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Abstract 

A robust and computationally efficient algorithm for automated tracking of high densities of 

particles travelling in (semi-) straight lines is presented. It extends the implementation of (Sbalzarini 

& Koumoutsakos 2005) and is intended for use in the analysis of single ion track detectors. By 

including information of existing tracks in the exclusion criteria and a recursive cost minimization 

function, the algorithm is robust to variations on the measured particle tracks. A trajectory relinking 

algorithm was included to resolve the crossing of tracks in high particle density images. Validation 

of the algorithm was performed using Fluorescent Nuclear Track Detectors (FNTD) irradiated with 

high- and low (heavy) ion fluences and showed less than 1% faulty trajectories in the latter. 

Keywords 

Proton and ion radiotherapy, fluorescent nuclear track detectors, FNTD, ImageJ, Fiji  

1. Introduction 

The therapeutical use of (heavy) charged particles such as protons, helium or heavier ions in 

external radiotherapy has gained increased attention over the last years (Nelson 2015; Hanin & 

Zaider 2014; Loeffler & Durante 2013). In addition, alpha emitters are steadily gaining importance 

in radionuclide therapy and are even explored in clinical trials (Elgqvist et al. 2014; de Kruijff et al. 

2015; Jadvar & Quinn 2013; Sartor et al. 2012; Kratochwil et al. 2014). The cell killing efficiency per 
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deposited energy by these radiation types can differ significantly from that of mega-voltage X-ray or 

electrons. This hampers the transfer of clinical experience in dosage and calls for new reference 

data. Due to the large variation in energy deposition by single ions on micrometer scales, these 

data have also to be acquired on a cellular level using suitable detector systems. One example for 

such assays is the Cell-Fit-HD which relies on the use of Fluorescent Nuclear Track Detectors (FNTD) 

(Niklas, Greilich, et al. 2013; Niklas, Melzig, et al. 2013) to record 3D data on the path and the 

energy loss of individual ions. Spatial resolution in the (sub)micrometer range can be achieved in 

this case when applying confocal laser scanning microscopy for read-out. Other examples include 

semiconductor detectors and the work done using microbeam facilities (Grad et al. 2012; Prise & 

Schettino 2011; Hei et al. 2009; Schettino et al. 2010). 

The relatively low cost, biocompatibility and ease-of-use of these detectors result in a wide range of 

potential applications (Bartz et al. 2014; Klimpi et al. 2015; Akselrod et al. 2014). However, the 

automated identification and evaluation of ion tracks using post processing of the fluorescence 

image data depends significantly on dedicated tracking algorithms.  

Feature point tracking, i.e. tracking of points that represent physical particles, is an area of active 

development with many applications from biology (Chetverikov & Verestói 1999) to computer 

vision (Luo et al. 2015). To the best knowledge of the authors, currently available algorithms are 

impractical or incompatible with the specific requirements of ion beam data such as crossing of 

tracks and high numbers of tracks per area. Fluences exceeding 107 cm-2, corresponding to 1000 

tracks on a 100x100 µm2 field of view, are often found in clinical beams. On the other hand, ions 

travel mostly in straight lines which is an excellent property to be used for discrimination between 

potential tracks. This property has not been fully exploited up to now. 

We therefore present here an extension of the algorithm of Sbalzarini, Koumoutsakos (Sbalzarini & 

Koumoutsakos 2005), Levy and Incardona (Levy & Incardona 2014) and the implementation in the 

MOSAIC Toolsuite for ImageJ (Schneider et al. 2012) and FIJI (Schindelin et al. 2012). A robust and 

computationally efficient algorithm for the reconstruction of fluorescent ion tracks could be 

established by introducing a cost function aimed at specific characteristics of ion interactions in 

matter and adding both a recursive cost minimization function and a track relinking algorithm. 
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2. Method 

2.1. Fluorescent Nuclear Track Detector 

Detection of ion tracks was done using FNTDs cut from a single crystal of aluminium oxide doped 

with carbon and magnesium produced by Landauer Inc. (Stillwater, Oklahoma, USA). The dopants 

produce local charge imbalances in the lattice, known as color centers, which can trap secondary 

electrons induced by traversing ions and thereby undergo radiochromic transformations (Akselrod 

et al. 2006). Exciting the color centers with a 633 nm HeNe laser produces fluorescence at 750 nm, 

which allows for read out with a Confocal Laser Scanning Microscope (CLSM). The high color center 

density and low background fluorescence allows for a large range in detectable Lineal Energy 

Transfer (LET) (Bartz et al. 2014). A track of an ion is visible as a bright spot against a low intensity 

background, where the intensity of the spot is dependent on the LET (Niklas, Bartz, et al. 2013). We 

will refer to the observed spots as ‘feature points’. It is important to note that a feature point does 

not necessarily represent a physical particle due to the possibility of false-positive detection due to 

noisy or defect samples. 

