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ABSTRACT

Major advances in the fault tolerance of distributed stream pro-
cessing systems provided the systems with the capacity to produce
strictly consistent results under failures. Consistent fault tolerance
has been one of the catalysts fueling the maturity of streaming sys-
tems and boosting their widespread adoption not only for analytics
use cases, but also as a platform for running applications, such
as microservices and stateful functions. The most common fault
tolerance strategy that many modern streaming systems adopt is
an adaptation of Chandy-Lamport’s distributed snapshots protocol
that is based on global coordinated checkpoints. Given the impor-
tance of fault tolerance and the impact of coordinated checkpoints
in the stream processing space, it is surprising that no other fault
tolerance algorithm has been considered as an alternative.

In this paper we bring together and benchmark three semi-
nal fault tolerance algorithms from the distributed systems litera-
ture: the coordinated, uncoordinated, and communication-induced
checkpoint algorithms. We evaluate their behavior in terms of run-
time performance and failure recovery on a variety of streaming
workloads including pipeline, scatter-gather, and cyclical topologies.
We benchmark the algorithms on a novel streaming system, FERDIS,
built from scratch as an extensible benchmarking framework.

The experiment results show that the coordinated approach that
state of the art streaming systems adopt is in many cases optimal,
but with some exceptions where it is outperformed in both run-
time performance and failure recovery by the uncoordinated and
communication-induced algorithms. The cause of the differences
in performance, both at runtime and during recovery, was found
to be strongly related to the characteristics of the input stream(s)
and the query graph. On the tested cyclic topology, the coordinated
checkpointing algorithm could not be applied as by its design it will
deadlock on such query graphs. The natural cycle support of the
uncoordinated and communication -induced proved advantageous
here and we observed high susceptibility to the unbounded domino
effect of the uncoordinated algorithm which the communication-
induced was not affected by, indicating the unsuitability of uncoor-
dinated checkpointing in cyclic stream processing.

1 INTRODUCTION

In the early days of stream processing, systems could only produce
approximate results [1, 6, 17] forcing applications to introduce extra
supporting patterns and systems in order to secure the correctness
of results. One notable such example is the Lambda architecture [33].
The last decade saw a steep maturity in the fault tolerance of stream-
ing systems with systems such as Apache Flink [14], Google Mill-
wheel [3], SEEP [21], IBM Streams [29], Hazelcast Jet [24], and Mi-
crosoft Trill [16], achieving exactly-once processing guarantees [44]
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despite failures. This advancement in fault tolerance was critical
in opening the way for new applications that could now trust the
correctness of streaming systems. In fact, many novel stream pro-
cessing applications depart from the typical analytics use cases
and involve the serving of machine learning model pipelines [13]
as well as the execution of web and cloud services, such as mi-
croservices [31] and stateful functions [2]. Fault tolerance is even
more important for such applications, which have strict operational
requirements.

The fault tolerance approach of many modern streaming systems,
such as Flink, Streams, Trill, and Jet, converges towards an adap-
tation of Chandy-Lamport’s distributed snapshots protocol [18]
introduced by Carbone et al [12]. The distributed snapshots pro-
tocol is founded on periodic, global coordinated checkpoints that
capture a consistent snapshot of the system’s distributed state via
special markers that flow through the data stream causing the sys-
tem’s operators to checkpoint their state using two-phase commit.
On fault recovery, all operators of the system roll back to the lat-
est snapshot of their state and resume input processing from the
correct offset that is also tracked and restored.

Despite the success of porting the traditional protocol of Chandy-
Lamport from the distributed systems literature in the stream pro-
cessing domain, there is no evidence regarding the appropriate-
ness and performance of other important checkpoint-based fault
tolerance algorithms, namely the uncoordinated checkpoint and
communication-induced checkpoint algorithms. In addition, the
emergence of novel stream processing use cases may pose a new
set of challenges for fault tolerance that can potentially be better
addressed by alternative strategies.

In this paper we benchmark three fault tolerance algorithms for
distributed stream processing based on coordinated checkpoints,
uncoordinated checkpoints, and communication-induced check-
points. We stress the algorithms on a variety of workloads including
pipeline, scatter-gather, and cyclical topologies and measure a de-
scriptive set of metrics on performance and recovery experiment
configurations. We run the experiments on FERDIS (Framework for
Experimental Recoverable Distributed Streaming), an extensible
framework that we introduce for benchmarking streaming system
aspects. FERDIS is an important engineering effort within our team
encapsulating all the main components of a streaming system, such
as operators, checkpointing, networking, IO, and serialization, with-
out the particular optimizations and sophisticated feature set of
full-blown streaming systems that can affect benchmarking. FERDiS
is available for use and extension as open-source software.

In short our work makes the following contributions to the state
of the art.

!https://github.com/delftdata/FERDIS
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e implementation of a prototype streaming system that can
be leveraged as an extensible benchmarking framework for
experimentation

e implementation of three fault tolerance approaches based
on coordinated checkpoints, uncoordinated checkpoints,
and communication-induced checkpoints in distributed
stream processing

e benchmarking of the three fault tolerance algorithms in a
total of 116 configurations spread over six streaming work-
loads which includes a cyclic query

The rest of the paper is structured as follows. In section 3 we dis-
cuss related work and in section 4 we provide necessary background
knowledge with respect to our work. In section 5 we present the
benchmarked fault tolerance approaches. In section 7 we describe
the benchmarking system and section 8 elaborates the experiment
setup. Then, section 9 presents the experiments and discusses the
experiment results. Finally, we present future work plans in sec-
tion 10 and conclude the paper in section 11.

2 RESEARCH QUESTIONS

Our work proposes to address the following research questions
with respect to fault tolerance algorithms in distributed stream
processing.

RQ1. How can a stream processing system support each of the three
classes of checkpoint-based fault tolerance algorithms: coordinated
checkpointing, uncoordinated checkpointing, and communication-
induced checkpointing?

RQ1.1. Which specific variants of the three classes of checkpoint-
based fault tolerance algorithms are suitable to implement for stream
processing?

RQ2. How does the choice of checkpoint-based recovery algorithm
affect the

RQ2.1. consistency guarantees of a streaming system?
RQ2.2. runtime efficiency of a streaming system?
RQ2.3. recovery efficiency of the SPE?

RQ2.4. support of cyclic dataflows?

3 RELATED WORK

Related to our work are stream processing benchmarks proposing
a benchmarking system (subsection 3.1) and experimental evalua-
tions of fault tolerance in the stream processing domain (subsec-
tion 3.2).

3.1 Stream Processing System Benchmarks

Several benchmarks have been published tailored to streaming sys-
tems. A recent survey details the benchmarks that are currently
available for evaluating different layers of big data analytics infras-
tructures [32] including, but not limited to streaming systems.
Linear Road [7] is a benchmark which simulates a traffic mon-
itoring application with definitions of input streams, queries pre-
sented in an abstract, language agnostic way, and a result validator
which evaluates the correctness of results. Latency, throughput,
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and accuracy are the metrics considered. RioTBench [43] is a
real-time analytics benchmark tailored to Internet of Things (IoT)
data, which contains 27 microbenchmarks and measures latency,
throughput, memory utilization and cpu utilization. CityBench [4]
is another real-time analytics benchmark, which defines 13 queries
over one or more of four data streams containing parking data, road
congestion data, cultural event data and weather data of a real city.
It measures latency, memory consumption and completeness of
query results. SparkBench [36] is a benchmark tailored to Apache
Spark and defines 10 workloads in 4 different categories of stream-
ing applications. The metrics that are evaluated are CPU, memory,
disk I/O, network I/O, job execution time, and throughput. The
NEXMark [47] benchmark defines a comprehensible set of eight
queries over streams containing auction data. NEXMark has been
implemented for Apache Spark and Apache Flink?, and has been
adopted in Apache Beam.?> NEXMark does not define any metrics.

3.2 Experimental evaluations of fault tolerance

Matar et al. [38] have compared Apache Spark and Apache Flink.
Two types of faults are considered, transient faults such as network
failures and permanent faults like a power/hardware failure in a
node. The work evaluates the typical throughput and latency met-
rics, resource utilisation and data generation rate. Another experi-
mental evaluation, which compares Samza, Spark, Hadoop, Kafka
and Storm [40], considers faults in only one workload, which only
consumes input and performs no operations on it. A similar eval-
uation [37] includes seven workloads instead of one. Both works
present the same new metrics: thoughput penalty factor and latency
penalty factor, which are based on expected throughput/latency
vs actual throughput/latency under failure. This requires running
a benchmark twice, once failure-free and once with failures to
compare performance. Both are very coarse metrics.

Research Gap. There is no standardized and publicly available
benchmark definition to evaluate fault-tolerant stream processing
with fault injection. Nor has any work attempted to isolate the
fault-tolerance mechanism from the rest of the system, thereby
making existing experiments unsuitable to draw conclusions on
fault-tolerance performance. The state of the art lacks an evaluation
of classical fault-tolerance mechanisms in a distributed stream pro-
cessing system. To the best of our knowledge, there is no practical
evaluation of CIC protocols in an SPE context. One reason may
be that acyclic workflows was the norm [22]. However with the
recent interest in cyclic dataflow graphs, communication-induced
checkpointing becomes a new venue to explore for fault tolerance
in stream processing. In fact, with the advances in hardware over
the past decades, message passing overhead may become affordable
with modern hardware [20], making CIC protocols more interesting
than they used to be.

4 PRELIMINARIES

This section provides background knowledge on the streaming
model of computation and rollback recovery.

Zhttps://github.com/nexmark/nexmark
Shttps://beam.apache.org/documentation/sdks/java/testing/nexmark/
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Figure 1: An example message pattern

4.1 Streaming Model of Computation

A stream processing system can be modelled as a message passing
system [20], where messages are tuples in streams. In this model
processes communicate solely by sending and receiving messages
over (un)reliable channels to perform a distributed computation.
Processes are represented as horizontal lines and messages between
them as diagonal lines. Figure 1 provides an example visualisation
of this model containing four processes.

4.2 Checkpoint-based Rollback Recovery

Rollback-recovery protocols can be classified into checkpoint-based
and log-based protocols. Checkpoint-based rollback recovery re-
lies solely on state snapshots called checkpoints to restore system
state and comes in three forms: coordinated, uncoordinated and
communication-induced. Log-based protocols build on checkpoint-
based protocols by logging non-deterministic events in an opti-
mistic, pessimistic or causal fashion [20]. The protocols provide
different processing semantics with varying levels of consistency.
Rollback recovery protocols treat each process computation as a
sequence of state intervals which can be recovered if there is stable
recovery information available. On the boundaries of state inter-
vals there are checkpoints. Each checkpoint has a checkpoint index
and two checkpoints are separated by a checkpoint interval; these
concepts are visualised in Figure 3.

There are two main type of events in message passing, send
events and delivery events. This separation exists because there is
latency between sending a message from process A and its delivery
to process B. However, delivery can also be postponed by the receiv-
ing process. While a message has been sent, but not yet delivered, it
is called in-transit. To reason about the order of events the popular
happened before [35] (—) relationship is applicable as long as mes-
sage order is guaranteed. Some derivations using this relationship
are depicted in Figure 2a: send(m1) — send(m2), send(m2) —
deliver(m2) and by transitivity: send(m1) — deliver(mz2). With-
out first in first out (FIFO) channels, ordering cannot be guaranteed
by the network as visualised in Figure 2b and must be enforced by
the receiving application before delivering.

Rollback-recovery protocols generally assume that network par-
titions do not occur to simplify protocol design [26]. Popular proto-
cols such as Chandy-Lamport’s distributed snapshots protocol [18]
assume reliable FIFO channels while others assume that messages
can be lost, re-ordered and even duplicated. It is worth noting that it
is possible to utilize a reliable communication protocol, such as TCP,

PO PO
m2 m1
P1 P1

(a) A message pattern with FIFO (b) A message pattern without
channel FIFO channel

Figure 2: two message patterns each with two processes send-
ing two messages over different channels

Figure 3: Checkpoint index and checkpoint interval

on an unreliable communication channel, effectively transforming
it to a reliable FIFO communication channel.

Processing Semantics convey a system’s guarantees on data
processing considering failures. Modern stream processing sys-
tems are able to produce correct results while the system faces
failures, however the level of correctness may vary. The processing
semantics terminology adopted in the stream processing literature
includes at-most-once, at-least-once and exactly-once processing [22].
Under at-most-once processing, a system facing failures will lose in-
put and as such it will process an incoming message either never or
once, but never more than once. At-least-once processing ensures
that arriving messages are processed one or more times, meaning
that under failure the system can record the same changes to the
state more than once, but it will never lose input. Lastly, exactly
once processing ensures that each message is processed once, never
less- and never more than once, resulting in no lost input nor any
duplicate state changes. To achieve each of these semantics, differ-
ent trade-offs must be made between performance at runtime or
recovery time. An important observation is that for exactly-once
processing there are two possible interpretations [22], exactly-once
processing on state or on output. As many stream processing en-
gines opt to implement exactly-once processing on state they still
produce duplicate output on fault recovery. To understand how
these semantics emerge we must take a deeper look at the notion
of consistency in distributed systems.

