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CHAPTER 1

Introduction

1.1 The debt sustainability indicator

In the face of the ongoing financial crisis in Europe, the sustainability of government debt has
recently been one of the topics of debate in economics. A government’s debt is sustainable when
the government is expected to meet its debts obligation without an unrealistically large future
correction to its fiscal policy, see Wyplosz (2007). Here, fiscal policy is the means by which a
government adjusts its expenditure and revenue to monitor and influence a nation’s economy.
Insight into the sustainability of government debt is essential to policy-makers and financial
markets for several reasons. Firstly, it gives insight towards the urgency of fiscal consolidation,
i.e., the creation of strategies that are aimed at minimizing deficits while also limiting the debt
accumulation. Secondly, it is of importance for the determination of the appropriate risk pre-
mium on government debt. Finally, serious debt sustainability issues can lead to a sovereign
default. During the current financial crisis the government debt has rapidly accumulated for
most countries. Hence, there is a need for a reliable and comprehensive measure of government
debt sustainability.

As discussed in Lukkezen, Rojas-Romagosa, et al. (2012), static indicators such as the size of
the government debt or the budget balance are used to assess the sustainability of government
debt. While these indicators are straightforward, they provide little information on the uncer-
tainties concerning the evolution of the government debt. Other factors are at least as important,
for instance, the stability of the economic environment and the government’s attitude towards
debt sustainability. In Ewijk, Lukkezen, and Rojas-Romagosa (2013), a dynamic framework is
proposed for assessing the sustainability of government debt. This framework takes account of
economic uncertainty underlying the evolution of government debt, and incorporates a compre-
hensive measure of the responsiveness of fiscal policies to economic setbacks. Using stochastic
simulations they evaluate an indicator that can distinguish countries with few to no debt sus-
tainability concerns from countries with serious debt sustainability issues. This indicator will be
referred to as the debt sustainability indicator.

In this thesis, we evaluate the debt sustainability indicator with a new model. The essence of
this model is to produce forecasts for several economic variables, where the government debt is
one of them, based on historical data. With the obtained economic forecasts, we can estimate
with the indicator the risk of a significant government debt increase in the near future.
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It is expected that countries with debt sustainability issues have a higher risk that the government
will default on its bonds or other financial commitments. This latter type of risk is referred to
as the country-specific risk. As discussed in Kwark (2002), country-specific risk influences the
dynamics of the interest rates that are paid on government bonds, or more precisely the so-called
interest rate spreads.

In this thesis, we consider the interest rate spread as the difference between two yields, where one
of the interest rates is historically limited available. For several reasons we are interested in the
dynamics of the interest rate spreads. Firstly, it is accepted that financial variables, such as stock
prices and interest rates, adjust to new information much faster than other variables, see Estrella
and Mishkin (1998) for more details. As a result, some variables in the financial market are used
as leading indicators to predict future developments of the economy. One of these variables is the
term-spread, which is the difference between the 10-years interest rate and the 3-months interest
rate. The term-spread is considered as a good indicator for forecasting the future economic
growth, see Estrella and Mishkin (1996), Dotsey (1998) and Wheelock, Wohar, et al. (2009) for
more details. Secondly, the interest rate spreads are often seen in the financial market as a risk
premium for investing in risky loans. As long as some loans are expected to be in default at
the maturity date, the risky loan rate should be higher than the risk-free deposit rate in order
to compensate for loan default. Hence, predicting the risk premium is for institutional investors
of importance. Finally, historical data is limited available for interest rate spreads. Moreover,
historical spread levels are not representative by the current changing economic circumstances,
see Blinder and Baumol (1993) for more details.

Since the indicator measures whether the government is still in control of the debt evolution, it
contains, just like the interest rate spreads, a part of the country-specific risk. Hence, the aim
of this MSc project is to investigate whether the dynamics of the interest rate spreads can be
explained by the debt sustainability indicator.

1.2 Organization of the thesis

We first explain in Chapter 2 the calculation of the debt sustainability indicator. We show
that this calculation is easily performed by using the debt samples obtained from a stochastic
simulation. The first model which performs the simulation is from Lukkezen, Rojas-Romagosa,
et al. (2012). We explain the model dynamics and how this model, which will be referred to as the
Benchmark model, produces a government debt prediction based on historical data. However,
the Benchmark framework makes model assumptions that can be improved.

In this thesis, we propose a new model, which will be referred to as the Extended model, for
evaluating the debt sustainability indicator. In Chapter 3, we explain the dynamics of the
Extended model and argue why this is an extension of the Benchmark model. Furthermore,
we explain the procedure for economic forecasts with the Extended model. And finally, we
investigate whether the forecast accuracy of the Extended model is improved by including more
information of the model’s previous states.

In Chapter 4, we show that the Extended model doesn’t always produce realistic economic
forecasts, based on historical data. The reason for this is that the historical data is not always
representative for predicting the future. In order to overcome this, we implement a new fiscal
rule in the dynamics of the Extended model.
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In Chapter 5, we investigate whether the debt sustainability indicator, which is calculated using
the Extended model, can explain the dynamics of the interest rate spreads. In particular, we are
interested in how much explanatory power the indicator contains. For this purpose, we must first
specify which interest rate spreads are considered in this MSc-thesis. After this, we formulate
the criteria that are used to verify the relationship between the indicator and the interest rate
spreads. Finally, for several countries we discuss the results of verifying this relationship.

The main topic of Chapter 4 has let us to investigate the influence of the model parameters
on the stability of the system. Therefore, in Chapter 6, we perform a stability analysis for the
Extended model. In particular, we derive conditions for the existence of blow-up behaviour using
general theory about discrete dynamical systems.

Finally, Chapter 7 contains the overall conclusions, further recommendations and suggestions for
future research.
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CHAPTER 2

Indicator for assessing government debt sustainability

In this chapter, we discuss an indicator for assessing government debt sustainability. The sus-
tainability of government debt is one of the most discussed topics of the current Euro crisis.
In Section 1.1, we start by introducing a model from Lukkezen, Rojas-Romagosa, et al. (2012)
which describes the future evolution of the government debt. This model will be referred to as
the Benchmark model. We will show that three main variables are used for describing the debt
dynamics: the 10-years real interest rate, the annual return of real GDP and an error-correction
component. Next, we discuss the assumptions that are made in the Benchmark model in order
to produce a stochastic debt simulation. By producing samples of a future debt distribution,
we can evaluate the debt sustainability indicator. In section 1.2, we discuss in more detail the
calculation of the debt sustainability indicator, which is evaluated with the Benchmark model in
Ewijk, Lukkezen, and Rojas-Romagosa (2013).

2.1 The Benchmark Model

In this section, we discuss the Benchmark model for describing the evolution of the government
debt. We will show that the Benchmark model consists of the following components: the ac-
counting equation for the government debt, an equation for the government’s primary surplus
and a two-dimensional linear system for the annual return of real gross domestic product (GDP)
and the 10-years real interest rate. The government’s primary surplus is the difference of the
total revenue and total primary expenditure. Here, the primary expenditure excludes interest
payments on outstanding obligations. And moreover, a financial variable is quoted as real when
it is inflation-adjusted.

First, we explain the dynamics of the government debt. In Lukkezen, Rojas-Romagosa, et al.
(2012), these dynamics are given by the budget accounting equation:

Dt+1 = (Dt − St)(1 +Rt). (2.1)

In equation (2.1), Dt is the amount of government debt, Rt the nominal, or not inflation-adjusted,
interest rate with a maturity of 10-years and St is the amount of government primary surplus
at the beginning of year t. Using percentage of nominal GDP provides an economic meaningful
scaling factor for analysing the amount of public debt. Therefore, the next step is to divide Dt
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by the nominal GDP Yt:
Dt+1

Yt+1
=

(Dt − St)(1 +Rt)

Yt(1 +Gt)
, (2.2)

where Gt is the annual return of nominal GDP . Expression (2.2) can be simplified to:

dt+1 = (dt − st)
1 + rt
1 + yt

, (2.3)

where dt = Dt

Yt
, st = St

Yt
, rt is the 10-years real interest rate and yt is the annual return of real

GDP. For the derivation of (2.2), we can also use the nominal interest rate and the annual return
of nominal GDP since inflation cancels out in the difference.

Equation (2.3) shows that the dynamics of the debt-to-GDP ratio, which will be referred to as
the debt, is described by the 10-years real interest rate rt, the return of annual real GDP yt
and an error-correction component (dt − st). The error-correction component indicates whether
the government increases its primary surplus due to changes in the debt. Hence, the dynamics
of the primary surplus must be specified for investigating the evolution of the error-correction
component. The primary surplus st is given by:

st = α+ ρdt + β1YVARt + β2GVARt + εt, (2.4)

where α ∈ R and the error term εt ∼ N (0, σ). The fiscal reaction parameter ρ provides infor-
mation on the long-term country-specific behaviour towards debt sustainability. In other words,
the parameter provides information on the historical fiscal reaction, i.e, adjusting its policy for
the revenue and expenditure, to changes in the government debt. The YVARt is the cyclical
component of the real GDP time series expressed as a percent deviation at time t. To be more
precise, the YVARt is calculated in the following way:

1. Denote the historical real GDP time series by {Zt, t = t0, . . . , tN}, where tN = t0 +N .

2. The trend component τt of log(Zt) is extracted with a two-sided HP filter (λ = 100). In
Appendix A, we discuss in more detail how this filter extracts the trend and cycle of a time
series.

3. Then, the value of YVARt is defined as:

YVARt =
Zt − exp(τt)

Zt
. (2.5)

The remaining variable GVARt in (2.4) is a measure of temporary government spending. For
the United Kingdom and the United States, the temporary government spending was driven by
the military spending. Therefore, the GVARt is defined as the military spending for these two
countries. For the remaining countries, the GVARt is defined as the cyclical component of the
time series for the government primary expenditure, where the trend is again extracted using a
two-sided HP filter.

Substituting equation (2.4) in (2.3) yields:

dt+1 =
1 + rt
1 + yt

(1− ρ)dt −
1 + rt
1 + yt

(α+ β1YVARt + β2GVARt + εt). (2.6)
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The next step is, after estimating the parameters α, ρ, β1, β2 using ordinary least squares (OLS),
see Rice (2006), to produce a stochastic debt simulation. Here, a stochastic simulation is referred
to as applying a Monte Carlo simulation with start date tN and computingM samples in each year
t of the horizon t = tN , . . . , T , where T ∈ [tN ,∞). Hence, from the stochastic debt simulation
we obtain samples d1T , . . . , d

M
T from the unknown future debt distribution FdT . From this, we

can approximate the quantiles of the distribution FdT , which will be further elaborated on in
the next section. In equation (2.6), it is expected that the distribution function Fdt becomes less
peaked when the dynamics of the 10-years real interest rate and the annual return of real GDP
become more volatile. Hence, a larger fiscal response to keep the government debt under control
is required. Moreover, the volatility of the variables YVARt and GVARt also has an important
role for the shape of the distribution function Fdt . In this regard, the Benchmark model makes
important assumptions. Firstly, once the parameters α, ρ, β1, β2 are estimated using historical
data from the period t = t0, . . . , tN , the variables YVARt and GVARt are set equal to zero.
As a consequence, the distribution Fdt doesn’t depend any more on the stochastic behaviour of
YVARt and GVARt. Secondly, the Benchmark model doesn’t include the error term εt from
(2.4) in the stochastic debt simulation. Therefore, the stochastic behaviour of the Benchmark
model only comes from the dynamics of the 10-years real interest rate rt and the annual return
of real GDP yt. The dynamics of (yt, rt) are described by a VAR(2) model, see Appendix C for
more details. In summary, the Benchmark model has the following dynamics:

dt+1 =
1 + rt
1 + yt

(1− ρ)dt −
1 + rt
1 + yt

α,(
yt
rt

)
=

(
αy

αr

)
+A1

(
yt−1
rt−1

)
+A2

(
yt−2
rt−2

)
+

(
εyt
εrt

)
,

(2.7)

in order to perform a stochastic debt simulation, where αy, αr ∈ R and the error vector(
εyt
εrt

)
∼ N (0,Σ).

2.2 Calculation of the debt sustainability indicator

In Ewijk, Lukkezen, and Rojas-Romagosa (2013) an indicator is introduced for assessing gov-
ernment debt sustainability, which will be referred to as the debt sustainability indicator. In
this section, we discuss the calculation of the debt sustainability indicator. We show that this
calculation is easily performed by using the debt samples produced by a stochastic simulation.
First, a brief overview is presented how to approximate quantiles with samples from an unknown
probability distribution. Subsequently, we give the systematic procedure for calculating the debt
sustainability indicator.

2.2.1 Approximation of the quantiles with order statistics

Suppose X1, . . . , XM is an independent and identical distributed (i.i.d.) sample from an un-
known distribution function F . The empirical cumulative distribution function (ECDF) is de-
fined as

F̂M (x) =
1

M

M∑
i=1

1{Xi≤x}, (2.8)
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where

1{Xi≤x} =

{
1 if Xi ≤ x
0 otherwise

.

The unknown distribution function F can be estimated with (2.8). Note that, for a fixed point x ∈
R the quantity MF̂M (x) is a sum of independent Bernoulli random variables. Hence, MF̂M (x)
has a binomial distribution with parameters M and success probability F (x). Therefore,

E[F̂M (x)] = F (x) and V ar[F̂M (x)] =
F (x)(1− F (x))

M
,

Furthermore, we find for ε > 0

P(|F̂M (x)− F (x)| ≥ ε) ≤ F (x)(1− F (x))

Mε2
,

by Chebyshev’s inequality, see Rice (2006) for more details. Hence, F̂M (x) converges in proba-
bility to F (x) as M →∞. With the properties of the ECDF, we can approximate the quantiles
of the distribution function F . Let the p-th quantile be denoted by q(p), p ∈ (0, 1). The quantile
q(p) is defined in terms of the distribution function F as:

q(p) = inf{x : F (x) ≥ p}. (2.9)

From (2.9), the estimation of a quantile is given by:

q̂(p) = F̂−1M (p). (2.10)

In order to relate (2.10) with the samples X1, . . . , XM we must introduce the notion of order
statistics. Let π : {1, . . . ,M} → {1, . . . ,M} be a permutation operator such that Xπ(i) ≤ Xπ(j)

if i < j. Define the order statistics as X(i) = Xπ(i). By this construction, we obtain the sequence
X(1) ≤ X(2) ≤ . . . ≤ X(M). The ECDF can be written in terms of order statistics as

F̂M (x) =
1

M

M∑
i=1

1{X(i)≤x}. (2.11)

Next, by assuming that F is continuous and p ∈ ( i−1M , i
M ] we have that F̂−1M (p) = X(i). In other

words, if p ∈ ( i−1M , i
M ] the estimation of the quantile q(p) is given by the i-th order statistic

X(i).

2.2.2 Evaluation of the indicator using order statistics

The debt sustainability indicator measures the degree to which governments are in control of
their public finances by estimating the risk of a significant debt increase in the near future. The
indicator is calculated by the following systematic procedure:

1. Estimate the model parameters using historical data from the period t = t0, . . . , tN , where
tN = t0 +N .

2. Set the length of the forecast horizon t = tN , . . . , T equal to k years, i.e., T − tN = k. In
Ewijk, Lukkezen, and Rojas-Romagosa (2013), the length of the forecast horizon is set to
10-years, i.e., k = 10y.
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3. Produce the samples d1T , . . . , d
M
T using a stochastic debt simulation with starting date tN ,

where M denote the number of samples.

4. Create the ascending sequence d
(1)
T ≤ . . . ≤ d

(M)
T , where d

(i)
T is the i-th order statistic at

time T .

5. Using the ordered sample d
(1)
T ≤ . . . ≤ d

(M)
T , the value of the debt sustainability indicator

I(tN , k) is calculated as

I(tN , k) = qFtN+k
(0.975)− qFtN+k

(0.5)

= qFT
(0.975)− qFT

(0.5)

≈ q̂FT
(0.975)− q̂FT

(0.5)

= F̂−1M,T (0.975)− F̂−1M,T (0.5)

= d
(0.975∗M)
T − d(0.5∗M)

T ,

(2.12)

where qFT
(p) denotes the p-th quantile of the distribution FdT , p ∈ (0, 1), and F̂M,T is the

ECDF of the distribution function FdT with M samples at time T .

From (2.12), the indicator estimates the risk of a significant debt increase k-years ahead in the
future. In Ewijk, Lukkezen, and Rojas-Romagosa (2013) it is shown that the indicator can
distinguish countries with few to no debt sustainability concerns from countries with serious
debt sustainability issues. It is expected that countries with debt sustainability issues have
a higher country-specific risk. As discussed in Kwark (2002), country specific risk influences
as, one of many factors, the dynamics of the interest rate spreads. Hence, the aim of this
project is to investigate whether the dynamics of the interest rate spreads can be explained
by the indicator. Before this topic is discussed in more detail, we first propose a new model for
describing the dynamics of the government debt. This model incorporates the assumptions made
in the Benchmark model in order to produce a stochastic debt simulation.
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CHAPTER 3

The Extended model

In this chapter, we present a new model for describing the dynamics of the government debt,
which we will refer to as the Extended model. As discussed in Section 2.1, the Benchmark model
makes the following assumptions in order to produce a stochastic debt simulation. Firstly, once
the parameters α, ρ, β1 and β2 are estimated in (2.6), the variables YVARt and GVARt in (2.6)
are set equal to zero in the simulation. By (2.6), the characteristics of FdT depend among
others on the estimated parameters β1, β2 and the stochastic behaviour of YVARt and GVARt.
Since the debt sustainability indicator is calculated by subtracting quantiles of FdT , it follows
that this assumption influences the dynamics of the indicator. In Lukkezen, Rojas-Romagosa,
et al. (2012), this assumption is justified by E[YVARt] = E[GVARt] = 0. Another reason for
leaving out the YVARt and GVARt in the stochastic debt simulation is by the properties of
the two-sided HP filter, which is used in the Benchmark model for extracting the trend of a
time series. In a moment we will explain which property of the two-sided HP filter restrains to
simulate the YVARt and GVARt in the debt forecasts. Secondly, the error component εt from
(2.6) is removed after estimating the parameters of the Benchmark model. As a consequence,
the stochastic behaviour of the government debt only depends on the dynamics of the annual
return of real GDP yt and the real interest rate rt, i.e., by a VAR(2) model. Also this assumption
influences the dynamics of the indicator.