2.2. Feature point detection 

This paper largely follow the notation of Sbalzarini & Koumoutsakos (2005) to enhance clarity. FNTD 

readout commonly yields a stack of 𝑛 = 1…𝑁 image slices, each 𝑋 by 𝑌 pixels in size, thereby 

representing a volume 𝑉 in the FNTD. Detection of spots in the slices was done using Levy’s 

algorithm for feature point extraction as found in the MOSAIC ToolSuite plugin for ImageJ and FIJI, 

yielding for each slice image 𝐴𝑛 a set of feature points 𝑃𝐴𝑛 for intensity threshold 𝐼 and feature 

point radius 𝑟. The amount of feature points in 𝑃𝐴𝑛  is given by dim(𝑃𝐴𝑛). Feature points are 

viewed in Euclidian space where 𝑥 and 𝑦 represent the pixel numbers in the respective directions, 

while 𝑧 represents the depth in the image stack as given by the slice number 𝑛.  

2.3. Feature point linking 

Trajectories are formed by linking feature points in 𝑃𝐴𝑛  to feature points in subsequent slices 𝑃𝐴𝑛+𝑘  

where 𝑘 = 1…𝑅 and 𝑅 is the user-specified link range. Due to the different focus of application, 

linking is done between feature points in depths (slice dimension) rather than in time (frame 

dimension) as in Sbalzarini & Koumoutsakos (2005). This, however, does not affect the generality of 

the following considerations. 
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By applying a cost function to each feature point combination, the cost matrix 𝐶𝐴𝑛 ∈

ℝdim(𝑃
𝐴𝑛)×∑dim(𝑃𝐴𝑛+𝑘) is constructed. Since the method used in this paper employs a recursive 

minimization function for linking instead of a common assignment problem approach, there is no 

longer a need for matrix filling using the dummy feature points found in Sbalzarini & Koumoutsakos 

(2005) when dim(𝑃𝐴𝑛) ≠ dim(𝑃𝐴𝑛+𝑘). The association matrix given by Sbalzarini & Koumoutsakos 

(2005) is replaced by an association vector 𝐺𝐴𝑛 ∈ ℝdim(𝑃
𝐴𝑛), containing the indices of the linked 

partners for the feature points in 𝑃𝐴𝑛. Trajectories are later extracted by following the indices in 

𝐺𝐴. The values of 𝐺𝐴𝑛  are set to 0 to represent the absence of links.  

2.3.1. Linking cost function 

Let 𝐶𝑖,𝑗
𝐴𝑛 = ∑ 𝜙𝑖,𝑗

𝑓𝑒𝑎𝑡𝑢𝑟𝑒
feature . Each feature 𝜙𝑖,𝑗

𝑓𝑒𝑎𝑡𝑢𝑟𝑒
 penalizes the mismatch of a specific 

characteristic between feature point 𝑖 in 𝑃𝐴𝑛  and feature point 𝑗 in 𝑃𝐴𝑛+𝑘 , so that 𝐶𝑖,𝑗
𝐴𝑛  is a 

compressed representation of the matching of these characteristics. Assuming each feature point 𝑖 

has only one true linking partner 𝑗, finding the lowest the linking cost in 𝐶𝑖,𝑗
𝐴𝑛  for each feature point 𝑖 

will approximate the solution to minimizing the cost matrix, i.e. ∑ min 𝐶𝑖,𝑗
𝐴𝑛 ≈𝑖 min∑ 𝐶𝑖,𝑗

𝐴𝑛
𝑖 , for a 

fraction of the calculation time. Heavy ions can safely assumed to follow an approximately straight 

path with constant velocity considering the typical track-lengths assessed in an FNTD, i.e. several 

tens of micrometers. Cumulative effects of small-angle coulomb-scattering are tolerated by the 

algorithm, while the frequency of large-angle events can be – even at the end of the particle range 

– considered to be rare and their impact on the track reconstruction (splitting of one track into two 

tracks with corresponding total length) as benign. Four features are used for the linking of feature 

points in this method. Some of these features find their basis in the work of Sbalzarini, 

Koumoutsakos, Levy and Incardona, but were modified to better serve the tracking of ions with 

these characteristics. 

2.3.2. Features 

To filter unlikely linking candidates, the first feature describes the distance between feature points 

which is given by the squared distance between feature points 𝑖 and 𝑗. 

𝜙𝑖,𝑗
distance = 𝑤𝑑

2 {|𝑑𝑖,𝑗|
2
+ (𝑛𝑗 − 𝑛𝑖)

2
, |𝑑𝑖,𝑗|

2
+ (𝑛𝑗 − 𝑛𝑖)

2
≤ 𝑑𝑝,𝑚𝑎𝑥

∞, elsewhere
 

1 
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Where 𝑤𝑑 is the user-specified distance weight factor, 𝑑𝑖,𝑗 is the linking distance in the x-y plane 

and 𝑑𝑝,𝑚𝑎𝑥 is the user-specified maximum linking distance. 