Consistency is a property of a distributed system’s state. A
global state of a distributed system is a collection of states, one
belonging to each participating process and optionally the states
of the communication channels. While no failures occur in such a
system, the global state is trivially consistent. Consistent meaning
that no process’s state reflects the reception of a message which
does not reflect in the sender’s state [20]. If a process’s state does
reflect a message receipt which does not reflect in the sender’s
state, that message is called an orphan message [11]. A global state
containing orphan messages is called an inconsistent global state. If
a process’s state reflects a send, but the message reception is not
present in the recipient’s state, this is not considered inconsistent



as the message would still be in-transit, also referred to as ‘part of
the channel state’.

In Figure 4 examples are given of a consistent and inconsistent
global state in a distributed system containing three processes. A
key observation is that an orphan message implies a happened-
before relationship between the checkpoints of the sender and
receiver. An example can be found in Figure 4d between the check-
points of P1 and P2. From this example it becomes clear that a
happened-before relationship between two checkpoints guarantees
that the checkpoints are inconsistent with each other and any global
state they may belong to. This observation forms the basis for the
Recovery Line algorithms that will be introduced in subsection 5.4.

Notable Observations. Processing semantics emerge in a few
different ways in distributed systems that employ rollback recov-
ery. At-most-once processing can be guaranteed when a consistent
global state is restored, but the messages that are part of the chan-
nel state are not replayed. This is also known as gap recovery. It is
worth noting that when checkpoints are aligned, as in Figure 4b,
which means that there is no channel state, then no messages are
dropped and exactly-once processing can be guaranteed. When a
consistent global state is restored and channel state is replayed,
exactly-once processing can also be guaranteed as long as message
deduplication is applied. When deduplication is not applied, mes-
sages may be delivered twice as a side-effect of message replay: the
message will have been sent once prior to failure and once during
replay. This results in at-least-once processing semantics, which
naturally introduces inconsistency in the global system state. This
is so because the messages will have been sent only once according
to the system’s state, but will have been received twice, making
one of the duplicate receptions an orphan.

4.3 Log-Based Rollback Recovery

Log-based recovery has been extensively applied in stream process-
ing, especially in its early days, under the term upstream backup [8,
19]. In upstream backup upstream operators keep a log of their
sent messages and upon a downstream failure they replay the log.
Stateful operators, other than windowed operators, may have their
state depend on all tuples that have been processed thus far. For
such stateful operators upstream operators are required to be able
to replay all tuples, resulting in an endlessly growing log. This is
very burdensome in stream processing systems due to the large
volume of incoming tuples. Checkpointing was added to the fault
tolerance protocol to mitigate this issue. After taking a checkpoint
an operator can notify upstream operators which tuples have been
persisted as part of a checkpoint, which allows upstream operators
to remove (or prune) tuples from their log.

Relevance to Checkpoint-Based Algorithms. Log-based re-
covery can also be viewed as an enhancement of checkpoint-based
recovery [46]. By keeping a message log besides checkpointing state,
deduplication of already processed tuples downstream of a failure is
feasible for deterministic computations. This approach can provide
exactly-once processing semantics on output with the exception of
failed sinks that have no downstream to enforce output deduplica-
tion. Recent stream processing systems tend to opt out of keeping
a message log and only perform state checkpointing [22]. Message
replay functionality is usually provided by message brokers such
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(d) An inconsistent global state without channel state

Figure 4: Examples of consistent and inconsistent global
states in a distributed system containing three processes,
diamonds indicate checkpoints

as Apache Kafka [45] that persistently store the input stream(s)
allowing the input stream to be replayed without adding extra
functionality to the stream processing system itself. If a streaming
system were to implement this themselves, ensuring correct event
order during replay for nondeterministic computations requires
logging determinants [20, 44].
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By keeping a message log, similarly to the upstream backup
strategy, uncoordinated and communication-induced checkpoint-
ing approaches allow replaying lost channel state post-failure. Inter-
estingly, this allows the checkpointing strategy to support exactly-
once processing under the assumption that the message log will
be available post-failure and deduplication is applied. Otherwise, if
no deduplication is applied, at-least-once processing semantics is
supported. To make a message log available post-failure it needs
to be stored on a persistent local or remote disk, which introduces
runtime overhead in the form of writing log entries to disk. Alter-
natively with a volatile message log, the impact on the runtime
performance of a stream processor can be minimal, but as a trade-
off only non-failed operators will be able to replay their message
logs resulting in at-most-once processing semantics with a reduced
amount of messages being lost as a result of failure. Using sequence
numbers required for log replay, it can be determined how many
messages were lost to quantify the amount of lost input, but with
the added benefit of better runtime performance and not requiring
twice the amount of computing resources.

5 FAULT TOLERANCE ALGORITHMS

This section presents the workings of coordinated, uncoordinated,
and communication-induced checkpoint-based fault tolerance algo-
rithms and the guarantees they provide regarding fault recovery.

5.1 Coordinated Checkpointing

In coordinated checkpointing participating processes synchronize
and typically stop working in order to checkpoint their state at a
moment when there is no channel state as Figure 4b shows. The in-
dividual checkpoints taken by the whole system using coordinated
checkpointing always form a new most recent global state, this is
referred to as a recovery line.

The most well-documented and implemented protocol in this
class is Chandy-Lamport’s marker-based algorithm [18], which has
been adapted for acylic dataflow graphs [12]. Under the assumption
of an acyclic operator graph checkpoint markers flow though the
system and instruct operators to checkpoint their state.As long as
each operator will not forward a marker until it has received one
marker from each of its upstream operators, a consistent global
checkpoint is taken in which there is no channel state. This al-
gorithm guarantees exactly-once processing at the sacrifice of a
blocking operation while waiting for all markers to arrive from
all upstream operators. In Figure 5 an example execution of this
algorithm is presented. A possible message pattern emerging from
taking a coordinated checkpoint is visualised in Figure 6. Note how
ms’s delivery is delayed because the channel from P; is blocked
until a marker has been received from all upstream operators (P;
and Py).

A variant of this algorithm does not block input channels in or-
der to improve performance at runtime [20]. As a result an operator
can process messages from upstream operators which lay behind
the marker before taking a checkpoint itself. Therefore inconsis-
tency may be present in the global checkpoint as a downstream
operator’s checkpoint can now reflect the reception of a message
which does not reflect being sent in the upstream operator’s check-
point. As a result this variant relaxes the exactly-once processing

guarantee to at-least-once and the default recovery line algorithms
(subsection 5.4) may not be applicable as they compute consistent
global states.

While minimizing useless checkpoints and easing garbage collec-
tion, this approach either imposes overhead at runtime by blocking
channels or guarantees lesser processing guarantees by not block-
ing channels. More importantly, without extending this approach
with special constructs such as message logging, cyclic message
patterns are not supported. In a cyclic message pattern at least one
operator has an input channel that depends on one of its own out-
put channels. Since an operator only advances checkpoint markers
when it has received a marker on all of its input channels, but one
of those channels requires a marker being sent out over its own
output channel, then it will never receive a marker on that channel
and as such, the checkpointing protocol causes a deadlock.

5.2 Uncoordinated Checkpointing

In uncoordinated checkpointing participating processes take check-
points at will, without inter-process coordination. While this ap-
proach requires no communication or synchronization, there is a
big drawback when facing cyclic communication patterns: the ap-
proach is susceptible to the unbounded domino effect [41] during the
recovery phase. The unbounded domino effect is caused by every
checkpoint having a dependency on an upstream checkpoint, thus
potentially never advancing the recovery line due to the cyclic com-
munication pattern. This results in the distributed system rolling
back to its initial state, rendering many or all the taken checkpoints
useless. In Figure 7 a cyclic message pattern is depicted in which
the domino effect will manifest when trying to find the recovery
line. As P; fails, it could roll back to ¢1,2, however then P, would
be inconsistent, so P, must roll back to ¢z 1 which in turn requires
Py to roll back to cg,o from which P; must roll back to ¢19 and P
to c2,0, making the recovery line the initial system state and all
other checkpoints useless. This is the easiest type of checkpointing
algorithm at a conceptual level, but introduces a optional new type
of effort that is not part of the protocol specification which is largely
related to the choice of when to checkpoint being deferred to the
application itself, which then needs to define its own checkpoint-
ing decision-making process. This adds the advantage of a process
being able to take a checkpoint when its state is small [5].

This type of checkpointing requires extra communication ei-
ther at runtime or during recovery to determine which checkpoint
dependencies exist among the taken checkpoints [20].

5.3 Communication-Induced Checkpointing
(CIC)

Communication-induced checkpointing loosely coordinates check-
pointing by piggybacking checkpoint-related metadata on appli-
cation messages. There are two types of checkpoints, local check-
points which are equivalent to uncoordinated checkpoints and
forced checkpoints [23] which the algorithm inserts to prevent the
domino effect. In addition, the communication-induced checkpoint
algorithm comes in two flavours, model- and index-based, which
have been proven to be equivalent [20].

This class of checkpointing protocols is tightly coupled with Z-
path/-cycle theory [20]. A Z-path is a special sequence of messages
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(a) PO initiates by taking a checkpoint
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(b) PO forwards markers downstream and
resumes processing
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(c) P1 received a marker from all its up-
stream operators and takes a checkpoint
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(d) P1 forwards the marker and resumes, P2
received markers and takes a checkpoint

(e) P2 forwards the marker and resumes, P3
blocks its channel to P1 until P2’s marker
is received

(f) P3 received both markers and takes a
checkpoint, after which it can unblock its
input channels and resume

Figure 5: Example execution of Chandy-Lamport’s marker
based coordinated checkpointing protocol. Boxes are opera-
tors, grey are computing, yellow are checkpointing. Circles
are messages, blue are application messages, red are markers

connecting two checkpoints and a Z-cycle is a special sequence of
messages connecting a checkpoint to itself. Given that it has been
proven that a checkpoint lying on a Z-cycle will never be part of a
recovery line and is therefore useless, the CIC algorithm’s primary
goal is to detect Z-cycles and break them by forcing a checkpoint
before processing a message that will cause a Z-cycle to emerge.
In Figure 7 a Z-path is created by messages [m2, m3] connecting
checkpoint ¢ 1 to the state of process P,. A Z-cycle connects cg 1
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to itself via messages [mg, m3, m1]. When ms is delivered, the Z-
cycle is formed and cg,; will be useless. Therefore, CIC algorithms
will force a checkpoint before the cycle is formed and another
checkpoint before the delivery of ms. As shown in Figure 8, forcing
a checkpoint in P, before the delivery of ms breaks the z-cycle
and thus advances the recovery line and in doing so, avoids the
possibility of the domino effect happening during recovery.

One CIC algorithm was presented by Gupta et al. [26]. The work
does not provide any benchmarked implementation to evaluate
its effectiveness or give insight in the imposed run- and recovery-
time overhead of the algorithm. The authors later published an
updated manuscript including comparisons with other similar al-
gorithms [27], which shows the hypothetical effectiveness of their
approach, without practical evaluation. Other proposed algorithms
do not extend beyond this level of evaluation [20] but do adopt
higher levels of sophistication, such as the HMNR protocol [28]. A
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real practical analysis [5] concludes that insight in the communi-
cation pattern is required when devising efficient CIC protocols,
which is usually known in streaming systems.

CIC protocols support cyclic communication patterns without
risk of the domino effect but may take many checkpoints, poten-
tially causing a lot of overhead [5]. This work observed that the
local checkpointing policy that is part of a CIC protocol, and is
usually timer-based, should not just consider when the last local
checkpoint was taken but also when the last forced checkpoint was
taken. The observation was that CIC protocols frequently took local
checkpoints shortly after a checkpoint was forced, which in turn
caused other processes to force checkpoints, resulting in “flurries”
of checkpoints happening in the system. Eventually this would
result in CIC protocols taking significantly more checkpoints than
procotols that did not force checkpoints. The work suggests that
to mitigate this behavior, CIC protocols should be implemented so
that they reset their local checkpoint timer when a local or forced
checkpoint is taken.

5.4 Recovery line algorithms

Once a distributed system that takes checkpoints runs into a failure,
the checkpoint-based recovery protocol enters the roll-back phase
in which it must determine which checkpoints to recover. The most
recent consistent global state is called the recovery line, rolling
the system back to the recovery line minimizes the amount of
computation that gets lost. Checkpoints that will never be part of a
recovery line are called useless.

There are two theories proposed in literature on recovery line
calculation. The first employs a rollback dependency graph [20], in
which nodes are checkpoints and a directed edge is drawn from
cix to cj y if either:

(1) i # j, and a message m is sent from I;  and received in I}, 4,
or
(2) i=j,andy=x+1

If a checkpoint ¢; » must be rolled back, all checkpoints reachable
from c; x must also be rolled back, by applying reachability analysis
on this graph the recovery line can be found.

