Delft University of Technology

Accelerating the Induced Dimension Reduction method using spectral information

Astudillo , R.; de Gier, J.M.; van Gijzen, M. B.

DOI
10.1016/j.cam.2018.06.014

Publication date
2019
Document Version
Submitted manuscript
Published in
Journal of Computational and Applied Mathematics

Citation (APA)

Astudillo , R., de Gier, J. M., \& van Gijzen, M. B. (2019). Accelerating the Induced Dimension Reduction method using spectral information. Journal of Computational and Applied Mathematics, 345, 33-47. https://doi.org/10.1016/j.cam.2018.06.014

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Accelerating the Induced Dimension Reduction method using spectral information

R. Astudillo ${ }^{\mathrm{a}, *}$, J. M. de Gier ${ }^{\text {b }}$, M. B. van Gijzen ${ }^{\text {a }}$
${ }^{a}$ Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
${ }^{b}$ TNO Technical Sciences, Distributed Sensor Systems, Oude Waalsdorperweg 63, 2597 AK The Hague, The Netherlands

Abstract

The Induced Dimension Reduction method $(\operatorname{IDR}(s))$ [SIAM J. Sci. Comput., 31(2) (2008), pp. 1035-1062] is a short-recurrences Krylov method to solve systems of linear equations. In this work, we accelerate this method using spectral information. We construct a Hessenberg relation from the $\operatorname{IDR}(s)$ residual recurrences formulas, from which we approximate the eigenvalues and eigenvectors. Using the Ritz values, we propose a self-contained variant of the Ritz-IDR(s) method [SIAM J. Sci. Comput., 32(4) (2010), pp. 1898-1912] for solving a system of linear equations. In addition, the Ritz vectors are used to speed-up $\operatorname{IDR}(s)$ for the solution of sequence of systems of linear equations.

Keywords: Induced Dimension Reduction method, system of linear equations, sequence of systems of linear equation, eigenvalues and eigenvectors.

1. Introduction

In this work, we are interested in accelerating the convergence of the Induced Dimension Reduction method (IDR(s)) [1] to solve a system of linear equations

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b}, \quad \text { with } A \in \mathbb{C}^{n \times n} \text { and } \mathbf{b} \in \mathbb{C}^{n} \tag{1}
\end{equation*}
$$

[^0]and also to solve sequences of systems of linear equations
\[

$$
\begin{equation*}
A \mathbf{x}^{(i)}=\mathbf{b}^{(i)}, \quad \text { with } A \in \mathbb{C}^{n \times n} \text { and } \mathbf{b}^{(i)} \in \mathbb{C}^{n}, \text { for } i=1,2, \ldots, p \tag{2}
\end{equation*}
$$

\]

The vectors $\mathbf{x}, \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(p)}$ represent the unknowns in \mathbb{C}^{n}, and we only consider the case when the coefficient matrix A is a non-Hermitian and non-singular matrix.
$\operatorname{IDR}(s)$ is a Krylov subspace method which has been proved to be effective for solving large and sparse systems of linear equations. Both theoretical and practical aspects of the $\operatorname{IDR}(s)$ have been studied in different works, e.g., [2], 3], 4], 5], and [6] among others. Simoncini and Szyld reformulate $\operatorname{IDR}(s)$ as a Petrov-Galerkin method in [2]. The authors prove that in $\operatorname{IDR}(s)$ the subspace of constraints or left space is a block rational Krylov subspace. Based on this connection with the rational subspaces, they propose to use the Ritz values to accelerate the convergence of $\operatorname{IDR}(s)$. This idea originates Ritz$\operatorname{IDR}(s)$, which is an effective $\operatorname{IDR}(s)$ variant to solve systems of linear equations (1) where the spectrum is highly complex.

To obtain a subset of the Ritz values, Ritz- $\operatorname{IDR}(s)$ requires a preceding call to an external sparse eigensolver routine, for example the Arnoldi method 7] or Bi-Lanczos method [8]. In the first part of this paper, we present a self-contained version of the $\operatorname{Ritz-IDR}(s)$, i. e., a $\operatorname{Ritz-IDR}(s)$ variant that does not require an external call to an eigensolver routine. We compute the upper Hessenberg matrix H_{m} from a Hessenberg relation as

$$
\begin{equation*}
A W_{m}=W_{m} H_{m}+\mathbf{f e} e_{m}^{T} \tag{3}
\end{equation*}
$$

15 during the first iterations of $\operatorname{IDR}(s)$. Then, we obtain the Ritz values from the matrix H_{m}, and use them as input parameters of the subsequent iterations of $\operatorname{IDR}(s)$.

In the second part of this paper, we apply $\operatorname{IDR}(s)$ to solve sequences of systems of linear equations (2). We only consider the case when the coeffi-
${ }_{20}$ cient matrix does not change and the right-hand side vectors $\left\{\mathbf{b}^{(i)}\right\}_{i=1}^{p}$ are not available simultaneously. These kind of problems arises naturally from the dis-
cretization of linear time-dependent differential equations and the solution of systems of non-linear equations using modified Newton-type methods with constant Jacobian matrix.

Subspace recycling is a common technique to accelerate the Krylov method (see for example [9], [10], and [11] among others). This process consists of approximating invariant subspaces or calculating a "good" Krylov subspace basis and use this information to save matrix-vector products at the solution of the system of linear equations. For methods as GMRES [12] and GCR 13 the recycling idea has been incorporated to accelerate the solution of a single linear system of equations in [9] and [10 respectively. In the case of solving sequences of systems of linear equations, these methods have been adapted in [14] and [15]. Also, other Krylov methods have been adapted to solve sequences of systems of linear equations, for example BiCG in [16], $\operatorname{GMRES}(m)$ in [15], and IDRstab 35 in 17 .

GCROT [14] and GMRES are long-recurrences methods, with an optimal residual minimization property, but also these methods can be expensive in terms of memory and CPU consumption. For this reason, we propose an $\operatorname{IDR}(s)$ variant, that is a short-recurrences and memory-limited method to solve (2).
${ }_{40}$ First, we show how to obtain Ritz values and Ritz vectors from $\operatorname{IDR}(s)$ for solving a system of linear equations. Second, we present how to enrich the searching subspace of $\operatorname{IDR}(s)$ with the Ritz vectors. Finally, we apply $\operatorname{IDR}(s)$ with the Ritz vectors to solve sequences of linear equations as a main application of this enrichment.

This document is organized as follows. A review of $\operatorname{IDR}(s)$ and its recurrences is presented in the second section. In section 3, we present an $\operatorname{IDR}(s)$ variant to solve system of linear equations. We present how to obtain an underlying Hessenberg relation from the $\operatorname{IDR}(s)$ residual recurrences. This allows us to find approximation to the eigenvalues of the coefficient matrix involved.
${ }_{50}$ These eigenvalues approximations are used to accelerate the $\operatorname{IDR}(s)$ method. Section 3.1 shows the numerical examples related to the solution of system of linear equations. In section 4, we explain how to add the Ritz vectors to the
initial searching space of $\operatorname{IDR}(s)$ to save computational effort. As a main application of this idea, we apply $\operatorname{IDR}(s)$ to solve a sequence of system of linear equations. Using the Hessenberg relation deduced in section 3, we compute a set of Ritz vectors during the solution of the first system of linear equation. These Ritz vectors are used to accelerate the subsequent systems of linear equations. Numerical experiments for the solution of a sequence of systems of linear equations using $\operatorname{IDR}(s)$ are presented in section 4.2. In section 5 , we present the general conclusions and remarks.

2. Review on $\operatorname{IDR}(s)$

In this section, we first review the recurrence formulas of $\operatorname{IDR}(s)$ for solving a system of linear equations, and then we discuss the work of Simoncini and Szyld in 2 .

The Induced Dimension Reduction method is based on the following theorem.

