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Accelerating the Induced Dimension Reduction method
using spectral information

R. Astudilloa,∗, J. M. de Gierb, M. B. van Gijzena

aDelft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628
CD Delft, The Netherlands

bTNO Technical Sciences, Distributed Sensor Systems, Oude Waalsdorperweg 63, 2597 AK
The Hague, The Netherlands

Abstract

The Induced Dimension Reduction method (IDR(s)) [SIAM J. Sci. Comput.,

31(2) (2008), pp. 1035–1062] is a short-recurrences Krylov method to solve sys-

tems of linear equations. In this work, we accelerate this method using spectral

information. We construct a Hessenberg relation from the IDR(s) residual recur-

rences formulas, from which we approximate the eigenvalues and eigenvectors.

Using the Ritz values, we propose a self-contained variant of the Ritz-IDR(s)

method [SIAM J. Sci. Comput., 32(4) (2010), pp. 1898–1912] for solving a sys-

tem of linear equations. In addition, the Ritz vectors are used to speed-up

IDR(s) for the solution of sequence of systems of linear equations.

Keywords: Induced Dimension Reduction method, system of linear equations,

sequence of systems of linear equation, eigenvalues and eigenvectors.

1. Introduction

In this work, we are interested in accelerating the convergence of the Induced

Dimension Reduction method (IDR(s)) [1] to solve a system of linear equations

Ax = b, with A ∈ Cn×n and b ∈ Cn, (1)
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and also to solve sequences of systems of linear equations

Ax(i) = b(i), with A ∈ Cn×n and b(i) ∈ Cn, for i = 1, 2, . . . , p. (2)

The vectors x, x(1), . . . ,x(p) represent the unknowns in Cn, and we only consider

the case when the coefficient matrix A is a non-Hermitian and non-singular

matrix.

IDR(s) is a Krylov subspace method which has been proved to be effec-5

tive for solving large and sparse systems of linear equations. Both theoreti-

cal and practical aspects of the IDR(s) have been studied in different works,

e.g., [2], [3], [4], [5], and [6] among others. Simoncini and Szyld reformulate

IDR(s) as a Petrov-Galerkin method in [2]. The authors prove that in IDR(s)

the subspace of constraints or left space is a block rational Krylov subspace.10

Based on this connection with the rational subspaces, they propose to use the

Ritz values to accelerate the convergence of IDR(s). This idea originates Ritz-

IDR(s), which is an effective IDR(s) variant to solve systems of linear equa-

tions (1) where the spectrum is highly complex.

To obtain a subset of the Ritz values, Ritz-IDR(s) requires a preceding call

to an external sparse eigensolver routine, for example the Arnoldi method [7] or

Bi-Lanczos method [8]. In the first part of this paper, we present a self-contained

version of the Ritz-IDR(s), i. e., a Ritz-IDR(s) variant that does not require

an external call to an eigensolver routine. We compute the upper Hessenberg

matrix Hm from a Hessenberg relation as

AWm = WmHm + feTm, (3)

during the first iterations of IDR(s). Then, we obtain the Ritz values from the15

matrix Hm, and use them as input parameters of the subsequent iterations of

IDR(s).

In the second part of this paper, we apply IDR(s) to solve sequences of

systems of linear equations (2). We only consider the case when the coeffi-

cient matrix does not change and the right-hand side vectors {b(i)}pi=1 are not20

available simultaneously. These kind of problems arises naturally from the dis-
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cretization of linear time-dependent differential equations and the solution of

systems of non-linear equations using modified Newton-type methods with con-

stant Jacobian matrix.

Subspace recycling is a common technique to accelerate the Krylov method25

(see for example [9], [10], and [11] among others). This process consists of ap-

proximating invariant subspaces or calculating a “good” Krylov subspace basis

and use this information to save matrix-vector products at the solution of the

system of linear equations. For methods as GMRES [12] and GCR [13] the

recycling idea has been incorporated to accelerate the solution of a single linear30

system of equations in [9] and [10] respectively. In the case of solving sequences

of systems of linear equations, these methods have been adapted in [14] and [15].

Also, other Krylov methods have been adapted to solve sequences of systems of

linear equations, for example BiCG in [16], GMRES(m) in [15], and IDRstab

in [17].35

GCROT [14] and GMRES are long-recurrences methods, with an optimal

residual minimization property, but also these methods can be expensive in

terms of memory and CPU consumption. For this reason, we propose an IDR(s)

variant, that is a short-recurrences and memory-limited method to solve (2).

First, we show how to obtain Ritz values and Ritz vectors from IDR(s) for40

solving a system of linear equations. Second, we present how to enrich the

searching subspace of IDR(s) with the Ritz vectors. Finally, we apply IDR(s)

with the Ritz vectors to solve sequences of linear equations as a main application

of this enrichment.

This document is organized as follows. A review of IDR(s) and its recur-45

rences is presented in the second section. In section 3, we present an IDR(s)

variant to solve system of linear equations. We present how to obtain an un-

derlying Hessenberg relation from the IDR(s) residual recurrences. This allows

us to find approximation to the eigenvalues of the coefficient matrix involved.