A second approach is employs a checkpoint-graph [20] in which
nodes are again checkpoints and a directed edge is drawn from c; x
to cj y if either:

(1) i # j, and a message m is sent from I; 1 and received in
Ijiy, or
(2) i=j,andy=x+1

In this more intuitive graph an edge from c; x to cj , indicates at
least one orphan message that was not sent when c; x was taken
but was received when cj , was taken. To find a recovery line
without inconsistency the rollback propagation algorithm can be
applied [20]. These two graphs are equivalent in that they always
produce the same (consistent) recovery line although the checkpoint-
graph seems to be the most intuitive of the two. Moreover, the
checkpoint-graph can be extended with virtual checkpoints, these
represent the state that still exists within an operator. To insert
these in the checkpoint-graph, knowledge of the inter-process com-
munication pattern must be known, since this is typically known
at runtime in an SPE due to their mostly fixed dataflow graphs this

can easily be inferred without extra overhead. By considering vir-
tual checkpoints as part of the recovery line calculation it becomes
possible to preserve existing state in operators, resulting in less
processes rolling back in face of failures.

6 BENCHMARKING FRAMEWORK
REQUIREMENTS

A distributed, stateful, and fault-tolerant stream processing sys-
tem built as an extensible benchmarking framework poses stream
processing, state management, fault model, fault tolerance, perfor-
mance, experimental system, distributed execution, and infrastruc-
ture requirements.

Stream Processing System Requirements. The benchmark-
ing framework should support the basic dataflow operators, such as
mabp, filter, aggregate and join. To support the latter two, a time do-
main and matching window implementation(s) need to be provided.
The minimal viable approach to achieve this is to implement the
processing time domain in which out of order data gets reprocessed
as part of new windows rather than updating older windows. While
this reduces practical usability of the stream processing system as
opposed to implementing event time, it does not reduce the ex-
perimental relevance of the system. Second, A key computational
characteristic in stream processing is data parallelism or shard-
ing. To present realistic query networks, the system should sup-
port sharding and the inherent communication patterns between
sharded operators: shuffle and pipeline. These communication pat-
terns are visualised in Figure 9. Third, to support correct recovery
from failures, a replayable input source must be provided. This
can be a dependency on an external system such as Apache Kafka,
while preserving offsets in source operators as part of checkpoints.
Lastly, to support user defined functions the system should have
a user-facing API to implement the different operators and define
query networks with them.

State Management Requirements. State management in a
stream processing system can be performed in different ways, in
main memory, on a local disk or in a remote store. Main mem-
ory state consists of an application’s memory page or a dedicated
main memory data structure store like Redis *. Local disk stor-
age is typically a file system on a disk device that is connected to
the same motherboard as the CPU on which the application runs.
Lastly a remote store is a cluster of 1 or more machines providing a
network-accessible store. This architecture trades read/write speed
for tolerance to failures the further away the storage medium is.
Main memory being high performance but low reliability, local disk
being a bit of both and a remote store being low performance but
higher reliability.

When considering the high-performance requirements this class
of systems face, it makes sense to keep the data as close to the CPU
as possible. In existing stream processing systems ephemeral state
is most prevalent [22], which resides in main memory and CPU
caches. The second most prevalent is embedded state where part of
the state lives in main memory and part on a local disk. Storing data
even further from disk (remote store) imposes significant overhead
on the system and is, as expected, the least prevalent medium to
store application state in practice.

*https://redis.io/
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Figure 9: An example of an operator connection and two
possible materializations with different connections

There are two types of state that are present in stream processing
systems: keyed state and operator state. Keyed streams are used
to achieve data parallelism by using keys on stream elements to
do partitioning. Keyed state is an extract from a keyed stream and
resides in windows. Operator state is part of a user defined operator
and is free to be shapen by the developer. For this work both state
types are relevant to support. Keyed state is a hard requirement to
support windows with fault tolerance. Operator state is not a hard
requirement but nevertheless a should have requirement.

Fault Model Requirements. In a distributed system different
types of faults can occur. These have been modelled into three
primary fault models: Byzantine, Fail-stop and Fail-stutter [46].
The Byzantine fault model is the broadest of these three, where
the model allows failed nodes to continue interacting with the
system, failures can be arbitrary and importantly, failures cannot
be observed by correctly operating nodes. The Fail-stop fault model
is more simplistic. Any node may fail at any time and when it does
it will stop producing output. In this model failures can be observed
from other nodes. More subtle faults which do not cause a stop
but hamper a program’s ability to progress are not included in this
model.

The Fail-stutter fault model stands in a middle ground between
the Byzantine and Fail-stop models. It extends the Fail-stop model
to include performance faults, which materialise as a correctly oper-
ating node with unexpectedly low performance. In stream process-
ing nodes encountering a performance fault are known as strag-
glers [30]. How to optimally detect and migitate stragglers is an
open research problem. As stragglers require no rollback recovery
and neither do Byzantine faults, the Fail-stop model is the most
fitting fault model within the scope of this work.

Fault Tolerance Requirements. Fault tolerance in stream pro-
cessing systems can be achieved in three main ways, checkpointing,
logging and lineage. As the existing body of stream processing
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systems is converging on checkpoint-based approaches and with
the research goal in mind, this experimental system should provide
fault tolerance through checkpointing.

The creation of checkpoints lies at the heart of checkpoint-based
fault-tolerance. Ephemeral state requires checkpointing the appli-
cation’s main memory page, or at least, the stateful part of it. Main
memory checkpoints can be taken from different levels, the under-
lying hardware [34], the operating system [25] or as part of the
application itself, i.e. application level checkpointing [10]. Hard-
ware checkpoints rely on checkpointing functionality provided
by checkpointable hardware, which can take instructions to write
main memory to a persistent storage and restore a checkpoint to
main memory. This is a fine-grained type of checkpoint that can
restore a process to resume at the exact instruction the checkpoint
was taken. The operating system can provide checkpointing func-
tionality at the kernel level by employing a kernel thread which
can take a checkpoint of a process’ memory page. This checkpoint
can be restored by overwriting a process’ memory page with the
contents of the checkpoint. The last type of checkpointing hap-
pens at application level. Taking a checkpoint using this approach
involves serializing and deserializing object values that form the
application’s state. These values can be stored and upon retrieval
be deserialized and restored to the application state.

There are two types of checkpoints to choose from, the first and
simplest one being a direct copy of the state. The second type is
called incremental, which takes delta checkpoints, containing only
the differences in state since last checkpoint, effectively reducing
the size of the checkpoints. Incremental checkpoints must be sup-
ported by the state backend as the notion of a ’difference in state’
must be defined by said backend. This notion can range from ad-
dress values at kernel level till added/removed elements in a list at
application level.

Storing checkpoints is most commonly done on a remote, re-
silient medium in existing stream processing systems [22]. This
gives greater flexibility in terms of process relocation compared to
local storage, which may no longer be available after a failure, for
example when a process is restarted on a different machine after
a failure. The experimental stream processing system should also
store the taken checkpoints on a remote resilient store.

Given the observation that the recovery prodecure is a com-
plex part of the implementation, a single recovery procedure that
works for all checkpointing protocols would be a could have re-
quirement. Based on the recovery line theory, a single protocol
can be devised that can be used for recovery while being agnostic
to the checkpointing protocol that was used during failure-free
operation. This separation would decouple the checkpointing algo-
rithm and recovery algorithm, which in turn creates opportunity
to allow the configuration of checkpoint algorithm separately from
the configuration of the recovery algorithm.

Performance Requirements. While high performance is not
the primary goal of this research, it is worth considering it in the
requirement analysis to ensure reasonable performance to make
the stream processing engine comparable to existing frameworks.
In distributed computing, (de)serialization has been observed to be
a major performance concern [39], only seconded by load imbal-
ance. As load balancing is not within the scope of this work, an as
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efficient as possible serialization method should be applied in the
implementation of the experimental stream processing engine.

Experimental distributed system requirements. To manu-
ally configure and run a distributed program on a cluster of ma-
chines can be a time consuming endeavour, particularly when con-
sidering frequently changing computations and configurations in
an experimental setup. To allow rapid execution of experiments,
the system should support an easy way to define, spin-up and tear-
down a distributed computation in an existing environment. This
involves starting up the correct number of processes with unique
identities and automatically establishing the correct connections
between the processes to build the query network. The public API
of the experimental stream processing system must be extended
with the ability to configure which checkpointing algorithm to use
at runtime.

Starting and stopping a distributed computation requires some
form of coordination. The scope of this work also adds checkpoint-
ing and rollback-recovery as coordination requirements. Manage-
ment of the execution of a distributed program can be done via
either a centralised manager process, using a leader election pro-
tocol to elect a worker to act as both worker and manager or by
sharing manager responsibilities among workers and negotiating
manager actions through a consensus protocol. As workers can fail,
the latter two options become significantly more complex due to
re-election or re-negotiation steps required after a failure. A cen-
tralised manager process is significantly less complex to implement
and as failures in such a component are not in the scope of this
thesis, this approach is most desirable. This centralized manager
can carry all the aforementioned responsibilities of starting and
stopping computation, while also coordinating checkpointing and
rollback recovery where necessary.

Another important aspect of the execution is the type of compu-
tation, specifically whether it is deterministic or non-deterministic.
Deterministic programs will produce exactly the same output every
time they are executed with the same arguments. Non-deterministic
programs do not necessarily produce the same output every time.
In rollback recovery, the nature of the program being executed is
very important with respect to the guarantees that can be provided
after recovery. If one or more operators in a dataflow graph be-
haves differently after a rollback, the computation will not converge
towards the same state it was before the rollback. At-least-once
processing can in such a case not be guaranteed as messages may
not be sent again due to divergence from the pre-rollback state.
To be able to reason about input processing, fault tolerance and
processing semantics, the distributed computation must be deter-
ministic in nature. Therefore for the remainder of this work any
and all computations are assumed to be deterministic.

Infrastructure Requirements. Experiments using the bench-
marking framework should be able to be executed on different
cluster sizes supporting local and distributed execution and consist-
ing of varying types of hardware. In addition, the framework should
make it easy to spin up and tear down an environment. To satisfy

this requirement some form of (non-)containerized automated in-
frastructure management software is required, such as Kubernetes®,
Red Hat’s OpenShiftG, Consul’, Rancher3, or ZooKeeper.9

7 FERDIS: AN EXTENSIBLE BENCHMARKING
FRAMEWORK

In subsection 7.1 we present the core system design and implemen-
tation aspects of FERDIS. In subsection 7.2 we elaborate separately
the implementation of fault tolerance in FERDIS.

7.1 Core System Design & Implementation

FERDIS has been implemented using Microsoft’s .NET stack com-
bined with Microsoft’s CRA software library [42], which is built on
this same stack and integrates well with containerization technolo-
gies. These technologies provides the main functionality required
for deploying a dataflow-style distributed system on a Kubernetes-
managed cluster with restart and reconnect functionality out of the
box. This alleviates a great deal of development effort on boiler-
plate functionality required for distributed computing. As a result
of these technology choices, FERDIS has been developed in C# and
is available as open-source software. Engineering FERDIS, which
amounts to 20K lines of code, has been a large-scale effort within
our team.

Message Processing. Each worker (which is an operator shard)
consists of a message processor which consumes or generates input,
processes it and dispatches it. Three interfaces were designed to
adopt these responsibilities: ISource to generate or consume mes-
sages, IPipeline to process messages and IDispatcher. One message
processor requires one or multiple ISource instances, an IPipeline
and an IDispatcher.

ISource instances provide input messages for a processor through
a Take() method. Their implementation can be backed by various
sources, for example a Kafka source for a generating ISource or
messages from an input stream for a consuming ISource. These
sources can also be tied to local message generation logic, which
is the case for some coordinator components where operator state
transitions generate messages, this will be further introduced in
subsubsection 7.2.4.

IPipeline instances perform processing on the content of mes-
sages, the interface allows the returning of zero to many messages,
making it generic enough for any type of stream operator. The
system currently has only one IPipeline implementation, which
takes an ordered set of IHandler instances. An IHandler may check
a message for payloads it can handle, an example being the Op-
eratorHandler which checks for an IEvent payload and if present,
hands it to the provided IOperatorShell. By taking an ordered set
of these handlers, message handling logic can be configured by
allowing the order of the handlers to be configured. The handlers
are implemented in the Infrastructure module.

IDispatcher handles the dispatching of messages that were re-
turned by the pipeline. To dispatch a message, it is serialized and
assigned to a dispatch queue based on a partitioning defined by

Shttps://kubernetes.io/
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a provided IPartitioner. The current implementation has only one
partitioner which performs hash partitioning on the message’s
partition key or broadcasts if the key is null.

