used to determine the
optimal linear variation of fiber orientations to increase the buckling resistance of a plate with a center hole
under compressive and shear loads. Jegley et al conducted experiments and reasonable agreement with the
numerical results was found [12, 13]. Improvements of 10% and 30% were predicted and improvements of
10% and 90% were found by the experiments for panels with the tow-drop and overlap techniques respec-
tively. Thermal pre-stresses are not included in the numerical analysis and could be a possible cause for the
deviation.

Weaver et al researched post-buckling effects [48]. Experiments concluded that for an optimized variable-
stiffness panel the post-buckling stiffness was still 92% of the pre-buckling stiffness, whereas for a quasi-
isotropic baseline design the post-buckling stiffness dropped to 72%. Additionally the critical buckling load
was 30% higher.

Conical and Cylindrical Surfaces
Blom et al derived path definitions for conical and cylindrical geometries to apply linearly varying fiber orien-
tations [49, 50]. Fiber angles are measured in polar coordinates with respect to the projected center line, this
is illustrated in Figure 2.11 on a flattened cone. The reference system coincides with the principal axes of the
structure [33]. In-plane steering curvature and out of plane geometric curvature are split, and only the former
is used for the steering constraint imposed on the design optimization. Due to the decreasing circumference
overlap is inherent, for a two layer laminate this is illustrated in Figure 2.10. The tow drop technique becomes
essential to produce constant thickness plies, even if no steering is present.

The path defenitions are used by the same authors to maximize the fundamental eigenfrequency of a
conical structure [51]. For larger dimensions the fundamental frequency was increased up to 20%. The work
was extended by a design study of a cylinder under a bending moment. The optimization objective is to
maximize the buckling load subject to manufacturing, strength and stiffness constraints [52]. Multiple seg-
ments are used in circumferential direction to increase the design flexibility and the complete fiber path is
formulated by five parameters. The structural responses behave non-convex in the design space due to the
dependence on the fiber angle design parameters. A design of experiments is conducted to sample the de-
sign space. A surrogate model is build to approximate the structural responses and its derivatives to reduce
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Figure 2.10: Overlap is inherent for conical surface
if tow-drops are not applied. From Blom et al
(2006) [49].

Figure 2.11: Rectangular and polar coordinates for annular surfaces. Polar coordi-
nates are more convenient to describe the fiber orientation in principal directions.
From Gurdal et al (2005) [33].

the number of finite element evaluations. Improvements up to 17% were found compared to a traditionally
optimized baseline design.

Other Fiber Path Parameterizations
Blom et al applied multiple segments to increase design flexibility. For this reason other paths representations
are also researched. For example Lobatto-Legendre polynomials are introduced by Alhajahmad et al to add
non-linear variation in fiber orientation [53]. With the gain in design freedom larger improvement steps were
found.

In general the limited amount of design variables makes functional representation of fiber paths an ex-
cellent parameterization for early research of variable-stiffness design applications. However it primarily
focuses on global design and does not use the complete tailoring flexibility offered by the AFP production
technique.

2.2.3. Direct Stiffness Approach
The limited design flexibility from the functional representation of fiber paths resulted in the need for a pa-
rameterization that offers more design freedom. While the discrete stiffness representation offers this the
structural responses show a non-convex behavior in the fiber angle design space. The direct stiffness pa-
rameterization uses a top-down approach a design parameters are directly related to the stiffness matrices.
Although this may not be as intuitive the advantage is that this approach is independent of the amount of
layers, reducing the design space significantly for thicker laminates.

Lamination Parameters
Laminate analysis by classical laminate plate theory is discussed in chapter 3. The stiffness properties of
a laminate plate are represented by the ABD-matrix, which contains 18 unique entries. The entries them-
selve could be used as paramterization, but more convenient parameterization methods are introduced over
time to reduce the amount of design variables. The most common parameterization is the use of lamina-
tion parameters, introduced by Tsai and Pagano in 1980 [54]. Lamination parameters are functionals of the
through thickness distribution of fiber orientations. Laminate analysis by lamination parameters is elabo-
rated in chapter 3. In the most general case 12 lamination parameters are required to describe the stiffness
matrices, but for balanced symmetric stacking conditions only 6 lamination parameters suffice.

The stiffness matrices are linearly dependent on the lamination parameters. Svanberg proved that con-
vex objective functions can be created if the structural stiffness is linearly dependent on its parameterization
[55]. Grenestedt and Gudmundson proved that convexity of the object functions in the lamination parameter
design space is independent of stiffness variations within the laminate [56]. This is an important property
related to variable-stiffness laminates [56].

Once one lamination parameter is chosen the others cannot freely be chosen since the lamination param-
eters are interrelated. The explicit feasible design region in R12 is still unknown. In 2006 an efficient approach
to implictly determine the feasible design region is introduced by Setoodeh et al that uses feasible points to
create convex hulls [57]. This approach forms the basis for an optimization algorithm developed by TU Delft
to design variable-stiffness laminates in the lamination parameter design space.
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In a follow-up study by the same authors the convex hull of the feasible design region is used to optimize
a variable-stiffness laminate for in-plane behavior under in-plane and out of plane loads [58]. Compliance
minimization was numerically solved with Feasible Sequential Quadratic Programming which uses the gra-
dient of the complementary strain energy. Compared to the constant stiffness optimum an improvement of
36% was obtained. Optimization in the fiber angle design space yields an improvement of 30%. These results
show the superior use of lamination parameters over fiber angles to determine the optimal stiffness distribu-
tion. Optimization in lamination parameter space is characterized by a well-behaved convex design problem.
This leads to a global optimum, whereas local optima are present in the fiber angle design space. However
the lamination parameters were not converted to discretized stacking sequences, which contributes to the
difference.

Sequential Approximation Routine
In 2007 the research was extended by Abdalla et al by implementing successive approximations to generate
separable approximations of the objective function and constraints [59]. Approximations are an integral part
of gradient based optimization and chapter 4 elaborates on different approximation routines. Abdalla et al
carried out the optimization on the reciprocal approximation, ultimately leading to a new design. Only then
the design will be analyzed using FEA, improving computational efficiency. This new evaluation leads to an
updated approximation. Separability is convenient in discretized domains, since the design variables can be
optimized locally at the nodes. Using different aspect ratios increments up to 30% in fundamental frequency
was obtained.

In a follow up study in 2008 IJsselmuiden et al applied the method of successive approximations to buck-
ling analysis [60]. For buckling the reciprocal approximation is non-homogeneous and non-convex, therefore
a hybrid approximation aggregated from the linear and reciprocal approximations was introduced. Addition-
ally, to improve the behavior of the optimization algorithm the conservative convex separable approximation
introduced by Svanberg is implemented [61]. Optimizing for a simply supported plate under uniform end
shortening results in an increment of 55% in critical buckling load. The lamination parameter distribution
shows increased flexural stiffness in the middle area and increased in-plane stiffness around the edges. That
is the critical buckling load optimized by local optimization of buckling resistance and global load redistribu-
tion from the middle area to the restrained edges.

Although the developed algorithm is suitable for in-plane and flexural stiffness design, designs based on
strength are still impossible due to the nature of lamination parameters. Established failure criteria depend
on fiber angles, and only after the fiber angle distribution is obtained in a post-processing step strength can
be assessed. To resolve this IJsselmuiden et al introduced a conservative failure envelope in strain space.
A strength response approximation is implemented within the lamination parameter optimization frame-
work [62]. Although stiffness maximization may be used to limit excessive deformations and corresponding
stresses in preliminary design, this research showed that strength based optimization yields a 48% higher
safety factor.

In 2009 the buckling response approximation was updated to include buckling of curved shells [63].
Multi-modal buckling evaluation was integrated by Falk’s dual formulation to include shifts between buck-
ling modes. Compared to an isotropic design improvements up to 70-80% were obtained. A follow-up study
used the same algorithm to research other compressive load applications to a variable stiffness panel [64]. A
performance gain up to 189% was obtained over a conventional quasi-isotropic laminate.

Multi-Step Framework
Fiber placement machines cannot use lamination parameters as input. Once the lamination parameter dis-
tribution is known it is therefore essential to obtain a corresponding fiber angle distribution. The problem
is that lamination parameters yield non-unique equivalence to stacking sequences and that the relation is
non-convex [65]. Inclusion of manufacturing constraints increase the difficulty of the conversion optimiza-
tion problem. In 2011 IJsselmuiden combined lamination parameter optimization, fiber angle retrieval, and
fiber path construction into a 3-step design framework to get the optimal fiber path distribution [18].

Khani et al applied the multi-step approach to a reactangular plate with a center hole under uniaxial ten-
sion [66]. An updated failure index for strength analysis is implemented. Using a strength based optimization
over a maximum stiffness optimization results in a better stress distribution, this is illustrated in Figure 2.12.
The two post-processing steps to retrieve the fiber angle and fiber path result in the fiber path distribution
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given by Figure 2.13 for a symmetric and balanced 16-ply laminate.
In two follow-up studies Khani et al used the same multi-step approach to design cylinders for maximum

buckling resistance successfully [67, 68]. Strength constraints were applied and improvements up to 30% are
obtained.

Figure 2.12: Failure index for a quasi-isotropic design (a), a design based on maximum stiffness optimization (b), and a design based on
minimum failure index (c). Note the effective distribution for the latter, where the loads are almost equally carried by the entire structure.
From Khani et al (2011) [66].

Figure 2.13: Retrieved fiber paths corresponding to minimum failure index optimization. From Khani et al (2011) [66].

Extension by Fiber Angle Parameterization
The fiber angle retrieval remains difficult, therefore Peeters and Abdalla adapted the multi-step framework to
work with a discrete stiffness approach based on fiber angles [69, 70]. The approximations implemented in
the multi-step framework are given in stiffness space for generality. Since the stiffness properties are linearly
related to the lamination parameters the lamination parameters are directly superimposed. The general for-
mulation allows to form an approximate sub-problem in the fiber angle design space. This shows similarities
with a study by Setoodeh et al from 2008 where the generalized reciprocal approximation was used in the
fiber angle design space [71].

If the general approximation is based on the optimal lamination parameter distribution the new approach
can be used as a retrieval step to determine the corresponding fiber angle distribution. Furthermore true
optimal fiber angle distributions are obtained by additional optimization iterations, thereby manufacturing
constraints are directly imposed on the optimization design problem.

Peeters et al also added other functionalities to the algorithm, such as topology optimization, implemen-
tation of the 10% design rule and ply drop optimization [72–75].

Relevance to the Research Objectives
The multi-step framework and sub-approximations in fiber angle space form the basis of the presented work,
therefore they are extensively discussed in chapter 4. Emphasis is on the optimization step that uses the
successive, conservative and separable approximation mentioned before, but the fiber angle and fiber path
retrieval steps are also briefly covered.

In chapter 4 the influence of thermal loads are added to the approximations and thermomechanical sen-
sitivities are derived. The updated framework is used to conceptually design the engine thrust frame with a
variable-stiffness laminate design.



3
Composite Laminate Analysis

Before the optimization framework is updated to include thermal effects composite laminate analysis is ex-
plained in this chapter. Classical laminate plate theory is briefly summarized in section 3.1 and laminate
analysis by lamination parameters is discussed in section 3.2. To assess strength the Tsai-Wu failure criteria
is shortly discussed in section 3.3. Section 3.4 explains how thermal loads can be obtained from the stacking
sequence and lamination parameters. In section 3.5 thermal loads are included in the linear finite element
and buckling analysis. At last section 3.6 will explain how thermal laminate analysis is implemented in the
existing framework that is used for the optimization of variable-stiffness panels by fiber steering.

3.1. Classical Laminate Plate Theory
Classical laminte plate theory is thouroughly explained by many authors and is for this report based on Jones,
Kassapoglou and Tsai and Hahn [6, 7, 76]. In order to simplify the calculations the constitutive relation can
be simplified by plane stress assumption. It is assumed that there are no stresses at the upper side and lower
side of the laminate. As a result it can be assumed that the out-of-plane variation of stresses is zero since
the laminate is very thin compared to the other dimensions, i.e. stresses σ3 ≈ τ13 ≈ τ23 ≈ 0. According to
Jones (1975) this assumption is not a mere idealization but functions as an objective. A lamina should only be
loaded in plane stress since this is intrinsic to a lamina’s fundamental capabilities. The constitutive equation
describing the stress-strain relation for a single ply is now given by:


σ1

σ2

τ12

=
Q11 Q12 0

Q12 Q22 0
0 0 Q66


ε1

ε2

γ12

 (3.1)

where Qi j are the stiffness terms. To use this relation the orthotropic material ply properties are required.
By standard coupon test the axial stiffness properties E1, E2 and major Poisson ratio ν12 can be obtained.
Pure shear tests are performed to get the shear modulus G12. The minor Poisson’s ratio can be calculated by
the relation:

ν21E1 = ν12E2 (3.2)

(3.3)

The stiffness terms Q11, Q12, Q12 and Q66 can be expressed by the orthotropic material ply properties:

Q11 = E1

1−ν12ν21
(3.4)

Q12 = ν12E2

1−ν12ν21
= ν21E1

1−ν12ν21
(3.5)

Q22 = E2

1−ν12ν21
(3.6)

Q66 =G12 (3.7)

15
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x

y

12

θ

Figure 3.1: The fiber orientation θ indicates the angle between the principal axes of the ply (1,2) and the global laminate coordinate
system (xy).

Constitutive Relation for a Rotated Ply
The given relations are for a single orthotropic ply. The main advantage of laminates over isotropic mate-
rials is that it is assembled from multiple plies. This gives the opportunity to tailor the design by orienting
plies in different directions to improve structural performance. The in-plane rotation of a ply is illustrated
in Figure 3.1, where θ is positive for counterclockwise rotation and represents the fiber angle orientation of
a ply with respect to the laminate reference system. Stress and strain components will change due to this
rotation according to prescribed patterns. To obtain the stiffness matrix that is aligned with the laminate co-
ordinate system the stiffness matrix in lamina coordinates is rotated. The constitutive stress-strain relation
for a rotated ply in the laminate coordinate system is given by:


σx

σy

τx y

=
Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


εx

εy

γx y

 (3.8)

where entries Q̄i j form the transformed reduced stiffness matrix. The transformed reduced stiffness terms
can be calculated using n = sinθ and m = cosθ:

Q̄11 = m4Q11 +n4Q22 +2m2n2Q12 +4m2n2Q66 (3.9)

Q̄22 = n4Q11 +m4Q22 +2m2n2Q12 +4m2n2Q66 (3.10)

Q̄12 = m2n2Q11 +m2n2Q22 + (m4n4)Q12 −4m2n2Qss (3.11)

Q̄66 = m2n2Q11 +m2n2Q22 −2m2n2)Q12 + (m2 −n2)2Qss (3.12)

Q̄16 = m3nQ11 −mn3Q22 + (mn3 −m3n)Q12 +2(mn3 −m3n)Q66 (3.13)

Q̄26 = n3mQ11 −nm3Q22 + (nm3 −n3m)Q12 +2(nm3 −n3m)Q66 (3.14)

The variation of the transformed reduced stiffness terms for a varying fiber orientation are given in Fig-
ure 3.2. The variations show that optimization based on fiber angle parameterization results in a non-convex
response, the statement given in chapter 2.

Ply Density
Before explaining how the laminate properties are calculated the definition of ply density if introduced. Fig-
ure 3.3 (left) indicates the used convention for ply numbering. The first ply is the outer most ply laying at the
outside of the stack. In this work laminates are considered to be symmetric, therefore the last design layer d
lays at the symmetry axis. The through thickness coordinate z is also illustrated, where the through thickness
value at the top of ply k is indicated as zk−1 and the bottom as zk . Ply density is used to scale the ply thickness
to allow for thickness optimization. The density factor is a value between 0 and 1 and scales the physical
thickness t 0

k of ply k to a thickness to be used for laminate analysis by:

tk = ρk t 0
k for 0 ≤ ρk ≤ 1 (3.15)

This effect is explained in Figure 3.3 (right). Since such range of ply thickness is physically not possible
to manufacture it is preferred to have density values of either 1 or 0 referring to plies being fully present or
not present respectively. A black and white formulation is included in the optimization to either have a ply
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Figure 3.2: Variation of Q for a rotating fiber orientation θ. It shows the non-convex relation to the stiffness terms. Note that for a rotation
of zero degrees the components correspond to the stiffness matrix of a single ply: Q̄16 = Q̄26 = 0, Q̄11 = Q11, Q̄12 = Q12, Q̄22 = Q22 and
Q̄66 =Q66.
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Figure 3.3: Convention for ply numbering (left) and the influence of ply density on the ply thickness and through thickness coordinate z
(right). Reproduced from Peeters (2017) [77].

present or not, in this way thickness is optimized by ply drops. For generality the laminate properties are
calculated for any density value by changing the through thickness z-coordinates according to:

zk
(
ρ

)= s∑
i=1

ρi t 0
i −

k∑
j=1

ρ j t 0
j (3.16)

where s indicates the number of symmetric plies and k the ply of interest. The corresponding change in
ply-thicknesses will influence the laminate stiffness matrices A and D and the thermal load NT h , which will
be explained in the next section.

Laminate Stiffness Matrices
In classical laminate plate theory the strains are assumed to be linear through the thickness by Equation 3.17,
where ε0 is the mid-plane strain and κ is the curvature of the laminate. This is a crucial assumption based on
the Kirchhoff-Love theory [7].


εx

εy

γx y

=

ε0

x
ε0

y

γ0
x y

+ z


κx

κy

κx y

 (3.17)

The stresses in a ply depend on the fiber orientation, since this affects the transformed reduced stiffness
matrix. Laminates are normally very thin and it is convenient to use stress resultants which represent the
integrated stress state of the laminate by:
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N =
∫ h

2

− h
2

σ d z =
∫ h

2

− h
2

Q̄ε d z (3.18)

M =
∫ h

2

− h
2

σz d z =
∫ h

2

− h
2

Q̄εz d z (3.19)

where N is the force resultant per unit width and similarly M is the moment resultant per unit width.
With the stress resultants and the linear through thickness strains the ABD-matrix can be obtained. The
ABD-matrix relates the midplane strain and curvature to the force and moment resultants. The A-Matrix
corresponds to in-plane behavior of the laminate. The D-matrix corresponds to pure bending behavior of
the laminate. The B-matrix corresponds to bending-stretching coupling of the laminate. Based on the ply
orientation it is possible that the laminate bends under in-plane loads, or that the laminate exhibits in-plane
extension under bending loads. The A, B and D matrices are calculated by:

Ai j =
∫ h

2

− h
2

Q̄i j d z =
n∑

k=1
(Q̄i j )(k)(zk−1 − zk ) (3.20)

Bi j =
∫ h

2

− h
2

Q̄i j z d z =
n∑

k=1
(Q̄i j )(k)

z2
k−1 − z2

k

2
(3.21)

Di j =
∫ h

2

− h
2

Q̄i j z2 d z =
n∑

k=1
(Q̄i j )(k)

z3
k−1 − z3

k

3
(3.22)

Now the ABD-matrix is known the force and moment resultants are obtained by multiplication with the
mid-plane strain and the laminate curvature:



Nx

Ny

Nx y

Mx

My

Mx y


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε0
x
ε0

y

γ0
x y

κx

κy

κx y


(3.23)

It is mentioned before that in this work only symmetric laminates are applied. Therefore there is no
bending-extension coupling and the B-matrix is equal to zero. Therefore the governing equation is simplified
to:

N = Aε0 and M = Dκ (3.24)

3.2. Lamination Parameters
Traditionally laminate plate theory with fiber angle parameterization is used in the design of composite lami-
nates. Using this parameterization potentially creates an enormous design space for fine discretizations with
ill-behaved objective functions, as is explained in the chapter 2. Due to the non-linear relation between ply
angles and stiffness it becomes hard to understand how the ABD-matrix will change if multiple plies are ro-
tated.

An alternative is to use a direct stiffness approach based on lamination parameters. Lamination param-
eters were first introduced by Tsai and Pagano [54]. By use of various trigonometric identities they were able
to do rewrite the transformed reduced stiffness terms in a simplified form:
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Q̄11 =U1 +U2 cos2θ+U3 cos4θ

Q̄22 =U1 −U2 cos2θ+U3 cos4θ

Q̄12 =U4 −U3 cos4θ

Q̄16 =− 1
2U2 sin2θ−U3 sin4θ

Q̄26 =− 1
2U2 sin2θ+U3 sin4θ

Q̄66 =U5 −U3 cos4θ

(3.25)

U1 = 3Q11 +3Q22 +2Q12 +4Q66

8

U2 = Q11 −Q22

2

U3 = Q11 +Q22 −2Q12 −4Q66

8

U4 = Q11 +Q22 +6Q12 −4Q66

8

U5 = Q11 +Q22 −2Q12 +4Q66

8

(3.26)

Note that the sign in Q̄16 and Q̄16 is opposite to the sign used by Tsai and Pagano since they used the op-
posite sign notation for fiber orientation [14, 16]. The transformed reduced stiffnesses are based on material
invariants U1−5. These material invariants are invariant of orientation θ and depend on the material proper-
ties only. Therefore the newly obtained set of equations for Q̄i j contain an invariant part. In Figure 3.4 Q̄11

and Q̄22 are decomposed to show the variation of each term. Some understanding of the material invariants
can now be derived. The left graphs are the total variation for a varying θ. The variation of the three individ-
ual terms is presented in the other graphs in the row, which superimposed yield the same variance as the left
graph.
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Figure 3.4: Decomposition of Q̄11 and Q̄22. The left graphs present the total variance and the right three graphs represent the variance
of the individual terms.

For Q̄11 the first term is U1, which represents the quasi-isotropic material properties and is invariant of
θ. The second term is U2 cos(2θ) and reduces from +X to −X for θ = 0 to θ = 90 degrees respectively and
is zero at θ = 45 degrees. This term includes the dominant longitudinal/transverse stiffness deviation from
the quasi-isotropic stiffness. This explains why this term is of opposite sign for Q̄11 and Q̄22. The third term
varies at a higher frequency but generally has less influence on the stiffness values due to the lower value of
U3. The term is highest at 0 and 90 degrees and lowest at 45 degrees. This indicates that this component gives
a relation between shear and axial stiffness for a given orientation. In a similar fashion one can decompose
the other Q̄i j -values.

Based on the new formulation of the transformed reduced stiffness terms the A, B and D matrix can now
be obtained by:

[A,B,D] =
[

h,
h2

4
,

h3

12

](
Γ0V A,B ,D

0 +Γ1V A,B ,D
1 +Γ2V A,B ,D

2 +Γ3V A,B ,D
3 +Γ4V A,B ,D

4

)
(3.27)

in which Γi are matrices containing the material invariants:
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Γ0 =
U1 U4 0

U4 U1 0
0 0 U5

 Γ1 =
U2 0 0

0 −U2 0
0 0 0

 Γ2 =
 0 0 1

2U2

0 0 1
2U2

1
2U2

1
2U2 0


Γ3 =

 U3 −U3 0
−U3 U3 0

0 0 0

 Γ4 =
 0 0 U3

0 0 −U3

U3 −U3 0

 (3.28)

The lamination parameters V A,B ,D
i contain the through thickness integrated properties of the variant

terms of the transformed reduced stiffness terms given in Equation 3.25. All lamination parameters V A,B ,D
i ∈

[−1,1] are calculated by:

V A,B ,D
0 = [1,0,1]

V A,B ,D
1 =

∫ 1/2

−1/2
cos2θ

[
1, z̄, z̄2]d z̄

V A,B ,D
2 =

∫ 1/2

−1/2
sin2θ

[
1, z̄, z̄2]d z̄

V A,B ,D
3 =

∫ 1/2

−1/2
cos4θ

[
1, z̄, z̄2]d z̄

V A,B ,D
4 =

∫ 1/2

−1/2
sin4θ

[
1, z̄, z̄2]d z̄

(3.29)

Note that in these equations the laminate thickness h is factorized, therefore the integrals for the lamina-
tion parameters can be assessed by upper and lower bounds of 1

2 and − 1
2 instead. Equation 3.27 shows that

matrices A, B and D are linear dependent on the 12 lamination parameters and the laminate thickness. Svan-
berg proved that convex objective functions can be created if the structural stiffness is linearly dependent on
its parameterization [55]. Furthermore only six lamination parameters are required to describe a balanced
symmetric laminate and this limits the number of design variables. Combining these characteristics yield
favorable properties for optimization.
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Figure 3.5: Relation of lamination parameters V A
i to a varying ply angle θ for a single ply laminate.