Theorem $1\left(\operatorname{IDR}(s)\right.$ Theorem). Let A be any matrix in $\mathbb{C}^{n \times n}$, let \mathbf{v}_{0} be any nonzero vector in \mathbb{C}^{n}, and let \mathcal{G}_{0} be the full Krylov subspace $\mathcal{K}_{n}\left(A, \mathbf{v}_{0}\right)$. Let \mathcal{S} be any (proper) subspace of \mathbb{C}^{n} such that \mathcal{S} and \mathcal{G}_{0} do not share a nontrivial invariant subspace of A, and define the sequence $\mathcal{G}_{j}, j=1,2, \ldots$ as

$$
\mathcal{G}_{j} \equiv\left(I-\omega_{j} A\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right)
$$

where ω_{j} 's are nonzero scalars. Then

1. $\mathcal{G}_{j+1} \subset \mathcal{G}_{j}$, for $j \geq 0$ and
2. dimension $\left(\mathcal{G}_{j+1}\right)<\operatorname{dimension}\left(\mathcal{G}_{j}\right)$ unless $\mathcal{G}_{j}=\{\mathbf{0}\}$.

70 Proof. See 11.

The main idea of the $\operatorname{IDR}(s)$ method is to create approximation vectors \mathbf{x}_{m} such that their corresponding residual vectors $\mathbf{r}_{m}=\mathbf{b}-A \mathbf{x}_{m}$ belong to the nested and shrinking subspaces $\mathcal{G}_{j} . \operatorname{IDR}(s)$ creates $s+1$ residual vectors in \mathcal{G}_{j},
and uses those vectors for the creation of the $s+1$ subsequent residuals in \mathcal{G}_{j+1}.
75 This process is repeated iteratively until convergence.
Our implementation of $\operatorname{IDR}(s)$ is based on $\operatorname{IDR}(s)$ with biorthogonal residuals (see [4]). In practice, this variant has proved to be more stable, and is also slightly less expensive. Next, we present the recurrences used by this $\operatorname{IDR}(s)$ variant. For sake of simplicity, we introduce new notation. The subspace \mathcal{S} is represented by the left null space of some full-rank $n \times s$ matrix $P=\left[\mathbf{p}_{1}, \ldots \mathbf{p}_{s}\right]$ (called shadow space). The superindex of a vector or a scalar represents the number of subspace \mathcal{G}_{j} where the current residual belongs. The subindex represents the position in the sequence of intermediate residuals. For $\mathbf{r}_{k}^{(j)}$ represents the k th residual in \mathcal{G}_{j}. The first residual vectors in \mathcal{G}_{j+1} and its respective approximation are

$$
\mathbf{x}_{0}^{(j+1)}=\mathbf{x}_{s}^{(j)}+\omega_{j+1} \mathbf{r}_{s}^{(j)}
$$

and

$$
\begin{equation*}
\mathbf{r}_{0}^{(j+1)}=\left(I-\omega_{j+1} A\right) \mathbf{r}_{s}^{(j)} \tag{4}
\end{equation*}
$$

and the recurrences to create the intermediate residuals in \mathcal{G}_{j+1}, are

$$
\mathbf{x}_{k}^{(j+1)}=\mathbf{x}_{k-1}^{(j+1)}+\beta_{k}^{(j+1)} \mathbf{u}_{k}^{(j+1)},
$$

and

$$
\begin{equation*}
\mathbf{r}_{k}^{(j+1)}=\mathbf{r}_{k-1}^{(j+1)}-\beta_{k}^{(j+1)} \mathbf{g}_{k}^{(j+1)}, \quad \text { for } k=1,2, \ldots, s \tag{5}
\end{equation*}
$$

The scalar $\beta_{k}^{(j+1)}$ is selected such that

$$
\begin{equation*}
\left\langle\mathbf{r}_{k}^{(j+1)}, \mathbf{p}_{k}\right\rangle=0 \tag{6}
\end{equation*}
$$

The direction vectors are defined as

$$
\begin{equation*}
\mathbf{u}_{k}^{(j+1)}=\hat{\mathbf{u}}_{k}^{(j+1)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{u}_{i}^{(j+1)}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{g}_{k}^{(j+1)}=\hat{\mathbf{g}}_{k}^{(j+1)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \tag{8}
\end{equation*}
$$

where the vector $\hat{\mathbf{u}}_{k}^{(j+1)}$ and $\hat{\mathbf{g}}_{k}^{(j+1)}$ are

$$
\begin{gather*}
\hat{\mathbf{g}}_{k}^{(j+1)}=A \hat{\mathbf{u}}_{k}^{(j+1)} \tag{9}\\
\hat{\mathbf{u}}_{k}^{(j+1)}=\omega_{j+1}\left(\mathbf{r}_{k-1}^{(j+1)}-\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}\right)+\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{u}_{i}^{(j)} . \tag{10}
\end{gather*}
$$

The scalars $\left\{\alpha_{i}^{(j+1)}\right\}_{i=1}^{k-1}$ in (7) and (8) are selected, such that

$$
\begin{equation*}
\left\langle\mathbf{g}_{k}^{(j+1)}, \mathbf{p}_{i}\right\rangle=0 \quad \text { for } i=1, \ldots, k-1 \tag{11}
\end{equation*}
$$

and the scalars $\left\{\gamma_{i}^{(j+1)}\right\}_{i=k}^{s}$ in 10 are selected as

$$
\begin{equation*}
\left\langle\mathbf{r}_{k-1}^{(j+1)}-\sum_{i=k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}, \mathbf{p}_{j}\right\rangle=0 \tag{12}
\end{equation*}
$$

The conditions (6), 11), and (12) not only ensure that the residual $\mathbf{r}_{k}^{(j+1)}$ belongs to \mathcal{G}_{j+1}, but also, that the residual $\mathbf{r}_{k}^{(j+1)}$ is orthogonal to the vectors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{k}$ for $k=1,2, \ldots, s$.

An important property needed for the deduction of the $\operatorname{IDR}(s)$-Hessenberg relation to be presented in the section 3, is that for any $\operatorname{IDR}(s)$ variant a residual in \mathcal{G}_{j} can be also written as

$$
\begin{equation*}
\mathbf{r}_{k}^{(j)}=\Omega_{j}(A) \Psi(A)_{s \times j+k} \mathbf{r}_{0} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{j}(t)=\prod_{i=0}^{j}\left(1-\omega_{i} t\right), \quad \omega_{i} \neq 0, \quad i=1, \ldots, j \tag{14}
\end{equation*}
$$

$\Omega_{0}(t)=1$, and $\Psi_{m}(t)$ is a multi-Lanczos-type polynomial 18 of order m, that uses $s+2$ terms recurrences such that $\Psi_{0}=1$ (see section 5 in [1]). When the first residual vector is created in \mathcal{G}_{j+1}, the polynomial $\Omega_{j}(A)$ increases by one degree. Then, the degree of the polynomial $\Psi_{m}(A)$ is increased by one for each matrix-vector product during the creation of the others intermediate residuals.

2.1. $\operatorname{IDR}(s)$ as a Petrov-Galerkin method and Ritz-IDR(s)

As we mention in the introduction of this work, Simoncini and Szyld showed that $\operatorname{IDR}(s)$ can be viewed as a Petrov-Galerkin method in 2]. Particularly
$\operatorname{IDR}(s)$ finds the approximation \mathbf{x}_{k+1} in the right or searching subspace $\mathbf{x}_{0}+$ $\mathcal{K}_{k+1}\left(A, \mathbf{r}_{0}\right)$, by imposing the condition that \mathbf{r}_{k+1} is orthogonal to the subspace \mathcal{W}_{j}, defined as

$$
\begin{equation*}
\mathcal{W}_{j}=\Omega_{j}\left(A^{H}\right)^{-1} \mathcal{K}_{j}\left(A^{H}, P\right) \tag{15}
\end{equation*}
$$

${ }_{85}$ where $\Omega_{j}(A)$ is the polynomial defined in 14 , and $\mathcal{K}_{j}\left(A^{H}, P\right)$ is the block Krylov subspace of order j, associated with the matrix A and the block P.