Network IO is required to support receiving and sending mes-
sages between operators, ie before and after a processor’s window of
responsibility. The IInputEndpoint and IOutputEndpoint interfaces
were defined to handle network input and ouput. One endpoint
considers the connection to one other vertex, meaning they must
consider sharding. The endpoint types have Ingress/Egress methods
respectively, which take streams and shard ids as arguments.

Input endpoints start a thread for each provided stream and
attempt to read a message from it, deserialize it and hand it off to a
provided IReceiver. The receiver collects messages from different
input endpoints and queues them internally while exposing that
queue via the ISource interface. The input endpoints and receiver
are not necessarily required at runtime. An example where there are
no input endpoints is in source operators, which receive input from
elsewhere and therefore depend on an ISource implementation that
depends on the input source (e.g. Kafka) and not on input endpoints.

Output endpoints start a thread for each provided stream, get
a dispatch queue from the provided IDispatcher and whenever
there is a message in the queue, write it to the stream. To improve
performance, flushing the stream to the network happens after a
configurable number of bytes has been written. Output endpoints
and dispatchers are also not necessarily required at runtime. An
example where no messages get dispatched is in sink operators
where messages are written to an external system by a message
handler in the pipeline.

7.2 Fault Tolerance Implementation

The implementation of fault tolerance is the core focus of this work.
It regards the implementation of checkpoints (subsubsection 7.2.1),
the three fault tolerance algorithms (subsubsection 7.2.2), the unifi-
cation of the algorithms for easily configurable and extensible fault
tolerance (subsubsection 7.2.3), the recovery orchestration (subsub-
section 7.2.4), the recovery line calculation (subsubsection 7.2.5),
the handling of channel state (subsubsection 7.2.6), and failure
detection and message replay (subsubsection 7.2.8).

7.2.1 Checkpoints. FERDIS applies application-level checkpoint-
ing by presenting state as object properties. These property value(s)
form the actual state, effectively making a checkpoint a collection
of property values. The checkpoint is structured in such a way that
it is derivable which property value belongs to which object. Finally,
checkpoints are (de)serializable to support storage and restoration.
FERDIS uses Azure Storagelo as checkpoint store, which is both
remote and resilient. Azure Storage provides two notable services,
Tables and Blobs. Azure Storage Tables are already being used by
the CRA software library. The Azure Storage Blobs!! provide a
scalable object store to which text or binary data can be written
and read.

A high level overview of the procedure for taking and restoring
checkpoints is presented in Figure 10. In this Figure, objects or ob-
ject hierarchies are modelled as actors and can thus be interpreted
as objects calling methods on one another. An important stage in

Ohttps://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
"https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
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Figure 10: A high level overview of the procedures for taking
and restoring checkpoints, object (hierarchies) are modelled
as actors

this procedure is the registration phase which happens before any
checkpoint is taken or restored. The CheckpointService can manip-
ulate the state of objects in the process by maintaining references
to these objects, which register themselves with the CheckpointSer-
vice. Exactly the same types of stateful objects are registered with
the CheckpointService after restarting a process, regardless if the
restart happens on the same machine or not. Otherwise, missing ob-
jects may be encountered, which were part of a previous checkpoint
or there could be new objects that are not part of that checkpoint.
This would break the reliability of this checkpointing procedure.
The registration phase is transparently implemented through the
object initialisation hooks provided by the Dependency Injection
framework AutoFac !2.

7.2.2  Fault Tolerance Algorithms. One implementation of each of
the three classes of checkpointing algorithms are implemented and
presented in this section.

Coordinated checkpointing. The chosen CC algorithm is the Chandy-

Lamport marker-based protocol for distributed snapshots intro-
duced in subsection 5.1. The implemented variant this the one
found in most modern SPEs, which blocks input channels.

Uncoordinated checkpointing. The implemented UC algorithm is
a simple timer based local checkpoint condition that is evaluated
before every message reception. There is little more to discuss on
its implementation given that it is so very simple.

2https://autofac.org/
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Communication Induced Checkpointing. The chosen CIC algo-
rithm is the HMNR-protocol [28], which was named after its cre-
ators: Helary, Mostefaoui, Netzer and Raynal. This protocol was
chosen over simpler protocols such as the BCS [9] protocol as
HMNR applies the highest level of sophistication with respect to
the decision whether to checkpoint. While some work indicates
BCS to work equally well to HMNR [5] while being significantly
easier to implement, initial tests indicated it forced far more check-
points than HMNR, resulting in the decision to switch to the HMNR
protocol.

The BCS protocol uses a single local, logical clock [35] (Ic;),
which is kept in each process (P;). I¢; is incremented only when a
process takes a local checkpoint. The local clock is piggy-backed
on every outgoing message m. This piggy-backed value is called
m.lc. Before processing a message m, Ic; is compared to m.lc. If the
message clock is strictly larger than the local clock, ie. m.lc > I¢; is
true, then Ic; is set to the value of m.Ic and a checkpoint is forced.
This protocol guarantees there is always a recovery line belonging
to checkpoints taken with the same Ic;. By extension this guarantees
there is always a recovery line belonging to the lowest Ic; in the
system.

The HMNR protocol extends on this concept by keeping a logical
vector clock named clock with the length equal to the number of
processes participating in the computation. Furthermore, two new
logical vector clocks named ckpt and min_to and two boolean
vectors taken and sent_to are introduced as part of the protocol.
These data structures are in part local (min_to, sent_to) and in part
sent as metadata piggybacked on outgoing messages (clock, ckpt,
taken). An intricate description on how these data structures are
used to decide when to force a checkpoint can be found in [28].

Communication-induced checkpointing is an extension of un-
coordinated checkpointing, which requires some form of local
checkpointing. If the forced checkpoint condition is not met, a
local checkpointing condition is evaluated similar to uncoordinated
checkpointing, only extended by incrementing the local clock val-
ues if a checkpoint is taken. This subroutine is implemented exactly
the same as uncoordinated checkpointing, based on a configurable
time-interval. This time interval should consider the time since the
last forced or local checkpoint as this has been observed in previous
work to improve the protocol’s performance [5].

7.2.3  Unifying fault tolerance algorithms. To unify the three check-
pointing protocols the specification of each is split in two stages:
pre- and post-delivery. Delivery in this context is the invocation of
the method that processes the message’s content. Notably, this is
different from reception, which is the event of receiving a message,
after which it gets queued for delivery. Once at the head of a de-
livery queue, a message gets delivered. Important to notice is that
until delivery, the state of the operator remains unaffected by the
message.

In the model provided by CRA, reception happens at different
levels. As there can be multiple input streams for an operator, mes-
sages initially reside in a network IO buffer. These are read and
deserialized in parallel after which they must be added to a single
(threadsafe) delivery queue. This concludes the reception stages,
after which the head of the queue will get delivered to the local
operator one message at a time. From there the output must be

all channels

Coordinated

Figure 11: Coordinated checkpointing protocol logic sur-
rounding the delivery event

Uncoordinated

Figure 12: Uncoordinated checkpointing protocol logic sur-
rounding the delivery event

serialized and handed off to a partitioner and written to an out-
going network IO buffer. The design of checkpointing protocols
pre- and post-delivery stages lies completely within a CRA Vertex.
Right after a message is taken from the delivery queue lies the
pre-delivery stage and right before hand-off to the partitioner lies
the post-delivery stage.

The arrangement of stages depends on the existence of a check-
point method. The pre-delivery stage is executed right before a
message is delivered to the worker; post-delivery is executed right
after. By allowing the pre-delivery stage to consume the message
or bypass delivery and skip to the post-delivery stage, the mark-
ers of the Chandy-Lamport algorithm are supported. All but the
last marker that arrive at a worker must be consumed and the
last one bypasses delivery to be forwarded. The implementation
of this model must support state that is part of the checkpoints to
ensure correct operation after a rollback. This particularly affects
CIC protocols that have state in the form of local clocks.

Coordinated checkpointing is implemented in this unified model
by implementing the pre-delivery stage to detect and handle marker
messages and by leaving the post-delivery stage empty. One un-
derlying assumption here is that the first marker arrives from the
coordinator. A high level overview of the logic involved in this
protocol is visualised in Figure 11. Uncoordinated checkpointing is
implemented by simply checking a local checkpoint condition in the
pre-delivery stage as shown in Figure 12. Communication-induced
checkpointing in this model checks the checkpoint condition by
comparing the local clock against the clock piggybacked on the
message during pre-delivery, updating the local clock if the condi-
tion is met. The post-delivery step can piggyback the local clock
on the outgoing message as Figure 13 depicts.

7.2.4  Recovery Orchestration: The coordinator. The coordinator
carries the responsibility to coordinate startup, recovery and re-
sumption of computation in the dataflow graph it manages. To
simplify design without compromising the research goals, the coor-
dinator is assumed to be fault-tolerant. This approach was chosen
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Figure 13: Communication-induced checkpointing protocol
logic surrounding the delivery event

as it provides a unified way of orchestrating recovery, irrespective
of the active checkpointing protocol.

The coordinator starts and stops data processing and instructs
the recovery of a checkpoint. In this section compute instances are
referred to as workers, these can be seen as the individual shards
of an operator and as such encapsulate exactly one process.

For each worker in the system, the coordinator tracks a worker
state machine as depicted in Figure 15. A worker can be in one of
six states which are grouped in two categories: Worker Healthy and
Worker Unhealthy. Via seven triggers, different state transitions
are achieved. Triggers that have no outgoing edge from a state are
ignored and in the implementation of FERDIS throw exceptions as
they should not happen. Some states require receiving a confirma-
tion from the worker, these are Halting and Recovering. When the
worker responds the operation is completed, the HaltCompleted or
RestoreCompleted triggers are fired on the state machine represent-
ing that worker. A worker can reach the Faulted state from any
Healthy state by firing the Failure trigger.

The coordinator tracks a system state machine to track the state of
the entire system, which is depicted in Figure 14. As with the worker
state machines, from any healthy state, the faulted state can be
reached. The only difference is in this machine the WorkerUnhealthy
trigger is used for this transition. Whenever a worker transitions
to a different state, a trigger is fired on the system state machine.
The trigger can either be: WorkerHealthy if the transition ends in
a state in the Worker Healthy category or WorkerUnhealthy if the
transition ends in a state in the Worker Unhealthy category.

An important part ensuring correct transitions of the system
state machine are the transition guards that ensure all workers are
either running or halted before transitioning. This ensures that all
workers a) are started up before starting the computation, b) have
recovered from faults and those affected by the recovery line are
halted and c) are done recovering before resuming computation.

7.2.5 Recovery Line Calculation. For the recovery line calculation
the checkpoint dependency graph-based rollback propagation algo-
rithm [48] is chosen due to being more intuitive while providing
the same recovery lines as rollback dependency graph-based al-
gorithms [20]. The rollback propagation algorithm presents the
ability to consider existing state in operators as part of the recovery
line, enabling preservation of existing state if it does not become
inconsistent with a neighbouring operator that must roll back.

In the original design of this algorithm, a discovery phase was
required to determine which processes’ have communicated since
taking their last checkpoint. This information was then used to
append virtual checkpoints to the checkpoint dependency graph,
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where virtual checkpoints represent the volatile state that still ex-
ists in non-faulted workers. In stream processing systems, however,
the dataflow graph is known exactly at run-time from which the
communication pattern can easily be derived. Using this informa-
tion it becomes possible to determine dependencies among virtual
checkpoints instantly without discovery, under the assumption that
at least one application message was send over every channel.

An important observation is that when a coordinated checkpoint-
ing protocol such as Chandy-Lamport’s is used, the recovery line
advances whenever an upstream worker takes a checkpoint, open-
ing up the possibility of a partial global checkpoint to be restored
if a failure caused the system unable to complete a global check-
point. This can also happen when the calculation considers virtual
checkpoints: the recovery line will only affect workers downstream
of failed workers as upstream workers will not become inconsis-
tent. Both scenarios result in the loss of channel-state messages
on channels to failed workers, resulting in at-most-once instead of
the expected exactly-once processing semantics. So this must be
avoided, this can reliably be done for example by not committing
checkpoints until a global checkpoint has completed or less reliably
but simpler by not initiating a new global checkpoint upon the
suspicion of a failure in the system. The latter approach was imple-
mented, with high probability it ensures the avoidance of partial
global checkpoints under the CC protocol.

When applying the recovery line algorithm to the known check-
point dependency graph, without adding virtual checkpoints, the
recovery line will be the last complete global checkpoint. This
affects workers both upstream and downstream of a failure and re-
sults in the desired exactly-once processing semantics. From these
observations we conclude that it must be configurable to include
or exclude virtual checkpoints from the recovery line calculation.