However, it may be harder to understand lamination parameters physically. The lamination parameter
variation for a single ply is given by Figure 3.5 to better understand what happens when a ply is rotated. For
membane stiffness given by the A-matrix [18]:
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• Γ0: Matrix Γ0 stands for the quasi-isotropic laminate properties, normalized by the laminate thickness.
For this reason it is the onlyΓ-matrix not multiplied by a lamination parameter. IJsselmuiden states that
Γ0 is the quasi-isotropic basis for the stiffness properties and the lamination parameters can be used to
tailor the laminate in desirable directional properties. Therefore it is intrinsic that for a quasi-isotropic
stacking sequence the lamination parameters V A

1 to V A
4 are zero.

• V A
1 Γ1: Matrix Γ1 contains information related to the axial stiffness entries A11 and A22. Therefore V A

1 Γ1

changes the longitudinal and transverse axial stiffness direction. For example if V A
1 reaches 1 most plies

are aligned at 0 degrees and A11 is dominant. If V A
1 reaches −1 the opposite is true and mainly 90 degree

oriented plies are present and A22 becoming dominant. In general this is the most dominant term to
tailor the design.

• V A
2 Γ2 and V A

4 Γ4: Both matrices Γ2 and Γ4 only contain material invariants at the shear-extension en-
tries. In combination with the lamination parameters this term influences the shear-extension cou-
pling of the laminate expressed by A16 and A26. It is known for a balanced laminate that there is no
shear-extension coupling, therefore a balanced laminate inherently has lamination parameters V A

2 and
V A

4 equal to zero. In Figure 3.5 the parameters reach ±1 since unidirectional laminates oriented other
than 0 or 90 degrees are the "most unbalanced" laminates. For non-unidirectional unbalanced lami-
nates the lamination parameters will have a maximum absolute value between 0 and 1 based on the
severity of the unbalanced design.

• V A
3 Γ3: Matrix Γ3 relates the axial and shear stiffness and extension coupling and bending coupling.

Physically this represents the ratio between 45 degree plies and 0,90 degree plies. As one can see in
Figure 3.5 if V A

3 reaches −1 most plies will have a 45 degree orientation and the shear stiffness will
increase. As V A

3 reaches 1 the axial and transverse stiffness increases at a cost of shear stiffness. Note
that based on V A

3 nothing can be said about the ratio 0,90 degree plies.

Feasible Design Space
Once one lamination parameter is chosen the others cannot freely be chosen. The lamination parameters
are not independent, since they are based on the same variation of ply orientations through the thickness.
Although V A,B ,D

i ∈ [−1,1] holds this explains why the design domain is not simply given by the full unit cube

[−1,1]12 in R12 [65]. There exist a feasible design region where values of lamination parameters are limited by
others. For the general case with 12 lamination parameters this feasible region is still unknown and has yet to
be determined. Although this feasible region is unknown, Grenestedt and Gudmundson were able to prove
that the feasible design region for the 12 lamination parameters in R12 is convex [56].

Together the concave objective function and convex feasible design space lead to a well-behaved objective
function. Global optima is obtained, whereas using fiber orientation as parameterization leads to ill-behaved
objective functions with many local optima, especially for buckling [42, 56]. In Appendix A the feasible design
space is elaborated, specifically for symmetric and balanced laminates.

3.3. Tsai-Wu Failure Criteria
Failure critera can be distinguised in two categories, namely stress-based and fracture-mechanics-based cri-
teria [78]. The former assesses failure by checking if the stress within the structure reaches a critical value.
The latter assumes that failure occurs by growth of initial flaws. For the design of a composite panel with
variable-stiffness a stress-based failure criteria is easier to implement within the optimization routine.

The easiest way to assess failure is by the simple non-interactive maximum stress criterion. One could
simply check if stresses expressed in the material ply axes exceed the strength values obtained from coupon
tests. However, it is known that stresses interact and therefore interaction behavior should be included for
more accurate failure predictions. The Von Mises and Tresca yield criteria include this behavior for isotropic
materials. The Tsai-Wu formula is probably the best known failure criterion for anisotropic laminates and
has acceptable predictions compared with test results [6]. This criteria was first introduced by Tsai and Wu
in 1971 and is more of a curve fit rather than a physics based theory [6, 79]. For a 2-dimensional planar stress
state the failure index f is calculated by:

f = F11σ
2
1 +F22σ

2
2 +F66τ

2
12 +F1σ1 +F2σ2 +2F12σ1σ2 (3.30)
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where the F -values are given in Appendix B and are based on the strength values in the material ply axes
derived from compression and tensile coupon tests. The failure index is useful to assess first ply failure. First
ply failure is predicted to occur within a laminate if the following relation is violated:

f ≤ 1 (3.31)

To determine the critical load for first ply failure the input loads should be increased until the failure index
becomes larger then one at a certain location for one of the plies.

Conservative Failure Envelope in Strain Space
To address the failure index the stress state of the individual plies are required, which are based on the fiber
orientation. Lamination parameters represent the integrated laminate properties over the thickness. Assess-
ing failure criteria is not straight forward since orientations are unknown. It would be inefficient to apply
failure criteria after retrieval of the fiber orientations. Therefore IJsselmuiden et al proposed to apply a con-
servative Tsai-Wu failure criteria [62].

Using the constitutive stress-strain relation the Tsai-Wu failure index given by Equation 3.30 is tranformed
into strain space. The criteria still depends on the stacking sequence, therefore it cannot be used in conjunc-
tion with lamination parameter optimization. However, it is possible to determine a region in strain space
that is safe regardless of the stacking sequence. The boundary of this conservative region in strain space is
given by the failure envelope and every point that lays within the enclosed area will fulfill the Tsai-Wu failure
criteria. This envelope is derived by IJsselmuiden et al and later simplified by the same authors to [62, 66]:

f = 1

2
u1I 2

1 +u2I1I4 + 1

2
u3I 2

4 +u4I2 +u5I1 +u6I4 (3.32)

where Ii and ui and are respectively strain invariants and parameters to map the stress-based Tsai-Wu
criteria in strain-space. The failure envelope is given by the most critical fiber angle where the failure index
equals one:

max
θ

f = 1 (3.33)

Note that this formulation is conservative, especially for load conditions where certain stacking sequences
are known to be avoided. For example, it is common to use ±45 oriented plies at the outside of a stack to
improve bending resistance, however the conservative failure criteria does not take such design rules into
consideration and will also assess fiber angles that are normally avoided. The conservative failure envelope
can be expressed in terms of Ii and ui , for the sake of brevity this formulation is given in Appendix B.

3.4. Thermal Laminate Analysis
So far the stress-strain relations are based on mechanical imposed strains. Before optimization of thermo-
mechanical load applications can be performed the influence of thermal loads should be included in the
governing stress-strain relations. The analysis presented in this section is based on Gurdal et al and Staab
[80, 81].

Thermal Uni-directional Ply Analysis
When thermal loads are applied a structure can undergo stress free thermal expansion. An unconstrained
plate will expand and contract without creating internal stresses for a uniform temperature difference. The
stress free thermal expansion for a uni-directional ply is given by:


εFT

1
εFT

2
γFT

12

=

α1

α2

0

 ·∆T (3.34)

where α is the coefficient of thermal expansion (CTE). Mechanical strains and thermal strains induced by
mechanical and thermal loads can be superimposed to yield the total strain:
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Figure 3.6: Thermal expansion of a ply is constrained by adjacent plies. The first laminate presents a laminate not exposed to thermal
loads. The second laminate illustrates the stress free thermal contraction of the single plies. However, the plies are not free to contract
due to the bonding with the adjacent plies. This will constrain the contraction of the layers and cause residual stresses and strains, which
is illustrated in the third laminate. Adjusted from Staab [81].

εTot = εM +εFT (3.35)

Note that εFT corresponds to stress free thermal expansion, thus in this formulation only mechanical
strain will cause stresses in the structure. If the ply is free to expand/contract for a pure thermal load the
total strain equals the stress free thermal expansion, thus no stresses are present within the structure. If the
thermal expansion/contraction is fully constrained the total strain equals zero and a mechanical strain of
−εFT is induced which will exert stresses in the ply. Hence the stress-strain relation for a single ply subject to
mechanical and thermal loads is given by the following equation:


σ1

σ2

τ12

=
Q11 Q12 0

Q12 Q22 0
0 0 Q66


εTot

1
εTot

2
γTot

12

−

εFT

1
εFT

2
γFT

12




︸ ︷︷ ︸
εM

(3.36)

When a ply is rotated with respect to the laminate coordinate system the thermal expansion coefficient of
the ply can be rotated to the laminate coordinate system using m = cosθ and n = sinθ:


εFT

x
εFT

y

γFT
x y

=
 α1m2 +α2n2

α1n2 +α2m2

2(α1 −α2)mn

 ·∆T →

εFT

x
εFT

y

γFT
x y

=

αx

αy

αx y

 ·∆T (3.37)

Thermal Laminate Analysis
Looking at a laminate of multiple plies, the adjacent plies will constrain the free thermal expansion of a sin-
gle layer. This is effect is illustrated in Figure 3.6. This restraining will cause stresses, referred to as residual
stresses since they are often considered with curing temperatures. The residual strain εR due to a pure ther-
mal load of ply k within a laminate is given by:

εR
k (zk ) = εTot,0 + zkκ

Tot −εTF (zk ) (3.38)

where zk represents the through thickness ply location within the laminate. Note that the stress free
thermal expansion depends on zk if asymmetrical laminates and through thickness temperature gradients
are considered. With the calculated strain the residual stress can be obtained:



24 3. Composite Laminate Analysis

σR
k (zk ) = [

Q̄k
]
εR (zk ) (3.39)

However, the total strains are unknown and the residual strains cannot be calculated. Therefore it is con-
venient to represent the residual strains and stresses by equivalent thermal loads. For a pure thermal load
case there are no external forces, hence an equivalent thermal load can be calculated that corresponds to the
existing stress state by:

NR =
∫ h

2

− h
2

σRd z = 0 → NTh =
∫ h

2

− h
2

[
Q̄

]
εTotd z =

∫ h
2

− h
2

[
Q̄

]
εFTd z =

∫ h
2

− h
2

[
Q̄

]
αx

αy

αx y

∆T d z (3.40)

In a similar way the equivalent thermal moment resultant can be computed:

MR =
∫ h

2

− h
2

σRz d z = 0 → MTh =
∫ h

2

− h
2

[
Q̄

]
εTotz d z =

∫ h
2

− h
2

[
Q̄

]
εFTz d z =

∫ h
2

− h
2

[
Q̄

]
αx

αy

αx y

∆T z d z (3.41)

Now the stress strain relation including thermal loads can be written as:

{
N
M

}
=

[
A B
B D

]{
ε0

κ

}
−

{
NTh

MTh

}
(3.42)

Thermal Loads by Lamination Parameters
The equivalent thermal loads can also be calculated with lamination parameters. Three thermal invariants
are introduced:

K1 = (U1 +U4) (α1 +α2)+U2 (α1 −α2) (3.43)

K2 =U2 (α1 +α2)+ (U1 +2U3 −U4) (α1 −α2) (3.44)

K3 =U2 (α1 +α2)+2(U3 +U5) (α1 −α2) (3.45)

These invariants depend only on the material invariants and the thermal expansion coefficients of the ply
and are independent of the ply rotation. The equivalent thermal loads can now be calculated by:

NTh = 1

2

∫ h
2

− h
2


K1 +K2 cos2θ
K1 −K2 cos2θ

K3 sin2θ

∆T d z = 1

2
h


V A

0 K1 +V A
1 K2

V A
0 K1 −V A

1 K2

V A
2 K3

∆T (3.46)

MTh = 1

2

∫ h
2

− h
2


K1 +K2 cos2θ
K1 −K2 cos2θ

K3 sin2θ

∆T z d z = 1

2

h2

4


V B

1 K2

−V B
1 K2

V B
2 K3

∆T (3.47)

3.5. Linear Finite Element and Buckling Analysis
To allow for intricate geometry an 18 degree of freedom (DOF) triangular shell element is used in the finite
element routine. This element is superimposed from a membrane and a bending element. The membrane
element is a 12 DOF triangular element that includes drilling degrees of freedom (i.e. in-plane rotation). The
bending element is based on the 9 DOF Kirchoff-plate triangular bending element. The elements are high
performance finite elements and the stiffness matrix is decomposed in a basic and higher-order stiffness
matrix. How these matrices are build is well documented in templates provided by Felippa and Militello
[82–84]. In the next two sections it will be explained how the element properties are tied to the linear finite
element and buckling analysis.



3.5. Linear Finite Element and Buckling Analysis 25

3.5.1. Linear Finite Element Analysis
The parameterization of the design variables is executed at nodal level. To perform finite element analysis the
nodal properties have to be mapped to elemental properties. To generate a smooth distribution reciprocal
interpolation of the stiffness matrices is used [59]:

A−1
e = ∑

n∈Υe

wn A−1
n (3.48)

where Υe is the set of nodes connected to element e. The value of weight wn depends on the element
type and is equal to 1

3 for the triangular elements used in the finite element routine. The linear finite element
problem is solved to compute the displacements:

K ·u = FM +FTh = F (3.49)

For a general membrane element the stiffness matrices Ke to build the global stiffness matrix are calcu-
lated by the relationship:

Ke =
∫
Ωe

he Bt
e Ae Be dΩe (3.50)

where B is the strain displacement matrix and Ω is the element domain. The nodal forces acting on the
structure are given by the right hand sight of Equation 3.49. The mechanical forces FM are given as an input
and the equivalent thermal forces FTh are derived from the thermal loads by:

FTh
e =

∫
Ωe

Bt
e NThdΩe = Ae · B̄e ·NTh

e (3.51)

Since the thermal loads are assumed to be constant within the element the integral over the domain re-
sults in the area A multiplied by the average strain displacement matrix B̄. Note that the thermal element
loads are calculated from the nodal properties according to:

NTh
e = ∑

n∈Υe

wn NTh
n (3.52)

After executing the linear finite element analysis and calculating the displacements the element strains
and curvatures can be found by:

εe = B̄e ue (3.53)

From the strains and curvatures the stress resultants are then obtained by Equation 3.42. The equation is
repeated for convenience:

{
N
M

}
=

[
A B
B D

]{
ε0

κ

}
−

{
NTh

MTh

}
(3.54)

The thermal stress resultants have to be subtracted to get the actual stress state. Once the stresses are
known the failure criteria can be assessed and the buckling analysis can be executed.

3.5.2. Buckling Analysis
Within this work only the critical buckling load is considered and post-buckling behavior is not evaluated.
The critical buckling load can be assessed by the linear prebuckling stability eigenvalue problem [63, 64, 71].

(
Km −λKg

)
a = 0 (3.55)
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where Km is the global material stiffness matrix, Kg is the global geometrical stiffness matrix, and a is the
mode shape. The mode shapes are normalized so the following relation holds:

at ·Km ·a = 1 (3.56)

The global geometrical stiffness matrix is related to the in-plane stress resultants of the elements N =(
nx ,ny ,nx y

)t and constant matrices that depend on the element geometry Kx, Ky and Kxy:

Kg ,e =−nx,e Kx −ny,e Ky −nx y,e Kx y (3.57)

Thermomechanical Buckling
Equation 3.57 shows that the critical buckling load depends on the stress state of the structure. For thermo-
mechanical load applications both mechanical and thermal stresses attribute to the total stress state. There-
fore the eigenvalue problem is given by:

(
Km −λMKM

g −λThKTh
g

)
a = 0 (3.58)

The geometric stiffness is decomposed in mechanical and thermal terms with corresponding load mul-
tipliers λM and λT h . There are two unknowns in this formulation, thus it cannot be solved directly. There
are two possibilities to assess the posed eigenvalue problem. The first possibility is to assume either the me-
chanical or thermal load to be constant and check whether this load is stable. If the sub-problem is stable the
total buckling problem can be assessed. If for example the structure is subject to a thermal load due to curing
the thermal buckling problem is assessed first to check for stability. This assessment is then proceeded by the
total buckling analysis.

The second possibility is to scale both thermal and mechanical load by the same load multiplier. The
buckling problem formulation is then given by:

(
Km −λKM

g −λKTh
g

)
a =

[
Km −λ

(
KM

g +KTh
g

)]
a = 0 (3.59)

The influence of the buckling formulation is illustrated in Figure 3.7. The magnitude of the safety margin
of a design depends on the chosen buckling formulation. For the first option one of the loads is set to be con-
stant, in this exampleλT H = 1, and the safety margin is determined by the critical mechanical load multiplier.
If both mechanical and thermal load are scaled by the same load factor the safety margin becomes different
and depends on both load multipliers.

λ
M

λ
TH

1

1
Option 1

Opti
on

 2

S.M.1S.M
.2

0

Figure 3.7: For option 1 either the thermal or mechanical load is assumed to be constant (in this illustration the thermal load). For option
2 both loads are scaled by the same multiplier. The safety margin depends on the chosen buckling formulation. Note that the curve is
not a representation of reality due to shifting buckling modes during optimization.
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It depends on the optimization problem statement which formulation is suitable. If the objective is to
maximize the safety margin the chosen formulation will influence the design. If buckling is a constraint the
buckling formulation is not of an influence. The constraint only checks whether buckling occurs or not. As is
depicted in the figure for both buckling formulations both load multipliers have to be larger than 1.

In the aerospace industry buckling is often a constraint rather than an objective. In this work Equa-
tion 3.59 is implemented for practical reasons. Only a single calculation is necessary to determine how close
to buckling the structure is. By adjusting the mechanical and thermal loads the influence on the buckling
performance can be further studied.

3.6. Implementation in the Framework
The framework presented in this work only considers symmetric laminate to avoid bending-extension cou-
pling, i.e. the B-matrix is zero. Due to symmetry the ply angles and densities of only half the stack are required
to fully determine the laminate stacking sequence.

Optionally the laminate can be set to be balanced to avoid shear-extension coupling, i.e. A16 = A26 = 0.
Consequently only a fourth of the ply angles and densities is needed to acquire the lay-up. If stacks are given
as a balanced laminate the symmetric part of the laminate is generated by the following linking formulation:

θs = Lθ ·θd (3.60)

ρs = Lρ ·ρd (3.61)

In this report balanced layers are assumed to be adjacent to limit the effect on values D16 and D26. Hence
the following linking matrices are implemented:

Lθ =



1 0
−1

1
−1

. . .

0
. . .


Lρ =



1 0
1

1
1

. . .

0
. . .


(3.62)

Based on the ply angles and ply densities the nodal properties are calculated. First the lamination param-
eters and its first and second order derivative are calculated for the k-th layer:

Vk =


1

cos2θk

sin2θk

cos4θk

sin4θk

 dVk

dθk
=


0

−2sin2θk

2cos2θk

−4sin4θk

4cos4θk

 d 2Vk

dθ2
k

=


0

−4cos2θk

−4sin2θk

−16cos4θk

−16sin4θk

 (3.63)

To ease the density optimization these are obtained slightly different from the equations given before-
hand. Two terms are introduced for the k-th layer:

I k
0 = ρk (3.64)

I k
2 = I0

z2
k + zk−1zi + z2

k−1

3
(3.65)

With the lamination parameters, densities, ply thicknesses and material invariants the stiffness matrices
and thermal load for the k-th layer can be computed. The nodal stiffness and thermal load is obtained by
summation of the layer properties, where the summation is over the number of symmetric layers s:
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Ak = 2 · I k
0 · t 0

k ·U︸ ︷︷ ︸
LA

k

·Vk → An =
s∑
k

Ak

Dk = 2 · I k
2 · t 0

k ·U︸ ︷︷ ︸
LD

k

·Vk → Dn =
s∑
k

D0
k

NT h
k = 2 · I k

0 · tk ·K︸ ︷︷ ︸
LT h

k

·Vk ·∆T → NT h
n =

s∑
k

NT h
k

(3.66)

where n denotes the node. Since only symmetric laminates are considered the doubling multiplier indi-
cates that only the symmetric part of the laminate has to be evaluated.

First and Second Order Derivatives:
During optimization the derivatives of the nodal properties with respect to the fiber orientation and ply den-
sity are required. The first order fiber angle derivatives for the k-th ply are obtained by:

∂A

∂θk
= dA

dVk
· dVk

dθk
= LA

k · dVk

dθk

∂D

∂θk
= dD

dVk
· dVk

dθk
= LD

k · dVk

dθk

∂NT h

∂θk
= dNT h

dVk
· dVk

dθk
= LT h

k · dVk

dθk
·∆T

(3.67)

The second order derivatives are obtained in a similar fashion using the second order derivative of the
lamination parameters. The practical relevance of the introduced I0 and I2 terms become apparent when
taking the density derivatives:

d I k
0

dρk
= 1 (3.68)

d I k
2

dρk
= z2

k + zk+1zi + z2
k+1

3
(3.69)

Applying the chain rule the density derivative of the nodal properties can now easily be determined:

∂A

∂ρk
= dA

d I k
0

· d I k
0

dρk
= 2 · d I k

0

dρk
· tk ·U ·Vk

∂NT h

∂ρk
= dNT h

d I k
0

· d I k
0

dρk
= 2 · d I k

0

dρk
· tk ·K ·Vk ·∆T

(3.70)

For the flexural stiffness matrix D the density derivative is more complicated. The change in density of a
specific layer also influences the z-values of the layers placed on top, thus further influencing the D-matrix.
The local effect of a change in density is captured in the first term and the change in z-values of the layer itself
and the layers placed on top are included in the second and third terms:

∂D

∂ρk
= dD

d I k
2

· d I k
2

dρk
+

k∑
i=1

dD

d I i
2

· d I i
2

dρk

= 2 · d I k
2

dρk
· t 0

k ·U ·Vk + 2 ·
k−1∑
i=1

ρi · 2 · zi + zi−1

3
· t 0

i ·U ·Vi + 2 ·
k∑

i=1
ρi · zi +2 · zi−1

3
· t 0

i ·U ·Vi

(3.71)
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Symmetry is already taken into account in the derivatives. During optimization only the design layers are
considered, hence if balanced conditions are used the derivatives of the symmetric layers have to be mapped
back to the design layers by the linking matrices given by Equation 3.62.





4
Multi-Step Framework

The optimization scheme depends on the chosen parameterization method. Over the years many different
approaches have been introduced and demonstrated and some of these are mentioned in chapter 2. Specifi-
cally useful is the multi-step approach used by IJsselmuiden, which code is available at the Aerospace Struc-
tures and Materials department of the Aerospace Engineering faculty of Delft University of Technology. The
3-step approach is illustrated in Figure 4.1 and tackles the design problem in the following order:

Step 1 - Optimize the design problem to determine the optimum lamination parameter distribution.
Step 2 - Retrieve the corresponding stacking sequence taking curvature constraints into account.
Step 3 - Determine the corresponding fiber paths.

Figure 4.1: The 3-step design approach based on parameterization by lamination parameters. From IJsselmuiden (2011) [18]

Peeters added sub-approximations in fiber angle space to the multi-step framework. This approach func-
tions as an alternative retrieval step and makes it possible to optimize in the fiber angle design space to find
the true optimum fiber angle distribution.

In the first three sections the multi-step framework from IJsselmuiden will be explained step by step.
The influence of thermal loads is added to the optimization routine in the first step of the framework to
allow for thermomechanical optimization. The extension by Peeters is elaborated in section 4.4 and thermal
influences are added. Section 4.5 provides a work flow diagram to explain how composite laminate analysis,
the optimization step and sub-approximations come together in the optimization routine. At last several
structural responses will be given to fit in the optimization framework in section 4.6.