Incorporating these assumptions in a modelling framework gave us the motivation for developing
an extension of the Benchmark model. In Section 3.1, we describe the dynamics of the Extended
model and argue why this is an extension of the Benchmark model. Next, in Section 3.2, we
discuss how to produce economic forecasts with the Extended model. In particular, this procedure
is applied for all countries considered in this investigation. From this, we calculate the indicator,
as discussed in Section 2.2, using the debt forecasts produced by the Extended model. Moreover,
we investigate whether there exists a correspondence between the dynamics of the indicator,
which is calculated with the Extended model, and the term-spread. Finally, in Section 3.3, we
investigate whether the forecast accuracy of the Extended model is improved by including more
information of the model’s previous states.
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3.1 The dynamics of the Extended model

In this section, we present the Extended model for describing the dynamics of the government
debt. In a moment, it will be clear that the Extended model uses a filter with different properties
then the two-sided HP filter for extracting the trend of a time series. For this reason, the dynam-
ics of the Extended model include the business cycle YVARt and the temporarily government
spending GVARt.

Now, we describe the dynamics of the Extended model and give an accompanying explanation
of all components. The Extended model has the following dynamics:(

yt+1

rt+1

)
=

(
αy
αr

)
+A1

(
yt
rt

)
+A2

(
yt−1
rt−1

)
+

(
εyt+1

εrt+1

)
,

revt+1 = αrev +R1revt + εrev
t+1 ,

spt+1 = αsp + ρdt + βY V ARt + E1revt + E2τt + E3ct + ε
sp
t+1,

milt+1 = αmil +M1milt + εmil
t+1 ,

(3.1)

The evolution of the government debt is described by:

dt+1 = dt
1 + rt

1 + yt+1
− st+1, (3.2)

where

st+1 =

{
revt+1 − (spt+1 + milt+1) for UK, US,
revt+1 − spt+1 otherwise.

(3.3)

And finally, the error components have the following distribution(
εyt+1

εrt+1

)
∼ N (0,Σ1),

(
εrev
t+1

ε
sp
t+1

)
∼ N (0,Σ2) and εmil

t+1 ∼ N (0, σ). (3.4)

We can rewrite (3.1) in the following matrix-vector notation:

Yt+1 = α+RXt + εt+1, (3.5)

where

Yt+1 = [yt+1, rt+1, revt+1, spt+1,milt+1]′,

α = [αy, αr, αrev, αsp, αmil]
′,

R =


A1[1, 1] A1[1, 2] 0 0 0 0 0 0 0 A2[1, 1] A2[1, 2]
A1[2, 1] A1[2, 2] 0 0 0 0 0 0 0 A2[2, 1] A2[2, 2]

0 0 R1 0 0 0 0 0 0 0 0
0 0 E1 0 0 E2 E3 β ρ 0 0
0 0 0 0 M1 0 0 0 0 0 0

 ,

Xt = [yt, rt, revt, spt,milt, τt, ct,YVARt, dt, yt−1, rt−1]′,

εt+1 = [εyt+1, ε
r
t+1, ε

rev
t+1 , ε

sp
t+1, ε

mil
t+1 ]′.

(3.6)

In system (3.1), the dynamics of (yt+1, rt+1) are similar to the Benchmark model, i.e., described
by a VAR(2) model. The matrix coefficients of Ak are denoted by Ak[i, j]. Next, the dynamics of
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the revenue revt+1 are given by an AR(1) model. The dynamics of the primary spending spt+1

are explained by the government debt dt, the business cycle YVARt, the government revenue revt,
τt and ct, where αsp, ρ, β, E1, E2 and E3 are estimated using historical data. The parameter ρ
has the same interpretation as in the Benchmark model, i.e., the fiscal reaction parameter. The
trend component

τt = exp(ψt) (3.7)

and ψt is the extracted trend component of log(spt), where the trend is extracted using a one-
sided HP filter. See Appendix A for more details how a one-sided HP filter extracts the trend of
a time series. The cyclical component ct is defined by

ct = spt − τt, (3.8)

where τt is given by (3.7). The business cycle YVARt is calculated by (2.5), only we use a one-
sided HP filter for extracting the trend component. Here, the differences with the Benchmark
model become apparent, i.e., instead of a two-sided HP filter the Extended model uses a one-
sided HP filter for extracting the trend of a time series. The reason for this is that system (3.5)
describes the future state Yt+1 by using only the values at the previous state Xt. In other words,
it is not an implicit relationship. Hence, to determine YVARt, τt and ct of the state vector Xt,
we must use a filter that doesn’t depend on future values of the time series. In other words,
we want a so-called causal filter, i.e., a filter that extracts the trend component τt of a general
time series At0 , . . . , AT , such that τt = f(At0 , . . . , At) where t ≤ T . Hence, we use the causal
one-sided HP filter to extract the trend of a time series in the Extended model, instead of a
non-causal two-sided HP filter. In Appendix A, we give the reason why the two-sided HP-filter
is non-causal, and how to construct the causal one-sided HP filter.

Note that, the military spending is a form of government primary expenditure. However, for all
countries the dynamics of the primary expenditure excludes the military spending. In Section
2.1, we have noticed that for the United States (US) and the United Kingdom (UK) the military
spending drives the temporary government spending. Therefore, we include military spending
milt+1 in system (3.1), which has the same model dynamics as revt+1, for the United States and
the United Kingdom. For the remaining countries, we remove the dynamics of milt+1 in system
(3.1). Combining the two cases, we obtain the primary surplus defined by (3.3). And finally, we
note that all economic variables are observed at the end of year t. From this, we describe next
year’s debt dt+1 with the associated interest rate to the outstanding debt dt, i.e., the 10-years
real interest rate rt. Since the end of the year’s primary surplus st+1 and the annual return of
real GDP both influence the size of the debt dt+1, this results in the dynamics of the government
debt given by (3.2).

In system (3.1), the YVARt is included in the modelling framework. And moreover, we can
argue that the GVARt is also included. As discussed in Section 2.1, the GVARt is defined as the
military spending for the United States and the United Kingdom. In system (3.1), we include
military spending milt+1 for these two countries. For the remaining countries, the GVARt is
equal to ct as defined in (3.8). In other words, the GVARt is the cyclical component of the time
series for the government primary expenditure, which corresponds to the definition of GVARt in
Lukkezen, Rojas-Romagosa, et al. (2012). Therefore, both definitions of the GVARt are included
in the dynamics of the Extended model.

Including both the YVARt and GVARt in the dynamics of the Extended model is one of reasons
why this framework is an extension of the Benchmark model. Another reason is that we don’t
remove components of the error vector ε̃t+1 after estimating the parameters of the Extended
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model. The next step is to discuss in more detail how to perform a simulation with the Extended
model.

3.2 Forecasts of the Extended model

In this section, we give the general procedure for economic forecasts with the Extended model.
The following schematically procedure is applied for all countries considered in this investiga-
tion.

1. We collect country-specific data for the variables: yt, rt, revt, expt,milt and dt, where the
historical period is denoted by t = t0, . . . , tN and tN = t0 +N . In Appendix D, we describe
the database which is used in this MSc-thesis. The last step of the initial phase is to specify
the forecast horizon t = tN , . . . , T , T ∈ [tN ,∞).

2. OLS is applied to estimate the parameters of the Extended model, where we use data over
the historical period t = t0, . . . , tN . As a result, we obtain the estimates α̂, R̂ and Σ̂ needed
in (3.5), where

Σ̂ =

Σ̂1 0 0

0 Σ̂1 0
0 0 σ̂

 . (3.9)

3. Next, we determine the coefficient of determination, denoted by R2. The R2 reflects how
well the model fits the observed data, see Wooldridge (2012) for more details.

4. The constant α̂ is adjusted such that it contains the most recent information about the
long-term behaviour of the variables: yt, rt, revt, and milt, see Appendix C for the technical
details.

5. Determine the Cholesky decomposition C of the variance-covariance matrix Σ̂.

6. For each t in the forecast horizon t = tN , . . . , T − 1, we repeat the procedure:

(a) Generate a sample of the random vector εt+1 ∼ N (0, Σ̂) by computing the matrix-
vector product CTZ, where CTC = Σ̂ and Z ∼MN(0, I), see Glasserman (2003) for
more details. We denote this sample by ε̃t+1.

(b) With α̂, R̂, Σ̂ and ε̃t+1 evaluate the recursion given by (3.5).

(c) Using the values of Yt+1, we obtain next year’s government debt dt+1 by calculating
(3.2).

After finishing the above procedure, we obtain one Monte Carlo trajectory {dtN , . . . , dT }. Instead
of repeating M times the above procedure, the efficiency of the procedure is improved when at
each time point t we produce simultaneously the Monte Carlo samples {Y 1

t , . . . , Y
M
t }, and obtain

the samples {d1t , . . . , dMt }. This is accomplished by the following steps. Firstly, we can easily
produce M samples of ε̃t+1 at each time point t. Secondly, the one-sided HP filter can extract the
trend of multiple time series simultaneously, see Appendix A for more details. From this, we can
create {X1

t , . . . , X
M
t } at each time point t. The obtained Monte Carlo samples {Y 1

t , . . . , Y
M
t },

and hence {d1t , . . . , dMt } for every t = tN , . . . , T are referred to as the economic forecasts produced
by the Extended model.
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Figure 3.1: Economic variables for the United Kingdom: historical data (black-dotted) and
deciles of the forecast (red). The R2

rev = 0.82, R2
exp = 0.87, R2

r = 0.59, R2
y = 0.26 and

R2
mil = 0.83.
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The next step is to produce forecasts for several economic variables with the Extended model.
For this purpose, we consider the United Kingdom (UK), where we obtain yearly data for the
economic variables: yt, rt, revt, expt,milt and dt, for the period t = 1950, . . . , 2011. We produce
the forecasts with the Extended model until the year 2041, where the parameters of (3.5) are
estimated using data over the period t = 1950, . . . , 2011 and the number of samples M = 2000.
In Figure 3.1, we show for each economic variable the historical data (black-dotted) and the
deciles, which divide a distribution into ten equal parts, of the forecast (red). Historically,
the government spending of the United Kingdom rapidly increases starting from the year 2000.
From Figure 3.1, we observe that this behaviour is captured in the deciles of the forecast for the
government expenditure. And moreover, we observe that for each fiscal variable the historical
data is contained in the forecast. As a final note, we have verified numerically that the time
series for yt, rt, revt and milt are stationary, Hence, the forecasts for these economic variables
converge to a stationary state, see Appendix C for more details.

The calculation of the indicator, as discussed in Section 2.2, is easily accomplished with the
forecasts produced by the Extended model, i.e., we use the simulated debt samples d1T , . . . , d

M
T

to evaluate the indicator. The indicator makes a distinction between countries with and without
debt sustainability concerns. Hence, the indicator contains a part of the associated country-
specific risk. Because of this, we are interested how this type of risk evolves over time. For this
purpose, we calculate the indicator I(t, k) for several time points t and obtain a country-specific
indicator trajectory. For the United Kingdom, we plot in Figure 3.2 the indicator I(t, k) for the
period t = 1990, . . . , 2011, where k = 10y as in Ewijk, Lukkezen, and Rojas-Romagosa (2013).
From Figure 3.2, we observe that the indicator reacts to potential debt sustainability concerns,
i.e., the dynamics of the indicator change when the government debt rapidly increases after the
start of the credit crisis in 2008.

Figure 3.2: UK: Indicator (red) and term spread (black-dotted)

As discussed in Section 1.1, the country specific risk influences the dynamics of the interest rate
spreads, where the term-spread is the most familiar interest rate spread. The term spread is the
difference between the 10-years interest rate r10yt and the 3-months interest rate r3Mt . In Estrella
and Mishkin (1996), Dotsey (1998) and Wheelock, Wohar, et al. (2009), it is argued that the term

17



spread is an accurate indicator for forecasting a country’s future economic growth. Therefore, we
investigate whether the dynamics of the indicator and the term spread show similar behaviour.
For this purpose, we determine the correlation between the indicator and the term spread

ρ(I(t, 10y), S(t, 10y, 3M)), where S(t, 10y, 3M) = r10yt − r3Mt . (3.10)

The correlation coefficients are given for the United Kingdom (UK), the United States (US),
France (FR), Italy (IT), Belgium (BEL), Germany (GER), the Netherlands (NL), Portugal (PRT)
and Finland (FIN) in Table 3.1. The period where we calculate the indicator is given for each
country.

ρ(I10y(t, 10y), S(t, 10y, 3M))
UK (1990-2011) 0.52
US (1995-2011) 0.60
FR (1997-2011) 0.36
IT (1997-2011) 0.62
BEL (1995-2011) 0.54
GER (1996-2011) 0.23
NL (1996-2011) 0.39
PRT (1995-2011) 0.81
FIN (1995-2011) -0.14

Table 3.1: For several countries: the correlation between I(t, 10y) and S(t, 10y, 3M).

For each country, the above procedure for producing forecasts with the Extended model and
evaluating the indicator is repeated, where we vary the number of samples M . From this, we
obtain similar correlation coefficients as given in Table 3.1. Since the period where we calculate
the indicator is not for an extended period, we find a correlation value above 0.50 high. Therefore,
we observe from the correlation coefficients given by Table 3.1 that for most countries there exists
a (linear) relationship between the indicator and the term-spread.

Historically, the interest rates with 3-months (3M) and 10-years (10y) maturity are available for
an extended period. Hence, we are not interested in the explanatory power of the indicator for
explaining the dynamics of the term spread. Instead, in Chapter 5, we investigate whether the
indicator can explain the dynamics of the interest rate spreads where historical data is limited
available.

3.3 Alternative model for the interest and growth rates

In Section 3.1, a stochastic VAR(2) model is used to capture the historic volatility of the real
interest rate rt and the annual return of real GDP yt. In this section, we compare the forecast
performance of a VAR(2) model with a model which will be referred to as the alternative model.
In the alternative model, we adjust the dynamics of yt in the VAR(2) model such that it contains
more information of the model’s previous states. Before presenting the alternative model, we
first discuss how to include more information of the previous states of yt without increasing the
number of lags p in a VAR(p) model. As discussed in Appendix A, the one-sided HP filter only
uses the current and past state values yt0 , . . . , yt for extracting the trend component τt of the
time series yt0 , . . . , ytN , where t ≤ tN and tN = t0 +N . From this, another way to include more
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information of the model previous states is adding a trend component to the model dynamics.
This leads to investigate whether including more information of the model’s previous states really
improves the forecast performance. For this purpose, we compare the forecasting performance
of the VAR(2) model(

yt+1

rt+1

)
=

(
αy
αr

)
+A1

(
yt
rt

)
+A2

(
yt−1
rt−1

)
+

(
εy1,t+1

εr1,t+1

)
, (3.11)

with the alternative model

yt+1 = αy + a1r(τt) + b1YVARt + c1rt + d1rt−1 + εy2,t+1,

rt+1 = αr + a2yt + b2yt−1 + c2rt + d2rt−1 + εr2,t+1,
(3.12)

In (3.12), the component r(τt) is calculated with the following procedure:

1. Determine the time series {log(Zt), t = t0, . . . , tN}, where Zt is the value of the real GDP
at year t. In general, the value Zt is given by the following product:

Zt = Zt0

t∏
s=t0

(1 + ys), (3.13)

where yt is the value of the annual return of real GDP at time t.

2. Extract the trend component ψt from log(Zt) by using a one-sided HP filter, see Appendix
A for more details.

3. Set τt = exp(ψt).

4. The return of the trend τt is given by

r(τt) =
τt − τt−1
τt−1

. (3.14)

From (3.13) and the fact that τt depends on the values Zt0 , . . . , Zt, it follows that r(τt) is a
function of y1, . . . , yt. Hence, the information of the model previous states y1, . . . , yt is contained
in the component r(τt) and also the business cycle YVARt, as discussed in Section 2.1. In Figure
3.3, we illustrate how the component r(τt) can be interpreted. In particular, we plot yt and
r(τt) for the United Kingdom in the period t = 1950, . . . , 2011. It is observed that r(τt) displays
similar dynamics as yt but has smaller outliers.

Before we discuss the forecast performance of models (3.11) and (3.12), we first give some com-
ments on the procedure how system (3.12) produces forecasts. Firstly, we apply OLS to estimate
the parameters of each equation in system (3.12). After applying OLS, we collect for each equa-
tion in system (3.12) the residuals. From this, we can estimate the correlation between the
components of the error vector [εy2,t+1, ε

r
2,t+1]′. Secondly, we adjust the constants αy and αr in

system (3.12) such that they contain the most recent information about the long-term behaviour
of the economic variables yt and rt, see Appendix C for more details. In order to do so, we must
show that system (3.12) is stationary and that limt→∞ E[r(τt)] = µ̃y, where µ̃y is specified in
Appendix C. And moreover, we must show that limt→∞ E[YVARt] = 0. In Appendix B, we give
the first steps of a result which can be used for proving these limits.
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Figure 3.3: The United Kingdom: the return of annual real GDP yt versus the component r(τt)

There are many ways to evaluate the forecasting performance of a model. We are interested in
the accuracy of models (3.11) and (3.12) for predicting the k-years ahead annual return of real
GDP yt+k, where the forecast starts from year t. For this purpose, we use the mean absolute
deviation (MAD) as criteria to evaluate the forecasting performance, see Tsay (2005) for the
technical details how to evaluate the MAD for a k-years ahead forecast. From this, the model
with the smallest MAD value is regarded as the best k-years ahead forecasting model. Next, we
calculate the MAD magnitude for several k-years ahead forecasts produced by models (3.11) and
(3.12). This is displayed in Figures 3.4 and 3.5 for the United Kingdom and the United States,
respectively.

Figure 3.4: The United Kingdom: MAD value for several k-years ahead forecasts of yt+k (left)
and rt+k (right).
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Figure 3.5: The United States: MAD value for several k-years ahead forecasts of yt+k (left) and
rt+k (right).

