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edge used in the study of Novara and Scarano (Exp Fluids 
52:1027–1041, 2012); the second is a swirling jet in a water 
flow. In both cases, the effective elimination of ghost parti-
cles is demonstrated in number and intensity within a short 
temporal transient of 5–10 frames, depending on the seed-
ing density. The increased value of the velocity space–time 
correlation coefficient demonstrates the increased velocity 
field accuracy of SMTE compared with MART.

1 Introduction

Time-resolved tomographic PIV is a specific measure-
ment regime of the tomographic PIV technique (Elsinga 
et al. 2006) characterized by a high degree of spatial and 
temporal coherence between subsequent measurements. In 
practice, this is realized using high-speed camera and laser 
systems to acquire image sequences typically composed 
by hundreds or thousands of recordings. When the system 
operates in sequential mode, the images are recorded at a 
time separation that is small enough to enable their cross-
correlation. As a result, the spatial and temporal develop-
ment of a flow is vividly captured. The breadth of informa-
tion contained in these sequences has led to its application 
to investigate unsteady flow phenomena (see, e.g., the panel 
of applications in the review of Scarano 2013). Among the 
most prominent applications of time-resolved tomographic 
PIV are the unsteady pressure evaluation (van Oudheusden 
2013), aeroacoustic estimation (Violato and Scarano 2013; 
Probsting et al. 2013) and the study of fundamental mecha-
nisms in turbulent shear flows (Elsinga and Marusic 2010; 
Schroeder et al. 2011).

A constraining factor in all tomographic PIV experi-
ments is the measurement error introduced by reconstruc-
tion. The error has multiple sources: imaging artifacts 

Abstract The motion-tracking-enhanced MART (MTE-
MART; Novara et al. in Meas Sci Technol 21:035401, 
2010) has demonstrated the potential to increase the accu-
racy of tomographic PIV by the combined use of a short 
sequence of non-simultaneous recordings. A clear bottle-
neck of the MTE-MART technique has been its compu-
tational cost. For large datasets comprising time-resolved 
sequences, MTE-MART becomes unaffordable and has 
been barely applied even for the analysis of densely seeded 
tomographic PIV datasets. A novel implementation is 
proposed for tomographic PIV image sequences, which 
strongly reduces the computational burden of MTE-MART, 
possibly below that of regular MART. The method is a 
sequential algorithm that produces a time-marching esti-
mation of the object intensity field based on an enhanced 
guess, which is built upon the object reconstructed at the 
previous time instant. As the method becomes effective 
after a number of snapshots (typically 5–10), the sequen-
tial MTE-MART (SMTE) is most suited for time-resolved 
sequences. The computational cost reduction due to SMTE 
simply stems from the fewer MART iterations required 
for each time instant. Moreover, the method yields supe-
rior reconstruction quality and higher velocity field meas-
urement precision when compared with both MART and 
MTE-MART. The working principle is assessed in terms 
of computational effort, reconstruction quality and veloc-
ity field accuracy with both synthetic time-resolved tomo-
graphic images of a turbulent boundary layer and two 
experimental databases documented in the literature. The 
first is the time-resolved data of flow past an airfoil trailing 
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(e.g., out-of-focus blur, Schanz et al. 2013a), calibration 
inaccuracies (Wieneke 2008), background reflections and 
camera noise; however, the predominant source is due to 
ghost particles (Elsinga et al. 2006). At a low-to-moderate 
level of particle image density (e.g., for a system of four 
cameras and particles per pixel, ppp < 0.05), the peak 
intensity of ghost particles is significantly lower than that 
of actual particles and their effect on cross-correlation can 
be neglected. However, experiments requiring high spatial 
resolution involve a greater particle concentration, leading 
to increased particle image density (i.e., ppp > 0.1). In this 
regime, ghost and actual particles share similar peak inten-
sity, with significant detrimental effect on the cross-correla-
tion (Elsinga et al. 2011).