4.1. Step 1 - Conceptual Optimization
The first step solves the optimization problem to find the optimal lamination parameter distribution. Before
explaining how this is achieved the general optimization problem will be stated first. The next two sections
will explain the method of sequential local approximations and the conservative convex separable approxi-
mation. These successive approximation methods are used to solve the optimization problem in lamination
parameter space by means of a dual and bound formulation.

31
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4.1.1. Optimization Formulation
A general optimization formulation is presented by Equation 4.1. In this work minimization of f is used as
the optimization objective. The objective normally represents a structural response, such as buckling, stiff-
ness, strength or weight. Structural responses can also be used as constraint g to the optimization problem.
The optimization problem can also be subject to other constraints such as established design rules. The be-
havior of the structural responses and constraints determine what optimization scheme is suitable to tackle
the problem. This behavior is influenced by the chosen parameterization and corresponding set of design
variables x. The design parameters do not only influence the response behavior but also indicate whether the
parameter space is continuous, discontinuous or contains a discrete variation.

min f (x)
s.t. g j (x) ≤ 0 for j = 1...m

xL
i ≤ xi ≤ xU

i for i = 1...n
(4.1)

Convexity is necessary to ensure global optima [85]. A well-behaved convex design problem is defined
by a convex objective function for minimization and has a convex feasible design region. A convex objective
function is best explained for a 2-dimensional problem statement. A function is strictly convex if a line be-
tween any two points of the response lays above the original function. This is illustrated by Figure 4.2 (left)
and the mathematically relation is given by:

f [x2 ·α+x1 · (1−α)] ≤α · f (x2)+ (1−α) f (x1) , for 0 ≤α≤ 1. (4.2)

This relation implies that there is non-negative curvature, i.e. the second derivative is larger than zero. It
is also possible to have a non-strictly convex function. In this case there exists a line connecting two points
on the function curve that lies on the curve itself, i.e. the function curve contains a straight segment with
a second derivative that equals zero. For a set of n variables function f is convex if the matrix of second
derivatives (referred to as the Hessian) is positive semi-definite. Function f is strictly convex if the matrix of
second derivatives is positive definite.

The feasible region of set S is convex if a line connecting any design vectors in S is also in S. This is illus-
trated in Figure 4.2 (right) and the mathematical relation is given by:

x1,x2 ∈ S, x1 ·α+x2 · (1−α) ∈ S for 0 ≤α≤ 1 (4.3)

Furthermore the design space is related to the constraints, to have a convex feasible region inequality
constraints have to be convex and equality constraints have to be linear.

Figure 4.2: Convex objective function (left) and convex feasible design region (right). From Grenestedt and Gudmundson (1993) and
from Haftka and Gurdal (1992) [56, 85].

4.1.2. Sequential Local Approximations
Global approximations try to approximate the response accurately for the entire design space and are most
commonly related to response surface approaches [85]. A design of experiments is performed to obtain the
response for given sets of design variables, thereafter curve fitting techniques are applied to obtain a global
approximation. A global approximation can be applied to structural responses and many evaluations are re-
quired to accurately approximate the global response. For large amounts of nodes and elements the finite
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Figure 4.3: Method of sequential/successive local approximations. Using local approximations the number of FEA evaluations is re-
duced. In the figure only three FEA evaluations are used to reach x0,3 which is already close to the global optimum. Using an optimization
scheme based on global approximations could significantly increase this number.

element analysis routine to calculate the structural responses dominates the computational demand com-
pared to the computational demand of the optimization procedure. For this reason global approximations
are inefficient and often avoided.

To reduce the amount of finite element iterations sequential local function approximations are often ap-
plied in structural optimization [59, 85, 86]. The original design problem is replaced by an explicit local ap-
proximate design problem based on a single finite element analysis iteration. This local approximation is
used to obtain the optimum which in turn will be used to update the original problem which leads to a new
local approximation. Hence such methods are called successive or sequential local approximate optimization
and this approach is illustrated in Figure 4.3. Such methods reduce the amount of finite element iterations,
thus speeding up the optimization process. The simplest form of a local approximation is the linear Taylor
series expansion, given by [85]:

f A = f (x0)+
n∑

i=1

(
∂ f

∂xi

∣∣∣∣
0

(xi −x0i )

)
(4.4)

where f A is approximate response function, f is the actual response, x0 is the approximate point and
n is the number of design variables. For certain responses linear approximations are not accurate. Adding
higher order derivatives improves accuracy, but are computationally demanding. As an alternative interven-
ing variables can be used to improve the accuracy. Popular is the reciprocal variable leading to the reciprocal
approximation given by [85]:

f A = f (x0)+
n∑

i=1

(
∂ f

∂xi

∣∣∣∣
0

x0i

xi
(xi −x0i )

)
(4.5)

It depends on the response behavior what approximation yields the most accurate representation. A com-
bination of both is also possible and is called the conservative or hybrid approximation given by Equation 4.6
[85]. An approximation is considered conservative if f A > f for all possible set of design variables. This effec-
tively means that the optimization always improves the objective function and the optimization is globally
convergent, this is explained by Figure 4.4. Conservativeness for the hybrid approximation is true if Equa-
tion 4.7 holds, which selects the most conservative of the linear and reciprocal formulations.

f A = f (x0)+
n∑

i=1

[
δi

(
∂ f

∂xi

∣∣∣∣
0

(xi −x0i )

)
+ (1−δi )

(
∂ f

∂xi

∣∣∣∣
0

x0i

xi
(xi −x0i )

)]
(4.6)
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Figure 4.4: The conservative approximation (blue) always yields and improvement in the objective function, i.e. fc < f0. Althought it is
possible for an unconservative approximation (red) to yield an improvement step, it is not guaranteed and therefore global convergence
cannot be guaranteed. In this case fuc > f0. From Peeters (2016) [77].

δi =
{

1 for ∂ f
∂xi

≥ 0

0 otherwise
(4.7)

All three approximations are convex, using them on the constraints and the objective function will yield a
convex design problem. Thereby the approximations have the characteristic to be separable, that is [85]:

f (x) =
N∑

i=1
fi (xi ) (4.8)

g j (x) =
N∑

i=1
g j ,i (xi ) for j = 1...m (4.9)

This is advantageous if both the objective function and constraints are separable, since the approximation
and the optimization can be evaluated and executed at nodal level i . Furthermore if a second order approxi-
mation would be applied to increase accuracy, no mixed partial derivatives between nodes need to be taken
and only the diagonal of the Hessian is evaluated [87].

4.1.3. Conservative Convex Separable Approximation
In 2002 Svanberg introduced a conservative convex separable approximation (CCSA) method [61]. This method
is suitable to solve problems with many design variables. Due to separability the problem can be approxi-
mated by a set of convex subproblems and the conservativeness guarantees global convergence. The general
form of the approximation is given by:

fC (x) = f A (x)+ζ fD (x) (4.10)

The first term f A (x) is the local approximation and has the same function value and gradient at the local
approximate point x0 as the original objective function. The second term ζ fD (x) ensures conservativeness
and can also be used to ensure convexity if necessary. Within this work this term is referred to as damping.
The following should be true to conform with the CCSA methodology:

1. Functions f A and fD have to be continuous. They must be separable and differentiable twice with
continuous derivatives.
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2. The value and gradient of f A must equal the original function. Therefore the value and gradient of fD

have to be zero at the approximate point to not interfere with the local approximation.
3. The Hessian of f A must be positive semi-definite. This means the approximation is not required to be

strictly convex.
4. The Hessian of fD must be positive definite. Therefore this term functions as convexifying term to

ensure a strictly convex approximation fC .

Based on the advantages of CCSA proposed by Svanberg IJsselmuiden et al derived a generic approxi-
mation form for structural responses to comply with variable stiffness optimization. A modified conservative
approximation is used for the local approximation f A . Instead of using the δ-term to select between the linear
an reciprocal terms the physical response behavior is studied to determine whether the linear, reciprocal or
combination of both terms should attribute to the approximation. In general form the local approximation is
given by [18, 60]:

f A = f (x0)+
N∑

i=1

(
∂ f̂

∂xi

∣∣∣∣∣
0

(xi −x0i )+ ∂ f̃

∂x−1
i

∣∣∣∣∣
0

(
x−1

i −x−1
0i

))
(4.11)

For composite laminate analysis the ABD-matrix is directly related to structural responses. Design vari-
able x can be considered to contain the stiffness terms related to the structural response of interest. Thus the
approximated response f A can be given as [63]:

f A = f̂ +
N∑

i=1

[
∂ f̂

∂Ai
:
(
Ai − Âi

)+ ∂ f̂

∂Di
:
(
Di − D̂i

)+ ∂ f̂

∂A−1
i

:
(
A−1

i − Â−1
i

)+ ∂ f̂

∂D−1
i

:
(
D−1

i − D̂−1
i

)]+C0 (4.12)

in which N represents the number of nodes or elements and Ai and Di are the corresponding stiffness ma-
trices. The hat-accent denotes the values at the approximate point. C0 includes all remaining constant terms
and can be used to enforce homogeneity. The : operator is a matrix contraction and is the Fobrenius inner
product or trace, i.e. A : B =∑

Ai j Bi j . By Euler’s theorem for homogeneous functions the approximation can
be simplified to the form [18, 63]:

f A =
N∑

i=1

(
Ψm

i

∣∣
0 : Ai +Ψb

i

∣∣∣
0

: Di + Φm
i

∣∣
0 : A−1

i + Φm
i

∣∣
0 : D−1

i

)
+C0 (4.13)

where theΦm,b andΨm,b terms are the stiffness sensitivity tensors given by:

Ψm
i = ∂ f̂

∂Ai
(4.14)

Ψb
i = ∂ f̂

∂Di
(4.15)

Φm
i = ∂ f̃

∂A−1
i

(4.16)

Φb
i = ∂ f̃

∂D−1
i

(4.17)

Assessing the second variation of the approximation IJsselmuiden proved that sensitivities Φm,b have to
be positive semi-definite to ensure that the response function has non-negative curvature, which is required
for convexity. Thus the convexity of the approximation depends on the derivatives of the response with re-
spect to the A−1 and D−1 matrices.

When thermal load applications are considered the structural responses are influenced by the thermal
loads. According to the thermal analysis in section 3.4 a change in laminate design will change the exerted
thermal loads accordingly. To capture this behavior a term is added to the approximation:

f A =
N∑

i=1

(
Ψm

i

∣∣
0 : Ai +Ψb

i

∣∣∣
0

: Di + Φm
i

∣∣
0 : A−1

i + Φm
i

∣∣
0 : D−1

i + ηi
∣∣
0 ·∆Nth

i

)
+C0 (4.18)

where η is the thermal sensitivity tensor:

ηi = ∂ f̂

∂Nth
(4.19)
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Note that the thermal moment is not added since only symmetric laminates are considered and the
through thickness temperature gradient is assumed to be zero in this work.

Lamination Parameters
For generality the approximation is related to the stiffness matrices and change in thermal load. Different
parameterizations can be applied to the general approximation by sub-approximations, referred to as level-
2 approximations in this work. Lamination parameters are specifically chosen in the work of IJsselmuiden
to reduce the number of design variables and to limit the design space. Lamination parameters are linearly
related to the stiffness matrices and thermal load. Therefore the general approximation can directly be ex-
pressed by the lamination parameter design variables while the convex properties are retained. This results
in a well-behaved optimization problem.

To use fiber angles as design parameters the level-2 sub-approximation becomes more complicated, since
fiber angles are not linearly related to the stiffness matrices. In section 4.4 optimization in the fiber angle de-
sign space will be discussed.

Thickness Optimization
Since the general formulated approximation is given in terms of stiffness it is possible to consider thickness
as an additional design variable. The combination of lamination parameters and thickness does not yield
a linear relation with stiffness. Therefore adjustments to the general approximations are made to include a
thickness term in the approximation. For the sake of brevity this is not repeated in this work, for details the
reader is referred to the work of IJsselmuiden [18].

Damping Term
Guaranteed conservativeness is lost due to the modified approximation. In early studies by IJsselmuiden et al
the proximal point algorithm by Rockafellar is applied in lamination parameter space [18, 63, 64]. In essence
this approach uses a move limit on the iteration step to create a conservative approximation. However, a
more general damping term is sought for in the stiffness space so it is free to choose any parameterization
that leads to the stiffness matrices. Applying the CCSA method by Svanberg the convexity term ζ fD (x) scales
dynamically throughout the optimization algorithm, thus improving convergence. A damping function is
derived and given by Equation 4.20.

fD =
N∑

i=1
wi

(
A−1

0,i : Ai +D−1
0,i : Di +A0,i : A−1

i +D0,i : D−1
i −4I : I

)
(4.20)

The last term is required to ensure a function value of zero at the approximate point, therefore fD ful-
fills the four requirements imposed by Svanberg to conform with the CCSA framework. The weight factor
wi scales the contributing of the separable terms. The separable terms are represented by the nodes and
elements of the discretized structure, therefore their corresponding area fraction is used as weight factor. For
thermal load applications the damping function does not have to be updated since the thermal term in Equa-
tion 4.18 is linearly dependent on the thermal loads. Since the form of the damping function equals the local
approximation it allows for easy implementation in the optimization routine by adjusting the sensitivities by:

Ψ̌m
i

∣∣
0 = Ψm

i

∣∣
0 +ζwi A−1

0,i (4.21)

The same holds for the other stiffness sensitivities and the constant damping term −4ζI : I is captured as
a constant in C0. To complete the conservative approximation ζ has to be determined, which is a dynamic
scalar to allow for adaptive damping. Based on a move limit in stiffness space the initial damping factor is
obtained and applied to all local responses, where non-zero condition is enforced by triangular inequality.
The initial damping factor is used for all responses and is given by Equation 4.22, where m represents the
number of structural responses that are considered. The derivation is specified by IJsselmuiden [18].

ζ2 =
m∑

j=0

N∑
i=1

wi

2

((
||Ψm

i , j Ai ||+ ||Φm
i , j A−1

i ||
)2 +

(
||Ψb

i , j Di ||+ ||Φb
i , j D−1

i ||
)2

)
(4.22)
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It is advantageous to use separate damping for responses to improve convergence rates. The damping
factor is updated every iteration for all responses m according to:

ζ(k+1)
j = γ∗ζ(k)

j for j = 1...m (4.23)

Damping needs to be added if the approximate function is unconservative to ensure global convergence.
Furthermore damping is used to influence the convergence rate of the optimization problem. Convergence
rates are sped up by fast increments in damping for unconservative approximations to quickly arrive at ap-
proximations that are more likely to yield an improvement step. If an approximation is too conservative only
small improvement steps are made, hence relaxation of damping is included to arrive at approximations that
yield larger step sizes. The update factor γ is calculated by an exponential function given in Equation 4.24.
This allows for fast increments in damping for unconservative approximations.

γ= exp

 f (k+1)
j − f (k+1)

A, j

f (k+1)
D, j

 (4.24)

Furthermore the update factor is subject to bound limits to obtain the update factor γ∗ given by Equa-
tion 4.25. The limits are based on experience and set arbitrary by IJsselmuiden and are determined by the
following template:

γ∗ =


γ−mi n if γ≤ γ−mi n
γ if γ−mi n < γ< 1
γ+mi n if 1 ≤ γ≤ γ+mi n
γ if γ+mi n < γ< γ+max
γ+max if γ≥ γ+max

(4.25)

γ−mi n = 0.95 γ+mi n = 1.05 γ+max = 2.00 (4.26)

The set limits allow for fast increments in damping for unconservative approximations but only gradual
relaxation if the approximation is conservative.

4.1.4. Optimization by Dual and Bound Formulation
Within the work of IJsselmuiden a combination of the dual and bound formulation is used to reformulate the
optimization problem in an effort to simplify the optimization routine [18]. Dual methods divide the con-
strained optimization problem in local and global optimization problems. Dual methods are advantageous
for optimization problems with many variables and few constraints, and therefore suitable to optimize dis-
cretized structural design problems [85]. Falk generalized dual methods to structural optimization and Fleury
successfully specialized the formulation to separable problems. For the constrained optimization problem
stated by Equation 4.1 f is the structural response objective and g j are the constrained structural responses.
By Karush-Kuhn-Tucker conditions a Lagrangian function is formulated as:

L
(
x,µ

)=µ f f (x)+
m∑

j=1
µ

g
j g j (x) (4.27)

where µ are the dual variables subject to µ f = 1 for the objective function and µg
j ≥ 0 for the constraints.

The introduction of the dual variables allow to split the optimization problem. Based on the Lagrangian
function the optimization of the dual variables is stated by the dual formulation:

max
µ

LC
(
µ

)
s.t. µ f = 1 and µ

g
j ≥ 0 (4.28)

where LC is Falk’s dual Lagrangian which expresses the minimization of the Lagrangian in the primal design
variables:
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LC = min
x∈C

L
(
x
(
µ

))
(4.29)

in which C is a closed convex set of variables. Within this formulation the optimization of the local vari-
able set x and the global dual variable µ are separated. Both the maximization and minimization are virtually
unconstrained, simplifying the optimization problem for separable objective and constraint functions. Fur-
thermore the Lagrangrian is also separable and can be minimized one-dimensionally, therefore LC is easily
calculated [85]. Haftka and Gurdal demonstrate the usefullness of the dual formulation by an optimization
example that uses linear and reciprocal local approximations. This example is given in Chapter 9.2.4 of their
book Elements of Structural Optimization [85].

For optimization of multi-modal buckling analysis or optimization of a min-max formulation to minimize
the maximum failure index a multi-response objective function is commonly formulated. For multi-response
optimization the bound formulation introduced by Olhoff can be applied to the optimization formulation
[88]:

min β

s.t. β≥ fk (x) for k = 1...o
g j (x) ≤ 0 for j = 1...m
xL

i ≤ xi ≤ xU
i for i = 1...n

(4.30)

where o represents the number of structural responses of interest. Since µ equals 1 for the objective
function the Lagrangian is adjusted to Equation 4.31. Falk’s dual formulation can now be updated to the form
given by Equation 4.32

L
(
x,µ

)= o∑
k=1

µ
f
k fk (x)+

m∑
j=1

µ
g
j g j (x)+β

[
1−

o∑
k=1

µ
f
k

]
(4.31)

max
µ

LC
(
µ

)
s.t.

o∑
k=1

µ
f
k = 1 and µ

f
k ≥ 0, µg

j ≥ 0 (4.32)

With the CCSA framework and the dual-bound formulation the optimization problem is split in local and
global optimization problems. Even though the response is influenced by the design parameters at other
nodes the local optimization problem allows to minimize the structural response approximation given by
Equation 4.18 at nodal level. The convex conservative separable approximation is given in general stiffness
form to allow for different parameterizations. In the multi-step approach from IJsselmuiden lamination pa-
rameters are chosen as design variables to solve the local optimization problem. In Figure 3.2 it is explained
that the lamination parameters are only constrained by the feasible design region, making this parameteriza-
tion suitable for the dual-bound formulation. Since the first and second derivative of the structural response
with respect to the lamination parameters are easily obtained for the approximation the local optimization is
optimized by a sequential quadratic programming.

The global optimization problem is stated by Equation 4.32 and is related to find the optimal dual vari-
ables. The derivatives of the dual formulation with respect to the dual variables are readily available and a
sequential quadratic algorithm can be used to obtain the optimum. However, an interior-point method is
implemented within the optimization routine for convergence reasons related to design problems that are
subject to additional constraints [18].

4.2. Step 2 - Fiber Orientation Retrieval
Fiber placement machines cannot use lamination parameters as input. Once the optimal lamination pa-
rameter distribution is known it is therefore essential to obtain a corresponding fiber angle distribution. The
problem is that lamination parameters yield non-unique equivalence to stacking sequences and that the re-
lation is non-convex [65]. Inclusion of manufacturing constraints increases the difficulty of the conversion
optimization problem. Steering is given by:
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Figure 4.5: Streamlines with inflow and outflow boundaries. N̄ are the outward normals of the boundaries and they are used to deter-
mined the inflow boundaries by s̄ · N̄ ≤ 0. From Blom et al (2010) [97].

ξ2 = 2

Ω
·θt ·L ·θ (4.33)

where ξ is the steering,Ω is the domain and L is the Laplacian of either the element or the total ply. Using
the Laplacian of the former leads to local steering and the latter to global steering [77]. The steering limit is
inversely related to the minimum steering radius of a Fiber Placement Machine:

ξlim = 1

rmin
(4.34)

For the conversion problems optimization approaches comparable to least square forms have been ap-
plied in different studies [89–91]. In 1998 Todoroki and Haftka were the first to retrieve a stacking sequence
by evolutionary genetic algorithms, which proved to be more robust [92]. Later Autio used a similar approach
to optimize the conversion [93]. Based on this work Van Campen et al derived an algorithm where a genetic
algorithm is used to seed a gradient based optimization algorithm to prevent to be trapped in local optima
[94, 95]. For a given lamination distribution of a square plate that yields 52% improvement in buckling re-
sistance compared to a constant stiffness design, the algorithm was able to obtain a fiber angle distribution
that yields 31% to 47% improvement depending on the number of plies that was used. Irisarri et al use a
innovative response surface to generate a single surrogate model with an improved Shepard’s method [96]. A
genetic solver is used to find the optimum. This optimum is used to update the surrogate model, thereafter a
new genetic optimization run is performed until global convergence is achieved. This algorithm from Irisarri
et al is used as the second step in the multi-step framework from IJsselmuiden.

4.3. Step 3 - Fiber Path Construction
The third and last step is to generate fiber paths from the fiber angle distribution. Blom et al found an effective
way by applying a streamline analogy and it is this analogy that is used for the fiber path construction in the
multi-step framework [97]. The stream function is given by:

Ψ
(
x, y

)=C (4.35)

which connects all points with constant value C . In the analogy the streamlines represent centerlines
of fiber courses, this is illustrated in Figure 4.5. For a given fiber angle distribution the streamlines can be
obtained by solving the partial differential equation given by Equation 4.36 subject to specified constraints
and boundary conditions. The inflow boundary conditions specify the inflow fiber course distribution, hence
they influence the ply coverage. To obtain realistic results Blom optimized the inflow boundary conditions to
find a smooth streamline distribution that minimizes either gaps, overlaps or the combination of both.

dΨ
(
x, y

)
d s

= ∂Ψ

∂x

∂x

∂s
+ ∂Ψ

∂y

∂y

∂s
=Ψ,x cosθ+Ψ,y sinθ = 0 (4.36)
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4.4. Different Parameterizations by Level-2 Approximations
The general conservative approximation is given in terms of stiffness to allow for different parameterization
approaches, therefore this approximation is referred to as level-1 approximation. For convenience the general
form is repeated:

f (1) =
N∑

i=1

(
Ψ̌m

i

∣∣
0 : Ai + Ψ̌b

i

∣∣∣
0

: Di + Φ̌m
i

∣∣
0 : A−1

i + Φ̌m
i

∣∣
0 : D−1

i + η̌i
∣∣
0 ·∆Nth

i

)
+C0 (4.37)

where the breves indicate the embedded damping within the sensitivities. In the work of IJsselmuiden
lamination parameters are used as design variables to define the stiffness properties. Lamination parameters
are linearly related to the stiffness matrices and thermal load and can be substituted directly in the level-1
approximation. For parameterization based on fiber angles and ply densities the relation is more complex
and implementation is not straight forward. In recent work Peeters derived level-2 approximations with fiber
angles and ply densities as design variables [77]. Before explaining how this was done Figure 4.6 illustrates
how the level-2 approximations derived by Peeters complement the multi-step approach from IJsselmuiden.
With the addition of the level-2 approximation 3 procedures can be followed to optimize a design:

Figure 4.6: Diagram illustrating the combination of the level-2 approximation method and the multi-step approach.

1. The first option is to stick to the original multi-step approach indicated by the light grey block in Fig-
ure 4.6. For completeness thickness is also included. Note that although the lamination parameters
can be fed into the level-1 approximation directly, this is still a form of a level-2 approximation.