7.2.6  Post-Rollback Channel State. Communication channels be-
tween operators can still contain messages after fault recovery. Un-
der particular circumstances these may cause inconsistency upon
being processed. It is therefore vital to perform a distributed roll-
back in a way that ensures no messages from pre-failure are still on
the network, which will cause inconsistency upon being processed.
An initial observation is that an operator upstream of a failed
instance must clear its downstream message queue to that operator,
if it is known that the rollback propagation algorithm does not
consider existing state because this guarantees a full operator graph
rollback. Clearing the local output queue is enough as any channel
state gets destroyed with the connection to the failed instance.
Consider the following three scenarios between two non-failed
operators, named upstream and downstream, while having those
positions in the dataflow graph with respect to each other.

A Upstream rolls back, downstream rolls back
This scenario incurs pre-rollback messages on the network
moving downstream, therefore if downstream processes
these messages they can be considered orphan messages
due to the fact that upstream’s state does not reflect send-
ing them. From this it can be concluded that after rollback
completed, all messages on the channel are orphan mes-
sages. Therefore as the recovery line by default guarantees
consistency, and orphan messages cause inconsistency, the
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Figure 14: The state machine representing the possible states of the entire distributed system and the state entry actions
required for coordination purposes
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O—_om

Faulted

State Entry action
StartUp StartUp Offline n/a
Halted n/a
Worker Healthy o -
Halt- E Halting Send Halt message to worker
d (o
.9 Complets w Send Restore message to
[ . . . .
82 Halted Halting . worker, including checkpoint
» 2 Recovering | . . .
€3 = index as specified in recovery
o] [ 3
3 line
% Processor- Running Send Start message to worker
g Halt Faulted n/a

Running

(b) Actions the coordinator takes upon worker state entry

(a) The state machine representing an individual worker, states are categorised
as healthy or unhealthy

Figure 15: The state machine representing the possible states of a worker which is part of the distributed system and the state
entry actions required for coordination purposes

channel must be cleared. If the recovery line allows in-
consistency, the messages that still exist on the channel
will be sent again. If the remaining channel state is also
processed downstream that means some orphan messages

may be received downstream thrice (once before, twice af-
ter rollback), resulting in more inconsistency. Therefore in
this scenario the channel state must also be cleared. This
scenario is visualised in Figure 17a.
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(b) A possible worker graph materialisation of the example oper-
ator vertex graph with the coordinator connected to each worker

Figure 16: Visualisations how the coordinator is connected to workers

B Upstream rolls back, downstream does not roll back
This scenario incurs re-sending already sent messages down-
stream. It allows the existence of orphan messages as down-
stream operators may have received messages that are no
longer part of the upstream’s rolled-back state. If this sce-
nario occurs that means the recovery line was calculated
such that it allows inconsistency, thus permitting the resend
of orphan messages. As the orphan messages may only be
resent once, the processing of orphan messages will happen
at most twice in total, resulting in at-least-once process-
ing semantics at worst case. Thus, it can be concluded that
the channel does not have to be cleared. This scenario is
visualised in Figure 17b.

C Upstream does not roll back, downstream rolls back
This scenario incurs losing part of the already received mes-
sages in the downstream operator. These messages were
sent and received before the rollback, but they are no longer
part of the downstream state due to the rollback. This guar-
antees downstream is consistent with upstream, as orphan
messages cannot exist downstream after the rollback. The
channel will still contain messages but dropping them will
only result in more lost messages than were already lost
due to rollback. Therefore this scenario also does not re-
quire clearing the communication channel. This scenario is
visualised in Figure 17c.

From this analysis it can be concluded that only channels be-
tween operators that both roll back have to be cleared to prevent
inconsistency post-rollback. This can be implemented by making
flushing channels part of the Halting procedure that workers can be
instructed to perform. For this to work the coordinator must supply
a list of adjacent workers that will roll back; then channels to those
workers can be flushed. Since only workers that are affected by the
recovery line receive the halt instruction, this approach covers the
particular case where both operators will roll back.

7.2.7  Failure Detection. Using the coordinator/operator setup, com-
bined with a remote resilient store gives the operators access to the
store for checkpointing and restoration purposes, while the coordi-
nator can fetch checkpoint dependency data to build the checkpoint
dependency graph and calculate a recovery line when it detects an
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(a) Two rolling back instances becoming
inconsistent due to m; lingering in channel
state
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my my my
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(b) Upstream rolling back causing an expected
double reception of m;

&
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mq ,'l 2\’{
P1 ‘<> Roll- >
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(c) Downstream rolling back causing a lost
message reception of m;

Figure 17: Visualisations of different rollback scenarios and
the effects of channel state

operator failure. Under the fail-stop model the assumption can be
made that if an operator disconnects from the coordinator, it has
failed and upon reconnection it has restarted.

7.2.8 Message Log Replay. When employing uncoordinated or
communication-induced checkpointing, the ability to replay mes-
sages is a key requirement in minimizing or eliminating the amount
of lost messages and thus guaranteeing or approaching exactly-
once processing. Figure 18 shows a scenario in which a consistent
recovery line is depicted and in the case where P; fails, m; is at
risk of being lost if it is not replayed. The basic idea of this method



Benchmarking Checkpoint-based Fault Tolerance Algorithms in Stateful Stream Processing

Po

Py

\4

P2

A\ 4

Figure 18: A message pattern in which mj can get lost if both
P; and P, fail with a volatile message log

is that each operator keeps a log of messages it has sent out and
when instructed to replay, it can replay the messages from this log,
highly similar to the classical upstream backup.

The ability to replay messages relies heavily on sequence num-
bers being part of messages for the purpose of deduplication, iden-
tifying which messages must be replayed and which messages can
be removed or pruned from the log.

At runtime the message log may grow endlessly if not occasion-
ally pruned, which is undesirable as it may cost a lot of memory or
disk space. It is known that whenever an operator takes a check-
point, it persists the state manipulations made by messages it has
received thus far. This means those messages will never have to be
replayed, as long as the operator will never have to roll back to a
checkpoint before that. When this happens, the upstream operators
can prune these persisted messages from their logs as they will
not be needed for replay any more. To accurately determine which
messages can be pruned, each operator must keep track of which se-
quence numbers it has received from its upstream neighbours. The
coordinator will be tasked with determining these pruning points
based on worst case failure scenarios and must instruct workers to
prune messages from their logs when necessary. To support this,
the coordinator must be notified of operators taking checkpoints
to determine if that checkpoint advances the worst case recovery
line and in turn instruct log pruning to affected workers.

After recovery messages may have to be replayed, e.g. in the
scenario depicted in figure 17c, m; through ms will have to be
replayed. Which exact messages must be replayed is dictated by the
last sequence number that was persisted as part of the recovered
checkpoint. This makes storing sequence numbers in checkpoints
a hard requirement for this feature to work.

A final important aspect is that the order of messages must be
preserved pre and post replay. In figure 17c, if m; is replayed after
Py has sent out my, their order may inverse or worse, my may
be delivered twice, resulting in at-least-once guarantees over the
desired exactly-once. For this purpose the receiving process P; may
deduplicate input based on the expected next sequence number,
resulting in the first reception of my to be dropped, after which the
replayed my and my arrive, resulting in exactly-once processing in
the correct order.

Log persistence is another factor that has influence on the
processing semantics. If the message log is persisted in figure 17c, Py
will be able to replay my post failure, while if the log is kept volatile,

the message cannot be replayed due to the failure having wiped the
volatile state. For performance reasons the log is kept volatile and
the amount of lost messages is tracked through sequence numbers
for the purpose of quantifying how many messages are lost.

8 BENCHMARKING SETUP
8.1 Workloads

From existing work a set of queries is extracted to form a represen-
tative set of workloads for the evaluation of the stream processing
system. From the NEXMark [47] benchmark, queries 2,3,5 and 6
are chosen. These cover most message patterns than can occur in
acyclic dataflow graphs including all stream operators: map, filter,
join and aggregate. In addition, we select a typical example in the
map-reduce programming style: WordCount. This common exam-
ple is intuitive and easy to validate for correctness. Lastly a cyclic
query is designed as no such query appears in the literature. Each
of the presented queries has been implemented as a FERDIS query.
We describe the queries in the following paragraphs and visualise
them in figure 19.

The NEXMark queries are designed to consume auction data
from three streams: a person stream containing people that are buy-
ers and/or sellers, an auction stream where each auction contains
an item for sale and references the person selling it and lastly a
bid stream where each bid is a numerical offer by a person on a
particular auction. The engineers that implemented the NEXMark
benchmark have graciously provided a public data generator. For
this experiment the generator is embedded in a small program to
feed these data streams into an Apache Kafka cluster. An entity
diagram displaying the relations between these entities is presented
in figure 20 and a SQL presentation of the queries can be found in
the NEXMark paper [47].

NEXMark 2: Selection is a very simple query that consumes
from the bid stream and filters the stream based on a certain condi-
tion. The filter condition presented in the paper is rather restrictive
so here we implement it to filter out roughly half of the incoming
events by filtering on even/uneven key values. Each operator is
interconnected in a pipeline configuration.

NEXMark 3: Local item finds items being sold by a person
residing at a specified location. The query consumes from two
streams, the people and auctions streams. First each stream is fil-
tered, the people stream by their location and the auctions stream
by category. The remaining results are joined to find sellers which
are the output of the query. The query performs a join using a
window that according to the NEXMark specification should be
unbounded, however we use 30-second windows that slide by 5
seconds (Large) and 15 second-windows that slide by 5 seconds
(Small).

NEXMark 5: Hot items finds items on sale that receive the most
bids. By aggregating the bids in a sliding fashion and counting the
results per auction the stream is translated to (auctionld, bidCount)
pairs. A stateful filter operator then adds these to its internal state
and filters out the results that are not the highest seen so far. This
results in the output stream continuously outputting the highest bid
counts per auction id the system has observed so far. The NEXMark
specification asks for windowing based on tuple counts, however as
this has not been implemented in the stream processor, windows of
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Figure 19: The six different queries that have been selected
for the system evaluation

size 10 (Small) or 30 (Large) seconds are chosen, which slide every
1 second.

NEXMark 6: Average selling price by seller consumes from
the bids and auctions streams to find the average selling price per
seller. This is a query that builds on a subquery that computes
the selling price for each auction. This query adds one aggregate
operator to that, which consumes the selling price per auction
and averages over them grouped by the seller. As a result this
query applies three windowed operators in a row making it a more
complex query than the others. Like in the NEXMark 3 query, the
join uses a window that according to the NEXMark specification
should be unbounded, however we use 30-second windows that
slide by 5 seconds (Large) and 15-second windows that slide by 5
seconds (Small). The aggregates are set-up to use tumbling windows
of 5 or 15 seconds.
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WordCount is a very common example in the map-reduce pro-
gramming style. The streaming version is semantically slightly
different from the original map-reduce paradigm. This is due to
the fact that the reduce phase under map-reduce would require
the entire input to be consumed, something that is not possible
in the streaming paradigm. So the stream processing variant of
WordCount is Incremental WordCount, where the reduce phase is
executed through timed aggregate operators. For easy correctness
validation, a single stateful sink operator is appended to the end of
this dataflow graph, which keeps a map of words and their current
counts and increments them whenever a new count is produced by
aggregates. The aggregate in this query uses tumbling windows of
1 (Small) or 10 (Large) seconds.

Cyclic queries are not part of any existing benchmark defi-
nition. For CIC protocols this implies that the queries so far will
never contain z-cycles and thus will never take forced checkpoints.
CIC, which does not take forced checkpoints, effectively becomes
uncoordinated checkpointing with some communication overhead.
Beyond quantifying the communication overhead the queries do
not provide insight in CIC-based fault tolerance.

Due to the lack of a cyclic dataflow query in the literature, a
cyclic query is designed, which consumes graph data. The idea is to
consume a stream of graph edges in order to find n-hop neighbours
within the graph. The query graph can be observed in Figure 19f
and forms a full pipeline downstream, with a shuffle back-channel
between Map1 and Map0.

The main operator in this query is the first mapper, which tries
to match input edges 'fromld’ values to its internal states "told’
values, when it finds matches with a new (lower) hop count these
are forwarded. The input datastream is partitioned by ’fromId’ of
the edges but on the shuffle backchannel is partioned on ’told’.
This allows the different pipelines to feed eachother new n-hop
neighbours they will be able to match their input stream to. If the
hop count is larger than the configured n, the event is discarded, in
the current implementation n = 2.

This approach allows effective state partitioning and will result
in approximative results on n-hop neighbours as, particularly at
the beginning, not many edges are known and so a neighbour may
be missed. Furthermore, input from the back-channel is disallowed
to generate output as this may cause a message explosion and as a
result in a deadlock on the cycle. This deadlock can happen if two
operators can not write output due to buffers being full and not
being able to consume input because they are still writing output.

8.2 Metrics

To evaluate the performance of the algorithms, three types of met-
rics are collected, performance-, checkpointing- and recovery metrics.
Each of these types are elaborated below and an overview is found
in Table 1.