In order to favour constant intensities, the second feature is based on the likeness of the zero and 

second order intensity momenta. 

𝜙𝑖,𝑗
intensity

=
𝑤𝑖
2

𝜋 ∙ 𝑟2
∑ ∑ (1+ 𝑥2 + 𝑦2) ∙ {

|𝐼𝑥,𝑦
𝑗
− 𝐼𝑥,𝑦

𝑖 |, 𝑥2 + 𝑦2 ≤ 𝑟2

0, elsewhere

𝑟

𝑦=−𝑟

𝑟

𝑥=−𝑟

 2 

 

Where 𝑤𝑖 is the user-specified feature weight factor, 𝑟 is the feature point radius and 𝐼𝑥,𝑦
𝑝  is the 

pixel intensity at position 𝑥, 𝑦 from the center of feature point 𝑝. 

The third feature is given as the absolute velocity difference, where 𝑣𝑖,𝑗 is the link velocity vector as 

given by eq. 4. 

𝜙𝑖,𝑗
velocity

= 𝑤𝑣
2 {
||𝑣𝑖,𝑗|

2
− |�̅�𝑖

𝐻|
2
| , |�̅�𝑖

𝐻|
2
> 0

0, elsewhere
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𝑣𝑖,𝑗 = [

Δx
Δ𝑧⁄

Δy
Δ𝑧⁄
] =

1

𝑛𝑗 − 𝑛𝑖
[
𝑥𝑗 − 𝑥𝑖
𝑦𝑗 − 𝑦𝑖

] 4 

 

𝑤𝑣 is the user-specified velocity weight factor and �̅�𝑖
𝐻 is the average link velocity vector of the last 

𝐻 feature points in the trajectory of feature point 𝑖, where 𝐻 is specified by the user. When feature 

point 𝑖 is not part of an existing trajectory, �̅�𝑖
𝐻 is set to zero. 

The final feature is based on the angle between the �̅�𝑖
𝐻 and 𝑣𝑖,𝑗. 

𝜙𝑖,𝑗
angle

= 𝑤𝑎
2

{
 
 
 

 
 
    𝑓(𝜃𝑖,𝑗)

2
|𝑑𝑖,𝑗| >

𝑟𝑝
2⁄ , |�̅�𝑖

𝐻|
2

> 0, |𝜃𝑖,𝑗| ≤ 𝜃𝑝,𝑚𝑎𝑥

𝛽 ∙ 𝑓(𝜃𝑝,𝑚𝑎𝑥)
2

|𝑑𝑖,𝑗| >
𝑟𝑝
2⁄ , |�̅�𝑖

𝐻|
2
= 0

𝛾 ∙ 𝑓(𝜃𝑝,𝑚𝑎𝑥)
2

|𝑑𝑖,𝑗| ≤
𝑟𝑝
2⁄

∞ elsewhere
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𝑓(𝜃𝑖,𝑗) =
𝛼

2
[cos 𝜃𝑖,𝑗 − 1] =

𝛼

2
[
(𝑣𝑖,𝑗 ∙ 𝑣𝑖

𝐻)

|𝑣𝑖,𝑗||𝑣𝑖
𝐻|
− 1] 

6 
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Where 𝑤𝑎 is the user-specified angle weight factor, 𝑟𝑝 is the allowed particle drift, usually given by 

the particle radius 𝑟, and 𝜃𝑝,𝑚𝑎𝑥 is user-specified maximum allowed feature point linking angle. To 

allow for small noise variations in tracks perpendicular to the z-axis, a standard cost value is used 

for links with |𝑑𝑖,𝑗| ≤
𝑟𝑝
2⁄ . However, since continuation of existing tracks is favoured, 𝛽 was chosen 

higher than 1. It was experimentally found by applying the method to the set of alpha tracks given 

in section 3.2 that 𝛼 = 𝑑𝑚𝑎𝑥, 𝛽 = 6 5⁄  and 𝛾 = 1 were good values. Both 𝛽 and 𝛾 were set (close) 

to 1 in order to simplify the interpretation of the angle cost factor for the user. 

When the link range 𝑅 ≥ 2, an extra criteria is introduced in order to prevent multiple links to 

feature point 𝑗. If 𝑗 ∈ 𝐺, i.e. feature point 𝑗 has already been linked to from one of the previous 

image slices, and the current link 𝐶𝑖,𝑗
𝐴𝑛 exceeds the cost of the previous link, then 𝐶𝑖,𝑗

𝐴𝑛  is to ∞ to 

prevent suboptimal replacements of links during feature point linking. 