From Figures 3.4 and 3.5, there is hardly a difference between the MAD values of systems (3.11)
and (3.12) on the whole horizon. Only on the short-term horizon, we observe that the VAR(2)
model has often a smaller MAD value then the alternative model. Similar conclusions were
found for other countries. In this case, the forecast performance doesn’t significantly improves
by including more information of the model’s previous states. From this, it follows that a VAR(2)
model will be used for describing the evolution of (yt, rt) in the Extended model.
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CHAPTER 4

Imposing a new government expenditure rule

In this chapter, we formulate a new government expenditure rule in order to overcome a drawback
of the Extended model. As discussed in Section 3.1, the Extended model describes the future
evolution of the primary expenditure by:

spt+1 = αsp + ρdt + βY V ARt + E1revt + E2τt + E3ct + ε
sp
t+1. (4.1)

The parameters in (4.1) are estimated based on historical data, where the fundamental assump-
tion is that historical data is representative for predicting the future. In Section 4.1, we show
that the Extended model doesn’t always produce realistic economic forecasts, which are based on
historical data. Hence, we propose in this section a new government expenditure rule. This rule is
based on the regulations formulated in the Stability and Growth Pact, see Beaumont and Walker
(1999) for more details. In Section 4.2, we give a brief overview of the Stability and Growth
Pact. In Section 4.3, after estimating the parameters of the Extended model, we discuss how this
rule describes the further evolution of the primary expenditure. Next, for several countries we
produce forecasts with the Extended model where the new expenditure rule is implemented. And
finally, we are interested in whether the correlation between the term spread and the indicator
is improved, by implementing this rule in the dynamics of the Extended model.

4.1 Blow-up behaviour

Before we discuss this rule in more detail, we first show that the Extended model sometimes
produces unrealistic economic forecasts, which are based on historical data. One of the cases is
illustrated in Figure 4.1, where we estimate the parameters of the Extended model for Germany
using data over the period t = 1970, . . . , 1995. We produce forecasts with the Extended model
until the year 2021.
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Figure 4.1: Economic variables for Germany: historical data (black-dotted) and deciles of the
forecast (red). The R2

rev = 0.40 and R2
exp = 0.69.

23



We observe historically that the government has a policy that does not react to debt accumulation
in the period 1970-1994. In other words, there was no intermediate change of fiscal policy, i.e,
adjust its policy for the revenue and expenditure, such that the debt decreases. In particular,
the historical time series of the government revenue evolves steady around the average level of
0.44, and hence the forecast converges to a stationary state, see Appendix C for more details.
Both the government expenditure and debt rapidly increase starting from 1991, and with a jump
in the year 1995 for the primary expenditure time series. When we estimate the parameters
in (4.1) using data over the period t = 1970, . . . , 1995, we want to explain the dynamics of the
expenditure, where the jump is included, with historical data before the year 1995. The only
way to explain this is that the government’s fiscal policy, which is captured in the fiscal reaction
parameter ρ, doesn’t react correctly to the increase of the debt level. This is confirmed by
Lukkezen, Rojas-Romagosa, et al. (2012), i.e, a disadvantage of using the estimated ρ in (4.1) is
that it doesn’t represent the government response correctly for the future when severe and fully
unanticipated shocks occur in the revenue and/or expenditure time series. As a consequence, the
forecast of the expenditure diverges, and hence the forecast of the government debt displays also
blow-up behaviour. However, these forecasts are not economically realistic since the government
has taken measures to reduce its expenditure after 1995. From this, the data over the period
t = 1970, . . . , 1995 is not representative for predicting the government spending with (4.1).

One way of solving this is to apply another regression method for estimating the parameter ρ. For
example, instead of using ordinary least squares, we can consider applying weighted regression,
see Mendenhall, Sincich, and Boudreau (1996) for more details. In this way, we can put more
weight on the data points which contain the rapid debt accumulation. Hence, we can force
the government to change its fiscal policy for the increase in debt level. However, determining
these weights can be challenging. And moreover, weighted regression is not easily applied in our
framework; to produce government debt forecasts, for many countries, where we estimate the
parameters using several data periods. Here, we propose, after estimating the parameters of the
Extended model, a new government expenditure rule which is based on regulations formulated
in the Stability and Growth Pact, see Beaumont and Walker (1999) for more details. This is an
agreement among the 28 member states of the European Union.

4.2 The Stability and Growth Pact

In this section, we briefly discuss the content of the Stability and Growth Pact (SGP), see Beau-
mont and Walker (1999) for more details. Adopted in 1997, the SGP is a set of rules to ensure
that countries in the European Union (EU) pursue sound public finances and coordinate their
fiscal policies, with Germany the moving force behind the arrangement. To put it simply, the
guidelines of the SGP prevent that governments spend more money than they receive. More-
over, its economic rationale was that sound public finances would be conducive to long term
economic growth. This would create favourable conditions to lower interest rates. As a result,
the investment, employment and eventually growth levels increase. The two major SGP criteria
that member states must respect are given by:

� Annual government budget deficit no higher than 3% of Gross Domestic Product;

� Government debt lower than 60% of Gross Domestic Product,

see Ngai (2012) for more details.
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The Excessive Deficit Procedure (EDP) is the EU’s step by step procedure for correcting excessive
deficit or debt levels, which is discussed in the corrective arm of the SGP, see OECD (2014) for
more details. An EDP can be applied, for instance, whenever the debt reference value over the
past three years was not reduced by at least 1/20 on average per year. If no effective measures
are taken in order to reduce the debt, then the Council, the Economics and Finance Ministers of
the EU member states, can impose sanctions. As outlined in the corrective arm regulation, all
EU member states are each year obliged to submit a SGP compliance report that will present the
country’s expected fiscal development for the current and subsequent three years. This report will
be evaluated by the European Commission and the Council of Ministers. However, the European
Commission is charged with enforcing the SGP and has been criticized for being too lenient by
not imposing penalties on countries that have not operated within the rules. In December 2011,
the SGP was strengthened by a new set of regulations known as the six-pack.

4.3 A new government expenditure rule

In this section, we propose a new expenditure rule, which is based on the guidelines formulated
in the SGP, for describing the future evolution of the government spending. This rule is obtained
by assuming that all European countries have a policy such that: if there exists a time point t
such that dt > 0.60, then

dt+1 = dt − Ft, where Ft =
dt − L

20
, and L = 0.60. (4.2)

From (4.2), if the evolution of the government debt exceeds the threshold L = 0.60, i.e., the
government does not satisfy the second criterion of the SGP. Then, the amount which exceeds
the threshold must be reduced with 1/20 in the next year.

Suppose that dt > 0.60 for a certain year t. And moreover, we assume that all European
countries have a policy such that (4.2) is respected. As described in Section 3.1, the dynamics
of the government debt is given by:

dt+1 = dt
1 + rt

1 + yt+1
− revt+1 + spt+1, (4.3)

where we subtract the military spending milt+1 in (4.3) for the United Kingdom and the United
States. In order to meet the debt requirement dt+1 given by (4.2), it follows that next year’s
government primary expenditure is given by

spt+1 = dt+1 − dt
1 + rt

1 + yt+1
+ revt+1

(4.2)
= dt − F − dt

1 + rt
1 + yt+1

+ revt+1.

= dt −
dt − L

20
− dt

1 + rt
1 + yt+1

+ revt+1.

(4.4)

Combining (4.1) and (4.4), we obtain the following expenditure rule where the government has
a policy that respects (4.2):

spt+1 =

{
αsp + ρdt + βY V ARt + E1revt + E2τt + E3ct + ε

sp
t+1 if dt ≤ 0.60

dt − dt−L
20 − dt

1+rt
1+yt+1

+ revt+1 if dt > 0.60.
(4.5)
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From (4.5), the government expenditure is described by (4.1) if dt ≤ 0.60, i.e., the government
satisfies the second criterion of the SGP. However, when this criterion is violated, the government
adjusts its expenditure according to (4.4).

Hence, implementing (4.5) in the dynamics of the Extended model results in:(
yt+1

rt+1

)
=

(
αy
αr

)
+A1

(
yt
rt

)
+A2

(
yt−1
rt−1

)
+

(
εyt+1

εrt+1

)
revt+1 = αrev +R1revt + εrev

t+1

spt+1 =

{
αsp + ρdt + βY V ARt + E1revt + E2τt + E3ct + ε

sp
t+1 if dt ≤ 0.60

dt − dt−L
20 − dt

1+rt
1+yt+1

+ revt+1 if dt > 0.60

dt+1 = dt
1 + rt

1 + yt+1
− revt+1 + spt+1.

(4.6)

There is only one issue with calculating the government expenditure rule given by (4.5). Suppose
that at year t we observe that dt > 0.60, then next year’s requirement for spt+1 is given by (4.4).
However, the values of revt+1 and yt+1 are not observed. Therefore, we consider the following
two possibilities for approximating revt+1 and yt+1.

1. Firstly, we approximate revt+1 and yt+1 by the values observed at time t, i.e., revt+1 ≈ revt
and yt+1 ≈ yt.

2. Secondly, we use the conditional expectations E[revt+1|Ft] and E[yt+1|Ft], where Ft rep-
resents all historical information available up to time t.

The conditional expectations can be expressed by the values of the states at time t. As an
illustration,

E[revt+1|Ft] = E[αrev +R1revt + εrev
t+1 |Ft] = αrev +R1revt, (4.7)

where we assume that E[εrev
t+1 |Ft] = 0.

Similarly, we find for

E[yt+1|Ft] = αy +A1[1, 1]yt +A1[1, 2]rt +A2[1, 1]yt−1 +A2[1, 2]rt−1, (4.8)

where we use the notation from Section 3.1.

Next, for several countries we produce economic forecasts by system (4.6). Hence, we can study,
after estimating the parameters of system (4.6), the influence of the new government spending
rule on the forecasts of the Extended model. In Figure 4.2, we plot the deciles of the forecasts
produced by system (4.6) for Germany, where we estimate the parameters using data over the
period t = 1970, . . . , 1995. Furthermore, as discussed in Annett (2006), the SGP was a success
for the Netherlands before the start of the credit crisis, especially in terms of guiding them
towards debt sustainability. Therefore, we investigate whether the historical data represents the
regulations of the SGP. If this is the case, then we expect that the new government expenditure
rule doesn’t influence the forecasts of the Extended model. In Figure 4.3, we plot the deciles of
the forecasts produced by the Extended model for the Netherlands. In particular, the forecasts
are produced with and without the new expenditure rule, where we estimate the parameters
using data over the period t = 1969, . . . , 2005.
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Figure 4.2: Government primary expenditure (left) and debt (right) for Germany: historical
data (black-dotted) and deciles of forecast (red). System (4.6) produces the forecast, where
revt+1 ≈ revt and yt+1 ≈ yt.

From Figure 4.2, we observe that the blow-up behaviour of the forecasts is controlled by im-
plementing the new government expenditure rule in system (4.6). In this case, the forecasts of
system (4.6) can be interpreted as follows. Historically, the government debt is low until the
year 1991, then both the government expenditure and debt suddenly increase with the peak in
the year 1995. As discussed in Section 4.1, the government doesn’t respond correctly to the in-
crease in debt level due to the fiscal policy in the period 1970-1994. Hence, the new government
expenditure rule changes the government attitude towards debt sustainability. In particular,
the government decreased its expenditure after 1995 in the forecast, and maintained a policy
such that the expenditure forecast converges to a stationary state. As a consequence, the debt
forecast converges also to a stationary state, in particular, to the threshold L = 0.60 specified in
(4.2).

For the Netherlands, the new government expenditure rule hardly affects the forecast produced
by the Extended model, see Figure 4.3. The reason for this is that, after the establishment of the
SGP in 1997, the fiscal policy of the Netherlands has changed such that the government meets
the criteria formulated in the SGP. The parameters of the Extended model are estimated using
data until 2005; the period where the Netherlands closely follows the regulations of the SGP.
The government’s attitude towards debt sustainability, captured by the fiscal reaction parameter
ρ, corresponds to the guidelines formulated in the SGP. Hence, the new expenditure rule is not
required for changing the government attitude towards debt sustainability.

Finally, we investigate whether the correlation between the term spread and the indicator is im-
proved, by implementing the new government expenditure rule in the dynamics of the Extended
model. In Table 4.1, we show the correlation between the indicator and the term spread. The
period where we calculate the indicator is given for each country. Here, the indicator I(t, 10y) is
calculated as discussed in Section 3.2, and the indicator Ii(t, 10y) is calculated by system (4.6)
where we use approximation i = 1, 2 for revt+1 and yt+1.
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Figure 4.3: Government debt for the Netherlands without (left) and with (right) the new expen-
diture rule: historical data (black-dotted) and deciles of forecast (red). In the forecast of system
(4.6) we use revt+1 ≈ E[revt+1|Ft] and yt+1 ≈ E[yt+1|Ft].

ρ(I(t, 10y), S(t, 10y, 3M)) ρ(I1(t, 10y), S(t, 10y, 3M)) ρ(I2(t, 10y), S(t, 10y, 3M))
BEL(1995-2011) 0.54 0.32 0.72
FIN(1995-2011) -0.14 0.25 0.28
UK (1990-2011) 0.52 -0.47 -0.30
BEL(1995-2011) 0.54 0.23 0.26
PRT(1995-2011) 0.81 0.53 0.60

Table 4.1: For several countries: Correlation between the indicator and term spread.

From Table 4.1, the correlation between the indicator and the term spread is improved for
Belgium and Denmark, where the forecasts are produced by system (4.6). In particular, the ap-
proximation revt+1 ≈ E[revt+1|Ft] and yt+1 ≈ E[yt+1|Ft] give the best improvements. A possible
reason for this is that financial markets can have different expectations of debt sustainability,
from what is observed from historical data. For instance, if the financial markets expect that
a government has a fiscal policy which respects the regulations of the SGP, where we assume
that following the regulations of the SGP by a government leads to debt sustainability, then, the
financial markets expect that the government will be able to control the evolution of the debt,
while this does not have to be observed from historical records. Hence, financial variables such
as the term spread adjust this information from the financial market, see Estrella and Mishkin
(1998) for more details. Moreover, the forecasts of system (4.6) are regulated by a spending rule
which respects the guidelines formulated in the SGP. Therefore, the forecasts of the government
debt are in line with the information captured by the dynamics of the term spread.

However, implementing the new government expenditure rule in system (4.6) has also negative
effects. Firstly, for most countries, we observe that the correlation is not improved between
the term spread and the indicator which is calculated by system (4.6). As discussed in Section
3.1, the term spread is an accurate indicator for forecasting a country’s future economic growth.
Secondly, system (4.6) reduces an amount of volatility in the debt forecasts. For illustration
we show Figure 4.4, where we plot the deciles of the debt forecasts for Germany starting from
1996.
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The Extended model produces the forecasts without and with the new government expenditure
rule.

Figure 4.4: Government debt for Germany without (left) and with (right) the new expenditure
rule: historical data (black-dotted) and deciles of forecast (red). In the forecast of system (4.6)
we use revt+1 ≈ revt and yt+1 ≈ yt.

From Figure 4.4, it is clear that the uncertainty is reduced in the debt forecasts produced by
system (4.6). As a consequence, the indicator, which takes economic uncertainty underlying the
debt evolution into account, can not measure the degree to which governments are in control of
their public finances. This is a good reason why the correlation between the term spread and
the indicator calculated by system (4.6) does not give for most countries an improvement. From
both drawbacks, we conclude that the Extended model without the new government expenditure
rule will be further used for calculating the debt sustainability indicator.

The main topic of this chapter has let to study more extensively the influence of the government
fiscal response, captured by the parameter ρ, on the stability of the Extended model. Therefore,
in Chapter 6, we apply dynamical systems research in order to perform a stability analysis for
the Extended model.
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CHAPTER 5

Relationship between the Indicator and the Interest rate
spreads

In this chapter, we study whether the indicator as discussed in Section 2.2, can explain the
dynamics of several interest rate spreads. The indicator estimates the risk of a significant debt
increase in the near future. Hence, the indicator contains a part of the risk that a foreign
government will default on its bonds or other financial commitments, i.e., the country-specific
risk. There are many factors, such as country risk, that influence the dynamics of the interest
rate spreads. Therefore, in this chapter, we investigate whether the indicator can explain the
dynamics of the interest rate spreads. Firstly, in Section 5.1, we explain which interest rate
spreads are considered. Secondly, in Section 5.2, we formulate criteria to verify whether there
is a relationship between the indicator and the interest rate spreads. Finally, in Section 5.3,
we present for several countries the numerical results of verifying this relationship. From these
results, it will become clear how much explanatory power the indicator contains for describing
the dynamics of the interest rate spreads.

5.1 3-months versus 10-years interest rate as input for the
Extended model

In this section, we discuss which type of interest rate spreads are considered in this investigation.
Since the yields with 3-months (3M ) and 10-years (10y) maturity are available for an extended
period, we can distinguish two types of interest rate spreads. Firstly, we consider the difference
between an interest rate which is historically limited available, and the 10-years interest rate.
Secondly, we consider the difference between an interest rate which is historically limited avail-
able, and the 3-months interest rate. Next, we want to investigate whether there is a relationship
between the indicator and both types of interest rate spreads. In order to investigate this rela-
tionship consistently, we correspond the interest rate used as input of the Extended model with
the widely available interest rate which is contained in the spread. For example, suppose that
the Extended model forecasts the 10-years interest rate. Then, we investigate the relationship
between the indicator which is calculated using the forecasts of the 10-years interest rate, and
the spread which takes the difference with the 10-years interest rate. In this way, we establish a
connection between the indicator and the interest rate spread, since both depend on the 10-years
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yield. The next step is to investigate how much explanatory power the indicator contains for
describing the dynamics of the interest rate spreads. Note that, we can produce the same steps
in the example by using a 3-months interest rate. From this, it follows that we can calculate the
indicator using a 3-months or 10-years interest rate as input of the Extended model. This leads
to consider the following variations of the Extended model for calculating the indicator values.
Firstly, a 10-years interest rate is used as input of the Extended model:(

yt+1

r10yt+1

)
=

(
αy
αr

)
+A1

(
yt
r10yt

)
+A2

(
yt−1
r10yt−1

)
+

(
εyt+1

εrt+1

)
revt+1 = αrev +R1revt + εrev

t+1

spt+1 = αsp + ρdt + βY V ARt + E1revt + E2τt + E3ct + ε
sp
t+1

milt+1 = αmil +M1milt + εmil
t+1 .

dt+1 = dt
1 + r10yt

1 + yt+1
− (revt+1 − spt+1 −milt+1).

(5.1)

System (5.1) corresponds to the Extended model discussed in Section 3.1. Secondly, a 3-months
interest rate is used as input of the Extended model:(

yt+1

r3Mt+1

)
=

(
αy
αr

)
+A1

(
yt
r3Mt

)
+A2

(
yt−1
r3Mt−1

)
+

(
εyt+1

εrt+1

)
revt+1 = αrev +R1revt + εrev

t+1

spt+1 = αsp + ρdt + βY V ARt + E1revt + E2τt + E3ct + ε
sp
t+1

milt+1 = αmil +M1milt + εmil
t+1 .

dt+1 = dt
1 + r3Mt
1 + yt+1

− (revt+1 − spt+1 −milt+1).