This limitation has motivated multiple efforts to reduce 
the number and intensity of ghost particles in the recon-
struction. The spatial filtering improved reconstruction 
(SFIT) approach by Discetti et al. (2013) uses a tailored 
filtering of the reconstructed volume between reconstruc-
tion iterations to regularize reconstructed particle shapes 
and partly filter out ghost particles. The simulacrum match-
ing-based reconstruction enhancement (SMRE) technique 
proposed by de Silva et al. (2013) removes ghost particles 
a posteriori of the reconstruction process based on some 
hypotheses on the shape of the particles. Another a poste-
riori approach by Elsinga and Tokgoz (2014) is based on 
particle tracking velocimetry (PTV). With a long sequence 
of time-resolved images, ghost particles could be unambig-
uously identified and removed.

A substantial reduction in ghost particles has been 
achieved using methods that exploit the coherence of par-
ticles over two or more frames within the reconstruction. 
The first method in this category is the motion-tracking-
enhanced MART (MTE-MART; Novara et al. 2010). The 
working principle is the combined use of recordings taken 
non-simultaneously to produce an enhanced first guess for 
the tomographic reconstruction algorithm. The method 
features an iterative procedure of reconstruction and cross-
correlation whereby the velocity field is used to deform 
the reconstructed object and obtain an enhanced initial 
guess for the reconstruction at a different time instant. Its 
application to turbulent shear flows (Novara and Scarano 
2012) showed that a seeding density up to 0.2 ppp could 
be afforded by a four-camera system. It was concluded 
that MTE-MART makes a significant improvement with 
respect to regular MART when a kernel of 3–5 exposures 
is considered. However, in the latter conditions, the compu-
tational effort becomes more than one order of magnitude 
greater than the standard method, based on MART recon-
struction followed by cross-correlation analysis. This is due 
to the iterative approach applied to the whole time kernel to 
obtain the reconstruction at a given time instant. Efficient 
reconstruction procedures such as MLOS-SMART have 

been proven compatible with the MTE principle and allevi-
ate the computational burden (Atkinson et al. 2010). How-
ever, for time-resolved tomographic PIV, where thousands 
of images are involved, the additional computational cost 
of all MTE methods has so far precluded its widespread 
use, possibly resulting in a stagnation of developments on 
this topic.

The second method in this category is the recently 
introduced ‘shake-the-box’ (STB) method of Schanz et al. 
(2013b), which combines 3-D PTV with the iterative parti-
cle reconstruction (IPR) method of Wieneke (2013). Parti-
cles are tracked in 3-D space over multiple frames provid-
ing a Lagrangian description of the fluid motion and clear 
discrimination criteria for the elimination of ghost particles 
from reconstructions. Furthermore, the method is compu-
tationally efficient in comparison with the voxel-based 
reconstruction procedures. The STB method has been first 
applied to water flows using a tomographic system com-
posed of six high-speed cameras. A recent numerical eval-
uation of the method (Schanz et al. 2014) has shown the 
ability of STB to strongly remove ghost particle intensity 
for time-resolved sequences.

The present article recognizes the principle of motion 
tracking in image sequences for enhancing the tomographic 
reconstruction and proposes a novel implementation of 
MTE-MART that exploits the potential of this concept in 
terms of both computational efficiency and attainable accu-
racy. The working principle is first elucidated, followed by 
a detailed assessment based upon a synthetic time-resolved 
tomographic PIV experiment of a turbulent boundary 
layer with data produced from a direct numerical simula-
tion (Probsting et al. 2013). The experimental verification 
makes use of the time-resolved image sequence proposed 
by Novara et al. (2012) regarding the turbulent wake behind 
the trailing edge of an airfoil. A second experiment of a 
swirling jet illustrates the potential of SMTE for accurate 
reconstruction using a three-camera tomographic system.