2.3.3. Link Cost Minimization  

Feature point linking is performed by applying a recursive minimization function which aims to find 

the best linking candidate 𝑖 for each feature point 𝑗 in 𝑃𝐴𝑛+𝑘 , given that each feature point can only 

be linked once. When feature point 𝑖 was already linked, i.e. 𝐺𝑖
𝐴𝑛 >  0, and the cost for linking 

feature point 𝑗 to 𝑖 is lower than the cost of the existing link, the existing link is replaced and the 

function calls itself to find the next best link for delinked feature point 𝑗 = 𝐺𝑖
𝐴𝑛  in 𝑃𝐴𝑛+𝑘 . This 

process is halted when no new link with cost lower than 𝐶𝑚𝑎𝑥, the maximum allowed linked cost, 

which was experimentally chosen as 4 𝑑𝑝,𝑚𝑎𝑥
2 , can be found. A pseudo-code representation of the 

function is given below. 

Function FindBestLink (feature point 𝑗) 

  𝑐𝑜𝑠𝑡 = 𝐶𝑚𝑎𝑥,   𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = -1 

  for each feature point 𝑖 do 

    if 𝐶𝑖,𝑗
𝐴𝑛 < 𝑐𝑜𝑠𝑡 && 𝐶𝑖,𝑗

𝐴𝑛  < 𝐶
𝑖,𝐺𝑖

𝐴𝑛

𝐴𝑛  then 

      𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝑖, 𝑐𝑜𝑠𝑡 = 𝐶𝑖,𝑗
𝐴𝑛  

  end 

 

  if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 == -1 then 

    no link found, return 
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  if 𝐺candidate 
𝐴𝑛 == -1 then 

    𝐺candidate 
𝐴𝑛  = 𝑗, return 

  else then 

    𝑜𝑙𝑑_𝑗 = 𝐺candidate 
𝐴𝑛 , 𝐺candidate 

𝐴𝑛  = 𝑗 

    Call self to find next best link for feature point 𝑜𝑙𝑑_𝑗: 

  end 

2.4. Trajectory relinking 

The restriction that each feature point can only be in one trajectory leads to broken trajectories 

when particles overlap during crossing of tracks. Relinking of trajectories is therefore required for 

high particle density experiments. Let 𝑇𝐴 be a set of trajectories in 𝐴, where each trajectory 

contains a set of linked feature points �̂�𝑙 and let dim(𝑇𝐴) be the number of trajectories in 𝐴. By 

applying a cost function to each trajectory combination, a cost vector 𝐷𝑙,𝐴 ∈ ℝdim(𝑇
𝐴) can be 

constructed for each trajectory 𝑙 = 1. . . dim(𝑇𝐴) so that 𝐷𝑚
𝑙,𝐴 = ∑ 𝜙𝑙,𝑚feature , where 𝑚 represents 

the relinking candidates in 𝑇𝐴. Note that due to the symmetry 𝐷𝑚
𝑙,𝐴 = 𝐷𝑙

𝑚,𝐴, only 𝑚 = 𝑙 +

1…dim(𝑇𝐴) needs to be calculated and 𝐷𝑚=1..𝑙
𝑙,𝐴  can be set to ∞.  

2.4.1. Features 

Since trajectory relinking uses the same trajectory data as the former linking process, the five 

proposed features for trajectory relinking are similar to those found for feature point linking. The 

 𝑓𝑖𝑟𝑠𝑡 and  𝑙𝑎𝑠𝑡 superscripts are used to indicate the first and last feature point and their respective 

properties in the given trajectory. For simplification of the expressions in this section, let 𝑡1 and 𝑡2 

represent respectively the first and last starting trajectory. 𝑡1 and 𝑡2 are then given for each 

combination 𝑙, 𝑚 so that 𝑛𝑡2
𝑓𝑖𝑟𝑠𝑡

≥ 𝑛 𝑡1
𝑓𝑖𝑟𝑠𝑡

. In order to allow trajectories to bridge a maximum of one 

whole feature point linking step, a scenario where a particle disappears or is unavailable for linking 

for 𝑅 slices, the first feature given in eq. 7 is introduced. 

𝜙𝑡1,𝑡2
z−order = {

0,0 ≤ 𝑛𝑡2
𝑓𝑖𝑟𝑠𝑡

− 𝑛 𝑡1
𝑙𝑎𝑠𝑡 ≤ 2𝑅 + 1

∞, elsewhere
 

7 

 

Unlikely relinking candidates are filtered using eq. 1 with 𝑖 = 𝑡1
𝑙𝑎𝑠𝑡, 𝑗 = 𝑡2

𝑓𝑖𝑟𝑠𝑡
 , 𝑑𝑝,𝑚𝑎𝑥 = 𝑑𝑡,𝑚𝑎𝑥, 

where 𝑑𝑡,𝑚𝑎𝑥 is the user-specified maximum trajectory relinking distance. 𝑤𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 was set to the 

same user-specified value as for feature point linking. 
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Let �̅�𝑡1  and �̅�𝑡2 represent the average velocity vectors for respectively 𝑡1 and 𝑡2. The averaged 

linking vector �̅�𝑡1,𝑡2  between the Q closest endpoint pairs in the trajectories is given by: 