This link between $\operatorname{IDR}(s)$ and the rational block subspaces leads to the development of the variant $\operatorname{Ritz-IDR}(s)$. The authors in [2] argue that selecting the scalars ω_{j} as the inverse of Ritz values of the coefficient matrix A, is a good subspace with information about the associated eigencomponents. This would damp the eigenvector components from the residual vector in a quick way, which leads to a faster convergence. The Ritz values required are computed with a call to an eigensolver routine as the Arnoldi method. Note that Ritz-IDR(s) might require complex arithmetics even when the coefficient matrix and right-hand size vector are real, in the case when complex Ritz values are encountered.

In the following section we present how to obtain an Hessenberg relation from the $\operatorname{IDR}(s)$ recurrences. Using this Hessenberg relation, we can obtain approximations to the eigenvalues of the coefficient matrix, and in this form we obtain a self-contained variant of the $\operatorname{Ritz-IDR}(s)$. To distinguish it, we label our proposed algorithm as SC-Ritz-IDR(s).

3. Part 1: Accelerating $\operatorname{IDR}(s)$ using the Ritz values

$\operatorname{IDR}(s)$ has been previously used to obtain spectral information of a matrix. In [19], the authors adapt $\operatorname{IDR}(s)$ to solve the eigenvalue problem, and they obtain the matrices \hat{H}_{m} and T_{m} from a generalized Hessenberg relation

$$
A W_{m} T_{m}=W_{m} \hat{H}_{m}+\hat{\mathbf{f}} \mathbf{e}_{m}^{T}
$$

where $W_{m} \in \mathbb{C}^{n \times m}$ (not explicitly available) represents a Krylov subspace basis for $\mathcal{K}\left(A, \mathbf{w}_{1}\right), T_{m}$ is an s-banded, upper triangular matrix; \hat{H} is an s-banded,
upper Hessenberg matrix, and $\hat{\mathbf{f}} \in \mathbb{C}^{n}$. The approximation of the eigenvalues of A are obtained from the eigenvalue pencil $\left(\hat{H}_{m}, T_{m}\right)$. In [20], the authors create a standard Hessenberg relation

$$
\begin{equation*}
A W_{m}=W_{m} H_{m}+\mathbf{f e} \mathbf{e}_{m}^{T} \tag{16}
\end{equation*}
$$

where $W_{m} \in \mathbb{C}^{n \times m}$, and H_{m} is a Hessenberg matrix. This matrix H_{m} has the same eigenvalues as the matrix pencil $\left(\hat{H}_{m}, T_{m}\right)$.

The mentioned works [19] and [20] target specifically the eigenvalue/eigenvector approximation problem. Next, we describe how to obtain a matrix H_{m} part of a standard Hessenberg relation (16) from the underlying $\operatorname{IDR}(s)$-recurrences used to solve systems of linear equation. This allows us to obtain the solution of a system of linear equation, and at the same time obtain approximations to the eigenvalues of the coefficient matrix. Particularly, we use this spectral information as is suggested in [2], and we proposed a $\operatorname{Ritz-IDR}(s)$ variant labeled as SC-Ritz-IDR (s).

To derive this Hessenberg matrix, let us consider the $\operatorname{IDR}(s)$ relations described in section 2. Substituting (8)-(10) in (5), we obtain

$$
\begin{aligned}
\frac{\mathbf{r}_{k-1}^{(j+1)}-\mathbf{r}_{k}^{(j+1)}}{\beta_{k}^{(j+1)}} & =\hat{\mathbf{g}}_{k}^{(j+1)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =A \hat{\mathbf{u}}_{k}^{(j+1)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =A\left[\omega_{j+1}\left(\mathbf{r}_{k-1}^{(j+1)}-\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}\right)+\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{u}_{i}^{(j)}\right]-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}-\omega_{j+1} A \sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}+\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} A \mathbf{u}_{i}^{(j)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}-\omega_{j+1} A \sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}+\sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}+\left(I-\omega_{j+1} A\right) \sum_{i=s-k}^{s} \gamma_{i}^{(j+1)} \mathbf{g}_{i}^{(j)}-\sum_{i=1}^{k-1} \alpha_{i}^{(j+1)} \mathbf{g}_{i}^{(j+1)} \\
& =\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)}+\left(I-\omega_{j+1} A\right) \sum_{i=s-k}^{s} \frac{\gamma_{i}^{(j+1)}}{\beta_{i}^{(j)}}\left(\mathbf{r}_{i-1}^{(j)}-\mathbf{r}_{i}^{(j)}\right)-\sum_{i=1}^{k-1} \frac{\alpha_{i}^{(j+1)}}{\beta_{i}^{(j+1)}}\left(\mathbf{r}_{i-1}^{(j+1)}-\mathbf{r}_{i}^{(j+1)}\right) .
\end{aligned}
$$

From the equations above, we obtain the following relation

$$
\begin{align*}
\omega_{j+1} A \mathbf{r}_{k-1}^{(j+1)} & =\frac{\mathbf{r}_{k-1}^{(j+1)}-\mathbf{r}_{k}^{(j+1)}}{\beta_{k}^{(j+1)}}-\left(I-\omega_{j+1} A\right) \sum_{i=s-k}^{s} \frac{\gamma_{i}^{(j+1)}}{\beta_{i}^{(j)}}\left(\mathbf{r}_{i-1}^{(j)}-\mathbf{r}_{i}^{(j)}\right) \\
& +\sum_{i=1}^{k-1} \frac{\alpha_{i}^{(j+1)}}{\beta_{i}^{(j+1)}}\left(\mathbf{r}_{i-1}^{(j+1)}-\mathbf{r}_{i}^{(j+1)}\right) \tag{17}
\end{align*}
$$

Using (13), we obtain that each vector in \mathcal{G}_{j} can be written as

$$
\begin{equation*}
\mathbf{r}_{i}^{(j)}=\Omega_{j}(A) \hat{\mathbf{r}}_{i}^{(j)} \quad \text { for } i=0, \ldots, s \tag{18}
\end{equation*}
$$

and equivalently, any residuals in \mathcal{G}_{j+1} can be written as

$$
\begin{equation*}
\mathbf{r}_{i}^{(j+1)}=\Omega_{j+1}(A) \hat{\mathbf{r}}_{i}^{(j+1)} \quad \text { for } i=0, \ldots, s \tag{19}
\end{equation*}
$$

Taking into account 19 and (18), we can multiply 17 by $\Omega_{j+1}(A)^{-1}$ and obtain

$$
\begin{align*}
\omega_{j+1} A \hat{\mathbf{r}}_{k-1}^{(j+1)} & =\frac{\hat{\mathbf{r}}_{k-1}^{(j+1)}-\hat{\mathbf{r}}_{k}^{(j+1)}}{\beta_{k}^{(j+1)}}-\sum_{i=s-k}^{s} \frac{\gamma_{i}^{(j+1)}}{\beta_{i}^{(j)}}\left(\hat{\mathbf{r}}_{i-1}^{(j)}-\hat{\mathbf{r}}_{i}^{(j)}\right) \tag{20}\\
& +\sum_{i=1}^{k-1} \frac{\alpha_{i}^{(j+1)}}{\beta_{i}^{(j+1)}}\left(\hat{\mathbf{r}}_{i-1}^{(j+1)}-\hat{\mathbf{r}}_{i}^{(j+1)}\right)
\end{align*}
$$

