

Delft University of Technology

The Quantum Lattice Boltzmann Methods
Towards Quantum Methods for Computational Fluid Dynamics
Schalkers, M.A.

DOI
10.4233/uuid:3135467d-5b5b-42c7-b3b5-75f9f82919ea

Publication date
2026
Document Version
Final published version
Citation (APA)
Schalkers, M. A. (2026). The Quantum Lattice Boltzmann Methods: Towards Quantum Methods for
Computational Fluid Dynamics. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:3135467d-5b5b-42c7-b3b5-75f9f82919ea

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:3135467d-5b5b-42c7-b3b5-75f9f82919ea
https://doi.org/10.4233/uuid:3135467d-5b5b-42c7-b3b5-75f9f82919ea

THE QUANTUM LATTICE BOLTZMANN METHOD

TOWARDS QUANTUM METHODS FOR COMPUTATIONAL FLUID
DYNAMICS

THE QUANTUM LATTICE BOLTZMANN METHOD

TOWARDS QUANTUM METHODS FOR COMPUTATIONAL FLUID
DYNAMICS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. H. Bijl,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 3 februari 2026 om 15:00 uur

door

Merel Annelise SCHALKERS

Master of Science in Applied Mathematics,
Technische Universiteit Delft,

geboren te Voorhout, Nederland

Dit proefschrift is goedgekeurd door de promotors.

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Em. Prof. dr. ir. C. Vuik, Technische Universiteit Delft Promotor
Dr. rer. nat. M. Möller, Technische Universiteit Delft Promotor
Dr. D. de Laat, Technische Universiteit Delft Copromotor

Onafhankelijke leden:
Prof. dr. ir. J.T. Padding Technische Universiteit Delft
Prof. dr. J. Kowalski Rheinisch-Westfälische Technische

Hochschule Aachen, Duitsland
Prof.ḋr. J. Schumacher Technische Universität Ilmenau,

Duitsland
Dr. R. Steijl University of Glasgow, Verenigd

Koninkrijk
Prof. dr. ir. M.B. van Gi-
jzen

Technische Universiteit Delft reservelid

Het onderzoek in dit proefschrift is mede gefinancierd door Fujitsu ltd en de Rijksdienst
voor Ondernemend Nederland onder projectnummer PPS23-3-03596728.

Keywords: Quantum Computing, The Boltzmann Equation, The lattice Bolzmann Method,
Quantum Computational Fluid Dynamics

Cover Design by E.M. Schalkers

Copyright © 2025 by M.A. Schalkers

ISBN 978-94-6536-019-5

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Voor mijn zus, moeder, oma en
alle vrouwen die mij voorgegaan zijn.

CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Goals of this thesis . 2
1.2 Structure of this thesis . 2
1.3 Introduction to quantum computing . 2

1.3.1 Qubits . 3
1.3.2 Measurement . 4
1.3.3 Quantum computation and gates 6
1.3.4 Practical quantum computing . 6

1.4 Introduction to fluid dynamics and the lattice Boltzmann method 8
1.4.1 Navier-Stokes . 8
1.4.2 Lattice gas automata . 8
1.4.3 The Boltzmann equation. 11

1.5 Introduction to quantum computational fluid dynamics 14

2 Quantum algorithm for the transport equation 23
2.1 Introduction . 24
2.2 The transport equation . 25

2.2.1 Grid definition and obstacle placement 26
2.2.2 Streaming . 26
2.2.3 Reflection by an obstacle. 28

2.3 Quantum register set-up . 29
2.3.1 Efficient mapping of velocity vector 30
2.3.2 Mapping of grid point locations onto qubit states 32
2.3.3 Ancillae . 32

2.4 Efficient quantum streaming operation 32
2.4.1 Efficient quantum incrementation (decrementation) 32
2.4.2 Streaming step . 34

2.5 Quantum specular reflection step. 37
2.5.1 Specular reflection steps - requirements and possible breakdown

cases . 37
2.5.2 Fail-safe specular reflection - 2D case 38
2.5.3 Fail-safe specular reflection - 3D case 41
2.5.4 Efficient object encoding. 42
2.5.5 Quantum Comparison Operation 44

vii

viii CONTENTS

2.6 Results . 45

2.7 Complexity analysis . 48

2.7.1 Complexity of multi-controlled NOT operations 49

2.7.2 Complexity of our QTM solver . 50

2.7.3 Complexity of alternative QTM implementations 52

2.7.4 Complexity comparison of incrementation operations 53

2.7.5 Tabular overview of complexities 53

2.8 Conclusion and outlook. 54

3 Quantum momentum exchange method 57
3.1 Introduction . 57

3.2 The Lattice Boltzmann Method . 58

3.3 Momentum Exchange Method . 58

3.4 Quantum Lattice Boltzmann Method . 60

3.5 Quantum bounce back boundary conditions 61

3.6 Quantum momentum exchange method 67

3.6.1 Momentum exchange method as an observable 68

3.7 Practical implementation of the momentum exchange method on a quan-
tum computer . 70

3.7.1 Implementation using ancilla qubits for bounce back boundary con-
ditions . 70

3.7.2 Proof of method . 71

3.8 Conclusion . 71

4 On the importance of data encoding in quantum Boltzmann methods 77
4.1 Introduction . 77

4.2 Data encoding . 78

4.2.1 Amplitude based encoding. 79

4.2.2 Computational basis state encoding 81

4.2.3 Intuition and extension of non-unitarity proofs 84

4.3 Conclusion . 85

5 The space-time method 89
5.1 Introduction . 89

5.2 Lattice gas vs lattice Boltzmann . 90

5.3 Data encoding . 90

5.4 Collision for space-time encoding . 92

5.4.1 Particle density inspired collision operation 94

5.5 Streaming for space-time encoding . 95

5.6 Complexity analysis . 97

5.6.1 Number of qubits required. 97

5.6.2 Circuit depth. 97

5.7 Conclusion and outlook. 98

CONTENTS ix

6 Conclusion and discussion 103
6.1 Overview of results . 104

6.1.1 Amplitude based encoding. 104
6.1.2 Proofs of impossibility for amplitude based and computational ba-

sis state encoding . 104
6.1.3 Space-time encoding . 104

6.2 Three open questions . 105

Acknowledgements 107

Curriculum Vitæ 109

List of Publications 111

SUMMARY

There are certain computational problems that a quantum computer is expected to be
able to solve more efficiently than a classical compute device. However, due to their
specific structure and properties, quantum computers will not be beneficial for all types
of computations. One potential use-case of interest is the so-called lattice Boltzmann
method, which is a computational approach that can be used to model the flow of fluid.
The lattice Boltzmann method models fluid flow by dividing the process into its two nat-
ural steps of streaming and collision and simulating them separately. This means that
the method is naturally split up into a linear and a local step, this structure is potentially
interesting for quantum computers as they portray naturally linear behavior and local
computations can be done in parallel. The aim of this thesis is to determine how quan-
tum computers could be used to implement a quantum Lattice Boltzmann method and
if such an implementation would constitute a speed-up over classical methods. In Chap-
ter 1 we give a brief introduction to quantum computing, computational fluid dynamics
(CFD), the Boltzmann method and the field of quantum CFD.

Chapter 2 presents our quantum implementation of a lattice Boltzmann inspired ap-
proach to solve the transport equation. The transport equation is essentially a Boltz-
mann equation without external forces or a collision term. The transport equation is
sometimes referred to as the Vlasov equation or the collisionless Boltzmann equation.
Due to the inherent linearity of this equation we can efficiently solve it on a quantum
computer. In this chapter we present a more efficient method of streaming than used by
former approaches by making use of the quantum Fourier transform. We furthermore
present efficient and fail-safe methods for simulating the interaction of particle densities
with the boundaries of an object.

In Chapter 3 we develop a measurement strategy that can be used to determine the
force exerted on an object by the particle flow. The measurement strategy is based the
momentum exchange method and therefore called the quantum momentum exchange
method. This strategy can be used to efficiently determine the force exerted on an object
in certain use cases.

Chapter 4 discusses the problem of extending quantum methods for the transport
equation to include a collision step and quantum collision methods to include a stream-
ing step. This is done be realizing that transport methods make use of an amplitude
based encoding and collision only methods make use of a computational basis state en-
coding. We use this realization to show that in fact, for those encodings, it is not pos-
sible to add a collision or streaming step in a way that maintains unitarity. The reason
we cannot add a collision step to an amplitude based encoding is because the operator
implementing a collision step that makes physical sense cannot be a unitary operator.

xi

xii SUMMARY

Similarly we cannot design a streaming step for computational basis state encodings as
streaming is inherently non-local and in order to determine the encoding at each grid
point we need information from all the adjoining grid points to do this correctly, this
again runs into trouble with the fact that only unitary operations are possible on a quan-
tum computer.

In Chapter 5 we present the space-time encoding. The space-time encoding is de-
signed to circumvent the non-unitarity issues presented in Chapter 4. This is done by
an extended computational basis state encoding, which takes into account a larger part
of the grid at each point in space. The downside of this approach is that the number of
qubits required to encode the grid grows polynomially.

Chapter 6 summarizes our results and presents three open questions in the field of
quantum algorithms for the Boltzmann equation that need to be answered in order to
determine whether or not quantum computing can present a speed-up over classical
methods for the Boltzmann method in certain use cases.

SAMENVATTING

Er bestaan problemen die kwantumcomputers efficiënter kunnen oplossen dan klas-
sieke computers. Het is echter zo dat, door de specifieke eigenschappen van kwan-
tumcomputers, deze niet voor alle type problemen geschikt zullen zijn. Een potenti-
ële toepassing voor kwantumcomputers is de Lattice Boltzmann methode. De lattice
Boltzmann methode is een techniek die gebruikt wordt in de numerieke stromingsleer,
om vergelijkingen zoals de Navier-Stokes vergelijkingen op te lossen. Lattice Boltzmann
methodes kunnen stromingen simuleren door het proces op te delen in twee delen, be-
staande uit stromen en botsen. Die stromings- en botsingsstap kunnen vervolgens los
van elkaar gesimuleerd worden. Dit betekent dat de methode natuurlijk op te delen is in
een lineaire en een lokale stap, deze eigenschap is interessant voor kwantumcomputers
aangezien zij van nature lineaire operaties kunnen uitvoeren en daarnaast lokale opera-
ties kunnen paralleliseren. Het doel van dit proefschrift is om te bepalen hoe kwantum-
computers gebruikt kunnen worden om de lattice Boltzmann methode te implemente-
ren en of zo’n implementatie een versnelling kan betekenen ten opzichte van klassieke
methodes. In Hoofdstuk 1 geven we een korte inleiding over kwantumcomputers, nu-
merieke stromingsleer, de Boltzmann methode en het nieuwe vakgebied van quantum
numerieke stromingsleer.

Hoofdstuk 2 presenteert onze kwantumimplementatie van een lattice Boltzmann
geïnspireerde techniek om de transport vergelijking op te lossen. De transport verge-
lijking is in principe gelijk aan de boltzmann-vergelijking zonder krachtterm waarvan
tevens de botsingsterm is weggelaten. De transport vergelijking wordt soms de vlasov-
vergelijking genoemd. Door de lineariteit van deze vergelijking kunnen wij hem efficiënt
op een kwantumcomputer oplossen. In dit hoofdstuk presenteren we een efficiëntere
manier om de stromingsfunctie te implementeren dan eerdere methodes gebruikt heb-
ben. Onze implementatie van de stromingsfunctie is geïnspireerd door de Draper adder
en maakt zodoende gebruik van de fouriertransformatie. Daarnaast presenteren we een
efficiënte en correcte methode om de interactie tussen deeltjes en oppervlaktes van een
object te simuleren.

In Hoofdstuk 3 presenteren we een metingsstrategie die gebruikt kan worden om de
kracht die op een object wordt uitgeoefend door de stromende deeltjes te bepalen. De
metingsstrategie is gebaseerd op de momentum uitwisselingsmethode en hebben wij
daarom de quantum momentum uitwisselingsmethode genoemd. In bepaalde gevallen
kan deze strategie gebruikt worden om efficiënt de kracht die op een object wordt uitge-
oefend door de stromende deeltjes te bepalen.

Hoofdstuk 4 bekijkt in hoeverre het mogelijk is om het kwantumalgoritme voor de
transport vergelijking uit te breiden zodat er een botsingsstap aan toegevoegd wordt

xiii

xiv SAMENVATTING

en het kwantumalgoritme voor de botsing stap uit te breiden zodat er een stromings-
stap aan toegevoegd wordt. Hierbij merken wij eerst op dat kwantumalgoritmes voor
de transportvergelijking gebruik maken van encoding technieken die gebaseerd zijn op
de amplitudes van de kwantumstaten terwijl kwantumalgoritmes voor de botsingsstap
gebruik maken van de basisvectoren encoding. We gebruiken deze realisatie om te la-
ten zien dat het voor deze encoderingen niet mogelijk is om een botsing- of stromings-
stap toe te voegen op een manier die de unitariteit van de kwantum operatie behoudt.
De reden dat we geen botsingsstap kunnen toevoegen aan een amplitude gebaseerde
encodering is dat de botsingsoperatie in deze encodering per definitie niet unitair kan
zijn. Evenzo kunnen we geen stromingsstap toevoegen aan een basisvectoren encode-
ring omdat stromen per definitie een niet lokale operatie is en de enige manier om de
encodering op elk gridpunt na het stromen te bepalen is door informatie die uit alle om-
ringende gridpunten komt te combineren.

In Hoofdstuk 5 presenteren we de zogenaamde space-time encodering. Space-time
encodering is ontwikkeld om de problemen met unitariteit beschreven in het vorige
hoofdstuk te voorkomen. Deze encodering is in wezen een uitbreiding van de basisvec-
tor encodering waarin het idee van lokaliteit wordt uitgebreid om alle gridpunten mee
te nemen die in het totale aantal tijdstappen bereikt kunnen worden. Op deze manier
groeit het aantal qubits dat nodig is om de gridpunten te beschrijven met een macht die
gelijk is aan het aantal dimensies die we willen simuleren.

Hoofdstuk 6 bespreekt drie open problemen in het vakgebied van kwantum algorit-
mes voor de Boltzmann vergelijking die nog beantwoord moeten worden om te kunnen
bepalen of quantum algoritmes een speed-up kunnen betekenen ten opzichte van klas-
sieke methodes voor de lattice Boltzmann method.

1
INTRODUCTION

Quantum computing is a novel compute technology, with the promise of solving certain
problems more efficiently than classical computers can. One question that remains is if
quantum computers can be of help in solving problems of fluid dynamics. Whilst it is of
great importance to many industries such as aviation, medicine and the automotive in-
dustry, certain types of fluid flow remain difficult to predict. The main bottleneck is com-
putational power. As classical computers are becoming more and more powerful, more
realistic fluid flow simulations can be performed, but with stagnation of Moore’s law this
increase will also grind to a halt without the development of novel algorithms. This leads
to the question if new compute technologies, such as quantum computing, can be used
to reach a speed-up in the field of computational fluid dynamics. Specifically we consider
the Boltzmann method which, due to its characteristic where fluid flow is modeled by con-
sidering collision and streaming separately, makes an interesting candidate.

Parts of this chapter have been published in the Journal of Computational Physics, Quantum Information
Processing, Computers and Fluids and the VKI Lecture notes [31, 33, 32]

1

1

2 1. INTRODUCTION

1.1. GOALS OF THIS THESIS
Quantum computers are theoretically extremely powerful but specific compute devices.
Currently there are some known theoretical advantages of quantum computers over clas-
sical computers, such as the algorithms presented in [34, 13]. Whilst quantum comput-
ing will prove advantageous for solving some problems, it will not prove beneficial for
other types of problems. The goal of this thesis is to investigate how quantum computers
can be used to solve the Boltzmann equation, and whether they can create some compu-
tational speed-up over classical computers in doing so. In order to achieve this we first
present an algorithm designed for solving the transport equation. The transport equa-
tion is also referred to as the collisionless Boltzmann equation and as such this can be
used in settings where for physical reasons the collision term can be neglected. We then
extend our research by investigating ways in which we can add a collision term. The aim
of this part of the thesis is two-fold, we first analyzed the commonly used data encoding
techniques in quantum computing. We subsequently show that for these data encod-
ing techniques there is no way to solve the full Boltzmann equation without restarting
techniques, as this clashes with the unitarity constraints. We then propose a third data
encoding technique for which we show that it is possible to perform a collision operation
to reach a method that resembles the lattice gas models of the 1970’s [15]. This imple-
mentation, unfortunately, comes at a qubit cost growing polynomially with the number
of timesteps taken.

1.2. STRUCTURE OF THIS THESIS
We first give a general introduction to the fields of quantum computing and fluid dy-
namics, to the extent that is necessary to understand this thesis. We end the first chap-
ter with an overview of related research that has been done in this field. Chapter 2 is
based on the published paper [31] and shows how one can implement an algorithm for
solving the transport equation. The next chapter, Chapter 3, is based on the paper [32]
and provides an efficient method of reading out a quantity of interest from the resulting
quantum state. In Chapter 4 we investigate the two main encoding methods known for
quantum computational fluid dynamics to show that for both methods it is not possible
to extend them to include both collision and streaming without breaking the unitarity
requirement of quantum computers. In Chapter 5 we subsequently show that by look-
ing at the proofs of why we cannot include a collision and streaming step in the existing
encodings, one can find an encoding method that does allow a collision and streaming
operation to take place. Both Chapter 4 and Chapter 5 are based on the paper [33]. In the
conclusion 6 we summarize the results of this thesis and identify three open questions
that remain to be answered in the field of quantum Boltzmann methods.

1.3. INTRODUCTION TO QUANTUM COMPUTING
Quantum theory was largely developed in the 1920s, whilst computers had their first big
boom in the 1940s and 1950s. For many years these disciplines remained completely
separated until the 1980s when Paul Benioff proposed the idea of what he called a quan-
tum Turing machine [2, 1]. Around the same time Feynman [10] and Manin [24, 25] also
suggested the idea of computers based on quantum theory, their ideas being motivated

1.3. INTRODUCTION TO QUANTUM COMPUTING

1

3

by the exponential costs faced when modeling quantum systems on classical computing
devices. From this moment on slowly but surely algorithms for these new compute de-
vices were being developed. The most noteworthy of these algorithms is Shor’s algorithm
[34], which can be used to break the commonly used RSA encryption in polynomial time.
This sparked a huge interest in the field of quantum algorithms and potential hardware
from many stakeholders such as industry and government.

In this section we introduce the fundamentals of quantum computing necessary
to understand quantum fluid dynamics for the non-expert. We will first introduce the
mathematical theory behind quantum computing and in later sections we will discuss
the practical elements of writing programs to run on physical quantum computers. In
this thesis we only consider gate-based quantum computing, as such we will not give an
introduction for a different type of computing or consider methods for different types of
quantum computers. Note that this section is not meant to provide an extensive intro-
duction to the entire field, for those interested in further reading we suggest [25, 37].

1.3.1. QUBITS

Quantum computers are built up using the quantum counterparts of classical bits, namely
quantum bits or qubits. Quantum computers make use of the quantum mechanical
properties of nature, as such qubits have different properties than their classical coun-
terparts and different operations can be applied to them. Where a bit can be either 0
or 1, a qubit can hold a complex linear combination of basis states. First of all, we ex-
press the states of a qubit using Dirac’s braket notation. As such the quantum version
of the state 0 will be written as |0〉 and of the state 1 as |1〉. More importantly, however,
quantum states are not restricted to being either in the state |0〉 or |1〉, but can be in a
so-called superposition of the two. Mathematically this superposition can be thought of
as a complex linear combination, or a unit vector in complex space. A single qubit can
hold any value of the form

|ψ〉 =α0 |0〉+α1 |1〉 , α0,α1 ∈C, |α0|2 +|α1|2 = 1, (1.1)

whereby the αi are referred to as the probability amplitudes.

We can interpret the computational basis states |0〉 and |1〉 as vectors in a 2-dimensional
Hilbert space, this gives

|ψ〉 =α0 |0〉+α1 |1〉 =α0

[
1
0

]
+α1

[
0
1

]
=

[
α0

α1

]
, (1.2)

where |0〉 and |1〉 represent the computational basis states and α0 and α1 are the coeffi-
cients.

When describing a two qubit quantum state, we take the so-called Kronecker product
between the two single qubit states.

1

4 1. INTRODUCTION

|ψ0〉 |ψ1〉 = (α0 |0〉+α1 |1〉)⊗
(
β0 |0〉+β1 |1〉

)
=α0β0 |00〉+α0β1 |01〉+α1β0 |10〉+α1β1 |11〉

= γ0


1
0
0
0

+γ1


0
1
0
0

+γ2


0
0
1
0

+γ3


0
0
0
1

=


γ0

γ1

γ2

γ3

 ,

(1.3)

where we again have that γi ∈C and
∑

i |γi |2 = 1 hold.
We can simplify this notation by noting that we can replace the binary expressions of

the qubit state by their decimal values. This leads to the expression

|ψ0〉 |ψ1〉 =α0β0 |00〉+α0β1 |01〉+α1β0 |10〉+α1β1 |11〉
=α0β0 |0〉+α0β1 |1〉+α1β0 |2〉+α1β1 |3〉

=
3∑

k=0
γk |k〉 .

(1.4)

Adding a qubit results in the total space being doubled when the Kronecker product
is taken. This means that for an n qubit quantum state a vector of size 2n is required to
express it. Another way to interpret this is by noting that an n qubit state lives in a 2n

dimensional complex vector space. This large dimensionality results in one of the main
powers of quantum computing. When properly exploited, we can work in an exponen-
tially large space compared to classical compute technologies with n bits.

We write an n qubit quantum state as

|ψ〉 = ∑
b∈{0,1}n

αb |b〉 =
2n−1∑
k=0

αk |k〉 , αb ,αk ∈C,
∑

b∈{0,1}n
|αb |2 =

2n−1∑
k=0

|αk |2 = 1. (1.5)

As before an n qubit state |ψ〉 can be interpreted as a 2n dimensional complex unit vector.

1.3.2. MEASUREMENT
As stated above, an n qubit quantum system can be interpreted as a complex 2n dimen-
sional unit vector. This implies that we can work in an exponentially large space, but
there is a very important practical caveat related to measurement. When measuring a
single qubit in a basis we do not extract the full quantum state, we only find one of the
two possible basis states that the qubit is in. The probability of finding each basis state
is determined by its amplitudes. For instance, consider the state we saw before

|ψ〉 =α0 |0〉+α1 |1〉 . (1.6)

The probability of finding |0〉 upon measurement in the computational basis is |α0|2,
similarly the probability of finding |1〉 is |α1|2. Even though the quantum state itself can
have an infinite amount of information encoded in it, this measurement principle im-
plies that we cannot easily retrieve this information.

1.3. INTRODUCTION TO QUANTUM COMPUTING

1

5

With multiple qubits the principles of measurement in a basis remain the same. Con-
sider the n qubit state

|ψ〉 = ∑
b∈{0,1}n

αb |b〉 , (1.7)

then upon measurement finding the state |b〉 has a probability of |αb |2. This shows that
even though you can work in an exponentially large space, you cannot retrieve the total
state and the larger the space the more measurements are required to get a good descrip-
tion of the total quantum state. This implies that a good quantum algorithm should not
rely on reading out a very large and spread out quantum state towards the end.

When measuring a quantum state and finding a certain basis state the quantum sys-
tem collapses to that state. Consider the example above, the n qubit state as expressed in
Equation (1.7). Upon measurement one of the basis states is found with a probability as
expressed by the amplitudes. Then, after measurement, the quantum state has changed.
If, upon measurement, the quantum system is found to be in the state |l〉, then from that
moment on the system becomes

αl

|αl |
|l〉 . (1.8)

Another way to express this is is that upon measurement the superposition collapses
onto a single basis state.

It is also possible to measure just one qubit of a multiple qubit system. Consider the
state as presented in (1.7) measuring the l-th qubit and finding it in the state |0〉 (|1〉)
amounts to the system ψ collapsing to the states for which the l -th digit is equal to 0 (1)
in its binary expression. That means that after measurement the state collapses to

1∑
b∈C |α2

b |
∑

b∈C
αb |b〉 , (1.9)

where C ⊂ {0,1}n s.t. ∀b ∈C the l -th bit is equal to 0 (1). This is related to the concept of
entanglement as further explained below.

ENTANGLEMENT

Entanglement refers to the states of two separate qubits somehow being dependent on
each other. Consider the two qubit quantum state

|ψ〉 =
3∑

k=0
αk |k〉 . (1.10)

Now consider that the only states with nonzero amplitude are |00〉 and |11〉 with ampli-
tude 1p

2
, this gives the Bell state

|ψ〉 = 1p
2

(|00〉+ |11〉) , (1.11)

which is a typical example of a state where the qubits are entangled. Consider the first
qubit. We can see from the state that whenever the first qubit is in the state |i 〉 with

1

6 1. INTRODUCTION

i ∈ {0,1} the second qubit must also be in the state |i 〉. This property of the Bell state be-
comes most interesting upon measurement. Consider the Bell state and consider mea-
suring only the first qubit. If the first qubit is measured to be in the state |0〉, the system
collapses to that state. Therefore the part of the quantum state where the first qubit was
|1〉no longer exists. Since the two qubits were entangled, that means that now the second
qubit must also be in the state |0〉. This is what entanglement means, the measurement
of one qubit in a particular state determines the state of the other qubit.

SUPERPOSITION

Superposition is another principle inherent to quantum computing. Superposition is
the term that describes that a qubit, unlike a classical bit, does not need to be in the state
|0〉 or |1〉 but can be in this complex linear combination of the two.

Consider a quantum state

|ψ〉 = 1p
2n

2n−1∑
k=0

|k〉 . (1.12)

This state |ψ〉 is in a so-called superposition of the N = 2n computational basis states |k〉.

1.3.3. QUANTUM COMPUTATION AND GATES
In order to perform some sort of computation with the qubits, we need to be able to ma-
nipulate them. Mathematically, any unitary operation can be used to alter the quantum
state. Consider the state

|ψ〉 = 1p
2n

2n−1∑
k=0

|k〉 . (1.13)

Applying a unitary U ∈C2n×2n
to this state can be written as

U |ψ〉 =U
1p
2n

2n−1∑
k=0

|k〉 = 1p
2n

2n−1∑
k=0

U |k〉 . (1.14)

In the above equation we make use of the linearity of quantum computing. Which means
that we can apply the operation U to all basis states in a single operation. The ability to
apply an operation to multiple basis states at once is sometimes referred to as quantum
parallelism.

Such a unitary operation U could be interpreted as a quantum circuit. In order for
a quantum circuit to be implementable on a quantum computer we must express it
in terms of quantum gates. Quantum gates are small logical operators usually applied
to one to three qubits for which the direct implementation on a quantum computer is
known.

1.3.4. PRACTICAL QUANTUM COMPUTING
Current and future quantum computers are somewhat different from the theoretical
concepts of quantum computing we have described above. There are several key dif-
ferences.

The first key difference is the existence of noise and decoherence. Quantum com-
puters are inherently noisy, meaning that the state will not remain stable for long peri-
ods of time and the gate operations performed on them might slightly differ from their

1.3. INTRODUCTION TO QUANTUM COMPUTING

1

7

mathematical expression. In practice it is therefore not possible to perform reliable com-
putations that consist of many quantum gates on current quantum technologies often
referred to as Noisy Intermediate Scale Quantum (NISQ) devices. Limiting the noise of
quantum computers and coming up with methods for stable quantum computing is a
large and active area of research [7] that goes beyond the scope of this thesis. In this
thesis we will assume to be working with fault tolerant quantum computers1.