(5.2)

The economic interpretation of system (5.2) is that the government can issue only short-term
debt, i.e., loans which mature in 3-months. A possible reason for this is that the government has
debt sustainability issues, which can be seen as the worst case scenario for the government.

The next step is to investigate whether the 10-years interest rate differs historically from the
3-months interest rate. If this is not the case, then we can reduce systems (5.1) and (5.2) to one
system since both the 10-years interest rate and the 3-months interest rate are described by a
VAR(2) model. In Figure 5.1, we plot the 3-months versus the 10-years interest rate for Italy
and the United Kingdom.

From Figure 5.1, it becomes clear that both the 3-months and 10-years interest rate show similar
dynamics, but with different magnitudes. For all countries which we have investigated, the
difference in magnitude between both yields was observed. For example, the term spread at the
year 2010 is given by 337 basis points for the United Kingdom, where a basis point is equal
0.01%. Since both interest rates differ in magnitude and are described by the same model, it is
expected that the forecasts of both interest rates are different. Hence, the choice of interest rate
as input of the Extended model influences the dynamics of the indicator. This leads to choosing
which interest rate is more appropriate as input of the Extended model.
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Figure 5.1: 3-month versus 10-year yields for Italy (left) and the United Kingdom(right)

Since the term spread is a leading indicator of future economic growth, it is desirable that the
indicator explains well the dynamics of the term spread. For this purpose, we calculate the
correlation between the indicator Ik(t, 10y), calculated by an interest rate with maturity k, and
the term spread S(t, 10y, 3M), i.e.,

ρ(Ik(t, 10y), S(t, 10y, 3M)), where S(t, 10y, 3M) = r10yt − r3Mt , k = 3M, 10y. (5.3)

The indicator values with the highest correlation coefficients will be used for explaining the
dynamics of the interest rate spreads. The correlation coefficients are given for several countries
in Table 5.1. The period where we calculate the indicator is given for each country.

ρ(I3M (t, 10y), S(t, 10y, 3M)) ρ(I10y(t, 10y), S(t, 10y, 3M))
UK (1990-2011) 0.26 0.52
IT (1997-2011) 0.51 0.62
US (1995-2011) 0.50 0.60

Table 5.1: ρ(Ik(t, 10y), S(t, 10y, 3M)) for the United Kingdom, Italy and the United States

Table 5.1 shows that the dynamics of the term-spread are better explained by the indicator values
produced by system (5.1). Therefore, we use a 10-years interest rate as input for the Extended
model. And finally, we investigate the relationship between the indicator and the spread which
takes the difference with the 10-years interest rate. In particular, we consider the following
interest rate spreads:

S(t, 10y, k) =

{
r10yt − rkt if k = 5y

rkt − r
10y
t . if k = 15y, 20y, 30y .

(5.4)

In the next section, we formulate criteria for investigating this relationship.
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5.2 Criteria for relationship between the Indicator and the
Interest rate spreads

In this section, we formulate criteria to verify whether there is a relationship between the indicator
and the interest rate spreads. For this purpose, we apply well known regression techniques. In
particular, we are interested in how much explanatory power the indicator contains for describing
the dynamics of the interest rate spreads. Below, we formulate criteria for investigating whether
the indicator can describe the dynamics of the interest rate spreads given by (5.4). We explain
the criteria for S(t, 10y, k) where k = 5y. However, in the next section, we verify also the criteria
for the interest rate spreads with maturities k = 15y, 20y, 30y.

1. First, we consider the correlation between the indicator and the interest rate spread:

ρ(I(t, k), S(t, 10y, k)) for k = 5y. (5.5)

As discussed in Section 2.1 and 3.1, we assume that the government is financed by a 10-
years interest rate. And moreover, the indicator estimates the risk of a significant debt
increase k-years ahead in the future. By setting k = 5y in (5.5), the indicator estimates
the default risk of investing in a 5-years government bond. This latter type of risk is also
captured in the dynamics of S(t, 10y, 5y). When we observe a high correlation in (5.5),
then there exists a linear relationship between the indicator and the interest rate spread.

2. And second, we investigate how well the interest rate spread can be explained using the
indicator. We consider the following models for describing the evolution of the interest rate
spread:

S(t+ 1, 10y, k) = c+ αS(t, 10y, k) + εt+1 (5.6a)

S(t+ 1, 10y, k) = c+ αS(t, 10y, k) + βI(t+ 1, k) + εt+1, (5.6b)

Then, the second criterion is decomposed in the following parts:

� Is the overall data fit improved by using model (5.6b) instead of model (5.6a)? For
this, we compare the R2 of both models. The R2 is a statistical measure of how close
the data is to the fitted regression line. Hence, the model with the highest R2 has the
most favourable overall goodness of fit.

� A t-test is applied to test the null hypothesis that the coefficient of a given predictor
variable equals zero. This implies that a predictor variable can’t explain the dynamics
of the response variable. In this way, we can test whether the indicator does contribute
for explaining the dynamics of the interest rate spread.

In (5.6a), the interest rate spread is described by an AR(1) model. Next, model (5.6b) is
an extension of model (5.6a) by adding the indicator as a predictor variable. The reason
for adding the indicator values at t + 1 is best explained by an example. In Figure 5.2,
we plot the interest rate spread S(t, 10y, 5y) versus the indicator for the United Kingdom.
From Figure 5.2, the indicator evolves with similar dynamics as the interest rate spread.
Observe that both the spread S(t, 10y, 5y) and the indicator I(t, 5y) rapidly increase after
the start of the credit crisis. Therefore, it is possible to better explain the dynamics of the
interest spread by including the future values of the indicator.
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Figure 5.2: S(t, 10y, 5y) versus I(t, 5y) for United Kingdom

5.3 Results for relationship between the Indicator and
the Interest rate spreads

In Section 5.2, we formulated criteria to investigate the relationship between the indicator
and the interest rate spreads given by (5.4). In this section, we discuss the results of
verifying this relationship for the following countries: the United States (US), France (FR)
and Portugal (PRT). In Appendix E, the results of the remaining countries are presented.

For the first criterion, the results are presented in Table 5.2. In order to obtain the results,
we use all available interest rate spread data, where the historical period is given for each
country. Additionally, we denote the correlation defined in (5.5) with ρ(I(k), S(k)) where
k = 5y, 15y, 20y and 30y.

ρ(I(5y), S(5y)) ρ(I(15y), S(15y)) ρ(I(20y), S(20y)) ρ(I(30y), S(30y))
US(1995-2011) 0.68 0.60 0.57 0.68
FR(2000-2011) 0.62 0.64 0.66 0.40
PRT(1995-2011) -0.52 -0.13 -0.2 -0.09

Table 5.2: Results of criterion 1 for US,FR and PRT

As discussed in Section 5.2, a high positive correlation indicates that there exists a linear
relationship between the indicator and the interest rate spread. For the United States,
we observe a high correlation between the indicator and the interest rate spreads for all
maturities. For France, the correlation is high for the maturities k = 5y, 15y, 20y. Since
the number of data points is small, we consider a correlation value above 0.50 as high. For
instance, we have only eleven years of spread data available for France. From Table 5.2, the
correlation between the indicator and the interest rate spreads is negatively correlated for
Portugal, especially the correlation is very negative for the maturity k = 5y. The reason
for the latter is illustrated in Figure 5.3.

From Figure 5.3, the indicator and the interest rate spreads evolve steady before the credit
crisis; the period 2000-2008. Then, the indicator increases after the start of the credit crisis,
especially for Portugal. And, the interest rate spread S(t, 10y, 5y) rapidly decreases after
the impact of the credit crisis for Portugal. Since the dynamics of I(t, 5y) and S(t, 10y, 5t)
are strongly in the opposite direction after the credit crisis, this result is a negative correla-
tion for Portugal. As a final point, we obtain ρ(I(t, 5y), S(t, 10y, 5y)) = 0.42 for PRT(1995-
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Figure 5.3: The values for I(t, 5y) (left) and S(t, 10y, 5y) (right) for the United States, France
and Portugal

2009). Since interest rate spread data is limited available, this shows that the correlation is
highly sensitive to the historical period. Therefore, it is not sufficient to use the correlation
coefficient as only criterion for studying the relationship between the indicator and the
interest rate spreads.

Next, we investigate how much explanatory power the indicator contains for explaining
the dynamics of the interest rate spreads. Firstly, after applying ordinary least squares
(OLS), we compare the estimated R2 of model (5.6a) with (5.6b) for maturity k. From
this, we can test whether model (5.6b) improves the overall goodness of fit. Secondly, we
apply a t-test to test the null hypothesis that the coefficient of the indicator, β in model
(5.6b), is zero, see Chatterjee and Hadi (2015) for the technical details. Hence, if the null
hypothesis is false, i.e., β is significant in model (5.6b), then the indicator does contribute
for explaining the dynamics of the interest rate spreads. Moreover, this test is applied
for all predictor variables in models (5.6a) and (5.6b). For the United States, France and
Portugal the results are presented in Tables 5.3, 5.4 and 5.5.

k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.530/0.601 Yes Yes/No
15y 0.252/0.461 Yes No/Yes
20y 0.276/0.446 Yes No/Yes
30y 0.282/0.518 Yes No/Yes

Table 5.3: US(1995-2011)

k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.074/0.277 No No/Yes
15y 0.014/0.115 No No/No
20y 0.099/0.451 No Yes/Yes
30y 0.220/0.586 Yes Yes/Yes

Table 5.4: PRT(1995-2011)
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k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.568/0.729 Yes Yes/Yes
15y 0.365/0.582 Yes No/Yes
20y 0.223/0.439 No No/No
30y 0.173/0.391 No No/No

Table 5.5: FR(2000-2011)

From Tables 5.3, 5.4 and 5.5, it follows that the R2 is improved by including the indicator.
The same conclusion can be drawn for the remaining countries, see Appendix E. Further-
more, for the United states, the indicator contains explanatory power for explaining the
dynamics of the interest rate spreads with maturities k = 15y, 20y and 30y. In this case,
the indicator in model (5.6b) better explains the dynamics, then the interest rate spreads
as predictor variable. For Portugal, the explanatory power of the indicator is clearly ob-
servable. For interest spreads with maturities k = 5y, 20y, model (5.6a) can’t explain the
dynamics of the interest rate spreads. Hence, by including the indicator, we improve the
R2 and the indicator does contribute to explain the evolution of the interest rate spreads.
For France, the indicator contains explanatory power for explaining the dynamics of the
interest rate spreads with short maturities. Note that, for all countries, when we observe
a high correlation, then in most cases the indicator does contribute to explain the dynam-
ics of the interest rate spreads. However, the reverse statement doesn’t always hold. For
instance, the parameter β in model (5.6b) is for Portugal often significant, but we observe
only a high correlation for k = 5y.

For “advanced” countries such as Germany and the Netherlands, the indicator doesn’t
contain much explanatory power for describing the dynamics of the interest rate spreads.
A reason for this is that advanced countries have a more favourable policy for debt sus-
tainability. As a consequence, the interest rate spreads contain a non-significant amount of
country risk. Therefore, for advanced countries, the dynamics of the interest rate spreads
are influenced by other factors than country risk. As a consequence, the indicator which
captures a part of the country risk, doesn’t contribute to describe the dynamics of the
interest rate spreads.

Moreover, for all countries, if the indicator does (not) contribute for explaining the dy-
namics of the interest rate spread with k = 20y, then the same conclusion holds for the
interest rate spread with k = 30y. We give an intuitive explanation for this observation,
because it is difficult to find a conclusion which holds for all countries. In Figure 5.4, we
plot the interest rate spreads for Belgium with maturities k = 20y, 30y. From Figure 5.4,
we observe that the interest rate spreads display similar dynamics. Moreover, the indicator
trajectories become smaller as k increases. The reason for the latter is that the forecasts
of the Extended model converge to a stationary state. Hence, if the indicator does (not)
contribute to explain the dynamics of the interest rate spreads with k = 20y, then the same
conclusion holds for interest rate spreads with k = 30y. This line of reasoning also holds
for the countries; the United Kingdom, Italy, Germany, the Netherlands and Finland.

As a final note, we have investigated how much explanatory power the 10-years interest
rate contains for explaining the dynamics of the interest rate spreads. Since the spreads
given by (5.4) depend on the 10-years interest rate, it is reasonable to add the 10-years
interest rate as predictor variable in model (5.6a):
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Figure 5.4: The values for I(t, k) (left) and S(t, 10y, k) (right) for Belgium

S(t+ 1, 10y, k) = c+ αS(t, 10y, k) + βr10yt+1 + εt+1. (5.7)

In Appendix F, we verified the second criterion for model (5.7). From this, we conclude
that the indicator does contribute for explaining the dynamics of the interest rate spreads
compared to the 10-years interest rate.

In this section, to summarize, we investigated the relationship between the indicator and
the interest rate spreads. In particular, the interest rate spreads given by (5.4) and the
indicator which is calculated by system (5.1). The reason for this is that I10y(t, 10y) cap-
tures better the dynamics of the term-spread, which is a leading indicator for predicting
future economic growth, than I3M (t, 10y). From our results, we conclude that the indicator
contains explanatory power for describing the dynamics of the interest rate spreads. In par-
ticular, for several interest rate spreads there exist a linear relationship with the indicator.
Moreover, the overall goodness of fit is improved by model (5.6b), where we have added
the indicator. And also, for several interest rate spreads the indicator in model (5.6b)
explains better the dynamics, then the interest rate spreads as predictor variable. Finally,
the indicator has more explanatory power for explaining the dynamics of the interest rate
spreads than the 10-years interest rate.
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CHAPTER 6

Stability analysis for the Extended model

In this chapter, we perform a stability analysis for the Extended model. In Section 4.1, we pre-
sented a case study when historical data is not representative for predicting the future evolution
of the government primary expenditure, i.e., the forecasts of the primary expenditure and the
government debt displayed blow-up behaviour. The reason for this is that the fiscal policy of
the government does not have to react correctly to debt sustainability issues. The attitude of
a government towards debt sustainability is captured by the fiscal reaction parameter ρ. Here,
we investigate the influence of the fiscal reaction parameter ρ on the stability of the Extended
model. In particular, we want to derive conditions for the existence of blow-up behaviour using
a discrete dynamical system approach. In Section 6.1, we discuss general theory about discrete
dynamical systems. Next, in Section 6.2, we apply the theory discussed in Section 6.1 to a
deterministic multi-dimensional linear system. However, the Extended model is a non-linear
dynamical system. In order to perform a stability analysis, we consider two simplifications of the
Extended model. First, in Section 6.3 we discuss the stability of a stochastic multi-dimensional
linear system, which is a linear simplification of the Extended model. Secondly, in Section 6.4,
we discuss the stability of a stochastic non-linear multidimensional system.

6.1 General theory about Discrete Dynamical systems

The modelling of many applications in fields, such as demography, ecology, economics, engi-
neering, finance, and physics, can be done by discrete dynamical systems, see Lynch (2009) for
some specific examples. Here, we present an overview of general theory about discrete dynamical
systems, which is relevant for the stability analysis of the Extended model.

A dynamical system is a description how one state develops into another over the course of time.
A discrete dynamical system is given by:

x1,t+1 = f1(x1,t, x2,t, . . . , xn,t, ρ),

x2,t+1 = f2(x1,t, x2,t, . . . , xn,t, ρ),

...

xn,t+1 = fn(x1,t, x2,t, . . . , xn,t, ρ),

(6.1)
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where t = 0, 1, 2, . . ., xi,t ∈ R and f i : Rn × Rk → R, i = 1, 2 . . . , n, are continuous differentiable
functions. Here, the k-dimensional parameter ρ is fixed. We denote the initial value of the vector
of state variables by x0 = (x1,0, x2,0, . . . , xn,0). System (6.1) is compactly written as:

xt+1 = f(xt, ρ), t = 0, 1, 2, . . . , (6.2)

where the state vector xt = (x1,t, x2,t, . . . , xn,t) and f : Rn+k → Rn. A solution of system (6.2) is
a trajectory, or orbit in Kuznetsov (2013), of the vector of state variables that satisfies (6.2). A
steady-state equilibrium of system (6.2) is a trajectory that is invariant under further iterations
of the dynamical system.

Definition 6.1. A steady-state equilibrium of the dynamical system given by (6.2) is a vector
x̄ ∈ Rn such that

x̄ = f(x̄, ρ). (6.3)

Suppose we start close to the steady-state equilibrium x̄, that is, let

x0 = x̄+ y, (6.4)

where y is a small perturbation. From this, an important question is whether system (6.2) con-
verges to the steady-state equilibrium with initial value given by (6.4). In order to answer this
question, we first consider the following types of stability for system (6.2), see Galor (2007) and
Murray et al. (1994).

Definition 6.2. We can distinguish the following types of stability for a dynamical system:

1. The steady-state equilibrium x̄ of system (6.2) is locally stable (in the sense of Lyapunov)
at t = t0 if for any ε > 0 there exist a δ(t0, ε) > 0 such that

|xt0 − x̄| < δ ⇒ |xt − x̄| < ε ∀t ≥ t0. (6.5)

2. The steady-state equilibrium x̄ of system (6.2) is asymptotically stable at t = t0, if

(a) x̄ is locally stable, and

(b) x̄ is locally attractive; there exists a δ(t0) > 0 such that

|xt0 − x̄| < δ ⇒ lim
t→∞

xt = x̄. (6.6)

3. The steady-state equilibrium x̄ of system (6.2) is globally stable, if

lim
t→∞

xt = x̄, ∀x0 ∈ Rn. (6.7)

Lyapunov and asymptotic stability are local definitions; they describe the behaviour of system
(6.2) nearby an equilibrium point. In general, it is challenging verifying these types of stability
for general dynamical systems, especially the property of global stability. However, it is possible
to determine whether a steady-state equilibrium of a non-linear system is locally stable; by
examining the stability of the linear approximation near the steady-state equilibrium, see Galor
(2007) for more details.
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Often systems of the form (6.2) contain parameters, for instance ρ in system (6.2), which are
only known approximately. In particular, they are generally determined by measurements that
are not exact. It can occur that a slight variation in a parameter can have a significant impact
on the stability of the steady-state equilibrium, i.e., a so-called bifurcation occurs. This study
leads to the area referred to as bifurcation theory. Bifurcation theory is a deep and complicated
area involving a lot of current research.

Definition 6.3. The appearance of a topologically nonequivalent phase portrait under variation
of parameters is called a bifurcation.