The set of vectors $\hat{\mathbf{r}}_{i}$ represents the Krylov basis associated with the polynomial $\Psi(A)$. In fact, one can see that the basis grows with the degree of the polynomial $\Psi(A)$. Substituting (18) and (19) in (4), we obtain that

$$
\begin{equation*}
\hat{\mathbf{r}}_{0}^{(j+1)}=\hat{\mathbf{r}}_{s}^{(j)} \tag{21}
\end{equation*}
$$

This implies that every $s+1$ matrix-vector products, $\operatorname{IDR}(s)$ creates s new vectors basis $\hat{\mathbf{r}}_{i}$. Using 21, we can rewrite 20) as

$$
\begin{align*}
\omega_{j+1} A \hat{\mathbf{r}}_{k-1}^{(j+1)} & =-\frac{\gamma_{s-k}^{(j+1)}}{\beta_{s-k}^{(j+1)}} \hat{\mathbf{r}}_{s-k-1}^{(j)}-\sum_{i=s-k}^{s-1}\left(\frac{\gamma_{i+1}^{(j+1)}}{\beta_{i+1}^{(j)}}-\frac{\gamma_{i}^{(j+1)}}{\beta_{i}^{(j)}}\right) \hat{\mathbf{r}}_{i}^{(j)} \\
& +\left(\frac{\gamma_{s}^{(j+1)}}{\beta_{s}^{(j+1)}}+\frac{\alpha_{1}^{(j+1)}}{\beta_{1}^{(j+1)}}\right) \hat{\mathbf{r}}_{s}^{(j)}+\sum_{i=1}^{k-1}\left(\frac{\alpha_{i+1}^{(j+1)}}{\beta_{i+1}^{(j+1)}}-\frac{\alpha_{i}^{(j+1)}}{\beta_{i}^{(j+1)}}\right) \hat{\mathbf{r}}_{i}^{(j+1)} \tag{22}\\
& -\frac{1}{\beta_{k}^{(j+1)}} \hat{\mathbf{r}}_{k}^{(j+1)}
\end{align*}
$$

One can see in (22) that the vector $A \hat{\mathbf{r}}_{k-1}^{(j+1)}$ is a linear combination of the vectors $\left\{\hat{\mathbf{r}}_{i}^{(j)}\right\}_{i=s-k-1}^{s}$ and $\left\{\hat{\mathbf{r}}_{i}^{(j+1)}\right\}_{i=1}^{k}$. This defines a Hessenberg relation of the form

$$
\begin{equation*}
A \hat{R}_{\bar{m}}=\hat{R}_{\bar{m}+1} \bar{H}_{\bar{m}} \tag{23}
\end{equation*}
$$

where \bar{m} is the number of intermediate residuals created by $\operatorname{IDR}(s)$, and $\hat{R}_{\bar{m}}$ is a Krylov subspace basis defined as

$$
\begin{equation*}
\hat{R}_{\bar{m}}=\left[\hat{\mathbf{r}}_{0}^{(0)}, \ldots, \hat{\mathbf{r}}_{s}^{(0)}, \hat{\mathbf{r}}_{1}^{(1)}, \ldots, \hat{\mathbf{r}}_{s}^{(1)}, \ldots, \hat{\mathbf{r}}_{1}^{(j)}, \ldots, \hat{\mathbf{r}}_{s}^{(j)}, \hat{\mathbf{r}}_{1}^{(j+1)}, \ldots, \hat{\mathbf{r}}_{k}^{(j+1)}\right]_{n \times \bar{m}} \tag{24}
\end{equation*}
$$

The vectors $\hat{\mathbf{r}}_{i}$ are not constructed explicitly, however, it is easy to see that

$$
\begin{equation*}
\hat{\mathbf{r}}_{0}^{(0)}=\mathbf{r}_{0} . \tag{25}
\end{equation*}
$$

The matrix $H_{\bar{m}}$ is an upper and $s+1$ banded Hessenberg matrix whose columns are defined as

$$
\mathbf{H}_{\ell}=\left[\begin{array}{c}
0 \\
\vdots \\
h_{\ell-s, \ell} \\
\vdots \\
h_{\ell+1, \ell} \\
\vdots \\
0
\end{array}\right] \in \mathbb{C}^{\bar{m}+1},
$$

where

Our implementation of SC-Ritz-IDR (s) is based on the $\operatorname{IDR}(s)$ with biorthogonal residuals. The memory consumption of $\operatorname{SC-Ritz-IDR}(s)$ is similar to that
of $\operatorname{IDR}(s)$ (see section 3.5 in [4]). The sets of coefficients $\left\{\alpha_{i}\right\}_{i=1}^{s},\left\{\gamma_{i}\right\}_{i=1}^{s}$, and $\left\{\beta_{i}\right\}_{i=1}^{s}$, used in SC-Ritz-IDR (s), are stored in three extra vectors of size s. Algorithm 1 shows an implementation of SC-Ritz-IDR (s).

3.1. Numerical experiments

To illustrate the numerical behavior of the proposed algorithm, we repeat all the experiments presented in [2]. We compare our proposed variant SC-Ritz$\operatorname{IDR}(s)$ with $\operatorname{IDR}(s)$, Ritz- $\operatorname{IDR}(s)$ and full GMRES. All the experiments are performed in Matlab 2015a running on a 64 bit GNU/Debian Linux computer with 32 GB of RAM. The right-hand side vector $\mathbf{b}=\hat{\mathbf{b}} /\|\hat{\mathbf{b}}\|$ with $\hat{\mathbf{b}}=\mathbf{1}$, and the initial vector is $\mathbf{x}_{0}=\mathbf{0}$. As stopping criterion, we use

$$
\frac{\left\|\mathbf{b}-A \mathbf{x}_{k}\right\|}{\|\mathbf{b}\|}<\epsilon
$$

with $\epsilon=10^{-10}$.
For Ritz-IDR (s) and $\operatorname{SC-Ritz-IDR(s),~we~use~as~parameter~}$

$$
\begin{equation*}
\omega_{j}=\frac{1}{\lambda_{i}} \tag{26}
\end{equation*}
$$

where λ_{i} is an eigenvalue of the matrix $H_{\bar{m}}$. We select $\bar{m}=20$ and the 15 smallest magnitude eigenvalues. For $\operatorname{Ritz-IDR}(s)$, the matrix $H_{\bar{m}}$ is obtained with a preliminary call to the Arnoldi method. In the case of $\operatorname{SC-Ritz-IDR}(s)$ the matrix $H_{\bar{m}}$ is computed as is explained in section 3. Before the creation of the matrix $H_{\bar{m}}$, SC-Ritz-IDR (s) uses the converge maintenance strategy, proposed in 4], to select the first ω_{j} parameters.

3.1.1. Convection-diffusion-reaction equation examples

The linear systems of equations used in the next three examples are based on the finite difference discretization of the simple convection-diffusion-reaction model problem

$$
\begin{equation*}
-\epsilon \triangle u+\mathbf{v}^{T} \nabla u+\rho u=f, \quad \text { in } \Omega=[0,1]^{d} \tag{27}
\end{equation*}
$$