These eigenvalues approximations are used to accelerate the IDR(s) method.50

Section 3.1 shows the numerical examples related to the solution of system of

linear equations. In section 4, we explain how to add the Ritz vectors to the
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initial searching space of IDR(s) to save computational effort. As a main ap-

plication of this idea, we apply IDR(s) to solve a sequence of system of linear

equations. Using the Hessenberg relation deduced in section 3, we compute a55

set of Ritz vectors during the solution of the first system of linear equation.

These Ritz vectors are used to accelerate the subsequent systems of linear equa-

tions. Numerical experiments for the solution of a sequence of systems of linear

equations using IDR(s) are presented in section 4.2. In section 5, we present

the general conclusions and remarks.60

2. Review on IDR(s)

In this section, we first review the recurrence formulas of IDR(s) for solving

a system of linear equations, and then we discuss the work of Simoncini and

Szyld in [2].

The Induced Dimension Reduction method is based on the following theo-65

rem.

Theorem 1 (IDR(s) Theorem). Let A be any matrix in Cn×n, let v0 be any

nonzero vector in Cn, and let G0 be the full Krylov subspace Kn(A,v0). Let S
be any (proper) subspace of Cn such that S and G0 do not share a nontrivial

invariant subspace of A, and define the sequence Gj, j = 1, 2, . . . as

Gj ≡ (I − ωjA)(Gj−1 ∩ S)

where ωj’s are nonzero scalars. Then

1. Gj+1 ⊂ Gj, for j ≥ 0 and

2. dimension(Gj+1) < dimension(Gj) unless Gj = {0}.

Proof. See [1].70

The main idea of the IDR(s) method is to create approximation vectors xm

such that their corresponding residual vectors rm = b − Axm belong to the

nested and shrinking subspaces Gj . IDR(s) creates s+ 1 residual vectors in Gj ,
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and uses those vectors for the creation of the s+1 subsequent residuals in Gj+1.

This process is repeated iteratively until convergence.75

Our implementation of IDR(s) is based on IDR(s) with biorthogonal resid-

uals (see [4]). In practice, this variant has proved to be more stable, and is also

slightly less expensive. Next, we present the recurrences used by this IDR(s)

variant. For sake of simplicity, we introduce new notation. The subspace S is

represented by the left null space of some full-rank n×s matrix P = [p1, . . . ps]

(called shadow space). The superindex of a vector or a scalar represents the

number of subspace Gj where the current residual belongs. The subindex repre-

sents the position in the sequence of intermediate residuals. For r
(j)
k represents

the kth residual in Gj . The first residual vectors in Gj+1 and its respective

approximation are

x
(j+1)
0 = x(j)

s + ωj+1r
(j)
s ,

and

r
(j+1)
0 = (I − ωj+1A)r(j)

s , (4)

and the recurrences to create the intermediate residuals in Gj+1, are

x
(j+1)
k = x

(j+1)
k−1 + β

(j+1)
k u

(j+1)
k ,

and

r
(j+1)
k = r

(j+1)
k−1 − β

(j+1)
k g

(j+1)
k , for k = 1, 2, . . . , s. (5)

The scalar β
(j+1)
k is selected such that

〈r(j+1)
k ,pk〉 = 0. (6)

The direction vectors are defined as

u
(j+1)
k = û

(j+1)
k −

k−1∑
i=1

α
(j+1)
i u

(j+1)
i , (7)

and

g
(j+1)
k = ĝ

(j+1)
k −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i , (8)
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where the vector û
(j+1)
k and ĝ

(j+1)
k are

ĝ
(j+1)
k = Aû

(j+1)
k , (9)

û
(j+1)
k = ωj+1

(
r

(j+1)
k−1 −

s∑
i=s−k

γ
(j+1)
i g

(j)
i

)
+

s∑
i=s−k

γ
(j+1)
i u

(j)
i . (10)

The scalars {α(j+1)
i }k−1

i=1 in (7) and (8) are selected, such that

〈g(j+1)
k ,pi〉 = 0 for i = 1, . . . , k − 1, (11)

and the scalars {γ(j+1)
i }si=k in (10) are selected as〈

r
(j+1)
k−1 −

s∑
i=k

γ
(j+1)
i g

(j)
i ,pj

〉
= 0. (12)

The conditions (6), (11), and (12) not only ensure that the residual r
(j+1)
k be-

longs to Gj+1, but also, that the residual r
(j+1)
k is orthogonal to the vectors

p1, p2, . . . , pk for k = 1, 2, . . . , s.

An important property needed for the deduction of the IDR(s)-Hessenberg

relation to be presented in the section 3, is that for any IDR(s) variant a residual

in Gj can be also written as

r
(j)
k = Ωj(A)Ψ(A)s×j+kr0, (13)

where

Ωj(t) =

j∏
i=0

(1− ωit), ωi 6= 0, i = 1, . . . , j, (14)

Ω0(t) = 1, and Ψm(t) is a multi-Lanczos-type polynomial [18] of order m, that

uses s+ 2 terms recurrences such that Ψ0 = 1 (see section 5 in [1]). When the80

first residual vector is created in Gj+1, the polynomial Ωj(A) increases by one

degree. Then, the degree of the polynomial Ψm(A) is increased by one for each

matrix-vector product during the creation of the others intermediate residuals.