2. The second option is to run the first step of the multi-step approach to use the favorable optimiza-
tion properties of lamination parameters to determine the corresponding optimal distribution. In sec-
tion 4.2 the challenge to obtain the best fit in fiber angle distribution was discussed. With the level-2
approximation in the fiber angle design space a corresponding fiber angle distribution can be retrieved
if the sensitivities of the optimal design from step-1 are used to build the level-1 approximation. Using
the obtained corresponding fiber angle distribution to update the level-1 approximation allows to run
additional optimization iterations to obtain a true optimal fiber angle distribution. In Figure 4.6 this is
denoted as step-2.2 in the dark grey block. The resulting fiber angle distribution is used to construct
the fiber paths in step-3.

If the optimal thickness distribution is provided density optimization can be added to the optimization
problem and a coordinate descent method is used to determine whether the fiber angles or ply densities
are updated.

3. As a third option the level-2 approximations with fiber angles and ply densities as design variables can
be used for the entire optimization problem. The advantage is that the critical conversion problem is
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avoided and the manufacturing constraints on steering are directly used during the entire optimiza-
tion. However the favorable optimization properties of the lamination parameters are abandoned and
more finite element iterations will be needed to update the local approximations of the structural re-
sponses. Thereby the routine has to be started from multiple design points to avoid being trapped in
local minima that deviate significantly from the global optimum.

To optimize the local approximations in the fiber angle design space a level-2 approximation based on a
second order Taylor Series expansion is applied:

f (2) (θ) = f (1)
0 +g ·∆θ+ 1

2
∆θt ·H ·∆θ (4.38)

where f (1)
0 is the function value of the level-1 approximation given by Equation 4.37. Vector g and ma-

trix H represent the gradient and Hessian of the level-2 function value with respect to the fiber angle design
variables at the approximate point. Introducing s, which contains either the membrane or bending stiffness
components, the level-2 approximation is given as f (2) (θ) = f (1) (s (θ)). Based on this formulation the gradi-
ent based on the stiffness matrices can be determined by the chain-rule:

gi = ∂ f

∂θi
= ∂ f (1)

∂sα

∂sα
∂θi

(4.39)

Using the sensitivities and the derivatives given in section 3.6 both terms can be calculated. For the mem-
brane stiffness this yields:

∂ f (1)

∂A
=ψm

i −A−1 ·φm
i ·A−1 and

∂A

∂θi
= ∂A

∂Vi

∂Vi

∂θi
(4.40)

In a similar fashion the bending stiffness can be used to obtain the corresponding gradient. For ther-
mal load applications a change in the stacking sequence influences the thermal loads. Thus the gradient is
complemented with a term dependent on the thermal sensitivity:

gi = g A
i + g D

i + g N T h

i with g N T h

i = ∂ f (1)

∂NT h

∂NT h

∂θi
=ηi

∂NT h

∂Vi

∂Vi

∂θi
(4.41)

The Hessian is given by:

Hi j = ∂2 f (1)

∂θi∂θ j
= ∂2 f (1)

∂sα∂sβ
· ∂sα
∂θi

· ∂sβ
∂θ j︸ ︷︷ ︸

Gauss-Newton Term

+ ∂ f (1)

∂sα
· ∂2sα
∂θi∂θ j︸ ︷︷ ︸

Omitted Term

(4.42)

For the Hessian the last term is omitted since it is does not guarantee to be semi-positive definite and
only the Gauss-Newton term is used to ensure a positive semi-definite contribution to the approximation.
The thermal term is only linearly expanded in the approximation and thus absent in the Hessian.

The level-2 approximation has to agree with the CCSA framework from Svanberg. A damping function that
has the same form as the Hessian term is used to not interfere with the value and gradient at the approximate
point and the form of the approximation. The function is given by Equation 4.43, where HD is a regularisation
matrix. The initial damping factor is given by Equation 4.44, the regularisation matrix and the derivation of
the damping factor are specified by Peeters [77]. Since the damping function depends on the Hessian the
formulation does not change for thermal load applications.

f (2)
D (θ) = 1

2
∆θt ·HD ·∆θ (4.43)

ζ2(2)

θ = 1

2
·gt ·H−1

D ·g (4.44)
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Peeters also added a level-2 approximation related to the density for thickness optimization. The approx-
imation is linearly expanded:

f (2) (ρ)= f (1)
0 +g ·∆ρ (4.45)

where the gradient g is given by:

gi = ∂ f (1)

∂ρi
= g A

i + g D
i + g N T h

i (4.46)

The gradient is calculated in a similar fashion as the gradient of the fiber angle approximation. The density
approximation is linearly expanded, hence the damping function does change the form to create a convex
approximation. The damping function is given by:

f (2)
D

(
ρ

)= m∑
j

N∑
i=1

(
ρi

ρ0,i
+ ρ0,i

ρi
−2

)
·wi (4.47)

The derivation of the initial damping factor is specified by Peeters [77] and yields:

ζ2(2)

ρ =
N∑
i

wi

2

((
Φm

i :Φmt

i +Ψm
i :Ψmt

i

)2 +
(
Φb

i :Φbt

i +Ψb
i :Ψbt

i

)2
)

(4.48)

Both fiber angle and density level-2 approximations are optimized by a predictor-corrector primal-dual
interior-point solver. The dual formulation used by IJsselmuiden is no longer efficient due to the additional
curvature constraints. The optimization algorithm is extensively discussed by Peeters [77]. Optimization of
both the fiber angle distribution and thickness is performed by a coordinate descent algorithm.

4.5. Model Work Flow Diagram
A work flow diagram with the level-2 approximations in fiber angle and density space are presented in Fig-
ure 4.7. The model starts with different input blocks. In the laminate input the material properties are used
to calculate the material invariant matrices U and K. The initial stacking sequence and density distribution is
specified as well. The model input is used to define the finite element model and specifies the boundary and
load conditions. For a thermal load application the temperature difference is defined at the nodes. With the
model and laminate inputs the nodal and element properties are calculated.

If the optimal lamination parameter distribution is obtained from optimization in lamination parameter
space the corresponding sensitivities are used to determine the level-1 approximation. If these sensitivities
are not available the finite element model is constructed and the finite element and buckling analysis is per-
formed to determine the responses and sensitivities. If the level-1 approximation is build damping is added,
thereafter the level-2 approximations are build.

A coordinate descent methodology is implemented as consensus what parameter is updated. Both the
fiber angle and density distribution are optimized. With the newly found distributions the response is approx-
imated by the level-1 approximation. If the response does not yield an improvement the damping function is
updated. Note that the damping factor is always updated, even if an improvement is found. This process is
iterated until convergence is established for both the fiber angle and density optimization.

Once the optimization routine has converged it is checked what parameter yields the most improvement.
The respective parameter will be used to update the level-1 damping factor and to perform FEA. If the FEA
does not yield an improvement the level-1 damping function is updated and another iteration of the coordi-
nate descent routine is executed. If an improvement step is made convergence is checked. If convergence is
not reached the level-1 approximation is updated and the entire routine is repeated until a optimum solution
is established.
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Figure 4.7: Work Flow Diagram of the fiber angle optimization routine. A coordinate descent algorithm is applied to include thickness
optimization. Adjusted from Peeters [77].
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Figure 4.8: Relation of compliance and strain energy to stiffness. Strain energy is given by U and complementary strain energy is indi-
cated as C . Minimizing compliance corresponds to a maximum stiffness design.

4.6. Stiffness Response Approximation
Maximum stiffness is obtained by optimizing for minimum complementary strain energy C , also referred to
as compliance and this is explained by Figure 4.8 [58, 65]. The optimization problem is stated as:

min
x∈S

C (x) (4.49)

where x are the design parameters and C is the compliance given by:

CN = 1

2
Nt ·A−1 ·N (4.50)

Taking the derivative of the compliance with respect to an arbitrary parameter b results in the following:

dCN

db
= 1

2
Nt · dA−1

db
·N︸ ︷︷ ︸

local

+Nt ·A−1 dN

db︸ ︷︷ ︸
glocal

(4.51)

Working out both terms shows that the global term nullifies, leaving only the local term. This term is not
influenced by thermal loads, therefore the general approximation has the following form:

C ≈
N∑

i=1
Φm

i : A−1 +Φb
i : D−1 (4.52)

The convexity and conservativeness of the total approximation are proven by Setoodeh et al and Peeters
[58, 77]. Furthermore the approximation is separable and can be evaluated at nodal level. The corresponding
sensitivities at element level are derived in Appendix C.1 to be:

φm,e
αβ

= ∂C

∂A−1
αβ

= 1

2

N∑
σρ

AβσAρα

(
ut

e ·
dKm,e

d Aρσ
·ue

)
(4.53)

φb,e
αβ

= ∂C

∂D−1
αβ

= 1

2

N∑
σρ

DβσDρα

(
ut

e ·
dKm,e

dDρσ
·ue

)
(4.54)

4.7. Strength Response Approximation
Groenwold and Haftka proposed to incorporate a load multiplier in the failure criterion to impose a safety
factor within the strength optimization algorithm [98]. That is the critical load for first ply failure is P∗ = λP .
The distance from the origin to a point P within the failure envelope is given by a and the distance from the
origin to projection P∗ of point a on the boundary curve is given by point b, this is illustrated in Figure 4.9.
Therefore the load multiplier is given by [62]:
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Figure 4.9: Representation of a failure envelope in strain space. For every point within the envelope the multiplier λ is given by b over a.
From IJsselmuiden (2008) [62].

λ= b

a
(4.55)

The objective of the optimization procedure is to directly maximize the safety factor. This is similar to the
minimization of the inverse load multiplier referred to as the failure index r . The optimization problem is
stated as:

min
x∈S

r (ε (x)) = min
x∈S

1

λ (ε (x))
(4.56)

The conservative Tsai-Wu failure criterion explained in Equation 3.3 is used to asses the failure index,
where the failure envelope is determined by the critical orientation. The failure index equals 0 at the origin
and 1 at the boundary curve of the failure envelope. To save computational demand the failure index is ap-
proximated by a linear Taylor Series Expansion. Euler’s Theorem of homogeneous functions allows to simplify
the approximation:

r (ε) ≈ r0 +g t ·∆ε= εt ·g = Nt ·A−1 ·g where g = ∂r

∂ε

∣∣∣∣
0

(4.57)

Taking the derivative of the failure index with respect to an arbitrary parameter b results in:

dr

db
= Nt · dA−1

db
·g︸ ︷︷ ︸

local

+ dNt

db
·A−1 ·g︸ ︷︷ ︸

global

(4.58)

The first term is local in the sense that the stress resultants are considered to be constant. However, it is
known that the failure index also benefits if load is redistributed towards other areas of the structure. This
effect is incorporated in the global part. The sensitivity of the local term is given by:

rlocal ≈Φm : A−1 where Φm = dr

dA−1 = 1

2

(
N ·gt +g ·Nt ) (4.59)

where Φm is not necessarily positive definite. To guarantee convexity Φm is split in a positive Φm+
and

indefinite partΦm−
. The indefinite part is linearly expanded around A0 resulting in:
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rlocal ≈Φm : A−1 =Φm+
: A−1 +Φm−

: A−1
0 +Ψm−

: A (4.60)

For homogeneity the second termΦm−
: A−1

0 has to be zero, the analysis is omitted here and is explained
by Khani et al [66]. Dropping the superscripts from the local approximation the final approximation form is
given by:

r ≈
N∑

i=1
Φm

i : A−1 +Ψm
i : A (4.61)

In this approximation Φm represents the positive definite part of the local approximation and Ψm is the
sum of the linear expanded part of the indefinite part and the sensitivity to the global redistribution effect of
loads. The latter is obtained using the adjoint displacement method [66]. The total approximation is homo-
geneous, convex, but not necessarily conservative [69]. Furthermore the approximation is separable and can
be evaluated at nodal level [66]. The corresponding sensitivities at element level are derived in Appendix C.2.

4.7.1. Thermomechanical Strength Response Approximation
The approximation in stiffness space is updated to include the thermal load contribution by an additional
thermal term:

r ≈
N∑

i=1
Φm

i : A−1 +Ψm
i : A+ηm

i ·∆NTh (4.62)

For strain based strength analysis the strain should not include stress thermal expansion. Thus the Taylor
Series Expansion of the strength response in strain space given by Equation 4.57 does not change for ther-
momechanical applications and the local and global derivatives given in Equation 4.58 hold. The global term
takes the load redistribution into account, therefore this term needs to be re-evaluated to consider thermal
loads. The term is obtained by summation of all element contributions to the load distribution:

Tglocal =
dNt

db
·A−1 ·g =∑

e

dNt
e

db
·A−1

e ·ge (4.63)

Due to thermal loads the governing equation is now given by:

Ne = Ae ·εe −NTh
e (4.64)

Therefore the derivative of the stress resultant is given by:

dNe

db
= dAe

db
·εe +Ae · B̄e · due

db
− dNTh

e

db
(4.65)

The derivatives of the membrane stiffness and thermal load can be evaluated at element level, but the
displacement derivative cannot be evaluated at local level. If a stacking sequence of a single element changes
the load distribution throughout the structure changes accordingly. Using se = A−1

e ·ge the global term is given
as:

Tglocal = st
i ·

dAi

db
·εi +

∑
e

st
e ·Ae · B̄e · due

db
−st

i ·
dNTh

i

db
(4.66)

A new term fe is introduced to simplify the equation:

fe = B̄t
e ·Ae ·se → Tglocal = st

i ·
dAi

db
·εi +

∑
e

fe · due

db
−st

i ·
dNTh

i

db
(4.67)
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Adjoint Displacement Approach
To determine the derivative of the displacement vector the adjoint displacement approach is applied. The
adjoint displacement vector v is calculated by solving:

Km v = f (4.68)

Taking the derivative of the linear finite element problem Km ·u = F+FTh:

dKm

db
·u+Km · du

db
= dFTh

db
→ Km · du

db
= dFTh

db
− dKm

db
·u (4.69)

Multiplying both sides by the adjoint displacement vector v yields:

vt ·Km · du

db
= vt ·

(
dFTh

db
− dKm

db
·u

)
→ f · du

db
= vt ·

(
dFTh

db
− dKm

db
·u

)
(4.70)

The right hand side can be evaluated at the local element level, since all global redistribution of load is
embedded in the adjoint displacement vector. The right hand side is substituted in the global term and now
all terms can be evaluated at element level:

Tglocal = st
i ·

dAi

db
·εi +vt

i ·
(

dFTh
i

db
− dKm,i

db
·ui

)
−st

i ·
dNTh

i

db
(4.71)

Total Derivative
Combining the local and global terms the total derivative is given by:

dr

db
= Nt

i ·
dA−1

i

db
·gi︸ ︷︷ ︸

Tlocal

+st
i ·

dAi

db
·εi +vt

i ·
(

dFTh
i

db
− dKm,i

db
·ui

)
−st

i ·
dNTh

i

db︸ ︷︷ ︸
Tglocal

(4.72)

The local term depends on A−1 and the global term on A, therefore the stiffness sensitivities for element e are
given by:

φm,e
αβ

= ∂r

∂A−1
αβ

=
N∑
σρ

Nt
e ·

dA−1
e

d A−1
ρσ

·ge (4.73)

ψm,e
αβ

= ∂r

∂Aαβ
=

N∑
σρ

(
st

e ·
dAe

d Aρσ
·εe −vt

e ·
dKm,e

d Aρσ
·ue

)
(4.74)

Note that Φm is similar to the mechanical strength response and needs to be split in a positive and in-
definite part. Furthermore the global term is influenced by thermal loads, therefore the thermal sensitivity is
given by:

ηm,e = ∂r

∂N Th
= vt

e
dFTh

e

d N Th
−st

i ·
dNTh

e

d N Th
(4.75)

The thermal forces are calculated by the thermal loads, hence the thermal sensitivity can be rewritten to:

dFTh
e

d N Th
e

= Ae B̄t
e

dNTh
e

d N Th
e

→ ηm,e = (
Ae B̄e ve −se

)t (4.76)
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4.8. Buckling Response Approximation
Buckling can be described as an eigenvalue problem given by Equation 4.77, where Kb is the global bend-
ing stiffness matrix, Kg the global geometric stiffness matrix, λ the buckling factor and a is the normalized
eigenvector corresponding to the buckling mode.

(
Km −λKg

) ·a = 0 (4.77)

Maximizing the buckling load yields a minimization of the inverse buckling load, this optimization is
stated as:

min
x∈S

r (x) = min
x∈S

1

λ (x)
(4.78)

The derivative of the buckling factor with respect to a general parameter b is given by:

dλ

db
=λat dKm

db
a︸ ︷︷ ︸

local

−λ2at dKg

db
a︸ ︷︷ ︸

global

(4.79)

The first term is related to derivative of the local bending stiffness and the second term depends on the
derivative of the global geometric stiffness. This term is global since it depends on the element loads of the
entire structure, therefore this term essentially represents the effect of load redistribtion [64].

For a plate the buckling load factor is homogeneous with respect to the in-plane and bending stiffness of
order zero and one respectively. Therefore the inverse buckling load is homogeneous of order zero and one
with respect to the in-plane membrane stiffness A and the inverse bending stiffness D−1. The approximation
then becomes of the form presented:

r ≈
N∑

i=1
Ψm

i : A+Φb
i : D−1 (4.80)

Note that the membrane stiffness accounts for the global load distribution and the inverse bending stiff-
ness accounts for the local bending resistance. Euler’s theory for homogeneous functions shows that Ψm

is not necessarily positive definite. This does not appear problematic since the terms are linear, therefore
the positive definite reciprocal terms guarantees a total approximation that is convex [63, 64]. Thereby the
approximation is homogeneous, not necessarily conservative and separability allows for evaluation at nodal
level.

The inverse buckling load approximation for shells is given by Equation 4.81. By curvature of the part in-
and out-of-plane contributions are no longer separate. The bending stiffness influences in-plane behavior
and the membrane stiffness influences out-of-plane behavior, thus terms A and D−1 appear in the approxi-
mation:

r ≈
N∑

i=1
Ψm

i : A+Ψb
i : D+Φm

i : A−1 +Φb
i : D−1 (4.81)

For the pure mechanical buckling response the elemental sensitivities are derived in Appendix C.3.

4.8.1. Thermomechanical Buckling Response Approximation
The approximation is updated to include the thermal load contribution by an additional thermal term:

r ≈
N∑

i=1
Ψm

i : A+Ψb
i : D+Φm

i : A−1 +Φb
i : D−1 +ηm

i ·∆NTh (4.82)
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For thermomechanical load applications it is discussed in subsection 3.5.2 that the buckling equation be-
comes of the following form:

[
Km −λ

(
KM

g +KTh
g

)]
·a = 0 (4.83)

The sensitivity analysis of the pure mechanical buckling formulation is given in Appendix C.3. Based on
this the sensitivities of the thermomechanical buckling formulation are derived. Taking the derivative of the
buckling factor with respect to a general parameter b yields:

dλ

db
=λat dKm

db
a︸ ︷︷ ︸

local

−λ2at

(
dKM

g

db
+

dKTh
g

db

)
a︸ ︷︷ ︸

global

(4.84)

Local Term - Material Stiffness
The local term can be evaluated at the local i th element level:

Tlocal = at · dKm

db
·a = at

i ·
dKm,i

db
·ai (4.85)

Global Term - Geometric Stiffness
Due to the implementation of thermal load the global term has to be re-evaluated. The geometric stiffness
matrix changes on a global level and the derivatives of all elements are summed. Defining:

Kg ,e =−nx,e Kx −ny,e Ky −nx y,e Kx y and se =
[
at

e ·Kx ·ae ; at
e ·Ky ·ae ; at

e ·Kx y ·ae
]t

(4.86)

results in the following global term:

Tglobal = at

(
dKM

g

db
+

dKTh
g

db

)
a =−∑

e
st

e ·
dNe

db
(4.87)

Due to thermal loads the governing equation is now given by:

Ne = Ae ·εe −NTh
e (4.88)

Therefore the derivative of the stress resultant is given by:

dNe

db
= dAe

db
·εe +Ae · B̄e · due

db
− dNTh

e

db
(4.89)

The derivatives of the membrane stiffness and thermal load can be evaluated at element level, but the
displacement derivative cannot be evaluated at local level. If a stacking sequence of an element changes
the load distribution throughout the structure changes accordingly. Altogether the global derivative term
becomes:

Tglobal =−st
i ·

dAi

db
·εi −

∑
e

st
e ·Ae · B̄e · due

db
+st

i ·
dNTh

i

db
(4.90)

A new term fe is introduced to simplify the equation:

fe = B̄t
e ·Ae ·se → Tglobal =−st

i ·
dAi

db
·εi −

∑
e

ft
e ·

due

db
+st

i ·
dNTh

i

db
(4.91)
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Adjoint Displacement Approach
To determine the derivative of the displacement vector the adjoint displacement approach used for the ther-
momechanical strength response is applied. The global term can now be evaluated at element level:

Tglobal =−st
i ·

dAi

db
·εi −vt

i ·
(

dFTh
i

db
− dKm,i

db
·ui

)
+st

i ·
dNTh

i

db
(4.92)

Total Derivative
Substituting both local and global terms into the total derivative yields the following relation for the ith ele-
ment:

dλ

db
=λ

(
at

i ·
dKm,i

db
·ai

)
︸ ︷︷ ︸

material stiffness

+λ2

(
st

i ·
dAi

db
·ei +vt

i ·
(

dFTh
i

db
− dKm,i

db
·ui

)
−st

i

dNTh
i

db

)
︸ ︷︷ ︸

geometric stiffness

(4.93)

The thermomechanical response formulation is repeated. The linear terms are based on the geometric stiff-
ness, and the reciprocal terms depend on the material stiffness:

r ≈
N∑

i=1
Ψm

i : A+Ψb
i : D︸ ︷︷ ︸

geometric stiffness

+Φm
i : A−1 +Φb

i : D−1 +ηm
i ·∆NTh︸ ︷︷ ︸

material stiffness

(4.94)

Combining the following expressions:

∂ f

∂A
=−A−1 · ∂ f

∂A−1 ·A−1 and
∂ f

∂A−1 =−A · ∂ f

∂A
·A (4.95)

And using the chain-rule to obtain the actual response derivative:

∂r

∂b
= ∂r

∂λ

∂λ

∂b
→ ∂r

∂b
=− 1

λ2

∂λ

∂b
(4.96)

results in the following sensitivities for material stiffness at element level:

φm,e
αβ

= ∂r

∂A−1
αβ

= 1

λ

N∑
σρ

AβσAρα

(
at

e ·
dKm,e

d Aρσ
·ae

)
(4.97)

φb,e
αβ

= ∂r

∂D−1
αβ

= 1

λ

N∑
σρ

DβσDρα

(
at

e ·
dKb,e

dDρσ
·ae

)
(4.98)

and for geometric stiffness:

ψm,e
αβ

= ∂r

∂Aαβ
=

N∑
σρ

(
−st

e ·
dAe

d Aρσ
·ee +vt

e ·
dKt

m,e

d Aρσ
·ue

)
(4.99)

ψb,e
αβ

= ∂r

∂Dαβ
=

N∑
σρ

(
vt

e ·
dKt

b,i

dDρσ
·ue

)
(4.100)

ηm,e = ∂r

∂N Th
= vt

e
dFTh

e

d N Th
e

+st
e

dNTh
e

d N Th
e

(4.101)

The thermal forces are calculated by the thermal loads, hence the thermal sensitivity can be rewritten to:

dFTh
e

d N Th
e

= Ae B̄t
e

dNTh
e

d N Th
e

→ ηm,e = (−Ae B̄e ve +se
)t (4.102)



5
Verification - Rectangular Plate

The optimization procedure is explained in the previous chapters. Before looking into a real world appli-
cation it is essential to verify the model. Verification is based on research led by Gurdal that optimized the
rectangular plate shown in Figure 5.1 for both mechanical and thermomechanical loads [17, 99, 100].