Another important practical caveat is that of compiling. When describing quantum
computing in terms of linear algebra, a suitably sized unitary matrix does not suffice
for a practically implementable quantum operation. In practice we need to decompose
the quantum operation into so-called native gates. Native gates are those directly im-
plementable on the quantum hardware. Most quantum computers have a similar set
of native gates, usually consisting of one or two two-qubit gates and multiple single-
qubit gates [9, 17]. Bringing this back to the interpretation of linear algebra a two-qubit
gate can be seen as a unitary matrix U ∈C4x4 and a single qubit gate as a unitary matrix
U ∈ C2x2. An example of a native gate set is {CZ, ID, RZ, RZZ, SX, X}, this is the native
gate set of the IBM Fez, IBM’s largest quantum computer to date (as seen on the IBM
quantum website on November 5-th 2024). The matrix expressions for these gates are

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (1.15)

RZZ =


e

−iλ
2 0 0 0

0 e
iλ
2 0 0

0 0 e
iλ
2 0

0 0 0 e
−iλ

2

 , (1.16)

ID =
[

1 0
0 1

]
, (1.17)

RZ(λ) =
[

e
−iλ

2 0

0 e
iλ
2

]
, (1.18)

SX(λ) = 1

2

[
1+ i 1− i
1− i 1+ i

]
, (1.19)

X =
[

0 1
1 0

]
. (1.20)

Any other matrix would have to be decomposed in terms of these before being practi-
cally implementable on the quantum computer. There is no non-exponential algorithm
to compile an arbitrary unitary matrix in terms of any finite native gate set [25]. This
means that even though theoretically quantum computing allows for any unitary oper-
ation to be applied to the qubits, this is not always efficiently possible. Therefore, when

1Fault tolerant quantum computers refer to quantum hardware that are able to perform reliable computations
involving of a sizable number of qubits and quantum gates.

1

8 1. INTRODUCTION

developing quantum algorithms, it does not suffice to show that a unitary operation can
calculate what is required. One must also provide a quantum algorithm expressed in
terms of a native gates, or gates for which an efficient decomposition is known in order
to convincingly provide an efficient quantum algorithm. A similar challenge is encoun-
tered when it comes to state initialization. Even though any unit vector of size 2n can
be expressed as an n-qubit quantum state, there might not exist an efficient sequence of
native gates to prepare such a state on a quantum computer. Therefore, in this thesis, we
will only consider something an efficient quantum algorithm if it only contains building
blocks consisting of native gates or for which a polynomial native gate decomposition is
known. This is to ensure that the algorithms complexity can be reliably determined and
that the algorithm can be efficiently implemented.

1.4. INTRODUCTION TO FLUID DYNAMICS AND THE LATTICE BOLTZ-
MANN METHOD

Fluid dynamics is a branch of physics that describes the behavior of fluids over time.
The equations that describe fluid mechanics typically do not have a known analytical
solution, which led to the modern field of computational fluid dynamics where such
equations are solved numerically. A large part of the information in this section is based
on the book [20] which is recommended to the reader as a more extensive introduction
to the lattice Boltzmann method.

1.4.1. NAVIER-STOKES

The Navier-Stokes equations can be used to model a Newtonian fluid2. The Navier-
Stokes equations describe the behavior of fluids on the macroscopic scale, which means
they describe it in terms of density, pressure and velocity. Assuming the density ρ is
constant, the incompressible Navier-Stokes equation arises and is given by

ρ

(
∂u

∂t
+u ·∇u

)
=−∇p +η∆u +F , (1.21)

where t is time, u fluid velocity, η shear viscosity and F the external forces acting on the
fluid. As the density ρ is constant the continuity equation reduces to

∇·u = 0, (1.22)

which describes mass conservation. Assuming that the density is known, the equations
contain four unknowns, namely the pressure p and the three velocity components.

There are several popular methods with which these equations can be solved nu-
merically, such as Finite Difference, Finite Volume and Finite Element Methods. These
methods all have their own pros and cons in terms of implementability and precision
[20].

1.4.2. LATTICE GAS AUTOMATA
We can also model the behavior of fluids by considering the particles rather than the
macroscopic phenomena. One such way to do that is via so-called lattice gas automata.

2A Newtonian fluid is a fluid

1.4. INTRODUCTION TO FLUID DYNAMICS AND THE LATTICE BOLTZMANN METHOD

1

9

The first example of a lattice gas automaton was the HPP model introduced by Hardy,
Pomeau and de Pazzis in 1973 [15]. The HPP model they developed modeled fluid flow
on a two-dimensional domain by allowing separate particles to flow in 4 different direc-
tions [15, 14]. The idea is that each point in space can have a maximum of 4 particles,
where each particle travels in the positive or negative x or y direction with speed equal
to one. It is important to note that no two particles at the same grid point can have the
same velocity. The velocity distribution at a specific point in space is subsequently la-
beled using a binary label indicating whether or not a particle is present in each position.
We define ni (x, t) to be the occupation number of the particle at position in space x at
time t with velocity ci . As we restrict our model to a maximum of one particle with a spe-
cific velocity ci at each point in space and time we have ni (x , t) ∈ {0,1}. We can represent
the particles being present at a given point in space x with velocity i using a binary vari-
able ni , where 0 indicates no particle with velocity i is present and 1 indicates that such
a particle is present.

The velocity vectors are given by

c1 =
[

1
0

]
, c2 =

[
0
1

]
, c3 =

[−1
0

]
, c4 =

[
0
−1

]
. (1.23)

We can order the occupation numbers as n4n3n2n1. These occupation numbers can be
combined with a pictorial representation as shown in Figure 1.1.

In each time step the particles stream through space based on their velocity. If af-
ter streaming, multiple particles end up in the same grid point some sort of collision
operation will take place. For the very simple two dimensional example with four pos-
sible velocities we are currently considering, a collision operation will only take place if
two particles are present that stream in opposite directions. In this case their velocities
are rotated with an angle π

2 ; see Figure 1.2. This operation models a collision opera-
tion which conserves mass and momentum as is physically required. Even though this
model can simulate an equation that has some similarities to the Navier-Stokes equa-
tions, it does not yet solve them. This is due to the equations this model simulates not
being invariant under global spatial rotations [4].

1

10 1. INTRODUCTION

(a) Example of 1111 particle distribution, where four particles
are present at the center grid point each flowing in a different
direction.

(b) Example of 0101 particle distribution, where two particles
are present in the center grid point. One particle is flowing in
the positive and one particle is flowing in the negative direction
on the x-axis.

(c) Example of 1101 particle distribution, where three particles
are present in the center grid point. One particle is flowing in
the negative direction on the y-axis and one particle is flowing
in the positive and one particle is flowing in the negative direc-
tion on the x-axis.

(d) Example of 0011 particle distribution, where two particles
are present in the center grid point. One particle is flowing in
the positive direction on the x-axis and one particle is flowing
in the positive direction on the y-axis.

Figure 1.1: Different configurations of velocities present at a point in space x for the HPP model.

1.4. INTRODUCTION TO FLUID DYNAMICS AND THE LATTICE BOLTZMANN METHOD

1

11

(a) Example of 0101 particle distribution, where two particles
are present in the center grid point. One particle is flowing in
the positive and one particle is flowing in the negative direction
on the x-axis. This picture represents the state of the system
before the described collision has taken place.

(b) Example of 1010 particle distribution, where two particles
are present in the center grid point. One particle is flowing in
the positive and one particle is flowing in the negative direction
on the y-axis. This picture represents the state of the system
after the described collision has taken place.

Figure 1.2: In the first HPP model collision is modeled by mapping the 1010 distribution to 0101 and vice versa.

Later, lattice gas models with a hexagonal grid were developed for two dimensions
[11]. This model does preserve the isotropy3 required for the Navier-Stokes equations
[4]. Around the same time a three dimensional lattice gas automata was proposed. Since
there is no clear extension of a hexagonal grid to three dimensions this model uses a
cube shaped grid [8]. Having more possible streaming directions also means more inter-
actions are possible when considering a collision. This is usually modeled using a large
look-up table which maps possible input states to possible output states. As it is diffi-
cult to give a simple expression to represent the collision operation, we simply write it as
Ωi (x , t).

Algorithm 1 Lattice gas automata

while t ≤ T do
Perform collision: n∗

i (x, t) = ni (x, t)+Ωi

Perform streaming: ni (x+∆tci , t +∆t) = n∗
i (x , t)

Update time: t = t +∆t
end while

1.4.3. THE BOLTZMANN EQUATION
With the growth of the power of the available computational devices, slowly the research
into Lattice Gas Automata has grinded to a halt and has been replaced by lattice Boltz-
mann methods. The idea of lattice Boltzmann methods naturally flows from Lattice Gas

3Isotropy refers to being invariant under rotation.

1

12 1. INTRODUCTION

Automata, only a more complicated function is used to model the collision operation.
This collision operation is derived from the Boltzmann equation. Much like the Navier-
Stokes equations the Boltzmann equation can be used to model fluid flows, only instead
of considering the macroscopic scale the Boltzmann equation describes the behavior
on the so-called mesoscopic scale. The mesoscopic scale lies between the microscopic
scale, where separate particles are considered and the macroscopic scale, where mea-
surable physical phenomena are considered and the continuum assumption holds. The
Boltzmann equation instead considers the behavior of particle densities over space in
time.

The Boltzmann equation can be derived by considering the function f (x ,ξ, t), which
describes the relative density at the position x of particles with velocity ξ at time t . In
order to describe the behavior of fluid flow over time we want to find the equation that
expresses how this function changes over time. Taking the derivative of f over time and

writing d f
d t as the collision operatorΩ

(
f
)

leads to the Boltzmann equation

∂ f

∂t
+ξ

∂ f

∂x
+ F

ρ

∂ f

∂ξ
=Ω(

f
)

. (1.24)

In the above F represents the external force exerted on the particles and ρ represents the
particle density.

For computational efficiency Bhatnagar, Gross and Krook [3] suggested replacing the
collision operator by the BGK collision operator

Ω
(

f
)=− f − f eq

τ
, (1.25)

where f eq represents the equilibrium distribution function and τ the relaxation time.
The equilibrium distribution function, often referred to as the Maxwell-Boltzmann dis-
tribution, can be given by

f eq (x ,ξ, t) = ρ
(

1

2πRT

) 3
2

e
−|ξ−u|2

2RT , (1.26)

note that ρ, u and T can be calculated using the moments of the Boltzmann equation
[20]

ρ(x, t) =
∫

f (x,ξ, t)d 3ξ, (1.27)

ρ(x, t)u (x, t) =
∫
ξ f (x,ξ, t)d 3ξ, (1.28)

ρ (x, t)e (x, t) = 1

2

∫
|ξ−−−u|2 f (x,ξ, t)d 3ξ, (1.29)

in combination with the equation for the specific internal energy density for three di-
mensions

e = 3

2
RT. (1.30)

In the above ρ represents the particle density, u the fluid velocity and e the internal en-
ergy.

1.4. INTRODUCTION TO FLUID DYNAMICS AND THE LATTICE BOLTZMANN METHOD

1

13

Combining Equation (1.25) and (1.24) leads to

∂ f

∂t
+ξ

∂ f

∂x
+ F

ρ

∂ f

∂ξ
=− f − f eq

τ
, (1.31)

as a commonly used expression for the Boltzmann equation. In this thesis we consider
only cases without a force term F , which leaves

∂ f

∂t
+ξ

∂ f

∂x
=− f − f eq

τ
. (1.32)

In Chapter 2 of this thesis we consider the transport equation

∂ f

∂t
+ξ

∂ f

∂x
= 0, (1.33)

which is sometimes referred to as the collisionless Boltzmann equation [36] as it is equal
to the forceless Boltzmann equation without a collision term.

In order to efficiently solve the forceless Boltzmann equation on a computer it is
first discretized into the discrete Boltzmann equation. The discrete Boltzmann equation
considers the relative particle density as before, but the input variables x , ξ and t are
discretized. Discretizing in space means we are considering a grid on which the relative
particle densities move. Therefore instead of being able to move anywhere in space, they
now can only move from grid point to grid point similar to the particles in the lattice
gas automata described in Section 1.4.2. When discretizing in time it is important to
choose timesteps that are small enough such that none of the particles can overshoot a
grid point. In Chapter 2 we explain exactly how the timesteps can be chosen using the
so-called CFL counter. Finally we discretize the velocity space. This means creating a
finite set Ξ of possible velocities the particles can have. A final change when working
with the discrete Boltzmann equation is that the considered function changes. Instead
of considering f (x ,ξ, t) we now consider fi (x , t) where the subscript i represents the
velocity i ∈Ξ. This leads to the discrete Boltzmann equation without a force function as
derived in [20]

fi (x +ci∆t , t +∆t)− fi (x , t) =−∆t

τ

(
fi (x , t)− f eq

i (x , t)
)

. (1.34)

Note that here we have also included a discretized version of the equilibrium function
which is given by

f eq
i (x , t) = wiρ

(
1+ u ·ci

c2
s

+ (u ·ci)2

2c4
s

− u ·u

2c2
s

)
, (1.35)

where wi are the weights4, ρ is the density and u represents the fluid velocity. The den-
sity and fluid velocity can be calculated by

ρ (x , t) =
∑

i
fi (x , t) , (1.36)

4These weights are pre-determined depending on the dimensions and possible velocities considered. They
can be found in various sources such as page 88 of [20].

1

14 1. INTRODUCTION

ρ (x , t)u (x , t) =
∑

i
ci fi (x , t) . (1.37)

One interesting feature of the discrete Boltzmann equation is that it can naturally be
broken up in two distinct steps. The first step is to set

f ∗
i (x , t) = fi − ∆t

τ

(
fi (x , t)− f eq

i (x , t ,)
)

, (1.38)

which represents the collision operation, where the state of fi (x , t) is altered by the col-
lision term. The second step is given by

fi (x +ci∆t , t +∆t) = f ∗
i (x , t) , (1.39)

which represents the streaming operation, where the relative densities are moved through
space depending on the velocity of the particles and the time step taken. This natural
way to split the discrete Boltzmann equation up in a streaming and collision step means
that we can implement it by using one non-local but linear step (streaming) and one
non-linear but local step (collision).

This discretized version of the Boltzmann equation is typically used in lattice Boltz-
mann methods to model fluid dynamics. The idea of the workflow is similar to that of
lattice gas automata, where on a discretized grid particles can flow with a finite num-
ber of possible velocities, and after streaming is performed for one time-step, a collision
operation takes place. Since we are now working with relative particle densities we are
no longer required to only model a binary version of collision but we can use Equation
(1.38), which allows for a version of collision where some relaxation towards equilibrium
is actually taking place.

Algorithm 2 Lattice Boltzmann Method

1: while t ≤ T do
2: Compute fluid density: ρ (x , t) ←∑

i fi (x , t)
3: Compute fluid velocity: u (x , t) ← 1

ρ(x ,t)

∑
i ci fi (x , t)

4: Compute equilibrium function: f eq
i (x , t) ← wiρ

(
1+ u·ci

c2
s
+ (u·ci)2

2c4
s

− u·u
2c2

s

)
5: Perform collision: f ∗

i (x , t) ← fi (x , t)− ∆t
τ

(
fi (x , t)− f eq

i (x , t)
)

6: Perform streaming: fi (x +ci∆t , t +∆t) ← f ∗
i (x , t)

7: Update time: t = t +∆t
8: end while

In the discretized Boltzmann method it is common to adopt the DdQq scheme for
denoting dimension and velocity. For example, D2Q5 denotes a method with two di-
mensions and five different velocity directions.

1.5. INTRODUCTION TO QUANTUM COMPUTATIONAL FLUID DY-
NAMICS

With the dawn of quantum computers and the computational complexity of computa-
tional fluid dynamics, the question arises if quantum computers can be of any use in

1.5. INTRODUCTION TO QUANTUM COMPUTATIONAL FLUID DYNAMICS

1

15

solving the problems of fluid dynamics. Since the 1990s a variety of ideas of how to solve
the problems of computational fluid dynamics on a quantum computer has been re-
searched.

The first quantum computational fluid dynamics (QCFD) algorithms were proposed
by Yepez around the turn of the century [38, 39, 41, 40, 28], these algorithms contain a
quantum distributed computing approach based on the lattice gas models as presented
in [11]. The idea is that each grid point of position-space gets its own 6 qubit quantum
computer associated to it (note that here a 600 qubit quantum computer could encode
100 such separate computers). The benefit of this approach is that the possible quantum
circuit depth and stable entanglement required remains very low, making it a realistic
and relatively near-term approach given the power of current devices. The downside of
this approach is that to encode a grid of size N a total of 6N qubits are required, which
means that the number of qubits required grows linearly with the number of grid points.
Given the limited number of quantum devices available and large number of grid points
considered in modern Boltzmann methods [35], this proves a significant drawback. Fur-
thermore, as we will prove in this thesis, their computational basis state encoding of
the velocity vector does not allow for streaming on a quantum computer, therefore after
each timestep a measurement and re-initialization of the quantum system needs to take
place. After these results were reached by Yepez et al. the QCFD field became stagnant
for over a decade. Recently, however, there has been a resurgence in the field of QCFD
and in particular there has been a rise in quantum Boltzmann methods.

In 2020 Gaitan published a quantum algorithm that can be used to solve the Navier-
Stokes equations [12]. In this article the author shows that there is a quantum speed-
up for non-smooth flows and identifies a regime where the speed-up is quadratic over
classical random algorithms. Later, in 2021, Oz et al. adopted the algorithm presented
in [12] for solving partial differential equations to Burgers’ equation [26]. In this work
the authors present solutions for flow problems with and without shock waves thereby
achieving similar speed-up as for the Navier-Stokes equations.

A hybrid quantum classical reservoir computing model was suggested by Pfeffer et
al. in 2022 [27]. With their method the authors are able to simulate nonlinear chaotic
dynamics of Lorenz type models. They show that by using just a few highly entangled
qubits they can achieve similar prediction and reconstruction capabilities as classical
reservoirs using thousands of perceptrons.

Another interesting approach that targets noisy intermediate quantum computers
was proposed by Kyriienko et al. in [21]. In essence, a quantum neural network is trained
to learn the solution values of a partial differential equation complemented by boundary
and possibly initial values. The classical counterpart of this concept has become popular
in recent years under the name physics-informed machine learning.

In 2021, Liu et al. presented a quantum algorithm for solving non-linear differential
equations [22]. The authors suggest to use Carleman linearization and subsequently
perform time integration by the forward Euler method in combination with the quantum
linear system algorithm by Harrow et al. [16] to find a solution.

Todorova and Steijl proposed a quantum algorithm for what they call the collision-
less Boltzmann equation, where they propose quantum primitives for the streaming and
specular reflection step [36].

1

16 1. INTRODUCTION

In the same year, Budinski suggested a quantum lattice Boltzmann method for a
one-dimensional and two-dimensional lattice structure that does include a simplified
collision term, but does not model the specular reflection step [5]. The collision term is
realized using the linear approximation of unitary approach [23], which requires a mea-
surement at the end of each time step to check whether the previous computations have
been meaningful or ended up in a so-called ‘orthogonal state of no interest’. In the for-
mer case, the algorithm can proceed to the next time step. In the latter case the simu-
lation must be restarted. Post-selection of valid results after (partial) measurement as
used in the approximation of unitary approach is a common practice in quantum al-
gorithms but it becomes problematic if used repeatedly within a time-stepping loop. It
is obvious that the probability of failure increases in a multiplicative manner with the
number of timesteps. Therefore the number of timesteps that can be feasibly modeled
using this approach highly depends on the amplitudes of the ‘orthogonal states of no
interest’ and is not realistically implementable for an interesting number of timesteps ,
unless the probability of failure can be shown to be very small. Unfortunately, the paper
[5] does not provide any bound on this probability.

In the subsequent paper [6], Budinski proposed an implementation of the specu-
lar reflection step using the quantum linear approximation of unitary approach, which
brings the same problems as before. Furthermore, the paper does not provide a clear
procedure for decomposing the required unitary into quantum gates for which adecom-
position into native gates is known, which hinders straightforward implementation.

Another approach to simulate fluid flow using a quantum computer is by making use
of Carlemann linearization. The theoretical set-up for this was presented in [18] and the
subsequent papers [29, 30] make use of the Carlemann linearization method to linearize
the Boltzmann and other equations and subsequently solve them on a quantum com-
puter. In [29] the authors linearize the Boltzmann equation and solve the subsequent
linear system on a quantum computer. The method works, however is not yet ready for
large scale use due to the necessary decomposition of a large unitary in the process for
which no efficient decomposition has been found. In [30] the authors use Carleman lin-
earization on Grad’s generalized hydrodynamics, which is another method that can be
used for simulating fluid. Here they end up with a linear system for which, due to its
properties, no efficient quantum circuit can be set up to solve it according to the current
state of the art. Both these methods do show some interesting structural properties of
the resulting matrix, so further investigation is required to determine the future feasibil-
ity of this approach.

In the spirit of the lattice gas model presented by Yepez, the paper [42] presents its
own versions of a lattice gas model. They present two possible implementations, one
superposition-based and one binary-based, both requiring a stop-and-go set-up to cir-
cumvent the non-unitarity issues as presented in [33]. Two other lattice gas inspired
models are presented in [19]. Here the authors present one method that can be run on a
quantum computer without requiring a stop-and-go method by making use of Quantum
Phase Estimation. This method requires a number of qubits that scales linearly with the
number of velocities required and grid points.

In this thesis we present two novel quantum lattice Boltzmann methods. First, in
Chapter 2, we present a quantum algorithm for the collisionless lattice Boltzmann method,

1.5. INTRODUCTION TO QUANTUM COMPUTATIONAL FLUID DYNAMICS

1

17

also known as the transport equation, as published in [31]. In Chapter 3 we introduce an
efficient measurement method for the collisionless quantum lattice Boltzmann method
using the Quantum Momentum Exchange Method. Subsequently, in Chapter 4, we present
proofs that the commonly used encoding methods for quantum Boltzmann do not al-
low streaming and collision to both take place as a unitary operation. This implies that
novel encoding methods are required to achieve a full quantum Boltzmann algorithm
that does not require a stop-and-go strategy. Here we use the term stop-and-go strat-
egy to refer to methods that require measurement between timesteps. One reason such
a measurement might be required is that the operation is not unitary and is therefore
applied to a larger space and some post selection must take place. Another reason for
this is that some information encoded in the qubits is required for the next timestep,
and therefore some measurement and reinitialization is performed. In Chapter 5 we
present space-time encoding, which was specifically developed to circumvent the issues
in the commonly used encoding methods which caused streaming and collision to not
be possible as a unitary operation. Using our space-time encoding we are able to simu-
late multiple timesteps, whilst having the full operation be a unitary. Furthermore, the
operation for our space time encoding is easily and inexpensively expressed as quantum
gates without any decomposing of unitaries into quantum gates necessary.

The collisionless quantum Boltzmann method presented in this thesis improves on
the aforementioned quantum Boltzmann methods in various ways. Compared to [5,
6], our approach enables a higher variety in the particle velocities. Moreover, our real-
ization of the quantum specular reflection step is based on simple one- and two-qubit
quantum gates, without the need to adopt the troublesome linear approximation of uni-
taries approach. This also allows us to ensure the straightforward implementability of
our approach into quantum programming frameworks like Qiskit, without the need to
decompose unknown unitaries or multi-control operations into native quantum gates.

Our quantum space-time encoding marks the first quantum algorithm that can per-
form multiple timesteps of the lattice Boltzmann method as a unitary operation without
the requirement of intermediate restarts. On top of that it sets itself apart from other
quantum methods which allow for collision to take place in that it does not require the
decomposition of large unitary matrices into possibly exponentially many native gates.
This makes our method much more realistic to be implemented on a quantum com-
puter, as the decomposition of a unitary operation can be exponentially expensive.

BIBLIOGRAPHY

[1] Paul Benioff. “Quantum Mechanical Hamiltonian Models of Turing Machines”.
In: Journal of Statistical Physics (1982). DOI: https : / / doi . org / 10 . 1007 /
BF01342185.

[2] Paul Benioff. “The Computer as a Physical System: A Microscopic Quantum Me-
chanical Hamiltonian Model of Computers as Represented by Turing Machines”.
In: Journal of Statistical Physics (1980). DOI: https : / / doi . org / 10 . 1007 /
BF01011339.

[3] P. L. Bhatnagar, E. P. Gross, and M. Krook. “A Model for Collision Processes in
Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Sys-
tems”. In: Phys. Rev. 94 (3 May 1954), pp. 511–525. DOI: 10.1103/PhysRev.94.
511. URL: https://link.aps.org/doi/10.1103/PhysRev.94.511.

[4] Bruce M. Boghosian. “Lattice gases and cellular automata”. In: Future Generation
Computer Systems (1999). URL: https://doi.org/10.1016/S0167-739X(99)
00045-X.

[5] Ljubomir Budinski. “Quantum algorithm for the advection-diffusion equation sim-
ulated with the lattice Boltzmann method”. In: Quantum Information Processing
2021 (2020). URL: https://link.springer.com/article/10.1007/s11128-
021-02996-3.

[6] Ljubomir Budinski. “Quantum algorithm for the Navier-Stokes equations by us-
ing the streamfunction-vorticity formulation and the lattice Boltzmann method”.
In: International Journal of Quantum information (2021). URL: https://arxiv.
org/abs/2103.03804.

[7] Earl Campbell. “A series of fast-paced advances in Quantum Error Correction”. In:
Nature Reviews Physics (2023). URL: https://doi.org/10.1038/s42254-024-
00706-3.

[8] D. d’Humières, P. Lallemand, and U. Frisch. “Lattice Gas Models for 3D Hydro-
dynamics”. In: Europhysics letters 2 (4 1986), pp. 291–297. DOI: 10.1209/0295-
5075/2/4/006.

[9] G.R. Di Carlo and L. DiCarlo. “Quantum Inspire Starmon-5 Fact Sheet”. In: (2023).
URL: https : / / qutech . nl / wp - content / uploads / 2024 / 03 / Starmon5 _
FactSheet_240316.pdf.

[10] Richard P. Feynman. “Simulating physics with computers”. In: International Jour-
nal of Theoretical Physics (1982). DOI: https://doi.org/10.1007/BF02650179.

19

https://doi.org/https://doi.org/10.1007/BF01342185
https://doi.org/https://doi.org/10.1007/BF01342185
https://doi.org/https://doi.org/10.1007/BF01011339
https://doi.org/https://doi.org/10.1007/BF01011339
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRev.94.511
https://link.aps.org/doi/10.1103/PhysRev.94.511
https://doi.org/10.1016/S0167-739X(99)00045-X
https://doi.org/10.1016/S0167-739X(99)00045-X
https://link.springer.com/article/10.1007/s11128-021-02996-3
https://link.springer.com/article/10.1007/s11128-021-02996-3
https://arxiv.org/abs/2103.03804
https://arxiv.org/abs/2103.03804
https://doi.org/10.1038/s42254-024-00706-3
https://doi.org/10.1038/s42254-024-00706-3
https://doi.org/10.1209/0295-5075/2/4/006
https://doi.org/10.1209/0295-5075/2/4/006
https://qutech.nl/wp-content/uploads/2024/03/Starmon5_FactSheet_240316.pdf
https://qutech.nl/wp-content/uploads/2024/03/Starmon5_FactSheet_240316.pdf
https://doi.org/https://doi.org/10.1007/BF02650179

1

20 BIBLIOGRAPHY

[11] U. Frisch, B. Hasslacher, and Y. Pomeau. “Lattice-Gas Automata for the Navier-
Stokes Equation”. In: Phys. Rev. Lett. 56 (14 Apr. 1986), pp. 1505–1508. DOI: 10.
1103/PhysRevLett.56.1505. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.56.1505.

[12] Frank Gaitan. “Finding flows of a Navier–Stokes fluid through quantum comput-
ing”. In: npj Quantum Information (2020). URL: https://www.nature.com/
articles/s41534-020-00291-0.

[13] Lov K. Grover. “A fast quantum mechanical algorithm for database search”. In:
Proceedings of 28th ACM STOC (1996), pp. 212–219. URL: https://arxiv.org/
pdf/quant-ph/9605043.pdf.

[14] J. Hardy, O. de Pazzis, and Y. Pomeau. “Molecular dynamics of a classical lattice
gas: Transport properties and time correlation functions”. In: Phys. Rev. A 13 (5
May 1976), pp. 1949–1961. DOI: 10.1103/PhysRevA.13.1949. URL: https://
link.aps.org/doi/10.1103/PhysRevA.13.1949.

[15] J. Hardy, Y. Pomeau, and O. de Pazzis. “Time Evolution of a Two-Dimensional Clas-
sical Lattice System”. In: Phys. Rev. Lett. 31 (5 July 1973), pp. 276–279. DOI: 10.
1103/PhysRevLett.31.276. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.31.276.