2.1. IDR(s) as a Petrov-Galerkin method and Ritz-IDR(s)

As we mention in the introduction of this work, Simoncini and Szyld showed

that IDR(s) can be viewed as a Petrov-Galerkin method in [2]. Particularly

6



IDR(s) finds the approximation xk+1 in the right or searching subspace x0 +

Kk+1(A, r0), by imposing the condition that rk+1 is orthogonal to the subspace

Wj , defined as

Wj = Ωj(A
H)−1Kj(AH , P ), (15)

where Ωj(A) is the polynomial defined in (14), and Kj(AH , P ) is the block85

Krylov subspace of order j, associated with the matrix A and the block P .

This link between IDR(s) and the rational block subspaces leads to the

development of the variant Ritz-IDR(s). The authors in [2] argue that selecting

the scalars ωj as the inverse of Ritz values of the coefficient matrix A, is a good

choice for the creation of the left space Wj . This selection enriches the left90

subspace with information about the associated eigencomponents. This would

damp the eigenvector components from the residual vector in a quick way, which

leads to a faster convergence. The Ritz values required are computed with a call

to an eigensolver routine as the Arnoldi method. Note that Ritz-IDR(s) might

require complex arithmetics even when the coefficient matrix and right-hand95

size vector are real, in the case when complex Ritz values are encountered.

In the following section we present how to obtain an Hessenberg relation

from the IDR(s) recurrences. Using this Hessenberg relation, we can obtain

approximations to the eigenvalues of the coefficient matrix, and in this form we

obtain a self-contained variant of the Ritz-IDR(s). To distinguish it, we label100

our proposed algorithm as SC-Ritz-IDR(s).

3. Part 1: Accelerating IDR(s) using the Ritz values

IDR(s) has been previously used to obtain spectral information of a matrix.

In [19], the authors adapt IDR(s) to solve the eigenvalue problem, and they

obtain the matrices Ĥm and Tm from a generalized Hessenberg relation

AWmTm = WmĤm + f̂ eTm.

where Wm ∈ Cn×m (not explicitly available) represents a Krylov subspace basis

for K(A,w1), Tm is an s-banded, upper triangular matrix; Ĥ is an s-banded,
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upper Hessenberg matrix, and f̂ ∈ Cn. The approximation of the eigenvalues of

A are obtained from the eigenvalue pencil (Ĥm, Tm). In [20], the authors create

a standard Hessenberg relation

AWm = WmHm + feTm, (16)

where Wm ∈ Cn×m, and Hm is a Hessenberg matrix. This matrix Hm has the

same eigenvalues as the matrix pencil (Ĥm, Tm).

The mentioned works [19] and [20] target specifically the eigenvalue/eigenvector105

approximation problem. Next, we describe how to obtain a matrix Hm part of a

standard Hessenberg relation (16) from the underlying IDR(s)-recurrences used

to solve systems of linear equation. This allows us to obtain the solution of a

system of linear equation, and at the same time obtain approximations to the

eigenvalues of the coefficient matrix. Particularly, we use this spectral informa-110

tion as is suggested in [2], and we proposed a Ritz-IDR(s) variant labeled as

SC-Ritz-IDR(s).

To derive this Hessenberg matrix, let us consider the IDR(s) relations de-

scribed in section 2. Substituting (8)–(10) in (5), we obtain

r
(j+1)
k−1 − r

(j+1)
k

β
(j+1)
k

= ĝ
(j+1)
k −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= Aû
(j+1)
k −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= A

ωj+1

r
(j+1)
k−1 −

s∑
i=s−k

γ
(j+1)
i g

(j)
i

 +
s∑

i=s−k

γ
(j+1)
i u

(j)
i

−
k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= ωj+1Ar
(j+1)
k−1 − ωj+1A

s∑
i=s−k

γ
(j+1)
i g

(j)
i +

s∑
i=s−k

γ
(j+1)
i Au

(j)
i −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= ωj+1Ar
(j+1)
k−1 − ωj+1A

s∑
i=s−k

γ
(j+1)
i g

(j)
i +

s∑
i=s−k

γ
(j+1)
i g

(j)
i −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= ωj+1Ar
(j+1)
k−1 + (I − ωj+1A)

s∑
i=s−k

γ
(j+1)
i g

(j)
i −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i

= ωj+1Ar
(j+1)
k−1 + (I − ωj+1A)

s∑
i=s−k

γ
(j+1)
i

β
(j)
i

(r
(j)
i−1 − r

(j)
i ) −

k−1∑
i=1

α
(j+1)
i

β
(j+1)
i

(r
(j+1)
i−1 − r

(j+1)
i ).
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From the equations above, we obtain the following relation

ωj+1Ar
(j+1)
k−1 =

r
(j+1)
k−1 − r

(j+1)
k

β
(j+1)
k

− (I − ωj+1A)

s∑
i=s−k

γ
(j+1)
i

β
(j)
i

(r
(j)
i−1 − r

(j)
i )

+

k−1∑
i=1

α
(j+1)
i

β
(j+1)
i

(r
(j+1)
i−1 − r

(j+1)
i ).