Similar to the reference papers a = 381mm and the aspect ratio of the plate is set to 1. The edges of
the plate are simply supported, that is the out of plane deformation is suppressed but rotation is allowed.
Additionally the edges are traction free and the transverse edges are forced to remain straight. Mechanical
load is applied to generate uniform end shortening due to a corresponding uni-axial Nx distribution. The
laminate is build from T300/5208 plies and the corresponding material properties are given in Table 5.1. A
total of 12 plies are used to yield a total thickness of 1.524mm. This is thin enough so the in-plane failure
strains are a magnitude larger than the experienced buckling strains, thus no strength failure criteria needs
to be checked [99].

Figure 5.1: Simply Supported rectangular plate used for verification.

Table 5.1: Material Properties of the T300/5208 carbon fiber composite

E1 174.1 GPa α1 0.02e-6 K−1

E2 10.3 GPa α2 2.25e-6 K−1

ν12 0.28 − t 0.1270 mm
G12 7.17 GPa h 1.5240 mm

5.1. Linearly Varying Fiber Orientations
Buckling optimization is performed for the described plate by Olmedo and Gurdal [17]. Linearly varying
fiber orientations are discussed in chapter 2 and this parameterization is used to define a variable-stiffness
laminate. For convenience the equation related to the fiber angle variation is repeated:

θ
(
x ′)=φ+ (T1 −T0)

d
x ′+T0 (5.1)

51
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To ease the optimization they set parameter φ to 90 degrees, this effectively sets the fiber angle variation
to be in the y-direction of the plate, i.e. θ

(
y
)
. For free transverse edges variable stiffness causes a variation in

poisson’s ratio, thus the panel experiences deformation patterns that are nonuniform due to the applied com-
pression load. For standard panel tests of variable-stiffness laminates the transverse edge are constrained to
remain straight. This results in an uniform deformation pattern, however the applied load is distributed in a
nonuniform pattern over the structure. Applications that represents this behavior are stiffened variable stiff-
ness panels.

The load distribution depends on the stiffness variation over the structure. Since the stiffness of the pan-
els is determined by the fiber paths a change in parameters T0 and T1 will lead to different load distributions.
Optimization of the buckling load resulted in advantageous load distributions to increase the buckling resis-
tance of the plate. To analyze the critical buckling load the Ritz method is applied.

Olmedo and Gurdal compared the determined optimum linearly varying fiber angle distribution< 90,(0 | 75) >
with the optimal constant stiffness design ±45. The results are given in Table 5.2 where the critial buckling
load multiplier is normalized by:

λ̄cr = λcr a2

E1h3 (5.2)

The varying fiber paths yields high stiffness close to the restrained transverse edges and low stiffness at the
center of the plate. The major part of the compression load is carried by the high stiffness regions close to the
transverse edges that has better buckling resistance due to the suppressed out of plane deformation by the
boundary conditions. The middle area that is prone to buckling only carries a minor part of the compression
load, hence the load distribution improves the buckling resistance of the plate.

Table 5.2: Normalized critical buckling load multiplier for the optimal constant and linearly varying fiber orientation designs [17].

Design λ̄cr

±45 1.75
±< 90,(0 | 75) > 3.14

5.2. Optimization in Lamination Parameter Space
In later studies IJsselmuiden et al used the same panel to demonstrate the influence of thermomechanical
loads on the buckling performance [99, 100]. The following eigenvalue buckling formulation was used:

(
Km −λM KM

g −KT h
g

)
a = 0 (5.3)

In this formulation the thermal load is given as a pre-load, thereafter the critical mechanical load is cal-
culated in their research. To increase the flexibility of variable stiffness panels they optimized the stiffness
distribution based on the optimization framework from IJsselmuiden in the lamination parameter design
space described in the previous chapter. Optimization was performed for 0, -100 and -200 degrees tempera-
ture difference:

Case I: Optimization for ∆T = 0oC.
Case II: Optimization for ∆T =−100oC.
Case III: Optimization for ∆T =−200oC.

The obtained optimal designs are compared to the optimal design derived by Olmedo and Gurdal as well
as a quasi-isotropic and the optimal constant stiffness ±45 design. The results are given in Table 5.3 for a 20 x
20 mesh consisting of rectangular elements.
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Table 5.3: Normalized critical buckling load multipliers for the optimal constant, optimal linearly varying fiber orientation, and optimal
thermomechanical load cases I-III [100]. The values in bold show the critical buckling multiplier for the designs optimized for the
corresponding thermal load.

Temperature change ∆T
Design 0K −100K −200K
QI 1.3842 1.3842 1.3842
±45 1.7424 1.7424 1.7424
±< 90,(0 | 75) > 2.9282 4.3855 1.4518
Case I 4.0157 6.0802 2.9758
Case II 3.2468 7.2615 8.0472
Case III 2.5481 6.2637 9.0829

5.3. Verification of Thermal Analysis
The results presented in Table 6.2 are ideal to verify the implemented thermal load analysis. First the buckling
loads of the constant stiffness panels are verified. The results are given in Table 5.4, 18 DOF triangular shell
elements are used and a mesh refinement is included to show convergence. Similar results are obtained and
the temperature differences do not influence the buckling load since the plate exhibits stress free thermal
expansion for constant stiffness designs.

Table 5.4: Normalized critical buckling multipliers for different meshes. Results are exactly similar for ∆T = 0K, ∆T = −100K and ∆T =
−200K due to free thermal expansion. Difference is measured with respect to the result for a 60 x 60 mesh.

Mesh QI Design Difference [%] ±45 Design Difference [%]
10 x 10 1.3717 -0.91 1.6722 -3.07
20 x 20 1.3782 -0.44 1.7030 -1.28
30 x 30 1.3811 -0.23 1.7139 -0.65
40 x 40 1.3826 -0.12 1.7195 -0.32
50 x 50 1.3837 -0.04 1.7228 -0.13
60 x 60 1.3843 1.7251

Ref. [100]: 20 x 20 1.3842 -0.01 1.7424 +0.99

The optimal linearly varying fiber orientation design found by Olmedo and Gurdal is analyzed to check
whether the thermal induced stresses influence the buckling behavior correctly. For ∆T = 0K the results are
given in Table 5.5. For a 20 x 20 mesh the normalized critical buckling multiplier of 2.94 is similar to the result
found by IJsselmuiden et al. Refining the mesh increases the buckling multiplier to 3.09, which is closer to
the solution found by Olmedo and Gurdal with the Ritz method.

Table 5.5: Normalized buckling multipliers for ∆T = 0K for different meshes. Difference is measured with respect to the result for a 60 x
60 mesh. (1) Difference is measured with respect to the result for a 20 x 20 mesh.

Mesh ±< 90,(0 | 75) > Difference [%]
20 x 20 2.9410 -4.88
30 x 30 3.0320 -1.94
40 x 40 3.0660 -0.84
50 x 50 3.0826 -0.30
60 x 60 3.0920

Ref. [62] 3.14 +1.55
Ref. [100]: 20 x 20 (1) 2.9282 -0.44

For ∆T = −100K and ∆T = −200K the results cannot directly be compared due to the different buckling
formulation. The buckling multiplier in the buckling formulation given in Equation 3.59 also scales the ther-
mal load, yielding different results from the buckling formulation given by Equation 5.3. To make a compari-
son between the reference paper and the obtained results from the implemented thermal analysis the critical
buckling multiplier from Table 6.2 is converted to its corresponding critical mechanical load. The thermal
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load and the critical mechanical load are applied and should yield a buckling multiplier of 1, since the initial
load condition is already critical. The results are given in Table 5.6 and buckling multipliers of 1 are found for
∆T =−100K and ∆T =−200K. Additionally pure thermal buckling is found for ∆T =−240K and ∆T = 27K in
correspondence with the reference paper.

Table 5.6: Critical buckling load multipliers for ∆T of −100K, −200K, −240K and 27K.

∆T [K] Mesh Ncr [kN] ±< 90,(0 | 75) >
-100 20 x 20 19.4 0.9947
-200 20 x 20 6.4 1.0017
-240 20 x 20 - 1.0035
+27 20 x 20 - 0.9962

5.4. Verification of the Optimization Routine
Before the optimization is performed and compared to the results given in Table 6.2 first the approximations
are verified. The sensitivities form the backbone of the approximations and are verified by the finite difference
approximation [85]. A small step deviation δ is introduced to the design parameter x, this is followed by finite
element analysis to compute the structural responses f (x +δ) and f (x −δ). This is used to determine the
sensitivity according to the second order central finite difference approximation:

∂ f

∂x
= f (x +δ)− f (x −δ)

2δ
(5.4)

The response sensitivities calculated by the derivatives given in the previous chapter should be close or
similar to the sensitivities derived by the finite difference approximation. For all responses the sensitivities are
verified to yield the same results as the finite difference results for different design parameters and small step
sizes. To check whether the approximations are correctly build the sensitivities are used to approximate the
structural responses for small deviations of the design parameters. The deviations are also used to calculate
the response by finite element analysis, for small step sizes the results showed to be close or similar:

f (1)
(
∆A,∆D,∆NT h

)
≈ fFEM

(
A+∆A,D+∆D,NT h +∆NT h

)
(5.5)

f (2) (∆θ) ≈ fFEM (θ+∆θ) (5.6)

For the verification the buckling optimization is performed in the fiber angle design space. The local
steering constraint is set to a minimal steering radius of 333mm. To make a comparison with the optimal
results obtained by IJsselmuiden et al the mechanical load is iteratively changed for a given thermal load
until the critical buckling multiplier equals 1. This effectively simulates the buckling formulation used by
IJsselmuiden et al where the thermal load is defined as a pre-load and the mechanical load is scaled to find
the critical buckling factor. The results are presented in Table 5.7.

Table 5.7: The first three critical buckling modes after optimization for ∆T of 0K, −100K and −200K.

∆T [o C] Mesh Ncr [kN] of ref. [100] Difference [%] Ncr,1 [kN] Ncr,2 [kN] Ncr,3 [kN]
0 20 x 20 17.7 -28 12.8 12.8 19.7

-100 20 x 20 32.0 -27 23.5 24.8 27.8
-200 20 x 20 40.1 -28 29.0 29.1 31.9

The critical buckling loads for the first three buckling modes are given. It is clear from the table that due to
the optimization the first two buckling modes are almost equally critical. In essence the optimization routine
tries to redistribute the load and to change the buckling resistance to counteract the most critical buckling
mode. Due to this behavior other buckling modes become more dominant until one of these modes becomes
critical. This process continues until two or more buckling modes are dominant and changing the design will
only cause one of the buckling modes to initiate at a lower load.
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The presented results are for a minimum steering radius of 333mm. This is one of the causes of the dif-
ferences with the result of the reference paper. Although the designs in lamination parameters does consider
continuity it does not take into account manufacturability. To investigate the influence of the steering radius
optimization with minimum steering radii of 500mm and 250mm are also performed. The results are given
in Table 5.8, from the results it is clear that more steering allows for a design that is closer to the reference
design.

Table 5.8: The first three critical buckling modes after optimization for ∆T =−2000C and for different steering radii.

∆T [o C] Mesh rm i n [mm] Ncr [kN] of ref. [100] Difference [%] Ncr,1 [kN] Ncr,2 [kN] Ncr,3 [kN]
-200 20 x 20 500 40.1 -41 23.8 26.2 29.0
-200 20 x 20 333 40.1 -28 29.0 29.1 31.9
-200 20 x 20 250 40.1 -18 32.9 33.0 35.7
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Figure 5.2: Stress resultant at x = a/2 for different designs for a unit applied compressive load. ’LV’ stand for linear variation and ’Opt’
stands for optimal design.
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Figure 5.3: Stress resultant at x = a/2 for different designs for a unit applied negative thermal load. ’LV’ stand for linear variation and
’Opt’ stands for optimal design.

To explain how the buckling resistance of the plate increases the stress resultant Nx is plotted over the
center-line presented in Figure 5.1 at x = a/2 for a unit applied compressive and negative thermal load
in Figure 5.2 and Figure 5.3 respectively. Both thermal and mechanical loads are distributed towards the
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constrained transverse edges, whereas the prone to buckling middle section is relieved from compressive
stresses. Furthermore the thermal loads are distributed in such a way that stabilizing tensile stresses in the
middle area are created, hence the gain in performance under negative thermal load.

For case I the thermal loads are not assessed in the optimization. This is visible in Figure 5.3, where the
design does not distribute the thermal load as effectively as the designs for case II and case III. The distri-
butions for case II and case III are more consistent, where case III distributes the stabilizing tensile stresses
over a larger area.j Since the thermal load for case III is higher a larger area benefits from the stabilizing effect.

The influence of the load distribution on the buckling modes is visible in the buckling mode plots. The
buckling modes are plotted in Figure 5.4, Figure 5.5 and Figure 5.6 for ∆T = 0K, ∆T =−100K and ∆T =−200K
respectively. For the plates under a higher thermal load it is visible that the buckling modes shift towards the
transverse edges and edge buckling appears. This behavior corresponds to the described load distribution.

Figure 5.4: First three critical buckling modes for ∆T = 0. The corresponding critical buckling loads are Nx,1 = 12.8kN, Nx,2 = 12.8 and
Nx,3 = 19.7.

Figure 5.5: First three critical buckling modes for ∆T =−100. The corresponding critical buckling loads are Nx,1 = 23.5kN, Nx,2 = 24.8
and Nx,3 = 27.8kN.

Figure 5.6: First three critical buckling modes for ∆T =−200. The corresponding critical buckling loads are Nx,1 = 29.0kN, Nx,2 = 29.1
and Nx,3 = 31.9kN.

At last the verification is performed once more for the same plate, but the plate is rotated so the local
element orientation and global coordinate system do not coincide. This is done to check whether the imple-
mentation of transformations between local element orientations and the global model coordinate system is
executed correctly. The exact same results were obtained, indicating correct implementation of transforma-
tions.



6
Application - Engine Thrust Frame

Now the optimization routine has been verified it will be used to optimize the laminate design of an engine
thrust frame (ETF), which is shown in Figure 6.1. The structure transfers the thrust load of the rocket engine
to the rocket bus, due to the dimension differences of the bus and the engine a conical shape is used. The
conical shape is made from carbon fiber reinforced polymer.

The conical part is connected to a top and an X-ring made from aluminum. For the application considered
in this study the ring is simplified to the geometry shown in Figure 6.1. Due to confidentiality the material
properties and dimensions of the engine thrust frame will not be specified.

Figure 6.1: Design and dimensions of the ETF in meters. The ETF consist of an aluminum top-ring, CFR cone and a CFRP end-cap. There
are multiple CFRP stiffeners placed at the inside of the cone.

Reference Laminate
The circumference of the cone increases towards the top of the structure, hence the load can be distributed
over a larger area. A constant thickness laminate would yield an over-designed structure at the top of the
cone, thus a tapered design is implemented by Airbus. Due to confidentiality the reference laminate is not
specified.

To limit the mismatch in the coefficient of thermal expansion (CTE) between aluminum and the CFRP
material ply angles of 90 degrees are avoided at the ring-cone interface to reduce thermal induced stresses.

The optimization routine only works with symmetric laminates, thereby lay-ups are assumed to be bal-
anced to simplify the optimization for this conceptual work. Altogether the laminate given in Figure 6.2 is
used as a QI reference design. Similar to the design from Airbus this design also avoids 90 degree angles at
the ring-cone interface. By balanced-symmetric conditions a multiple of four layers have to be used, there-
fore four sections are implemented to have a similar tapered thickness. The laminate is close to QI, however
sections 2 and 3 slightly deviate to assure continuity between the different sections.

57
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Figure 6.2: Laminate design of the CFRP cone. An QI reference design is used for optimization. The laminate has 4 sections to create the
tapered thickness distribtuion. Sections 2 and 3 slight deviate from QI properties to guarantee continuity between sections.

Load and Boundary Conditions
For the design study in this work the load application is simplified to the load case given in Figure 6.3. The
main load is the thrust load from the engine in axial direction. The bottom edge of the cone is set to remain
horizontal when it displaces. This condition distributes the thrust load over the bottom edge of the cone. The
temperature difference is -205 Kelvin at the top of the ring and +5 Kelvin at the bottom of the cone.

To allow the ring to contract and expand by thermal loads it is free to move in the x y-plane. The ring is
attached to the rocket bus, thus the top of the ring cannot move in z-direction, i.e. U3 = 0. To impose some of
the stiffness of the rocket bus on the ring the rotations are set to zero, i.e. R1 = R2 = R3 = 0.

Since the thermal load on the bottom of the cone is negligible the end-cap is not modeled to simplify the
finite element analysis. To impose the stiffness of the end-cap on the bottom of the cone the bottom edge
cannot expand in the x y-plane and the rotations are set to zero, i.e. U1 =U2 = R1 = R2 = R3 = 0.

Figure 6.3: The applied load and boundary conditions for the finite element and buckling analysis.

Optimization Problem
The main load on the structure is the axial compressive thrust load, therefore the critical buckling load of
the ETF will be the optimization objective. Peak stresses are expected at the ring-cone interface for thermal
loads due to the mismatch in CTE. Strength constraints at nodal level could be implemented to avoid first
ply failure, however this will put an incredible demand on the computational cost by the large number of
constraints involved. The optimization of the ETF fits in a conceptual framework and a single quasi-isotropic
compliance constraint is used instead. Although this does not guarantee that first ply failure does not occur
excessive deformations and accompanied stresses are limited to some extend. A minimum steering radius of
333mm is applied.
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Mesh
For the given load and boundary conditions a mesh convergence study is performed, an overview is given in
Table 6.1. The laminate is build from a balanced-symmetric conventional QI stacking sequence. The fiber
orientations are measured in the local nodal reference systems which are shown in Figure 6.4. To limit the
computational cost the mesh should be as coarse as possible yet generating accurate results. A mesh of
[7 + 63] x 63 ( [nring,axial+ncone,axial] x nradial ) is found acceptable. To study the influence of the number of
nodes in the axial and radial directions two extra meshes of [7 + 53] x 73 and [7 + 73] x 53 are generated. The
corresponding results show that the accuracy of the model is predominated by the radial mesh refinement,
thus a [7 + 53] x 73 is implemented.

Table 6.1: Mesh convergence study for a conventional [0 90 45 -45]b/s laminate. Difference1 is compared to the [8 + 83] x 83 MATLAB
model. Difference2 is compared to a [11 + 103] x 103 ABAQUS model that uses the S3 element type. This is a 3-node triangular general-
purpose shell and a critical buckling load of λcr = 1.4998e5 is obtained.

Mesh [nring,axial + ncone,axial] x nradial λcr Difference1 [%] Difference2 [%]

[6+43] x 43 1.6798e5 +13.75 +12.00
[6+53] x 53 1.5755e5 +6.68 +5.05
[7+63] x 63 1.5294e5 +3.56 +1.97
[7+73] x 73 1.4987e5 +1.48 -0.73
[8+83] x 83 1.4768e5 -1.53

[7+53] x 73 1.4866e5 +0.66 -0.88
[7+73] x 53 1.6062e5 +8.76 +7.09

Figure 6.4: Nodal reference systems for a coarse mesh of the
MATLAB model. Local 1 and 2 directions are given in red and blue.

Figure 6.5: Axial (red) and radial (blue) paths used to plot stiffness
and stress resultant distributions.

6.1. Results - Constant Thickness Design
Before applying the taper thickness distribution given by Figure 6.2 a constant thickness laminate is modeled
first to gain a better understanding of the optimization process. Based on the thickest section a laminate of
36 layers is implemented. By the balanced-symmetric lay-up conditions 9 design layers are optimized and
the total laminate is constructed by the linking matrices specified in Chapter 3. The results of a QI-design and
optimized VS-design are given in Table 6.2 for a temperature difference of 0 and −200K.

Table 6.2: Results for a constant thickness design for ∆T = 0 and −200K.

Loads QI-Design Opt. VS-Design
∆T [K] P [N] λcr Compliance λcr Compliance Difference in λcr [%]

0 N.A. 6.31 6.59e2 6.83 5.68e2 8.2
-200 N.A. 6.31 3.07e4 7.12 3.06e4 12.8
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6.1.1. Constant Thickness – ∆T = 0K
Due to the axisymmetric model the stress resultant and property distributions in circumferential direction
are constant. Hence only the distributions in axial direction specified in Figure 6.5 are studied.

Deformation Figure 6.6 - The deformation profile primarily shows displacements in radial direction at
the ring-cone interface. The transferred loads from the cone to the ring impose out-of-
plane loads on the ring known as a kick load, hence radial displacement is present. The
displacement profile is slightly smoother for the optimum VS-design.

Stress resultants Figure 6.7 - Due to force equilibrium in axial direction the Nx distribution does not change
for the optimized VS-design. The slightly smoother deformation profile of the optimal VS-
design is accompanied by a lower peak stress resultant in hoop direction. Altogether there
is no load and stress redistribution visible that increases the buckling performance.

Stiffness Figure 6.8 - The cause of the increased buckling performance is found in the stiffness dis-
tributions. The dominant part of the buckling equation for a simply supported cylinder
under an axial compressive load is given by Equation 6.1 [101]. In this equation D11 repre-
sents axial bending stiffness and D22 represents hoop bending stiffness in radial direction.
The higher the axial or hoop bending stiffness the higher the resistance against buckling
in the corresponding direction. This formulation is for constant stiffness cylinders and
not variable-stiffness cones, however the concept of axial and hoop bending stiffness is
applicable. The QI-design has a high D22 value, therefore the critical buckling mode given
in Figure 6.9 is in axial direction. The VS-design shows reduced D22 and increased D11 val-
ues. During optimization the stiffness distribution is changed to yield a critical buckling
mode that absorbs the most energy before buckling is initiated. For the optimal design
the critical buckling mode given by Figure 6.10 in hoop direction is obtained.
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Figure 6.6: Displacement for a constant thickness design for∆T = 0K, scale = 30. Left: Axial displacement displayed on the total deformed
structure. Right: Displacement profile in radial direction.
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Figure 6.7: Mechanical induced axial (x ) and hoop (y ) stress resultant distributions in axial direction due to thrust load P for a constant
thickness design optimized for ∆T = 0K. The stress resultants are normalized by Nx =Nx /P .
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Figure 6.8: The axial membrane (left) and bending stiffness distributions (right) in axial direction for axial (11) and hoop (22) stiffness for
a constant thickness design optimized for ∆T = 0K.

Figure 6.9: Bucking modes (λcr−1,2,7 = 6.3125, 6.3144, 6.3567) for a constant thickness QI-design for ∆T = 0K. The 1st buckling mode is
purely in axial direction. The 2nd mode has a spiraling pattern. The 2nd to 6th mode are almost similar, hence the 7th mode is plotted
because the spiraling pattern is better visible.

Figure 6.10: First three bucking modes (λcr−1,2,3 = 6.8333, 6.8374, 6.8419) for an optimized constant thickness VS-design for ∆T = 0K.
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6.1.2. Constant Thickness – ∆T = -200K
The critical buckling load for the QI-design under thermo-mechanical load is similar as the pure mechanical
load case. However, the increment in buckling performance is larger for the thermomechanical case. Similar
to the previous load case the distributions in axial direction are studied to explain this behavior.

Deformation Figure 6.11 - The contraction of the aluminum ring by the thermal load is clearly visible,
this causes the increment in compliance compared to the pure mechanical load case.

Stress resultants Figure 6.12 - Similarly to the previous load case the stress resultants due to the mechanical
load do not change for the VS-design and do not influence the buckling improvement.

Figure 6.13 - The thermal stress resultants are almost zero for the largest part of the struc-
ture, indicating free thermal expansion. At the bottom of the cone minor peak stress re-
sultant are induced by the boundary conditions. At the ring-cone interface the mismatch
in CTE forces the aluminum ring to contract more in radial direction than the CFRP cone.
Consequently tensile hoop stresses are induced in the ring and compression stresses in
the cone, however the latter is counteracted by the mechanical tensile peak. The axial
stress resultants are negligible, therefore the critical axial buckling mode of the QI-design
given in Figure 6.15 is unaffected. For the VS-design the critical buckling modes given in
Figure 6.16 are in hoop direction. A minor tensile hoop stress is present below the ring-
cone interface, this could explain the larger improvement for the thermomechanical case.