2  SMTE working principle

The primary concept of MTE-MART (Novara et al. 2010) 
is that subsequent exposures contain essentially the same 
particle field. Such information can be used in the recon-
struction of a single snapshot. Because the particles appear 
with slightly different (relative) position along the expo-
sures, the reconstruction can be improved by reducing the 
ambiguity of the MART solutions if all these views can be 
used to generate an a priori condition for the first guess of 
the MART calculation. However, for the improved recon-
struction of a single snapshot, MTE makes use of a finite 
temporal kernel, where knowledge of the reconstructed 
intensity field and the velocity field at all time instants is 
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required. This is achieved with an iterative procedure. 
For time-resolved measurements, this operation can be 
regarded as a time-sliding-kernel approach for MTE evalu-
ation. In the first iteration, the initial guess of voxel inten-
sity for the reconstruction is set as uniform (typically unit) 
value. Following the discussion and the nomenclature 
introduced by Novara and Scarano (2012), the number 
of enhancement iterations NE is the primary driver of the 
computational cost, with typical increases of 3–10 times 
for analysis of an image pair (NO = 2). Extending the size 
of the temporal kernel (effectively, the number of objects 
NO) to three or five does yield an improved accuracy, but 
the computational cost increases even more rapidly. An 
additional bottleneck preventing the use of large kernels 
is the less accurate prediction of particles motion, possibly 
affected by truncation errors.

The main variation introduced in the present work 
to the MTE method is changing the time-sliding-kernel 
approach into a time-marching algorithm. The latter can be 
applied to image sequences as typically acquired in time-
resolved tomographic PIV experiments. Once the velocity 
field associated to the first two snapshots is estimated, an 
enhanced initial guess for the reconstruction of the third 
snapshot EG,3 can be obtained by propagating the previous 
reconstruction E2 forward in time via the velocity field. For 
a generic frame number n, the relation reads as:

where the vector R = (X , Y , Z) indicates object space coor-
dinates. The propagation is identical to that followed for the 
image deformation methods (Huang et al. 1993; Scarano 
2002) and is applied as three-dimensional (volume) defor-
mation in this case. The sequential approach justifies the 
term sequential motion-tracking-enhanced MART (SMTE-
MART). A schematic description of the procedure is given 
by the following steps and graphically illustrated with the 
flow chart of Fig. 1. It is assumed that the sequence starts 
with frame number n = 1:

1. Object reconstruction

(a) If n = 1: reconstruct pair E1 and E2

(b) If n > 1: reconstruct En+1, using initial guess EG
n+1

2. Velocity field calculation
(a) Cross-correlation of the pair En ⊗ En+1 yields 

velocity Vn

3. Enhanced guess estimation for the subsequent snapshot

(a) Estimate velocity V ′

n+1 (see Eq. 2)
(b) Build enhanced guess EG

n+2 by deforming En+1 by 
V

′

n+1 (see Eq. 1)

(1)EG
n+1 = En(R − V

′

n+1�t)

4. Time marching

(a) Increment n and return to step (1b)
The velocity at the upcoming frame Vn+1 is estimated 

as V′
n+1 making use of a time forward approximation in the 

assumption of advection. This approach is valid when the 
time separation between frames ∆t is small relative to the 
flow time scales, which generally applies for time-resolved 
PIV sequences.

The advection assumption was shown to yield a good 
approximation of the velocity temporal evolution when 
the two components of the material acceleration dV/dt 
and V · ∇V are equal and opposite, yielding DV/Dt ≈ 0. 
Under this condition, known as frozen turbulence, which 
occurs in turbulent flows with moderate levels of shear, the 
above equation was proven accurate for the prediction of 
the velocity in between measured time instants (time super-
sampling, Scarano and Moore 2012). A more generally 
valid time-prediction methods (e.g., vortex-in-cell, Sch-
neiders et al. 2014) may be considered for more complex 
flows (e.g., the separated region of wakes and free shear 
layers in jets) and when the time separation between frames 
is enlarged.

Two practical notes on the numerical implementation 
of the method should be mentioned. First, extrapolation 
of the object intensity in the generation of the enhanced 
guess should be given a nonzero value to allow the buildup 
by multiplicative update of the intensity along inflow 

(2)V
′
n+1(R) ≈ Vn(R − Vn�t)

Fig. 1  Schematic flow chart of SMTE-MART. In indicates the set of 
camera images at frame n. Dashed boxes include the images and the 
first guess intensity field used for MART
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boundaries of the reconstructed domain. A practical choice 
proposed herein is that voxels at the volume boundary are 
set to a value corresponding to the mean intensity of the 
reconstructed volume. Second, the two snapshots at the 
beginning of the sequence E1 and E2 shall be reconstructed 
with the standard MART algorithm with the typical number 
of iterations (NM = 5). This enables a faster convergence of 
the results along the sequence. The number of MART itera-
tions for the following snapshots can be reduced to three or 
even less, as discussed in the remainder of the article.