(17)

Using (13), we obtain that each vector in Gj can be written as

r
(j)
i = Ωj(A)r̂

(j)
i for i = 0, . . . , s, (18)

and equivalently, any residuals in Gj+1 can be written as

r
(j+1)
i = Ωj+1(A)r̂

(j+1)
i for i = 0, . . . , s. (19)

Taking into account (19) and (18), we can multiply (17) by Ωj+1(A)−1 and

obtain

ωj+1Ar̂
(j+1)
k−1 =

r̂
(j+1)
k−1 − r̂

(j+1)
k

β
(j+1)
k

−
s∑

i=s−k

γ
(j+1)
i

β
(j)
i

(r̂
(j)
i−1 − r̂

(j)
i )

+

k−1∑
i=1

α
(j+1)
i

β
(j+1)
i

(r̂
(j+1)
i−1 − r̂

(j+1)
i ).

(20)

The set of vectors r̂i represents the Krylov basis associated with the polynomial

Ψ(A). In fact, one can see that the basis grows with the degree of the polynomial

Ψ(A). Substituting (18) and (19) in (4), we obtain that

r̂
(j+1)
0 = r̂(j)

s . (21)

This implies that every s + 1 matrix-vector products, IDR(s) creates s new

vectors basis r̂i. Using (21), we can rewrite (20) as

ωj+1Ar̂
(j+1)
k−1 = −γ

(j+1)
s−k

β
(j+1)
s−k

r̂
(j)
s−k−1 −

s−1∑
i=s−k

(
γ

(j+1)
i+1

β
(j)
i+1

− γ
(j+1)
i

β
(j)
i

)
r̂

(j)
i

+

(
γ

(j+1)
s

β
(j+1)
s

+
α

(j+1)
1

β
(j+1)
1

)
r̂(j)
s +

k−1∑
i=1

(
α

(j+1)
i+1

β
(j+1)
i+1

− α
(j+1)
i

β
(j+1)
i

)
r̂

(j+1)
i

− 1

β
(j+1)
k

r̂
(j+1)
k .

(22)
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One can see in (22) that the vector Ar̂
(j+1)
k−1 is a linear combination of the vectors

{r̂(j)
i }si=s−k−1 and {r̂(j+1)

i }ki=1. This defines a Hessenberg relation of the form

AR̂m̄ = R̂m̄+1H̄m̄, (23)

where m̄ is the number of intermediate residuals created by IDR(s), and R̂m̄ is

a Krylov subspace basis defined as

R̂m̄ = [r̂
(0)
0 , . . . , r̂(0)

s , r̂
(1)
1 , . . . , r̂(1)

s , . . . , r̂
(j)
1 , . . . , r̂(j)

s , r̂
(j+1)
1 , . . . , r̂

(j+1)
k ]n×m̄.

(24)

The vectors r̂i are not constructed explicitly, however, it is easy to see that

r̂
(0)
0 = r0. (25)

The matrix Hm̄ is an upper and s+1 banded Hessenberg matrix whose columns

are defined as

H` =



0
...

h`−s,`
...

h`+1,`

...

0


∈ Cm̄+1,

where 

h`−s,`

h`−s+1,`

...

h`−s+m,`

h`−s+m+1,`

...

h`+1,`


=

1

ωj+1



− γ
(j+1)
s−k

β
(j+1)
s−k

γ
(j+1)
s−k+1

β
(j)
s−k+1

− γ
(j+1)
s−k

β
(j)
s−k

...

γ(j+1)
s

β
(j)
s

+
α

(j+1)
1

β
(j+1)
1

α
(j+1)
2

β
(j+1)
2

− α
(j+1)
1

β
(j+1)
1

...

−1/β
(j+1)
k



∈ Cs+2,

Our implementation of SC-Ritz-IDR(s) is based on the IDR(s) with biorthog-115

onal residuals. The memory consumption of SC-Ritz-IDR(s) is similar to that
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of IDR(s) (see section 3.5 in [4]). The sets of coefficients {αi}si=1, {γi}si=1, and

{βi}si=1, used in SC-Ritz-IDR(s), are stored in three extra vectors of size s.

Algorithm 1 shows an implementation of SC-Ritz-IDR(s).

3.1. Numerical experiments120

To illustrate the numerical behavior of the proposed algorithm, we repeat

all the experiments presented in [2]. We compare our proposed variant SC-Ritz-

IDR(s) with IDR(s), Ritz-IDR(s) and full GMRES. All the experiments are

performed in Matlab 2015a running on a 64 bit GNU/Debian Linux computer

with 32 GB of RAM. The right-hand side vector b = b̂/‖b̂‖ with b̂ = 1, and

the initial vector is x0 = 0. As stopping criterion, we use

‖b−Axk‖
‖b‖ < ε,

with ε = 10−10.