By looking at the phase portrait, we can determine the number and types of steady-state equi-
libria to which the system (6.2) tends as t → ∞. In practice, only several key trajectories are
illustrated in the diagrams that present phase portraits schematically. See Kuznetsov (2013)
for the definition of whether phase portraits are topologically equivalent or not. The definition
contains the option that the stability of the steady-state equilibrium of system (6.2) changes
when varying parameter ρ, which we discuss in the next section.

6.2 Stability of a deterministic multi-dimensional linear
system

Consider the following linear dynamical system:

xt+1 = Axt +B, t = 0, 1, 2, . . . , (6.8)

where A is an n × n matrix with constant coefficients and B ∈ Rn. System (6.8) describes the
evolution of xt+1, whose values depend on a constant matrix A, a constant vector B and the
state at a previous time step xt. System (6.8) is of the form (6.3).

As discussed in Section 6.1, the trajectory of system (6.8) is a path of state vectors; {xt}∞t=0,
that satisfies (6.8). By substituting the initial value x0 in system (6.8), we obtain the following
recursions:

x1 = Ax0 +B

x2 = Ax1 +B = A2x0 +AB +B

x3 = Ax2 +B = A3x0 +A2B +AB +B

...

xt = Atx0 +At−1B +At−2B + . . . AB +B.

(6.9)

From (6.9), it is obvious that the state vector xt is given by:

xt = Atx0 +

t−1∑
i=0

AiB. (6.10)

Lemma 6.1. If the inverse of (I − A) exists, then the sum of a geometric series of matrices,∑t−1
i=0 A

i, whose factor is the matrix A, is given by

t−1∑
i=0

Ai = [I −At][I −A]−1, (6.11)
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where I is the identity matrix.

Proof.

t−1∑
i=0

Ai[1−A] = I −A+A[1−A] +A2[1−A] + . . . At−1[1−A]

= I +A+A2 + . . .+At−1 − [A+A2 +A3 + . . .+At]

= I −At

Hence, post-multiplication of both sides of the equation by [1−A]−1 establishes the lemma.

In the remaining parts of this chapter, we assume that (I − A)−1 exists. Using the result from
Lemma 6.1, we can rewrite (6.10) as follows:

xt = At[x0 − [I −A]−1B] + [I −A]−1B. (6.12)

From (6.12), the value of the state vector xt depends on the initial state vector x0, the time-
independent matrix A and the constant vector B. The next step is to characterize the evolution
of (6.12) as t → ∞; does the state vector converge to the steady-state equilibrium? From
Definition 6.1, the steady-state equilibrium of system (6.8) is a vector x̄ ∈ Rn such that:

x̄ = Ax̄+B. (6.13)

Thus, the steady-state equilibrium of system (6.8) is given by x̄ = [I − A]−1B. Hence, we can
formulate xt as a function which depends on the matrix A, the initial value x0 and the steady-
state value x̄. By substituting the steady-state x̄ in (6.12), the solution of system (6.8) is given
by

xt = At(x0 − x̄) + x̄. (6.14)

From (6.14), the coefficients of the matrix A determine whether the state vector converges in
the long run to the steady-state equilibrium. Moreover, these coefficients determine whether the
system evolves monotonically or oscillatory, diverges asymptotically to plus or minus infinity, or
evolves in a periodic orbit. For this, we distinguish whether the matrix A has real or complex
eigenvalues.

6.2.1 Matrix A with distinct real eigenvalues

In this section, we show the influence of the eigenvalues of the matrix A on the evolution of the
dynamical system. For this, we formulate two examples where the matrix A has a different struc-
ture. First, we consider the case that A is a diagonal matrix, i.e., there is no interdependence
between the variables of the state vector.

Example 6.1.

Consider the following two-dimensional linear system:[
x1,t+1

x2,t+1

]
=

[
a1,1 0

0 a2,2

] [
x1,t
x2,t

]
, (6.15)
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where the initial conditions x0 = [x1,0, x2,0]′ are given. System (6.15) is called an uncoupled
system because xi,t+1 depends only on its previous value xi,t. The diagonal elements are the
eigenvalues of the matrix A. From (6.14), the solution of system (6.15) is given by:[

x1,t+1

x2,t+1

]
=

[
at1,1 0

0 at2,2

] [
x1,0
x2,0

]
. (6.16)

The evolution of each state variable is independent of the evolution of the other state variable.
Therefore, the evolution of both state variables is given by:

x1,t = at1,1x1,0,

x2,t = at2,2x2,0. (6.17)

From (6.17), the evolution of the state variables depends on the magnitude of a1,1 and a2,2. For
instance, if a1,1, a2,2 ∈ (−1, 1), then the solution (6.16) converges to the steady-state equilib-
rium. However, if ai,i 6∈ (−1, 1) and xi,0 6= 0, then the state variable xi,t diverges to plus or
minus infinity. In general, the evolution of each state variable may differ qualitatively for a linear
multi-dimensional system. Next, we discuss the qualitative behaviour of a coupled system.

Example 6.2.

Consider the following two-dimensional linear system,[
x1,t+1

x2,t+1

]
=

[
a1,1 a1,2
a2,1 a2,2

] [
x1,t
x2,t

]
, (6.18)

where a1,2, a2,1 6= 0 and the initial conditions x0 = [x1,0, x2,0]′ are given. Similar to Example
6.1, the steady-state equilibrium x̄ = 0. In this case, the evolution of a state variable depends on
the other state variable, i.e., x1,t and x2,t are interdependent. The idea is to use an uncoupled
system for describing the evolution of a coupled system. In order to do so, we apply a well known
result from linear algebra.

Theorem 6.1. Let A be an n× n matrix with coefficients ai,j, i, j = 1, . . . , n.

� If the matrix A has n distinct real eigenvalues {λ1, . . . , λn} then there exists a non-singular
n× n matrix, Q, such that

A = QDQ−1,

where D is a diagonalized matrix

D =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .

0 0 0 . . . λn

 ,

and Q is an invertible n × n matrix whose columns are the eigenvectors of the matrix A,
{f1, f2, . . . , fn}, i.e.

Q = [f1, f2, . . . , fn].
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Proof. See (Galor 2007).

By defining the state vector yt = Q−1xt, the solution of system (6.18) is described by the state
vector yt as follows:

xt = Qyt,

yt = Dty0.
(6.19)

where Q,D are known from Theorem 6.1. From (6.19), the qualitative behaviour of xt is deter-
mined by the evolution of yt. As in Example 6.1, the evolution of yt depends on the diagonal
elements of the matrix D; which are the eigenvalues of the matrix A. Both examples show the
importance of these eigenvalues on the evolution of a multi-dimensional linear system. Therefore,
we formulate conditions for the eigenvalues such that the state vector converges (monotonically
or oscillatory) to the steady-state equilibrium.

Theorem 6.2. Consider the system xt+1 = Axt + B, where xt ∈ Rn and x0 is given. Suppose
that (I −A)−1 exists and A has n distinct real eigenvalues {λ1, . . . , λn}.

1. The steady-state equilibrium x̄ = [I −A]−1B is globally stable if and only if

|λj | < 1, ∀j = 1, 2, . . . , n

2. limt→∞ xt = x̄ if and only if ∀j = 1, 2, . . . , n

{|λj | < 1 or yj,0 = 0},

where y0 = Q−1(x0− x̄), and Q is an invertible n×n matrix whose columns are the eigenvectors,
{f1, f2, . . . , fn}, of the matrix A

Proof. See (Galor 2007).

According to Theorem 6.2, the absolute value of the eigenvalues of the matrix A, determines
whether the steady-state equilibrium is globally stable. Next, we wish to characterize the tra-
jectory of the state vector for a linear system. For instance, does the state vector converge
monotonically or not to the steady-state equilibrium? Therefore, we consider the various types
of phase portraits that characterize the evolution of the state vector, see Galor (2007) and
Kuznetsov (2013) for more details. It is sufficient to look at the phase portrait of yt for describ-
ing the evolution of the state vector xt. Again, the eigenvalues of the matrix A give information
on the evolution of each state variable. For simplicity, we discuss the various types of phase
portraits for a two-dimensional linear system.

1. Suppose that −1 < λi < 0 < λj < 1, for i, j = 1, 2. Using Theorem 6.2, we conclude that
the steady-state equilibrium is globally stable; which is referred to as a stable node. If the
eigenvalue is positive, then the state variable converges monotonically. On the other hand,
oscillatory behaviour corresponds to negative eigenvalues. Additionally, if |λi| > |λj |, then
the convergence of the j-th state variable is faster towards the steady-state level.

2. The steady-state equilibrium is a saddle point in the cases: {−1 < λi < 1, λj < −1} and
{−1 < λi < 1, λj > 1}. The property of saddle points corresponds with limt→∞ yi,t = 0
∀(yi,0) ∈ R, whereas limt→∞ yj,t = 0 if and only if yj,0 = 0. The sign of the eigenvalue
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determines the qualitative behaviour of each state variable. Namely, a positive eigenvalue
corresponds to monotonic behaviour, whereas a negative eigenvalue corresponds to oscilla-
tory behaviour.

3. Suppose that both eigenvalues λi, λj 6∈ (−1, 1). Then, the steady-state equilibrium is
unstable and referred to as a source point; limt→ y1,t = ±∞ and limt→ y2,t = ±∞,
∀(y1,0, y2,0) ∈ R2 − {0}.

6.2.2 Matrix A with distinct complex eigenvalues

In this section, we consider an n-dimensional linear system of the form (6.18) with n/2 pairs of
distinct complex eigenvalues {µ1, µ̄1, µ2, µ̄2, . . . , µn, µ̄n};

µj = αj + βji,

µ̄j = αj − βji,
(6.20)

where αj , βj ∈ R and i ≡
√
−1. Again, we show the influence of the eigenvalues of the matrix

A on the evolution of the dynamical system. First, the solution of the coupled system (6.18) is
described by a dynamical system of interdependent variables. In order to do so, we state a result
known from linear algebra.

Theorem 6.3. If the matrix A has n/2 pairs of distinct complex eigenvalues, {µ1, µ̄1, µ2, µ̄2, . . . , µn, µ̄n},
then there exists a nonsingular n× n matrix Q, such that

A = QDQ−1

where D is in block Jordan form

D =



α1 −β1 0 0 . . . . . . 0 0
β1 α1 0 0 . . . . . . 0 0

0 0 α2 −β2
. . .

. . . 0 0

0 0 β2 α2
. . .

. . . 0 0
...

...
. . .

. . .
. . .

. . . 0 0
...

...
. . .

. . .
. . .

. . . 0 0
0 0 0 0 . . . . . . αn/2 −βn/2
0 0 0 0 . . . . . . βn/2 αn/2


, (6.21)

Proof. See (Galor 2007).

Using Theorem 6.3, the evolution of the state vector xt is described by yt, where yt = Q−1xt.
To be more precise, there exists a non-singular n× n matrix Q, such that

xt = Qyt

yt = Dty0,
(6.22)
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where D is given by (6.21). From this, the state variables {y2j−1,t, y2j,t} evolve independently
of all other pairs over time, i.e.,[

y2j−1,t+1

y2j,t+1

]
=

[
αj −βj
βj αj

]t [
y2j−1,0
y2j,0

]
, (6.23)

for j = 1, 2, . . . , n/2. Note that, the evolution of the state variables {y2j−1,t, y2j,t} depends on
αj and βj . However, it is not clear how αj and βj influence the qualitative behaviour of the
dynamical system. For this purpose, we express system (6.23) in terms of polar coordinates. In
general, a complex number z = a+ bi can be written in polar form as:

a = r cos(θ)

b = r sin(θ),
(6.24)

where 0 ≤ θ ≤ 2π and the modulus of z is given by:

r =
√
a2 + b2. (6.25)

We can write the eigenvalues µj = αj + βji as follows:

αj = rj cos(θj)

βj = rj sin(θj),
(6.26)

for j = 1, 2, . . . , n/2.

Theorem 6.4. (
rj

[
cos θj − sin θj
sin θj cos θj

])t
= rtj

[
cos tθj − sin tθj
sin tθj cos tθj

]
.

Proof. The theorem is proven by using the trigonometric identities:

cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

sin(θ1 + θ2) = cos(θ1) sin(θ2)− sin(θ1) cos(θ2)

Applying Theorem 6.4, we write system (6.23) in polar form;[
y2j−1,t+1

y2j,t+1

]
= rtj

[
cos tθj − sin tθj
sin tθj cos tθj

] [
y2j−1,0
y2j,0

]
. (6.27)

Since, 0 ≤ | cos(tθj)| ≤ 1 and 0 ≤ | sin(tθj)| ≤ 1 for all t. From (6.27), we observe that the
modulus rj determines whether the state variables {y2j−1,t, y2j,t} converge to the steady-state
level. Therefore, we state the following condition for the modulus rj .

Theorem 6.5. Consider the dynamical system xt+1 = Axt+B, where xt ∈ Rn. Suppose that (I−
A)−1 exists and suppose that A has n/2 pairs of distinct eigenvalues {µ1, µ̄1, µ2, µ̄2, . . . , µn, µ̄n}.
Then the steady-state equilibrium of the dynamical system, x̄, is globally stable if and only if the
modulus of each eigenvalue of the matrix A is smaller than 1, i.e. if

rj =
√

(α2
j + β2

j ) < 1 ∀j = 1, 2, . . . , n/2. (6.28)
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Proof. See (Galor 2007).

Next, we describe the phase portraits that characterize the evolution of the state vector yt. For
simplicity, we discuss the various types of phase portraits for a two-dimensional linear system.
The qualitative behaviour of the system is determined by the modulus r, and the sign of α
and β. The value of r determines whether the system is characterized by convergence (r < 1),
divergence (r > 1) or periodic orbit (r = 1). Here, we distinguish the behaviour of the steady-
state equilibrium for r < 1 and r > 1. For a deeper discussion about the various phase portraits,
see Galor (2007) and Kuznetsov (2013).

1. When r < 1, the dynamical system shows spiral converge towards the steady-state equilib-
rium. For this reason, the steady-state equilibrium is referred to as a spiral sink. If β > 0
the motion is counter-clockwise whereas if β < 0 the motion is clockwise.

2. When r > 1, the dynamical system exhibits spiral divergence from its steady-state equi-
librium. In this case, the steady-state equilibrium is called a spiral source. If β > 0 the
motion is counter-clockwise whereas if β < 0 the motion is clockwise.

6.2.3 Bifurcations in a multi-dimensional linear system

The conditions for global stability of a linear system are discussed in the previous sections. We
have shown that the eigenvalues of the matrix A determine the qualitative behaviour of the sys-
tem. In this section, we investigate: how the stability of a system of the form (6.8) is affected by
varying the parameters. For example, we can vary the coefficients of the matrix A and determine
when the system is globally stable. Before discussing the several types of bifurcations, we state
a property of the steady-state equilibrium.

Definition 6.4. A steady-state equilibrium is called hyperbolic, if there are no eigenvalues on
the imaginary axis; all eigenvalues λ1, . . . , λn of the matrix A have the property:

|λj | 6= 1 ∀j = 1, . . . , n.

The next step is to monitor the stability of a steady-state equilibrium, while we vary the param-
eters. The stability of the system is affected when the hyperbolic condition is violated. To be
more precise, suppose that there exists a positive real eigenvalue λi that satisfies (6.28). Then,
the hyperbolic condition is violated when λi approaches the unit circle and we obtain λi = 1.
Other bifurcations are observed for negative real eigenvalues λi and complex eigenvalues µi that
satisfy (6.28). In these cases, the eigenvalues approach the unit circle and we obtain λi = −1
and µi = exp±iθ, 0 < θ < π. These three types of bifurcations are summarized in the following
definitions.

Definition 6.5. The bifurcation associated with:

1. the appearance of λi = 1 is called a fold (or tangent) bifurcation;

2. the appearance of λi = −1 is called a flip (or period-doubling) bifurcation.

3. the appearance of µi, µ̄i = exp±iθ, 0 < θ < π, is called a Neimark-Sacker (or torus)
bifurcation.
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For a deeper discussion of the various types of bifurcations, we refer the reader to Kuznetsov
(2013). In the upcoming sections, we apply the stability analysis for a linear system to investigate
the local stability of a stochastic (non)-linear system.

6.3 Stability of a stochastic multi-dimensional linear sys-
tem

As discussed in Section 6.2, the stability of a multi-dimensional linear system; xt+1 = Axt +B,
depends on the eigenvalues of the matrix A. The conditions for global stability, as described
in Theorems 6.2 and 6.5, can’t explain however when the Extended model produces (un)stable
forecasts. This is because the Extended model is a non-linear dynamical system with complicated
properties. For example, calculating the YVARt, as discussed in Section 3.1, involves the use
of a one-sided HP filter in each iteration of the dynamical system. Therefore, we investigate
the local stability of the following stochastic multi-dimensional linear system, which is a linear
simplification of the Extended model:

[
log(1 + yt+1)
log(1 + rt+1)

]
=

[
c1
c2

]
+A

[
log(1 + yt)
log(1 + rt)

]
+

[
ε1t+1

ε2t+1

]
,

log(dt+1) = log(1 + rt)− log(1 + yt) + log(dt − st),
log(dt+1 − st+1) = α+ ρ log(dt) + β log(dt − st) + ε̃t+1.