�̅�𝑡1,𝑡2 = 
1

𝑄
∑

1

𝑛𝑡2
𝑓𝑖𝑟𝑠𝑡+𝑞

− 𝑛𝑡1
𝑙𝑎𝑠𝑡−𝑞

[
𝑥𝑡2
𝑓𝑖𝑟𝑠𝑡+𝑞

− 𝑥𝑡1
𝑙𝑎𝑠𝑡−𝑞

𝑦𝑡2
𝑓𝑖𝑟𝑠𝑡+𝑞

− 𝑦𝑡1
𝑙𝑎𝑠𝑡−𝑞

]

𝑄−1

𝑞=0

 
8 

 

Where Q is the number of endpoints used for averaging which showed the best experimental 

results for 𝑄 = 3. 

To ensure alignment between the trajectories as well as the trajectories and the linking vector, the 

third feature penalizes difference between these respective velocity vectors.  

𝜙𝑡1,𝑡2
align

= 𝑤𝑎
2 {
   𝑓(𝜃𝑎)

2 |𝜃𝑎| ≤ 𝜃𝑡,𝑚𝑎𝑥 & |𝜃𝑏| ≤ 𝜃𝑡,𝑚𝑎𝑥

∞ elsewhere

 
9 

 

Where 𝜃𝑎 is the angle between �̅�𝑡1 and �̅�𝑡2  and 𝜃𝑏 is the angle between (�̅�𝑡1 + �̅�𝑡2) 2⁄  and �̅�𝑡1,𝑡2. 

𝜃𝑡,𝑚𝑎𝑥 is the maximum allowed trajectory relinking angle. 𝜃𝑡,𝑚𝑎𝑥 was set to 𝜃𝑝,𝑚𝑎𝑥 in the code 

implementation for these experiments due to the high similarity between these parameters. 

The last two features are given by the intensity and velocity features as used for feature point 

linking using the track averages. 

2.4.2. Trajectory relinking 

Trajectory 𝑙 is linked to trajectory 𝑀 = min
𝑚
𝐷𝑙,𝐴 if 𝐷𝑚

𝑙,𝐴 ≤ 𝐷𝑚𝑎𝑥, where 𝐷𝑚𝑎𝑥  is a user-specified 

maximum linking cost, usually given as a function of 𝑑𝑡,𝑚𝑎𝑥. By merging 𝑙 into 𝑀, i.e. �̂�𝑀 = �̂�𝑙 || �̂�𝑀, 

during linking, the newly merged trajectory is considered for further cost function evaluations. Due 

to the small number of trajectories and relinking candidates, this simplified cost minimization 

approach was found to be sufficient. 

2.5. Code implementation 

The linking procedure described was implemented in Java 1.6 as part of a larger collection of FNTD 

related routines (the ‘FNTD package’) and uses various FIJI classes. Also, some MOSAIC Toolsuite 

classes were extended to allow for storage of the feature points and their respective information 

required for this method, while maintaining compatibility with the MOSAIC feature point detection 

routine. Execution of the Java code and analyses of the results were done using the FNTD package 
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(v0.8.1) for the R language (R Development Core Team 2011) (v3.2.2). The sources for both the R 

routines and the Java code are freely available at Github (https://github.com/FNTD). For 

Fiji, the latest version of the plugin is provided via the update site at 

http://sites.imagej.net/FNTD.  Installation and usage instructions are available at 

https://fntd.dkfz.de/fntd/index.php/Main_Page. 

3. Validation 

3.1. High fluence synchrotron carbon ion irradiation algorithm comparison 

The improvement that can be achieved with the described algorithm is especially distinct for very 

complex particle fields. The benefit is illustrated at an FNTD irradiated in the rising flank of a 

Spread-Out Bragg Peak (SOBP) of a clinical 12-C ion beam. RW3 water equivalent plastic slabs (PTW 

Freiburg GmbH) were used as phantom material. The irradiation consisted of 18 separate beams 

leading to a SOBP located at a depth of 10 to 15 cm. The FNTD was positioned at 8.5 cm where the 

total particle fluence reaches a maximum. This represents a clinically relevant, but at the same time 

most challenging, situation for identifying trajectories due to the large amount of secondary 

fragments in the beam, which yield a significant variation in fluorescence intensity and track 

direction.  

The FNTDs were read out using the Landauer FXR700RG automated reader, a CLSM dedicated to 

FNTD readout which uses a 100x 0.95 air objective in combination with an Avalanche Photo Diode 

(APD) (Akselrod et al. 2014). A readout stack of 20 images with an image size of 200x200 µm2 (1024 

x 1024 pixel) and 5 µm separation between the slices was acquired.  A zoomed section of the first 

slice is shown in Fig. 1. 