Performance Metrics are throughput and latency, two very
typical metrics for evaluating the performance of stream processing
systems. An important note with respect to these is that they should
not be collected from within the stream processor as it may affect
the performance of the system. For this reason the metrics get
collected in an end-to-end fashion by having the stream processor
write output to a special Kafka topic. These contain timestamps and



Benchmarking Checkpoint-based Fault Tolerance Algorithms in Stateful Stream Processing

Address Person
1
street: string PK | Id: int
city: string name: string

country: string emailaddress: string

province: string phone: string

Zipcode: string homepage: string?

creditcard: string?

Profile address: Address?

income: double profile: Profile?

FK | interest: int[]

education: string
Item

gender: string

PK ‘ Id: int
business: boolean™ I
age: int

Category
PK ‘ Id: int
1

Bid

time: long
FK | auctionld: int

FK | personld: int

bid: int

Auction

Id: int

reserve: int
personld: int
FK | itemld: int

FK | categoryld: int

Figure 20: The entities defined in the NEXMark benchmark

through sampling the high watermarks of the output topic every
0.3 seconds, the throughput can be determined. The latencies are
sampled slightly differently by asking from Kafka for each partition
the last message at the next 0.3 second and using the message
content together with the arrival timestamp in Kafka to determine
the latency. Using these strategies allows collecting throughput
and latency metrics accurately and without affecting the stream
processor’s performance.

Checkpointing Metrics measure three aspects: the size of the
checkpoint, the amount of time the checkpoint halted the process-
ing of records and lastly whether the checkpoint was forced. As the
checkpointing library is part of the system’s source code, writing
these metrics to a log file is easy and, due to the operation not being
on the applications hot path, has minimal impact on the system’s
performance.

Recovery Metrics are the last category and includes recovery
time and rollback distance. The recovery time is defined as the
amount of time it took from the insertion of a failure until the
system is back within 10% of its pre-failure latency [44]. As this is
a direct function of latency collection this requires no extra metric
collection. Recovery time is also collected as the time it took for a
process to restore a checkpoint and the rollback distance, that is
the amount of time (ms) the process rolled back, combined with a
potential non-zero amount of lost messages due to volatile message
log being lost.

quantity: int

type: string

start: long

end: long
Metric Type Unit
Throughput Performance Events/second
Latency Performance Milliseconds
Size Checkpointing | Bytes
Take-Time Checkpointing | Milliseconds
Forced Checkpointing | Boolean
Recovery-Time Recovery Milliseconds
Rollback distance | Recovery Milliseconds
Restore-Time Recovery Milliseconds
#Lost Messages Recovery Integer

Table 1: The metrics used in the evaluation

8.3 Experiment Configurations

The cluster size has been fixed for the experiments. To maximize uti-
lization of the resources, each query’s dataflow-graph gets sharded
to optimize for throughput. This on average results in about 24 op-
erators per dataflow graph. Given the cluster capacity this results in
roughly one core per operator as the Kafka instance in the cluster
is allocated 8 cores.

The parameters that will change between experiment configura-
tions are described in Table 2. Running all possible configurations
of these parameters is infeasible within the scope of this work, for
this reason some particular configurations are disregarded.

The window size parameter can be ignored for query 2 and 6,
that is, NEXMark 2 and the cyclic NHop query as these queries
do not contain windowed operators. Secondly, the coordinated
checkpointing protocol can be disregarded in query 6 as the protocol
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Figure 21: A high level overview of the components used in
the experiment environment

does not support cycles. All queries will be executed in a failure-free
manner to analyse runtime performance and with a single failure
to analyse recovery.

Parameter Options

Checkpointing protocols Coordinated-, Uncoordinated-
and Communication-Induced
Checkpointing

10 or 15 seconds

Small or Large '3

1-6 of the 6 presented queries
None, One

Checkpointing interval
Window size

Queries

Failure

Table 2: Experiment configuration parameters

8.4 Execution Environment

The experiments will be executed on a kubernetes cluster for easy
management of the compute resources and easy deployment of the
different programs required to execute the benchmark. The setup
consists of a few components: the stream processor, Apache Kafka,
Apache Zookeeper, query-specific data generators and lastly the
metric loggers that observe the output topic in Kafka. An overview
of the environment is described in figure 21. With the stream pro-
cessor as a black box, its content is dictated by the query that it
executes during an experiment. The possible contents of the black
box can be found in figure 19.

3This changes per query but on average is 15 to 30 seconds
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SurfSara HPC provides the hardware!* on which the experi-
ments are run. A total of five Virtual Machines (VMs) are provi-
sioned and configured to host a Kubernetes !> cluster. In this cluster
the master is a small VM with 4 cores and 4Gb memory while the 4
remaining workers each contain 8 cores and 16Gb memory. This
brings the usable cluster capacity to 32 cores and 64Gb memory,
these resources must be used by all of the components described in
figure 21.

Fault Injection in a Kubernetes cluster is relatively easy to
simulate, given the fail-stop assumption. Faults are injected by
sending a SIGKILL to processes within containers in Kubernetes
pods. This in turn causes Kubernetes to restart the process within
the same container and the same pod and as such, no relocation has
to be performed by Kubernetes. Alternatively a pod could be deleted
to achieve the same effect except Kubernetes will need to provision
a new pod which introduces extra downtime after a failure. By
killing the process within the pod, metrics like recovery time remain
untainted by the overhead of allocating a new Kubernetes pod while
still completely wiping the application’s runtime and its memory.

9 EXPERIMENTS

The following section describes the results from 116 experiment
configurations, each executed three times for the purpose of secur-
ing statistical significance, resulting in 348 experiment executions,
which are worth roughly 35 hours of computation. A subset of
statistics computed over the collected metrics is presented in Ta-
bles 3, 4, 5 and 6. Interesting latency and throughput experiment
configurations have been selected, visualized, and discussed.

An important note on the interpretation of this data is that each
of the queries has been calibrated to run at 80% of the throughput in
UC configuration with a 10 second checkpoint interval. This means
that the system under coordinated checkpoint (CC) configuration
runs at a lower percentage of its maximum throughput compared
to uncoordinated checkpoint (UC) and CIC configurations, which
run at a higher percentage of its maximum throughput compared
to UC. Each of the queries with windows also have been calibrated
for both small and large window sizes separately as window size
was observed to strongly impact the performance of the system.

9.1 Discussion on checkpointing the message
log

During the testing phase of the benchmarking setup, the perfor-
mance of the system was analysed when including the message log
in checkpoints. When including the message log in the checkpoints
taken by processes, UC and CIC protocols needed to take signifi-
cantly larger and thus longer checkpoints. During these long check-
points no input could be processed, causing heavy input buffering
and as a result, strong spikes in throughput and latency. When
lowering checkpoint interval under 20 seconds the system would
actually become unable to catch up with its input between check-
points, causing a continuously increasing spikes in throughput and
latency as time progresses.

The result of this effect is extreme destabilisation of the sys-
tem and as a result very poor performance even under failure-free

https://userinfo.surfsara.nl/systems/hpc-cloud
Dhttps://kubernetes.io/
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Query protocol mean 95th 99th  std. dev.
NEX2 UC @ 10s 39.45 74.00 117.00 21.32
NEX 2 UC @ 15s 42.82 80.00 120.00 22.81
NEX2 CC @ 10s 41.69 71.00 134.00 23.06
NEX2 CC @ 15s 44.45 73.00 172.00 25.36
NEX2 CIC@ 10s | 45.25 100.00  214.00 37.22
NEX 2 CIC @ 15s 43.85 87.00 229.00 3591
WCL UC@10s | 1180.92 1771.00 2798.00 507.28
WCL UC@15s | 1235.92 1911.00 2808.00  498.06
WCL CC@ 10s 980.28 1674.00 1757.00  467.73
WCL CC@15s | 1103.94 2040.00 2126.00 490.24
WCL CIC@ 10s | 771.57 2021.00 2962.00 663.43
WCL CIC@ 15s | 849.71 2158.00 2806.00  678.36
WCS UC @ 10s 817.45 2053.00 2115.00  590.60
WCS UC @ 15s 820.25 2046.00 2109.45 585.74
WCS CC@ 10s 832.70  2118.00 3107.00  842.91
WCS CC@ 15s 865.92 2107.00 3098.00 827.47
WCS CIC@ 10s | 422.84 1117.00 1162.00 469.34
WCS CIC@15s | 381.82 1108.00 1160.00  460.50
NHop UC @ 10s 168.37 254.85 356.00 69.84
NHop UC @ 15s 170.82  270.05  325.00 64.31
NHop CIC @ 10s 99.81 144.00 431.00 69.64
NHop CIC @ 15s 94.83 132.00 366.01 62.18
Table 3: Latency statistics under failure-free conditions

conditions. When checkpointing only once every 30 seconds, the
system was able to keep up with the input stream but not without
introducing 2-4 second latencies, even in the absence of windowed
operators. Furthermore, if the system’s implementation were to be
optimized for higher throughput the effects of this destabilisation
will only increase as the checkpoints will increase in size propor-
tional to the increase in throughput. This would result in relatively
even lower throughput and higher latency and a more rapid desta-
bilisation of the systems performance. This is particularly obvious
to observe in comparison to coordinated checkpointing which is
not subject to this behavior.

At this point we made the choice to relax the delivery guarantees
for the UC and CIC protocols to at-most-once, where only the failed
operator would lose its message log. To quantify the effects of this
choice total number of messages that was lost was logged to a
separate file and made part of the evaluation. The suspicion here
was that it may still be the case that including the message log in
checkpoints is feasible for windowed operators as they produce far
less events than a mapper or filter operator would. The amount
of lost messages collected in the rest of the experiments may give
insight in that.

9.2 Performance experiments

In this section we discuss the results of failure-free experiments
where each configuration is evaluated in terms of performance and
checkpointing metrics.

The continuous query. (NEXMark 2), which has no windowing in
the query graph, shows a relatively high performance impact across
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Figure 22: WordCount (S) query performance under different
checkpoint protocols

the different checkpointing protocols which is as expected. Coordi-
nated checkpointing has the least impact on this query graph, re-
sulting in the highest possible throughput and stable, low latencies,
which may also be observed in Table 3. Uncoordinated checkpoint-
ing performs slightly worse on the throughput spectrum but has
slightly more stable latencies with lower 99th percentile latency.
This is likely attributable to this algorithm not performing system-
wide input buffering during checkpointing. The impact of the extra
work needed per message under the CIC protocol shows on both the
latency spectrum and throughput spectrum, where mean latency is
only elevated by a 10% but the 99th percentile is almost double that
of the experiments under UC configuration. Throughput for the
CIC protocol can be observed in figure 23 and is both lower and less
stable than that of the other two algorithms. Notably, on this query
graph the amount and size of checkpoints taken varies extremely
little between the algorithms, CIC does force a few checkpoints
which is attributable to the chosen CIC algorithm’s attribute of
forcing checkpoints when a z-cycle is suspected, which effectively
becomes a means for advancing the recovery line when possible
even in an acyclic graph. The high impact of performance on the
CIC protocol may be attributed to the current serialization imple-
mentation, while likely to be slightly worse than CC, optimizations
in the implementation may make this difference less pronounced.
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Figure 23: NEXMark 2 query performance under different
checkpoint protocols

When considering aggregates. the distinct differences observed
in the data collected from the NEXMark2 query dissapear. Figure 22
shows that in the WordCount query with small window size, the
performance of the different protocols on the throughput spectrum
is highly similar. This same behavior is observed in the WordCount
configuration with a large window size and the NEXMark 5 query
in both small and large window configurations.

In general these queries exhibit the same statistical differences
on the latency spectrum as well, with the notable exception of the
WordCount configuration with small window sizes where the CC
algorithm has a negative impact on the latency spectrum, resulting
in similar mean latency as uncoordinated checkpointing but far
higher 99th percentile latency and higher standard deviation. These
results are observed consistently and show a case in which the CIC
algorithm yields better performance on the latency spectrum than
the UC and CC algorithms, these statistics can be found in Table 3.
The elevated latencies under CC configurations may be attributed
to system-wide buffering during checkpoints, especially on shuffle
connections due to the higher amount of markers that must be
received opposed to pipeline connections.

The amount of checkpoints. that are being taken is for all queries
highly similar, where one may expect increased number of check-
points particularly from the CIC algorithm as it forced extra check-
points. The effort of considering the last forced checkpoint in the

Marc Zwart, Marios Fragkoulis, and Asterios Katsifodimos

—— CC@10s
800 CIC @ 10s
—— UC @ 10s
600
Sl
H 4
S 400§~ | i
H C% [ fj'
E 1 - 1 "
Y -"f. PRI
200 \ t S —
Q\J ol N ? A\
o y o
0
40 60 80 100 120

Experiment Time (s)

(a) NEXMark 3 (L) throughput

. . CC@10s
5000 . : cic @ 10s
5 - UC@10s
4000 L

Latency (ms)
w
=
=
=

[N
o
1=
=

1000 -

Experiment Time (s)

(b) NEXMark 3 (L) latency

Figure 24: NEXMark 3 (L) query performance under different
checkpoint protocols

local checkpoint algorithm in the CIC implementation shows its
merits: using CIC does not cause significantly more checkpoints to
be taken.