[16] Aram Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for Linear
Systems of Equations”. In: Physical Review Letters (2009). URL: https://journals.
aps.org/prl/pdf/10.1103/PhysRevLett.103.150502.

[17] IBM. IBM Quantum Hardware. 2025. URL: https://quantum.ibm.com/services/
resources. Accessed: 14.01.2025.

[18] Wael Itani and Sauro Succi. “Analysis of Carleman Linearization of Lattice Boltz-
mann”. In: Fluids 7.1 (2022). ISSN: 2311-5521. DOI: 10 . 3390 / fluids7010024.
URL: https://www.mdpi.com/2311-5521/7/1/24.

[19] Sriharsha Kocherla et al. “Fully quantum algorithm for mesoscale fluid simula-
tions with application to partial differential equations”. In: AVS Quantum Sci (2024).
DOI: https://doi.org/10.1116/5.0217675.

[20] Timm Krüger et al. The lattice Boltzmann method. Springer, 2017. URL: https:
//link.springer.com/book/10.1007/978-3-319-44649-3.

[21] Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving. “Solving nonlinear
differential equations with differentiable quantum circuits”. In: Phys. Rev. A 103
(5 May 2021), p. 052416. DOI: 10.1103/PhysRevA.103.052416. URL: https:
//link.aps.org/doi/10.1103/PhysRevA.103.052416.

[22] Jin-Peng Liu et al. “Efficient quantum algorithm for dissipative nonlinear differ-
ential equations”. In: Proceedings of the National Academy of Sciences (2021). URL:
https://www.pnas.org/doi/epdf/10.1073/pnas.2026805118.

[23] Guang Hao Low and Isaac L. Chuang. “Hamiltonian Simulation by Qubitization”.
In: Quantum (2019). URL: https://arxiv.org/abs/1610.06546v3.

[24] Yuri Manin. “Vychislimoe i nevychislimoe (Computable and uncomputable)”. In:
Sovetskoye Radio (1980).

https://doi.org/10.1103/PhysRevLett.56.1505
https://doi.org/10.1103/PhysRevLett.56.1505
https://link.aps.org/doi/10.1103/PhysRevLett.56.1505
https://link.aps.org/doi/10.1103/PhysRevLett.56.1505
https://www.nature.com/articles/s41534-020-00291-0
https://www.nature.com/articles/s41534-020-00291-0
https://arxiv.org/pdf/quant-ph/9605043.pdf
https://arxiv.org/pdf/quant-ph/9605043.pdf
https://doi.org/10.1103/PhysRevA.13.1949
https://link.aps.org/doi/10.1103/PhysRevA.13.1949
https://link.aps.org/doi/10.1103/PhysRevA.13.1949
https://doi.org/10.1103/PhysRevLett.31.276
https://doi.org/10.1103/PhysRevLett.31.276
https://link.aps.org/doi/10.1103/PhysRevLett.31.276
https://link.aps.org/doi/10.1103/PhysRevLett.31.276
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.103.150502
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.103.150502
https://quantum.ibm.com/services/resources
https://quantum.ibm.com/services/resources
https://doi.org/10.3390/fluids7010024
https://www.mdpi.com/2311-5521/7/1/24
https://doi.org/https://doi.org/10.1116/5.0217675
https://link.springer.com/book/10.1007/978-3-319-44649-3
https://link.springer.com/book/10.1007/978-3-319-44649-3
https://doi.org/10.1103/PhysRevA.103.052416
https://link.aps.org/doi/10.1103/PhysRevA.103.052416
https://link.aps.org/doi/10.1103/PhysRevA.103.052416
https://www.pnas.org/doi/epdf/10.1073/pnas.2026805118
https://arxiv.org/abs/1610.06546v3

BIBLIOGRAPHY

1

21

[25] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. 10th Anniversary Edition. 4th ed. Cambridge University Press, 2016.
ISBN: 9781107002173.

[26] Furkan Oz et al. “Solving Burgers equation with quantum computing”. In: quan-
tum information processing (2021). URL: https://link.springer.com/article/
10.1007/s11128-021-03391-8.

[27] Philipp Pfeffer, Florian Heyder, and Jörg Schumacher. “Hybrid quantum-classical
reservoir computing of thermal convection flow”. In: Phys. Rev. Research (2022).
DOI: https://doi.org/10.1103/PhysRevResearch.4.033176.

[28] Marco A. Pravia et al. “Experimental demonstration of Quantum Lattice Gas Com-
putation”. In: Quantum Information Processing (2003). URL: https : / / link .
springer.com/article/10.1023/A:1025835216975.

[29] Claudio Sanavio and Sauro Succi. “Lattice Boltzmann-Carleman quantum algo-
rithm and circuit for fluid flows at moderate Reynolds number”. In: (2023). URL:
https://arxiv.org/pdf/2310.17973.pdf.

[30] Claudio Sanavio, Sauro Succi, and Enea Mauri. “Carleman-Grad approach to the
quantum simulation of fluids”. In: arXiv pre-print (2024). URL: https://doi.
org/10.48550/arXiv.2406.01118.

[31] Merel A. Schalkers and Matthias Möller. “Efficient and fail-safe quantum algo-
rithm for the transport equation”. In: Journal of Computational Physics 502 (2024),
p. 112816. DOI: https://doi.org/10.1016/j.jcp.2024.112816.

[32] Merel A. Schalkers and Matthias Möller. “Momentum exchange method for quan-
tum Boltzmann methods”. In: Computers & Fluids 285 (2024), p. 106453. ISSN:
0045-7930. DOI: https://doi.org/10.1016/j.compfluid.2024.106453.

[33] Merel A. Schalkers and Matthias Möller. “On the importance of data encoding for
quantum Boltzmann methods”. In: Quantum Information Processing (2024). DOI:
https://doi.org/10.1007/s11128-023-04216-6.

[34] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”. In: (1994). URL: https://doi.org/10.1109/SFCS.1994.365700.

[35] A. Tiftikci and C. Kocar. “Lattice Boltzmann simulation of flow across a staggered
tube bundle array”. In: Nuclear engineering and design (2015). URL: https :/ /
www.sciencedirect.com/science/article/pii/S0029549316000315.

[36] B. N. Todorova and R. Steijl. “Quantum algorithm for the collisionless Boltzmann
equation”. In: Journal of Computational Physics, 409, 109347 (2020). DOI: http:
//dx.doi.org/10.1016/j.jcp.2020.109347.

[37] Ronald de Wolf. Quantum Computing: Lecture Notes. 2022. URL: https://arxiv.
org/abs/1907.09415.

[38] Jeffrey Yepez. “Quantum Computation of Fluid Dynamics”. In: Quantum Comput-
ing and Quantum Communications: lecture notes in computer science (1998). URL:
https : / / www . phys . hawaii . edu / ~yepez / papers / publications / pdf /
1999LectNotesCompSciVol1509Pg35.pdf.

https://link.springer.com/article/10.1007/s11128-021-03391-8
https://link.springer.com/article/10.1007/s11128-021-03391-8
https://doi.org/https://doi.org/10.1103/PhysRevResearch.4.033176
https://link.springer.com/article/10.1023/A:1025835216975
https://link.springer.com/article/10.1023/A:1025835216975
https://arxiv.org/pdf/2310.17973.pdf
https://doi.org/10.48550/arXiv.2406.01118
https://doi.org/10.48550/arXiv.2406.01118
https://doi.org/https://doi.org/10.1016/j.jcp.2024.112816
https://doi.org/https://doi.org/10.1016/j.compfluid.2024.106453
https://doi.org/https://doi.org/10.1007/s11128-023-04216-6
https://doi.org/10.1109/SFCS.1994.365700
https://www.sciencedirect.com/science/article/pii/S0029549316000315
https://www.sciencedirect.com/science/article/pii/S0029549316000315
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2020.109347
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2020.109347
https://arxiv.org/abs/1907.09415
https://arxiv.org/abs/1907.09415
https://www.phys.hawaii.edu/~yepez/papers/publications/pdf/1999LectNotesCompSciVol1509Pg35.pdf
https://www.phys.hawaii.edu/~yepez/papers/publications/pdf/1999LectNotesCompSciVol1509Pg35.pdf

1

22 BIBLIOGRAPHY

[39] Jeffrey Yepez. “Quantum Lattice-Gas Model for computational fluid dynamics”. In:
Physical Review E (2001). URL: https://journals.aps.org/pre/abstract/
10.1103/PhysRevE.63.046702.

[40] Jeffrey Yepez. “Quantum Lattice-Gas Model for the Burgers Equation”. In: Journal
of statistical physics (2002). URL: https://link.springer.com/article/10.
1023/A:1014514805610.

[41] Jeffrey Yepez and Bruce Boghosian. “An efficient and accurate quantum lattice-gas
model for the many-body Schrödinger wave equation”. In: Computer Physics Com-
munications (2001). URL: https://www.phys.hawaii.edu/~yepez/static/
papers/pdf/2002CompPhysCommVol146No3%2C15Pg280.pdf.

[42] Antonio David Bastida Zamora et al. “Efficient Quantum Lattice Gas Automata”.
In: Computers & Fluids 286 (2025). URL: https://doi.org/10.1016/j.compfluid.
2024.106476.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.63.046702
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.63.046702
https://link.springer.com/article/10.1023/A:1014514805610
https://link.springer.com/article/10.1023/A:1014514805610
https://www.phys.hawaii.edu/~yepez/static/papers/pdf/2002CompPhysCommVol146No3%2C15Pg280.pdf
https://www.phys.hawaii.edu/~yepez/static/papers/pdf/2002CompPhysCommVol146No3%2C15Pg280.pdf
https://doi.org/10.1016/j.compfluid.2024.106476
https://doi.org/10.1016/j.compfluid.2024.106476

2
QUANTUM ALGORITHM FOR THE

TRANSPORT EQUATION

In this chapter we present a scalable algorithm for fault-tolerant quantum computers for
solving the transport equation in two and three spatial dimensions for variable grid sizes
and discrete velocities, where the object walls are aligned with the Cartesian grid, the rel-
ative difference of velocities in each dimension is bounded by 1 and the total simulated
time is dependent on the discrete velocities chosen. We provide detailed descriptions and
complexity analyses of all steps of our quantum transport method (QTM) and present nu-
merical results for 2D flows generated in Qiskit as a proof of concept.

Our QTM is based on a novel streaming approach which leads to a reduction in the num-
ber of CNOT gates required in comparison to state-of-the-art quantum streaming meth-
ods.

As a second highlight of this chapter we present a novel object encoding method, that re-
duces the complexity of the number of CNOT gates required to encode walls, which now
becomes independent of the size of the wall. Finally we present a novel quantum encoding
of the particles’ discrete velocities that enables a linear speed-up in the costs of reflecting
the velocity of a particle, which now becomes independent of the number of velocities en-
coded.

Our main contribution consists of a detailed description of a fail-safe implementation of
a quantum algorithm for the reflection step of the transport equation that can be readily
implemented on a physical quantum computer. This fail-safe implementation allows for
a variety of initial conditions and particle velocities and leads to physically correct particle
flow behavior around the walls, edges and corners of obstacles.

Combining these results we present a novel and fail-safe quantum algorithm for the trans-
port equation that can be used for a multitude of flow configurations and leads to physi-
cally correct behavior.

This chapter is based on the publication Efficient and fail-safe quantum algorithm for the transport equation
by Schalkers and Möller [18].

23

2

24 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

We finally show that our approach only requires O
(
nw n2

g +dnv
t nv2

max

)
CNOT gates, which

is quadratic in the number of qubits necessary to encode the grid and the number of qubits
necessary to encode the discrete velocities in a single spatial dimension. This complexity
result makes our approach superior to state-of-the-art approaches known in the literature.

2.1. INTRODUCTION

Computational Fluid Dynamics (CFD) has become an indispensable third pillar in mod-
ern engineering sciences complementing theoretical and experimental analysis. Its broad
applicability has led practitioners to constantly pushing the limits of numerical simula-
tions for at least four decades. However, stagnation of Moore’s law requires a radical
rethinking of the way CFD codes and their underlying mathematical algorithms need
to be designed in the future. An emerging compute technology that has the potential
to become a game changer for future CFD applications is quantum computing as it of-
fers breakthrough solutions for the two major challenges of CFD today: large memory
consumption and excessive need for computing power.

In a nutshell, the advantage of quantum computers comes from their capability of
encoding an exponentially large amount of data in linearly many quantum bits (qubits)
and performing operations on all data simultaneously. This type of quantum parallelism
is impossible with classical computers that either need to process data one by one, which
results in an exponential growth in sequential run time, or duplicate the hardware re-
sources and process multiple data in parallel, leading to an up to exponential growth
in hardware resources. However, the advantage of quantum computing does not come
for free. Extracting all data from the quantum register requires an exponential amount
of runs and measurements, thereby foiling any potential quantum advantage. The art of
designing quantum algorithms with practical advantage consists of reducing the amount
of necessary read-outs, e.g., by performing some post-processing of field data into scalar
quantities of interest on the quantum computer itself.

CFD falls into the category of applications that have a good match with the capabili-
ties and limitations of quantum computers, i.e., large amount of data to be worked with,
high computational intensity, and, at the same time, users’ primary interest in scalar-
valued quantities of interest such as drag and lift coefficients, rather than the visual in-
spection of entire flow fields.

In what follows, we propose a novel quantum algorithm for the transport equation
that surpasses the preceeding approach by Todorova and Steijl [20] in several key man-
ners. First of all our quantum specular reflection step, even though seemingly more com-
plicated, performs the correct reflection behavior in all corner cases. This is not the case
for the original transport equation method, which shows incorrect reflection behavior
for particles hitting the corners of an obstacle on a non-axis-aligned trajectory. On top of
that, our specular reflection approach also ensures that the particles are set back into the
flow domain before the start of a new timestep if they virtually traveled into an object.
This also avoids incorrect behavior present in the original transport equation method.
Furthermore our approach for identifying the internal grid points of obstacles at which
particles need to be reflected is more efficient than the method used by Todorova and
Steijl. This leads to an additional polynomial speed-up.

2.2. THE TRANSPORT EQUATION

2

25

We finally show that our quantum implementation of the streaming step outper-
forms the method of [20] in terms of the the number of CNOT gates required to imple-
ment them. We intentionally choose for the latter as performance measure as they are
either available as native gates or can be efficiently emulated. Hence, complexity esti-
mates in terms of CNOT gates give a more realistic picture of the costs on a real quantum
computer, whereas complexity estimates in terms of multi-controlled gates conceal the
costs for decomposing multi-controlled gates into native ones.

Last but not least our method outperforms the current state-of-the-art approach in
the encoding of the particles’ velocity. We propose a novel encoding of the velocity vec-
tor, due to which velocities can be flipped with a single NOT operation performed on a
single qubit, whereas before n NOT operations were required to flip the direction of the
velocity encoded using n qubits [20].

The rest of this chapter is structured as follows. In Section 2.2 we give a brief intro-
duction to the transport equation. Section 2.3 shows how the data required for our QTM
can be encoded efficiently in a quantum register. Here, we define the grid-set up, use of
ancillae and the novel velocity-vector encoding that enables the flipping of the velocities
being possible in constant time. Subsequently, Section 2.4 provides an efficient quan-
tum incrementation (decrementation) method, which provides a significant speed-up
when decomposed into native gates over the incrementation (decrementation) method
used in other quantum implementations. We then show how this novel quantum incre-
mentation step can be used to implement a quantum streaming operation. The fail-safe
quantum specular reflection step is presented in Section 2.5. Here, we provide an exten-
sive and implementable method to avoid deviant behavior around the corners of objects
while ensuring unitarity. We furthermore propose a new approach to ensure that the
particles will be repositioned into the flow domain before the start of the next timestep.
On top of that we design an efficient method to identify whether or not a grid point is
located inside an internal obstacle. Section 2.6 shows the the functionability of our ap-
proach by giving the result of preliminary simulation runs. Finally, Section 2.7 compares
the complexity of our approach to that of other known methods.

2.2. THE TRANSPORT EQUATION

In this chapter we consider the transport equation to describe the evolution of the rel-
ative particle density through time. We consider the distribution function f (x ,ξ, t) to de-
scribe the density of molecules at a position x = (x(1), x(2), x(3)) with velocity ξ= (ξ(1),ξ(2),ξ(3))
at time t . The transport equation is given by

∂ f

∂t
+ξ ·∇ f = 0. (2.1)

This equation describes the transport of particles with a given velocity field but neglects
the interaction of particles which is much more difficult to realize with a quantum algo-
rithm.

We assume that the possible velocities are discrete, i.e., ξ(i) ∈ Ξ(i) = {ξ1, . . . ,ξNξ
}. In

this chapter we only consider velocities ξ = (ξ(1),ξ(2),ξ(3)), for which the relative differ-

2

26 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

ence in speed in the different dimensions is bounded by

crel = max
|ξ(i)|
|ξ(j)| ≤ 1. (2.2)

As detailed in Section 2.2.3 this is not a conceptual limitation of our approach, but helps
us to keep the number of corner cases to be considered relatively small.

2.2.1. GRID DEFINITION AND OBSTACLE PLACEMENT
In order to keep track of the temporal evolution of the distribution function f (x ,ξ, t), we
first define a computational grid with equidistant grid spacing in all two or three spatial
dimensions and assign densities to the volumes centered around the grid points. The
grid is set up in a straightforward fashion, and grid points can be identified using the
Cartesian coordinates system. Obstacles are subsequently placed in between grid points
as depicted in Figure 2.1.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 2.1: Illustration of an obstacle (black box) placed in a computational grid in two dimensions. The grid
points (‘·’ surrounded by blue boxes) surrounding the obstacle placement require special attention in our im-
plementation.

2.2.2. STREAMING
In what follows we describe how to move the particles through space. In the transport
method not all particles move in each time step. Furthermore, when a particle moves it
does not necessarily move in all dimensions in the same time step. The velocity of each

2.2. THE TRANSPORT EQUATION

2

27

particle consists of a speed in each spatial dimension. Whether or not a particle will
move in a given dimension depends on the speed in that dimension and whether or not
a particle traveling at that speed will reach the next grid point in the current time step.
This is due to the fact that we choose the size ∆tm of time step m to be such that some
particles make it to the next grid point, but none overshoot. To make this idea more
precise we define ξmax = maxk |ξk | and ξmin = mink |ξk |, with ξk ∈ Ξ := ⋃d

i=1Ξ
(i) the set

of possible speeds at which a particle can travel. Then, we can normalize the distance
between the grid points ∆x to enforce it will always be equal to 1. Subsequently, the first
time step∆t0 will have size 1

ξmax
. All particles that travel with speed ±ξmax in a dimension

will move one grid point in the first time step in that dimension. To determine the size
∆tm of any subsequent time step m, we keep track of the distances a particle traveling
at any of the possible speeds ξk ∈Ξwould be removed from reaching the next grid point
and use this to find the smallest time step necessary for any particle to reach the next
grid point in any dimension.

To ensure that particles can travel no further than the neighboring grid points, and
thereby adhere to the CFL (Courant-Friedrichs-Lewy) condition, we use a so called CFL
counter. This counter keeps track of the distances the particles are located from the next
grid point based on their speed in each dimension and thereby determines the size of
the next time step.

CFL COUNTER

In what follows, let cm
k represent how large of a fraction from the current grid point to

the next a particle with speed ξk has to travel.

We use the following expression

cm+1
k = cm

k +|ξk |
∆tm

∆x
, (2.3)

where ξk ∈ Ξ and m represents the number of time steps that have been taken so far.
Furthermore, ∆x represents the equidistant spacing between the grid points as before.
It then follows that we can express the size of the time step taken in each iteration as

∆tm = min
k∈Nξ

([
1− cm

k

] ∆x

|ξk |
)

. (2.4)

In the above equation we minimize over k to ensure that at least one speed reaches the
next grid point, and none overshoots.

In a classical transport method cm
k can be used to interpolate the results when the

simulation terminates in a time step that is not a complete cycle. This is not possible in
the quantum counterpart and thus if we terminate the simulation in a time step that is
not a complete cycle, some small oscillations will occur unless a post-smoothing method
is applied. In this thesis we restrict ourselves to running the QTM algorithm for a total
time T =∑Nt−1

m=0 ∆tm such that T
ξm

∈Z ∀m, where Nt is the total number of time steps.

To complete the quantum transport method we need to describe the behavior when
a particle impinges on an obstacle.

2

28 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 2.2: Illustration of an obstacle (black box) in the grid with the red arrow representing one possible spec-
ular reflection operation. The dashed arrow represents the trajectory in case no reflection had taken place.

2.2.3. REFLECTION BY AN OBSTACLE

In this chapter we consider specular reflection boundary conditions when a particle im-
pinges on an object. For specular reflection boundary conditions the velocity of a par-
ticle gets reflected along the axis normal to the object it impinges on. Notice that due
to this method we are restricted to modeling objects whose walls are either parallel or
perpendicular to each dimension. In order to facilitate the correct reflections we need to
keep track of when a particle has come into contact with a wall, this is done differently
for different values of crel.

We first consider the case crel ≤ 1. In this case we know a particle has come into con-
tact with an object if and only if it hits a grid point located in the first layer of the obstacle.
We will refer to these grid points as the wall of the object. When a particle reaches a grid
point in the wall of an object, its velocity normal to the wall gets reversed and the particle
is moved one grid point outside of the object again in the direction normal to the wall(s)
that just reflected it. Figure 2.2 gives an example of what such a reflection might look
like.

For crel > 1 the specular reflection step becomes more complicated, as grid points
located outside the object can be reached by a particle indicating that the particle has
come into contact with an object; See Figure 2.3. Similarly, multiple cases need to be
taken into account to determine whether a particle hits a corner point of an object or the
wall at a non-corner point. For simplicity we will restrict ourselves to the case crel ≤ 1,

2.3. QUANTUM REGISTER SET-UP

2

29

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 2.3: Illustration of an obstacle (black box) in the grid with the red arrow representing one possible spec-
ular reflection operation when crel > 1 holds. The dashed arrow represents the trajectory had no reflection
taken place.

but we would like to remark that our method can be generalized to any value of crel at
the cost of taking into account more corner cases.

A schematic overview of the proposed QTM is given in Figure 2.4.

2.3. QUANTUM REGISTER SET-UP
In order to implement our QTM approach we first need to define an encoding to give
a physically interpretable meaning to quantum basis states. In our implementation we
define a mapping, where each parameter is assigned to its own set of qubits, which com-
bined form the total qubit register. We use the following encoding

|ana . . . a1︸ ︷︷ ︸
ancillae

position︷ ︸︸ ︷
gng . . . g1 vnv . . . v1︸ ︷︷ ︸

velocity

〉 . (2.5)

Here, the qubits ana , . . . , a1 form the ancillae, with na = 4d−2, where d is the number
of spatial dimensions we are modeling. The gng . . . g1 qubits form the positional qubits,

with ng =∑d
i=1 ngi , where ngi is the number of qubits required to number all grid points

in the i -th spatial dimension. Finally, the qubits vnv . . . v1 encode the velocity vector, with
nv =∑d

i=1 nvi where nvi is the number of qubits required number the velocities of the i -

2

30 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

st
at

e
pr

ep
ar

at
io

n

st
re

am
in

g

re
fle

ct
io

n

𝑡!

st
re

am
in

g

re
fle

ct
io

n

𝑡"

st
re

am
in

g

re
fle

ct
io

n

𝑡#!

m
ea

su
re

m
en

t

…

se
t𝑎

!,
#

co
nt

ro
lle

d
in

cr
em

en
t

co
nt

ro
lle

d
de

cr
em

en
t

se
t𝑎

$,
#

co
nt

ro
lle

d.

re
fle

ct
io

n

m
ov

e
ou

t
of

ob
je

ct

re
se

t𝑎
$,
#

re
se

t𝑎
!,
#

Section 4 Section 5

Figure 2.4: Schematic overview of the proposed QTM.

th dimension. In summary, the total number of qubits required to realize our quantum
transport method is

na +ng +nv = 4d −2+
d∑

i=1
(ngi +nvi), (2.6)

which means that a moderate number of a few dozens to hundred fault-tolerant qubits
suffice to enable the solution of two and three-dimensional problems.

The details of the mapping of the ancillae, positional and velocity vectors will be ex-
plained more in depth in the following sections.

2.3.1. EFFICIENT MAPPING OF VELOCITY VECTOR

One of the speed-ups our algorithm provides compared to the state-of-the-art is due to
our mapping of the velocity vector. In each spatial dimension we are working with a
predetermined number of discrete velocities Nξ. For simplicity we will at first only con-
sider the velocity encoding in the one-dimensional case, and call the number of discrete
velocities Nξ. Note that this approach trivially extends to the multi-dimensional case.
As Nξ is the number of discrete velocities required, we need nv = ⌈log2

(
Nξ

)⌉ qubits to
encode all velocities. We subsequently define Nv = 2nv as the size of the vector repre-
senting the encoded velocities. For simplicity we assume Nξ to be a power of two and so
Nv = Nξ holds.
For our QTM we restrict ourselves to the case that the set of speeds U consists of positive
and negative values, and for each u ∈ U both |u| ∈ U and −|u| ∈ U will hold. We now
define Uo = [−umax, . . . ,umax], the ordered list of speeds from largest negative value to
largest positive value. Let umin = mink |uk | as before and let∆u be the distance between
the neighboring speeds in Uo , for simplicity we will assume ∆u is constant between all
indices so ∆u = 2umax

Nv
. However, we are not restricted to this simplification.

2.3. QUANTUM REGISTER SET-UP

2

31

We propose the mapping

|vnv . . . v1〉 =



−umin

−umin −∆u
...

−umax

umin

umin +∆u
...

umax


, (2.7)

of the discrete velocities to the quantum state. The motivation of this velocity mapping
is that we can flip the direction of the velocity by flipping only one qubit. This can be
seen by noting that the distance between the index of velocity −|uk | and |uk | in Uo is
precisely Nv

2 = 2nv−1, and so we can flip between these two velocities by flipping the
most significant qubit which encodes the sign of the velocity vector.

This means that we can write the quantum register encoding the velocity in the one
dimensional case as

|vdirvnv−1 . . . v1〉 . (2.8)

In the above expression the first qubit encodes the direction of the velocity (positive or
negative in the given dimension), and the next nv −1 qubits encode the magnitude of the
velocity. We define |00. . .0〉 to encode −umin, |00. . .1〉 to encode −umin−∆u and |11. . .1〉
to represent umax etc. It can easily be seen that this leads to a velocity encoding as given
in Equation (2.7).

Example We give an example of our velocity encoding to show that flipping the direc-
tion can be established by flipping only the most significant qubit. Let us consider the
1-dimensional case and say we have Nv = 8. Now let u1 = umin, u2 = umin +∆u and
u3 = umin +2∆u etc., then our velocity encoding gives

|v〉 =



−u1

−u2

−u3

−u4

u1

u2

u3

u4


.

Say our particle is traveling with velocity u2, then |v〉 = |101〉. Now flipping the most sig-
nificant qubit gives |v〉 = |001〉 which maps to −u2 as required.

Extending the above approach to the multidimensional case, the quantum register
for the d-dimensional velocity becomes

|vdir,d . . . vdir,1vd
nvd

. . . vd
1 vd−1

nvd−1
. . . vd−1

1 . . . v1
nv1

. . . v1
1〉 . (2.9)

2

32 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

Former encodings of the velocity vector for quantum transport methods were set-
up such that in order to flip the velocity of a particle, all qubits encoding the velocity
needed to be flipped [20]. Our new encoding saves O (n) qubit flips per reflection. Notice
that since reflections are usually implemented in multi-control fashion, as described in
Section 2.5, this ends up in saving O (n) computationally costly operations per reflection.
In Section 2.7 we give an in depth complexity analysis and comparison of the different
methods.