A number of advantages are expected when the MTE 
principle is applied in time-marching mode along the 
sequence. First, the accuracy of the enhanced guess will 
improve throughout the sequence and increase its sparsity 
as the space where no particles are present is progressively 
determined. This condition enables to reduce the number of 
MART iterations needed for the convergence of a snapshot 
reconstruction. Second, as the effective number of exposures 
NO increases along the sequence, the effect of virtually mul-
tiplying the number of viewing cameras is exploited, eventu-
ally surpassing that typically achieved by MTE-MART.

The performance of the SMTE-MART algorithm fol-
lows that of MTE-MART in terms of ghost intensity sup-
pression and enhancement of actual particles reconstruc-
tion. Also the increase in correlation signal-to-noise ratio, 
as discussed in Novara et al. (2010) and Novara and 
Scarano (2012), is retrieved back in the current study.

A topic of particular concern for time-marching algo-
rithms is stability: For MTE-MART, it was demonstrated 
that the worst-case performance (e.g., due to an erroneous 
velocity vector field) corresponds to the standard MART 
solution due to the multiplicative nature of the MART 
update, which prevents an incorrect enhanced guess from 
degrading the final solution (Novara et al. 2010). The same 
principle applies to SMTE-MART, which therefore in the 
worst-case scenario corresponds to standard MART with an 
equal number of reconstruction iterations.

As a final note, the general nature of the sequential 
algorithm makes it suited to other iterative reconstruction 
algorithms such as MLOS-SMART (Atkinson and Soria 
2009) or BIMART (Thomas et al. 2014), where further 
improvements may be obtained in terms of computational 
efficiency. Since the MART algorithm is the most widely 
referred to in the literature, the present study uses it for 
reconstruction.

3  Assessment from simulated turbulent boundary layer

3.1  Test case and data processing

The performance of SMTE-MART is first investigated in 
absence of calibration errors and imaging noise. Synthetic 

tomographic PIV images of a turbulent boundary layer over 
a flat plate are generated following a direct numerical simu-
lation (DNS) from Bernardini and Pirozzoli (2011). Details 
of the simulation and data discretization are given in the 
work of Probsting et al. (2013) who verified the suitability 
of tomographic PIV for determining the spectral coherence 
of surface pressure fluctuations.

The simulated measurement domain encompasses 
21.6 × 10.8 × 10.8 mm3 along streamwise (X), spanwise 
(Y) and wall-normal (Z) directions, respectively. The thick-
ness of the turbulent boundary layer is δ99 = 12 mm, and 
the associated Reynolds number is Reδ ≈ 8185. The par-
ticle concentration is set to 25 part/mm3, yielding a parti-
cle image density of 0.2 ppp. Particles are randomly dis-
tributed in space, and their motion is calculated from the 
DNS velocity fields using a fourth-order Runge–Kutta 
ODE solver. A thin buffer region on all boundaries is used 
to allow particles entering and leaving the simulated meas-
urement domain.

The particle blobs are generated using 3-D Gaussian 
integration onto a voxel grid (adapted from Lecordier and 
Westerweel 2004). Camera images are obtained by project-
ing the 3-D particle positions onto 2-D sensors via a pin-
hole camera model (Tsai 1987) and performing 2-D Gauss-
ian integration onto a pixel grid. The size of the projection 
images is 1050 × 600 px, with a particle image diameter 
of approximately 2.5 px. The simulation employs four 
cameras with viewing directions of 30° from the normal to 
the wall along both directions (cross-configuration), cor-
responding to a system aperture of 60° along horizontal 
and vertical direction, a commonly adopted and favorable 
configuration for tomographic imaging and reconstruction 
(Scarano 2013).

The tomographic reconstruction with MART follows 
the numerical recipe given by Elsinga et al. (2006). The 
number of MART iterations NM is varied in the analysis; a 
Gaussian smoothing of the object is applied between suc-
cessive MART iterations on a kernel of 3 × 3 × 3 voxels. 
The reconstructed volume size is 964 × 532 × 532 voxels 
with a non-illuminated buffer of 50 voxels on each bound-
ary that prevents edge effects in the reconstruction and 
allows calculating the reconstruction signal-to-noise ratio. 
The chosen discretization is based upon a voxel/pixel ratio 
of 1.0, resulting in a resolution of 40 vox/mm.