For Ritz-IDR(s) and SC-Ritz-IDR(s), we use as parameter

ωj =
1

λi
, (26)

where λi is an eigenvalue of the matrix Hm̄. We select m̄ = 20 and the 15

smallest magnitude eigenvalues. For Ritz-IDR(s), the matrix Hm̄ is obtained

with a preliminary call to the Arnoldi method. In the case of SC-Ritz-IDR(s) the

matrix Hm̄ is computed as is explained in section 3. Before the creation of the125

matrix Hm̄, SC-Ritz-IDR(s) uses the converge maintenance strategy, proposed

in [4], to select the first ωj parameters.

3.1.1. Convection-diffusion-reaction equation examples

The linear systems of equations used in the next three examples are based

on the finite difference discretization of the simple convection-diffusion-reaction

model problem

−ε4u+ vT∇u+ ρu = f, in Ω = [0, 1]d (27)

with d = 2 or d = 3, and homogeneous Dirichlet boundary conditions on ∂Ω.

Particularly, it is known that IDR(s) with s > 1 outperforms BiCGStab [21]130

when the ‖v‖ � ε (see for example [22] and [23]).
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Algorithm 1 IDR(s) accelerated with Ritz values
1: procedure IDR(A, b, s, tol, x0)

2: Input: A ∈ Cn×n, b ∈ Cn, s ∈ N+, tol ∈ (0, 1), x0 ∈ Cn.

3: x = x0, r = b − Ax

4: P a random matrix in Cn×s.

5: G = 0 ∈ Cn×s, U = 0 ∈ Cn×s

6: M = Is ∈ Cs×s.

7: ω = 1.0, ` = 0, Hm̄ = 0 ∈ Cm̄+1×m̄, c = 0, α = 0, β = 0 ∈ Cs.

8: while ‖r‖ ≤ tol × ‖b‖ do . Loop overGj spaces

9: f = PHr

10: for k = 1 to s do . Compute s independent vectors gk in Gj space

11: Solve c from Mc = f, (γ1, . . . , γs)H = c . Note that M = PHG

12: v = r −
∑s
i=k γigi

13: v = B−1v . Preconditioning operation

14: uk = ωv +
∑s
i=k γigi

15: gk = Auk

16: for i = 1 to k − 1 do . Make gk orthogonal to P

17: αi = 〈gk,pi〉/µi,i
18: gk = gk − αigi
19: uk = uk − αiui
20: end for

21: µi,k = 〈gk,pi〉, Mi,k = µi,k, for i = k, . . . , s . Update M

22: βk = φk/µk,k . Now 〈r,pi〉 = 0 for i = 1, . . . , k

23: r = r − βkgk

24: x = x + βkuk

25: if k + 1 ≤ s then

26: fi = 0 for i = 1, . . . , k

27: fi = fi − βkMi,k for i = k + 1, . . . , s

28: end if

29: ` = ` + 1

30: if ` ≤ m̄ then

31: H`−s:`−k,` = ck:s/βk:s

32: H`−k+1:`−1,` = α1:k−1/β1:k−1

33: H`,` = 1.0/βk

34: H`−s+1:`+1,` = H`−s+1:`+1,` +H`−s:`,`
35: H`−s:`+1,` = H`−s:`+1,`/ω

36: end if

37: Overwrite kth columns of G and U by gk and uk respectively.

38: end for . Entering Gj+1

39: v = B−1r . Preconditioning operation

40: t = Av

41: if ` ≤ m̄ then . Select new ω

42: ω is selected using the converge maintenance strategy [4].

43: else

44: ω is selected using the spectral information provided by Hm̄.

45: end if

46: r = r − ωt

47: x = x + ωv

48: end while

49: Return x and Hm̄ (if required).

50: end procedure
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Example 1. In this example the coefficient matrix A is given by the finite

difference discretization of (27) for the 2D case. The physical parameters used

are ε = 1, v = [4, 0]T , and ρ = 400. We discretize the domain Ω using 21

points in each direction. Figure 1 (a) shows the convergence of the norm of the135

residual for the matrix A of order 400 generated with the parameters described.

Ritz-IDR(s) and SC-Ritz-IDR(s) do not show any improvement over IDR(s).

However, using a convection-dominated taking 41 points in each direction and

ε = 1, v = [80, 0]T , and ρ = 1600, we can see in Figure 1 (b) a better

performance of Ritz-IDR(s) and SC-Ritz-IDR(s) over IDR(s).140
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Figure 1: (Example 1) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4),

and SC-Ritz-IDR(4). (a) Diffusion-dominated example. (b) Convection-dominated example.
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Example 2. We consider two matrices of order 8000 from the discretization

of the 3D problem (27) with ε = 1, v = β[1, 1, 1], and ρ = 0. First using

β = 100, we can see in Figure 2 (a) a similar behavior between the IDR(s)

variants. However, Ritz-IDR(s) and SC-Ritz-IDR(s) are clearly superior with

respect to the IDR(s) when the parameter β is increased to 500 (see Figure 2145

(b)).
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Figure 2: (Example 2) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4),

and SC-Ritz-IDR(4). (a) Diffusion-dominated example. (b) Convection-dominated example.