with $d=2$ or $d=3$, and homogeneous Dirichlet boundary conditions on $\partial \Omega$.
${ }_{130}$ Particularly, it is known that $\operatorname{IDR}(s)$ with $s>1$ outperforms BiCGStab [21] when the $\|\mathbf{v}\| \gg \epsilon$ (see for example [22] and [23]).

```
Algorithm \(1 \operatorname{IDR}(s)\) accelerated with Ritz values
    procedure \(\operatorname{IDR}\left(A, \mathbf{b}, s\right.\), tol, \(\left.\mathbf{x}_{0}\right)\)
        Input: \(A \in \mathbb{C}^{n \times n}, \mathbf{b} \in \mathbb{C}^{n}, s \in \mathbb{N}^{+}\), tol \(\in(0,1), \mathbf{x}_{0} \in \mathbb{C}^{n}\)
        \(\mathbf{x}=\mathbf{x}_{0}, \mathbf{r}=\mathbf{b}-A \mathbf{x}\)
        \(P\) a random matrix in \(\mathbb{C}^{n \times s}\).
        \(G=0 \in \mathbb{C}^{n \times s}, U=0 \in \mathbb{C}^{n \times s}\)
        \(M=I_{s} \in \mathbb{C}^{s \times s}\).
        \(\omega=1.0, \ell=0, H_{\bar{m}}=0 \in \mathbb{C}^{\bar{m}+1 \times \bar{m}}, \mathbf{c}=\mathbf{o}, \alpha=\mathbf{0}, \beta=\mathbf{0} \in \mathbb{C}^{S}\)
    while \(\|\mathbf{r}\| \leq\) tol \(\times\|\mathbf{b}\|\) do \(\quad \triangleright\) Loop over \(\mathcal{G}_{j}\) spaces
        \(\mathbf{f}=P^{H} \mathbf{r}\)
            for \(k=1\) to \(s\) do \(\quad \triangleright\) Compute \(s\) independent vectors \(\mathbf{g}_{k}\) in \(\mathcal{G}_{j}\) space
            Solve \(\mathbf{c}\) from \(M \mathbf{c}=\mathbf{f},\left(\gamma_{1}, \ldots, \gamma_{s}\right)^{H}=\mathbf{c} \quad \triangleright\) Note that \(M=P_{G}^{H}\)
            \(\mathbf{v}=\mathbf{r}-\sum_{i=k}^{s} \gamma_{i} \mathbf{g}_{i}\)
            \(\mathbf{v}=B^{-1} \mathbf{v} \quad \triangleright\) Preconditioning operation
            \(\mathbf{u}_{k}=\omega \mathbf{v}+\sum_{i=k}^{s} \gamma_{i} \mathbf{g}_{i}\)
            \(\mathbf{g}_{k}=A \mathbf{u}_{k}\)
            for \(i=1\) to \(k-1\) do \(\quad \triangleright\) Make \(\mathbf{g}_{k}\) orthogonal to \(P\)
                \(\alpha_{i}=\left\langle\mathbf{g}_{k}, \mathbf{p}_{i}\right\rangle / \mu_{i, i}\)
                \(\mathbf{g}_{k}=\mathbf{g}_{k}-\alpha_{i} \mathbf{g}_{i}\)
                \(\mathbf{u}_{k}=\mathbf{u}_{k}-\alpha_{i} \mathbf{u}_{i}\)
            end for
            \(\mu_{i, k}=\left\langle\mathbf{g}_{k}, \mathbf{p}_{i}\right\rangle, M_{i, k}=\mu_{i, k}\), for \(i=k, \ldots, s \quad \triangleright\) Update \(M\)
            \(\beta_{k}=\phi_{k} / \mu_{k, k} \quad \triangleright\) Now \(\left\langle\mathbf{r}, \mathbf{p}_{i}\right\rangle=0\) for \(i=1, \ldots, k\)
            \(\mathbf{r}=\mathbf{r}-\beta_{k} \mathbf{g}_{k}\)
            \(\mathbf{x}=\mathbf{x}+\beta_{k} \mathbf{u}_{k}\)
            if \(k+1 \leq s\) then
                    \(\mathbf{f}_{i}=0\) for \(i=1, \ldots, k\)
                    \(\mathbf{f}_{i}=\mathbf{f}_{i}-\beta_{k} M_{i, k}\) for \(i=k+1, \ldots, s\)
            end if
            \(\ell=\ell+1\)
            if \(\ell \leq \bar{m}\) then
                    \(H_{\ell-s: \ell-k, \ell}=\mathbf{c}_{k: s} / \beta_{k: s}\)
                    \(H_{\ell-k+1: \ell-1, \ell}=\alpha_{1: k-1} / \beta_{1: k-1}\)
                    \(H_{\ell, \ell}=1.0 / \beta_{k}\)
                    \(H_{\ell-s+1: \ell+1, \ell}=H_{\ell-s+1: \ell+1, \ell}+H_{\ell-s: \ell, \ell}\)
                    \(H_{\ell-s: \ell+1, \ell}=H_{\ell-s: \ell+1, \ell} / \omega\)
            end if
            Overwrite \(k\) th columns of \(G\) and \(U\) by \(\mathbf{g}_{k}\) and \(\mathbf{u}_{k}\) respectively.
        end for
\(\mathbf{v}=B^{-1} \mathbf{r}\)\(\quad \triangleright\) Entering \(\mathcal{G}_{j+1}\)
        \(\mathbf{v}=B^{-1} \mathbf{r} \quad \triangleright\) Preconditioning operation
        \(\mathbf{t}=A \mathbf{v}\)
        if \(\ell \leq \bar{m}\) then
            \(\omega\) is selected using the converge maintenance strategy 4.
        else
            \(\omega\) is selected using the spectral information provided by \(H_{\bar{m}}\)
        end if
        \(\mathbf{r}=\mathbf{r}-\omega \mathbf{t}\)
        \(\mathbf{x}=\mathbf{x}+\omega \mathbf{v}\)
        end while
        Return \(\times\) and \(H_{\bar{m}}\) (if required).
    end procedure
```

Example 1. In this example the coefficient matrix A is given by the finite difference discretization of (27) for the 2D case. The physical parameters used are $\epsilon=1, \mathbf{v}=[4,0]^{T}$, and $\rho=400$. We discretize the domain Ω using 21 points in each direction. Figure 1 (a) shows the convergence of the norm of the residual for the matrix A of order 400 generated with the parameters described. $\operatorname{Ritz-IDR}(s)$ and $\operatorname{SC-Ritz-IDR}(s)$ do not show any improvement over $\operatorname{IDR}(s)$. However, using a convection-dominated taking 41 points in each direction and $\epsilon=1, \mathbf{v}=[80,0]^{T}$, and $\rho=1600$, we can see in Figure 1 (b) a better performance of Ritz-IDR (s) and $\operatorname{SC-Ritz-IDR}(s)$ over $\operatorname{IDR}(s)$.

Figure 1: (Example 1) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and SC-Ritz-IDR(4). (a) Diffusion-dominated example. (b) Convection-dominated example.

Example 2. We consider two matrices of order 8000 from the discretization of the 3D problem 27 with $\epsilon=1, \mathbf{v}=\beta[1,1,1]$, and $\rho=0$. First using $\beta=100$, we can see in Figure $2(a)$ a similar behavior between the $\operatorname{IDR}(s)$ variants. However, Ritz-IDR (s) and $\operatorname{SC-Ritz-IDR}(s)$ are clearly superior with respect to the $\operatorname{IDR}(s)$ when the parameter β is increased to 500 (see Figure 2 (b)).
(a)

(b)

Figure 2: (Example 2) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and SC-Ritz-IDR(4). (a) Diffusion-dominated example. (b) Convection-dominated example.

Example 3. The coefficient matrix used in this example is the unsymmetric matrix of order 8000 that comes from the finite difference discretization of the 3 D (27), with parameter $\epsilon=1, \rho=0$, and $\mathbf{v}=[0,0,1000]^{T}$. As in part

Figure 3: (Example 3) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and SC-Ritz-IDR(4).
(b) of previous example, $\operatorname{IDR}(4)$ does not converge for the maximum number of iterations allowed, while Ritz-IDR(4) and SC-Ritz-IDR(4) converge using almost the same number of matrix-vector products (see Figure 3).

3.1.2. Examples from Matrix Market

The matrices used in the next two examples are part of the Matrix Market collection [24].

Example 4. We consider the highly indefinite matrix Sherman5 of order 3312. As is reported in [2] $\operatorname{Ritz-IDR}(s)$ diverges for this example. SC-Ritz-IDR (s) exhibits a similar behavior. On the other hand, Figure 4 shows that both Ritz$\operatorname{IDR}(s)$ variants converge using the Incomplete $L U$ factorization of the matrix $A+I$ as preconditioner with threshold tolerate 10^{-2}. In this example, $\operatorname{IDR}(s)$ and its variant behave similarly in term of matrix-vector products required.