(6.29)

Here, the error components have the following distribution:(
ε1t+1

ε2t+1

)
∼ N (0,Σ1), ε̃t+1 ∼ N (0, σ). (6.30)

In system (6.29), a VAR(1) model is used for describing the evolution of the annual return of
real GDP yt and the interest rate rt. Since both yt and rt are small, we use log returns, see
Ruppert (2004) for more details. The non-linear Benchmark model is a simplification of the
Extended model. In order to make the Benchmark model linear, we take the logarithm at both
sides of equation (2.3). In system (6.29), the evolution of log(dt+1−st+1) depends linearly on its
previous value, on the term ρ log(dt) and on a stochastic term. We rewrite (6.29) in the following
matrix-vector notation:

log(1 + yt+1)
log(1 + rt+1)

log(dt+1)
log(dt+1 − st+1)

 =


c1
c2
0
α

+


a1 a2 0 0
a2 b2 0 0
−1 1 0 1
0 0 ρ β




log(1 + yt)
log(1 + rt)

log(dt)
log(dt − st)

+


ε1t+1

ε2t+1

0
ε̃t+1

 . (6.31)

The stability analysis discussed in Section 6.2 is for a deterministic multi-dimensional linear
system. By taking the expectation at both sides of system (6.31), we obtain the following
deterministic multi-dimensional linear system:

zt+1 = Rzt + c, (6.32)

where

R =


a1 a2 0 0
a2 b2 0 0
−1 1 0 1
0 0 ρ β

 , zt =


E[log(1 + yt)]
E[log(1 + rt)]
E[log(dt)]

E[log(dt − st)]

 , c =


c1
c2
0
α

 . (6.33)
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In order to reduce the number of parameters of system (6.32), we assume that both E[log(1+yt)]
and E[log(1+rt)] are nearby the steady-state equilibrium. With this assumption, we approximate
system (6.32) by the following two-dimensional linear system:

xt+1 = Axt +B, (6.34)

where

A =

[
0 1
ρ β

]
, xt =

[
E[log(dt)]

E[log(dt − st)]

]
, B =

[
E[log(1 + r̄)]− E[log(1 + ȳ)]

α

]
, (6.35)

and

E[log(1 + ȳ)] = lim
t→∞

E[log(1 + yt+1)],

E[log(1 + r̄)] = lim
t→∞

E[log(1 + rt+1)],
(6.36)

where these steady-state levels are given for each country, see Appendix C. As discussed in
Section 6.2, the steady-state equilibrium of system (6.34) is given by:

x̄ = [I −A]−1B =

[
1 −1
−ρ 1− β

]−1
B =

[
1 + ρ

1−β−ρ
1

1−β−ρ
ρ

1−β−ρ
1

1−β−ρ

]
B, (6.37)

Moreover, the solution of system (6.34) is given by:

xt = At(x0 − x̄) + x̄, (6.38)

where the steady-state equilibrium exists as long as 1−β−ρ 6= 0. In order to determine whether
xt converges to the steady-state equilibrium x̄, we should verify the conditions described in
Theorems 6.2 and 6.5. For this, we determine the eigenvalues of the matrix A, which are simply
the roots of the characteristic polynomial:

p(λ) = det(A− λI)

= det

([
−λ 1
ρ β − λ

])
= λ2 − βλ− ρ

(6.39)

Thus, the eigenvalues of the matrix A are given by:

λ1 =
β −

√
β2 + 4ρ

2
, λ2 =

β +
√
β2 + 4ρ

2
. (6.40)

From (6.40), the stability of system (6.34) only depends on the parameters ρ and β. The next
step is to estimate these parameters using country specific data and to determine whether the
steady-state equilibrium is globally stable. First, we consider the case of Germany, where we
show how different values of β and ρ influence the stability of system (6.34).

Example 6.3 (GER(1970-1995)).

In this example, the parameters of system (6.34) are estimated for Germany, with data over
the period t = 1970, . . . , 1995. Using ordinary least squares we obtain the estimates ρ = 0.21,
β = 0.82. Hence, the value of the steady-state equilibrium is equal to

x̄ =

[
x̄1
x̄2

]
=

[
1 + ρ

1−β−ρ
1

1−β−ρ
ρ

1−β−ρ
1

1−β−ρ

] [
E[log(1 + r̄)]− E[log(1 + ȳ)]

α

]
=

[
−2.42
−2.44

]
, (6.41)
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where the steady-state levels are E[log(1 + ȳ)] = 0.013 and E[log(1 + r̄)] = 0.036. Furthermore,
the eigenvalues of the matrix A are given by

λ1 = −0.20, λ2 = 1.03. (6.42)

From (6.42), we conclude that the steady-state equilibrium is a saddle point. To be more precise,
limt→∞ x1,t = x̄1,∀x1,0 ∈ R and limt→∞ x2,t = x̄2 if and only if E[log(d0 − s0)] = 0. However,
the condition E[log(d0 − s0)] = 0 never holds by the property of the logarithm. In this case,
the solution of system (6.34) diverges for every initial value x0. And also, the forecasts of the
Extended model don’t converge to a stationary state, when we estimate the parameters over the
same data period, see Appendix H.

Example 6.4 (GER(1970-1996)).

Similar to Example 6.3, we estimate the parameters of system (6.34) for Germany, only now
with data over the period t = 1970, . . . , 1996. In this case, we obtain the estimates ρ = 0.43,
β = 0.52. Hence, the steady-state equilibrium is given by:

x̄ =

[
1 + ρ

1−β−ρ
1

1−β−ρ
ρ

1−β−ρ
1

1−β−ρ

] [
E[log(1 + r̄)]− E[log(1 + ȳ)]

α

]
=

[
0.14
0.11

]
, (6.43)

where we use the same values for E[log(1+ ȳ)] and E[log(1+ r̄)] as in Example 6.3. Furthermore,
the eigenvalues of the matrix A are given by:

λ1 = −0.45, λ2 = 0.96. (6.44)

Combining (6.44) and Theorem 6.2, we conclude that the steady-state equilibrium is globally
stable. In other words, the equilibrium is a stable node, i.e, limt→∞ x1,t = x̄1 and limt→∞ x2,t =
x̄2 ∀x0 ∈ R2. In Appendix H, the forecasts of all economic variables show convergence to the
stationary state, where the parameters of the Extended model are estimated over the same data
period.

The next step is to estimate the parameters of system (6.34) for several countries. As a result, we
obtain estimates of (β, ρ) for each country. In Figure 6.1, these estimates for (β, ρ) are plotted; as
coloured dots. For each pair of (β, ρ), we calculate the eigenvalues λ1, λ2, as given by (6.40), and
determine whether the steady-state equilibrium is globally stable. For example, the steady-state
equilibrium is globally stable when we estimate the parameters of system (6.34) for Portugal
over the historical period t = 1976, . . . , 1995 (PRT(1976-1995) in Figure 6.1).

Next, we investigate for which values of β and ρ the solution of system (6.34) converges to the
steady-state equilibrium. For this purpose, we determine the following boundaries:

B1 = {∀(β, ρ) : |λ1| = 1, λ1 ∈ R},
B2 = {∀(β, ρ) : |λ2| = 1, λ2 ∈ R},
B3 = {∀(β, ρ) : |λ1| = 1, λ1 ∈ C}.

(6.45)

The red, blue and green lines in Figure 6.1 correspond to the boundaries as given by (6.45). The
purple line in Figure 6.1 is defined as

B4 = {∀(β, ρ) : β2 + 4ρ = 0}. (6.46)
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Figure 6.1: For several countries: the estimates for (β, ρ).

In other words, for which values of β and ρ is the discriminant of the quadratic equation given
by (6.39) equal to zero. As discussed in Section 6.2, system (6.34) is globally stable if and only if
(β, ρ) lies inside these boundaries given by (6.45). Hence, the steady-state equilibrium of system
(6.34) is globally stable if and only if (β, ρ) satisfies:

ρ+ β < 1,

β − ρ < 1,

ρ > −1.

(6.47)

Suppose that a pair (ρ, β) satisfies (6.47). Moreover, the pair (ρ, β) approaches the boundaries
given by (6.45), when we vary the parameters. If one of these boundaries is crossed, then the
stability of system (6.34) has changed; a bifurcation has occurred. For instance, if the pair (ρ, β)
with positive real eigenvalues, crosses B1 in Figure 6.1, then the bifurcation is called a fold.

From Figure 6.1, it follows that for GER(1970-1995), FIN(1975-1995) and PRT(1976-2010) the
steady-state equilibrium is a saddle point; the solution of system (6.34) diverges. And also, the
forecasts of the Extended model show blow-up behaviour, which is displayed in Appendix H.
This suggests that if the linear system (6.34) is (not) globally stable, then the forecasts of the
Extended model does (not) converge to a stationary state. This relation is again verified for
Germany, as discussed in Example 6.3 and Example 6.4.

However, there exist cases where this relationship doesn’t hold. For example, the steady-state
equilibrium of system (6.34) for FR(1978-2009) is globally stable, but the forecasts of the Ex-
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tended model don’t converge to a stationary state, see Appendix H. From this, it follows that
the assumptions for obtaining the linear system (6.34) are sometimes too simplistic. As a con-
sequence, the linear system (6.34) doesn’t capture fully the dynamics of the Extended model.
Therefore, a more advanced approach for investigating the stability of the Extended model is
required. In the next section, we discuss the local stability of a non-linear system, which is also
a simplification of the Extended model.

6.4 Stability of a stochastic non-linear multi-dimensional
system

In Section 6.3, we derived conditions for global stability of a linear simplification for the Ex-
tended model, see (6.47). It is shown that satisfying these conditions doesn’t always imply that
the forecasts of the Extended model converge to a stationary state. Hence, we investigate the
local stability of a more advanced system. Namely, the following stochastic non-linear multi-
dimensional system, which is also an approximation of the Extended model:[

yt+1

rt+1

]
=

[
c1
c2

]
+A

[
yt
rt

]
+

[
ε1t+1

ε2t+1

]
,

st+1 = αs + ρdt + βst + εst+1,

dt+1 = (dt − st)
1 + rt
1 + yt

.

(6.48)

Here, the error components have the following distribution:(
εyt+1

εrt+1

)
∼ N (0,Σ1), εst+1 ∼ N (0, σ). (6.49)

As in Section 6.3, a VAR(1) model is used for describing the evolution of the annual return of
real GDP yt and the interest rate rt. From (6.48), the dynamics of dt are the same as in the
Benchmark model. However, system (6.48) differs from the Benchmark model by the dynamics of
st; the evolution of st depends linearly on its previous value, on the term ρdt and on a stochastic
term. Here, the parameter ρ has the same meaning as in the Benchmark model.

In order to investigate the local stability of system (6.48), we assume that the expected value
of the steady-state equilibrium E[θ̄] = (E[r∞],E[y∞],E[s∞],E[d∞]) exists, where yt → y∞ in
weak converge. For a deeper discussion of convergence of random variables we refer the reader to
Vaart (2013). In Appendix G, we explain the procedure for determining E[θ̄]. As mentioned in
Section 6.1, the behaviour of the Taylor approximation nearby the equilibrium gives information
over the local stability of a non-linear system.

Theorem 6.6. If Y is a function of several random variables,

Y = g(X1, X2, . . . , Xn),

the Taylor series around the mean values (µX1 , µX2 , . . . , µXn), yields

Y = g(µX1
, µX2

, . . . , µXn
) +

n∑
i=1

(Xi − µXi
)
∂g

∂Xi
+

1

2

n∑
i=1

n∑
j=1

(Xi − µXi)(Xj − µXj )
∂2g

∂Xi∂Xj
+ . . .

where the derivatives are evaluated at µX1
, µX2

, . . . , µXn
.
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Proof. See Ang and Tang (2007).

Using Theorem 6.6, we create a first-order Taylor approximation for dt+1 around the steady-state
E[θ̄].

dt+1 ≈ f(E[θ̄]) +
∂f

∂yt
(E[θ̄])(yt − E[y∞]) +

∂f

∂rt
(E[θ̄])(rt − E[r∞]) +

∂f

∂st
(E[θ̄])(st − E[s∞])

+
∂f

∂dt
(E[θ̄])(dt − E[d∞])

= α∗ +
∂f

∂yt
(E[θ̄])yt +

∂f

∂rt
(E[θ̄])rt +

∂f

∂st
(E[θ̄])st +

∂f

∂dt
(E[θ̄])dt,

(6.50)

where

f(yt, rt, st, dt) = (dt − st)
1 + rt
1 + yt

, (6.51)

and

α∗ = f(E[θ̄])− ∂f

∂yt
(E[θ̄])E[y∞]− ∂f

∂rt
(E[θ̄])E[r∞]− ∂f

∂st
E[θ̄])E[s∞]− ∂f

∂dt
(E[θ̄])E[d∞]. (6.52)

The first-order derivatives are given by:

∂f

∂yt
= − (dt − st)(1 + rt)

(1 + yt)2
,

∂f

∂rt
=
dt − st
1 + yt

,
∂f

∂st
= −1 + rt

1 + yt
,

∂f

∂dt
=

1 + rt
1 + yt

. (6.53)

Using (6.50), we approximate system (6.48) locally around the equilibrium E[θ̄] by the following
linear system:[

yt+1

rt+1

]
=

[
c1
c2

]
+A

[
yt
rt

]
+

[
ε1t+1

ε2t+1

]
,

st+1 = αs + ρdt + βst + εst+1,

dt+1 = α∗ +
∂f

∂yt
(E[θ̄])yt +

∂f

∂rt
(E[θ̄])rt +

∂f

∂st
(E[θ̄])st +

∂f

∂dt
(E[θ̄])dt.

(6.54)

We rewrite (6.54) in the following matrix-vector notation:
yt+1

rt+1

st+1

dt+1

 =


c1
c2
αs

α∗

+


a1 a2 0 0
a2 b2 0 0
0 0 β ρ

∂f
∂yt

(E[θ̄]) ∂f
∂rt

(E[θ̄]) ∂f
∂st

(E[θ̄]) ∂f
∂dt

(E[θ̄])



yt
rt
st
dt

+


ε1t+1

ε2t+1

εst+1

0

 . (6.55)

We proceed as in Section 6.3 by taking the expectations at both sides of system (6.55). Hence,
we obtain the deterministic linear system:

zt+1 = Rzt + c (6.56)

where

R =


a1 a2 0 0
a2 b2 0 0
0 0 β ρ

∂f
∂yt

(E[θ̄]) ∂f
∂rt

(E[θ̄]) ∂f
∂st

(E[θ̄]) ∂f
∂dt

(E[θ̄])

 , zt =


E[yt]
E[rt]
E[st]
E[dt]

 , c =


c1
c2
αs

α∗

 . (6.57)
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As mentioned in Section 6.3, we reduce the number of parameters in system (6.57) by assum-
ing that both E[yt] and E[rt] are nearby their steady-state levels. With this assumption, we
approximate system (6.57) with the following two-dimensional linear system:

xt+1 = Axt +B, (6.58)

where

xt =

[
E[st]
E[dt]

]
, A =

[
β ρ
−φ φ

]
, B =

[
αs

α̃∗

]
, φ =

1 + E[r∞]

1 + E[y∞]
, (6.59)

and

α̃∗ = α∗ +
∂f

∂yt
(θ̄)E[y∞] +

∂f

∂rt
(θ̄)E[r∞]. (6.60)

As discussed in Section 6.2, the solution of system (6.58) is given by xt = At(x0 − x̄) + x̄,
where

x̄ = [I −A]−1B

=

[
1− β −ρ
φ 1− φ

]−1
B

=

[
1−φ

βφ+φρ−βφ+1
ρ

βφ+φρ−βφ+1

− φ
βφ+φρ−βφ+1

1−β
βφ+φρ−βφ+1

]
B.

(6.61)

In order to characterize the evolution of the state vector xt in system (6.58), we determine the
eigenvalues of the matrix A, which are the roots of the characteristic polynomial:

p(λ) = det(A− λI)

= det

([
β − λ ρ
−φ φ− λ

])
= λ2 − (β + φ)λ+ (β + ρ).

(6.62)

Thus, the eigenvalues of A are explicitly given by

λ1 =
β + φ−

√
(β + φ)2 − 4(β + ρ)φ

2
, λ2 =

β + φ+
√

(β + φ)2 − 4(β + ρ)φ

2
. (6.63)

The next step is to determine for which values of ρ and β the steady-state equilibrium of system
(6.58) is globally stable, where the parameter φ is fixed. From (6.59), the parameter φ is known
by the steady-state levels E[r∞] and E[y∞], which are given for each country, see Appendix C. We
proceed as in Section 6.3 by determining the boundaries given by (6.45), where the eigenvalues
λ1, λ2 are given by (6.63). The boundaries B1, B2 and B3 correspond to the red, the blue, and
the yellow lines in Figure 6.2 respectively. As discussed in Section 6.2, system (6.58) is globally
stable if and only if the values of (β, ρ) lie inside the region with boundaries given by (6.45).
Hence, the steady-state equilibrium of system (6.58) is globally stable if (β, ρ) satisfies:

β +
φρ

φ− 1
> 1,

β +
φρ

φ+ 1
> −1,

β + ρ <
1

φ
.

(6.64)
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Next, we use country-specific data to estimate the parameters of system (6.58). In Figure 6.2,
the estimates for (β, ρ) are plotted, where we consider all possible data periods for Germany. As
in (6.46), the purple line in Figure 6.2 represents the values of (β, ρ) such that the discriminant
ξ of the quadratic equation given by (6.62) is equal to zero, where

ξ = (β + φ)2 − 4(β + ρ)φ = 0. (6.65)

Figure 6.2: Qualitative behaviour of equilibria for Germany

Consider the period t = 1970, . . . , 1995, we obtain the estimates (β, ρ) = (0.635,-0.0565) and
φ = 1.02. It is easily checked that the condition β + φρ

φ−1 > 1 doesn’t hold. In Figure 6.2,

the estimate of (β, ρ) falls outside the global stability region given by (6.64). In particular,
the steady-state equilibrium is a saddle point. Moreover, this corresponds to the instability of
system (6.34) in Example 6.3 of Section 6.3. For the remaining data periods, we observe that
the estimates for (β, ρ) satisfy (6.64), see Figure 6.2.

As in Section 6.3, if one of the boundaries given by (6.45) is crossed, then the stability of system
(6.58) has changed. In other words, starting with a pair (β, ρ) that satisfies (6.45), a specific
type of bifurcation occurs if one of the boundaries B1, B2 or B3 is crossed, when we vary the
parameters of system (6.58). For example, suppose a pair (β, ρ) satisfies (6.45) and D < 0, i.e,
the eigenvalues given by (6.63) are complex. It follows that if the boundary B3 is crossed, then
we observe a so-called Neimark-Sacker bifurcation.

As mentioned in Section 6.1, the local stability of the non-linear system (6.48) can be examined
by the stability of the linear system (6.54), where we approximated system (6.54) by the two-
dimensional system (6.58). In order to obtain the linear system (6.58), we take a Taylor expansion
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nearby the steady-state equilibrium of system (6.48). From this, we have derived conditions for
global stability of system (6.58). Next, we investigate whether these conditions for local stability
of system (6.48) also hold when the non-linear system is not nearby the steady-state equilibrium.
In order to do so, we produce for several countries forecasts by system (6.48) . Then, we verify
that the forecasts converge or don’t converge to a stationary state, if the estimated (β, ρ) of
system (6.58) satisfies (6.64) or not.

Figure 6.3: Primary surplus for Germany: historical data (black-dotted) and deciles of forecast
(red). Left are parameters of system (6.48) estimated using data over period 1970-1995, where
R2 = 0.15976 . Right the parameters are estimated using data over period 1970-1996, where
R2 = 0.09310.

Figure 6.4: Government debt for Germany: historical data (black-dotted) and deciles of forecast
(red).