Example 3. The coefficient matrix used in this example is the unsymmetric

matrix of order 8000 that comes from the finite difference discretization of the

3D (27), with parameter ε = 1, ρ = 0, and v = [0, 0, 1000]T . As in part

14



0 200 400 600 800 1000

104

102

100

10−2

10−4

10−6

10−8

10−10

Matrix-vector products

‖r
‖ 2
/‖

b
‖ 2

GMRES

IDR(4)

Ritz-IDR(4)

SC-Ritz-IDR(4)

Figure 3: (Example 3) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4),

and SC-Ritz-IDR(4).

(b) of previous example, IDR(4) does not converge for the maximum number150

of iterations allowed, while Ritz-IDR(4) and SC-Ritz-IDR(4) converge using

almost the same number of matrix-vector products (see Figure 3).

3.1.2. Examples from Matrix Market

The matrices used in the next two examples are part of the Matrix Market

collection [24].155

Example 4. We consider the highly indefinite matrix Sherman5 of order 3312.

As is reported in [2], Ritz-IDR(s) diverges for this example. SC-Ritz-IDR(s)

exhibits a similar behavior. On the other hand, Figure 4 shows that both Ritz-

IDR(s) variants converge using the Incomplete LU factorization of the matrix

A+ I as preconditioner with threshold tolerate 10−2. In this example, IDR(s)160

and its variant behave similarly in term of matrix-vector products required.

Example 5. In this example, we consider the linear system of equations ADD20

which arises from computer component design. In this example, we stop the

algorithms when the relative residual norm is less than 1×10−8. As is proposed
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Figure 4: (Example 4) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4),

and SC-Ritz-IDR(4) for the matrix Sherman5 using ILU preconditioner.

in [2], we also consider 20 Leja points located in the interval where the 20 real165

Ritz values are located. The Leja points are computed using the algorithm

proposed in [25]. Figure 5 shows a similar behavior between all the IDR(s)

variants.

We include Table 1 where we compare the execution times required by the

different methods for the solution of each numerical example. The numerical re-170

sults show a similar behavior between Ritz-IDR(s) and SC-Ritz-IDR(s) in terms

of matrix-vector products and convergence. Moreover, their computational re-

quirements are virtually the same. The only difference is that SC-Ritz-IDR(s)

requires storing a Hessenberg matrix of size m̄. The main advantage of SC-

Ritz-IDR(s) is that it computes the Ritz-values “on-the-fly”. Therefore, unlike175

in Ritz-IDR(s), the time overhead of a call to an external eigensolver is avoided

in SC-Ritz-IDR(s).

16



0 100 200 300 400 500 600

104

102

100

10−2

10−4

10−6

10−8

Matrix-vector products

‖r
‖ 2
/‖

b
‖ 2

GMRES

IDR(4)

Ritz-IDR(4)

SC-Ritz-IDR(4)

Figure 5: (Example 5) Evolution of the residual norm of full GMRES, IDR(4), Ritz-IDR(4),

and SC-Ritz-IDR(4) for the matrix ADD20.

4. Part 2: Accelerating IDR(s) using Ritz vectors

In the previous sections we use the recurrences of IDR(s) to obtain an upper

Hessenberg matrix Hm̄. From this matrix Hm̄, we obtain the Ritz values to

accelerate the IDR(s) method. In this section, we incorporate the Ritz vec-

tors to the Krylov basis generated by IDR(s). First, we present how to add

additional vectors to the IDR(s) searching subspace basis, i.e., the augmented

Krylov subspace

Ks+m(A, r0) = span{r0, y1, . . . ,ys, Ar0, . . . , A
m−1r0}. (28)

Secondly, we use the matrix Hm̄ to recover the Ritz vectors of the coefficient

matrix, and add these Ritz vectors in IDR(s).180

To add additional direction vectors to the Krylov basis created by IDR(s),

we exploit the fact that G0 is Cn. We can choose freely the first s + 1 linearly

independent direction vectors in IDR(s) and obtain their corresponding approx-

imations and associated residuals. In the case of the biorthogonal variant, we

have to ensure that each residual ri is orthogonal to pj for i = 1, 2, . . . , s and185

17



Execution times [s]

Experiment / Method Full GMRES IDR(4) Ritz-IDR(4) SC-Ritz-IDR(4)

Experiment 1(a) 0.435 0.043 0.087 0.085

Experiment 1(b) 4.784 0.259 0.367 0.392

Experiment 2(a) 0.382 0.051 0.124 0.086

Experiment 2(b) 3.251 0.561 0.511 0.361

Experiment 3 4.964 * 0.608 0.396

Experiment 4 0.207 0.0252 0.073 0.046

Experiment 5 1.086 0.156 0.198 0.174

Table 1: CPU time consumed for the methods GMRES, IDR(4), Ritz-IDR(4), and SC-Ritz-

IDR(4) for the solution of systems of linear systems. The symbol ’*’ indicates that the method

diverges. The recorded time for Ritz-IDR(s) includes the call of m̄ steps of the Arnoldi method.

j = 1, 2, . . . , i, and each vector gi is orthogonal to pj for i = 1, 2, . . . , s and

j = 1, 2, . . . , i− 1. In order to do so, we present the Algorithm 2, to create the

first s biorthogonal residuals.