For the UC and CIC algorithms, under the WordCount and NEX-
Mark 5 query configurations, slightly less checkpoints are taken
than for the CC algorithm. This may be attributable to the way the
checkpointing decision is implemented, as that condition is only
evaluated when a message will be processed, meaning operators
which lie behind aggregates are less likely to take checkpoints es-
pecially if the aggregates have a large window slide-size. A subset
of the experiment’s checkpointing statistics is presented in Table 4.

With multiple aggregates. in place, like in the NEXMark 6 query,
no significant patterns emerge in the latency or checkpointing data.
The query contains three windowed operators in sequence and the
variation in output rates combined with the observed poor perfor-
mance of the existing aggregate operator implementations cause a
variation in the data that can not be attributed to the checkpointing
algorithms but rather the nature of the query graph and the nature
of the input streams generated by the NEXMark generator.

In the cyclic query. the first observation is that the CC algorithm
cannot run on this query graph. Upon inserting barriers the entire
dataflow will come to a halt due to the blocking mechanism causing
a deadlock on the cycle. The UC and CIC algorithms however do
support execution on this query graph and show an unexpected
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Figure 25: NEXMark 5 (S) query performance under different
checkpoint protocols

pattern on the latency spectrum. The CIC algorithm performs more
work per message and yields far better latency results on the mean
till 95th percentile latency but with highly similar standard devia-
tion to the UC algorithm. However, the UC algorithm has a lower
99th percentile latency meaning it performs slightly better with
respect to the worst case runtime latency. The CIC algorithm’s
effort to advance the recovery line when possible is visible on the
throughput and latency spectrum in this query when observing
figure 26. More input buffering happens under the CIC algorithm
because two sequential operators may take checkpoints right after
one another, a case highly unlikely to happen under the UC algo-
rithm. This results in the low-then-high throughput spikes and the
accompanying spikes in latency at those same points in time.

An unexpectedly high impact of barrier blocking. has been ob-
served in the NEXMark 3 query under large window size configu-
ration. The size and time required for the checkpoints are highly
similar to that of other algorithms so this can not be the cause. In
turn the conclusion is that it must be the barrier-blocking mecha-
nism that strongly affects the throughput spectrum of this query.
The impact was less observable under the small window config-
uration, which is hard to attribute to the window size parameter
itself, as the window size also affects the rate at which the query
can consume input.

The observation was made that the different streams being joined
are differing in throughput, this makes sense as the amount of
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Figure 26: NHop query performance under different check-
point protocols

persons being generated by the nexmark generator is larger than
the amount of auctions. This results in one of the join operators
input’s (on the auctions side) is being blocked while the other
stream (people) still has a reasonable amount of events to process
before the checkpoint marker reaches the operator. This results
in temporarily less events being joined, thus the sudden lower
throughput, which are processed right after the checkpoint was
taken, thus the subsequently higher throughput.

In the configuration for the small window size the difference in
input rate was likely less pronounced and thus the observed per-
formance deterioration was not observed. From this experimental
result the intuition rises that operators with different input rates
behave poorly under the coordinated checkpointing algorithm, this
can go beyond join operators as during data parallel processing the
rate of processing may also differ depending on the partitioning
strategy and characteristics of the input stream.

9.3 Failure experiments

In this section we discuss the results of single failure experiments
where each configuration was evaluated in terms of recovery met-
rics and performance metrics specifically surrounding the failure.
The recovery statistics of a subset of the executed experiment con-
figurations are presented in Table 5, The NEXMark 5 query has
been omitted entirely as there was no meaningful difference in the
observed metrics between the protocol configurations, its query



Query protocol #regular #forced | time (ms)
NEX 2 UC @ 10s 240 0 56 + 32
NEX 2 UC @ 15s 168 0 61+19
NEX 2 CC @ 10s 240 0 52 +24
NEX 2 CC @ 15s 168 0 57 + 31
NEX 2 CIC @ 10s 222 18 68 + 20
NEX 2 CIC @ 15s 153 15 73 £ 19
WCS UC @ 10s 235 0 57 £21
WCS UC @ 15s 164 0 57 +17
WCS CC @ 10s 240 0 52 +15
WCS CC @ 15s 168 0 59 £ 39
WCS CIC @ 10s 217 19 70 + 22
WCS CIC @ 15s 137 27 75 + 48
NEX3L UC@ 10s 238 0 85+ 83
NEX3L UC@ 15s 165 0 88 + 79
NEX3L CC @ 10s 239 0 82+ 78
NEX3L CC@ 15s 164 0 87 +75
NEX3L CIC @ 10s 189 51 97 + 77
NEX3L CIC @ 15s 134 34 107 £ 80
NEX5L UC @ 10s 223 0 188 + 249
NEX5L UC @ 15s 152 0 204 + 263
NEX5L CC @ 10s 240 0 195 + 265
NEX5L CC @ 15s 152 0 205 + 263
NEX5L CIC @ 10s 120 113 197 + 230
NEX5L CIC @ 15s 82 80 221 + 266
NHop UC @ 10s 240 0 100 + 65
NHop UC @ 15s 168 0 105 + 63
NHop CIC @ 10s 156 84 104 + 58
NHop CIC @ 15s 121 46 112 £ 61

Table 4: Checkpoint statistics under failure-free conditions

graph would make failures largely invisible in the collected metrics.
We start of with a discussion on the lost messages per protocol,
then look into recovery performance and lastly discuss recovery in
the cyclic query.

9.3.1 Lost messages. The amount of lost messages varies signifi-
cantly between queries and checkpointing configurations. A bug
in the replay mechanism was observed after experiment execution
affecting the NHop and NEXMarké configurations due to the loca-
tion of the inserted failure. This invalidated the reported number of
lost messages in these experiments as more messages were dropped
downstream of the inserted failure than strictly necessary, there-
fore these numbers were left out of the resulting data. The extent
of the bug’s effect is limited, as it only results in a bigger gap in
recovery than is strictly necessary for these specific experiments.
Therefore other data points with respect to these experiments are
still discussed in the rest of this section.

In Table 6 an overview of amounts of lost messages is displayed
for a subset of the experiment configuration. The CC configurations
are omitted as the amount of lost messages is alway 0. Overall a
pattern is observed that a surprisingly low amount of output is
lost. This behavior may very well be acceptable in applications
which tolerate small amounts of output being lost in favour of more
rapidly resuming the processing of new data.

Marc Zwart, Marios Fragkoulis, and Asterios Katsifodimos

70000
CIC @ 10s

1 —— CC@10s
—— UC@10s

60000
50000
40000
30000

10000

Throughput (efs)

50 5 100 125 150 175 200 225
Experiment Time (s)

(a) NEXMark 2 throughput under failure

30000 CC @ 10s

cic @ 10s
25000 UC @ 10s
20000

15000

Latency (ms)

10000

5000

of

50 75 100 125 150 175 200 225
Experiment Time (s)

(b) NEXMark 2 latency under failure

Figure 27: NEXMark 2 query failure recovery under different
checkpoint protocols

Lower deviation in the amount of lost messages for the CIC algo-
rithm is observed very consistently over the different experiment
configurations. This can be attributed to the HMNR protocol forc-
ing checkpoints to ensure the recovery line advances, resulting in
generally fewer messages being part of the channel state between
checkpoints. The actual amount of lost messages is not necessarily
lower than in UC configurations and appears correlated to the roll-
back distance. Rollback distance statistics can be found in Table 5
and contain no observable pattern attributable to the checkpointing
protocol beyond CC configurations having less deviation in rollback
distance than the UC and CIC protocols. This makes sense as the
checkpoints were taken coordinatedly, so the rollback distance of
workers should be very similar.

If we compare mean throughput under failure-free conditions to
the mean amount of lost messages, we observe that the amount of
lost throughput in seconds ranges from 0.2s to 5.5s. This is remark-
ably low given the checkpoint intervals of 10 and 15 seconds. For
the 10 second checkpoint intervals, the amount of lost throughput
is consistently lower compared to the 15 second interval configu-
rations. Based on this observation, checkpointing more frequently
may reduce this number even further. Under the assumption fail-
ures happen only once in a few minutes, one may consider these
protocols to effectively yield 99% consistency.
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Figure 28: WordCount S query failure recovery under differ-
ent checkpoint protocols

Perhaps more interestingly though, is that the observed number
of lost messages is considerably lower for join and aggregate oper-
ator failures, based on this observation, aggregate operators and
join operators may be able to checkpoint their message log without
the extreme performance penalty that map and filter operators are
subject to. This would allow quicker recovery compared to CC but
with the same exactly-once processing semantics.

9.3.2  Recovery performance. The amount of reprocessing after
recovering from a failure is observed to be highest for CC con-
figurations. This reprocessing becomes visible in the form of a
throughput spike after recovery from a failure, this behaviour can
be observed in Figure 29 and is particularly evident in Figure 27.
In the experiments that have an aggregate in the query graph, this
spike is not observed as the aggregate buffers the reprocessed input,
this may be observed in Figure 28. While aggregates may obscure
the throughput spike that is caused by reprocessing, the effects are
still visible on the latency spectrum and exhibit similar recovery
patterns to the other queries. This recovery pattern is visible as a
sudden increase in latency roughly as high as the rollback distance
plus the time the system needed to perform the recovery followed
by a relatively steep drop-off back to the pre-failure latencies. The
steepness of this drop-off is expected to be proportional to the
processing headroom the system has available during normal oper-
ation, this means that at 60% resource usage (40% headroom) the
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Figure 29: NEXMark S & L query failure recovery under dif-
ferent checkpoint protocols
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Figure 30: NHop query failure recovery under different
checkpoint protocols

drop-off will be steeper compared to 90% resource usage (10% head-
room). Essentially this means that having more headroom results
in a faster ability to catch up with the input stream.

In most tested configurations the rollback distance per worker
is relatively similar between checkpointing protocols with a higher
variance for UC and CIC configurations as their checkpoints are
less aligned than for CC configurations. Based of this and the afore-
mentioned observations, the expected behaviour post-recovery is
that CC configurations will take most time to recover (i.e. have the
highest recovery times). The intuition behind this is that the whole
system is being rolled back and has to reprocess input since the
restored global checkpoint, where the UC and CIC configurations
only roll-back and replay input to workers affected by the failure,
which theoretically is less work.

However the recovery time is highly variant between different
experiment executions and even within repetitions of the same con-
figurations. Especially UC/CIC configurations appear susceptible
to differences between repetitions due to uncoordinated nature of
taking checkpoints resulting in rolling back further in some execu-
tions than others. Nevertheless, some general observations can be
made with respect to this metric.

First of all, for the continuous NEXMark 2 query, the CC configu-
rations perform better than the UC and CIC configurations in terms
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Query protocol recovery (s)  rollback (s)
NEX 2 UC @ 10s 44 +9.14 25.8 +7.72
NEX 2 UC @ 15s 43 +4.03 31.06 £ 7.74
NEX 2 CC @ 10s 35+0.71 24.07 £ 0.36
NEX 2 CC @ 15s 35+ 1.89 29.04 + 0.36
NEX 2 CIC @ 10s 42 +3.29 25.9 £ 5.37
NEX 2 CIC @ 15s 48 +7.71 34.56 * 8.29
NEX3L UC @ 10s 23 £9.85 18.73 + 7.05
NEX3L UC @ 15s 28 £3.72 26.83 £7.59
NEX3L CC@ 10s 28 £ 2.39 19.51 + 2.44
NEX3L CC@ 15s 30 £5.77 23.75 £ 1.52
NEX3L CIC @ 10s 23 +£3.22 245+ 44
NEX3L CIC @ 15s 28 £7.71 28.97 £11.43
NEX6S UC @ 10s 49 +7.72 15.23 + 7.67
NEX6S UC @ 15s 40 + 8.72 22.99 £ 10.72
NEX6S CC @ 10s 65 + 18.84 30.09 + 12.56
NEX6S CC@ 15s 61 + 1.26 21.43 £ 2.06
NEX6S CIC @ 10s 44 + 457 17.45 £ 5.16
NEX6S CIC @ 15s 46 +9.19 19.37 + 8.06
WCS UC @ 10s 41+ 1.79 21.51 + 2.29
WCS UC @ 15s 36 +4.59 26.33 £ 6.34
WC S CC @ 10s 35 +0.64 20.58 £ 0.74
WCS CC @ 15s 40 £ 0.75 2542 + 1.22
WCS CIC @ 10s | 53 £16.74 23.09 £ 2.95
WC S CIC @ 15s 44 + 0.52 30.83 £ 5.98
NHop UC @ 10s 41 +3.33 118.62 + 25.82
NHop UC @ 15s 36 + 2.06 113.82 £ 37.36
NHop CIC @ 10s 30 + 1.23 20.68 + 5.62
NHop CIC @ 15s 27+ 1.1 22.0 £ 8.64

Table 5: Recovery statistics under single failure conditions

of recovery time. This difference in performance was also observed
in the performance experiments and this strengthens the intuition
that the CC protocol yields the best performance on window-free
query graphs. It may however also be attributed to the difference
in performance headroom that the protocols are subjected to men-
tioned at the beginning of this section. To confirm this, an extra
experiment should be ran where each protocol is tuned to run at
80% of its own maximum level of throughput and observe the effects
on the recovery time under those configurations.