Stiffness Figure 6.14 - At the ring-cone interface the membrane stiffness of the VS-design is pri-
marily in axial direction, this reduces the mismatch in CTE and explains why the thermal
induced stress peak is reduced. Similar to the pure mechanical load case the critical buck-
ling mode is further optimized by altering the membrane and bending stiffness terms.

0.5 1 1.5 2 2.5

radial direction r [m]

0

0.5

1

1.5

2

2.5

ax
ia

l d
ire

ct
io

n 
z 

[m
]

Undeformed
Deformed - QI
Deformed - VS

Figure 6.11: Displacement for a constant thickness design for ∆T = −200K, scale = 30. Left: Axial displacement displayed on the total
deformed structure. Right: Displacement profile in radial direction.
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Figure 6.12: Mechanical induced axial (x ) and hoop (y ) stress resultant distributions in axial direction due to thrust load P for a constant
thickness design optimized for ∆T =−200K. The stress resultants are normalized by Nx =Nx /P .
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Figure 6.13: Thermal induced axial (x ) and hoop (y ) stress resultant distributions in axial direction due to a temperature difference of
−200K for a constant thickness design optimized for ∆T =−200K. The stress resultants are normalized by Nx =Nx /P to make a compari-
son with the mechanical induced stress resultant distribution.
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Figure 6.14: The axial membrane (left) and bending stiffness distributions (right) in axial direction for axial (11) and hoop (22) stiffness
for a constant thickness design optimized for ∆T =−200K.

Figure 6.15: Bucking modes (λcr−1,2,8 = 6.3125, 6.3144, 6.3572) for a constant thickness QI-design for ∆T =−200K. The 2nd mode has a
spiraling pattern. The differences between the 2nd to 7th mode are negligible, hence the 8th mode is plotted showing a combination of
axial and hoop buckling.

Figure 6.16: First three bucking modes (λcr−1,2,3 = 7.1220, 7.1318, 7.1323) for an optimized constant thickness VS-design for ∆T =
−200K.
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6.2. Results - Tapered Thickness Design
A tapered thickness design in correspondence to Figure 6.2 is optimized for temperature differences of 0 and
−200K. The performance of the QI reference design and the optimized VS-design are given in Table 6.3. The
optimal VS-designs yield larger performance gains than for found for the optimal constant thickness designs.

Table 6.3: Results for a tapered thickness design for ∆T = 0 and −200K.

Loads QI-Design VS-Design
∆T [K] P [N] λcr Compliance λcr Compliance Difference in λcr [%]

0 N.A. 3.14 8.68e2 3.56 7.81e2 13.1
-200 N.A. 3.28 3.06e4 3.91 3.06e4 19.2

6.2.1. Tapered Thickness – ∆T = 0K
Compared to the constant thickness design the critical buckling load of the tapered design is almost halved.
This is expected since the constant thickness design was over-designed. The tapered design is also axis-
symtric, therefore only the distributions in axial direction are studied.

Deformation Figure 6.17 - The laminate at the top of the cone is thinner, therefore the kick load at the
ring-cone interface causes more deformation than the constant thickness designs. Again
the optimal VS-design is slightly smoother than the QI-design.

Stress resultants Figure 6.18 - The influence of the larger deformation by the kick load corresponds to a
larger peak in the hoop stress resultant compared to the constant thickness design. By
force equilibrium the Nx distribution is unaffected by the tapered thickness. However, the
same load has to be carried by a thinner laminate and the top of the cone is now criti-
cal for buckling, this is visualized by the critical buckling modes given in Figure 6.20 and
Figure 6.21

Stiffness Figure 6.19 - The influence of the tapered thickness is clearly present in the stiffness dis-
tribution and the larger performance gain of the tapered design with respect to the con-
stant thickness design is related to this. The ply-drops of the QI-design are at predefined
fiber angles and cause a distinctive stepwise distribution, whereas the VS-design can opti-
mize at what fiber angle a ply is dropped. This allows for a more gradual change between
thickness sections. During optimization the stiffness distributions are changed to yield
a critical buckling mode that absorbs most energy. The buckling modes of the optimal
QI-design and the VS-design are similar, but the critical buckling modes of the optimal
VS-design are more spread out corresponding to higher energy absorption. From the stiff-
ness distributions it is also apparent that fiber steering is only active in first two sections,
the last two sections are not critical for buckling. Also note that thickness sections 2 and
3 are not fully quasi-isotropic and that the step sizes in the bending stiffness distribution
show that every added layer contributes more to the bending stiffness.
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Figure 6.17: Displacement for a tapered thickness design for∆T = 0K, scale = 30. Left: Axial displacement displayed on the total deformed
structure. Right: Displacement profile in radial direction.
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Figure 6.18: Mechanical induced axial (x ) and hoop (y ) stress resultant distributions in axial direction due to thrust load P for a tapered
thickness design optimized for ∆T = 0K. The stress resultants are normalized by Nx =Nx /P .
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Figure 6.19: The axial membrane (left) and bending stiffness distributions (right) in axial direction for axial (11) and hoop (22) stiffness
for a tapered thickness design optimized for ∆T = 0K.

Figure 6.20: First three bucking modes (λcr−1,2,3 = 3.1444, 3.15534, 3.1652) for an optimized tapered thickness VS-design for ∆T = 0K.

Figure 6.21: First three bucking modes (λcr−1,2,3 = 3.5579, 3.5580,3.5757) for an optimized tapered thickness VS-design for ∆T = 0K.
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6.2.2. Tapered Thickness – ∆T = -200K
The thermomechanical load case yields a larger increment in buckling performance after optimization than
the pure mechanical case. Also for this load case the axial distributions are studied.

Deformation Figure 6.22 - Similar to the thermomechanical constant thickness load application the
aluminum ring contracts more by the thermal load than the CFRP cone.

Stress resultants Figure 6.23 - As with the previous cases the stress resultants induced by the mechanical
load do not influence the buckling optimization.

Figure 6.24 - The tapered thickness design has a minor influence on the thermal induced
stress resultants. Small jumps are visible and they cause the radial deformation variation
in the deformation profile. For the VS-design minor tensile hoop stress regions are present
at the cone’s surface, since the buckling modes in Figure 6.27 are predominantly in hoop
direction this could explain the larger improvement for the thermomechanical load case.
The reduced stiffness at the top of the CFRP cone lowers the thermal induced peak stresses
at the ring-cone interface. The peaks are further reduced by the optimal VS-design.

Stiffness Figure 6.25 - This reduction in the thermal induced peak stresses originates from the rel-
atively high membrane stiffness at the top of the cone compared to the hoop membrane
stiffness. This reduces the mismatch of the CTE between the aluminum ring and CFRP
cone. The buckling pattern from the QI-design given by Figure 6.26 is a combination of
hoop and axial buckling modes, whereas the optimal buckling modes given by Figure 6.27
are more dominated by hoop buckling. This is in correspondence to the higher axial bend-
ing stiffness D11 at the top of the cone for the VS-design. During optimization the stiffness
is varied to increase the resistance to the critical buckling modes.
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Figure 6.22: Displacement for a tapered thickness design for ∆T = −200K, scale = 30. Left: Axial displacement displayed on the total
deformed structure. Right: Displacement profile in radial direction.
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Figure 6.23: Mechanical induced axial (x ) and hoop (y ) stress resultant distributions in axial direction due to thrust load P for a tapered
thickness design optimized for ∆T =−200K. The stress resultants are normalized by Nx =Nx /P .
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Figure 6.24: Thermal induced axial (x ) and hoop (y ) stress resultant distributions in axial direction due to a temperature difference of
−200K for a tapered thickness design optimized for∆T =−200K. The stress resultants are normalized by Nx =Nx /P to make a comparison
with the mechanical induced stress resultant distribution.
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Figure 6.25: The axial membrane (left) and bending stiffness distributions (right) in axial direction for axial (11) and hoop (22) stiffness
for a tapered thickness design optimized for ∆T =−200K.

Figure 6.26: First three bucking modes (λcr−1,2,3 = 3.2827, 3.2842, 3.2844) for an optimized tapered thickness VS-design for∆T =−200K.

Figure 6.27: First three bucking modes (λcr−1,2,3 = 3.9119, 9.2277, 3.9306) for an optimized tapered thickness VS-design for∆T =−200K.
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6.3. Results - Stiffened Tapered Thickness Design
The original stiffener laminate design is not specified due to confidentiality reasons. To limit computational
cost only 8 equally spaced stiffeners are implemented and to emphasize on the influence of the stiffeners
the height and stacking sequence of the stiffeners are doubled compared to the reference design. This way
the stiffeners have a dominant influence on the optimization process. To properly model inter-stiffener bay
buckling more elements are required between the stiffeners, therefore the mesh is refined to [7 + 97] x 63
nodes. Note that the stiffener properties are constant and not optimized. The obtained results are presented
in Table 6.4 and higher performance gains are noticable than for the design cases without stiffeners.

Table 6.4: Results for a stiffened tapered thickness design for ∆T = 0 and −205/+5K.

Loads QI-Design VS-Design
∆T [K] P [N] λcr Compliance λcr Compliance Difference in λcr [%]

0 N.A. 2.35 8.86e2 3.42 7.81e2 45.4
-205/+5 N.A. 2.74 2.76e4 3.92 2.74e4 43.2

6.3.1. Stiffened Tapered Thickness Design – ∆T = 0K
For the optimized VS-design an improvement of 45.5% is obtained over the QI-design. Due to the stiffeners
the design is no longer axisymmetric and the variations in circumferential direction are studied as well.

Deformation Figure 6.28 - In general the axial displacement of the VS-design is lower than the QI-
design. Especially the bay regions close to the top of the cone and the stiffened areas
experience less displacement.

Stress resultants Figure 6.29 - The axial Nx distribution at the center of a bay is given. The designs with
stiffeners experience lower axial stress resultants than the design without stiffeners. This
effect is mostly present at the constrained bottom of the cone. The circumferential Nx

distribution at the critical top region of the cone is given for z = 0.6m. The plots shows
that the VS-design distributes some of the axial compressive stress resultant towards the
stiffened areas to relieve the more susceptible bay regions. For the QI-design this relation
is opposite, hence the large gain in buckling performance for the optimized design. The
distributions of the hoop stress resultants Ny are similar to the tapered thickness design
without stiffeners and close to zero along the cone’s surface and therefore not shown.

Stiffness Figure 6.30 - The stiffness variations in circumferential direction are shown for z = 0.6m.
The axial membrane stiffness distribution corresponds to the distribution of axial stress
resultants towards the stiffened areas. The critical buckling modes of the QI-design given
by Figure 6.31 are dominated in axial direction, whereas the critical buckling modes of the
VS-design given in Figure 6.32 are in hoop direction. This corresponds to the increased
axial bending stiffness for the VS-design. By the addition of the stiffeners the optimiza-
tion of the buckling performance is now a combination of global load redistribution and
increasing the buckling resistance by optimizing local bending stiffness.

Figure 6.28: Displacement for a stiffened tapered thickness design for∆T = 0K, scale = 30. Left: Axial displacement displayed on the total
deformed structure for the QI-design. Right: Axial displacement displayed on the total deformed structure for the VS-design.
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Figure 6.29: Mechanical induced axial stress resultant (Nx ) distributions in axial and circumferential direction due to thrust load P for a
stiffened tapered thickness design optimized for ∆T = 0K. The stress resultants are normalized by Nx =Nx /P .
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Figure 6.30: The axial (11) and hoop (22) membrane (left) and bending stiffness distributions (right) in circumferential direction for a
tapered thickness stiffened design optimized for ∆T = 0K.

Figure 6.31: First three bucking modes (λcr−1,2,3 = 2.3489, 2.3511, 2.5555) for an optimized tapered thickness stiffened VS-design for
∆T = 0K.

Figure 6.32: First three bucking modes (λcr−1,2,3 = 3.3829, 3.4500,3.5055) for an optimized tapered thickness stiffened VS-design for
∆T = 0K.
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6.3.2. Stiffened Tapered Thickness Design – ∆T = -205/+5K
For the final design the real thermal load is applied, a linear temperature difference of −205K at the top of the
ring to +5K at the bottom of the cone. The VS-design yields a 43.2% improvement over the QI-design. Similar
to the previous load case both axial and circumferential variations are studied.

Deformation Figure 6.33 - The contraction of the aluminum ring is also apparent for this thermome-
chanical load case. The stiffeners of the VS-design carry more compression load and start
to bend slightly outwards, hence the positive displacements.

Stress resultants Figure 6.34 - The axial stress resultant distribution Nx is similar to the plots given for the
pure mechanical load case. Especially at the constrained bottom the compressive axial
stress resultant is reduced. However, compression is slightly higher at the bay region than
at the stiffened area for z = 0.6m, whereas the pure mechanical load case showed a distri-
bution of compression towards the stiffened area.

Figure 6.35 - The axial Nx distribution at the center of a bay is given. In the previous
thermal load cases the axial induced stress resultants were negligible due to free thermal
expansion. The stiffeners are primarily build from 0 degree oriented fibers and contract
less in axial direction than the skin does. Due to this mismatch a stabilizing tension is
induced in the bay region and compression in the stiffened area. The optimal VS-design
uses this effect to its advantage to improve the buckling performance.

Figure 6.36 - The optimal VS-design lowers the peak stress resultant in hoop direction at
the ring-cone interface similar to the previous thermomechanical load cases. Further-
more compressive stresses are distributed towards the stiffened areas to relieve the sus-
ceptible bay region.

Figure 6.33: Displacement for a stiffened tapered thickness design for ∆T =−205/+5K, scale = 30. Left: Axial displacement displayed on
the total deformed structure. Right: Displacement profile in radial direction.
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Figure 6.34: Mechanical induced axial stress resultant (Nx ) distributions in axial and circumferential direction due to thrust load P for a
stiffened tapered thickness design optimized for ∆T =−205/+5K. The stress resultants are normalized by Nx =Nx /P .
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Figure 6.35: Thermal induced axial stress resultant (Nx ) distributions in axial and circumferential direction due to a temperature differ-
ence of −200K for a tapered thickness design optimized for ∆T =−205/+5K. The stress resultants are normalized by Nx =Nx /P to make
a comparison with the mechanical induced stress resultant distribution.
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Figure 6.36: Thermal induced axial stress resultant (Ny ) distributions in axial and circumferential direction due to a temperature differ-
ence of −200K for a tapered thickness design optimized for ∆T =−205/+5K. The stress resultants are normalized by Nx =Nx /P to make
a comparison with the mechanical induced stress resultant distribution.

Figure 6.37: First three bucking modes (λcr−1,2,3 = 2.7404, 2.7408, 2.7532) for an optimized stiffened tapered thickness VS-design for
∆T =−205/+5K.

Figure 6.38: First three bucking modes (λcr−1,2,3 = 3.9239, 3.9834, 4.0102) for an optimized stiffened tapered thickness VS-design for
∆T =−205/+5K.
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Stiffness Figure 6.39 - At the center of the bay the hoop membrane stiffness increases and the
axial membrane stress decreases. This leads to a larger difference in the CTE between
the stiffened area and the bay region, causing the induced tension in the bay. The QI-
design has high hoop bending stiffness, therefore the critical buckling modes given in
Figure 6.37 are in axial direction. Compared to the QI-design the bending stiffness in
axial direction is increased and in hoop direction decreased for the VS-design. This leads
to the critical hoop buckling modes given in Figure 6.38.
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Figure 6.39: The axial (11) and hoop (22) membrane (left) and bending stiffness distributions (right) in circumferential direction for a
stiffened tapered thickness design optimized for ∆T =−205/+5K.

Corresponding Fiber Paths
The results show that the optimization process is a balance between distributing the mechanical and thermal
loads and optimizing the local stiffness to increase buckling resistance. To indicate the fiber angle varia-
tion the third step of the multi-step framework is applied to construct the corresponding fiber paths by the
streamline analogy.

The closed structure of the ETF doesn ot provide sufficient inflow and outflow boundaries to perform
the streamline analogy. To circumvent this problem a cut is made over the length of the mesh-model. At
this cut the nodes and properties are duplicated and the element connectivity matrix is adjusted to create an
open structure. Based on the open structure the in- and outflow boundaries are determined. The difference
between the closed and open structure is illustrated in Figure 6.40. The elements adjacent to the boundaries
are indicated yellow, and the in- and outflow corner elements are indicated blue.

Figure 6.40: Closed structure (left): Only two in- and outflow boundaries are present. Open structure (right): By making a cut over the
length four in- and outflow boundaries are present.

With the additional boundaries the fiber paths are constructed. In Figure 6.41 to Figure 6.44 the fiber
paths are given for plies 3, 4, 6 and 7 respectively. The fiber paths of the other plies are similar and omitted
for the sake of brevity. Note that ply 7 is smaller due to a ply-drop in the first thickness section. The cut over
the length of the structure is visible and some minor deterioration is present. The symmetric design due to
the stiffeners is clearly visible as well.
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Figure 6.41: Fiber Paths of ply 3. Figure 6.42: Fiber Paths of ply 4.

Figure 6.43: Fiber Paths of ply 6. Figure 6.44: Fiber Paths of ply 7.

Manufacturing
The automated fiber placement machines cannot use the given fiber paths directly. A post-processing step is
required to determine the actual tow placement which does not yield an unique relation. This is considered
an optimization problem in itself, since tow-drop and overlap placement techniques influence the properties
of the laminate.

Final Remarks
The focus of the conceptual design study presented in this chapter is to research the potential of a variable-
stiffness laminate design for the engine thrust frame, therefore significant simplifications are made to the
design problem.

One of the main simplifications is the implemented stiffener composition. In reality more stiffeners will
be present leading to smaller bay regions. This will limit the amount of steering and corresponding load re-
distribution in circumferential direction. Additional simplifications are related to the load conditions and
geometry. For example manholes, actuator loads and imposed forces by equipment are ignored. Further-
more the ring-cone interface is not accurately modeled and strength is not assessed.

The obtained results show great potential with significant performance gains. However, creating a more
accurate representation could strongly influence the design result. Consequently the obtained results should
be interpreted with care.





7
Conclusion

The first research objective is the implementation of thermal loads in the laminate analysis and optimization
framework. The second research objective is to apply the updated framework to perform conceptual design
optimization of the engine thrust frame under thermomechanical loads. Conclusions are drawn related to
these objectives in sections 7.1 and 7.2 respectively.

7.1. Thermomechanical Optimization Framework
Thermal load is implemented successfully in the composite laminate, finite element and buckling analysis.
Implementation of thermal load is verified by a simply supported rectangular plate under uniform end short-
ening subject to thermomechanical loads. Buckling analysis of constant stiffness laminates and a variable-
stiffness laminate with linearly varying fiber paths yield the correct critical buckling loads.

Sequential local approximations of structural responses are used in the optimization routine. These re-
sponse approximations are updated to include the influence of thermal loads. Based on the thermomechan-
ical governing equations a new set of sensitivities are derived for strength and buckling responses to build
the updated local approximations. The sensitivities of the buckling response are implemented in the opti-
mization framework and verified by the second order central finite difference approximation to yield correct
results.

The same rectangular plate is used to demonstrate the optimization behavior of the updated framework.
Similar trends to improve buckling resistance as the reference study are found. The optimized variable-
stiffness laminate design distributes the applied loads towards the constrained edges to increase the buckling
performance. A negative temperature difference leads to stabilizing tensile stress resultants in the prone to
buckling center area, hence for negative temperature differences a better buckling performance is obtained
than for pure mechanical load conditions.

Although the optimization trend is similar the critical mechanical buckling load differs from the refer-
ence study. The optimization in the reference study is performed in the lamination parameter space and is
not converted to fiber angles, whereas the optimization in this works is performed in the fiber angle design
space with a steering constraint. Relaxing the minimum steering radius from 500mm to 250mm yields closer
resemblance with the reference report, reducing the difference from -41% to -18% respectively.

7.2. Engine Thrust Frame Application
The results of the conceptual design optimization of a constant thickness, tapered thickness and stiffened
tapered thickness design are repeated in Table 7.1 for a minimum steering radius of 333mm. For all designs
tensile peak loads are present at the ring-cone interface due to geometry induced kick load. Additionally
thermal induced compressive stress resultants are present due to the mismatch in the coefficient of ther-
mal expansion between the aluminum ring and CFRP cone. The tensile and compression stress resultants
counteract each other, thereby the peaks in thermal induced compressive stress resultants are reduced for all
thermomechanical optimization cases.

75



76 7. Conclusion

Table 7.1: Results for a constant thickness (CT), tapered thickness (TT) and stiffened tapered thickness (STT) designs for different
thermomechanical load cases.

Design ∆T [K] λcr - QI λcr - VS Difference in λcr [%]
CT 0 6.31 6.83 8.2
CT -200 6.31 7.12 12.8
TT 0 3.14 3.56 13.1
TT -200 3.28 3.91 19.2
STT 0 2.35 3.42 45.4
STT -205/+5 2.74 3.92 43.2

The constant and tapered thickness designs are axisymmetric designs and load redistribution is not pos-
sible. Since the stiffness in circumferential direction is constant most of the structure exhibits free thermal
expansion, hence the influence of thermal load is limited. The laminate stiffness in axial direction is var-
ied to increase resistance to the critical buckling modes. Due to this behavior other buckling modes become
more dominant until one of these modes becomes critical. This process continues until two or more buckling
modes are dominant and changing the design will only cause one of the buckling modes to initiate at a lower
load.

For constant thickness laminates increments around 10% are found for an optimized variable-stiffness
laminate. For tapered thickness laminates the thinner upper section of the cone is critical and improvements
around 15% are obtained.

The stiffened design has stiffened areas and load can be redistributed in circumferential direction, this
adds more freedom to tailor the design. For the pure mechanical load case the optimal variable-stiffness
laminate distributes the compressive stresses towards the stiffened areas. The optimal variable-stiffened de-
sign of the thermomechanical load case uses a mismatch in thermal expansion between the bay and stiffened
regions. The bay region contracts more than the stiffened areas by a negative thermal load, thus stabilizing
tensile stress resultants are induced in the prone to buckling bay regions. With the additional tailoring free-
dom by influencing the load distributions larger improvements around 45% are obtained for the optimized
variable-stiffness laminates.

Albeit the improvements are significant the given results should be interpreted with care. A simplified
model of the engine thrust frame is applied. For example a simplified stiffened design is used, manholes are
not present and loads exerted by actuators and equipment are not evaluated. Furthermore fiber paths are
obtained, but these are not related to actual tow placement. Therefore manufacturing influences like local
gaps and overlaps are not included. Recommendations how to improve the engine thrust frame model and
optimization framework for future research are given in the next chapter.



8
Recommendations

In this work the existing framework is expanded to incorporate thermomechanical load conditions. In sec-
tion 8.1 general recommendations about the thermomechanical optimization framework are suggested for
future work. With the updated framework a conceptual design optimization of the ETF was executed. Rec-
ommendations for future research are stated in section 8.2 for this specific load case.

8.1. Thermomechanical Optimization Framework
Several recommendations to improve the thermomechanical optimization framework for future research are
given:

Thickness Optimization
It is mentioned before that ply densities are implemented in the thermal analysis to prepare for thickness op-
timization. Furthermore the density approximation is updated in the framework to incorporate influences of
thermal loads, however it is not yet verified. To increase design flexibility the density approximation should
be verified and thickness optimization and ply angle optimization can be combined by the integrated coor-
dinate descent algorithm.

Strength Implementation
The thermomechanical sensitivity analysis of strength response is performed, but not yet implemented within
the optimization framework. To use strength as a constraint or objective for future applications subject to
thermomechanical load conditions the optimization framework should be updated and verified.

Run Time
For geometrically complicated designs such as the ETF long run times become evident, especially for refined
meshes. If complex geometries have to be modeled for future research it is advised to investigate the bottle-
necks of the analysis and optimization algorithm and to investigate if more efficient code structures can be
programmed to reduce computational cost.