To add the vectors {yi}si=1 to the IDR(s), we should replace Algorithm 2 by

the lines 5 and 6 in Algorithm 1. As is proposed in [9], [10], and [26], we use190

as extra basis vectors the Ritz vector associated with the smallest-magnitude

Ritz values.

Example 6. (A Motivating Example.) To exemplify the idea of using the

spectral information in the initial subspace G0, we consider solving a system of

linear equations with the following bidiagonal matrix

A =



1 × 10−8 1 × 10−5

2 × 10−8 1 × 10−5

. . .

5 × 10−8 1 × 10−5

6 1 × 10−5

. . .

100


100×100

,

(29)
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Algorithm 2 Injecting basis vectors in G0

1: Input: {yi}si=1

2: for k = 1 to s do

3: uk = yk

4: gk = Auk

5: for i = 1 to k − 1 do . Make gk orthogonal to P

6: α = 〈gk,pi〉/µi,i
7: gk = gk − αgi
8: uk = uk − αui
9: end for

10: µi,k = 〈gk,pi〉, Mi,k = µi,k, for i = k, . . . , s . Update M

11: β = φk/µk,k . Make the residual orthogonal to pi for i = 1, . . . , k

12: r = r− βgk
13: x = x + βuk

14: φi = 0 for i = 1, . . . , k

15: φi = φi − βµi,k for i = k + 1, . . . , s

16: end for . Entering Gj+1
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Figure 6: (Example 6) Evolution of the residual norm of full IDR(5) and IDR(5) with re-

cycling with the four eigenvectors associated with the smallest magnitude eigenvalues of the

matrix (29).

and the right-hand side vector is b = 1. We compare IDR(5) and IDR(5) with

recycling. As recycling vectors, we use the five eigenvectors associated with the

smallest magnitude eigenvalues of the bidiagonal matrix A. The initial guess195

vector is x0 = 0. Figure 6 shows the evolution of the norms of the residuals,

one can see a considerable reduction in the number of matrix-vector products

for IDR(s) with recycling.

It is worth mentioning the recently proposed M(s)STAB(`) method by Neuen-

hofen [17]. M(s)STAB(`) is a variant of the IDRstab [22], that is specialized200

to solve sequences of systems of linear equations where the coefficient matrix is

constant. Based on a generalization of the IDR(s) Theorem, M(s)STAB(`) uses

as initial vectors basis in G0 the last s + 1 vectors in the subspace Gj , which

were created during the solution of the previous system of linear equation. In

this form, M(s)STAB(`) reduces the computation and accelerates the solution205

of (2).
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4.1. Adding the Ritz vectors to IDR(s): application to sequence of system of

linear equations

Here we present the main application of IDR(s) with recycling, the solution

of a sequence of systems of linear equations. We consider the case where the210

coefficient matrix A is constant, and the right-hand side vectors {b(i)}pi=1 are

not available simultaneously.

The main idea is to compute a subset of Ritz vectors of the matrix A during

the solution of the first system of linear equation, and then use these Ritz

vectors to accelerate the solution of the subsequent systems of linear equations.

The upper Hessenberg matrix Hm̄ ∈ Cm̄×m̄ is computed using Algorithm 1. To

compute the Ritz vectors after the first execution of IDR(s), we need to compute

the Krylov basis R̂ in (23). To compute this R̂, we use (13) and obtain that,

r̂0 = r0, (30)

and taking into account the upper Hessenberg structure of the matrix Hm̄, we

obtain the following recurrence formula for the vector r̂i

r̂i =
1

hi+1,i

Ar̂i−1 −
i−1∑

j=max(0,i−s)
hj,ir̂j

 . (31)

Because (31) uses only the last s + 1 vectors, we can even obtain the Ritz

vector saving temporally only the last s+ 1 basis vectors. Algorithm 3 presents

how to obtain the Ritz vectors of A, after we have obtained the matrix H.215

Once we compute the s Ritz vectors associated with the smallest magnitude,

we proceed to use these vectors in IDR(s) with recycling to solve the remaining

systems of linear equations. Algorithm 4 summarizes this procedure.

4.2. Numerical experiments

In this section, we conduct two numerical experiments of solving sequences

of systems of linear equations (Algorithm 4). We use the same computer setting

as is described in section 3.1. The stopping criterion consider in this experiment

is
‖bi −Axk‖
‖bi‖

< 10−6, for i = 1, 2, . . . , p.
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Algorithm 3 Obtaining the Ritz vectors

1: procedure Ritz vectorsIDR(A, s, H, r0)

2: Input: A ∈ Cn×n, s ∈ N+, x ∈ Cn.

3: Obtain (λi, ŷi) as the eigenpairs associated with the smallest magnitude

eigenvalues of H.