 

 

 

Fig. 1: 2x zoomed fluorescence image of first slice of a stack in the FNTD. The scale bar corresponds to 16 µm.  
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The background was subtracted using the histogram-based ‘background subtractor’ from the 

MOSAIC ToolSuite (Cardinale 2010). The intensity decrease near the edges of the FOV and deeper 

in the sample were corrected using field-of-view non-uniformity and spherical aberration 

corrections as presented in (Bartz et al. 2014). Particle tracks were reconstructed both with the 

presented 3D feature point tracking method and with the algorithm of Sbalzani, Koumoutsakos 

(Sbalzarini & Koumoutsakos 2005), Levy and Incardona (Levy & Incardona 2014), from now on 

referred to as ‘previous method’. In both cases particle segmentation was achieved with a relative 

threshold of 5%, a particle radius of 3 pixels and no cut-off value in order to avoid outlier 

discrimination. Particle linking was performed with the parameters listed in Table 1.  

Table 1: Feature point linking parameters for the 12-C irradiated samples. Values used for the two linking methods are 

listed separately. 

Parameter 
Previous 

method 

Proposed 

method 
Parameter 

Previous 

method 

Proposed 

method 

𝑰 5%.  𝒘𝒅 1 1 

𝒓 = 𝒓𝒑 - 4 px 𝒘𝒊 1 1 

𝒅𝒑,𝒎𝒂𝒙 15 px 15 px 𝒘𝒗 - 1 

𝑹 2 2 𝒘𝒂 - 1 

𝜽𝒑,𝒎𝒂𝒙 - 20˚ 𝒅𝒕,𝒎𝒂𝒙 - 40 px 

𝑯 - 3 𝑫𝒎𝒂𝒙 - 0.1 ∙ 𝐶𝑚𝑎𝑥  

 

Since very short trajectories are likely to be caused by the linking of erroneously segmented 

features or the incorrect linking of true particles the minimum trajectory length was set to 5 slices.  

Fig. 2 visualizes a comparison between the tracks reconstructed in sections of the image with the 

previois method (a,c,e) and with the proposed method (b,d,f). The images show the projection of 

the reconstructed tracks along the z-axis and thus correspond to a zoomed section of the readout 

volume. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 2: Tracks produced by the implementation of Sbalzarini, Koumoutsakos, Levy and Incardona (left), compared to the 

proposed method (right). Gray squares indicate a tracked feature point while coloured lines indicate projections of a 

track. Cyan circles represent tracked feature points that were not assigned to a track. Track colours and thickness 

between the methods do not correspond. The numbered tracks are described in the text.  
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A crucial constraint for the production of physically reasonable tracks is the maximum track angle 

𝜃𝑝,𝑚𝑎𝑥. In the previous method this parameter was not implemented. In Fig. 2 all numbered tracks 

1-10 show unphysically strong bends. With the proposed method the corresponding feature points 

were linked differently since the maximum allowed linking angle was set to 20° with respect to the 

average link velocity vector of the last H=3 feature points. The angle threshold also prevents linking 

of parallel tracks like performed for track 2.  

Since the presented algorithm performs a recursive minimization of the cost function instead of an 

assignment problem approach all feature points are more likely to be linked to the best linking 

candidate. The different approaches can for example result in an altered assignment of feature 

points to tracks as in location 11. The points belonging to the green and pink tracks are also 

considered in the presented algorithm but distributed differently among the two tracks.  

The choice and interplay of features included into the cost function in the presented method leads 

to a strongly improved reconstruction of crossing trajectories compared to the previous method. 

This effect is very beneficial for experiments with complex high fluence particle fields. Improved 

linking can e.g. be seen for tracks 12, 13 and 14 in the bottom row of Fig. 2. 

As described in section 2.4 the proposed method enables relinking of trajectories with very similar 

features. Tracks break apart if corresponding feature points are tracked incompletely. This 

occasionally happens with tracks of secondary particles with low fluorescence intensity and large 

track angles with respect to the z-axis or crossing tracks which overlap in one or more image slices. 

As shown in the top row of Fig. 3 the benefit for linking of crossing tracks compared to the previous 

method (cf. bottom row of Fig. 2) is partly due to the implementation of track relinking (track 13 

and 14). The bottom row of Fig. 3 shows another comparison between the linking results without 

(a,c) and with (b,d) relinking for crossing trajectories (15 and 16) and for a secondary particle track 

(17).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3: Tracks produced by the proposed algorithm with (left) and without relinking (right). The numbered features are 

explained in the text. 

3.2. Am-241 alpha radiation energy estimation 

An FNTD was irradiated from the top with a circular Am-241 source, with 𝑟source ≫ 𝑟FNTD and 2.5 

mm air between the source and the FNTD so that the irradiation was unidirectional. The expected 

fluence in the FNTD was 1.25x106 cm-2, which corresponds roughly to the scenario of a cell study 

with 1 alpha track per 10 µm diameter cell. The FNTD was read-out using a Carl Zeiss LSM710 with a 

63x 1.40 oil-immersion objective and two fiber-coupled, photon-counting APDs (Klimpi et al. 2015). 