8.2. Engine Thrust Frame Application
To stay within the research scope several model simplifications are made to the ETF. Some recommendations
are given to improve the resemblance with reality in future work. Other suggestions are given to improve the
optimization design problem of the ETF application.

Thickness Optimization
Variable thickness is important in the engine thrust frame application and a tapered thickness is applied to
reduce weight. To further tailor the design thickness optimization could be applied in future work.

Strength Constraints
It is known that peak stress resultants are present at the ring-cone interface. In this work a stiffness constraint
is applied to limit excessive deformation and corresponding stresses to some extend. As mentioned before
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this does not guarantee that first ply failure does not occur. Strength constraints are not implemented in this
work due to high computational cost. Applying strength constraints only at critical regions could limit the
computational cost and ensure first ply failure does not occur.

Ring-Cone Interface
For both thermal and mechanical loads peak stress resultants occur at the ring-cone interface. It is known
that the modeled aluminum ring is simplified from a more complex design that reduces the peak loads at
the interface. To improve the model the ring should be modeled more accurately. Thereby shape optimiza-
tion of ring-cone interface could be applied to improve load transfer. Together with the optimization of
the variable-stiffness laminate design this should be an integral optimization process, since the shape and
variable-stiffness laminate design are interdependent.

Stiffeners
A simplified stiffened design is used to limit the required mesh density. Thereby the stiffeners are doubled in
height and thickness to increase the influence on the laminate optimization. To increase the accuracy of the
model the correct stiffened design should be implemented. Fiber steering in radial direction will be limited
by the smaller inter-stiffener bays. Ideally the stiffened design is an integral part of the optimization process,
since the stiffened design strongly influences the optimal variable-stiffness laminate design.

Additional Details
To improve the ETF model additional details should be modeled to better represent reality. Multiple man-
holes are present in the conical part and adding these will improve the geometric representation. Load con-
ditions are represented more accurate if loads exerted by equipment and actuators are included. Adding such
details will add asymmetries to the model and this will influence the optimal design.

Design Rules
At last it is recommended to apply additional design rules in future work. Based on experience design rules
are applied by designers to improve certain properties of laminates. For example minimal and maximal angle
variation between adjacent plies are often applied to non-conventional laminate designs.



Bibliography

[1] U.S. Department of Transportation - Bureau of Transportation Statistics. 2014 airline financial data. http://www.rita.dot.gov,
2015. Accessed: 13-08-2016.

[2] J.J. Lee, S.P. Lukachko, I.A. Waitz, and A. Schafer. Historical and future trends in aircraft performance, cost and emissions. Annual
Reviews, Energy and Environment, 2001.

[3] S. Viguet-Carrin, P. Garnero, and P.D. Delmas. The role of collagen in bone strength. Osteoporosis International, 17, Issue 3:319–
336, 2006.

[4] A. J. Stamm. Wood and cellulose science. Ronald Press Co., 1964.

[5] A.K. Kaw. Mechanics of Composite Materials, chapter Introduction to Composite Materials, pages 1–16. Taylor and Francis Group,
2nd edition, 2006.

[6] C. Kassapoglou. Design and Analysis of Composite Structures - With Applications to Aerospace Structures. John Wiley and Sons,
Ltd., 1st edition, 2010.

[7] R.M. Jones. Mechanics of Composite Materials. McGraw-Hill Book Company, 1st edition, 1975.

[8] M.W. Hyer and R.F. Charette. Use of curvilinear fiber format in composite structure design. Composite Structures, 29, Issue 6:
1011–1015, 1989.

[9] M.W. Hyer and H.H. Lee. The use of curvilinear fiber format to improve buckling resistance of composite plates with central
circular holes. Composite Structures, 18:239–261, 1991.

[10] C.G. Grant. Bridging the Centuries with SAMPE’s Materials and Processes Technoglogy, chapter Fiber Placement Process Utilization
within the Worldwide Aerospace Industry, pages 709–720. Taylor and Francis Group, 2nd edition, 2000.

[11] K.C. Wu, B.F. Tatting, and Z. Gurdal. Structural response of compression-loaded, tow-placed, variable stiffness panels. American
Institute of Aeronautics and Astronautics, Inc., 43th Structures, Structural Dynamics and Materials Conference. Denver, Colorado,
2002.

[12] D.C. Jegley, B.F. Tatting, and Z. Gurdal. Optimization of elastically tailored tow-placed plates with holes. American Institute of
Aeronautics and Astronautics, Inc., 44th Structures, Structural Dynamics and Materials Conference, 2003.

[13] D.C. Jegley, B.F. Tatting, and Z. Gurdal. Tow-steered panels with holes subjected to compression or shear loading. American
Institute of Aeronautics and Astronautics, Inc., 2005.

[14] Z. Gurdal and R. Olmedo. Composite laminates with spatially varying fiber orientations: "variable stiffness panel concept". 33rd
Structures, Structural Dynamics and Materials Conference - Dallas Texas, 1992.

[15] Z. Gurdal and R. Olmedo. In-plane response of laminates with spatially varying fiber orientations: Variable stiffness concept.
American Institute of Aeronautics and Astronautics, Inc., 31, No. 4:751–758, 1993.

[16] Z. Gurdal, B.F. Tatting, and C.K. Wu. Variable stiffness composite panels - effect of stiffness variation on the in-plane and buckling
response. Composites Part A, Applied Science and Manufacturing, 39, Issue 5:911–922, 2007.

[17] Z. Gurdal and R. Olmedo. Buckling response of laminates with spatially varying fiber orientations. 34th Structures, Structural
Dynamics and Materials Conference - La Jolla California, 1993.

[18] S.T. IJsselmuiden. Optimal Design of Variable Stiffness Composite Structures Using Lamination Parameters. PhD thesis, Delft
University of Technology, 2011.

[19] D.O. Evans. Handbook of Composites, chapter Fiber Placement. Chapman and Hall, 2nd edition, 1998.

[20] C.S. Lopes, Z. Gurdal, and P.P. Camanho. Variable-stiffness composite panels: Buckling and first-ply failure improvements over
straight-fibre laminates. Computer and Structures, 86, Issue 9:897–907, 2008.

[21] Coriolis Composites. Fiber placement robots. http://www.coriolis-composites.com, 2016. Accessed: 20-05-2016.

[22] B.C. Kim, P.M., P. Weaver, and K. Potter. Continuous tow shearing for manufacturing variable angle tow composites. Composites
Part A: Applied Science and Manufacturing, 43, Issue 8:1347–1356, 2012.

[23] B.C. Kim, K. Hazra, P. Weaver, and K. Potter. Limitations of fibre placement techniques for variable angle tow composites and their
process-induced defects. Proceedings of the 18th International Conference on Composite Materials, 2011.

[24] S. Nagendra, S. Kodyalam, and J.E. Davis. Optimization of tow fiber paths for composite design. American Institute of Aeronautics
and Astronautics, Inc., 36th Structures, Structural Dynamics and Materials Conference, 1995.

[25] Z. August, G. Ostrander, J. Michasiow, and D. Hauber. Recent developments in automated fiber placement of thermoplastic com-
posites. Society for the Advancement of Material and Process Engineering Journal, 50, Issue 2, 2014.

[26] A.B. Strong. Fundamentals of Composites Manufacturing: Materials, Methods, and Applications, volume 1st. Society of Manufac-
turing Engineers, 2008.

[27] J. Mondo and K. Parfrey. Performance of in-situ consolidated thermoplastic composite structures. Proceedings of the 27th Inter-
national SAMPE Technical Conference, pages 361–370, 1995.

79

http://www.rita.dot.gov
http://www.coriolis-composites.com


80 Bibliography

[28] J. Tierney and J.W. Gillespie. Modeling of heat transfer and void dynamics for the thermoplastic composite tow-placement process.
Journal of Composite Materials, 37, Issue 19:1745–1768, 2003.

[29] M.A. Lamontia, M.B. Gruber, J. Tierney, J.W. Gillespie, B.J. Jensen, and R.J. Cano. Modeling the accudyne thermoplastic in situ atp
process. Proceedings of The Society for the Advancement of Material and Process Engineering Conference, 2009.

[30] M.B. Gruber, I.Z. Lockwood, L.T. Dolan, S.B. Fucnk, J. Tierney, J.W. Gillespie, P. Simacek, S.G. Advani, B.J. Jensen, R.J. Cano, and
Grimsley B.W. Thermoplastic in situ placement requires better impregnated tapes and tows. Proceedings of The Society for the
Advancement of Material and Process Engineering Conference, pages 2164–2178, 2012.

[31] M.A. Lamontia, M.B. Gruber, J. Tierney, J.W. Gillespie, B.J. Jensen, and R.J. Cano. In situ thermoplastic atp needs flat tapes and
tows with few voids. Proceedings of The Society for the Advancement of Material and Process Engineering Conference, 2009.

[32] Z. Gurdal and B.F. Tatting. Automated finite element analysis of elastically-tailored plates. Technical report, National Aeronautics
and Space Administration - Langley Research Center, 2003.

[33] Z. Gurdal, B.F. Tatting, and K.C. Wu. Tow-placement technology and fabrication issues for laminated composite structures. Amer-
ican Institute of Aeronautics and Astronautics, Inc., 46th Structures, Structural Dynamics and Materials Conference, 2001.

[34] K. Croft, L. Lessard, D. Pasini, M. Hojjati, J. Chen, and A. Yousefpour. Experimental study of the effect of automated fiber placement
induced defects on performance of composite laminates. Composites: Part A, 42:484–491, 2011.

[35] S. Nagendra, S. Kodiyalam, J.E. Davis, and V. Parthasarathy. Optimization of tow fiber paths for composite design. American
Institute of Aeronautics and Astronautics, Inc., 36th Structures, Structural Dynamics and Materials Conference, 1995.

[36] P. Pedersen. On thickness and orientational design with orthotropic materials. Structural Optimization, 3:69–78, 1991.

[37] P. Pedersen. Examples of density, orientation, and shape-optimal 2d-design for stiffness and/or strength with orthotropic materi-
als. Structural Multidisciplinary Optimization, 26:37–49, 2004.

[38] S. Setoodeh and Z. Gurdal. Design of composite layers with curvilinear fiber paths using cellular automata. American Institute of
Aeronautics and Astronautics, Inc., 44th Structures, Structural Dynamics and Materials Conference. Norfolk, Virginia, 2003.

[39] M.M. Abdalla and Z. Gurdal. Structural design using optimality based cellular automata. American Institute of Aeronautics and
Astronautics, Inc., 43th Structures, Structural Dynamics and Materials Conference. Denver, Colorado, 2002.

[40] S. Setoodeh, M.M. Abdalla, and Z. Gurdal. Combined topology and fiber path design of composite layers using cellular automata.
Structural Multidisciplinary Optimization, 30:413–421, 2005.

[41] S. Venkataraman and R.T. Haftka. Optimization of composite panels - a review. American Society of Composites, 14th International
Conference Proceedings:479–488, 1999.

[42] M. Bruyneel. Optimization of laminated composite structures: Problems, solution procedures and applications. Composite Ma-
terials Research Progress, pages 51–107, 2008.

[43] C. Waldhard, Z. Gurdal, and C. Ribbens. Analysis of tow placed, parallel fiber, variable stiffness laminates. 37th Structures, Struc-
tural Dynamics and Materials Conference - Salt Lake City Utah, pages 2210–2220, 1996.

[44] C.S. Lopes, Z. Gurdal, and P.P. Camanho. Tailoring for strength of composite steered-fibre panels with cutouts. Composites: Part
A, pages 1760–1767, 2010.

[45] S.T. Pinho, C.G. Davila, P.P. Camanho, L. Iannucci, and P. Robinson. Failure models for frp under in-plane or three-dimensional
stress states including shear non-linearity. Technical report, National Aeronautics and Space Administration - Langley Research
Center, 2005.

[46] A.W. BLOM, C.S. Lopes, P.J. Kromwijk, Z. Gurdal, and P.P. Camanho. A theoretical model to study the influence of tow-drop areas
on the stiffness and strength of variable-stiffness laminates. Journal of Composite Materials, 43, Issue 5:484–491, 2009.

[47] Z. Gurdal and B.F. Tatting. Design and manufacture of elastically tailored tow placed plates. Technical report, National Aeronautics
and Space Administration - Langley Research Center, 2005.

[48] M.W. Weaver, H. Kalyan, M.A.R. Saverymuthapulle, and M.T. Hawthorne. Buckling of variable angle tow plates: from concept to
experiment. American Institute of Aeronautics and Astronautics, Inc., 50th Structures, Structural Dynamics and Materials Confer-
ence. Palm Springs, California, 2009.

[49] A.W. Blom, B.F. Tatting, M.A.M. Hol, and Z. Gurdal. Path definitions for elastically tailored conical shells. American Institute of
Aeronautics and Astronautics, Inc., 47th Structures, Structural Dynamics and Materials Conference. Newport, Rhode Island, 2006.

[50] A.W. Blom, B.F. Tatting, M.A.M. Hol, and Z. Gurdal. Fiber path definitions for elastically tailored conical shells. Composites: Part B,
40:77–84, 2009.

[51] A.W. Blom, S. Setoodeh, M.A.M. Hol, and Z. Gurdal. Design of variable-stiffness concial shells for maximum fundamental eigen-
frequency. Computer and Structures, 86:870–878, 2008.

[52] A.W. Blom, Z. Gurdal, and P.B. Stickler. Optimization of a composite cylinder under bending by tailoring stiffness properties in
circumferential direction. Composites: Part B, 41:157–165, 2010.

[53] A. Alhajahmad, M.M. Abdalla, and Z. Gurdal. Design tailoring for pressure pillowing using tow-placed steered fibers. Journal of
Aircraft, 45, Issue 2:630–640, 2008.

[54] S.W. Tsai and N.J. Pagano. Composite Materials Workshop, chapter Invariant Properties of Composite Materials, pages 233–253.
Technomic Publishing Company, Inc., 1968.

[55] K. Svanberg. On local and global minima in structural optimization. New Directions in Optimum Structural Design, pages 327–341,
1984.



Bibliography 81

[56] J.L. Grenestedt and P. Gudmundson. Layup Optimization of Composite Materials Structures, pages 311–336. Elsevier Science Ltd.,
1993.

[57] S. Setdoodeh, M.M. Abdalla, and Z. Gurdal. Approximate feasible regions for lamination parameters. American Institute of Aero-
nautics and Astronautics, Inc., 11th Multidisciplinary Analysis and Optimization Conference, 2006.

[58] S. Setdoodeh, M.M. Abdalla, and Z. Gurdal. Design of variable-stiffness laminates using lamination parameters. Composites Part
B: Engineering, 37, Issues 4,5:301–309, 2006.

[59] M.M. Abdalla, S. Setoodeh, and Z. Gurdal. Design of variable stiffness composite panels for maximum fundamental frequency
using lamination parameters. Composite Structures, 21:283–291, 2007.

[60] S.T. IJsselmuiden, S. Setdoodeh, M.M. Abdalla, and Z. Gurdal. Design of variable-stiffness panels for maximum buckling load
using lamination parameters. Composites Part B: Engineering, 49th Structures, Structural Dynamics and Materials Conference,
2008.

[61] K. Svanberg. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM
Journal of Optimization, 12, Issue 2:555–573, 2002.

[62] S.T. IJsselmuiden, M.M. Abdalla, and Z. Gurdal. Implementation of strength-based failure criteria in the lamination parameter
design space. American Institute of Aeronautics and Astronautics, Inc., 46, Issue 7:1826–1834, 2008.

[63] S.T. IJsselmuiden, M.M. Abdalla, and Z. Gurdal. Maximising buckling loads of variable stiffness shells using lamination parameters.
American Institute of Aeronautics and Astronautics, Inc., 50th Structures, Structural Dynamics and Materials Conference, 2009.

[64] S.T. IJsselmuiden, M.M. Abdalla, and Z. Gurdal. Optimization of variable-stiffness panels for maximum buckling load using lami-
nation parameters. American Institute of Aeronautics and Astronautics, Inc., 48, Issue 1:134–143, 2010.

[65] V.B. Hammer, M.P. Bendsoe, R. Lipton, and P. Pedersen. Parametrization in laminate design for optimal compliance. International
Journal of Solids and Structures, 34, Issue 4:415–434, 1997.

[66] A. Khani, S.T. IJsselmuiden, M.M. Abdalla, and Z. Gurdal. Design of variable stiffnees panels for maximum strength using lamina-
tion parameters. Composites Part B: Engineering, 42, Issue 3:546–552, 2011.

[67] A. Khani, M.M. Abdalla, and Z. Gurdal. Circumferential stiffness tailoring of general cross section cylinders for maximum buckling
load with strength constraints. Composite Structures, 94:2851–2860, 2012.

[68] A. Khani, M.M. Abdalla, and Z. Gurdal. Optimum tailoring of fibre-steered longitudinally stiffend cylinders. Composite Structures,
122:343–351, 2015.

[69] D.M.J. Peeters and M.M. Abdalla. Structural approximations for composite optimisation. 11th World Congress on Structural and
Multidisciplinary Optimization - Sydney Australia, 2015.

[70] D.M.J. Peeters, S. Hesse, and M.M. Abdalla. Stacking sequence optimisation of variable stiffness laminates with manufacturing
constraints. Composite Structures, 125:596–604, 2015.

[71] S. Setdoodeh, S.T. IJsselmuiden, M.M. Abdalla, and Z. Gurdal. Design of variable-stiffness panels for maximum buckling load.
Composites Structures, 87:109–117, 2009.

[72] D.M.J. Peeter, D. van Baalen, and M.M. Abdalla. Combining topology and lamination parameter optimization. Structural Multi-
disciplinary Optimization, 52:105–120, 2015.

[73] F.X. Irisarri, D.M.J. Peeters, and M.M. Abdalla. Optimization of ply drop in variable stiffened laminates. Composite Structures,
2016.

[74] D.M.J. Peeters and M.M. Abdalla. Optimization of ply drop locations in variable thickness composites. American Institute of
Aeronautics and Astronautics Journal, 5:1760–1768, 2016.

[75] D.M.J. Peeters and M.M. Abdalla. Design guidelines in nonconventional composite laminate optimization. Journal of Aircraft,
2016.

[76] S.W. Tsai and H.T. Hahn. Introduction to Composite Materials. Technomic Publishing Company, Inc., 1st edition, 1980.

[77] D.M.J. Peeters. Design Optimisation of Practial Variable Stiffness and Thickness Laminates. PhD thesis, Delft University of Tech-
nology, 2016.

[78] W.C. Cui, M.R. Wisnom, and M. Jones. A comparison of failure criteria to predict delamination of unidirectional glass/epoxy
specimens waisted through the thickness. Composites Part A: Applied Science and Manufacturing, Vol. 23:158–166, 1991.

[79] S.W. Tsai and E.M. Wu. A general theory of strength for anisotropic materials. Journal of Composite Materials, Vol. 5:58–80, 1971.

[80] Z. Gurdal, R.T. Haftka, and P. Hajela. Design and optimization of Laminated composite materials. John Wiley and Sons, Inc., 1999.

[81] G.H. Staab. Laminar Composites. Elsevier Inc., 2nd edition, 2015.

[82] A. Felippa. Recent advances in finite element templates. Technical Report CAS-00-14, University of Colorado, 2000.

[83] A. Felippa. A study of optimal membrane triangles with drilling freedoms. Computer methods in applied mechanics and engineer-
ing, 192:2125–2168, 2003.

[84] C. Militello and A. Felippa. The first andes elements: 9-dof plate bending triangles. Computer methods in applied mechanics and
engineering, 93, Issue 2:217–246, 1991.

[85] R.T. Haftka and Z. Gurdal. Solid Mechanics and its Applications - Elements of Structural Optimization. Kluwer Acadamic Publishers,
3d edition, 1992.

[86] H. Chickermane and H.C. Gea. Structural optimization using a new local approximation method. International Journal for Nu-
merical Methods in Engineering, 3:829–846, 1996.



82 Bibliography

[87] U. Kirsch. Design-Oriented Analysis of Structures: A Unified Approach. Kluwer Academic Publishers, 3d edition, 2014.

[88] N. Olhoff. Multicriterion structural optimization via bound formulation and mathematical programming. Structural Optimiza-
tion, 1:11–17, 1989.

[89] C.G. Diaconu, H. Sekine, and M. Sato. Buckling characteristics and layup optimization of long laminated composite cylindrical
shells subjected to combined loads using lamination parameters. Composite Structures, 58:423–433, 2002.

[90] M. Sato and H. Sekine. Vibration characteristics and layup design of cfrp laminates with embedded shape memory alloy fibers.
13th International Conference on Composite Materials - Beijing China, 2001.

[91] S. Setdoodeh and A.W. Blom. Generating curvilinear fiber paths from lamination parameter distribution. 47th Structures, Struc-
tural Dynamics and Matericals Conference - Newport Rhode Island, pages 109–117, 2006.

[92] A. Todoroki and R. Haftka. Lamination parameters for efficient genetic optimization of the stacking sequences of composite
panels. American Institute of Aeronautics and Astronautics, Inc., Symposium on Multidisciplinary Analysis and Optimization.
Reston, VA.:870–879, 1998.

[93] M. Autio. Determining the real lay-up of a laminate corresponding to optimal lamination parameter by genetic search. Structural
Multidisciplinary Optimization, 20:301–310, 2000.

[94] J.M.J.F. van Campen, C. Kassapoglou, and Z. Gurdal. Design of fiber-steered variable-stiffness laminates based on a given lamina-
tion parameter distribution. 52nd Structures, Structural Dynamics and Materials Conference - Denver Colorado, 2011.

[95] J.M.J.F. van Campen, C. Kassapoglou, and Z. Gurdal. Generating realistic laminate fiber angle distribuitons for optimal variable
stiffness laminates. Composite Part B: Engineering, pages 354–360, 2012.

[96] F.X. Irisarri, M.M. Abdalla, and Z. Gurdal. Improved shepard’s method for the optimization of composite structures. American
Institute of Aeronautics and Astronautics, Inc., 49, Issue 12, 2011.

[97] A.W. Blom, M.M. Abdalla, and Z. Gurdal. Optimization of course locations in fiber-placed panels for general fiber angle distribu-
tions. Composites Science and Technology, 70:564–570, 2010.

[98] A. Groenwold and R.T. Haftka. Optimization with non-homogeneous failure criteria like tsai-wu for composite laminates. Struc-
tural Multidisciplinary Optimization, 32:183–190, 2006.

[99] M.M. Abdalla, Z. Gurdal, and F. Abdelal. Thermomechanical response of variable stiffness composite panels. Journal of Thermal
Stresses, 32, Issue 2:187–208, 2008.

[100] S.T. IJsselmuiden, M.M. Abdalla, Z. Gurdal, and F. Abdelal. Thermomechanical design optimization of variable stiffness composite
panels for buckling. Journal of Thermal Stresses, 33, Issue 10:1977–992, 2010.

[101] R.M. Jones. Buckling of circular cylindrical shells with multiple orthotropic layers and eccentric stiffeners. American Institute of
Aeronautics and Astronautics, Inc., 6, No. 12:2301–2305, 1968.

[102] M. Miki. Material design of composite laminates with required in-plane elastic properties. Progress in Science and Engineering of
Composites - ICCM IV, 1:1725–1731, 1982.

[103] M. Miki. Design of laminated fibrous composite plates with required flexural stiffness. Recent Advances in Composites in the
United States and Japan, 864:387–400, 1985.

[104] H. Fukunaga. Netting theory and its application to optimum design of laminated composite shells and plates. American Institute
of Aeronautics and Astronautics, Inc., 29th Structures, Structural Dynamics and Materials Conference:983–991, 1988.

[105] H. Fukunaga and H. Sekine. Stiffness design method of symmetric laminates using lamination parameters. American Institute of
Aeronautics and Astronautics, Inc., 30, Issue 11:2791–2793, 1992.