In the NEXMark 3 and WordCount queries, the difference in
recovery time between the checkpointing protocols is negligible,
making the choice of checkpointing protocol hardly observable in
the collected data. Based of that, CC would be the best choice as
there is no message loss and thus provides exactly-once processing
which the UC and CIC protocols can not.

Lastly, for NEXMark 6 with small windows shows the best re-
covery times for UC and CIC protocols. The intuition for why this
happens is that the multiple aggregates in the query graph take a
reasonably large amount of time to reprocess the input from the
beginning. As opposed to the UC and CIC approaches that in this
query graph replay messages which are rapidly processed by being
buffered in the aggregates. What should be noted is that the afore-
mentioned message replay bug did affect this configuration and
therefore a bigger gap in recovery was present than theoretically
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Query protocol #lost messages failed type input rate (Ke/s) mean throughput (Ke/s) lost throughput (s)
NEX 2 UC @ 10s 14304 + 9421 filter 45 226+13 0.6
NEX 2 UC @ 15s 35948 + 4512 filter 45 225+14 1.6
NEX 2 CIC @ 10s 20547 + 659 filter 45 21.6 £23 0.9
NEX 2 CIC @ 155 32905 + 586 filter 45 218+24 1.2
NEX3L UC @ 10s 173 £ 126 join 5.4 0.16 £ 0.1 1.1
NEX3L UC @ 15s 368 £ 251 join 5.4 0.16 £ 0.1 2.3
NEX3L CIC @ 10s 288 + 25 join 5.4 0.16 £ 0.1 1.8
NEX3L CIC @ 15s 529 + 14 join 5.4 0.16 £ 0.1 33
NEX3S UC @ 10s 915 £+ 1411 join 25 49+3.1 0.2
NEX3S UC @ 15s 4345 + 4874 join 25 48129 0.9
NEX3S CIC @ 10s 6565 + 1887 join 25 4.6 £33 1.4
NEX3S CIC @ 15s 12241 + 440 join 25 45+£28 2.7
WCL UC @ 10s 34+ 28 aggregate 6 0.013 £ 0.03 2.6
WCL UC @ 15s 2+£0 aggregate 6 0.013 £ 0.03 0.2
WCL CIC @ 10s 130 aggregate 6 0.013 + 0.03 1.0
WCL CIC @ 155 58£0 aggregate 6 0.013 £ 0.03 4.5
WCS  UC @ 10s 331 £ 63 aggregate 17 0.13 £ 0.11 25
WCS  UC@ 15s 692 + 88 aggregate 17 0.13 +0.11 5.3
WCS CIC @ 10s 1930 aggregate 17 0.13 £0.13 1.5
WCS CIC @ 15s 713 + 62 aggregate 17 0.13 £0.14 5.5

Table 6: Lost message statistics under single failure conditions

necessary. Based off this the difference in recovery time may be
less pronounced when reevaluating this configuration with the
bug fixed, however due to the big difference in recovery time the
intuition is that the same difference in recovery time will emerge,
it will be less but likely still significant.

High recovery time deviation. is visible under 2 configurations
in Table 5 and is caused by two outliers. The first is found in the
WordCount S query under CIC @ 10s configuration where one of
the executions suffered from a higher rollback distance, this caused
more reprocessing to happen and thus cause bigger deviation in the
recovery time. Secondly the NEXMark 6 S query under CC @ 10s
configuration has a similar outlier that rolled back further than the
other executions, again resulting in a bigger deviation in recovery
time.

Other results also have some degree of variance in the recovery
time and can be influenced by many factors. First and foremost, the
time it takes to detect the failure, as FERDIS currently implements
a timeout-based failure detection, the detection of the failure is not
constant between experiment executions. Furthermore the resource
allocation (or pod placement) performed by Kubernetes may differ
and affect the performance of the system or noisy neighbours [15]
in the virtualised environment may hog resources affecting the
performance of individual processes in the distributed system. Such
factors can affect the processing headroom the system has avail-
able, potentially affecting aforementioned steepness of the latency
drop-off after recovery, which finally can reflect in the recovery
time metric. To validate this intuition requires running more ex-
periments, potentially even on an isolated private cloud, to see the
effects on the recovery time metrics. In any case it is important to
keep such factors in mind while interpreting these results.

Discussing the recovery time metric. What the recovery time met-
ric does not encompass, is that while in the NEXMark 2 query
UC and CIC have higher recovery times per its definition, they
do present the ability to continue producing low latency results
after the failure and during recovery. The CC configurations on the
other hand abruptly produces only high latency results until the
system has caught up with the input stream. This means during
the entire recovery period, CC configurations produce high latency
results, where UC and CIC configurations produce mixed high and
low latency results. Based of this observation, one may consider
that the UC and CIC protocols provide better results on the latency
spectrum during failures. So while the recovery time may be higher
in some configurations for the UC and CIC protocols, this does not
mean that they present the same degree of reprocessing during this
period.

A last note with respect to the recovery time metric, is that
for the NEXMark 5 query, almost all the experiment executions
would result in a 0 second recovery time. As per the definition, the
recovery time is the first moment after a failure where the system’s
mean latency falls back within 10% of its pre-failure mean latency.
Since the NEXMark 5 query has naturally high latencies due to
the many buffering layers (3 windowed operators in sequence), the
failures would often not even increase the mean latencies by 10%.
This means the definition of the metric is best suited for continuous,
low latency queries such as the NEXMark 2 and NHop queries, but
does not seem to fit very well with higher latency queries such as
NEXMark 5. With this in mind, a redefinition of the metric may
need to be considered which is adaptive to the base levels of latency
a query exhibits.

9.3.3  Recovery in a cyclic query. In the tested cyclic query a failure
has significantly different effects on the two tested protocols, UC



and CIC. That is, throughout all executed runs, the UC protocol was
affected by the domino effect, for both tested checkpoint intervals.
The domino effect was consistently observed throughout repeated
experiment executions, rising the intuition that either this partic-
ular query graph or cyclic stream processing in general is highly
susceptible to this effect, which would make uncoordinated check-
pointing unfeasible to use in cyclic stream processing in general.
CIC avoids this effect completely as the protocol is designed to do
so. The effects on the recovery behavior of the system are much as
expected with the aforementioned observations in mind, UC has
post-failure latencies as high as the total length of the warm-up
period, that is roughly 130 seconds, where the post-failure laten-
cies of CIC are in line with the operator’s rollback distance, which
is roughly 30 seconds. A higher spike in throughput is observed
in UC, as under that configuration many more messages have to
be reprocessed as opposed to CIC. This behaviour is visualised in
Figure 30.

10 FUTURE WORK

Most effort in this work was devoted in the design and development
of FERDIS and while it supports the basic required functionality to
achieve the research goals, it requires further development cycles
to produce results more akin to state-of-the-art stream processing
systems. This can be interpreted from different perspectives. For
example, more advanced stream processing functionality may be
included in the processor, a prime example would be event-time
processing and handling out-of-order input elements in the stream.
From a performance perspective the system currently performs
relatively poorly and needs to be optimized to be competitive with
existing stream processing engines, this is especially true for win-
dowed operators which have shown to sustain relatively low levels
of throughput, but also serialisation was identified as a big contrib-
utor to the relative low performance of the system. Lastly from a
stability perspective, some system components require improve-
ment to be more reliable. One such example is the implementation
of post-failure reinitialisation which currently can cause a deadlock
within the coordinator.

While these first results indicate some potentially interesting
patterns in behavior, executing and analysing more experiments
including more or different metrics would yield more insight in the
trade-offs between the protocols. With event-time processing imple-
mented, event-time latency may be considered over processing-time
latency. This would allow gaining deeper insight in the effects of
these checkpointing protocols with respect to the characteristics of
the output stream. Following up on the unexpected patterns in the
results would allow verifying or debunking the observed patterns.
These include the lower latencies for CIC in the WordCount query
and the unstable throughput of CC in the NEXMark 3 query with
large windows.

Lastly, after solidifying the observation that relatively low num-
ber of messages are lost in aggregate and join operator failures
and the input buffering effects observed in the NEXMark 3 query
with more data, a new checkpointing protocol could potentially
be devised tailored specifically to stream processing engines. With
the topology of the query graph and characteristics of the input
streams as input, the protocol could decide on a hybrid CC and CIC
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approach that leverages the benefits of both approaches, that is to a)
avoid the input buffering effects observed in the NEXMark 3 query,
b) support the fastest possible recovery c) naturally support cycles
and most importantly d) still support exactly-once semantics.

11 CONCLUSIONS

With the design and implementation of FERDIS, which we elaborate
in section 7 we answer RQ1 How can a stream processing system sup-
port each of the three classes of checkpointing algorithms: coordinated
checkpointing, uncoordinated checkpointing and communication-
induced checkpointing?) and RQ1.1 (Which specific variants of the
three classes of fault tolerance algorithms are suitable to implement
in a stream processing system?).

The answer to RQ2 (How does the choice of checkpoint-based re-
covery algorithm affect the consistency gurantees, runtime efficiency,
recovery efficiency, and support of cyclic dataflows?) is highly nu-
anced.

Regarding consistency guarantees (RQ2.1), theoretically all pro-
tocols can support exactly-once processing, however practically
this is unfeasible due to the requirement of checkpointing the entire
message log, resulting in extremely expensive checkpoints, which
deteriorates the runtime performance of the system to the point
of uselessness. So practically CC supports exactly once while UC
and CIC support gap recovery or at-most-once, where the observed
gap has been quantified as part of the recovery statistics and is
seemingly low. Meaning one may consider these protocols to yield
99% consistency.

Regarding runtime efficiency (RQ2.2), the more meta-data needs
to be passed along with messages, the lower the runtime perfor-
mance of the system becomes. Given that CC requires no metadata,
UC only sequence numbers and CIC a package of metadata, the
performance deteriorates in this order. CC results in the highest
runtime performance, followed by UC, then CIC. Notably, this only
considers query graphs that do not contain window operators. In
the tested queries, aggregates cause the performance differences to
become negligible and in one query CC performed far less stable
than UC and CIC would. This means that there is no single answer
for the most efficient checkpointing protocol as the query graph is
of heavy influence on it. For queries that do not contain windowed
operators however, CC is clearly the most efficient choice.

Regarding recovery efficiency (RQ2.3), in a reasonable amount
of query graphs, the differences in recovery time between the pro-
tocols were not substantial. However in window-free query graphs,
CC seems to perform best. Then again, with multiple aggregates in
place UC/CIC seems to perform better, at the cost of some incon-
sistency, which has been quantified and, especially with windows
in place, is surprisingly small. Overall the data indicates that the
query graph is of influence on the performance of the recovery
protocol.

Regarding the support of cyclic dataflows (RQ2.4), notably, CC
protocols do not support cycles at all, while UC and CIC protocols
do so. While some systems, such as Flink, have applied tricks to
add cycle support to coordinated checkpointing protocols, their
mechanisms are entirely or highly similar to those used by UC and
CIC that allow the use of cycles, that is, via logging messages.
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The conclusion with respect to (RQ2) is that the effects of the
different checkpointing protocols are versatile and both influence
the query graph they can be employed on and are influenced by
the query graph they are employed on. Delivery guarantees were
lower for UC and CIC approaches in our experiments however
while log checkpointing does not seem practically feasible it may
still be feasible for joins and aggregates given their generally low
throughput and lost-message counts. Furthermore, the classic up-
stream backup approach may also be applied by having replicas
of operators to take over when a failure occurs, resulting in better
delivery guarantees at the cost of increased resource usage but with
the added benefit of high availability.

The results show better performance of UC and CIC approaches
under specific conditions in the query graph. This gives rise to the
idea that a hybrid approach between CC and UC/CIC may perform
better than CC alone under the right circumstances. This may be a
very interesting direction for future research.

Lastly, while not visible in the data, the implementation of the
CC protocol was easier than the UC and CIC approaches as these
required distributed mechanisms such as sequence number tracking
and message log pruning based on these sequence numbers. These
extra complexities introduced extra margin for implementation
errors, which were less present in the CC protocol. While the CC
protocol had its own complexities, these largely revolved around the
input blocking mechanism, which was isolated within individual
operators making it easier to check for correctness. This made the
CC protocol easier to develop and maintain than the UC protocol
and particularly the CIC protocol.
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