6 separate image stacks, each containing 42 slices, were obtained. Each image slice contained 1024 

x 1024 pixels with pixel dimensions 0.13 x 0.13 x 0.47 µm3 (x, y, z). The surface location was 

obtained via measurement of the surface reflection using the second APD parallel to the 

fluorescent measurement. 

13 

14 

15 

17 

16 
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Fig. 4: FNTD irradiated with alpha particles produced by the decay of Am-241. Note the wide variety of incidence angles 

(as seen from the elongated shapes), the crossing of tracks and presence of highly energetic delta rays. The scale bar 

corresponds to 16 µm. 

Feature point detection was performed with an absolute threshold just above the background 

noise threshold and a relatively large feature point radius of 6 pixels, as to prevent the detection of 

multiple feature points within an elongated spot. Again, the cut-off value was not set in order to 

avoid outlier discrimination. The feature point linking routine was executed with the parameters 

given in Table 2. 

Table 2: Feature point linking parameters for Am-241 irradiation linking. 

Parameter Value Parameter Value 

𝑰 35 a.u. 𝒘𝒅 0.5 

𝒓 = 𝒓𝒑 5 px 𝒘𝒊 1 

𝒅𝒑,𝒎𝒂𝒙 30 px 𝒘𝒗 0.1 

𝑹 3 𝒘𝒂 1 

𝜽𝒑,𝒎𝒂𝒙 20˚ 𝒅𝒕,𝒎𝒂𝒙 50 px 

𝑯 5 𝑫𝒎𝒂𝒙 1 ∙ 𝐶𝑚𝑎𝑥 

 

Since the feature point detection routine was built for circular spots, ion tracks with very high 

angles of incidence let to detection and linking artefacts due to their elongated appearance. Tracks 

spanning less than 8 slices or with fitted angles 𝜃 > 50 degrees were therefore removed. When 

inclusion of these tracks is critical for the user, more sophisticated, and computationally intensive, 
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detection algorithms are available which to recognize more complex shapes (Rizk et al. 2014; 

Arganda-Carreras et al. 2014). However, extra effort is required to make these algorithms output 

the feature points in a compatible format. 

 

Fig. 5: Linking of the sample in Fig. 4 with the parameters in Table 2. Squares and circles indicate respectively linked and 

unlinked feature points. Feature points are correctly linked in crowded areas and no artefacts are visible. The elongated 

spots from particles with very high angles of incidence led to detection of multiple feature points.  

The reference fluence 𝛷adj was calculated taking into account the maximum angle of acceptance 𝜃: 

𝛷adj(𝜃) = 𝛷 ∙ (1 − cos 𝜃) 10 

 

where  𝛷 is the fluence for the entire hemisphere (solid angle = pi). A total of 509 tracks was found 

after filtering, while the adjusted reference fluence was 489 ± 44. A total of 39 tracks originated 

from trajectory relinking, exemplifying the significance of this added routine. 

For further analysis of the tracks, tracks ending close to the border of the image were removed, due 

to their likelihood having a part of the track lying out of bounds, thereby appearing as an artefact. 

The penetration length of each track was calculated from the incidence angle and the depth of the 

last feature point in respect to the surface. Refinement of the exact endpoint was based on the 

intensity of the last few feature points. Knowing the penetration depth and the thickness of the 

layer of air, the total traversed distance and thereby the equivalent range in water for each track 

could be calculated. The range in water to initial kinetic energy translation table was obtained using 

SRIM (Ziegler 2013). The resulting calculated initial alpha kinetic energy was 5451 ± 310 keV (Fig. 6). 
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The limited z-resolution, energy loss straggling, detector noise and the unknown thickness of the 

activity layer added to the uncertainty. However, artefact can be identified as tracks with a 

measured energy far away from the given distribution curve relating incident angle and length. 

From Fig. 6 it was estimated that this was the case for less than 1% of the reconstructed 

trajectories.  

 

Fig. 6: The calculated initial kinetic energy distribution in dark grey with the Gaussian fit shown in light gray. 