2.3.2. MAPPING OF GRID POINT LOCATIONS ONTO QUBIT STATES
The mapping of the grid point locations onto qubit states is rather straightforward. As
before, let |gng . . . g1〉 represent the state of the qubits encoding the grid point location of
the particles. Then, we can write the qubits encoding the location more detailed as

|g d
ngd

. . . g d
1 g d−1

ngd−1
. . . g d−1

1 . . . g 1
ng1

. . . g 1
1 〉 , (2.10)

where g i
ngi

. . . g i
1 encodes the i -th dimension of the location of grid points by representing

the binary value of the location. The set-up of the grid is rather straightforward with
different grid points in each dimension and the particles being able to move one step
forward and backward in each time step and in each dimension.

2.3.3. ANCILLAE
The ancillae are the last of the register expressed in Equation (2.7) and are used within
the computation only. Each dimension requires one ancilla to keep track of which ve-
locities will be streamed and one ancilla to keep track of the resetting during the reflec-
tion step, furthermore we require 2(d −1) ancillae to implement a quantum comparator
method that will be used in the reflection step, leading to a total of 4d − 2 ancillae re-
quired throughout the computation. The exact set-up and utilization of the ancillae will
be described in Sections 2.4 and 2.5.

2.4. EFFICIENT QUANTUM STREAMING OPERATION
As described in Section 2.2 the main ingredients of the quantum transport method are
the streaming and the reflection operations. In this section we will introduce a novel
streaming operation based on the Quantum Draper Adder [6], which we specialize to
an efficient quantum incrementation (decrementation) procedure that is cheaper than
methods currently in use [5, 8, 7, 20]; see Section 2.7.3.

2.4.1. EFFICIENT QUANTUM INCREMENTATION (DECREMENTATION)
An increment (decrement) operation takes a quantum state | j 〉 to the state | j +1〉 (| j −1〉).
This operation is cyclic, meaning that |2n −1〉 (|0〉) gets incremented (decremented) to
|0〉 (|2n −1〉). Let Uinc (Udec) express the unitary that increases (decreases) the n qubit
state | j 〉, this gives

Uinc | j 〉 = | j +1〉 , (2.11)

Udec | j 〉 = | j −1〉 . (2.12)

2.4. EFFICIENT QUANTUM STREAMING OPERATION

2

33

This quantum primitive is used in many different quantum algorithm and fields such
as Quantum Random Walks and Quantum Computational Fluid Dynamics, to name
just a few. In the literature this primitive is typically implemented by cascading multi-
controlled NOT operations [5, 8, 7, 20, 3]. While this implementation looks elegant on
paper, decomposing multi-controlled NOT operations into gates that are native to quan-
tum computers, i.e., single-controlled NOT gates, will lead to a significant increase of the
circuit depth.

In this chapter we provide an alternative method leading to a quantum streaming op-
eration which can be implemented more efficiently on real-world quantum computers.
The method is inspired by the Quantum Draper Adder (QDA) [6] and uses the same prin-
ciple, but in contrast to the regular Drapper adder that computes |a +b〉, where a and b
are natural numbers encoded in a quantum register, in our implementation the phase
shift operations are not controlled as the addition by b = 1 is always known beforehand.
As we moreover want our operation to be cyclic, no qubit for holding a potential carry
over value is required. We are, to the best of our knowledge, the first to use such a QDA
inspired approach for the quantum incrementer (decrementer) and in Section 2.7.4 we
show that it leads to a significant reduction in the amount of CNOT gates required to run
the algorithm.

Our method can be expressed by the circuit given in Figure 2.5. Let | j 〉 be the basis
state that we wish to increment (decrement). We claim that

| j +1〉 = (QF T)†UP,+(QF T) | j 〉 , (2.13)

and define
Uinc = (QF T)†UP,+(QF T), (2.14)

where QFT stands for Quantum Fourier Transform and UP,+ will be defined below. We
will now show that (2.13) indeed holds. First we remark that

QF T | j 〉 = 1p
N

N−1∑
k=0

ω
k j
N |k〉 = 1p

N

N−1∑
k=0

e
2πi k j

N |k〉 , (2.15)

holds by definition. Then the circuit UP,+ consists of one phase shift gate1 per qubit with
an angle determined by the qubit number of the qubit to which it is applied. We apply
the phase shift gate P (θ) to the j -th qubit2 with angle

θ j = π

2n−1− j
= π2 j+1

N
. (2.16)

So P (θ j) gets applied to qubit j and adds amplitude e
2πi 2 j

N to each basis state for
which qubit j is in the state 1. This means that if we apply the operation P (θ j) to each

qubit for the basis state |k〉 it gets multiplied by a factor e
2πi k

N .

1The single qubit phase shift gate can be expressed in matrix form as P (θ) =
[

1 0
0 eiθ

]
.

2In this section, for simplicity, we index the qubits ranging from 0 to n −1.

2

34 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

And so we get

UP,+(QF T) | j 〉 = 1p
N

N−1∑
k=0

e
2πi k j

N e
2πi k

N |k〉 = 1p
N

N−1∑
k=0

e
2πi k(j+1)

N |k〉 . (2.17)

It then directly follows that

(QF T)†UP,+(QF T) | j 〉 =QF T † 1p
N

N−1∑
k=0

e
2πi k(j+1)

N |k〉 = | j +1〉 . (2.18)

In other words our proposed algorithm increases each basis state by 1, whereby the pe-
riodic property of e iθ ensures that the so-defined increase operation is cyclic. Naturally
the decrease operation becomes

| j 〉 =
(
(QF T)†UP,+(QF T)

)† | j +1〉 = (QF T)†U †
P,+(QF T) | j +1〉 . (2.19)

Since UP,+ consists of a layer of phase shift gates taking the conjugate transpose is equal
to shifting the angles to their negative counterparts. So for U †

P,+ we apply the phase shift
gate P (−θ j) to the j -th qubit with angle −θ j , where θ j is as given in (2.16). For simplicity

we define UP,− =U †
P,+. It then follows that

Udec = (QF T)†UP,−(QF T). (2.20)

2.4.2. STREAMING STEP
In the streaming step particles migrate from one discrete point in space to another. In
each time step the particles that travel at a discrete speed such that they reach the next
grid point in the current time step get incremented (or decremented) one position in
space. The list of speeds for which particles traveling at that specific speed need to be
incremented (decremented) at a particular time step is pregenerated by the CFL counter
as described in Section 2.2.2. Then, controlled on their speeds, the particles are incre-
mented (decremented) one position at a time. This means that we implement the quan-
tum incrementation (decrementation) method as described in the last section in a con-
trolled fashion as will be detailed below.

First of all we notice that we do not have to control the entire incrementation (decre-
mentation) primitive from Section 2.4.1. Since the incrementation (decrementation)
step consists of the QFT followed by a layer of phase shift gates followed by QFT†, it
suffices to only control the layer of phase shift gates on the speed of the particles, as the
QFT and QFT† operations naturally cancel out each other. Furthermore, since the in-
crementation and decrementation steps are performed directly after each other on the
same qubits, we do not have to perform a QFT† operation after the phase shift gates of
the incrementation step, as this would cancel out with the QFT operation at the start of
the decrementation step.

Second, we notice that if we make use of an ancilla we can perform the incremen-
tation and decrementation operations for all speeds that take a step in the current time
step using a single operation in a given dimension i .

2.4. EFFICIENT QUANTUM STREAMING OPERATION

2

35

vi1 Xuk(0)+1 • • Xuk(0)+1

· · · · · ·
vinvi Xuk(nvi

−1)+1 • • Xuk(nvi
−1)+1

vdir,i •
xi
1

QFT UP,+ UP,− QFT †· · · · · ·
xi
ngi

Figure 2.5: Circuit representation of the proposed streaming step in dimension i for one speed |uk | without
extra ancilla qubits.

vi1 Xuk(0)+1 • • Xuk(0)+1

· · · · · ·
vinvi Xuk(nvi

−1)+1 • • Xuk(nvi
−1)+1

vdir,i •
av,i • •
xi
1

QFT UP,+ UP,− QFT †· · · · · ·
xi
ngi

Figure 2.6: Circuit representation of the proposed streaming step in dimension i for one speed |uk | with ancilla
qubit. Note that here we reset the av,i ancilla after the streaming step. In the proposed algorithm this ancilla
will only be reset after the reflection operation has been performed.

To this end, let |uk |be (one of) the absolute values of the speeds for which the stream-
ing step is to be performed at a certain point in the algorithm. Then in each dimension
i we need to increment the particles traveling at speed u(i) =±|uk |. Because of the way
the binary encodings of uk and −uk are related in each dimension, we first perform a
controlled-NOT operation between the nvi −1 qubits determining the absolute value of
the velocity and an ancilla qubit av,i . If there are multiple values k such that particles
traveling at speed ±uk need to be incremented in the given time step, this process is
applied to all such k. This means that we simply flip the value of the ancilla qubit av,i

to 1 for all the registers of the particles traveling at a speed such that they should reach
the next grid point in dimension i in the current time step. We then use the ancilla av,i

in combination with the directional velocity qubit vdir,i to increase or decrease the po-
sition of the correct particles in space in each dimension i . In practice, the streaming
step using the ancilla qubits av,i should be implemented as it leads to a more efficient
algorithm, due to the fact that we now perform the incrementation (decrementation)
primitive for all the particles taking a step in the given time step using a single operation.

2

36 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

vi1 Xuk(0)+1 • Xuk′ (0)+uk(0) •
· · · · · ·

vinvi Xuk(nvi
−1)+1 • Xuk′ (nvi

−1)+uk(nvi
−1) •

vdir,i •
av,i • •
xi
1

QFT UP,+ UP,− QFT †· · · · · ·
xi
ngi

Figure 2.7: Circuit representation of the proposed streaming step in dimension i for two speeds |uk | and |uk′ |
with ancilla qubit. Note how the proposed ancilla qubit allows to perform the streaming UP,+ for both speeds in
one operation. Here we do not reset the ancilla qubit av,i after the streaming step, as in the proposed algorithm
this ancilla will only be reset after the reflection operation has been performed.

Let uk (n) represent the value of the n-th bit when representing the index of the
speed uk in the velocity vector3. Then, we perform the operation Xuk (l−1)+14 on each
qubit v i

l ∈ {v i
1, . . . , v i

nvi
} followed by the multi-controlled NOT operation between the

v i
1 . . . v i

nvi
qubits and the av,i qubit for all speeds |uk | that take a step in the given time

step, before performing the controlled streaming operations. Notice that we need to
make sure to apply the Xuk (l−1)+1 operations again after performing the multi-controlled
NOT, to reset the speeds to their original states before we apply the Xuk′ (l−1)+1 associ-
ated with the next speed uk ′ for which the particles need to be streamed in this timestep.
Furthermore, notice that we can simply combine these subsequent operations and get
Xuk (l−1)+1+uk′ (l−1)+1 = Xuk (l−1)+uk′ (l−1) to be applied before the multi-controlled NOT op-
eration to set the ancilla av,i for the speed uk ′ . Figure 2.5 shows the circuit of the stream-
ing step without the ancilla av,i . Figure 2.6 shows what the circuit of the streaming step
with the ancilla av,i looks like when streaming the particles with speed uk in dimension
i . Figure 2.7 shows how using the ancilla qubit av,i enables streaming the particles with
several (in this example two) speeds uk and uk ′ in dimension i using a single Up,+ and
Up,− operation. In Figure 2.7 we do not reset the ancilla qubit av,i after performing the
streaming step, as in practice these will only get reset after the specular reflection step of
the algorithm has been performed.

In the above we have presented the streaming algorithm for a single dimension i .
When working with multiple dimensions we perform the exact same operations in each
dimension. Note how the streaming of the particle in the different dimensions can be
applied to the qubits simultaneously, as different qubits are involved in the streaming
step for each dimension.

3For example, assume we want to control on the speed being equal to u2, let |u2〉 = |vdirvm . . . v0〉 = |10010〉.
Then u2(0) = 0 and u2(1) = 1 etc.

4Since uk (l −1) will be zero if the l −1-th qubit is in the state |0〉 when representing the velocity vector uk , in
this case Xuk (l−1)+1 = X1 = X so the qubit gets flipped to the |1〉 state. If the qubit was already in the state |1〉,
however, we get Xuk (l−1)+1 = X2 = I and so the state of the qubit remains the same. Therefore this operation
can be used to prime the states

2.5. QUANTUM SPECULAR REFLECTION STEP

2

37

2.5. QUANTUM SPECULAR REFLECTION STEP
After the completion of the streaming operation, particles that come into contact with
an obstacle and have virtually moved into it have to change their travel path; See Section
2.2.3.

Here, we propose a novel and fail-safe approach to the quantum reflection operation.
First, the particles that virtually traveled into the obstacle have their velocity direction
reversed in the direction normal to the wall encountered. Afterwards, these particles are
placed back into the flow domain. As a result of both operations, the particle is located
in the correct grid point and travels in the right physical direction in the next time step.

To achieve this there are some corner cases that need to be taken into account explic-
itly to avoid incorrect reflections, furthermore we make sure that there are no particles
residing inside the object at the end of a time step.

2.5.1. SPECULAR REFLECTION STEPS - REQUIREMENTS AND POSSIBLE BREAK-
DOWN CASES

In this section, we translate the general procedure of the reflection step into a concrete
quantum algorithm. Strategies to mitigate the erroneous behavior that might occur for
the different corner cases will be discussed on Section 2.5.2.

First we need to identify particles that have reached a grid point inside the obsta-
cle, to ensure that they are placed back into the fluid domain before the start of the
next streaming step. This means that controlled on the current location of the particles
(namely inside the obstacle), we set them back onto a grid point outside of the obstacle.
Performing such an operation on a quantum computer is, however, far from being triv-
ial since we cannot alter the state of certain qubits controlled on their own states, as this
would constitute a non-unitary operation. In our case this means that we cannot simply
alter the position of the particles in space based on their current position, as that would
be precisely attempting an operation on some qubits controlled by themselves.

A way to overcome this is to use a system of ancillae to facilitate this back place-
ment. This, however, introduces a new complexity since the ancillae would also have to
be reset after the positional move has been performed in order to be useable in the next
time step. The resetting of the ancillae to their original position is nontrivial because we
clearly cannot use the original requirements to simply flip the ancillae back, as the origi-
nal control states were positional and we used the ancillae to control a positional change.
Instead, we will have to reset the ancillae based on the new location of the particles in
combination with their direction and velocities, i.e., we reverse engineer the particles’
previous position.

Another nontrivial aspect of the specular reflection step is to implement it such that
all of the reflections are physically correct and we do not encounter unphysical behavior
around the corner points. If one were to simply reflect the velocity in the y-direction
upon hitting a y-wall and the velocity in the x-direction upon hitting an x-wall5, in-
correct behavior around the corner points will emerge. This is because corner points

5Here we define x-wall (y-wall) as a wall spanning points accross the y (x) axis and being at only one point in
the x (y) dimension. Therefore particles that encounter such a wall get reflected in the x (y) direction when
considering specular reflection boundary conditions.

2

38 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

are points inside the object that are part of walls in multiple directions, i.e. in the two-
dimensional case they are part of both an x-wall and a y-wall. What will happen in a
non-fail-safe implementation of the specular reflection step is that particles hitting such
a grid point coming through just the x- or y-wall have their velocities reflected in both
directions, instead of only the one orthogonal to the wall they came through.

Figure 2.8 gives an example of what can go wrong in a non-fail-safe implementation
of the specular reflection step. We see that in the cases of the green arrows the behavior
is correct, as the velocity is reflected in both the x- and y-direction since the particle hits
both an x- and y-wall. For the case of the blue arrows we see that the behavior is also
correct, since the velocity parallel to the wall is zero in this case, therefore reflecting the
velocity in this direction has no effect. However, for any particle approaching the corner
point from another direction, such as the red arrow, the reflection based on a non-fail-
safe implementation will certainly be wrong. This is due to the fact that such a particle
hits a point associated to both an x-wall and a y-wall, even though physically it can easily
be seen that the particle only hits either an x- or a y-wall. In a non-fail-safe reflection
operation this means that the velocity of the particle is erroneously reversed in both the
x- and the y-direction.

2.5.2. FAIL-SAFE SPECULAR REFLECTION - 2D CASE

In what follows we propose a novel fail-safe specular reflection approach. Figure 2.9
shows an obstacle placed on a grid, with both the grid points inside the object and the
grid points outside the object drawn. Furthermore, Figure 2.9 shows the possible re-
flections that can occur around the obstacle. Using this figure we describe how we can
implement a unitary operation that treats all possible reflection cases correctly.

First of all we require d extra ancillae ao,i , where i represents the spatial dimension,
that facilitate moving the particles out of the obstacle for the next time step and keeping
track of which velocity components should be reflected when a particle hits a corner
point. Lastly, we make use of the earlier defined ancillae av,i to correctly set and reset the
ao,i ancillae at the beginning and end of the specular reflection step, respectively. Note
that using the av,i ancillae does not add to the complexity of the circuit since we can
reuse their state from the streaming step, and we reset them after the specular reflection
step instead of directly performing the reset after the streaming operation.

Upon reaching a blue (green) encircled grid point inside the object, the particle has
hit an x-wall (y-wall). When hitting a grid point that is part of the x-wall (y-wall) in the
object, we flip the ancilla qubit ao,x (ao,y) controlled on the vdir,x and av,x (vdir,y and
av,y) qubits.

Specifically, we flip the extra-defined ancillae only when we just took a step in the
direction that the wall reflects, and when we travel in a direction that the wall would
reflect based on the position of the object (meaning that if we travel in the negative y-
direction and we hit a grid point in a y-wall in the bottom of the object we do not flip
the ao,y ancilla). This is followed by flipping vdir,x (vdir,y) controlled by the ao,x (ao,y)
ancillae and incrementing the position by one index in the x (y) direction. Here, the
term incrementing amounts to streaming in the direction vdir,x (vdir,y).

The final step consists of resetting the ancillae ao,i . The grid points directly outside
the object that are not ‘in the vicinity of a corner point’ of the object constitute the trivial

2.5. QUANTUM SPECULAR REFLECTION STEP

2

39

Figure 2.8: Illustration of the different cases of specular reflection at the corner points of an obstacle. While
particles traveling into the obstacle along the blue and green velocity trajectories are reflected correctly even
by non-fail-safe reflection algorithms, particles approaching the corner points along the red-arrow trajectories
require special treatment as is done in our fail-safe specular reflection algorithm.

2

40 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

Figure 2.9: Illustration of all possible corner cases to be taken into account when particles collide with an ob-
stacle (black box) and the physically correct reflection behavior as enforced by our fail-safe specular reflection
algorithm.

2.5. QUANTUM SPECULAR REFLECTION STEP

2

41

case. By ‘in the vicinity of a corner point’ we mean that the current grid point the particle
is in, has as adjacent grid point inside the object a grid point that is part of both an x-wall
and a y-wall. In Figure 2.9 the grid points that are not considered to be ‘in the vicinity
of a corner point’ are identified as the blue (green) encircled grid points outside of the
object. All that needs to be done for them is to reset the aox (ao,y) ancilla controlled on
the position, the direction of the x (y) velocity and av,x (av,y). More specifically, we reset
the ancilla for a particle in a grid point that is adjacent to an x-wall (y-wall) if and only if
av,x = 1 (av,y = 1) and vdir,x (vdir,y) points away from the wall.

Around the corner points of the object we need to be more careful, however. This is
due to the fact that the particles could have gotten there via multiple directions, in which
case different ancillae would need to be reset.

For the black encircled grid points we have that both the ancillae ao,x and ao,y need
to be reset controlled on vdir,x , vdir,y , av,x and av,y . Only when av,x = av,y = 1 holds and
vdir,x and vdir,y are such that they both point away from the object, do ao,x and ao,y need
to be reset.

For the orange encirled points we do the following. We first reset the ancillae based
on the same criteria as the blue (green) encircled qubits. Subsequently, we note that the
respective ancilla should not have been reset only in the case of the red arrow. There-
fore, we simply re-reset the ancillae based on the criteria that reflect the case of the red
arrows, consisting of position in combination with direction in both the x and y direc-
tion (vdir,x , vdir,y) and whether a step was taken in both directions in the former time
step (av,x and av,y). Specifically, for the arrow located on the highest row on the left, this
would mean resetting the ancilla controlled on vdir,x being positive, vdir,y being positive,
the position being the dot on the highest row second from the left and av,x and av,y both
being activated. This strategy for defining hand-crafted resetting patterns can easily be
adapted to the remaining three corners.

2.5.3. FAIL-SAFE SPECULAR REFLECTION - 3D CASE

We will now provide a generalization of our two-dimensional method to three dimen-
sions. The idea of the set-up is the same, we define grid points just inside the object and
grid points outside and directly adjacent to the object. Then, each grid point inside the
object is associated with an x-wall or an y-wall or a z-wall. Now, if a particle reaches
a grid point associated to an x-wall (y-wall, z-wall), was traveling in a direction that
this wall would reflect (meaning vdir,x (vdir,y , vdir,z) was in the right state) and av,x = 1
(av,y = 1, av,z = 1), the ancilla ao,x (ao,y , ao,z) will be flipped. Notice that here we are
using the exact same logic as in the two-dimensional case.

Subsequently the particles are placed back to the adjacent points inside the fluid
domain based on the states of ao,x , ao,y and ao,z . This step is realized in the same way as
in the two-dimensional case.

Finally, we need to reset the ancillae ao,x , ao,y and ao,z . This is again performed
by considering the current position of the particle, in combination with their direction
and whether or not they were streamed in the last time step. Compared to the two-
dimensional case, in three dimensions there are more distinct cases to be taken into
account. Instead of distinguishing only between corner points and non-corner points,
we need to distinguish between corner points (where three walls come together), points

2

42 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

x

y

z

Figure 2.10: Illustration of the corner cases specific to a three-dimensional obstacle. The action applied to the
different color-coded grid points is described in Section 2.5.3.

along the edges of the obstacle (where two walls come together) and points on the side
of the objects.

For the points on the side of the object and the points along the edges of the obsta-
cle, the rules for reflection will be the same as in the two-dimensional case. Here the
points on the edges of the obstacle behave the same as the corner points in the two-
dimensional case, and the points on the side of the objects behave the same as the non-
corner points in the two-dimensional case.

The corner points where three walls come together require a more in depth consider-
ation. Figures 2.10 and 2.11 show an object in our three-dimensional grid and uses colors
to indicate which grid points need to be taken into account as special cases around cor-
ner points. In the black encircled points the ao,x , ao,y and ao,z qubits are reset if the
velocity in all three dimensions travels away from the object and the ancillae av,x , av,y ,
av,z are all equal to 1. In the red encircled points the ancillae of the two dimensions
which get reflected by the two walls that intersect are reset, if the particle is moving away
from the object in the two respective dimensions and the particle took a step in both di-
mensions and just before did not travel a step in the third dimension towards the object.
In the yellow encircled point we consider the following behaviors. Here we only reset
the ancilla associated with the dimension the wall reflects in if we just took a step in that
dimension and the directional qubit points away from the object. Furthermore, we need
to check that in none of the other two dimensions we just took a step towards the object.

2.5.4. EFFICIENT OBJECT ENCODING

In this section we propose a novel approach based on quantum comparison operations
for encoding objects in such a way that we can efficiently identify whether or not a grid
point is part of a certain object wall. Our approach requires 2(d −1) extra ancillae and
will be explained at the hand of a two-dimensional example.

Assume that we want to encode an x-wall (note that everything works the same to
encode an y-wall), for example the left-most x-wall of Figure 2.9. Let the grid points just

2.5. QUANTUM SPECULAR REFLECTION STEP

2

43

Figure 2.11: View from the positive z-axis onto the z-wall of the obstacle. Note that the z-wall lies half a grid
point in the z-direction below the grid with the encircled points.

2

44 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

inside the object next to the x-wall, i.e., the left-most blue encircled grid points inside the
object of Figure 2.9, range from [l ,u] in the y-axis. We first need to determine whether
or not we are in one of the left-most blue encircled grid points inside the object with the
aid of two quantum comparison operations. The first quantum comparison operation
checks whether y ≥ l holds. If so we flip the first extra ancilla from its start state al ,1 = 0
to al ,1 = 1. Then we check if y ≤ u holds, and if so we flip the second extra ancilla to
au,1 = 1. Now, controlled on these two ancillae and the state of the qubits encoding the
position in the x dimension of these left-most blue encircled qubits, we flip the ancilla
ao,x indicating that we are in a wall which reflects the velocity in the x-direction. Now
we simply reset the al ,1 and au,1 ancillae so that they can be reused for other walls, by
performing the same quantum comparison operations as described before6. In the two-
dimensional case we perform this operation for all walls in order to set the ao,x and ao,y

qubits as required. After completion of this step we continue in the same fashion as
described in Section 2.5.2.

What remains is to reset the ao,x and ao,y qubits after the reflection and streaming
steps have been performed which we accomplish, again, with the aid of the quantum
comparison operation. To continue with our example of the left-most x-wall of Figure
2.9, we again perform two comparison operations to check whether we are in the left-
most blue encircled grid points right outside the wall, which amounts to checking y ∈
[l +1,u −1]. This can be achieved with the same logic as before namely by checking y ≥
l+1 and y ≤ u−1. All the other steps and the resetting are performed in the same manner
as explained before. The extension to the three-dimensional case is straightforward.

2.5.5. QUANTUM COMPARISON OPERATION
In our implementation we use the quantum comparison operation from [9], which com-
pares the integer value i of the n-qubit quantum state |i 〉with a pre-determined constant
k saving the result of the comparison in a separate qubit.

The quantum comparison algorithm works as follows. Say we wish to determine
whether the integer value i encoded in basis state |i 〉 is smaller than k7. Then, we first
subtract the integer k from the value encoded by the n + 1 qubits encoding the state
|0〉 ⊗ |i 〉, where the prepended |0〉 qubit will hold the result of the computation. Now
there are two cases, i ≥ k and i < k.

Assume that we are in the case i ≥ k. Then subtracting k from i encoded in |0〉⊗ |i 〉
gives |0〉⊗ |i −k〉, which leaves the prepended |0〉 qubit unchanged. Now we simply per-
form an addition of the value k to the n-qubits that were used to encode i and now
encode |i −k〉. This gives |0〉 ⊗ |i −k +k〉 = |0〉 ⊗ |i 〉. And so in total we end up with a
quantum register in the state |0〉⊗|i 〉. Where the |0〉 state is the result of the computation
which means that i ≥ k in fact holds, and the last n qubits are again in the original state
|i 〉.
6Note that in the example of Figure 2.9 it would be most efficient to first flip the ancilla ao,x as well, controlled

on the al ,1 and au,1 qubits in combination with the qubits encoding the position in the x dimension be-
ing in the position of the right-most blue encircled grid points inside the object. But for now we were only
considering the left-most x-wall.

7Note that k ≤ 2n−1 always holds, since otherwise we trivially know that k is larger than any value that n qubits
can encode.

2.6. RESULTS

2

45

Now let us assume that we are in the second case i < k. Again, we start by periodically
subtracting the integer k from i encoded in the state |0〉⊗|i 〉, only now since k > i we end
up flipping the state of the prepended |0〉 qubit. This is because periodically subtracting
k from i in a state encoded by n + 1 qubits results in the state |2n+1 −k + i 〉. Since k ≤
2n−1 and i ≥ 0 we must have that 2n+1−k+i ≥ 2n and so the state of the most significant
qubit must be equal to |1〉. This means that the total qubit register is now in the state
|1〉⊗ |2n+1 −k + i −2n〉 = |1〉⊗ |2n −k + i 〉.

Then, as before, we simply add the integer k again to the last n qubits of the register
leaving us with |1〉⊗ |2n −1+ i 〉 = |1〉⊗ |i 〉 due to periodicity. Notice how the most sig-
nificant qubit is left in the state |1〉 indicating that in fact k > i , whilst again the qubits
encoding |i 〉 have not changed.

Multiple realizations of quantum addition and subtraction operations are described
in the literature [12, 19, 4, 6] and can be used for the comparison operation, all having
their own complexities and required ancillae associated to them.

A quantum primitive for checking whether i ≥ k holds can be easily designed from
the above (i < k) by simply negating the qubit that holds the result after performing i < k.

Implementing a quantum primitive that determines i ≤ k is a bit more involved as
we need to consider two different cases. First, if k = 2n −1 simply flip the ancilla holding
the result, as i ≤ k trivially holds, otherwise we can implement i < k+1 to get the desired
result. Notice that here we can easily implement this two case method for i ≤ k since k
is an integer determined before the running of the algorithm.