[106] H. Fukunaga, H. Sekine, and M. Sato. Optimal design of symmetric laminated plates for fundamental frequency. Journal of Sound
and Vibration, 171, Issue 2:219–229, 1994.

[107] C.G. Diaconu, H. Sekine, and M. Sato. Feasible region in general design space of lamination parameters for laminated composites.
American Institute of Aeronautics and Astronautics, Inc., 40, Issue 3:559–565, 2002.

[108] C.G. Diaconu, H. Sekine, and M. Sato. Layup optimization of symmetrically laminated thick plates for fundamental frequencies
using lamination parameters. Structural and Multidisciplinary Optimization, 24, Issue 4:302–311, 2002.

[109] C.G. Diaconu. Layup optimization for buckling of laminated composite shells with restricted layer angles. American Institute of
Aeronautics and Astronautics, Inc., 42, Issue 10:2153–2163, 2004.

[110] M.W. Bloomfield, C.G. Diaconu, and P.M. Weaver. On feasible regions of lamination parameters for lay-up optimization of lami-
nated composites. International Journal of Solids and Structures, 465, Issue 2104:1123 – 1143, 2009.



A
Feasible Design Region of LP

In this Appendix the feasible design region of lamination parameters is discussed. Lamination parameters are
interdependent since they are based on the same variation of ply orientation through the thickness. Although
for every lamination parameter V A,B ,D

i ∈ [−1,1] holds this explains why the design domain is not simply given
by the full unit cube [−1,1]12 in R12 [65]. There exist a feasible design region where values of lamination
parameters are limited by others. For the general case with 12 lamination parameters this feasible region
is still unknown and has yet to be determined. Although this feasible region is unknown, Grenestedt and
Gudmundson were able to prove that the feasible design region for the 12 lamination parameters in R12 is
convex [56]. The feasible region for different types of laminates will be discussed.

A.1. Orthotropic Laminates
Fortunately it is possible to reduce the amount of lamination parameters as design variables. Besides some
special applications laminate extension-bending coupling is undesirable [6]. This coupling can be avoided
by applying symmetry conditions on the stacking sequence. For symmetric laminates it is known that the
B-matrix is zero and therefore parameters V B

i become known and equal to zero. Balanced conditions pre-

clude extension-shear coupling and put lamination parameters V A
2,4 to zero. Miki was the first to establish

the feasible region for orthotropic laminates separately for in-plane stiffness in R2 [102]. The convex hull H
representing the feasible design region is described by Equation A.1. The feasible region is typically presented
by Miki’s diagram illustrate in Figure A.1 for V A

1,3. Although parameters V D
2,4 are not zero for orthotropic lam-

inates it is known that these values are close to zero if the laminate is configured of many plies. Therefore
the convex hull relation given by Equation A.1 is useful for thick laminates and is assumed to hold for pure
flexural loads [103].

A coupled design region inR4 for both in-plane and flexural behavior was first approximated by Fukunaga
to obtain the optimum configuration for buckling and vibration [104]. Later Gredestedt and Gudmunson
used a variational approach to show that this approximation resulted in a region too small and implicitly
determined the true feasible design space for V A,D

1,3 [56].

H =
V j

1,3 ∈R2

∣∣∣∣∣∣ V j
3 ≥ 2

(
V j

1

)2 −1

−1 ≤V j
1,3 ≤ 1

 for j = A,D (A.1)

From Miki’s diagram physical meaning of the laminate can be derived. The boundary parabola represents
uni-directional laminates of ±θ, represented in Figure A.1 (left) by points B , C , D , E and F for 0o , ±30o , ±45o ,
±60o and 90o respectively. Midpoint A represents a quasi-isotropic laminates since all lamination parameters
equal zero. If a certain design point is known a straight line can be drawn through this point that intersects the
boundary of the feasible region at two points. For design point A this results in line BE . The ply orientations
corresponding to the two boundary points can be used to compose a stacking sequence that represents the
stiffness of the design point. The ratio of fiber orientations corresponding to points B and E are equal to the
inverse ratio of the lengths of line segments AB and AE . For example point A can be represented by applying
twice as many ±60 degree plies as 0 plies. The thinnest possible symmetric stack becomes [−60/60/0]s , which
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Figure A.1: Left: The feasible design region for in-plane design is given by the enclosed area of line BCDEFB. The parabola represents
laminates with ±θ uni-directional laminates. From IJsselmuiden (2011) [18]. Right: The feasible design region for in-plane design with
iso-lines respresenting the corresponding square-root of the failure index for compression/shear load. From IJsselmuiden et al (2008)
[62].

is indeed quasi-isotropic. Similarly point G consist of a laminate with equal number of 0 and 90 degree fiber
orientation. Alternatively point A can now be represented by equal contribution of points D and G which is
a [±45/0/90]s degree laminate resulting in the conventional quasi-isotropic laminate.

Since the line intersecting the parabola can be drawn in infinite many ways there is not a unique stacking
sequence corresponding to a design point represented in the lamination parameter domain. An inverse opti-
mization problem arises and constraints on the maximum thickness and variation of fiber orientation within
the plies and between consequetive plies can be introduced [65]. The retrieval of the stacking sequence is
further discussed in section 4.2.

Miki’s diagram is also useful to show the convexity of the objective function of global structural responses
related to the in-plane and flexural stiffness. Many responses are proven to behave convex in the feasible
design space. E.g. IJsselmuiden et al showed that the square root of the failure index used for strength opti-
mization behaves conves, this is ilustrated with iso-lines in Figure A.1 (right) [62].

A.2. Symmetric Laminates
For symmetric laminates there are four lamination parameters V A

i to describe the in-plane stiffness and four

lamination parameters V D
i to describe the flexural stiffness of the laminate. Fukunaga and Sekine were able

to extend Miki’s diagram and derived the feasibe design domain for the pure membrane and bending case
separately in R4 [105]. Reformulated by Hammer et al the convex hull representing the feasible design region
of these four parameters is determined by Equation A.2 where the equations holds for either pure membrane
(V A

i ) or pure flexural (V D
i ) loads [65]. This is illustrated in Figure A.2 for specific points P1,2,3 in the V D

1,3 plane.

Based on the chosen point the dependent feasible region in the V D
2,4 plane can be determined.
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(A.2)

A.3. Other Relations
Although there is not an explicit expression for the feasible design region of the 12 lamination parameters
other relations are derived other than the special cases of orthotropic and symmetric laminates. Diaconu
et al implicitly determined the feasible design region for the 12 lamination parameters by generalizing the
variational approach used by Grenestedt and Gudmunson [107]. In a follow up study they showed the impor-
tance to gain knowledge of the feasible design region of the 12 lamination parameters [89]. Optimizing for
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Figure A.2: Miki’s Diagram of the V D
1 -V D

3 plane where points p1 to p3 are defined (left). These points determine the feasible region of

the V D
2 -V D

4 plane (right). From Fukunaga et al (1994) [106]

combined compressive axial and torsional loads resulted in an unbalanced asymmetric laminate which can
only be obtained in the design space given by all lamination parameters. During this study they were able
to derive a new explicit expression to relate V A,B ,D

i , given by Equation A.3. In another study they optimized
a thick symmetric laminature for fundamental frequency including transverse shear [108]. The same varia-
tional approach was used to implicitly obtain the true convex hull of orthotropic laminates given by the six
lamination parameters V A

1,3 and V D
1,2,3,4.
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Although deriving an implicit method to obtain the feasible design region of any set of lamination param-
eters Diaconu and Sekine performed a follow up study to research explicit relations since the implicit method
is labor intensive and therefore unpractical [109]. Allowing the orientations to vary over 0, ±45 and 90 degrees
only nine parameters are required since V A,B ,D

4 = 0. They were able to derive explicit relations for the corre-
sponding feasible design region. Bloomfield et al extended this work with a method to obtain the feasible
design region for any finite set of orientation angles [110]. They showed that the nature of the feasible design
region of all lamination parameters is the interlinking of three interdependent convex subspaces given by V A

i ,

V B
i and V D

i . The interlinking is based on the linear, quadratic and cubic ply orientation volume fractions.
Setoodeh et al introduced another method to approximate the feasible design region [57]. For a variation

of layups the corresponding lamination parameters are calculated. Based on these lamination parameters the
convex hull is determined. New layups are added until the volume of the convex hull converges. Thereafter
12 linear equations for the 12 lamination parameters were assumed to completely describe the approximated
convex hull.





B
Tsai-Wu Failure Envelope

In this Appendix the Tsai-Wu failure envelope in stress and strain space is given. The Tsai-Wu formula is
probably the best known failure criterion and has acceptable predictions compared with test results, except
for biaxial compression [6]. For 2-dimensional planer stress state the failure index is given by:

f = F11σ
2
1 +F22σ

2
2 +F66τ

2
12 +F1σ1 +F2σ2 +2F12σ1σ2 (B.1)

Strength values X t , Xc , Yt , Yt and S are extracted from uni-axial material tests and are given in the material
ply axes. Subscript t stands for tension and c for compression coupon tests. The strength values are used to
determine the F -values:

F1 = 1

X t
− 1

Xc
(B.2)

F2 = 1

Yt
− 1

Yc
(B.3)

F11 = 1

X t Xc
(B.4)

F22 = 1

Yt Yc
(B.5)

F12 = −1

2
p

X t Xc Yt Yc
(B.6)

F66 = 1

S2 (B.7)

This criteria was first introduced by Tsai and Wu in 1971 and is more of a curve fit rather than a physics
based theory [6, 79]. The failure index is useful to assess first ply failure. First ply failure is predicted to occur
within a laminate if the following relation is violated:

f ≤ 1 (B.8)

B.1. Lamination Parameters
To address first ply failure the stress state of the individual plies are required, which are based on the fiber ori-
entations. Lamination parameters represent the integrated laminate properties over the thickness. Assessing
failure criteria is not straight forward since orientations are unknown. It would be inefficient to apply failure
criteria after retrieval of the orientations. Therefore IJsselmuiden et al proposed to apply a conservative Tsai-
Wu failure envelope in strain space [62]. Using the constitutive relation σ=Qε the Tsai-Wu criterion given by
Equation B.9 can be expressed in strain space, given by Equation B.10. Note that the equations are expressed
in the material coordinate axes.

F11σ
2
1 +F22σ

2
2 +F66τ

2
12 +F1σ1 +F2σ2 +2F12σ1σ2 ≥ 1 (B.9)

G11ε
2
1 +G22ε

2
2 +G66ε

2
12 +G1ε1 +G2ε2 +2G12ε1ε2 ≥ 1 (B.10)

in which,
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G11 =Q2
11F11 +Q2

12F22 +2F12Q11Q12 G1 =Q11F1 +Q12F2

G22 =Q2
12F11 +Q2

22F22 +2F12Q12Q22 G2 =Q12F1 +Q22F2

G12 =Q11Q12F11 +Q12Q22F22 +F12Q2
12 +F12Q11Q22

G66 = 4Q2
66F66

(B.11)

Equation B.10 still depends on the stacking sequence, therefore it cannot be used in conjunction with
lamination parameters optimization. However, it is possible to determine a region in strain space that is safe
regardless of the stacking sequence. The boundary of this conservative region in strain space is given by the
failure envelope and every point that lays within the enclosed area will fulfill the Tsai-Wu failure criteria. This
envelope is derived by IJsselmuiden et al and later simplified by the same authors [62, 66]. For the simplified
derivation the Tsai Wu strain space is given in three strain invariants:

I1 = εI +εI I (B.12)

I2 = ε2
I +ε2

I I (B.13)

I4 = εI n2
1 +εI I n2

2 (B.14)

in which n1 = cosθ, n2 = sinθ and εI ,I I are the principal strains. The failure criteria is now given by:

f = 1

2
u1I 2

1 +u2I1I4 + 1

2
u3I 2

4 +u4I2 +u5I1 +u6I4 (B.15)

where u1 to u6 can be obtained by comparing the Tsai-Wu equation in strain space with the three strain
invariants:

u1 =G22 − G66
2 u4 =G11 −2G12 +G22 −G66

u2 = G66
2 u5 =G2

u3 = 2G12 −2
(
G22 − G66

2

)
u6 =G1 −G2

(B.16)

The failure envelope is given by the most critical fiber angle where the failure criteria equals one. Since
only the strain invariant I4 is a function of θ this can be expressed as:

max
θ

f = 1 (B.17)

max
I4

f = 1, εI I ≤ I4 ≤ εI (B.18)

There are two possible envelopes, the first is one smooth envelope described by quadratic conditions on
strains. The second is a non smooth self intersecting envelope by quartic conditions on strains which can be
resolved into two quadratic envelopes. In both cases the conservative failure envelope becomes an elliptical
form described by Equation B.19,

Ci j εi ε j +Ci εi +C0 = 0, i = I , I I (B.19)

where for quadratic conditions on strain the failure envelope is described by one ellipse,

C0 =− 1
4

u2
6

u4
−1 C I ,I =− 1

4
u2

3
u4

+u2 +u1

C I =− 1
2

u3u6
u4

+u5 C I ,I I = u1 − 1
4

u2
3

u4

C I I =− 1
2

u3u6
u4

+u5 C I I ,I I =− 1
4

u2
3

u4
+u2+u1

(B.20)

and for quartic conditions on strain the failure envelope is described by two intersecting ellipses,
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Figure B.1: Failure envelope for three different materials for εx y = 0. From IJsselmuiden et al (2008) [62]

C0 (1) =C0 (2) =−1 C I ,I (1) =C I I ,I I (2) = u2 +u1

C I (1) =C I I (2) = u5 C I ,I I (1) =C I ,I I (2) = 1
2 u3 +u1

C I I (1) =C I (2) = u6 +u5 C I I ,I I (1) =C I I (2) = u1 +u2 +u3 +u4

(B.21)

Note that it is material dependent whether there will be a second or fourth order failure envelope. This is
illustrated by IJsselmuiden et al in Figure B.1 where the failure envelopes are given for three different materi-
als. For materials presented in figures a and b the failure envelope is given by quadratic conditions. For the
material presented in figure c the failure envelop is given by quartic conditions and is the enclosed area by
two intersecting ellipses.





C
Sensitivity Analysis

In this Appendix the sensitivities are given for the response approximations given in chapter 4. The first sec-
tion derives the sensitivities for compliance, the second section for strength and the last section for buckling.

C.1. Compliance Sensitivities
The sensitivities for compliance are derived by IJsselmuiden et al [64]. The derivation is reproduced here, and
starts from the compliance formulation based on linear finite element analysis:

C = 1

2
Ft ·u (C.1)

Assuming the external mechanical load to be constant the derivative of the compliance equation with respect
to an arbitrary parameter b is:

dC

db
= 1

2
Ft · du

db
(C.2)

Taking the derivative of the linear finite element problem:

dKm

db
·u+Km · du

db
= 0 → du

db
=−K−1

m · dKm

db
·u (C.3)

Therefore the derivative of the compliance equation can be written as:

dC

db
=−1

2
Ft ·K−1

m · dKm

db
·u → dC

db
=−1

2
ut · dKm

db
·u (C.4)

Now using the following relation:

∂ f

∂A−1 =−A · ∂ f

∂A
·A (C.5)

From C = 1
2 Nt A−1N it is known that compliance depends on A−1. This results in the following sensitivities for

element e to be implemented in the compliance response approximation:

φm,e
αβ

= ∂C

∂A−1
αβ

= 1

2

N∑
σρ

AβσAρα

(
ut

e ·
dKm,e

d Aρσ
·ue

)
(C.6)

φb,e
αβ

= ∂C

∂D−1
αβ

= 1

2

N∑
σρ

DβσDρα

(
ut

e ·
dKm,e

dDρσ
·ue

)
(C.7)
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C.2. Strength Sensitivities
In this section the sensitivities for the strength response are derived. The strength formulation is given by
[62, 66]:

r = εt ·g (C.8)

Taking the derivative of the strength equation with respect to an arbitrary parameter b yields:

dr

db
= Nt · dA−1

db
·g︸ ︷︷ ︸

Tlocal

+ dNt

db
·A−1 ·g︸ ︷︷ ︸

Tglobal

(C.9)

Local Term:
The local term assumes constant stress resultants and can be evaluated at element level by:

Tlocal = Nt · dA−1

db
·g = Nt

i ·
dA−1

i

db
·gi (C.10)

Global Term:
The global term takes the load redistribution into account. This term is summed over all elements to incor-
porate the contribution of all elements and is given by:

Tglocal =
dNt

db
·A−1 ·g =∑

e

dNt
e

db
·A−1

e ·ge (C.11)

The derivative of the stress resultants can be written as:

dNe

db
= dAe

db
·εe +Ae · dεe

db
= dAe

db
·εe +Ae · B̄e · due

db
(C.12)

The first part of the stress resultant derivative can be evaluated at local element level i . Hence the sum for
the first part is dropped. However, the second term depends on the displacement which can change for all
elements if the stacking sequence of a single element is updated, therefore the summation over all elements
is still required. Using se = A−1

e ·ge the global term is given as:

Tglocal = st
i ·

dAi

db
·εi +

∑
e

st
e ·Ae · B̄e · due

db
(C.13)

Introducing a new term:

fe = B̄t
e ·Ae ·se (C.14)

Now the global term is written as:

Tglocal = st
i ·

dAi

db
·εi +

∑
e

fe · due

db
(C.15)

Joint-Displacement vector:
To determine the derivative of the displacement vector the adjoint displacement vector v is introduced by
solving the following linear force-displacement relation:

Km ·v = f (C.16)

Taking the derivative of the linear finite element problem yields:
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dKm

db
·u+Km · du

db
= 0 → Km · du

db
=−dKm

db
·u (C.17)

Multiplying both sides by the adjoint displacment vector v results in:

vt ·Km · du

db
=−vt · dKm

db
·u → f · du

db
=−vt · dKm

db
·u (C.18)

This term can also be evaluated at the i th local element level, since all global redistribution of load is em-
bedded in the adjoint displacement vector v. Therefore the sum in the global term is dropped and the global
term is written as:

Tglocal = st
i ·

dAi

db
·εi −vt

i ·
dKm,i

db
·ui (C.19)

Total Derivative:
Combining the local and global terms the total derivative is given by:

dr

db
= Nt

i ·
dA−1

i

db
·gi︸ ︷︷ ︸

Tlocal

+st
i ·

dAi

db
·εi −vt

i ·
dKm,i

db
·ui︸ ︷︷ ︸

Tglocal

(C.20)

The local term depends on A−1 and the global term on A. Therefore the sensitivities for element e is given by:

φm,e
αβ

= ∂r

∂A−1
αβ

=
N∑
σρ

Nt
e ·

dA−1
e

d Aρσ
·ge (C.21)

ψm,e
αβ

= ∂r

∂Aαβ
=

N∑
σρ

(
st

e ·
dAe

d Aρσ
·εe −vt

e ·
dKm,e

d Aρσ
·ue

)
(C.22)

C.3. Buckling Sensitivities
The sensitivities for buckling are derived by IJsselmuiden et al [63, 64]. The buckling equation is given as:

(
Km −λKg

) ·a = 0 (C.23)

Taking the derivative to an arbitrary variable b of the buckling equation yields:

(
dKm

db
− dλ

db
Kg −λ

dKg

db

)
·a+ (

Km −λKg
) · da

db
= 0 (C.24)

The second term is zero due to the buckling formulation. Note that the material stiffness is a function of
membrane and bending stiffness for shells. Multiply all terms by −λat .

−λat · dKm

db
·a+λdλ

db
at ·Kg ·a+λ2at · dKg

db
·a = 0 (C.25)

Using the following relation:

at · (Km −λKg
) ·a = 0 → at ·Km ·a =λat ·Kg ·a = 1 (C.26)

Results in the following derivative for the load multiplier:
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dλ

db
=λat · dKm

db
·a−λ2 ·at dKg

db
·a → dλ

db
=λat ·

(
dKm

db
−λdKg

db

)
·a (C.27)

Local Term - Material Stiffness
The first term can be evaluated at the local i th element level:

Tlocal = at · dKm

db
·a = at

i ·
dKm,i

db
·ai (C.28)

Global Term - Geometric Stiffness
The second term has to be evaluated at the global level. If a stacking sequence of an element changes the load
distribution throughout the structure changes accordingly. Therefore the geometric stiffness matrix changes
on a global level and the derivative of all elements are summed. Using:

Kg =−nx,e Kx −ny,e Ky −nx y,e Kx y and se =
[
at

e ·Kx ·ae ; at
e ·Ky ·ae ; at

e ·Kx y ·ae
]t

(C.29)

The global term is written as:

Tglobal = at dKg

db
a =−∑

e
st

e ·
dNe

db
(C.30)

The derivative of the in-plane stress resultant can be written as:

dNe

db
= dAe

db
·εe +Ae · dεe

db
= dAe

db
·εe +Ae · B̄e · due

db
(C.31)

The first part of this derivative can be evaluated at the local i th element level. However, the second term
depends on the displacement which can change for all elements if the stacking sequence of a single element
is updated, hence the summations is still required:

Tglobal =−st
i ·

dAi

db
·εi −

∑
e

st
e ·Ae · B̄e · due

db
(C.32)

Introducing a new term:

fe = B̄t
e ·Ae ·se (C.33)

Now the global term is given by:

Tglobal =−st
i ·

dAi

db
·εi −

∑
e

ft
e ·

due

db
(C.34)

Joint-Displacement vector:
To determine the derivative of the displacement vector the adjoint displacement vector v is introduced by
solving the linear force-displacement equation:

Km ·v = f (C.35)

Taking the derivative of the linear finite element formulation Km ·u = F :

dKm

db
·u+Km · du

db
= 0 → Km · du

db
=−dKm

db
·u (C.36)



C.3. Buckling Sensitivities 95

Multiplying both sides by the adjoint displacment vector v:

vt ·Km · du

db
=−vt · dKm

db
·u → f · du

db
=−vt · dKm

db
·u (C.37)

This term can also be evaluated at the local i th element level, since all global redistribution of load is embed-
ded in the adjoint displacement vector.

Tglobal =−st
i ·

dAi

db
·εi +vt

i ·
dKm,i

db
·ui (C.38)

Total derivative:
Substituting both local and global terms back into the total derivative for the ith element yields:

dλ

db
=λ

(
at

i ·
dKm,i

db
·ai

)
︸ ︷︷ ︸

material stiffness

+λ2
(

st
i ·

dAi

db
·ei −vt

i ·
dKm,i

db
·ui

)
︸ ︷︷ ︸

geometric stiffness

(C.39)

The general response formulation is given. The linear terms are based on the geometric stiffness, and the
reciprocal terms depend on the material stiffness.

r ≈
N∑

i=1
Ψm

i : A+Ψb
i : D︸ ︷︷ ︸

geometric stiffness

+Φm
i : A−1 +Φb

i : D−1︸ ︷︷ ︸
material stiffness

(C.40)

Combining the following expressions:

∂ f

∂A
=−A−1 · ∂ f

∂A−1 ·A−1 and
∂ f

∂A−1 =−A · ∂ f

∂A
·A (C.41)

And using the chain-rule to obtain the actual response derivative:

∂r

∂b
= ∂r

∂λ

∂λ

∂b
→ ∂r

∂b
=− 1

λ2

∂λ

∂b
(C.42)

Results in the following sensitivities for material stiffness at element level e:

φm,e
αβ

= ∂r

∂A−1
αβ

= 1

λ

N∑
σρ

AβσAρα

(
at

e ·
dKm,e

d Aρσ
·ae

)
(C.43)

φb,e
αβ

= ∂r

∂D−1
αβ

= 1

λ

N∑
σρ

DβσDρα

(
at

e ·
dKm,e

dDρσ
·ae

)
(C.44)

And in the following sensitivities for geometric stiffness at element level e:

ψm,e
αβ

= ∂r

∂Aαβ
=

N∑
σρ

(
−st

e ·
dAe

d Aρσ
·εe +vt

e ·
dKm,e

d Aρσ
·ue

)
(C.45)

ψb,e
αβ

= ∂r

∂Dαβ
=

N∑
σρ

(
vt

e ·
dKm,e

dDρσ
·ue

)
(C.46)
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