In Figures (6.3) and (6.4), we plot the forecasts of system (6.48) for Germany. From these
numerical results, we conclude that if the estimated (β, ρ) of system (6.58) satisfies (6.64), then
the forecasts of system (6.48) converge to a stationary state and vice versa. And moreover, this
relationship is verified for the remaining countries discussed in Section 5.3. Additionally, if the
forecasts of system (6.48) converge to a stationary state, then the forecasts of the Extended
model converge to a stationary state as well. From this, we propose to verify the conditions
given by (6.64) in order to get insight in the stability of the Extended model.
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CHAPTER 7

Conclusion

7.1 Summary and conclusions

In this thesis, we have investigated whether the dynamics of the interest rate spreads can be
explained by the debt sustainability indicator. We started with a general description of govern-
ment debt sustainability and why this is of importance for policy-makers and financial markets.
From this, it became apparent that there is a need for an accurate measure of debt sustainability.
Here, we have assessed government debt sustainability using the indicator proposed in Ewijk,
Lukkezen, and Rojas-Romagosa (2013). The debt sustainability indicator measures the degree
to which governments are in control of their public finances by estimating the risk of a signifi-
cant debt increase in the near future. In particular, we have shown that the indicator is easily
calculated by using the debt samples produced by a stochastic simulation.

The first model which we have discussed, for evaluating the debt sustainability indicator, is the
Benchmark model. This model consists of the following components: the accounting equation
for the government debt dt, an equation for the government’s primary surplus st and a VAR(2)
model which describes the dynamics for the annual return of real GDP yt and the 10-years
real interest rate rt. It is shown that the Benchmark model makes assumptions which influence
negatively the dynamics of the debt sustainability indicator.

Incorporating these model assumptions has led to the creation of the Extended model. The
Extended model is an extension of the Benchmark model. The main reason for this is that the
Extended model uses the causal one-sided HP filter, as opposed to the non-causal two-sided HP
filter in the Benchmark model, for extracting the trend of a time series. Hence, the Extended
model includes the YVARt and GVARt in its dynamics as opposed to the Benchmark model.
Moreover, we don’t remove components of the error vector after estimating the parameters of
the Extended model. We have discussed the general procedure for producing economic forecasts
with the Extended model. This procedure is easily applied for all countries considered in this
investigation. Furthermore, we have investigated whether there exists a correspondence between
the dynamics of the indicator, which is calculated with the Extended model, and the term-spread.
We concluded that for most countries there exists a (linear) relationship between the indicator
and the term-spread. And finally, we discussed whether an alternative model for describing the
dynamics of (yt, rt) improves the forecast accuracy. In particular, we compared the performance
with the VAR(2) model of the Extended model. From the numerical results, we concluded that
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the VAR(2) model is better for predicting the evolution of (yt, rt) than the alternative model.
Similar conclusions were found in Lukkezen, Rojas-Romagosa, et al. (2012).

Since the parameters of the Extended model are estimated on historical data, the fundamental
assumption is that historical data is representative for predicting the future. However, in Chapter
4, we have shown a case study in which historical data is not representative. It is possible that the
government’s fiscal policy doesn’t react correctly to the debt accumulation based on historical
data. As a consequence, the forecasts of the Extended model don’t converge to a stationary
state. In order to solve this issue, we have proposed with (4.4) a new government expenditure
rule. This rule changes the fiscal policy of the government when the second criterion of the
Stability and Growth Pact is not satisfied. We have verified that this rule controls the possible
blow-up behaviour of the Extended model. However, we have shown with several numerical
experiments that this new expenditure rule influences the quality of the debt sustainability
indicator negatively. Hence, we use the original dynamics of the Extended model for investigating
the relationship between the indicator and the interest rate spreads.

In order to verify this relationship we have specified which interest rate spreads can be considered
in this investigation, i.e, the spread which take the difference with the 10-years interest rate. As a
consequence, we have investigated whether the dynamics of the spread which take the difference
with the 10-years interest rate can be explained by the debt sustainability indicator. By verifying
the criteria in Section 5.2, we have made for several countries the following conclusions. Firstly,
we have shown that a linear relationship exists between the debt sustainability indicator and
several interest rate spreads. Secondly, the overall goodness of fit is improved by model (5.6b),
where we have added the indicator as predictor variable. Thirdly, from the numerical results in
Tables 5.3, 5.4 and 5.5 and Appendix E, we conclude that the indicator contains explanotory
power for describing the dynamics of the interest rate spreads, especially with maturities k =
5y, 15y. And also, for several interest rate spreads the indicator in model (5.6b) explains better
the dynamics, then the interest rate spreads as predictor variable. Therefore, we can make the
overall conclusion that the dynamics of the interest rate spreads can be explained in most cases
by the debt sustainability indicator. As a final note, we have shown that the indicator contains
more explanatory power for describing the dynamics of the interest rate spreads than the 10-years
interest rate as predictor variable.

Last but not least, we have performed a stability analysis for the Extended model. The goal was
to derive conditions for the existence of blow-up behaviour using a discrete dynamical system
approach. Since the Extended model is a non-linear system with complicated properties, we have
derived conditions for global stability for two simplifications of the Extended model. We propose
to verify the conditions given by (6.64) in order to get insight into the stability of the Extended
model.

7.2 Outlook

From the research that has been conducted, we give some recommendations and final remarks
for further research. Firstly, we give the following recommendations.

� One of the main models Ortec Finance use is a high dimensional time series model. This
internally used model at Ortec Finance produces forecasts for hundreds of economic vari-
ables. The economic predictions are of crucial importance because they have large impact
on model outcomes and thereby on decisions. At this time, this high dimensional time
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series model doesn’t describe the dynamics of the government debt. Therefore, we recom-
mend implementing the Extended model in the models of Ortec Finance as the first model
for modelling the future’s government debt.

� Ortec Finance has many institutional investors as client. Therefore, making economic fore-
casts for interest rates that are paid on government bonds is of importance. We recommend
Ortec Finance to use the debt sustainability indicator as a tool for explaining the dynamics
of the interest rate spreads.

� The conditions given by (6.64) can have an added value for the analysis done in (Ewijk,
Lukkezen, and Rojas-Romagosa 2013), where the influence of ρ on the debt evolution was
investigated.

Finally, we present the following suggestions for future research.

� Changing the dynamics of the Extended model such that the instability of the model is
prevented.

� Performing a stability analysis for the Extended model without making any simplifications.
In this way, we can fully understand the stability of the Extended model.
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APPENDIX A

The Hodrick-Prescott filter

In this Appendix, we discuss how to extract the trend of a time series by using a Hodrick-
Presscott filter (HP filter). In particular, we discuss the two-sided and the one-sided HP filter.
From this, the properties and differences of both filters will become clear. Moreover, we give two
approaches for the trend extraction by a one-sided HP filter.

A.1 Two-Sided HP filter

A time series y = [y1, . . . , yT ] which is observed at a yearly frequency can be decomposed into
a trend component τt and a cyclical component ct. This decomposition is specified at time t
by:

yt = τt + ct + εt. (A.1)

The trend component τt denotes the long run movement of the time series, while the cyclical
component ct captures the sequence of non-periodic fluctuations. Usually, the cyclical component
ct is referred to as the economic cycle. Finally, εt is a noise component.

The HP filter extracts the trend, τ = [τ1, . . . , τT ], by minimizing the following loss func-
tion:

min
τ

( T∑
t=1

(yt − τt)2 + λ

T−1∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2
)
, (A.2)

see Leon (2012) for more details. Here, parameter λ is a positive number which penalizes varia-
tions in the growth rate of the trend. In other words, as we increase the value of λ the solution of
(A.2) becomes smoother. The following result states that (A.2) can be solved analytically.

Lemma A.1: The solution to (A.2) is given by:

τ = A−1y, (A.3)

where
A = [I + λK′K], (A.4)
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y = [y1, . . . , yT ]′ are the values of the time series, I is a T × T identity matrix and K is a
(T − 2)× T matrix with the following structure:

K =


1 −2 1 0 0 · · · 0 0 0
0 1 −2 1 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · 1 −2 1

 . (A.5)

Proof. We can formulate (A.2) in the following matrix-vector notation:

min
τ
f(τ), (A.6)

where
f(τ) = (y − τ)′(y − τ) + λ(Kτ)′(Kτ). (A.7)

Observe that matrix A is symmetric and positive definite, see (Lang 2012) for the definition of
positive definite. For every nonzero vector x ∈ RT ,

x′Ax = x′x + λ(Kx)′(Kx) (A.8)

=

T∑
i=1

x2i + λ
T−2∑
i=1

(∆2xi)
2 ≥ 0, (A.9)

where ∆2 is the second order differences operator. Hence, the matrix A is invertible and A−1 is
also positive definite. Next, we want to rewrite f(τ) in terms of the matrix A.

f(τ) = τ ′Aτ − y′τ − τ ′y + y′y

= τ ′A(A−1A)τ − y′(A−1A)τ − τ ′(AA−1)y + y′y

= (τ ′A− y′)A−1(Aτ − y) + y′y − y′A−1y

= (Aτ − y)′A−1(Aτ − y) + y′y − y′A−1y

(A.10)

The last two terms in (A.10) are independent of τ . Therefore, minimizing (Aτ−y)′A−1(Aτ−y)
solves problem (A.6). Since A−1 is positive definite, it follows that

(Aτ − y)′A−1(Aτ − y) ≥ 0. (A.11)

Then, the minimum value of (Aτ − y)′A−1(Aτ − y) is attained when

(Aτ − y)′A−1(Aτ − y) = 0⇒ y = Aτ ⇒ τ = A−1y. (A.12)

As an example, the structure of I + λK′K for T = 7 is given by:

I + λK′K =



1 + λ −2λ λ 0 0 0 0
−2λ 1 + 5λ −4λ λ 0 0 0
λ −4λ 1 + 6λ −4λ λ 0 0
0 λ −4λ 1 + 6λ −4λ λ 0
0 0 λ −4λ 1 + 6λ −4λ λ
0 0 0 λ −4λ 1 + 5λ −2λ
0 0 0 0 λ −2λ 1 + λ


. (A.13)
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As illustrated in (A.13), since the matrix structure of I + λK′K is independent of the values of
the time series y, it follows that for constructing K only the size of y must be known. From this,
it follows that extracting the trend using a two-sided HP filter can be efficiently implemented. To
be more precise, the matrix A can immediately be determined, once the size of y is known. From
(A.2) the constructed trend component τt depends on data observations yt+i, i > 0. Filters with
this property are called non-causal. Next, we introduce the causal one-sided HP filter.

A.2 One-Sided HP filter

The one-sided HP filter only uses current and past state values y1, . . . , yt for extracting the trend
component τt. Two different approaches are discussed in (Stock and Watson 1999) and (Mehra
2004) how to construct the one-sided HP filter. Firstly, this filter is constructed using a Kalman
filter estimate. Secondly, a two-sided HP filter is used iteratively.

A.2.1 Trend extraction with a Kalman filter

An important feature in the derivation of the Kalman filter is the notion of a state space system.
Here, we use the same notation as in Hamilton (1994). Let yt denote an (n× 1) random vector
at time t. Assume that yt can be described in terms of an unobserved (r× 1) vector ξt. Usually,
ξt is referred to as the state vector. The state-space representation of the dynamics of yt is given
by:

ξt+1 = Fξt + ηt+1, (A.14)

yt = A′xt + H′ξt + εt, (A.15)

where F,A,H are matrices and xt is a (k × 1) vector of predetermined variables. The white
noise vectors ηt+1 and εt have covariance matrices:

E[ηtητ
′] =

{
Q for t = τ
0 otherwise,

and

E[εtετ
′] =

{
R for t = τ
0 otherwise,

respectively. In the construction, we assume that we observe y1, . . . ,yT,x1, . . . ,xT and the
matrices F,Q,A,H, R are predetermined. The Kalman filter is an algorithm for calculating
linear least squares forecasts of the state vector on the basis of data observed until date t,

ξ̂t+1|t = Ê[ξt+1|Ft], (A.16)

where
Ft = (y1, . . . ,yt,x1, . . . ,xt)

′, (A.17)

and Ê[ξt+1|Ft] denotes the linear projection of ξt+1 on Ft. The Kalman filter estimates these
forecasts recursively by generating ξ̂1|0, ξ̂2|1, . . . , ξ̂T|T−1, see Hamilton (1994) for more details.

Here, only the recursion for obtaining ξ̂t+1|t is presented. For t = 1, 2, . . . , T , we iterate on

ξ̂t+1|t = Fξ̂t|t−1 + FPt|t−1H(H′Pt|t−1H + R)−1(yt −A′xt −H′ξ̂t|t−1), (A.18)
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where each forecast is associated with a mean squared error (MSE) matrix,

Pt+1|t = E[(ξt+1|t − ξ̂t+1|t)(ξt+1|t − ξ̂t+1|t)
′]. (A.19)

In Stock and Watson (1999) the extracted trend by a one-sided HP filter at time t is constructed
as the Kalman filter estimate of τt in the following model:

yt = τt + εt

τt = 2τt−1 − τt−2 + ηt
(A.20)

where yt is the logarithm of the time series, τt is the unobserved trend component and εt, ηt
are mutually uncorrelated white noise sequences with relative variance q = V ar[ηt]/V ar[εt]. For
producing the estimate τt, we must rewrite system (A.20) in a state-space representation. Then,
the recursive procedure described in (A.18) can be used to obtain ξ̂1|0, ξ̂2|1, . . . , ξ̂T|T−1. This is
accomplished by setting

ξt = [τt, τt−1]′, yt = yt, A = 0, F =

{
2 −1
1 0

}
,

H =

{
1
0

}
,Q =

{
1
λ 0
0 0

}
and R = 1.

(A.21)

From the construction of ξt in (A.21), we obtain the trend components τ1, . . . , τT using a one-
sided HP filter.

A.2.2 Iterative two-sided HP filter

The second approach makes use of the two-sided HP filter iteratively. As discussed in (Mehra
2004), the one-sided HP filter extracts the trend component τt in the following way:

1. Determine the trend {τ̃s, s = 1, . . . , t} with a two-sided HP filter using all data up to time
t;

2. Set τt = τ̃t.

By repeating this procedure for all t = 1, 2, . . . , T the trend extraction by a one-sided HP filter
is achieved. Note that, each trend component τt is determined by using only data up to time
t. This iterative procedure is easily extended to extract simultaneously the trend components of
several time series yi, i = 1, . . . , k, where yi = [yi1, . . . , y

i
T ]′. In the second approach we rely on

the use of the two-sided HP filter. The matrix A of (A.4) is easily determined if we assume that
all time series yi have the same length. Let y denote the matrix, where each column consists of
the values of the time series yi, i.e.,

y = [y1, . . . ,yk]. (A.22)

Then, the matrix τ , where each column consists of the extracted trend of the time series yi by
a two-sided HP filter, is determined by

τ = A−1y, (A.23)

where A and y are given by (A.4) and (A.22). From (A.23), it is clear that we can calculate (A.23)
easily for multiple time series. The recursive procedure given by (A.18) and (A.19) does not easily
extend to multiple time series. For this reason, the one-sided HP filter which is constructed by
using the two-sided HP filter iteratively has our preference for the trend extraction of multiple
time series.
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APPENDIX B

Convergence of the Hodrick-Presscott filter

Let {yn, n ≥ 1} denote a one-dimensional time series with the property that E[yn] → ȳ as
n→∞, where ȳ ∈ R and E[yn] <∞. The trend {τn, n ≥ 1} of the time series is extracted using
a one-sided HP filter. In Adriana (2013), it is shown that τn =

∑n
j=1 pn,jyj where the weights

pi,j are given by an exact analytical expression. In the following lemma, we prove that the trend
converges in mean to the same limit as the time series.

Lemma B.1. If the following holds:

1.
∑n
j=1 |pn,j | = cn for all n ≥ 1;

2. cn → c as n→∞;

3. for all ε > 0 there exists a N ∈ N such that for all n ≥ N :
∑n

2
j=1 |pn,j | ≤ ε and

|
∑n
j=n

2
|pn,j | − cn| ≤ ε;

4. E[yn]→ ȳ.

Then E[τn]→ ȳ as n→∞.

Proof. Note, for all n ≥ 2 the following holds:

|E[τn]− ȳ| =
∣∣∣E[ n∑

j=1

pn,jyj

]
− ȳ
∣∣∣ (B.1a)

=
∣∣∣ n∑
j=1

pn,jE[yj ]− ȳ
∣∣∣ (B.1b)

=
∣∣∣ n∑
j=1

pn,j(E[yj ]− ȳ)
∣∣∣ (B.1c)

≤
n∑
j=1

|pn,j ||E[yj ]− ȳ| (B.1d)

=

n
2∑
j=1

|pn,j ||E[yj ]− ȳ|+
n∑

j=n
2

|pn,j ||E[yj ]− ȳ| (B.1e)
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≤ sup
j=1,...,n2

|E[yj ]− ȳ|
n
2∑
j=1

|pn,j |+ sup
j≥n

2

|E[yj ]− ȳ|
n∑

j=n
2

|pn,j | (B.1f)

≤ sup
j=1,...,n2

|E[yj ]− ȳ|
n
2∑
j=1

|pn,j |+ c sup
j≥n

2

|E[yj ]− ȳ|. (B.1g)

In (B.1c) we use the fact that
∑n
j=1 pn,j = 1, see Leon (2012). Moreover, the inequality in (B.1g)

is established by noting that
∑n

n
2
|pn,j | ≤ cn ≤ c. Next, we consider the case if n→∞,

lim
n→∞

|E[τn]− ȳ| ≤ lim
n→∞

(
sup

j=1,...,n2

|E[yj ]− ȳ|
n
2∑
j=1

|pn,j |+ c sup
j≥n

2

|E[yj ]− ȳ|
)

(B.2)

= lim
n→∞

sup
j=1,...,n2

|E[yj ]− ȳ|
n
2∑
j=1

|pn,j |+ c lim
n→∞

sup
j≥n

2

|E[yj ]− ȳ| (B.3)

Because limn→∞ supj≥n
2
|E[yj ]− ȳ| = 0, there exists a K ∈ N such that supj=1,...,n2

|E[yj ]− ȳ| =
supj=1,...,K2

|E[yj ] − ȳ| for all n ≥ K. As a consequence, limn→∞ supj=1,...,n2
|E[yj ] − ȳ| < ∞.