2.6. RESULTS
To demonstrate the correct functioning of our QTM we implemented the proposed al-
gorithm in Qiskit [1] and performed some preliminary simulation runs for a moderately
small grid in two spatial dimensions. All runs were performed with Qiskit’s local quan-
tum simulator Aer on an 8-core Intel i7-10610U CPU running at 1.8GHz. For simplicity,
we assumed perfect qubits, i.e. no noise model and all-to-all qubit connections, i.e., a
generic QPU.

Our overall algorithm consumes just 22 qubits in total, 6+6=12 qubits for the grid
locations, 2+2=4 qubits to encode the velocity vectors (Nv = 2 in both directions), and 6
ancillae. Based on the amount of qubits, today’s quantum computers should be able to
execute our QTM solver, however, the circuit depth exceeds capacities of todays devices
by orders of magnitude so that we are only able to show results produced on a quantum
computer simulator.

Figure 2.12 shows a sequence of numerical results computed on a 64×64 grid with
an internal object of size 3×39 located with its lower left corner at position (34,11). The
initial state was prepared by applying Hadamard gates to all the qubits encoding the grid
in the y-dimension and all but the most significant qubit encoding the grid in the x-
dimension, that is, all particles are equidistributed in the left half of the fluid domain,
whereas the right half is in vacuum state. Perfectly reflecting boundary conditions are
prescribed at the internal obstacle while periodic boundary conditions are prescribed at
all four domain boundaries.

2

46 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

In the preparation step of the quantum state we also applied a Hadamard gate the
the vdir,y ancilla, spreading out the direction of the velocities of the particles in the y-
dimension. Finally, we apply a NOT gate to the vdir,x ancilla, leading to the particles
traveling in the positive x-direction. Figures 2.12b–2.12f illustrate how particles move
in the positive x-direction and in both the positive and negative y-directions filling the
vacuum behind the obstacle as expected.

In order to stay as close as possible to the capabilities of a physical quantum com-
puter we performed 8.192 shots. Knowing the exact size and position of the obstacle we
excluded 117 from the 4.096 possible states from the measurement so that, on average,
each grid point gets measures twice.

Figure 2.13 depicts the same sequence of results with 524.288 measurements show-
ing a much better enunciation of the flow pattern. All plots show the density of particles
at the respective grid points. Future research will focus on problem-specific measure-
ments of application specific integral quantities of interest that might require much less
measurements.

2.6. RESULTS

2

47

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

10

20

30

40

50

60

(a) Output after 0 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

10

20

30

40

50

60

(b) Output after 3 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

10

20

30

40

50

60

(c) Output after 8 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

10

20

30

40

50

60

(d) Output after 12 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

10

20

30

40

50

60

(e) Output after 18 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

10

20

30

40

50

60

(f) Output after 25 timesteps.

Figure 2.12: Sequence of solutions computed on a 64×64 grid by the proposed QTM solver on 22 simulated
qubits adopting 8.192 measurement.

2

48 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

4000

(a) Output after 0 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

4000

(b) Output after 3 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

4000

(c) Output after 8 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

4000

(d) Output after 12 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

4000

(e) Output after 18 timesteps.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

4000

(f) Output after 25 timesteps.

Figure 2.13: Sequence of solutions computed on a 64×64 grid by the proposed QTM solver on 22 simulated
qubits adopting 524.288 measurements.

2.7. COMPLEXITY ANALYSIS
In this section we give a detailed complexity analysis of our approach. Since most quan-
tum hardware can only implement single- and two-qubit gates natively [17, 13], we de-
compose the multi-qubit operations into two-qubit gates to find a realistic quantum
complexity for the proposed method. Specifically we choose to give the complexity in
terms of CNOT gates, while CNOT is one of the native gates for IBM QPUs [13] it needs
to be emulated by other two-qubit gates on other quantum hardware such as the QPUs

2.7. COMPLEXITY ANALYSIS

2

49

from Rigetti [17]. However, in these cases the CNOT gate can be decomposed using a
fixed number of the natively implemented two-qubit gates, so this does not effect the
overall complexity.

We subsequently compare our found complexity to the complexity of the current
best known quantum algorithm for the transport equation [20]. In doing so we show
that our method not only outperforms the current state-of-the-art by implementing the
quantum reflection step in a fail-safe manner, but we also reach a better complexity.

2.7.1. COMPLEXITY OF MULTI-CONTROLLED NOT OPERATIONS
In order to provide a cost analysis for our algorithm, we first determine the cost associ-
ated to implementing a multi-controlled NOT gate, denoted as Cp NOT in the following,
in terms of CNOT gates. As the decomposition of Cp NOT gates into CNOT gates is a field
of active research, we selected a few representative approaches, namely, one without
ancilla qubits, one with a linear amount of ancilla qubits and multiple with a constant
amount of ancilla qubits.

A decomposition without any ancilla qubits was given by Barenco et al. in [2]. The
reported decomposition requires 48(p + 1)2 +Θ(p) ‘basic operations’8, from which we
deduce that approximately cp2 with 22 < c < 48 CNOT gates will be required leading to a
complexity of O

(
p2

)
CNOT gates.

Nielsen and Chuang present an alternative decomposition with a linear amount of
ancilla qubit [15]. The decomposition of a single Cp NOT gate requires p −1 ancillae and
2(p −1) Toffoli gates9. Each Toffoli gate in turn is decomposed using 6 CNOT gates (and
some other operations) [15]. Therefore, a total of 12(p −1) CNOT gates is required to de-
compose a Cp NOT operation into native one- and two-qubit gates.

As a third alternative the paper by Barenco et al. [2] provides a decomposition of
Cp NOT operations for p ≥ 5 using a single ancilla, 8(p − 3) Toffoli gates and 48(p + 2)
‘basic operations’ leading to cp CNOT gates with 70 ≤ c ≤ 96.

In addition to the three approaches mentioned above, we can also use the quan-
tum comparison operation discussed in Section 2.5.5 in combination with only one an-
cilla qubit. In fact, one can find whether or not the p control qubits are in the state
|q1 . . . qp〉 = |1. . .1〉 by using the comparison operation to check whether q ≥ 2p −1 holds,
where q is the integer value encoded by the qubits q1 . . . qp . The cost of such a compari-
son operation depends on the costs of the constant addition operation. Using the Draper
adder as described in Section 2.4 this method requires 4p2 +6p +3 CNOT operations10.
Therefore this method requires O

(
p2

)
CNOT gates and one additional ancilla.

8Here the term basic operations implies either a CNOT or single qubit gate.
9A Toffoli gate is a CCNOT gate, i.e. a controlled NOT gate with two control qubits.
10Since a QFT operation applied to k qubits consists of the following two-qubit gates, first k(k−1)

2 controlled
phase shift gates followed by ⌊k/2⌋ swap gates. A swap gate can be decomposed using 3 CNOT operations
and a controlled phase shift operation requires two CNOT operations. Therefore the total cost of a QFT
operation applied to k qubits is k(k−1)+⌊ 3k

2 ⌋ CNOT operations. Then the total cost given in the text follows
from the fact that the Draper Adder implementation in combination with the comparison operation consists
of first a QFT and QFT† applied to p +1 qubits followed by a QFT and QFT† applied to p qubits.

2

50 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

This implementation appears to match the complexity of the ‘recursion method’,
provided by Qiskit [1], which also requires 1 ancilla qubit. IBM does not, however, give
a complexity analysis in terms of the number of CNOT gates required or a reference de-
tailing the implementation. We numerically analyzed the complexity of this implemen-
tation by running it for several values of p (up to p = 40) and found experimentally that
it requires ≈ 2p2 CNOT gates.

Having, in our opinion, the best trade-off between the amount of CNOT gates and
ancilla qubits required for realistic values of p, we choose to use the ‘comparison’ or
‘recursion’ multi-controlled NOT decomposition in our further analysis.

We would like to stress here that there might be cheaper methods for implementing
a multi-controlled NOT operation possible as this is a topic of active research. This will
only decrease the total cost of our method and it will not change the conclusion pre-
sented in Section 2.7.3 of our method having the lowest complexity of any known QTM.

2.7.2. COMPLEXITY OF OUR QTM SOLVER
In this section we give a detailed analysis of the costs of our QTM solver by first analyzing
the different steps separately and, subsequently, combining these results to find the total
complexity of the algorithm.

COMPLEXITY OF QUANTUM STATE PREPARATION

In order to run the QTM solver, we first need to prepare the input state to represent the
desired particle distribution and velocities, at the initial time t = 0. As it is known that the
preparation of arbitrary quantum states can become exponentially expensive [16, 15],
we restrict ourselves for the numerical results presented in this paper to equidistributed
particles and mention a few publications that describe efficient preparation procedures
for specific quantum state distributions.

Preparing general sparse quantum states is an active area of research with promising
results [22, 21, 10], since our input quantum state is typically highly sparse, this is poten-
tially useful for the efficient state preparation of our quantum states. Another interesting
result for the input state preparation is given by Grover and Rudolph [11], who present
an efficient process for preparing quantum states that form a discrete approximation of
an efficiently integrable probability density function, such as log-concave distribution
functions.

COMPLEXITY OF THE STREAMING STEP

The quantum streaming step consists of a streaming operation applied to the particles
traveling at a pre-determined velocity. In order to implement this we first apply a Cp NOT
gate between the velocity qubits in each dimension i and the av,i ancilla qubits. Each
Cp NOT gate has a total of p = nvi −1 control qubits. We implement this operation for
the particles whose velocity magnitudes are marked for advancement in that particular
timestep. The number of velocity magnitudes being advanced in each timestep nv

t can
trivially be capped by Nv , but in practice will be equal to 1 in 89.6% of the cases. We found
this percentage by performing numerical analysis for Nv up to 1024. Subsequently, the
increase operation is applied controlled on the av,i qubits.

2.7. COMPLEXITY ANALYSIS

2

51

Our increase operator consists of a QFT operation applied to the ngi qubits in each
dimension i , followed by a phase shift on the ngi qubits and a final QFT† operation. In
each dimension i , a QFT operation requires O (n2

gi
) two-qubit operations [14], the phase

shifts applied to the ngi qubits is controlled on the av,i ancilla qubits and so this oper-
ation costs O (n2

gi
) two-qubit operations. Therefore, our increase operator only requires

O (n2
gi

) CNOT operations, controlled on the av,i qubits in each dimension i , which al-

lows us to cap its complexity by O (dn2
gmax

) CNOT operations. In total that leaves us with

a complexity of the streaming step of O
(
dnv

t

)
in the number of Cp NOT operations with

p = nvmax −1 + O
(
dn2

gmax

)
CNOT operations.

Using the complexity analysis of the multi-controlled NOT operations provided in
Subsection 2.7.1, we get an overall complexity of

O
(
dnv

t n2
vmax

+dn2
gmax

)
in the amount of CNOT gates for the streaming step.

COMPLEXITY OF THE SPECULAR REFLECTION STEP

The specular reflection step for each wall starts with two quantum comparison opera-
tions, applied to the qubits encoding the location in a single dimension with the al and

au qubits storing the result. This leads to a complexity of O
(
n2

gmax

)
CNOT gates when

using the Draper adder [6] to implement the comparison operations.
Subsequently a multi-controlled NOT gate applied to the ancilla qubits ao,i , i ∈ {1, . . . ,d},

controlled on the position in the dimension the considered wall reflects, the 2(d −1) au ,
al ancillae and one av,i qubits and one directional qubit vdir,i is applied. Therefore the
second step of the specular reflection for each wall consists of a Cp NOT operations with
p ≤ ngmax +2(d −1)+2 = ngmax +2d .

Since the two steps above are applied to each of the nw walls we get a total complexity

of O
(
nw n2

gmax

)
CNOT gates and O (nw) Cp NOT operations with p ≤ ngmax +2d .

Then, controlled on the ao,i qubits we perform a NOT operation on the vdir,i qubits.
This operation consists of d CNOT gates, and so the complexity is O (d) CNOT gates. This
is followed by a single incrementation operation applied to the positional qubits con-
trolled on ao,i in each dimension. The incrementation operation again has complexity

O
(
dn2

gmax

)
CNOT operations.

Subsequently, we reset the ao,i ancillae. Which is established for each wall by first
performing two quantum comparison operations, followed by a multi-controlled NOT
gate targeting the ao,i ancillae controlled on the qubits encoding the position in a single
dimension in combination with the 2(d − 1) au , al ancillae, one av,i qubit and one di-

rectional qubit vdir,i . This leaves us with a total complexity of again O
(
nw n2

gmax

)
CNOT

gates and O (nw) Cp NOT operations with p ≤ ngmax +2d .
Only for the resetting of the ao,i qubits we need to take into account the special rules

for resetting the corner cases by applying a multi-controlled NOT gate targeting an an-
cilla ao,i , controlled on the position as well as the av,i qubits and the direction qubits
vdir,i . Therefore the complexity of resetting an ancilla ao,i for a corner case becomes

2

52 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

O (1) Cp NOT operations with p ≤ ng + 2d . Since the number of corner cases is linear
in the amount of walls the total complexity becomes O (nw) Cp NOT operations with
p ≤ ng +2d .

At the end of the specular reflection step, we reset the av,i ancilla qubits in each di-
mension i , using a Cp NOT gate with p = nvi −1. As explained in Section 2.7.2 the total
costs of this operation amount to O

(
dnv

t

)
Cp NOT operations with p = nvmax −1.

In total, the complexity of the reflection step is equal to O
(
nw n2

gmax

)
CNOT gates

plus O (nw) Cp NOT operations with p ≤ ngmax +2d plus O (nw) Cp NOT operations with

p ≤ ng +2d plus O (d) CNOT gates plus O
(
dn2

gmax

)
CNOT gates.

When combining these we get a total complexity of O
(
(nw +d)n2

gmax

)
CNOT gates

plus O (nw) Cp NOT operations with p ≤ ng +2d , for the complexity of the reflection step.
Translating these results in terms of multi-controlled NOT complexities into single-

controlled NOT complexities using the results from Subsection 2.7.1, we get the follow-
ing CNOT gate complexity

O
(
nw

(
ng +2d

)2 + (nw +d)n2
gmax

)
=O

(
nw n2

g + (nw +d)n2
gmax

)
=O

(
nw n2

g

)
.

TOTAL QTM COMPLEXITY

Combining the complexities of the convection and specular reflection step as detailed
above, we obtain that the total complexity of the algorithm per timestep amounts to

O
(
(nw +d)n2

gmax

)
CNOT gates and O (nw) Cp NOT gates with p ≤ ng +2d and O

(
dnv

t

)
in

the number of Cp NOT operations with p = nvmax −1.

Using the multi-controlled NOT decomposition as before, this leads to

O
(
nw n2

g +dnv
t n2

vmax
+dn2

gmax

)
=O

(
nw n2

g +dnv
t n2

vmax

)
CNOT gates per time step.

2.7.3. COMPLEXITY OF ALTERNATIVE QTM IMPLEMENTATIONS
An alternative quantum algorithm for the transport equation presented in the literature
is the one by Todorova and Steijl [20]. Though not being fully fail-safe in the specular
reflection step, the authors present some complexity analysis which led us to perform a
rigorous comparison of the complexities of both approaches.

As reported in their paper, Todorova and Steijl conclude a complexity in terms of
Cp NOT gates of O

(
d Nv log2 (D/h)

)
11 for the streaming step per timestep with p = ngmax+

nvmax . The complexity of their specular-reflection boundary condition, again, quantified
in terms of Cp NOT gates, is O

(
d Nv log2 (D/h)

)
. Here, the authors do not provide an

explicit estimation for p, but since they control on positions in all d spatial dimensions
and streaming speeds combined, we derive a complexity of p = ng +nvmax .

11In their work D refers to the size of the domain and h to the space between grid points so D/h expresses the
numbers of grid points per dimension.

2.7. COMPLEXITY ANALYSIS

2

53

Since assumptions and parameters in the paper by Todorova and Steijl differ from
ours, it is not immediately clear how to compare their complexity analysis with ours on
a fair basis. Rewriting their complexity result in terms of the parameters adopted in our
analysis yields O

(
d Nv log2 (D/h)

)=O
(
d Nv ngmax

)
Cp NOT operations with p ≤ ng+nvmax .

Finally, rewriting their complexity result in terms of single-controlled CNOT rather than
Cp NOT gates, yields a total complexity of O

(
d Nv ngmax (ng +nvmax)2

)
.

Another difference that makes our complexity hard to compare with the complexity
of the algorithm by Todorova and Steijl is that the aforementioned authors do not adopt
the variable nt

v , and instead use the maximum value Nv . For ease of comparison we
will replace nt

v with Nv in our estimates which is possible as nt
v ≤ Nv holds trivially. Fi-

nally, Todorova and Steijl also do not take the amount of walls into account explicitly,
but instead seem to consider it a constant, we need to relax this parameter in our com-
plexity estimation as well. With all the aforementioned changes in place we can rewrite

our leading complexity terms as O
(
n2

g +d Nv n2
vmax

)
CNOT operations, which is still sig-

nificantly cheaper than the QTM approach by Todorova and Steijl having a total CNOT
complexity of O

(
d Nv ngmax (ng +nvmax)2

)
.

2.7.4. COMPLEXITY COMPARISON OF INCREMENTATION OPERATIONS

One of the improvements we propose in this chapter with respect to other known method
[20] is the use of the Quantum Draper Adder (QDA) [6] inspired approach to implement
the quantum incrementation operation, leading to a cheaper quantum primitive for the
streaming operation. In this section we provide a comparison of the costs in terms of
CNOT gates of the incrementation method with our QDA inspired approach compared
to the approache implemented in [20].

Consider the QDA inspired incrementation operation applied to the qubits gi en-
coding the position in dimension i . It consists of a QFT followed by a phase shift gate
and finally a QFT† operation. The cost of implementing the QFT (QFT†) operation is
n2

gi
+ 1

2 ngi CNOT operations as shown in Section 2.7.1. Therefore our incrementation

operation can be applied at a total cost of 2n2
gi
+ngi CNOT operations.

The cost of the quantum incrementation operation proposed in [20] consists of
∑ngi −1

p=0 Cp NOT

gates. Only when assuming that a Cp NOT can be decomposed by O
(
p

)
CNOT gates, we

find that the total costs of the incrementation operation implemented in these papers
have the same order of magnitude with respect to the amount of CNOT gates as our QDA
inspired incrementation method. To the best of our knowledge, however, a decomposi-
tion of a Cp NOT gate that requires O

(
p

)
CNOT gates, either requires an extra p−1 ancilla

qubits or requires a single ancilla qubit and c CNOT-operations with a large constant c,
making our method more efficient; See 2.7.1.

2.7.5. TABULAR OVERVIEW OF COMPLEXITIES

For the ease of the reader we have provided an overview of the complexities of the dif-
ferent steps of our QTM as well as that of the the other quantum transport method by
Todorova and Steijl (T & S) [20]. In order to provide a fair comparison of the different
algorithms we have rewritten the complexities given in each paper to use the same vari-
ables.

2

54 2. QUANTUM ALGORITHM FOR THE TRANSPORT EQUATION

Method
Complexity

per timestep
Streaming Reflection

S & M O
(
n2

g +d Nv n2
vmax

)
O

(
dnv

t n2
vmax

+dn2
gmax

)
O

(
nw n2

g

)
T & S O

(
d Nv ngmax (ng +nvmax)2

)
O

(
d Nv ngmax (ng +nvmax)2

)
O

(
d Nv ngmax (ng +nvmax)2

)
2.8. CONCLUSION AND OUTLOOK
Our detailed complexity analyses show that already a moderate number of a few dozens
to a hundred fault-tolerant qubits suffice to solve the transport equation in 2 and 3 di-
mensions on a quantum computer. As our primary focus lies on algorithms that are im-
plementable on upcoming fault-tolerant quantum computers, all algorithmic steps are
optimized towards directly implementable single- and two-qubits gates, instead of the-
oretically more elegant but hard-to-implement multi-controlled operations that call for
decomposition into native gates. Next to that we optimize the encoding of the discrete
velocity to allow for a more efficient implementation of the reflection operation, the im-
plementation of which we have made fail-safe to allow for physically correct behavior
upon collision with a wall. Furthermore we have shown that our approach is signifi-
cantly more efficient than state of the art quantum methods for the transport equation.

Since we are only at the start of exploring the potential of quantum computers for
simulating flow problems, there are still quite some restrictions to the current method
such as being limited to particles having relative velocities in each dimension smaller
than 1, having a total simulated time dependent on the velocities present and using
Cartesian grids where object walls are aligned with the grid. In order for the field to de-
velop and grow future work should tackle these issues and develop algorithms without
those restrictions. Another cornerstone on the way to quantum algorithms for realistic
CFD applications is the treatment of nonlinear behavior, as it is typically encountered in
real world flows.

Further development of quantum SDK’s that allow for a straightforward implemen-
tation of the described algorithm will also be required to bring QCFD to its stage of prac-
tical implementability and allow for large scale simulations and comparisons to be per-
formed. The final key element that needs to evolve before QCFD can reach its full po-
tential is the fidelity of quantum hardware, as fault-tolerant computers are required for
such methods but not yet available. This, of course, lies beyond the control of the com-
putational scientists and is for the experimentalists to realise.

BIBLIOGRAPHY

[1] A-tA-v et al. Qiskit: An Open-source Framework for Quantum Computing. 2021.
DOI: 10.5281/zenodo.2573505.

[2] Adriano Barenco et al. “Elementary gates for quantum computing”. In: Physical
Review A. (1995). URL: https : / / journals . aps . org / pra / pdf / 10 . 1103 /
PhysRevA.52.3457.

[3] Ljubomir Budinski. “Quantum algorithm for the Navier-Stokes equations by us-
ing the streamfunction-vorticity formulation and the lattice Boltzmann method”.
In: International Journal of Quantum information (2021). URL: https://arxiv.
org/abs/2103.03804.

[4] Steven A. Cuccaro, Thomas G. Draper, and Samuel A. Kutin. “A new quantum
ripple-carry addition circuit”. In: (1998). URL: https://arxiv.org/pdf/quant-
ph/0008033.pdf.

[5] B. L. Douglas and J.B. Wang. “Efficient quantum circuit implementation of quan-
tum walks”. In: Physical Review A 79, 052335 (2009). URL: https://journals.
aps.org/pra/pdf/10.1103/PhysRevA.79.052335.

[6] Thomas G. Draper. “Addition on a Quantum Computer”. In: (1998). URL: https:
//arxiv.org/pdf/quant-ph/0008033.pdf.

[7] F. Fillion-Gourdea and E. Lorin. “Simple digital quantum algorithm for symmetric
first-order linear hyperbolic systems”. In: Numerical Algorithms (2018). DOI: doi:
10.1007/s11075-018-0639-3.

[8] Fran, ois Fillion-Gourdeau, Steve MacLean, and Raymond Laflamme. “Algorithm
for the solution of the Dirac equation on digital quantum computers”. In: Quan-
tum Physics (2017). URL: https://journals.aps.org/pra/pdf/10.1103/
PhysRevA.79.052335.

[9] Craig Gidney. “Factoring with n+2 clean qubits and n−1 dirty qubits”. In: (2017).
URL: https://arxiv.org/abs/1706.07884.

[10] Niels Gleinig and Torsten Hoefler. “An Efficient Algorithm for Sparse Quantum
State Preparation”. In: 2021 58th ACM/IEEE Design Automation Conference (DAC).
2021, pp. 433–438. DOI: 10.1109/DAC18074.2021.9586240.

[11] Lov Grover and Terry Rudolph. “Creating superpositions that correspond to effi-
ciently integrable probability distributions”. In: (2002). URL: https://arxiv.
org/pdf/quant-ph/0208112.pdf.

[12] Thomas Häner, Martin Roetteler, and Krysta M. Svore. “Factoring using 2n+2 qubits
with Toffoli based modular multiplication”. In: Quantum Information & Compu-
tation (2017). URL: https://arxiv.org/pdf/1611.07995.pdf.

55

https://doi.org/10.5281/zenodo.2573505
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.52.3457
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.52.3457
https://arxiv.org/abs/2103.03804
https://arxiv.org/abs/2103.03804
https://arxiv.org/pdf/quant-ph/0008033.pdf
https://arxiv.org/pdf/quant-ph/0008033.pdf
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.79.052335
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.79.052335
https://arxiv.org/pdf/quant-ph/0008033.pdf
https://arxiv.org/pdf/quant-ph/0008033.pdf
https://doi.org/doi:10.1007/s11075-018-0639-3
https://doi.org/doi:10.1007/s11075-018-0639-3
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.79.052335
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.79.052335
https://arxiv.org/abs/1706.07884
https://doi.org/10.1109/DAC18074.2021.9586240
https://arxiv.org/pdf/quant-ph/0208112.pdf
https://arxiv.org/pdf/quant-ph/0208112.pdf
https://arxiv.org/pdf/1611.07995.pdf

2

56 BIBLIOGRAPHY

[13] IBM. In: https://quantum-computing.ibm.com/ (2021).

[14] Damian Musk. “A Comparison of Quantum and Traditional Fourier Transform
Computations”. In: IEEE Computing in Science and Engineering, 22, 6 (2020). DOI:
https://doi.org/10.1109/MCSE.2020.3023979.

[15] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. 10th Anniversary Edition. 4th ed. Cambridge University Press, 2016.
ISBN: 9781107002173.

[16] Martin Plesch and Caslav Brukner. “Quantum State Preparation with Universal
Gate Decompositions”. In: Physical Review A (2011). URL: https://journals.
aps.org/pra/abstract/10.1103/PhysRevA.83.032302.

[17] Rigetti. In: https://www.rigetti.com/ (2022).

[18] Merel A. Schalkers and Matthias Möller. “Efficient and fail-safe quantum algo-
rithm for the transport equation”. In: Journal of Computational Physics 502 (2024),
p. 112816. DOI: https://doi.org/10.1016/j.jcp.2024.112816.

[19] Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. “Quantum Addition Cir-
cuits and Unbounded Fan-Out”. In: Quantum Information & Computation (2009).
URL: https://arxiv.org/pdf/0910.2530.pdf.

[20] B. N. Todorova and R. Steijl. “Quantum algorithm for the collisionless Boltzmann
equation”. In: Journal of Computational Physics, 409, 109347 (2020). DOI: http:
//dx.doi.org/10.1016/j.jcp.2020.109347.

[21] Tiago M. L. de Veras, Leon D. da Silva, and Adenilton J. da Silva. “Double sparse
quantum state preparation”. In: Quantum Information Processing 21.6 (June 2022).
DOI: 10.1007/s11128- 022- 03549- y. URL: https://doi.org/10.1007%
2Fs11128-022-03549-y.

[22] Xiao Yuan Xiao-Ming Zhang Thongyang Li. “Quantum State Preparation with Op-
timal Circuit Depth: Implementations and Applications”. In: (2022). URL: https:
//arxiv.org/pdf/2201.11495.pdf.

https://doi.org/https://doi.org/10.1109/MCSE.2020.3023979
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.83.032302
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.83.032302
https://doi.org/https://doi.org/10.1016/j.jcp.2024.112816
https://arxiv.org/pdf/0910.2530.pdf
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2020.109347
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2020.109347
https://doi.org/10.1007/s11128-022-03549-y
https://doi.org/10.1007%2Fs11128-022-03549-y
https://doi.org/10.1007%2Fs11128-022-03549-y
https://arxiv.org/pdf/2201.11495.pdf
https://arxiv.org/pdf/2201.11495.pdf

3
QUANTUM MOMENTUM EXCHANGE

METHOD

The past years have seen a surge in quantum algorithms for computational fluid dynam-
ics (CFD). These algorithms have in common that whilst promising a speed-up in the per-
formance of the algorithm, no specific method of measurement has been suggested. This
means that while the algorithms presented in the literature may be promising methods for
creating the quantum state that represents the final flow field, an efficient measurement
strategy is not available. In this chapter we present the first quantum method proposed to
efficiently calculate quantities of interest (QoIs) from a state vector representing the flow
field. In particular, we propose a method to calculate the force acting on an object im-
mersed in the fluid using a quantum version of the momentum exchange method (MEM)
that is commonly used in lattice Boltzmann methods to determine the drag and lift coef-
ficients. In order to achieve this we furthermore give a scheme that implements bounce
back boundary conditions on a quantum computer, as those are the boundary conditions
the momentum exchange method is designed for.