Example 5. In this example, we consider the linear system of equations ADD20 which arises from computer component design. In this example, we stop the algorithms when the relative residual norm is less than 1×10^{-8}. As is proposed

Figure 4: (Example 4) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4), and SC-Ritz-IDR(4) for the matrix Sherman5 using ILU preconditioner. sults show a similar behavior between $\operatorname{Ritz-IDR}(s)$ and $\operatorname{SC-Ritz-IDR}(s)$ in terms of matrix-vector products and convergence. Moreover, their computational requirements are virtually the same. The only difference is that SC-Ritz-IDR(s) requires storing a Hessenberg matrix of size \bar{m}. The main advantage of SC${ }_{75} \operatorname{Ritz-IDR}(s)$ is that it computes the Ritz-values "on-the-fly". Therefore, unlike in Ritz-IDR (s), the time overhead of a call to an external eigensolver is avoided in SC-Ritz-IDR (s).

Figure 5: (Example 5) Evolution of the residual norm of full GMRES, $\operatorname{IDR}(4), \operatorname{Ritz-IDR(4),~}$ and SC-Ritz-IDR(4) for the matrix ADD20.

4. Part 2: Accelerating IDR(s) using Ritz vectors

In the previous sections we use the recurrences of $\operatorname{IDR}(s)$ to obtain an upper Hessenberg matrix $H_{\bar{m}}$. From this matrix $H_{\bar{m}}$, we obtain the Ritz values to accelerate the $\operatorname{IDR}(s)$ method. In this section, we incorporate the Ritz vectors to the Krylov basis generated by $\operatorname{IDR}(s)$. First, we present how to add additional vectors to the $\operatorname{IDR}(s)$ searching subspace basis, i.e., the augmented Krylov subspace

$$
\begin{equation*}
\mathcal{K}_{s+m}\left(A, \mathbf{r}_{0}\right)=\operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{s}, A \mathbf{r}_{0}, \ldots, A^{m-1} \mathbf{r}_{0}\right\} \tag{28}
\end{equation*}
$$

Secondly, we use the matrix $H_{\bar{m}}$ to recover the Ritz vectors of the coefficient matrix, and add these Ritz vectors in $\operatorname{IDR}(s)$.

To add additional direction vectors to the Krylov basis created by $\operatorname{IDR}(s)$, we exploit the fact that \mathcal{G}_{0} is \mathbb{C}^{n}. We can choose freely the first $s+1$ linearly independent direction vectors in $\operatorname{IDR}(s)$ and obtain their corresponding approximations and associated residuals. In the case of the biorthogonal variant, we have to ensure that each residual $\mathbf{r}_{\mathbf{i}}$ is orthogonal to \mathbf{p}_{j} for $i=1,2, \ldots, s$ and

Execution times [s]					
Experiment / Method	Full GMRES	IDR(4)	Ritz-IDR(4)	SC-Ritz-IDR(4)	
Experiment 1 (a)	0.435	0.043	0.087	0.085	
Experiment 1(b)	4.784	0.259	0.367	0.392	
Experiment 2(a)	0.382	0.051	0.124	0.086	
Experiment 2(b)	3.251	0.561	0.511	0.361	
Experiment 3	4.964	$*$	0.608	0.396	
Experiment 4	0.207	0.0252	0.073	0.046	
Experiment 5	1.086	0.156	0.198	0.174	

Table 1: CPU time consumed for the methods GMRES, IDR(4), Ritz-IDR(4), and SC-Ritz$\operatorname{IDR}(4)$ for the solution of systems of linear systems. The symbol ${ }^{*}{ }^{*}$ indicates that the method diverges. The recorded time for $\operatorname{Ritz-IDR}(s)$ includes the call of \bar{m} steps of the Arnoldi method.
$j=1,2, \ldots, i$, and each vector \mathbf{g}_{i} is orthogonal to \mathbf{p}_{j} for $i=1,2, \ldots, s$ and $j=1,2, \ldots, i-1$. In order to do so, we present the Algorithm 2, to create the first s biorthogonal residuals.

To add the vectors $\left\{\mathbf{y}_{i}\right\}_{i=1}^{s}$ to the $\operatorname{IDR}(s)$, we should replace Algorithm 2 by the lines 5 and 6 in Algorithm 1. As is proposed in (9], [10], and [26], we use as extra basis vectors the Ritz vector associated with the smallest-magnitude Ritz values.

Example 6. (A Motivating Example.) To exemplify the idea of using the spectral information in the initial subspace \mathcal{G}_{0}, we consider solving a system of linear equations with the following bidiagonal matrix

$$
A=\left[\begin{array}{cccccc}
1 \times 10^{-8} & 1 \times 10^{-5} & & & & \tag{29}\\
& 2 \times 10^{-8} & 1 \times 10^{-5} \\
& & \ddots & & & \\
& & & 5 \times 10^{-8} & 1 \times 10^{-5} & \\
& & 6 & 1 \times 10^{-5} & \\
& & & & \ddots & \\
& & & & & 100
\end{array}\right]_{100 \times 100}
$$

```
Algorithm 2 Injecting basis vectors in \(\mathcal{G}_{0}\)
    Input: \(\left\{\mathbf{y}_{i}\right\}_{i=1}^{s}\)
    for \(k=1\) to \(s\) do
        \(\mathbf{u}_{k}=\mathbf{y}_{k}\)
        \(\mathbf{g}_{k}=A \mathbf{u}_{k}\)
        for \(i=1\) to \(k-1\) do \(\quad \triangleright\) Make \(\mathbf{g}_{k}\) orthogonal to \(P\)
            \(\alpha=\left\langle\mathbf{g}_{k}, \mathbf{p}_{i}\right\rangle / \mu_{i, i}\)
            \(\mathbf{g}_{k}=\mathbf{g}_{k}-\alpha \mathbf{g}_{i}\)
            \(\mathbf{u}_{k}=\mathbf{u}_{k}-\alpha \mathbf{u}_{i}\)
        end for
        \(\mu_{i, k}=\left\langle\mathbf{g}_{k}, \mathbf{p}_{i}\right\rangle, M_{i, k}=\mu_{i, k}\), for \(i=k, \ldots, s \quad \triangleright\) Update \(M\)
        \(\beta=\phi_{k} / \mu_{k, k} \quad \triangleright\) Make the residual orthogonal to \(\mathbf{p}_{i}\) for \(i=1, \ldots, k\)
        \(\mathbf{r}=\mathbf{r}-\beta \mathbf{g}_{k}\)
        \(\mathbf{x}=\mathbf{x}+\beta \mathbf{u}_{k}\)
        \(\phi_{i}=0\) for \(i=1, \ldots, k\)
        \(\phi_{i}=\phi_{i}-\beta \mu_{i, k}\) for \(i=k+1, \ldots, s\)
    end for
    \(\triangleright\) Entering \(\mathcal{G}_{j+1}\)
```


Figure 6: (Example 6) Evolution of the residual norm of full $\operatorname{IDR}(5)$ and $\operatorname{IDR}(5)$ with recycling with the four eigenvectors associated with the smallest magnitude eigenvalues of the matrix 29.
and the right-hand side vector is $\mathbf{b}=\mathbf{1}$. We compare $\operatorname{IDR}(5)$ and $\operatorname{IDR}(5)$ with recycling. As recycling vectors, we use the five eigenvectors associated with the smallest magnitude eigenvalues of the bidiagonal matrix A. The initial guess vector is $\mathbf{x}_{0}=\mathbf{0}$. Figure 6 shows the evolution of the norms of the residuals, one can see a considerable reduction in the number of matrix-vector products for $\operatorname{IDR}(s)$ with recycling.