4: r̂0 = r0

5: Y = r̂0 × [[ŷ1]1, [ŷ2]1, . . . , [ŷm̄]1]

6: for i = 1 to m̄− 1 do

7: r̂i = 1
hi+1,i

[
Ar̂i−1 −

∑i−1
j=max(0,i−s) hj,ir̂j

]
8: Y = Y + r̂i × [[ŷ1]i+1, [ŷ2]i+1, . . . , [ŷm̄]i+1]

9: end for

10: return {λ}m̄i=1, Y .

11: end procedure

Algorithm 4 IDR(s) with recycling for sequences of system of linear equations

1: procedure IDR(A, {bi}, s, tol, x0)

2: call IDR(A, b1, s, tol, x0) to obtain x1 and the matrix Hm̄ (Algo-

rithm 1).

3: call Ritz vectorsIDR(A, s, Hm̄, r1) to obtain the Ritz vectors {yj}sj=1

(Algorithm 3)

4: for each right-hand side vector bi with i = 2, 3, . . . , p do

5: call IDR(s) to solve Axi = bi with the Ritz-vector {yj}sj=1.

6: end for

7: return xi for i = 1, . . . , p

8: end procedure

22



The initial vector for the first system of linear equations is the zero vector,220

and for the subsequent linear systems, we use the approximate solution of the

previous linear system of equations.

Example 7. In this example, we consider the linear time-dependent convection-

diffusion-reaction
∂u

∂t
+ vT∇u = ε∆u+ ρu+ f (32)

with homogeneous Dirichlet conditions on the unit cube, and u(t0) = 0, v =

[1, 1, 1], ε = 0.1 (diffusion-dominated) or ε = 0.005 (convection-dominated), the

reaction parameter ρ is 5, the function f is obtained from

u =
√
x(1− x)y(1− y)z(1− z).

We solve (32) using Euler backward for time integration for t ∈ [0, 10] with

δt = 1. For space discretization, we use central finite differences with h = 0.02

obtaining a linear system of equations of size 125000 × 125000 per time-step.225

Figures 7 and 8 show the residual norm behavior for full GMRES, GCROT,

and IDR(s) with and without Ritz vector enrichment. First, we can see a good

decrement in number of matrix-vector multiplication when IDR(s) is enriched

with the Ritz vectors. Second, the long recurrences methods solve all the systems

of linear equations using less number of matrix-vector multiplications. However,230

Tables 2 and 3 show that IDR(s) with Ritz vectors solves the convection and

diffusion-dominated problems much faster that GMRES and GCROT, and other

short recurrences methods.

5. Conclusions

In this work, we have derived a Hessenberg relation from the IDR(s) method235

for solving system of linear equations. This is a key component to obtain approx-

imations to the eigenvalues and eigenvectors of the coefficient matrix involved.

We have used this spectral information to accelerate the IDR(s) method.

In the first part of this paper, we have proposed a Ritz-IDR(s) variant,

named SC-Ritz-IDR(s), to solve systems of linear equations based on the work240
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Figure 7: (Example 7). Convergence residual history for the solution of (32) (diffusion-

dominated example)
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Figure 8: (Example 7). Convergence residual history for the solution of (32) (convection-

dominated example)

25



Method MATVECs CPU time [s]

Full GMRES 718 185.93

GCRot(20, 4) 525 33.72

GCRot(20, 16) 332 51.2

BiCG [27] 1946 19.85

BiCGStab 1900 12.13

QMR [28] 1884 22.62

IDR(4) without recycling 889 20.34

IDR(4) with recycling 618 16.86

IDR(16) without recycling 845 36.61

IDR(16) with recycling 523 34.15

Table 2: (Example 7). Matrix-vector multiplications and time used for each method in the

solution of (32) (diffusion dominated example)

Method MATVECs CPU time [s]

Full GMRES 962 281.43

GCRot(20, 4) 1380 96.01

GCRot(20, 16) 514 83.61

IDR(4) without recycling 1360 31.46

IDR(4) with recycling 1066 22.57

IDR(16) without recycling 1089 54.44

IDR(16) with recycling 578 37.58

Table 3: (Example 7). Matrix-vector multiplications and time used for each method in the

solution of (32) (convection dominated example)
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by Simoncini and Szyld [2]. This algorithm uses the inverse of the Ritz values

as parameters ωj for the creation of the residuals vectors into the subspaces

Gj . In contrast to Ritz-IDR(s), our proposed variant SC-Ritz-IDR(s) is a self-

contained algorithm, i. e., it does not use an external sparse eigensolver to

compute the Ritz values. In terms of CPU requirements and memory consump-245

tion, SC-Ritz-IDR(s) has a similar computational behavior as Ritz-IDR(s) [2].

Implementations of both methods Ritz-IDR(s) and SC-Ritz-IDR(s) may use

complex arithmetic, even when the coefficient matrix and the right-hand side

vectors are real, in the case of complex Ritz values as parameters ωj .

In the second part of the paper, we have explained how to enrich the search-250

ing subspace of IDR(s) with the Ritz vectors. In particular, we have applied

this enrichment to IDR(s) for solving sequences of systems of linear equations.

After approximating the eigenvector during the solution of the first system of

linear equations, IDR(s) uses this spectral information for the subsequent sys-

tems of equations. Numerical experiments show a significant reduction of the255

computational time.
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