3.1. INTRODUCTION
Computational fluid dynamics is one of the most frequently applied scientific endeav-
ours, accounting for a large amount of the computational power used every day. As the
power of classical computers grows, the demand in precision and scale for computa-
tional fluid dynamics increases similarly.

Future fault tolerant quantum computers promise a novel compute technology with
an exponential computational power in the amount of qubits, leading to the natural
questions of whether and how this novel method of computation can be used to sim-
ulate interesting problems of computational fluid dynamics (CFD). An overview of the

This chapter is based on the publication Momentum exchange method for quantum Boltzmann methods by
Schalkers and Möller [6].

57

3

58 3. QUANTUM MOMENTUM EXCHANGE METHOD

research done on quantum computational fluid dynamcis can be found in the introduc-
tion 1.

What all the methods presented in the earlier literature have in common is that after
completing the final time step, a quantum state has been created that represents the
entire flow field as a probability density distribution, e.g. encoded in the quantum state’s
amplitudes. So far, however, no efficient measurement strategies for this quantum state
representing the flow field have been suggested. This implies that the current methods
require the exponentially expensive reading out of the full quantum state to extract the
entire flow field and post-process it on a classical computer afterwards. Consequently,
any and all quantum advantages that were gained during the computation are lost. The
quantum observable presented in this chapter marks the first for the efficient reading
out of the force vector acting on an object for the quantum Boltzmann method.

We first introduce the Lattice Boltzmann method in Section 3.2. In Section 3.3 we
introduce the so-called Momentum Exchange Method (MEM) that can be used in com-
bination with the Lattice Boltzmann method and bounce back boundary conditions to
calculate the force acting on an object immersed in the fluid. Subsequently, in Section
3.4 we provide the reader with the basic ideas of the Quantum Lattice Boltzmann method
(QLBM) and its encoding. Using this we introduce bounce back boundary conditions for
QLBM in Section 3.5 and ultimately in Section 3.6 we introduce the Quantum Momen-
tum Exchange Method. Finally Section 3.7 is dedicated to explaining how the QMEM
can be efficiently implemented in practice and Section 3.6.1 gives insight into the com-
putational costs.

3.2. THE LATTICE BOLTZMANN METHOD
We have given an in-depth overview of the lattice Boltzmann method in the introduc-
tion.

A popular way of classifying different combinations of dimensions and number of
possible velocities is the so-called DdQq scheme. Here, d denotes the number of space
dimensions considered and q the number of distinct velocities. In Figure 3.1 we give
four examples of different combinations of DdQq possible. In this chapter we are only
considering the D1Q3, D2Q9 and D3Q27 cases.

We furthermore write ei to represent the vector in the direction i ∈Q = {0,1, . . . , q−1}
of the DdQq scheme. For example, in the D2Q9 system we have

ei =


(0,0) for i = 0

(1,0), (0,1), (−1,0), (0,−1) for i = 1,2,3,4

(1,1), (−1,1), (−1,−1), (1,−1) for i = 5,6,7,8.

(3.1)

Therefore 2 qubits are necessary to represent the speed in each dimension, as the three
options ‘positive’, ‘negative’ and ‘standing still’ need to be encoded.

3.3. MOMENTUM EXCHANGE METHOD
The momentum exchange method was proposed by Ladd [4] to determine the force
acting on an object in order to calculate the drag and lift coefficients of an obstacle

3.3. MOMENTUM EXCHANGE METHOD

3

59

q1 q0

(a)

q0q2 q1

(b)

0

0

1

1

2

2

q3 q1

q4

q2

q0

(c)

0

0

1

1

2

2

q3 q1

q4

q2

q0

q5q6

q7 q8

(d)

Figure 3.1: Four examples of different types of DdQq possible. Figure 3.1a portrays the D1Q2 setting and
Figure 3.1b portrays the D1Q3 setting (where a stationary particle can be included). Figure 3.1c portrays the
D2Q5 setting and Figure 3.1d shows the D2Q9 setting.

3

60 3. QUANTUM MOMENTUM EXCHANGE METHOD

equipped with bounce back boundary conditions when the flow field is modelled by
the Boltzmann method. Bounce back boundary conditions differ from the more intu-
itive specular reflection boundary conditions in that, upon contact with an object, the
particle’s velocity is reversed entirely instead of just the velocity normal to the object; see
Figure 3.2. Bounce back boundary conditions are often used in combination with the
Lattice Boltzmann method [3]. In Section 3.5 we give an in-depth explanation of bounce
back boundary conditions as well as how to implement them in our QLBM scheme. We
adopt the momentum exchange method as described in [3]. Then the force exerted on
the object by the particles can be expressed as

F = ∑
i∈Q

(
ei fi (x f , t)−e ī f ī (x f , t)

)
. (3.2)

In the above expression x f refers to a point in the fluid space adjacent to the obstacle and
e ī represents the velocity of the particles after particles with velocity ei have impinged
on the object. This expression assumes that there is no fluid inside the object and as
such only takes the momentum exchange outside of the object into account. Since we
are using bounce back boundary conditions we have e ī :=−ei and fi (x f , t) = f ī (x f , t) by
definition, therefore we can rewrite Equation (3.2) to

F = ∑
i∈Q

2ei fi (x f , t). (3.3)

As force is composed of magnitude and direction it is expressed by a d dimensional vec-
tor with subscript j denoting its j -th dimensional component, i.e.

F j =
(∑

i∈Q
2ei fi (x f , t)

)
j

. (3.4)

3.4. QUANTUM LATTICE BOLTZMANN METHOD

The quantum lattice Boltzmann method (QLBM) is, as the name suggests, the quan-
tum analog of the lattice Boltzmann method. Similar to the classical lattice Boltzmann
method the QLBM consists of the initialization of the problem, methods for streaming
and collision, an approach to impose boundary conditions and, finally, a measurement
procedure to extract application-specific QoIs. This chapter introduces an efficient mea-
surement procedure that can be used in combination with existing QLBMs. As such we
abstain from presenting concrete methods for collision, streaming or state preparation.
Instead we focus on explaining a set-up for the measurement procedure, which can be
used with any QLBM method that uses a similar encoding scheme.

As the measurement procedure in practice should be fitted to the quantum state that
it is used on we will present how the density function is encoded in the quantum state
for this method. The density function encoding presented below is similar to the ones
presented in [5, 8, 1, 2], as such the measurement procedure presented here can be used
with those papers.

3.5. QUANTUM BOUNCE BACK BOUNDARY CONDITIONS

3

61

Flow field encoding Building on our previous work [5], the quantum encoding of the
discretized density function reads

|ana . . . a1︸ ︷︷ ︸
ancillae

position︷ ︸︸ ︷
gng . . . g1 vnv . . . v1︸ ︷︷ ︸

velocity

〉 , (3.5)

whereby the positional and velocity qubits are split into d groups, one for each dimen-
sion. More specifically, zooming in on the positional qubits, we get

|gng . . . g1〉 = |g d
ngd

. . . g d
1 g d−1

ngd−1
. . . g d−1

1 . . . g 1
ng1

. . . g 1
1 〉 , (3.6)

where g j
ng j

. . . g j
1 encodes the j -th dimension of the location of grid points by represent-

ing the binary value of the location.
Similarly if we write out the velocity qubits for the encoding explicitly we get

|vnv . . . v1〉 = |vd vd
dir v1v1

dir〉 , (3.7)

where v j
dir expresses the direction (positive or negative) of the particle in dimension j

and the v j qubits express whether a particle has a nonzero velocity in dimension j . No-
tice that this order is different from the one presented in Chapter 2 where the vdir qubits
are grouped together, this is done simply to make the observable in Section 3.6.1 easier
to visualize as a matrix. Another difference from the setup presented in Chapter 2 is that
here we are only considering the D1Q3, D2Q9 and D3Q27 cases leading to exactly two
velocity qubits per dimension.

The ancilla qubits are used for several different purposes throughout the QLBM method.
In this chapter we will only highlight the labels and purposes of the ancillae that are
used in the quantum bounce back boundary conditions implementation and the quan-
tum momentum exchange method presented in Sections 3.5 and 3.6, respectively. We
identify the av,i ancilla qubits that indicate whether in this time step the associated par-
ticles are streamed in dimension i . Furthermore we make use of the ao which is the
ancilla qubit that indicates whether or not a particle is in an object and the bounce back
boundary conditions need to be applied.

3.5. QUANTUM BOUNCE BACK BOUNDARY CONDITIONS
One of the most commonly used boundary conditions in practical LBM is the bounce
back boundary condition which amounts to fully reflecting the direction of particles that
get into contact with obstacles and resetting them to their original position inside the
flow domain [7, 3]. This is different from the specular reflection boundary conditions
that we presented in Chapter 2, which reverses only the normal component of the ve-
locity vector. Figure 3.2 illustrates the difference between the two types of boundary
conditions.

The algorithm for implementing bounce back boundary conditions in a classical
LBM can be summarized as follows. First, the particles that virtually travelled into the
obstacle have their velocity direction reversed in all dimensions and subsequently these

3

62 3. QUANTUM MOMENTUM EXCHANGE METHOD

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 3.2: Illustration of bounce back boundary conditions (top, in red and blue arrows) versus specular re-
flection boundary conditions (bottom, in green and magenta).

particles are placed outside of the obstacle. The particles are placed in the correct po-
sition outside of the obstacle by moving one grid point in the dimension(s) that they
previously moved in.

For implementing the bounce back boundary condition as a quantum primitive we
require only one ancilla qubit ao to indicate whether a particle has virtually moved into
an object. The ancilla ao is initialized in the |0〉 state and flipped to |1〉 when a particle
has virtually travelled into one of the points inside the obstacle. We check whether a par-
ticle has virtually travelled into the object using the efficient object encoding method as
described in Chapter 2. In Figure 3.4 we show how this efficient object encoding method
can be implemented for the example given in Figure 3.3. In Figure 3.4 we show the quan-
tum comparison operation that can check whether or not a particle has come into con-
tact with the wall from (2,2) to (2,5). This is done by checking whether the location on
the x-axis is equal to two as is done by applying an X gate to the gx0 and gx2 qubit. We use
two quantum comparison operations to check whether 2 ≤ y ≤ 5 as can be seen in the
picture by the QFT operations followed by rotations and QFT†. The mathematics behind
this procedure is explained in Section 5.4 of [5].

As a next step we flip the state of the v j
dir qubits for all dimensions j controlled on the

state of the ao ancilla. By doing this we make sure that the velocity direction is reversed
in all dimensions after contact with an obstacle as is required for bounce back boundary
conditions. And subsequently the particles are moved by one position controlled on the

3.5. QUANTUM BOUNCE BACK BOUNDARY CONDITIONS

3

63

Figure 3.3: Illustration of all possible corner cases to be taken into account when particles collide with an
obstacle (black box).

3

64 3. QUANTUM MOMENTUM EXCHANGE METHOD

a
v
0
:

•
a
v
1
:

a
o
:

a
c 0

:

Q
F
T

3
P
(−

π
)

Q
F
T

†

3
X

•
a
c 1

:

Q
F
T

3
P
(0
)

Q
F
T

†

3
•

g
x
0
:

X
•

g
x
1
:

•
g
x
2
:

X
•

g
y
0
:

0
P
(
−
3
π

8
)

0

Q
F
T

0
P
(
3
π 4
)

Q
F
T

†

0
0

P
(
−
3
π

4
)

0

Q
F
T

0
P
(
3
π 2
)

Q
F
T

†

0

g
y
1
:

1
P
(
−
3
π

4
)

1
1

P
(
3
π 2
)

1
1

P
(
−
3
π

2
)

1
1

P
(π
)

1

g
y
2
:

2
P
(
−
3
π

2
)

2
2

P
(π
)

2
2

P
(−

π
)

2
2

P
(0
)

2

v
x
:

v
y
:

v
d
ir

x
:

•

v
d
ir

y
:

Figure 3.4: The first part of the bounce back boundary conditions, applied to the example of Figure 3.3 to
properly reset the particles moving to the right in the x-direction hitting the particles on the left wall. This part
of the algorithm sets the ancilla qubit, indicating that particles have virtually travelled into the object and need
to have their velocity reversed and be moved out.

3.5. QUANTUM BOUNCE BACK BOUNDARY CONDITIONS

3

65

a
v
0
:

a
v
1
:

a
o
:

•
•

•
•

•
•

•
•

•
•

•
•

•
a
c 0

:

a
c 1

:

g
x
0
:

Q
F
T

0
•

•
Q
F
T

†

0

g
x
1
:

1
•

•
1

g
x
2
:

2
•

•
2

g
y
0
:

Q
F
T

0
•

•
Q
F
T

†

0

g
y
1
:

1
•

•
1

g
y
2
:

2
•

•
2

v
x
:

v
y
:

P
(
π 4
)

P
(
π 2
)

P
(π
)

P
(
−
π 4
)

P
(
−
π 2
)

P
(−

π
)

v
d
ir

x
:

2-
X

0
•

•
•

X
•

•
•

X
P
(
π 4
)

P
(
π 2
)

P
(π
)

P
(
−
π 4
)

P
(
−
π 2
)

P
(−

π
)

v
d
ir

y
:

1
•

•
•

X
•

•
•

X

Figure 3.5: This figure shows part of the bounceback boundary conditions quantum algorithm where the ve-
locity qubits of the particles hitting the object get reversed and subsequently moved back out of the object.

3

66 3. QUANTUM MOMENTUM EXCHANGE METHOD

a
v
0
:

•
•

•
•

•
•

•
•

a
v
1
:

•
•

•
•

•
•

•
•

a
o
:

a
c 0

:

a
c 1

:

g
x
0
:

•
•

•
•

X
•

X
X

•
X

X
•

X
X

•
X

g
x
1
:

X
•

X
X

•
X

•
•

•
•

•
•

g
x
2
:

X
•

X
X

•
X

•
•

X
•

X
X

•
X

•
•

g
y
0
:

X
•

X
X

•
X

X
•

X
X

•
X

•
•

•
•

g
y
1
:

•
•

•
•

X
•

X
•

X
•

X
•

g
y
2
:

X
•

X
•

X
•

X
•

X
•

X
•

X
•

X
•

v
x
:

v
y
:

v
d
ir

x
:

X
•

X
X

•
X

•
•

•
•

X
•

X
X

•
X

v
d
ir

y
:

•
X

•
X

•
X

•
X

X
•

X
•

X
•

X
•

Figure 3.6: This figure shows part of the bounceback boundary conditions quantum algorithm where the an-
cilla qubit ao indicating the particles that hit the object and got reversed and subsequently moved back out of
the object gets reset.

3.6. QUANTUM MOMENTUM EXCHANGE METHOD

3

67

a j
v , v j

dir, and ao qubits to ensure that the particles move one step in the correct direction
in the dimension(s) that they moved in when they moved into the obstacle and of course
to ensure that this only happens after the particles moved into the obstacle.

This is done by the controlled double NOT operation shown in the beginning of Fig-
ure 3.5. Subsequently, as can be seen in the same figure, controlled or whether or not the
ao qubit is in the state 1, we stream in the x and y dimension, thereby making sure we
only stream the particles that just collided with the object. This is done to ensure that
the particles are set back outside of the object again.

Finally the ao qubits need to be reset to |0〉 before we can start the next time step.
As in our previous work [5] the blue and green encircled points outside of the object
constitute the trivial case in Figure 3.3. We reset the ao qubits controlled on if we are
in one of the blue (green) encircled points, the direction of the x (y) velocity and the
ancilla qubit indicating whether we moved in the dimension in this time step a1

v (a2
v).

Specifically we reset the ancilla qubit ao if we are in a blue (green) encircled grid point
outside the object and a1

v = 1 (a2
v = 1) and v1

dir (v2
dir) points away from the object. Using

this logic the ao qubits are reset to |0〉 for each wall separately.

Resetting the ao qubit is a bit more difficult around the edges as indicated with black
and orange encircled points in Figure 3.3.

For the black encircled points outside the corner we need to reset the ancilla qubit ao

if and only if both v1
dir and v2

dir point in the direction away from the object and a1
v = a2

v = 1
holds.

As for the orange encircled ‘side-edge’ grid point we first reset the ao ancilla in the
same way as for the blue (green) encircled points described above. Now we only need to
note that for the case described by the red arrow in Figure 3.3 we have wrongly flipped
the ao ancilla qubit and so we need to verify whether we are in the ‘red arrow’ case by
checking if v1

dir and v2
dir pointed in the direction of the arrow and if a1

v = a2
v = 1 holds. If

the particle is in a state where a1
v = a2

v = 1 and v1
dir and v2

dir are such that the particle is in
an red arrow case the ao ancilla get flipped again, back to the original state of |0〉.

In Figure 3.6 we show how the ancilla qubits are reset. In this picture it can be seen
that controlled on the conditions described above, an X gate is applied to the ancilla
qubits to re-set them to the zero state if and only if they were in the one state to begin
with. Resetting the ancilla qubits in this particular use case is non-trivial as the ancilla
qubits were originally set based on location and then streamed, so we need to keep track
on how all the particles moved in order to be able to reset them properly. The core is to
now check if the particles are just outside the object pointing away from the object in
such a way that could only have happened if they just reflected from the object. We can
safely reset the ancilla qubits based on this, the circuit is given in Figure 3.6.

3.6. QUANTUM MOMENTUM EXCHANGE METHOD
In this section we explain how the momentum exchange method can be expressed as
an observable for the encoding described in Section 3.4. In order to do this we will first
change the density encoding of the quantum state into a rooted density encoding. Using
this rooted density encoding we can subsequently define the observable that calculates
the force using Equation (3.3) and finally we describe how this method can be imple-

3

68 3. QUANTUM MOMENTUM EXCHANGE METHOD

mented as an executable quantum circuit.

Rooted density encoding Since the momentum exchange method is linear in nature,
whereas quantum observables are quadratic, it is advisable to change from encoding
the density function fi (x, t) in the quantum state |ψ〉 to an encoding of the square root
of the density function

√
fi (x, t). Such a shift to a rooted density encoding can be done

without altering any subsequent circuits in the methods [5, 8]. In practice the densities
should be rooted before the start of the quantum algorithm, therefore the information
will be initialized into the quantum state such that the density is already rooted and no
quantum method is required for this task.

3.6.1. MOMENTUM EXCHANGE METHOD AS AN OBSERVABLE

We now derive the observable that calculates the force exerted on the object using the
momentum exchange method. As force is described using a vector, we need to calculate
the values of the vector for all d dimensions. Here we show how to calculate this vector
using 2d different observables, where each observable calculates the value of the force
vector in one spatial dimension, d ∈ {1,2,3}, and one velocity direction. This is done to
make the resulting observable easier to portray and explain, since all the observables can
be expressed as diagonal matrices they do commute and so they can all be measured in
the same runs.

Considering the encoding described above, equation (3.3) can be evaluated from the
quantum state |ψ〉 encoding

√
fi (x, t), by the diagonal observable OOME to be specified

below. The diagonal of the matrix expressing the observable OOME is built up using BOME

matrices, which are placed at matrix indices corresponding to grid points in the fluid
domain directly adjacent to the obstacle. All the other indices of the matrix expressing
OOME will remain zero. An example of this is the matrix

OOME =


.
. . . BOME
.
.

 , (3.8)

where the dots represent 4×4 matrices with zeros and BOME is a 4×4 matrix that can be
written as

BOME =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

 . (3.9)

The example given in Equation (3.8) represents a 1-dimensional case with 4 grid
points and three possible speeds (one in the positive and one in the negative x-direction
as well as the zero speed) and the wall adjacent to the second grid point as represented in
Figure 3.7. Since BOME = B †

OME, both BOME and OOME are Hermitian and therefore OOME

constitutes a quantum observable. It can easily be seen that any other distribution of
BOME along the diagonal will also lead to a quantum observable.

3.6. QUANTUM MOMENTUM EXCHANGE METHOD

3

69

0 1 2 3

Figure 3.7: Example of the D1Q3 case with four grid points and one obstacle located on the third grid point.

For the D1Q3 case with four grid points described above we have the following quan-
tum state encoding1

|ψ〉 = 1√∑
x,i fi (x, t)

∑
x,i

√
fi (x, t) |g2g1v vdir〉 , (3.10)

where g2g1 represent the binary value of the location of the x-axis, |v vdir〉 = |10〉 indi-
cates streaming in the positive x-direction, |v vdir〉 = |11〉 indicates streaming in the neg-
ative x-direction and |v vdir〉 = |00〉 as well as |v vdir〉 = |01〉 indicates that the particle is
not streaming in the x-direction. Here and in the remainder of this Section we do not
take into account the ancilla qubits as they play no role in the final density function and
as such will not be part of the measurement process.

With the above convention, the quantum state (3.10) can be written as the coefficient
vector relative to the computational basis as follows:

|ψ〉 =∑
x,v
αx,v |g2g1v vdir〉 =

1√∑
x,i fi (x, t)



0√
f0(0, t)√
f1(0, t)√
f2(0, t)

0√
f0(1, t)√
f1(1, t)√
f2(1, t)

0√
f0(2, t)√
f1(2, t)√
f2(2, t)

0√
f0(3, t)√
f1(3, t)√
f2(3, t)



. (3.11)

Using expression (3.11) and some basic linear algebra it follows that

〈ψ|OOME|ψ〉 = 2 f1 (1, t)∑
x,i fi (x, t)

. (3.12)

1For the remainder of this chapter we leave out the superscripts indicating the dimension for notational sim-
plicity.

3

70 3. QUANTUM MOMENTUM EXCHANGE METHOD

Since the value of
∑

x,i fi (x, t) is known when starting the algorithm we can simply mul-
tiply Equation (3.12) by

∑
x,i fi (x, t) to find the value of the force we wish to calculate as

described in Equation (3.3), which can subsequently be used to calculate the drag and
lift coefficient following the procedure described in [4].

Extension to more dimensions This method can easily be extended to more dimen-
sions by noticing that the BOME matrix is of size 2nv ×2nv and should consist of only one
non-zero element. This non-zero element will always be placed on the diagonal at the
position of the basis state |v i 〉.

Complexity Analysis The number of measurements required to determine the force
with an ϵ precision using our proposed approaches depends on multiple factors. As long
as the total number of grid points located inside and adjacent to the boundary of the ob-
stacle is polynomial in the total number of grid points, the number of diagonal elements
that are non-zero in the observable is polynomial in the size of the grid. This means that
the number of non-zero elements in the observable is not exponentially small in the to-
tal size of the system. Therefore, in this case, we wish to measure a subspace that is only
polynomially small in the total size of the system which is feasible without exponential
overhead.

3.7. PRACTICAL IMPLEMENTATION OF THE MOMENTUM EXCHANGE

METHOD ON A QUANTUM COMPUTER
Realizing an observable on a real-world quantum computer amounts to implementing a
quantum circuit that translates the observable to measurements in the computational Z-
basis. We will now present the quantum circuit that translates the observable described
in Subsection 3.6.1 for determining the force in one dimension in one direction to mea-
suring one qubit in the Z-basis, making the process clear and easily implementable on a
quantum device.

We will first describe how this operation can be applied by using an already imple-
mented circuit for the bounce back boundary condition and we will subsequently show
that this operation indeed transforms the described observable to one that consists of a
Z measurement on one qubit.

3.7.1. IMPLEMENTATION USING ANCILLA QUBITS FOR BOUNCE BACK BOUND-
ARY CONDITIONS

We have implemented a method to measure the expectation value of the described ob-
servable by measuring only one qubit. This is done using the implementation of the
bounce back boundary conditions. In this implementation a qubit ao gets flipped to
indicate that a particle is inside an object. To determine the expectation value of the
observable we will use these ancilla qubits differently. We will from now on call this ao

ancilla qubit that was used for the bounce back boundary conditions ao,+ and we define
a second ancilla qubit ao,−. These ancilla qubits will be flipped if a force was exerted on
the object in a positive or negative direction, respectively. In order to do this we apply a
multi-controlled NOT operation controlled on the qubits to determine whether we are

3.8. CONCLUSION

3

71

in the object and the qubit indicating the direction of the particles in the dimension to
the ao,+ (ao,−) qubits.

By doing this we are extracting the relative density of particles that come into contact
with an obstacle in the positive and negative direction for the considered dimension.
Subsequently we measure the qubits ao,+ and ao,− and subtract the expectation value of
ao,− = 1 from ao,+ = 1. The resulting value expresses the relative force in the positive /
negative direction. Figure 3.8 shows the quantum circuit that implements this quantum
momentum exchange method for the example of Figure 3.3.

3.7.2. PROOF OF METHOD
In this section we show that using the method described above, we indeed calculate the
force exerted on an object in one dimension as expressed in Equation (3.3).

We flip the ao,+ ancilla qubit in the case that particles have impinged on the object
and the particles have a positive velocity in the x-direction. Therefore, after re-arranging
some qubits, we can write

(√
fv0 (x0, t) |

(
gng . . . g1

)
0

(
vnv . . . v1

)
0〉+ · · ·+√

fv1 (x1, t) |
(
gng . . . g1

)
1

(
vnv . . . v1

)
1〉

) |0〉ao,+ +(√
fv2 (x2, t) |

(
gng . . . g1

)
2

(
vnv . . . v1

)
2〉+ · · ·+√

fv3 (x3, t) |
(
gng . . . g1

)
3

(
vnv . . . v1

)
3〉

) |1〉ao,+ ,

(3.13)

where for vi and xi the subscript is simply used to indicate that a specific value for the lo-

cation and velocity is considered and similarly for the qubits
(
gng . . . g1

)
i

(
vnv . . . v1

)
i the

subscript is used to indicate the velocity and grid point qubits are in a specific state. Here

the states |
(
gng . . . g1

)
0

(
vnv . . . v1

)
0〉 + · · · + |

(
gng . . . g1

)
1

(
vnv . . . v1

)
1〉 describe exactly the

particles that do not impinge on the object in the positive x-direction in the current time

step, as the ao,+ qubit is in the |0〉 state. Similarly the states |
(
gng . . . g1

)
2

(
vnv . . . v1

)
2〉+

· · · + |
(
gng . . . g1

)
3

(
vnv . . . v1

)
3〉 represent the relative densities of the particles that have

impinged the object in the positive x-direction. From this we can conclude that the total
probability of finding |ao,+〉 = |1〉 upon measurement is equal to

fv2 (x2, t)+·· ·+ fv3 (x3, t) , (3.14)

which is precisely equal to the relative density of particles hitting the object with a posi-
tive velocity and which is precisely what we wish to measure.

3.8. CONCLUSION
In this chapter we have presented a quantum approach to determine the force of the
flow field acting on an object immersed in the fluid. The method is easily implementable
and shows that a measurement can be done efficiently when only considering the force
acting on an object as the quantity of interest. The number of measurements needed

3

72 3. QUANTUM MOMENTUM EXCHANGE METHOD

a
v
0
:

•
a
v
1
:

a
o +

:

a
o −

:

a
c 0

:

Q
F
T

3
P
(−

π
)

Q
F
T

†

3
X

•
a
c 1

:

Q
F
T

3
P
(0
)

Q
F
T

†

3
•

g
x
0
:

X
•

g
x
1
:

•
g
x
2
:

X
•

g
y
0
:

0
P
(
−
3
π

8
)

0

Q
F
T

0
P
(
3
π 4
)

Q
F
T

†

0
0

P
(
−
3
π

4
)

0

Q
F
T

0
P
(
3
π 2
)

Q
F
T

†

0

g
y
1
:

1
P
(
−
3
π

4
)

1
1

P
(
3
π 2
)

1
1

P
(
−
3
π

2
)

1
1

P
(π
)

1

g
y
2
:

2
P
(
−
3
π

2
)

2
2

P
(π
)

2
2

P
(−

π
)

2
2

P
(0
)

2

v
x
:

v
y
:

v
d
ir

x
:

•

v
d
ir

y
:

Figure 3.8: The quantum algorithm for the QMEM, applied to the example of Figure 3.3 to determine the force
of the particles moving to the right in the x-direction hitting the particles on the left wall. This part of the
algorithm sets the ancilla qubit, indicating that particles have virtually travelled into the object. Subsequently
the ancilla qubit ao,+ is measured to determine the force.