It is worth mentioning the recently proposed $\mathrm{M}(s) \operatorname{STAB}(\ell)$ method by Neuenhofen [17]. $\mathrm{M}(s) \operatorname{STAB}(\ell)$ is a variant of the IDRstab [22], that is specialized to solve sequences of systems of linear equations where the coefficient matrix is constant. Based on a generalization of the $\operatorname{IDR}(s)$ Theorem, $\mathrm{M}(s) \operatorname{STAB}(\ell)$ uses as initial vectors basis in \mathcal{G}_{0} the last $s+1$ vectors in the subspace \mathcal{G}_{j}, which were created during the solution of the previous system of linear equation. In this form, $\mathrm{M}(s) \operatorname{STAB}(\ell)$ reduces the computation and accelerates the solution of (2).
4.1. Adding the Ritz vectors to $I D R(s)$: application to sequence of system of
linear equations
Here we present the main application of $\operatorname{IDR}(s)$ with recycling, the solution coefficient matrix A is constant, and the right-hand side vectors $\left\{\mathbf{b}^{(i)}\right\}_{i=1}^{p}$ are not available simultaneously.

The main idea is to compute a subset of Ritz vectors of the matrix A during the solution of the first system of linear equation, and then use these Ritz vectors to accelerate the solution of the subsequent systems of linear equations. The upper Hessenberg matrix $H_{\bar{m}} \in \mathbb{C}^{\bar{m} \times \bar{m}}$ is computed using Algorithm 1. To compute the Ritz vectors after the first execution of $\operatorname{IDR}(s)$, we need to compute the Krylov basis \hat{R} in 23 . To compute this \hat{R}, we use 13 and obtain that,

$$
\begin{equation*}
\hat{\mathbf{r}}_{0}=\mathbf{r}_{0} \tag{30}
\end{equation*}
$$

and taking into account the upper Hessenberg structure of the matrix $H_{\bar{m}}$, we obtain the following recurrence formula for the vector $\hat{\mathbf{r}}_{i}$

$$
\begin{equation*}
\hat{\mathbf{r}}_{i}=\frac{1}{h_{i+1, i}}\left[A \hat{\mathbf{r}}_{i-1}-\sum_{j=\max (0, i-s)}^{i-1} h_{j, i} \hat{\mathbf{r}}_{j}\right] \tag{31}
\end{equation*}
$$

Because (31) uses only the last $s+1$ vectors, we can even obtain the Ritz vector saving temporally only the last $s+1$ basis vectors. Algorithm 3 presents how to obtain the Ritz vectors of A, after we have obtained the matrix H.

Once we compute the s Ritz vectors associated with the smallest magnitude, we proceed to use these vectors in $\operatorname{IDR}(s)$ with recycling to solve the remaining systems of linear equations. Algorithm 4 summarizes this procedure.

4.2. Numerical experiments

In this section, we conduct two numerical experiments of solving sequences of systems of linear equations (Algorithm 4). We use the same computer setting as is described in section 3.1. The stopping criterion consider in this experiment is

$$
\frac{\left\|\mathbf{b}_{i}-A \mathbf{x}_{k}\right\|}{\left\|\mathbf{b}_{i}\right\|}<10^{-6}, \quad \text { for } i=1,2, \ldots, p
$$

```
Algorithm 3 Obtaining the Ritz vectors
    procedure Ritz VEctorsidR \(\left(A, s, H, \mathbf{r}_{0}\right)\)
        Input: \(A \in \mathbb{C}^{n \times n}, s \in \mathbb{N}^{+}, \mathbf{x} \in \mathbb{C}^{n}\).
        \(\operatorname{Obtain}\left(\lambda_{i}, \hat{\mathbf{y}}_{i}\right)\) as the eigenpairs associated with the smallest magnitude
    eigenvalues of \(H\).
        \(\hat{\mathbf{r}}_{0}=\mathbf{r}_{0}\)
        \(Y=\hat{\mathbf{r}}_{0} \times\left[\left[\hat{\mathbf{y}}_{1}\right]_{1},\left[\hat{\mathbf{y}}_{2}\right]_{1}, \ldots,\left[\hat{\mathbf{y}}_{\bar{m}}\right]_{1}\right]\)
        for \(i=1\) to \(\bar{m}-1\) do
            \(\hat{\mathbf{r}}_{i}=\frac{1}{h_{i+1, i}}\left[A \hat{\mathbf{r}}_{i-1}-\sum_{j=\max (0, i-s)}^{i-1} h_{j, i} \hat{\mathbf{r}}_{j}\right]\)
            \(Y=Y+\hat{\mathbf{r}}_{i} \times\left[\left[\hat{\mathbf{y}}_{1}\right]_{i+1},\left[\hat{\mathbf{y}}_{2}\right]_{i+1}, \ldots,\left[\hat{\mathbf{y}}_{\bar{m}}\right]_{i+1}\right]\)
        end for
        return \(\{\lambda\}_{i=1}^{\bar{m}}, Y\).
    end procedure
```

```
Algorithm \(4 \operatorname{IDR}(s)\) with recycling for sequences of system of linear equations
    procedure \(\operatorname{IDR}\left(A,\left\{\mathbf{b}_{i}\right\}, s\right.\), tol, \(\left.\mathbf{x}_{0}\right)\)
        call \(\operatorname{IDR}\left(A, \mathbf{b}_{1}, s, t o l, \mathbf{x}_{0}\right)\) to obtain \(\mathbf{x}_{1}\) and the matrix \(H_{\bar{m}}\) (Algo-
    rithm (1).
        call Ritz vectorsIDR \(\left(A, s, H_{\bar{m}}, \mathbf{r}_{1}\right)\) to obtain the Ritz vectors \(\left\{\mathbf{y}_{j}\right\}_{j=1}^{s}\)
    (Algorithm 3)
        for each right-hand side vector \(\mathbf{b}_{i}\) with \(i=2,3, \ldots, p\) do
            call \(\operatorname{IDR}(s)\) to solve \(A \mathbf{x}_{i}=\mathbf{b}_{i}\) with the Ritz-vector \(\left\{\mathbf{y}_{j}\right\}_{j=1}^{s}\).
        end for
        return \(\mathbf{x}_{i}\) for \(i=1, \ldots, p\)
    end procedure
``` and for the subsequent linear systems, we use the approximate solution of the previous linear system of equations.

Example 7. In this example, we consider the linear time-dependent convection-diffusion-reaction
\[
\begin{equation*}
\frac{\partial u}{\partial t}+\mathbf{v}^{T} \nabla u=\epsilon \Delta u+\rho u+f \tag{32}
\end{equation*}
\]
with homogeneous Dirichlet conditions on the unit cube, and \(u\left(t_{0}\right)=\mathbf{0}, \mathbf{v}=\) \([1,1,1], \epsilon=0.1\) (diffusion-dominated) or \(\epsilon=0.005\) (convection-dominated), the reaction parameter \(\rho\) is 5 , the function \(f\) is obtained from
\[
u=\sqrt{x(1-x) y(1-y) z(1-z)}
\]

We solve (32) using Euler backward for time integration for \(t \in[0,10]\) with \(\delta t=1\). For space discretization, we use central finite differences with \(h=0.02\) obtaining a linear system of equations of size \(125000 \times 125000\) per time-step. Figures 7 and 8 show the residual norm behavior for full GMRES, GCROT, and \(\operatorname{IDR}(s)\) with and without Ritz vector enrichment. First, we can see a good decrement in number of matrix-vector multiplication when \(\operatorname{IDR}(s)\) is enriched with the Ritz vectors. Second, the long recurrences methods solve all the systems of linear equations using less number of matrix-vector multiplications. However, Tables 2 and 3 show that \(\operatorname{IDR}(s)\) with Ritz vectors solves the convection and diffusion-dominated problems much faster that GMRES and GCROT, and other short recurrences methods.