3.3.  Parameter Sensitivity Analysis and Usability 

A one-at-a-time parameter sensitivity analysis was performed on the experimental data given in 

section 3.2. The effect of varying each parameter on the fitted mean energy, fluence and RMSE of 

the fit were measured while the rest of the parameters was as given Table 2. The detailed results 

are given in Appendix A. In summary, it was found that the 13 parameters can be subdivided in two 

general categories: fine-tuning parameters, parameters that (mildly) influence the algorithm over a 

wide range, and threshold parameters, parameters that influence the algorithm only from a specific 

value, similar to an on/off-switch (Table 3). The algorithm proved to be stable and failed only when 

critical aspects were disabled. For example, setting the maximum linking distance to very small 

values yielded a large deviation from the expected behaviour. Most of variables are robust and 

serve a role in fine-tuning the algorithm to obtain the best results for the specific application. Some 

parameters reflect a physical property and can be estimated using the available data, namely 

intensity threshold 𝐼, particle radius 𝑟, maximum displacement 𝑑𝑝,𝑚𝑎𝑥, particle drift 𝑟𝑝, maximum 

linking angle 𝜃𝑝,𝑚𝑎𝑥 and the maximum trajectory relinking distance 𝑑𝑡,𝑚𝑎𝑥. The remaining seven 
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parameters require an initial guess from the user. Three of these parameters, namely distance 

weight 𝑤𝑑, angle weight 𝑤𝑎 and relink cost 𝐷𝑚𝑎𝑥 are threshold values and therefore require manual 

iterating to find their working values. This can be done quickly and interactively using the Fiji 

implementation. The remaining four parameters are fine-tuning parameters and are expected to be 

work over a wide range of values. 

While the number of parameters can in principle be reduced given the above findings and using 

default values for specific applications, they provide the experienced user with flexibility.  

Table 3: Parameter properties 

Category Parameter Type Sensitivity Reflects physical property 

Feature Point 

Selection 

𝑰 Fine-tuning Strong Yes 

𝒓 Fine-tuning Strong Yes 

Feature Point 

Linking 

𝒅𝒑,𝒎𝒂𝒙 Threshold - Yes 

𝑹 Fine-tuning Low No 

𝒓𝒑 Fine-tuning Mild Yes 

𝜽𝒑,𝒎𝒂𝒙 Fine-tuning Mild Yes 

𝑯 Fine-tuning Low No 

𝒘𝒅 Threshold - No 

𝒘𝒊 Fine-tuning Low No 

𝒘𝒗 Fine-tuning Strong No 

𝒘𝒂 Threshold - No 

Trajectory Relinking 𝒅𝒕,𝒎𝒂𝒙 Threshold - Yes 

𝑫𝒎𝒂𝒙 Threshold - No 

 

4. Conclusion 

The combination of an iterative cost minimization function and a trajectory relinking algorithm in 

addition to a specialized cost function aimed at favouring constant trajectories, resulted in a fast 

and accurate algorithm for single ion track reconstruction that could be validated for both high and 

low fluence samples. Linking of particles and relinking of trajectories using one thread for 45000 

(2900) particles took 4.43 (0.16) seconds on an Intel(R) Core(TM) i5-560M 2.67 GHz processor, 

compared to 32.16 (13.25) seconds for the old implementation. The high fluence SOBP carbon-12 

experiment tested the algorithm for high fluences with up 2000 tracks per 512x512 pixel image, a 
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scenario that could not be tracked reliably with existing methods. A clear increase in 

fragmentations was visible, despite their high angles of incidence and relatively low SNR. It is 

expected that these fluences are at the limit of this algorithm, partly due to difficulty of detecting 

the correct feature points for these scenarios. The low fluence Am-241 alpha irradiation experiment 

showed a low artefact count with less than 1% faulty trajectories and a calculated fluence that 

closely matched the expected value. It was found that most input variables could be chosen 

intuitively by the user and an appropriate set of parameters could usually be found within one or 

two iterations. The Fiji plugin allows for easy and quick optimization of the linking parameters 

without the need for prior programming knowledge, while the R shell is best used for linking of 

larger sample sets and trajectory data analyses.  
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Appendix A 

 

Fluence and the fitted mean energy are given as 

percentage of their expected value and are displayed on 

the left axis. RMSE is given in arbitrary units, given on the 

right axis, and serves as an indicator of the goodness-of-

fit. A high RMSE in combination with a high or low fitted 

mean energy indicates a large number of faulty tracks. 

 

Intensity Threshold 𝐼 (a.u.) – Fine Tuning 

Particle Radius 𝑟 (px) – Fine Tuning Maximum Distance 𝑑𝑝,𝑚𝑎𝑥  (px) – Threshold 

 

Linkrange 𝑅 (slices) – Fine Tuning 
Particle Drift 𝑟𝑝 (px) – Fine Tuning 
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Maximum Angle 𝜃𝑝,𝑚𝑎𝑥   (°) – Fine Tuning Angle History 𝐻 (-) – Fine Tuning 

Distance Weight 𝑤𝑑  (-) – Threshold Intensity Weight 𝑤𝑖  (-) – Fine Tuning 

 

Velocity Weight 𝑤𝑣 (-) – Fine Tuning 
Angle Weight 𝑤𝑎  (-) – Threshold 
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Relink Distance 𝑑𝑡,𝑚𝑎𝑥  (px) – Threshold 
Relink Cost 𝐷𝑚𝑎𝑥  (-) – Threshold 
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