3.8. CONCLUSION

3

73

depends on the relative size of the object, making it only non-exponential and therefore
efficient in cases where the object is not exponentially small relative to the global grid. To
the best of our knowledge, this is the first time that efficient measurement strategies are
addressed in the QLBM literature. Previous works are limited to reading out the entire
flow field which cannot be realized efficiently on a quantum computer, thereby destroy-
ing any quantum advantage.

Our approach represents the quantum analog of the momentum exchange method
and consists of a quantum primitive for implementing bounce back boundary condi-
tions at the end of each time step and an observable that can be easily implemented as
measurements in the computational basis to obtain the forces exerted by the fluid on an
internal object.

BIBLIOGRAPHY

[1] Ljubomir Budinski. “Quantum algorithm for the advection-diffusion equation sim-
ulated with the lattice Boltzmann method”. In: Quantum Information Processing
2021 (2020). URL: https://link.springer.com/article/10.1007/s11128-
021-02996-3.

[2] Ljubomir Budinski. “Quantum algorithm for the Navier-Stokes equations by us-
ing the streamfunction-vorticity formulation and the lattice Boltzmann method”.
In: International Journal of Quantum information (2021). URL: https://arxiv.
org/abs/2103.03804.

[3] Timm Krüger et al. The lattice Boltzmann method. Springer, 2017. URL: https:
//link.springer.com/book/10.1007/978-3-319-44649-3.

[4] Anthony J. Ladd. “Numerical Simulations of particulate suspensions via a discretized
Boltzmann equation. Part 1. Theoretical foundation”. In: Journal of Fluid Mechan-
ics 271 (1993), pp. 285–309.

[5] Merel A. Schalkers and Matthias Möller. “Efficient and fail-safe quantum algo-
rithm for the transport equation”. In: Journal of Computational Physics 502 (2024),
p. 112816. DOI: https://doi.org/10.1016/j.jcp.2024.112816.

[6] Merel A. Schalkers and Matthias Möller. “Momentum exchange method for quan-
tum Boltzmann methods”. In: Computers & Fluids 285 (2024), p. 106453. ISSN:
0045-7930. DOI: https://doi.org/10.1016/j.compfluid.2024.106453.

[7] Ulf D. Schiller. “Thermal fluctuations and boundary conditions in the lattice Boltz-
mann method”. PhD thesis. Johannes Gutenberg-Universität, Jan. 2008.

[8] B. N. Todorova and R. Steijl. “Quantum algorithm for the collisionless Boltzmann
equation”. In: Journal of Computational Physics, 409, 109347 (2020). DOI: http:
//dx.doi.org/10.1016/j.jcp.2020.109347.

75

https://link.springer.com/article/10.1007/s11128-021-02996-3
https://link.springer.com/article/10.1007/s11128-021-02996-3
https://arxiv.org/abs/2103.03804
https://arxiv.org/abs/2103.03804
https://link.springer.com/book/10.1007/978-3-319-44649-3
https://link.springer.com/book/10.1007/978-3-319-44649-3
https://doi.org/https://doi.org/10.1016/j.jcp.2024.112816
https://doi.org/https://doi.org/10.1016/j.compfluid.2024.106453
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2020.109347
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2020.109347

4
ON THE IMPORTANCE OF DATA

ENCODING IN QUANTUM

BOLTZMANN METHODS

In recent years, quantum Boltzmann methods have gained more and more interest as they
might provide a viable path towards solving fluid dynamics problems on quantum com-
puters once fault-tolerant many-qubit systems become available. The major challenge in
developing a start-to-end quantum algorithm for the Boltzmann equation consists in en-
coding relevant data efficiently in quantum bits (qubits) and formulating the streaming,
collision and boundary conditions as one comprehensive unitary operation. The current
literature on quantum Boltzmann methods mostly proposes data encodings and quan-
tum primitives for individual phases of the pipeline assuming that they can be combined
to a full algorithm.

In this chapter we disprove this assumption by showing that for encodings commonly dis-
cussed in literature either the collision or the streaming step cannot be unitary. We fur-
thermore describe the intuition behind this impossibility and identify possible methods to
work around it.

4.1. INTRODUCTION
Quantum Boltzmann methods (QBM) have been widely researched and developed over
the past years. What remained an open problem is the development of a full-fledged
QBM that implements both the streaming and the collision step as unitary operations.
In this chapter we prove rigorously that for the encoding schemes considered for univer-
sal quantum computers in all previous publications it is impossible to implement both
streaming and collision as a unitary, downgrading them as candidates for any practical

This chapter is based on the publication On the importance of data encoding in quantum Boltzmann methods
by Schalkers and Möller [7].

77

4

78 4. ON THE IMPORTANCE OF DATA ENCODING IN QUANTUM BOLTZMANN METHODS

(a)

0

0

1

1

2

2

q3 q1

q4

q2

q0

(b)

0

0

1

1

2

2

q3 q1

q4

q2

q0

Figure 4.1: Illustration of two velocity combinations of the D2Q5 (and D2Q4) velocity spectrum that belong
to the same equivalence class with total momentum 0 and mass 2: 4.1a particles streaming in the q1 and q3
direction, and 4.1b particles streaming in the q2 and q4 direction.

QBM. The proves we provide are general and applicable to both lattice Boltzmann and
lattice gas models. This chapter aims to help researchers gain insight in why certain en-
coding methods cannot be used to solve the full Boltzmann equation and stimulate a
paradigm shift in QBM research from focusing on encodings and algorithms for individ-
ual steps of the pipeline to developing full-fledged QBM algorithms.

4.2. DATA ENCODING

As in any computational field, data encoding is pivotal for reaching a good result. More
than five decades of classical CFD research and application have established ‘good prac-
tices’ for storing field data such as densities and velocities at, e.g., the grid points or cell
centers as floating-point numbers following the IEEE-754 standard. Every now and then
new hardware developments stimulate research into non-standard formats, like reduced
or mixed-precision [3], but, in general, data encoding is not considered to be an open
problem.

Not so in QCFD and, in particular, quantum Boltzmann methods where different
encoding methods are used in different papers. The two mainstream encodings of the
velocity vector are the amplitude based encoding [9, 1, 2, 6] and the computational basis
state encoding [10, 11, 13, 12, 5, 4, 8]. In this section we will review the main data encod-
ings currently used for QBM and show that in all of them either the streaming step or the
collision step cannot be unitary. This result, though discouraging at first sight, should be
interpreted as wake-up call that novel quantum encodings for CFD states are imperative
for devising full-fledged QCFD applications in the future. We propose one such novel
encoding in Chapter 5 and discuss its potential and limitations.

4.2. DATA ENCODING

4

79

4.2.1. AMPLITUDE BASED ENCODING

The first type of encoding we consider is the so-called amplitude based encoding, used
for several quantum Boltzmann methods [9, 1, 2, 6]. The amplitude based encoding of
the velocity vector is such that at each location |x〉 there can be multiple particles with
different velocities, for instance |v0〉, |v1〉, |v2〉 and |v3〉 for D2Q4. Here and below, |i 〉
denotes the representation of i as bit string. The state of the system at this point x can
then be encoded as1

|x〉 (α0 |v0〉+α1 |v1〉+α2 |v2〉+α3 |v3〉) , (4.1)

where α0, α1, α2 and α3 are complex numbers that simply represent the relative weight
or number of particles traveling at the given velocity at grid point x. For simplicity we
will assume that |α0|2 + |α1|2 + |α2|2 + |α3|2 = 1, and so in this example there are only
particles at grid point x but the proof extends trivially to the general case with particles
spread around the grid.

In order to show that this encoding of the velocity vector inevitably leads to non-
unitary collision operators, let us first take a close look at what is required from a col-
lision operator. A collision operator Ucol needs to map the velocities of the incoming
particles to a so-called equivalent outgoing state. Two states are equivalent if the total
mass and momentum of all particles combined are the same. For example having one
particle of mass 1 traveling in the positive x direction and one particle of mass 1 in the
negative x direction is equivalent to one particle of mass 1 traveling in the positive y di-
rection and one particle of mass 1 in the negative y direction, as for both states the total
momentum is 0 and the mass is the same. This means that if there is only one parti-
cle with one direction at a specific point in space, the collision operator cannot change
this as there is no other direction this one particle could be traveling with the same mo-
mentum. Using these requirements we can set up a generic collision operation Ucol that
solely meets the basic requirements of behavior it needs to portray. The first requirement
is that there should be at least a combination of incoming velocity states that leads to a
new combination containing at least one velocity state that was previously not present.
Let the state |ψ1〉 be an example of an incoming state for which a state in its equivalence
class includes at least some velocity which is not included in the original state. Without
loss of generality assume that |ψ1〉 consists of two different velocity states |v0〉 and |v1〉,
meaning that |α0|, |α1| > 0 and α2 =α3 = 0. Then we can write the state of the system as

|ψ1〉 = |x〉 (α0 |v0〉+α1 |v1〉) . (4.2)

Now assume that an equivalent velocity combination exists consisting of particles trav-
eling with velocities β2 |v2〉+β3 |ψ3〉, where we have |β2|, |β3| > 0 and we let |ψ3〉 be any
combination of all basis states except |v2〉. To realize this potential outcome of a colli-
sion as a quantum algorithm, we need to implement the transformation between both
equivalent states as a unitary operation Ucol which changes the states of the velocity en-

1Note that we distinguish in our notation between the grid point x and its representation |x〉 as part of the
quantum register.

4

80 4. ON THE IMPORTANCE OF DATA ENCODING IN QUANTUM BOLTZMANN METHODS

codings as follows

|ψ′
1〉 = I ⊗Ucol |ψ1〉

= |x〉⊗Ucol (α0 |v0〉+α1 |v1〉)
= |x〉(γ0(α0 |v0〉+α1 |v1〉)+γ1(β2 |v2〉+β3 |ψ3〉)

)
.

(4.3)

Here, if γ0 = 1 and γ1 = 0 no collision is taking place (and we simply implement an iden-
tity operation) and if γ1 = 1 we fully change from the original velocities to its alterna-
tive representative from the same equivalence class.2 Note that to preserve unitarity
|γ0|2 +|γ1|2 = 1 must hold.

Let us now consider another system in state |ψ2〉 = |x〉 |v2〉. Applying the unitary
operation Ucol should not effect the state at all as a single speed is only in an equivalence
class with itself, and so the required behavior for Ucol is

|ψ′
2〉 = I ⊗Ucol |ψ2〉

= |x〉Ucol |v2〉
= e iθ |x〉 |v2〉 ,

(4.4)

with θ ∈ (0,2π]. That is, the collision operator must preserve the single-velocity state
except for changes in the phase factor e iθ that can be neglected.

Now that we have identified the required behavior for Ucol to implement a collision
operation, we can prove that any Ucol that meets both requirements simultaneously can-
not be unitary. Here, we resort to the characterization U †

colUcol = I of unitary operators,
with superscript † denoting the adjoint operator.

Proof. To reach a contradiction, assume that Ucol is a unitary operator. Then it must
preserve the inner product for all possible states |φ1〉 and |φ2〉

〈φ1|φ2〉 = 〈φ1|U †
colUcol |φ2〉 . (4.5)

However, for a collision operation Ucol that behaves as expected on the system states
described in Equations (4.2) to (4.4), it follows that

0 = 〈ψ1|ψ2〉
= 〈ψ1| (I ⊗Ucol)

† (I ⊗Ucol) |ψ2〉
= e iθ (

γ0(α0 〈v0|+α1 〈v1|)+γ1(β2 〈v2|+β3 〈ψ3|)
)〈x| |x〉 |v2〉

= e iθγ1β2.

(4.6)

The first equality follows from the fact that |ψ1〉 and |ψ2〉 are orthogonal by construction.
The second one holds under the assumption of Ucol being unitary, which is disproved
by the fact that the entire equality chain only holds for the trivial case γ1 = 0 (as |β2| >
0 by definition of the state |ψ1〉), that is, when Ucol does not implement the collision
operation. From this we can conclude that an amplitude based encoding of the velocity
does not allow for a unitary implementation of the collision operation.

2Here γ0, γ1 are chosen to reflect the fact that a collision operation should switch weight of a combination
of velocities in an equivalent class to another combination of velocities in the same equivalence class. This
equation could be written in a less restrictive way by splitting γ0 and γ1 up into separate amplitudes γi for all
the basis states |vi 〉, the same contradiction of unitarity as presented below however could be reached.

4.2. DATA ENCODING

4

81

Notice that this proof works for any amplitude based encoding of v where the differ-
ent possible velocities at a position are all represented by their own basis state as there
will always be a case with only a single incoming velocity, for which an identity operation
up to a phase shift should take place, while at the same time there will be combinations
of velocities for which we want some weight of the system to change from one combi-
nation of velocities to another combination of velocities in the same equivalence class.
These two antagonizing requirements will always lead to the same contradiction of uni-
tarity proven above and we further expand on this intuition in Section 4.2.3.

4.2.2. COMPUTATIONAL BASIS STATE ENCODING

The second type of encoding of a quantum state considered is the computational basis
encoding, used in several quantum lattice Boltzmann papers such as [10, 11, 13, 12, 5,
4, 8]. Using this encoding the contradiction of unitarity in the collision operation can be
avoided by encoding the velocity of the qubits at a position |x〉 in space by identifying
each direction particles could be streamed from with its own qubit, which will be set to
one if and only if there is a particle streaming from that direction.

As an example consider the D2Q4 lattice depicted in Figure 4.2. In this case the ve-
locity can be encoded using four qubits q0, q1, q2 and q3 where the state

|x〉 |v〉 = |x〉 |q0q1q2q3〉 = |x〉 |0110〉 (4.7)

is such that from the center point (1,1), there is a particle streaming to (1,2) and a particle
streaming to (0,1) but not to (2,1) or (1,0).

0

0

1

1

2

2

q2 q0

q3

q1

Figure 4.2: Illustration of the computational basis state encoding for the D2Q4 lattice. For each grid point x
we set the respective qubit q j to one if and only if there is a particle streaming in that direction, i.e. |v〉 =
|q0q1q2q3〉 = |0110〉.

Using this encoding the collision step can be defined quite naturally as unitary oper-
ation. However, we run into trouble when attempting to define a unitary streaming step
Ustr as we demonstrate in what follows.

To simplify notation let us restrict ourselves to the D1Q2 lattice and consider the two

4

82 4. ON THE IMPORTANCE OF DATA ENCODING IN QUANTUM BOLTZMANN METHODS

settings at time t from Figures 4.3 and 4.4, which can be encoded as

|ψ1〉 =
3∑

x=0
|x〉 |v〉 (4.8)

= 1

2
(|00〉 |00〉+ |01〉 |11〉+ |10〉 |10〉+ |11〉 |10〉) , (4.9)

and

|ψ2〉 = 1

2
(|00〉 |01〉+ |01〉 |01〉+ |10〉 |00〉+ |11〉 |11〉) , (4.10)

respectively. It then follows directly that

〈ψ1|ψ2〉 = 0. (4.11)

Upon streaming, the systems from Figures 4.3 and 4.4 change from their state at time
t (top lattice) to that at time t +1 (bottom lattice), i.e.

|ψ′
1〉 =

1

2
(|00〉 |11〉+ |01〉 |00〉+ |10〉 |10〉+ |11〉 |10〉) , (4.12)

and

|ψ′
2〉 =

1

2
(|00〉 |11〉+ |01〉 |00〉+ |10〉 |01〉+ |11〉 |01〉) , (4.13)

respectively. As in the previous section, we will show by contradiction that any operation
Ustr for which Ustr |ψ1〉 = |ψ′

1〉 and Ustr |ψ2〉 = |ψ′
2〉 cannot be unitary.

Proof. Let us assume that Ustr is unitary, i.e. it preserves the inner product

〈φ1|φ2〉 = 〈φ1|U †
strUstr |φ2〉 , (4.14)

for all states |φ1〉 , |φ2〉. Substituting the states (4.9) and (4.10) on the left side, and (4.12)
and (4.13) into the right inner product we arrive at the contradiction

0 = 〈ψ1|ψ2〉 = 〈ψ1|U †
strUstr |ψ2〉 = 〈ψ′

1|ψ′
2〉 =

1

2
. (4.15)

The first equality follows from the orthogonality property (4.11), and the second one
from the assumption that Ustr is a unitary operator, which we just disproved.

As in Section 4.2.1 this proof extends to any computational basis encoding where
each possible combination of velocities at a specific lattice point is encoded using its
own basis state, as one can always construct two situations with no overlap at time t
that will have non-zero overlap after streaming at time t + 1. This proof also extends
trivially to any other DnQm setting as the streaming possibilities of D1Q2 are essentially
a subset of any other system and thus the same example can be used by setting the other
streaming directions to 0.

4.2. DATA ENCODING

4

83

0 1 2 3

time t

0 0 1 1 0 1 0 1

0 1 2 3

time t+ 1

1 1 0 0 0 1 0 1

Figure 4.3: D1Q2 example setting 1. The binary encoding above the arrows indicate whether or not particles
are flowing there in that time step. 1 indicates that there are particles there and 0 indicates that there are no
particles present. In the example setting we consider periodic boundary conditions. The top figure shows the
state of the system at time t . The figure below shows the state of the system at time t +1.

0 1 2 3

time t

1 0 1 0 0 0 1 1

0 1 2 3

time t+ 1

1 1 0 0 1 0 1 0

Figure 4.4: D1Q2 example setting 2, the binary encoding above the arrows indicate whether or not particles
are flowing there in that time step. 1 indicates that particles are streaming there and 0 indicates that are no
particles present. In the example setting we consider periodic boundary conditions. The top figure shows the
state of the system at time t . The figure below shows the state of the system at time t +1.

4

84 4. ON THE IMPORTANCE OF DATA ENCODING IN QUANTUM BOLTZMANN METHODS

4.2.3. INTUITION AND EXTENSION OF NON-UNITARITY PROOFS

In this section we expand on our non-unitarity proofs by providing physical intuition
behind the proofs presented above. It is intended to give insight into what types of en-
codings our non-unitarity proof extends to, and what physical features of the system
necessarily lead to the non-unitarity for these encodings.

Consider the proof from Section 4.2.1 that shows that the amplitude based encod-
ing, where each velocity direction is identified through its own basis state leaving the
total velocity at a position x to be a superposition of such basis states, prevents the col-
lision operator Ucol from being unitary. Since it encodes each streaming direction as a
different basis state, the quantum encodings of the velocity directions are all orthogonal
to one another. This is also necessary, since if the basis states of the possible stream-
ing directions are not orthogonal, we cannot fully distinguish between them. However,
this orthogonality of the different velocity directions leads directly to the non-unitarity
of Ucol. Since a collision operator that will rotate a given linear combination of basis
states into a linear combination of other basis states in such a way that the represented
streaming patterns belong to the same equivalence class, it will also rotate ‘pure’ veloci-
ties represented by a single basis state into another basis state leading to a nonphysical
and undesired change of velocities.

Following this line of argumentation it can be seen that the non-unitarity of Ucol is
not so much a result of a specific choice of encoding but an inherent non-unitarity of the
collision step itself that directly leads to the idea of computational basis state encoding,
where each velocity pattern (i.e. the combination of velocities) at a grid point is encoded
as its own basis state, and not as a unitary combination of all the basis states representing
a non-zero contribution.

When encoding the velocity pattern at each grid point as a basis state, naturally, the
non-unitarity of collision falls away and we can find a straightforward unitary operator
to implement the collision step. However, such an encoding will always lead to non-
unitarity of streaming due to the non-local nature of a streaming operation. Consider an
arbitrary point in space x and imagine two different scenarios with two different combi-
nations of speeds |v1〉 and |v2〉 at this point. Then the inner product between |x〉 |v1〉 and
|x〉 |v2〉 must be 0, as these are different basis states. However, the velocity states of the
systems at position x in the next time step do not depend on the current velocity states
in the lattice point. In fact, they only depend on the velocity states of the neighboring
lattice points. Since the inner product of the states at the point x at the next time step
does not depend on the current states at the point x, in the next time step the velocity
at the point x of the two systems could be identical, and hence, the inner product could
be one. There is no way of ensuring that this can only happen when the inner product at
some other point x ′ of the systems was non-zero before as each grid point has velocity
vectors in multiple directions determining its associated velocity basis state.

This shows that any quantum encoding that successfully implements both streaming
and collision as a unitary operation must belong to one of the following three types. The
first type is an amplitude based type encoding, where the different velocities are not
orthogonal and thus not entirely distinguishable. The second type is a computational
basis state encoding where the non-locality of streaming is somehow avoided. The last
type is a completely novel encoding method that avoids both non-unitarity problems

4.3. CONCLUSION

4

85

entirely. In Chapter 5 we will present precisely one such idea.

4.3. CONCLUSION
In this chapter we have shown that data encoding methods considered previously for
quantum Boltzmann methods do not allow for treating both streaming and collision as
unitary quantum operations. We have provided both a mathematical proof of its impos-
sibility, and insight into the physical properties of the system and encodings that lead to
this behavior.

BIBLIOGRAPHY

[1] Ljubomir Budinski. “Quantum algorithm for the advection-diffusion equation sim-
ulated with the lattice Boltzmann method”. In: Quantum Information Processing
2021 (2020). URL: https://link.springer.com/article/10.1007/s11128-
021-02996-3.

[2] Ljubomir Budinski. “Quantum algorithm for the Navier-Stokes equations by us-
ing the streamfunction-vorticity formulation and the lattice Boltzmann method”.
In: International Journal of Quantum information (2021). URL: https://arxiv.
org/abs/2103.03804.

[3] Gabriel Freytag et al. “Impact of Reduced and Mixed-Precision on the Efficiency of
a Multi-GPU Platform on CFD Applications”. In: Lecture Notes in Computer Science
(2022). URL: https://link.springer.com/chapter/10.1007/978-3-031-
10542-5_39.

[4] Y. Moawad, W. Vanderbauwhede, and R. Steijl. “Investigating hardware acceler-
ation for simulation of CFD quantum circuits”. In: Frontiers in Mechanical En-
gineering (2022). DOI: 10 . 3389 / fmech . 2022 . 925637. URL: https : / / www .
frontiersin.org/articles/10.3389/fmech.2022.925637/full.

[5] Marco A. Pravia et al. “Experimental demonstration of Quantum Lattice Gas Com-
putation”. In: Quantum Information Processing (2003). URL: https : / / link .
springer.com/article/10.1023/A:1025835216975.

[6] Merel A. Schalkers and Matthias Möller. “Efficient and fail-safe quantum algo-
rithm for the transport equation”. In: Journal of Computational Physics 502 (2024),
p. 112816. DOI: https://doi.org/10.1016/j.jcp.2024.112816.

[7] Merel A. Schalkers and Matthias Möller. “On the importance of data encoding for
quantum Boltzmann methods”. In: Quantum Information Processing (2024). DOI:
https://doi.org/10.1007/s11128-023-04216-6.

[8] René Steijl. “Quantum Circuit Implementation of Multi-Dimensional Non-Linear
Lattice Models”. In: MDPI: Applied Sciences (2023). DOI: https://doi.org/10.
3390/app13010529. URL: https://www.mdpi.com/2076-3417/13/1/529.

[9] B. N. Todorova and R. Steijl. “Quantum algorithm for the collisionless Boltzmann
equation”. In: Journal of Computational Physics, 409, 109347 (2020). DOI: http:
//dx.doi.org/10.1016/j.jcp.2020.109347.

[10] Jeffrey Yepez. “Quantum Computation of Fluid Dynamics”. In: Quantum Comput-
ing and Quantum Communications: lecture notes in computer science (1998). URL:
https : / / www . phys . hawaii . edu / ~yepez / papers / publications / pdf /
1999LectNotesCompSciVol1509Pg35.pdf.

87

https://link.springer.com/article/10.1007/s11128-021-02996-3
https://link.springer.com/article/10.1007/s11128-021-02996-3
https://arxiv.org/abs/2103.03804
https://arxiv.org/abs/2103.03804
https://link.springer.com/chapter/10.1007/978-3-031-10542-5_39
https://link.springer.com/chapter/10.1007/978-3-031-10542-5_39
https://doi.org/10.3389/fmech.2022.925637
https://www.frontiersin.org/articles/10.3389/fmech.2022.925637/full
https://www.frontiersin.org/articles/10.3389/fmech.2022.925637/full
https://link.springer.com/article/10.1023/A:1025835216975
https://link.springer.com/article/10.1023/A:1025835216975
https://doi.org/https://doi.org/10.1016/j.jcp.2024.112816
https://doi.org/https://doi.org/10.1007/s11128-023-04216-6
https://doi.org/https://doi.org/10.3390/app13010529
https://doi.org/https://doi.org/10.3390/app13010529
https://www.mdpi.com/2076-3417/13/1/529
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2020.109347
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2020.109347
https://www.phys.hawaii.edu/~yepez/papers/publications/pdf/1999LectNotesCompSciVol1509Pg35.pdf
https://www.phys.hawaii.edu/~yepez/papers/publications/pdf/1999LectNotesCompSciVol1509Pg35.pdf

4

88 BIBLIOGRAPHY

[11] Jeffrey Yepez. “Quantum Lattice-Gas Model for computational fluid dynamics”. In:
Physical Review E (2001). URL: https://journals.aps.org/pre/abstract/
10.1103/PhysRevE.63.046702.

[12] Jeffrey Yepez. “Quantum Lattice-Gas Model for the Burgers Equation”. In: Journal
of statistical physics (2002). URL: https://link.springer.com/article/10.
1023/A:1014514805610.

[13] Jeffrey Yepez and Bruce Boghosian. “An efficient and accurate quantum lattice-gas
model for the many-body Schrödinger wave equation”. In: Computer Physics Com-
munications (2001). URL: https://www.phys.hawaii.edu/~yepez/static/
papers/pdf/2002CompPhysCommVol146No3%2C15Pg280.pdf.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.63.046702
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.63.046702
https://link.springer.com/article/10.1023/A:1014514805610
https://link.springer.com/article/10.1023/A:1014514805610
https://www.phys.hawaii.edu/~yepez/static/papers/pdf/2002CompPhysCommVol146No3%2C15Pg280.pdf
https://www.phys.hawaii.edu/~yepez/static/papers/pdf/2002CompPhysCommVol146No3%2C15Pg280.pdf

5
THE SPACE-TIME METHOD

In the previous chapter we provided mathematical proofs that show that a unitary treat-
ment of both streaming and collision is impossible with the encodings adopted in current
quantum Boltzmann literature, thereby underpinning the need for a new encoding. In
this chapter we describe an encoding method, the so-called space-time encoding that can
be used to solve the equations of fluid dynamics on a quantum computer by using a lattice
gas model approach. In this encoding the number of qubits used to encode the velocity
depends on the number of time steps one wishes to simulate, with the upper bound de-
pending on the total number of grid points.

In light of the non-unitarity result established for existing encodings, our encoding method
is to the best of our knowledge the only one currently known that can be used for a start-to-
end quantum solver using a lattice based discrete velocity method where both the collision
and the streaming step are implemented as a unitary operation.

5.1. INTRODUCTION
As described in the previous chapter, the previously known quantum Boltzmann meth-
ods all used encoding methods that did not allow for the full Boltzmann equation to be
implemented and solved directly on a quantum computer.

There are existing methods with a work-around for this issue, which usually comes in
the form of a stop-and-go algorithm. Here it is assumed that at the end of each timestep
the system is measured and re-initialized for the next timestep. The drawback of this
method is two-fold, first of all upon measurement the wrong states might be found
which means the circuit has to run again until the right values are found. The second
issue is that even if the right states are found upon measurement, the system collapses
and has to be re-initalized before the next time-step can be run. In practice this is ex-
tremely expensive since re-initialization and measurement of the quantum circuits are
very costly as described in Section 1.3.

This chapter is based on the publication On the importance of data encoding in quantum Boltzmann methods
by Schalkers and Möller [2].