\section*{5. Conclusions}

In this work, we have derived a Hessenberg relation from the \(\operatorname{IDR}(s)\) method for solving system of linear equations. This is a key component to obtain approximations to the eigenvalues and eigenvectors of the coefficient matrix involved. We have used this spectral information to accelerate the \(\operatorname{IDR}(s)\) method.

In the first part of this paper, we have proposed a \(\operatorname{Ritz-IDR}(s)\) variant,
The initial vector for the first system of linear equations is the zero vector, - named SC-Ritz-IDR(s), to solve systems of linear equations based on the work

Figure 7: (Example 7). Convergence residual history for the solution of 32 (diffusiondominated example)

Figure 8: (Example 7). Convergence residual history for the solution of 32 (convectiondominated example)
\begin{tabular}{l|c|c}
Method & MATVECs & CPU time [s] \\
\hline Full GMRES & 718 & 185.93 \\
GCRot(20, 4) & 525 & 33.72 \\
GCRot(20, 16) & 332 & 51.2 \\
BiCG [27] & 1946 & 19.85 \\
BiCGStab & 1900 & 12.13 \\
QMR [28] & 1884 & 22.62 \\
IDR(4) without recycling & 889 & 20.34 \\
IDR(4) with recycling & 618 & 16.86 \\
IDR(16) without recycling & 845 & 36.61 \\
IDR(16) with recycling & 523 & 34.15
\end{tabular}

Table 2: (Example 7). Matrix-vector multiplications and time used for each method in the solution of 32 (diffusion dominated example)
\begin{tabular}{l|c|c}
Method & MATVECs & CPU time [s] \\
\hline Full GMRES & 962 & 281.43 \\
GCRot(20, 4) & 1380 & 96.01 \\
GCRot(20, 16) & 514 & 83.61 \\
IDR(4) without recycling & 1360 & 31.46 \\
IDR(4) with recycling & 1066 & 22.57 \\
IDR(16) without recycling & 1089 & 54.44 \\
IDR(16) with recycling & 578 & 37.58
\end{tabular}

Table 3: (Example 7). Matrix-vector multiplications and time used for each method in the solution of (convection dominated example)
by Simoncini and Szyld [2]. This algorithm uses the inverse of the Ritz values as parameters \(\omega_{j}\) for the creation of the residuals vectors into the subspaces \(\mathcal{G}_{j}\). In contrast to \(\operatorname{Ritz-IDR}(s)\), our proposed variant \(\operatorname{SC-Ritz-IDR}(s)\) is a selfcontained algorithm, i. e., it does not use an external sparse eigensolver to compute the Ritz values. In terms of CPU requirements and memory consumption, \(\mathrm{SC}-\operatorname{Ritz-IDR}(s)\) has a similar computational behavior as \(\operatorname{Ritz-IDR(s)~[2].~}\) Implementations of both methods Ritz-IDR(s) and SC-Ritz-IDR(s) may use complex arithmetic, even when the coefficient matrix and the right-hand side vectors are real, in the case of complex Ritz values as parameters \(\omega_{j}\).

In the second part of the paper, we have explained how to enrich the searching subspace of \(\operatorname{IDR}(s)\) with the Ritz vectors. In particular, we have applied this enrichment to \(\operatorname{IDR}(s)\) for solving sequences of systems of linear equations. After approximating the eigenvector during the solution of the first system of linear equations, \(\operatorname{IDR}(s)\) uses this spectral information for the subsequent systems of equations. Numerical experiments show a significant reduction of the computational time.

\section*{6. Acknowledgment}

The authors would like to thank the anonymous reviewers for their comments and suggestions to improve the quality of the paper.

\section*{References}
[1] P. Sonneveld, M. B. van \(\operatorname{Gijzen}, \operatorname{IDR}(s)\) : A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations, SIAM J. Sci. Comput. 31 (2) (2008) 1035-1062. doi:10.1137/070685804
[2] V. Simoncini, D. B. Szyld, Interpreting IDR as a Petrov-Galerkin method, SIAM J. Sci. Comput. 32 (4) (2010) 1898-1912. doi:10.1137/090774756
[3] Y.-F. Jing, T.-Z. Huang, Y. Duan, B. Carpentieri, A comparative study of iterative solutions to linear systems arising in quantum mechanics, J.

Comput. Phys. 229 (11) (2010) 8511-8520. doi:10.1016/j.jcp. 2010. 07.034
[6] P. Sonneveld, On the convergence behavior of \(\operatorname{IDR}(s)\) and related methods, SIAM J. Sci. Comput. 34 (5) (2012) A2576-A2598. doi:10.1137/ 100789889 .
[7] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17-29. doi: 10.1090/qam/42792
[8] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand. 45 (4) (1950) 255-281. doi:10.6028/jres.045.026 tors, SIAM J. Matrix Anal. Appl. 16 (4) (1995) 1154-1171. doi:10.1137/ S0895479893253975.
[10] E. de Sturler, Truncation strategies for optimal Krylov subspace meth■ ods, SIAM J. Numer. Anal. 36 (3) (1999) 864-889. doi:10.1137/ \(290 \quad\) S0036142997315950
[11] E. Agullo, L. Giraud, Y.-F. Jing, Block GMRES method with inexact breakdowns and deflated restarting, SIAM J. Matrix Anal. Appl. 35 (4) (2014) 1625-1651. doi:10.1137/140961912.
[12] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856-869. doi:10.1137/0907058.
[13] S. C. Eisenstat, H. C. Elman, M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (2) (1983) 345-357. doi:10.1137/0720023. IDR, SIAM J. Matrix Anal. Appl. 34 (2) (2013) 283-311. doi:10.1137/ 100804012 .
[20] R. Astudillo, M. B. van Gijzen, A restarted Induced Dimension Reduction method to approximate eigenpairs of large unsymmetric matrices, J. Comput. Appl. Math. 296 (2016) 24-35. doi:10.1016/j.cam.2015.09.014
[21] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13 (2) (1992) 631-644. doi:10.1137/0913035
[22] G. L. G. Sleijpen, M. B. van Gijzen, Exploiting BiCGstab(\(\ell\)) strategies to Induce Dimension Reduction, SIAM J. Sci. Comput. 32 (5) (2010) 26872709. doi:10.1137/090752341.
[23] R. Astudillo, M. B. van Gijzen, The Induced Dimension Reduction method applied to convection-diffusion-reaction problems, in: B. Karasözen, M. Manguoğlu, M. Tezer-Sezgin, S. Göktepe, Ö. Uğur (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2015, ■ Springer, Cham, ZG, Switzerland, 2016, pp. 295-303. doi:10.1007/ 978-3-319-39929-4_29.
[24] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, J. Dongarra, Matrix Market: A web resource for test matrix collections, in: R. F. Boisvert (Ed.), Proceedings of the IFIP TC2/WG2.5 Working Conference on Quality of Numerical Software: Assessment and Enhancement, Chapman \& Hall Ltd., London, UK, 1997, pp. 125-137.
[25] J. Baglama, D. Calvetti, L. Reichel, Fast Leja points, Electron. Trans. Numer. Anal. 7 (1998) 124-140.
[27] R. Fletcher, Conjugate gradient methods for indefinite systems, in: G. A. Watson (Ed.), Proceedings of the Dundee Conference on Numerical Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1976, pp. 73-89. doi:10.1007/BFb0080116.
[28] R. W. Freund, N. M. Nachtigal, QMR: A quasi-minimal residual method
for non-Hermitian linear systems, Numer. Math. 60 (1) (1991) 315-339.
doi:10.1007/BF01385726.```

[^0]: *Corresponding author
 Email addresses: R.A.Astudillo@tudelft.nl (R. Astudillo), jan.degier@tno.nl (J. M. de Gier), M.B.vanGijzen@tudelft.nl (M. B. van Gijzen)