Moreover, we know that limn→∞
∑n

2
j=1 |pn,j | = 0. Therefore,

lim
n→∞

|E[τn]− ȳ| ≤
(

lim
n→∞

sup
j=1,...,n2

|E[yj ]− ȳ|
)(

lim
n→∞

n
2∑
j=1

|pn,j |
)

+ c lim
n→∞

sup
j≥n

2

|E[yj ]− ȳ| = 0 (B.4)

By (B.4), we may conclude that E[τn]→ ȳ as n→∞.
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APPENDIX C

Long-term expectation of VAR(p) model

Let Yt = (y1,t, . . . , yn,t)
′ denote an (n × 1) vector of time series variables. The p-lag vector

autoregressive (VAR(p)) model has the form:

Yt = c+A1Yt−1 +A2Yt−2 + . . .+ApYt−p + εt+1, t = t0, . . . , T. (C.1)

Here, Yt0 is predetermined, Ai are (n× n) coefficient matrices, c ∈ Rn, E[εt+1] = 0 and

E[εt+1ετ ] =

{
Ω τ = t+ 1,
0 τ 6= t+ 1,

where Ω is a positive definite matrix. The VAR(p) model is a system in which each variable is
regressed on a constant and p of its own lags. System (C.1) is called a AR(p) model when n = 1.
We can use the lag operator notation to write a VAR(p) model more compactly, i.e.,

A(L)Yt = c+ εt+1, (C.2)

where A(L) = In −A1L− . . .−ApLp. Next, we investigate when a VAR(p) model is stationary.
There are several types of stationarity, see Tsay (2005) for more details.

Definition C.1. The time series Yt is strictly stationary if the distribution of the vector (Yt, Yt+1, . . . , Yt+h)
is independent of t, for every h ∈ N.

Definition C.2. The time series Yt is stationary (or more precisely second order stationary) if
E[Yt] and E[Yt+hYt] exist and are finite and do not depend on t, for every h ∈ N.

If the stationary condition is not satisfied, then any shock to the Yt series will lead to forecasts
with unbounded mean and variance. On the other hand, if the process is stationary, then
following such a shock, the mean of the forecasts of system (C.1) will eventually settle down and
evolves unchanged. The latter case will be referred to as the forecasts of a time series converge to
stationary state. From this, we want to determine conditions when a VAR(p) model is stationary.
In Tsay (2005), a VAR(p) model is stationary when the eigenvalues of the matrix

A1 A2 · · · Ap
In 0 · · · 0

0
. . . 0

...
0 0 In 0

 (C.3)
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have modulus less than one. Suppose that the VAR(p) model is stationary. Then, by taking the
expectation at both sides of system (C.2) results in:

A(L)µ = c, (C.4)

where µ = E[Yt]. Hence, the unconditional mean is given by:

µ = (In −A1 − . . .−Ap)−1c. (C.5)

Let’s consider the case of making forecasts for Yt. Here, we estimate the parameters of system
(C.1) using data from the historical period t = t0, . . . , tN . Next, we produce forecasts for Yt,
where the forecast horizon is specified by t = tN , . . . , T . If the VAR(p) model is stationary, it
is expected that E[Yt] converges to the steady-state level given by (C.5). This procedure can be
repeated for several forecast horizons. As a consequence, each time we must check if the VAR(p)
model is stationary. Suppose that the estimated VAR(p) models are stationary over all different
forecast horizons. Hence, the forecasts of all estimated VAR(p) models converge in mean towards
the steady-state level given by (C.5). However, it is expected that the estimated parameters c, A1

and A2 are different for each considered forecast horizon, and therefore the unconditional mean
given by (C.5).

In our modelling framework, we want that the forecasts of all estimated VAR(p) models converge
in mean towards a fixed unconditional mean µ̃. In particular, the mean µ̃ is determined such
that it contains the most recent information about the long-term expectation of the economic
time series. One way to obtain this is to set the regression constant c for all estimated VAR(p)
models equal to:

c̃ = (In −A1 − . . .−Ap)µ̃. (C.6)

Hence, the forecasts of Yt, over all different forecast horizons, converge in mean to the long-term
expectation µ̃. The adjustment of the constant c of a stationary VAR(p) given by C.6, can be
applied to the constants αy, αr, αrev and αmil of system (3.1). The dynamics of (yt+1, rt+1)
are described by a VAR(2) model. Furthermore, the dynamics of milt+1 and the marginal
distribution of revt+1 are described by an AR(1) model. Therefore, we can adjust the constants
αy, αr, αrev and αmil such that the forecasts converge in mean to the long-term expectation
µ̃ = (µ̃y, µ̃r, µ̃rev, µ̃mil). The components of the mean vector µ̃ are either observed from the
World Economic Outlook (WEO) report or estimated by taking the average of all available data.
Therefore, the components of µ̃ give the best indication about the long-term expectation of
yt+1, rt+1, revt+1 and milt+1.
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APPENDIX D

Data Information

In this Appendix, we present a description of the database used in this MSc-thesis. Moreover,
we discuss the choices which are made in order to use the database for estimating the parameters
of the Extended model.

D.1 Database for Fiscal Variables

The parameters of the Extended model are estimated using the database provided by (Mauro
et al. 2013). The database contains a new collection of fiscal variables for a large amount of
countries. In (Mauro et al. 2013), it is claimed that this database is the most comprehensive
currently available. The database covers 55 countries (24 advanced economies by present day
definition from the IMF’s World Economic Outlook classification and 31 nonadvanced) over
the period 1800-2011. The data consist of the following fiscal variables: government revenue,
goverment (non-interest) expenditure, the interest paid on public debt, government primary
balance and gross public debt. All these variables are expressed as percentages of nominal GDP.
Moreover, the database gives access to the following economic variables: real long term interest
rate and annual return of real GDP. All fiscal variables provided by the database are published
at the end of each available year.

Now, we discuss the choices which are made in order to use the database from (IMF) for es-
timating the parameters of the Extended model. Firstly, the choice of government level is an
important consideration. We consider two types of levels: general government and state gov-
ernment. The general government is responsible for the security of the whole country, whereas
the state government looks after the developmental needs of their people and territory only.
Moreover, the general government shares revenues with the state government according to a
pre decided regulation. The database consists of general government level whenever available.
This level is more preferable because the general government is in the end accountable for the
liabilities of the whole country. It is stated in (IMF) that general government data is hardly
available for all considered countries before 1960. As a result, the government level changes for
most countries around the period 1960-1970. As an example, we plot the Italian government
revenue-to-GDP time series over the period 1950-2011 in Figure D.1.
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Figure D.1: Revenue-to-GDP ratio over period 1950-2011

From Figure D.1, the revenue-to-GDP time series displays the change in government level around
the period 1965-1968. In particular, the general government level is available starting from the
year 1968. From this, we use only data from the period when general government level is available
for estimating the parameters of the Extended model. Finally, we only use data from the post
Second World War (WWII) period because this event is rather unique. And moreover, data from
the WWII period is not representative for analysing debt sustainability in the present economic
circumstances.
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APPENDIX E

Results for Relationship between the Indicator and the
Interest rate spreads

In this Appendix, the results of verifying the relationship between the indicator and the interest
rate spreads are presented for the following countries: the United States (US), France (FR),
Portugal (PRT), the United Kingdom (UK), Italy (IT), Belgium (BEL), Germany (GER), the
Netherlands (NL) and Finland (FIN).

ρ(I(5y), S(5y)) ρ(I(15y), S(15y)) ρ(I(20y), S(20y)) ρ(I(30y), S(30y))
US(1995-2011) 0.68 0.60 0.57 0.68
FR(2000-2011) 0.62 0.64 0.66 0.40
PRT(1995-2011) -0.52 -0.13 -0.20 -0.09
UK(1995-2011) 0.74 0.09 -0.02 -0.14
IT(1997-2011) 0.27 -0.36 -0.32 0.09
BEL(1995-2011) 0.70 0.51 0.1 -0.37
GER(1996-2011) 0.19 -0.04 0.30 0.55
NL(1996-2011) 0.71 0.32 0.28 0.08
FIN(1996-2011) 0.33 0.07 0.09 0.22

Table E.1: Results of criterion 1

k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.539/0.686 Yes Yes/Yes
15y 0.301/0.334 Yes Yes/No
20y 0.356/0.451 Yes Yes/No
30y 0.404/0.405 Yes Yes/No

Table E.2: UK(1995-2011)
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k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.389/0.481 Yes Yes/Yes
15y 0.102/0.399 No Yes/Yes
20y 0.107/0.184 No No/No
30y 0.021/0.025 No No/No

Table E.3: IT(1997-2011)

k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.337/0.544 Yes No/Yes
15y 0.263/0.557 Yes Yes/Yes
20y 0.160/0.255 No Yes/No
30y 0.011/0.136 No No/No

Table E.4: BEL(1995-2011)

k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.319/0.331 Yes Yes/No
15y 0.153/0.217 No No/No
20y 0.072/0.072 No No/No
30y 0.378/0.412 Yes Yes/No

Table E.5: GER(1996-2011)

k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.337/0.595 No No/Yes
15y 0.080/0.083 No No/No
20y 0.085/0.095 No No/No
30y 0.252/0.272 No No/No

Table E.6: NL(1996-2011)

k Model (5.6a)/(5.6b): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.6b)
5y 0.320/0.388 Yes Yes/No
15y 0.258/0.782 Yes Yes/Yes
20y 0.246/0.724 Yes Yes/Yes
30y 0.234/0.557 Yes Yes/Yes

Table E.7: FIN(1996-2011)
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APPENDIX F

Results for Relationship between the 10-years interest rate
and the Interest rate spreads

In this Appendix, the explanatory power of the 10-years real interest rate for describing the dy-
namics of the interest rate spreads are presented for the following countries: the United Kingdom
(UK), the United States (US), France (FR), Italy (IT), Belgium (BEL), Germany (GER), the
Netherlands (NL) Portugal (PRT) and Finland (FIN).

k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.539/0.658 Yes Yes/Yes
15y 0.301/ 0.487 Yes Yes/Yes
20y 0.356/0.596 Yes Yes/Yes
30y 0.404/0.618 Yes Yes/Yes

Table F.1: UK(1995-2011)

k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.530/0.554 Yes Yes/No
15y 0.252/ 0.288 Yes Yes/No
20y 0.276/0.310 Yes Yes/No
30y 0.282/0.301 Yes Yes/No

Table F.2: US(1995-2011)

k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.568/0.632 Yes Yes/No
15y 0.365/ 0.438 Yes Yes/No
20y 0.223/0.254 No No/No
30y 0.173/0.346 No No/No

Table F.3: FR(2000-2011)
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k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.389/0.453 Yes Yes/No
15y 0.102/ 0.158 No No/No
20y 0.107/0.174 No No/No
30y 0.021/0.031 No No/No

Table F.4: IT(1997-2011)

k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.337/0.394 Yes Yes/No
15y 0.263/ 0.673 Yes No/Yes
20y 0.160/0.486 No No/Yes
30y 0.009/0.269 No No/Yes

Table F.5: BEL(1995-2011)

k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.319/0.394 Yes Yes/No
15y 0.153/ 0.246 No No/No
20y 0.072/0.102 No No/No
30y 0.378/0.503 Yes No/No

Table F.6: GER(1996-2011)

k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.337/0.430 No No/No
15y 0.080/ 0.111 No No/No
20y 0.085/0.122 No No/No
30y 0.252/0.273 No No/No

Table F.7: NL(1996-2011)

k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.074/0.227 No No/No
15y 0.014/ 0.157 No No/No
20y 0.099/0.337 No No/Yes
30y 0.220/0.405 Yes No/Yes

Table F.8: PRT(1995-2011)

k Model (5.6a)/(5.7): R2 Is α significant in (5.6a) ? Are α, β significant? in (5.7)
5y 0.320/0.482 Yes Yes/No
15y 0.258/ 0.488 Yes Yes/Yes
20y 0.246/0.462 Yes Yes/Yes
30y 0.234/0.425 Yes Yes/Yes

Table F.9: FIN(1996-2011)
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APPENDIX G

Expected value of the steady-state equilibrium

In order to investigate the local stability of system (6.48), we assume that the expected value of
the steady-state equilibrium E[θ̄] = (E[r∞],E[y∞],E[s∞],E[d∞]) exists, where yt → y∞ in weak
converge, see Vaart (2013) for more details. Here, we explain the procedure for determining E[θ̄].
From system (6.48), we can rewrite the steady-state s∞ as follows:

s∞ =
α+ ρd∞ + εs∞

1− β
. (G.1)

By substituting (G.1) in the steady-state d∞, we obtain the following expression:

d∞ =
−(α+ εs∞)(1 + r∞)

(1− β)(y∞ − r∞) + ρ(1 + r∞)
. (G.2)

Since system (6.48) is non-linear, it is challenging to find an expression for E[θ̄]. Therefore,
we apply a Taylor expansion for d∞ around (E[εs∞],E[y∞],E[r∞]), see Ang and Tang (2007)
for more details. For each country, the steady-state levels E[y∞] and E[r∞] are known, see
Appendix C. Moreover, we assume that E[εs∞] = 0. An approximation for E[d∞] is found
by applying Theorem 6.6 and taking expectations at both sides of the Taylor expansion. For
simplicity, we denote Y = d∞, X1 = εs∞, X2 = y∞ and X3 = r∞. Then, the second order Taylor
expansion for E[Y ] is given by:

E[Y ] ≈ g(E[X1],E[X2],E[X3]) +
1

2

3∑
i=1

3∑
j=1

ρi,jσiσj

( ∂2g

∂Xi∂Xj

)
, (G.3)

where

g(X1, X2, X3) =
−(α+X1)(1 +X3)

(1− β)(X2 −X3) + ρ(1 +X3)
. (G.4)

By (6.49) it is given that ρ1,2 = ρ2,1 = ρ1,3 = ρ3,1 = 0. Therefore, many components of the
summation in (G.3) have the value zero, i.e.,
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E[Y ] ≈ g(E[X1],E[X2],E[X3]) +
1

2
V ar(X1)

∂2g

∂X2
1

+
1

2
V ar(X2)

∂2g

∂X2
2

+ Cov(X2, X3)
∂2g

∂X2∂X3

+
1

2
V ar(X3)

∂2g

∂X2
3

,

(G.5)

where

∂g

∂X1
=

−(1 +X3)

(1− β)(X2 −X3) + ρ(1 +X3)
,

∂2g

∂X2
1

= 0,

∂g

∂X2
=

(α+X1)(1 +X3)(1− β)

((1− β)(X2 −X3) + ρ(1 +X3))2
,

∂2g

∂X2
2

=
−2(α+X1)(1 +X3)(1− β)2

((1− β)(X2 −X3) + ρ(1 +X3))3
,

∂g

∂X3
=

−(α+X1)

(1− β)(X2 −X3) + ρ(1 +X3)
− (α+X1)(1 +X3)(1− β − ρ)

((1− β)(X2 −X3) + ρ(1 +X3))2
,

∂2g

∂X2
3

=
−2(α+X1)(1− β − ρ)

((1− β)(X2 −X3) + ρ(1 +X3))2
− 2(α+X1)(1 +X3)(1− β − ρ)2

((1− β)(X2 −X3) + ρ(1 +X3))3
,

∂2g

∂X2∂X3
=

(α+X1)(1− β)

((1− β)(X2 −X3) + ρ(1 +X3))2
+

2(α+X1)(1 +X3)(1− β − ρ)(1− β)

((1− β)(X2 −X3) + ρ(1 +X3))3
.

This results in the following final expression for E[d∞]:

E[d∞] ≈ g(E[εs∞],E[y∞],E[r∞]) +
1

2
V ar(y∞)

∂2g

∂y2∞
(E[εs∞],E[y∞],E[r∞])

+ Cov(y∞, r∞)
∂2g

∂y∞∂r∞
(E[εs∞],E[y∞],E[r∞]) +

1

2
V ar(r∞)

∂2g

∂r2∞
(E[εs∞],E[y∞],E[r∞]).

(G.6)

By taking expectations in (G.1) at both sides and substituting (G.6), we obtain an approximation
for E[s∞]. Hence, we have an approximation for E[θ̄] = (E[y∞],E[r∞],E[s∞],E[d∞]).
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APPENDIX H

Economic forecasts produced by the Extended model

In this Appendix, we show for several countries the economic forecasts produced by the Extended
model. These forecasts are supplementary to the results produced in Chapter 6. In particular,
we consider the following cases:

� In H.1, we estimate the parameters of the Extended model for Germany using data over the
period t = 1970, . . . , 1995. We produce forecasts with the Extended model until the year
2021. The Figure shows that the forecasts of the primary expenditure and the government
debt doesn’t converge to a stationary state.

� In H.2, we estimate the parameters of the Extended model for Germany using data over
the period t = 1970, . . . , 1996. We produce forecasts with the Extended model until the
year 2021. The Figure shows the convergence of all economic variables to the stationary
state.

� In H.3, we estimate the parameters of the Extended model for Finland using data over the
period t = 1970, . . . , 1995. We produce forecasts with the Extended model until the year
2021. The Figure shows that the forecasts of the government debt doesn’t converge to a
stationary state.

� In H.4, we estimate the parameters of the Extended model for Portugal using data over the
period t = 1976, . . . , 2010. We produce forecasts with the Extended model until the year
2031. The Figure shows that the forecasts of the primary expenditure and the government
debt doesn’t converge to a stationary state.

� In H.5, we estimate the parameters of the Extended model for France using data over the
period t = 1978, . . . , 2009. We produce forecasts with the Extended model until the year
2031. The Figure shows that the forecasts of the primary expenditure and the government
debt doesn’t converge to a stationary state.
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Figure H.1: Economic variables for Germany: historical data (black-dotted) and deciles of the
forecast (red). The R2

rev = 0.40, R2
exp = 0.69, R2

r = 0.25 and R2
y = 0.23
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Figure H.2: Economic variables for Germany: historical data (black-dotted) and deciles of the
forecast (red). The R2

rev = 0.42, R2
exp = 0.37, R2

r = 0.24 and R2
y = 0.24
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Figure H.3: Economic variables for Finland: historical data (black-dotted) and deciles of the
forecast (red). The R2

rev = 0.91, R2
exp = 0.94, R2

r = 0.77 and R2
y = 0.73
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Figure H.4: Economic variables for Portugal: historical data (black-dotted) and deciles of the
forecast (red). The R2

rev = 0.94, R2
exp = 0.94, R2

r = 0.51 and R2
y = 0.47
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Figure H.5: Economic variables for France: historical data (black-dotted) and deciles of the
forecast (red). The R2

rev = 0.75, R2
exp = 0.81, R2

r = 0.74 and R2
y = 0.25
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