89

5

90 5. THE SPACE-TIME METHOD

All aforementioned strategies require a stop-and-go approach, what remained an
open problem is the development of a full-fledged quantum discrete velocity lattice
based method that implements the streaming and the collision steps as unitary oper-
ations. In this chapter we present the first-of-its-kind full-fledged discrete velocity lat-
tice based quantum method, our approach builds on a novel encoding scheme, called
space-time encoding which we introduce in this chapter.

5.2. LATTICE GAS VS LATTICE BOLTZMANN
In Chapter 1 we have described both lattice gas and lattice Boltzmann methods. The
main differences are in the interpretation between single particles that either are or are
not present in lattice gas models and relative particle densities in lattice Boltzmann
methods. This difference in interpretation has its main effect in the collision opera-
tion. Where lattice gas models have rather simple rule based collision operations, lattice
Boltzmann models can allow for a more complex collision where the particles densities
are spread out over multiple possible basis states. These collision operators are deter-
mined using the equilibrium function (1.26), which requires the macroscopic quantities
ρ and u. Classically this can be calculated and used in each time step. Since we are work-
ing on a quantum computer we cannot determine these without measuring and subse-
quently collapsing the system. Due to the high computational costs of measurement and
reinitialization, we focus on methods that do not require reinitilization. As such we do
not have a way to calculate the necessary values for determining the equilibrium func-
tion. We will therefore use a lattice gas inspired method for our space-time encoding, as
the collision operation can be pre-determined for all possible input configurations; see
Section 5.4.

5.3. DATA ENCODING
In what follows, we adopt an extended computational basis state encoding, where at
each location x we take into account the velocities at all grid points in the vicinity of x.
Here, ‘in the vicinity of x’ means that a particle can theoretically reach the grid point
x within the number of time steps still to be performed before measurement. Mathe-
matically speaking being ‘in the vicinity of x’ means being, respectively, in the so-called
extended von Neumann, Moore or hexagonal neighborhood of the point x, depending
on the lattice structure.

This leads to a trade-off between the number of time steps that can be performed be-
tween measurements and the number of qubits required to encode the velocity at each
grid point x. The more time steps one wishes to take between measurement-and-re-
initialization cycles, the more qubits are required for our space-time encoding. Obvi-
ously the maximum number of qubits required to implement the velocity without any
in-between measurements must be such that the entire grid is spanned. For a DnQm
lattice this will be mNg , where Ng is the total number of grid points. When encoding
the proposed method on a classical computer mNg bits would also be required, so when
encoding the full domain there is no quantum benefit in terms of (qu)bit numbers. The
quantum improvement comes from exploiting quantum parallelism, which is done as
long as we do not encode the whole space.

5.3. DATA ENCODING

5

91

In what follows, let Nt denote the number of streaming steps to be performed be-
tween (re-)initialization and measurement. We extend the computational basis state en-
coding of velocity directions from Section 4.2.2 to take into account all the speed states
from grid points in the neighborhood of x that can (at least theoretically) reach x within
Nt streaming steps. This takes away the non-locality of the streaming operator, which
led to the non-unitarity of Ustr for the ‘regular’ computational basis state encoding at the
cost of increasing the number of qubits required to encode all required velocity data.

We will give a detailed description of this encoding for the D2Q4 lattice, but want to
note that it can be extended naturally to any other choice of DnQm. Consider the D2Q4
lattice given in Figure 5.1 with qubit q j set to one if and only if there is a particle traveling
with velocity direction j from grid point x into a neighboring grid point in the current
time step. We now extend this encoding to include all possible velocities at positions ‘in
the vicinity of x’ for the total of Nt time steps in order to obtain a unitarily streamable
encoding. This is illustrated in Figure 5.2 for a single time step, i.e. Nt = 1 yielding the
encoding

|x〉 |q19q18 . . . q0〉 . (5.1)

For D2Q4, the number of qubits encoding the possible velocity states per grid location x
grows with the number of time steps (still) to be taken as

nv = 4+
Nt∑

i=1
16i = 8N 2

t +8Nt +4, (5.2)

where the maximum number of qubits required to encode all velocity directions over the
entire grid equals 4Ng as stated before.1 Similarly it can be shown that for d dimensions
the growth rate is of the order O

(
N d

t

)
.

0

0

1

1

2

2

q2 q0

q3

q1

Figure 5.1: Illustration of the computational basis state encoding for D2Q4.

1Note that the growth rate of qubit numbers per time step depends on the choice of DnQm. The number of
qubits required is equal to the number of points in the extended Von Neumann, Moore or hexagonal neigh-
borhood, depending on which choice of n and m considered.

5

92 5. THE SPACE-TIME METHOD

x

q2 q0

q3

q1

q14 q12

q15

q13

q18 q16

q19

q17

q10 q8

q11

q9

q6 q4

q7

q5

Figure 5.2: Illustration of the space-time encoding for D2Q4 for a single time step.

5.4. COLLISION FOR SPACE-TIME ENCODING

To encode the lattice gas collision step we first identify the equivalence class for the
D2Q4 lattice. We note that at each grid point x as represented in Figure 5.1 the states
|q0q1q2q3〉 = |1010〉 and |q0q1q2q3〉 = |0101〉 belong to the same equivalence class (cf.
Figure 4.1), as they have the same total mass and momentum.2 We implement the colli-

2The other equivalence classes are |q0q1q2q3〉 = |1000〉 and |q0q1q2q3〉 = |1100〉 and all cyclic shifts of these
patterns, and |q0q1q2q3〉 = |1111〉. However, they all have just a single representative so that we define the
collision operator based on the ambiguous case.

5.4. COLLISION FOR SPACE-TIME ENCODING

5

93

sion step by defining a unitary operator Ucol which performs the following mappings

Ucol |1010〉 = |0101〉 , (5.3)

Ucol |0101〉 = |1010〉 , (5.4)

while acting as the identity operation on any other basis state.3 With the so-defined

Ucol ∈ C24⊗24
, we can write the total collision operation for an encoding of the velocities

states v consisting of nv = 4k qubits as k-fold Kronecker products of Ucol operations, i.e.
U tot

col =Ucol⊗·· ·⊗Ucol. Since each Ucol requires a few CNOT and a single triple controlled
NOT gate, see Figure 5.3, the total collision operator can be efficiently implemented even
on near-term devices.4

q0 : • X • X X • X •

q1 : • X • X •

q2 : X • X

q3 : X • X

Figure 5.3: An example of an implementation of the collision operation Ucol for the D2Q4 example.

In practice the total collision operator U tot
col differs per time step, since its local coun-

terpart Ucol only needs to be applied to velocity states ‘in the vicinity of x’. In the first out
of the Nt time steps it is important for all qubits representing velocity states ‘in the vicin-
ity of x’ to be updated correctly. In the very last time step, however, it is only important
for the qubits q0, q1, q2 and q3 to end up in the correct state. The more time steps t have
been taken, the less time steps Nt −t are still to be taken and so the 4-qubit local collision
operator Ucol only needs to be applied to the remaining qubits relevant for encoding the
‘directly connected’ velocity states as given in Equation (5.2).

3This operation is unitary, as can be verified by writing it as

Ucol =Π0000,1010Π0000,0101MΠ0000,0101Π0000,1010. (5.5)

Here the matrices Πi , j represent permutation matrices between the basis states i and j which are trivially
unitary and the matrix M is given by

M =


0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0

.
0 0 0 0 1

 . (5.6)

Since the permutation matrices are unitary, we only need to show the unitarity of M to show the unitarity of
Ucol. The unitarity of M follows directly from writing out M†M and finding I .

4We can implement the described collision operator by first applying three CNOT operations to the system
turning the states into |1010〉 7→ |1110〉 and |0101〉 7→ |1111〉. Subsequently a triple controlled NOT is applied
to the right-most qubit (controlled on the three left-most qubits). Finally the initial three CNOT operations
are applied in reverse order to reset all velocity states correctly.

5

94 5. THE SPACE-TIME METHOD

q1

Ucol

q4

q5

Ucol

q8

· · · · · ·
q4i−3

Ucol

q4i

· · · · · ·
qNv

Figure 5.4: The collision operation applied in the i-th time step for the D2Q4 example.

With this logic we can define a collision operator per time step t as

U tot
col,t = Ucol ⊗·· ·⊗Ucol︸ ︷︷ ︸

c collision operations

⊗ I ⊗·· ·⊗ I︸ ︷︷ ︸
identity operations

, (5.7)

where c = 2(Nt − t)2+2(Nt − t)+1 and the identity operations are added to avoid dimen-
sionality issues. In practice no operation will be applied on the qubits encoding velocity
states not ‘in the vicinity of x’ within Nt − t time steps, Figure 5.4 shows what this looks
like as a quantum circuit.

5.4.1. PARTICLE DENSITY INSPIRED COLLISION OPERATION
As stated above, we can choose to implement a different gate to represent collision,
which brings the method presented closer to a relative particle density interpretation.
We can do this by choosing a collision operator U ′

col where

U ′
col |1010〉 = α |1010〉+β |0101〉 , (5.8)

U ′
col |0101〉 =−β |1010〉+α |0101〉 , (5.9)

5.5. STREAMING FOR SPACE-TIME ENCODING

5

95

with α,β ∈C and |α|2+|β|2 = 1, while again acting as the identity operation on any other
basis state. This operator can trivially seen to be unitary with the same arguments as the
operator Ucol with the added argument that

[
α β

−β α

]
, (5.10)

is unitary.

As can be seen from Equations (5.8) and (5.9) using U ′
col with 0 < |α|2, |β|2 < 1 allows

to spread out the distribution of what we originally interpreted as one particle over space
in two different possible positions. This allows for a new interpretation of the method
where instead of interpreting each position as either occupied or not by a single particle,
we can interpret the amplitudes of the occupied position as the relative particle density.
This brings our proposed method closer to a lattice Boltzmann method, with a different
collision operator. In the method presented in [1] they also present a collision operation
that is a essentially a smoothed out version of the original LGA collision operations and
they also interpret is as a method closer to lattice Boltzmann. More research needs to be
done to determine its exact effects over multiple timesteps and how it compares to BGK
and other standard collision operators.

q0 : • X • X RY (π2) X • X •
q1 : • X • X •
q2 : X • X

q3 : X • X

Figure 5.5: An example of an implementation of the collision operation U ′
col for the D2Q4 example with |α| =

|β| = 1p
2

.

5.5. STREAMING FOR SPACE-TIME ENCODING

Our space-time encoding enables different manners of implementing the streaming step.
It can easily be seen that the way the streaming method should be implemented differs
per time step t depending on which positions will be ‘in the vicinity of x’ in the next time
step as well. At the first time step it is important for (almost) all qubits to be streamed to
a very specific position, whereas in the last time step it is only important for the qubits
q0, q1, q2 and q3 to end up in the correct state. For the example shown below we are only
considering a total of one step to be taken (i.e. Nt = 1) and so we only need to consider
the speeds that will stream to location x in one time step. In this case that means that
streaming consists of performing a swap operation between the following qubit pairs q0

and q12, q1 and q17, q2 and q6 as well as q3 and q11, see Figure 5.6.

5

96 5. THE SPACE-TIME METHOD

q0 : ×
q1 : ×
q2 : ×
q3 : ×
q4 :

q5 :

q6 : ×
q7 :

q8 :

q9 :

q10 :

q11 : ×
q12 : ×
q13 :

q14 :

q15 :

q16 :

q17 : ×
q18 :

q19 :

Figure 5.6: An example of an implementation of streaming in the D2Q4 case with t = 1.

Also in general (i.e. Nt > 1), the streaming step can be implemented by a combina-
tion of swap gates. Following the same in-the-vicinity-of-x argument as was used for the
collision step, a total of

nswap(t) = 4+
Nt−t∑
i=1

16i = 8(Nt − t)2 +8(Nt − t)+4 (5.11)

swap gates are required to update as many velocity-encoding qubits in time step t , whereby
these swap operations can be performed largely in parallel.5 The depth of the streaming

5In each time step the swap operations in the 4 (or generally speaking m) different directions can be performed

5.6. COMPLEXITY ANALYSIS

5

97

circuit at time t will amount to

dstr(t) = log2 (Nt − t) (5.12)

swap operations at time t . When combining the state preparation with the streaming
and collision operations as described the total algorithm can be expressed as in Figure
5.7.

q1

S.P. S1 C1

· · ·

SNt CNt M

· · ·

qNv · · ·

qNv+1 · · ·

· · ·

qNv+Ng · · ·

Figure 5.7: The full space-time data encoding quantum Boltzmann algorithm where S.P. stands for state prepa-
ration, Si and Ci are the i -th streaming and collision operations respectively and M stands for measurement.

5.6. COMPLEXITY ANALYSIS
In this section we give an overview of the total number of qubits required and the circuit
depth for this method.

5.6.1. NUMBER OF QUBITS REQUIRED
As described above, space-time encoding requires at worst 4Ng qubits. When consider-
ing a generalization of the space-time method for a DdQq setting, space time encoding
requires at worst qNg qubits. When the number of time steps to be taken, however, is
smaller than the number of grid points fewer qubits are required to encode the velocity.
In this case the number of qubits required to encode the velocity is of the order O

(
N d

t

)
.

5.6.2. CIRCUIT DEPTH
The circuit depth per time step for this approach is relatively small. The total depth of
the collision operator for the D2Q4 example as is worked out is 20 CNOT gates6. Note
that a different instantiation of DdQq would have a very different collision circuit with

in parallel. Furthermore the swap operations for the velocities in the same direction but not in the same ‘line
of streaming’ can all be performed in parallel. Therefore we only need to take into account the velocities in
the same line of streaming and the depth of the circuit is determined by the longest ‘line of streaming’, which
is equal to Nt − t . In each layer of the swap operations at least half of the Nt − t velocities can be swapped to
the correct position. Therefore a total of log2 (Nt − t) swap operations needs to be performed in the t-th time
step.

6Here we used the qiskit 1.2.0 built-in decomposition, which decomposes a triple controlled NOT gates into
14 CNOT gates.

5

98 5. THE SPACE-TIME METHOD

potentially a very different circuit depth.

The depth of the streaming circuit at time t can be derived using the following ap-
proach. We first note that we can do all the swaps in parallel that are not in the same
’line of streaming’ in the stencil, the longest such line at time t will be Nt − t . In order to
determine the depth of the circuit we consider the longest such line. We subsequently
swap adjacent pairs in the longest such line as shown in Figure 5.8a, which puts ⌊Nt−t

2 ⌋
particles virtually in the correct position. Figure 5.8b shows that after the first swap op-
erations the grid points indexed by odd numbers have the correct value, since they were
swapped with their counterpart on the left and we are considering a rightwards stream.
The value at a grid point being correct is shown by the arrows getting faded out, as these
grid points will no longer participate in the streaming process. For visual simplicity we
then renumber the remaining grid points in Figure 5.8c and reorder them accordingly
in Figure 5.8d. We subsequently repeat this process as shown in Figures 5.8e and 5.8f.
Finally the remaining two grid points which do not yet encode the correct value are
swapped as shown in figure 5.8g. In each step of the streaming circuit, as shown in Fig-
ure 5.8, approximately half of the grid points that do not yet have the right value, will get
the right value assigned to them. Therefore the depth of the streaming circuit at time t
consists of ⌈log2 (Nt − t)⌉+1 swap gates. As one swap gate can be decomposed into three
CNOT gates the depth of this quantum primitive is dt = 3⌈log2 (Nt − t)⌉+3 CNOT gates.

0 1 2 3 4 5 6

(a) Starting position for the efficient streaming implementation
using layers of swap gates for Nt − t = 7

0 1 2 3 4 5 6

(b) Position after the first layer of swap operations for the effi-
cient streaming implementation using layers of swap gates for
Nt − t = 7

0 1 2 3

(c) Position after the first layer of swap operations for the ef-
ficient streaming implementation after renumbering the re-
maining grid points.

0 1 2 3

(d) Position after the first layer of swap operations for the ef-
ficient streaming implementation after reordering the remain-
ing grid points.

0 1 2 3

(e) Position after the second layer of swap operations for the
efficient streaming implementation using layers of swap gates
for Nt − t = 7.

0 1

(f) Position after the second layer of swap operations for the
efficient streaming implementation after renumbering and re-
ordering the remaining grid points.

0 1

(g) Position after the third layer of swap operations for the effi-
cient streaming implementation using layers of swap gates for
Nt − t = 7.

Figure 5.8: Example of efficient streaming implementation using layers of swap gates for Nt − t = 7.

5.7. CONCLUSION AND OUTLOOK
In this chapter we presented the space-time encoding. The space-time encoding is specif-
ically designed to circumvent the problems of non-unitarity described in Chapter 4.
Note that for this method we have not presented explicit measurement methods or meth-
ods to deal with specular reflection or bounce back boundary conditions. This work will

5.7. CONCLUSION AND OUTLOOK

5

99

be presented in future publications.

BIBLIOGRAPHY

[1] Sriharsha Kocherla et al. “Fully quantum algorithm for mesoscale fluid simula-
tions with application to partial differential equations”. In: AVS Quantum Sci (2024).
DOI: https://doi.org/10.1116/5.0217675.

[2] Merel A. Schalkers and Matthias Möller. “On the importance of data encoding for
quantum Boltzmann methods”. In: Quantum Information Processing (2024). DOI:
https://doi.org/10.1007/s11128-023-04216-6.

101

https://doi.org/https://doi.org/10.1116/5.0217675
https://doi.org/https://doi.org/10.1007/s11128-023-04216-6

6
CONCLUSION AND DISCUSSION

We conclude this thesis by summarizing the main results and identifying the three open
questions in this field that need to be answered to determine the future of quantum fluid
dynamics.

103

6

104 6. CONCLUSION AND DISCUSSION

6.1. OVERVIEW OF RESULTS
In this section we give an overview of the results presented in this thesis. We do this by
first revisiting our results for amplitude based encoding techniques. We then summarize
the proofs of impossibility where we discuss that for different the standard amplitude
based encodings and computational basis state encodings it is not possible to extend
the technique to include a collision or streaming step respectively. We finish the sum-
mary by zooming into our space-time encoding, which is designed to circumvent the
problems of computational basis state encodings and does allow for a streaming step to
be implemented.

6.1.1. AMPLITUDE BASED ENCODING

In this thesis we have presented an amplitude based encoding scheme that can solve
the transport equation or collisionless Boltzmann equation with a lower complexity in
terms of gates used than the former state of the art; see Chapter 2. Furthermore we have
presented methods that can correctly implement specular reflection and bounce back
boundaries conditions; see Chapter 2 and Chapter 3. Our boundary condition imple-
mentation makes use of ancilla qubits to ensure the behavior is correct for all DdQq
instances. Our method can be extended for more complex flow fields by extending the
area of the object that is treated as an edge case as described in Chapter 2. Furthermore
we presented the quantum momentum exchange method, which provides a quantum
implementation of the classical momentum exchange method 3.

6.1.2. PROOFS OF IMPOSSIBILITY FOR AMPLITUDE BASED AND COMPUTA-
TIONAL BASIS STATE ENCODING

As shown in Chapter 4, the commonly used amplitude based encoding does not allow
for a unitary implementation of the collision operation, due to the orthogonality of the
encoding of the different velocities. Furthermore we have shown that for the commonly
used computational basis state encoding, streaming cannot be implemented due to its
non-locality.

These proofs show the general impossibility of adding a collision or streaming block
to these types of existing encoding methods due to their structure. As such the proof
shows that adding a collision operation to any amplitude based encoding for which the
different velocities are encoded in orthogonal basis states is impossible. Similarly we
have proven that it is impossible to add a streaming operation to any computational ba-
sis state encoding for which streaming would have to cross the boundaries of locality.
We have designed and presented one such example of an encoding in which the bound-
aries of locality are extended in such a way that multiple time steps using this algorithm
is possible.

6.1.3. SPACE-TIME ENCODING

As presented in Chapter 5, the space-time encoding is designed with the proofs of im-
possibility for commonly known encoding methods in mind. Specifically we extended
the computational basis state encoding in such a way that as long as we stay within the
pre-determined number of time steps, we stay within the locally defined domain. In

6.2. THREE OPEN QUESTIONS

6

105

doing this the total number of required qubits grows polynomially with the number of
time steps taken, where the degree of the polynomial depends on the spatial dimension,
where the number of qubits required can never grow beyond qNg .

6.2. THREE OPEN QUESTIONS
Finally we want to emphasize three open questions in this field that will determine to
what extent QCFD can be of use in the future.

Space-time encoding is possible because it extends computational basis state encod-
ing in such a way that any place the particles can stream to during the total number of
time steps taken, become part of the local encoding. Therefore it circumvents the issue
of non-locality. The natural question that arises is then whether or not an altered version
of amplitude based encoding, where the velocities are encoded in a non-orthogonal way,
can lead to an interesting quantum algorithm.

Question 1: Is it possible to find an altered version of the amplitude encoding method
allowing for unitary collision?

Since space-time encoding is currently the best known encoding method for im-
plementing both streaming and collision unitarily without the need for a stop and go
method, the natural question is whether or not a more efficient encoding can be de-
signed.

Question 2: Is it possible to find a full quantum algorithm without reinitialization that
uses fewer qubits than space-time encoding and remains polynomial in circuit depth?

The current reason stop-and-go methods are not very appealing for implementation
lies in the costs of measurement and reinitialization. This raises the question of whether
new QCFD algorithms can be designed which make use of measurement and reinitial-
ization without exponential cost.

Question 3: Is it possible to design a stop-and-go method with efficient measurement
and reinitialization?

Answering these questions will give more insight into the different ways quantum
methods for the Boltzmann equation can be useful in society. Specifically the answers to
the three questions above will determine if quantum computing can actually promise a
speed-up with respect to classical computers for lattice Boltzmann methods.

ACKNOWLEDGEMENTS

No achievement is attained by one person alone. We are all dependent on our surround-
ings and the cards we have been dealt. I like to think I have had the luck in life to be born
in great circumstances which, combined with hard work and dedication, have allowed
me to be where I am today.

I am incredibly grateful for my friends and family and the love and joy they bring in
my life. Furthermore I want to express my deep gratitude to my supervisors, collabora-
tors and colleagues for the support and fun moments during my academic journey.

The past 28 years have been good, let’s hope the next can be even better. Whoever
you are reading this, I wish you all the best.

107

CURRICULUM VITÆ

Merel Annelise SCHALKERS

27-12-1996 Born in Voorhout, The Netherlands.

EDUCATION
2015–2018 BSc Liberal Arts and Sciences

Amsterdam University College

2019–2021 MSc Applied Mathematics
Delft University of Technology

2021-2025 PhD. Applied Mathematics
Delft University of Technology
Thesis: The Quantum Lattice Boltzmmann Method

Towards quantum methods for computational fluid
dynamics

Promotors: Em. Prof. dr. ir. C. Vuik
Dr. rer. nat. M. Möller
Dr. D. de Laat

AWARDS
2022 Best paper, best presentation and best young scientist award

I4CS

109

LIST OF PUBLICATIONS

Conference papers

1. M. Möller and M.A. Schalkers, |Lib〉: a cross-platform programming framework
for quantum-accelerated scientific computing, in Computational science—ICCS
2020. Part VI, 451–464, Lecture Notes in Comput. Sci., 12142, Springer, Cham,.

2. M.A. Schalkers and M. Möller, Learning Based Hardware-Centric Quantum Circuit
Generation, in Innovations for Community Services—I4CS 2022, 308–322, Commu-
nications in Computer and Information Science 1585.

Journal papers

1. M.A. Schalkers and M. Möller, Efficient and fail-safe quantum algorithm for the
transport equation, J. Comput. Phys. 502 (2024), Paper No. 112816, 25 pp.

2. M.A. Schalkers et al., Explaining Grover’s algorithm with a colony of ants: a ped-
agogical model for making quantum technology comprehensible, Phys. Educ. 59
(2024), no. 3, Paper No. 035003, 12 pp.

3. M.A. Schalkers and M. Möller, On the importance of data encoding in quantum
Boltzmann methods, Quantum Inf. Process. 23 (2024), no. 1, Paper No. 20, 19 pp.

4. W. Nowak et al., Overdispersion in gate tomography: experiments and continu-
ous, two-scale random walk model on the Bloch sphere, ACM Trans. Quantum
Comput. 5 (2024), no. 4, Art. 24, 17 pp.

5. M.A. Schalkers and M. Möller, Momentum exchange method for quantum Boltz-
mann methods, Comput. & Fluids 285 (2024), Paper No. 106453, 8 pp.

6. C.A. Georgescu, M.A. Schalkers and M. Möller, QLBM - A quantum lattice Boltz-
mann software framework, Comput. Phys. Commun. 315 (2025), Paper No. 109699
, 22 pp.

Preprints

1. C.A. Georgescu, M.A. Schalkers and M. Möller, Fully Quantum Lattice Gas Au-
tomata Building Blocks for Computational Basis State Encodings, Arxiv preprint
(2025).

111

https://doi.org/10.1007/978-3-030-50433-5_35
https://doi.org/10.1007/978-3-030-50433-5_35
https://doi.org/10.1007/978-3-031-06668-9_22
https://doi.org/10.1007/978-3-031-06668-9_22
https://doi.org/10.1016/j.jcp.2024.112816
https://doi.org/10.1016/j.jcp.2024.112816
https://iopscience.iop.org/article/10.1088/1361-6552/ad2976
https://iopscience.iop.org/article/10.1088/1361-6552/ad2976
https://doi.org/10.1007/s11128-023-04216-6
https://doi.org/10.1007/s11128-023-04216-6
https://doi.org/10.1145/3688857
https://doi.org/10.1145/3688857
https://doi.org/10.1016/j.compfluid.2024.106453
https://doi.org/10.1016/j.compfluid.2024.106453
https://doi.org/10.1016/j.cpc.2025.109699
https://doi.org/10.1016/j.cpc.2025.109699
https://doi.org/10.48550/arXiv.2506.12662
https://doi.org/10.48550/arXiv.2506.12662

	Summary
	Samenvatting
	Introduction
	Goals of this thesis
	Structure of this thesis
	Introduction to quantum computing
	Qubits
	Measurement
	Quantum computation and gates
	Practical quantum computing

	Introduction to fluid dynamics and the lattice Boltzmann method
	Navier-Stokes
	Lattice gas automata
	The Boltzmann equation

	Introduction to quantum computational fluid dynamics

	Quantum algorithm for the transport equation
	Introduction
	The transport equation
	Grid definition and obstacle placement
	Streaming
	Reflection by an obstacle

	Quantum register set-up
	Efficient mapping of velocity vector
	Mapping of grid point locations onto qubit states
	Ancillae

	Efficient quantum streaming operation
	Efficient quantum incrementation (decrementation)
	Streaming step

	Quantum specular reflection step
	Specular reflection steps - requirements and possible breakdown cases
	Fail-safe specular reflection - 2D case
	Fail-safe specular reflection - 3D case
	Efficient object encoding
	Quantum Comparison Operation

	Results
	Complexity analysis
	Complexity of multi-controlled NOT operations
	Complexity of our QTM solver
	Complexity of alternative QTM implementations
	Complexity comparison of incrementation operations
	Tabular overview of complexities

	Conclusion and outlook

	Quantum momentum exchange method
	Introduction
	The Lattice Boltzmann Method
	Momentum Exchange Method
	Quantum Lattice Boltzmann Method
	Quantum bounce back boundary conditions
	Quantum momentum exchange method
	Momentum exchange method as an observable

	Practical implementation of the momentum exchange method on a quantum computer
	Implementation using ancilla qubits for bounce back boundary conditions
	Proof of method

	Conclusion

	On the importance of data encoding in quantum Boltzmann methods
	Introduction
	Data encoding
	Amplitude based encoding
	Computational basis state encoding
	Intuition and extension of non-unitarity proofs

	Conclusion

	The space-time method
	Introduction
	Lattice gas vs lattice Boltzmann
	Data encoding
	Collision for space-time encoding
	Particle density inspired collision operation

	Streaming for space-time encoding
	Complexity analysis
	Number of qubits required
	Circuit depth

	Conclusion and outlook

	Conclusion and discussion
	Overview of results
	Amplitude based encoding
	Proofs of impossibility for amplitude based and computational basis state encoding
	Space-time encoding

	Three open questions

	Acknowledgements
	Curriculum Vitæ
	List of Publications