The reconstructed objects are interrogated using an in-
house code based on 3-D spatial cross-correlation (Fluere) 
with interrogation volumes of size 28 × 28 × 28 voxels 
and 75 % overlap factor. The average number of particles 
inside each interrogation volume is approximately NI = 8. 
The cross-correlation algorithm is based on iterative vol-
ume deformation, using symmetric block direct correlation 
(Discetti and Astarita 2012) and Gaussian window weight-
ing. Spurious vectors are detected by universal outlier 
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detection (Westerweel and Scarano 2005) and replaced 
with a distance-weighted neighborhood average. No spa-
tial filtering/smoothing is applied to the final vector field. A 
time-marching predictor of the cross-correlation is used to 
bypass the need for multi-grid evaluation and accelerate the 
processing, as used by, e.g., Scarano and Poelma (2009).

3.2  Reconstruction quality

Several metrics are invoked to evaluate the accuracy of 
the reconstructed objects. First, the reconstructed laser 
sheet intensity distribution is visualized along a plane that 
includes the depth direction. Regions of the reconstruction 
within the laser sheet contain both real and ghost particles, 
while regions outside the laser sheet contain only ghost 
particles (a top-hat laser beam model was applied for the 
illumination). A well-accepted verification criterion for the 
tomographic reconstruction is the ability to clearly identify 
the laser sheet within the reconstructed volume (Scarano 
2013). A central principle of the MTE-MART technique is 
the reduction in ghost particles intensity and the increase 
in real particles intensity (Novara et al. 2010). In Fig. 2 
(right), the diagrams indicate a ratio of intensity of approxi-
mately 2.5:1 for the MART reconstruction with 5 iterations 
and 3.3:1 when the number of iterations is increased to 20. 
MTE-MART returns an intensity distribution comparable 
to the latter case. The application of SMTE-MART leads in 
practice to the elimination of ghost particle intensity. Inter-
estingly, the same result seems to be obtained, irrespec-
tive of the number of MART iterations adopted for each 
snapshot.

The reconstruction signal-to-noise ratio, SNRR is 
defined as the ratio of mean intensity inside the and outside 

the illuminated region. A minimum value of 2 is considered 
a criterion for an acceptable reconstruction (Scarano 2013). 
Clearly, greater values of SNRR correspond to a reduced 
contribution from ghost particles. The SNRR is shown in 
Fig. 3. MART reconstructions with 5 or 20 iterations return 
values of 2.0 and 3.3, respectively. The increase in SNR 
with additional MART iterations is a behavior typically 
encountered using synthetic data where image noise is not 
considered. In experimental data instead (see Sect. 4), the 
improvement of reconstruction quality Q after 5 MART 
iterations becomes less pronounced. SMTE-MART begins 
with a reconstruction SNR equal to the MART case and 
increases rapidly (one order of magnitude after 5 frames) 
reaching a converged value (independent of further time 
advancement) of approximately 100 after approximately 
15 frames. This result also seems to be independent of 
NM, although the rate of convergence increases slightly 
with NM. Remarkably, for all considered values of NM, the 
SNRR obtained after convergence is significantly higher 
than MART NM = 20. This indicates that the reconstruc-
tion accuracy of SMTE-MART is not only related to the 
larger number of MART iterations (considered along the 
sequence), but mainly due to the fundamental principle 
of MTE, whereby the particles with coherent motion are 
retained along several frames against the incoherent ghost 
particles.

A second evaluation criterion is the reconstruction 
quality factor Q as originally proposed by Elsinga et al. 
(2006), defined as the normalized cross-correlation coef-
ficient between the reconstructed and exact object. Com-
pared with the SNRR, which is predominantly an esti-
mate of ghost formation, Q also yields a measure of the 
spatial accuracy in the reconstruction of actual particles. 

Fig. 2  Reconstructed light intensity distributions for frame n = 20. Left Y–Z section of the volume with values averaged along the streamwise 
direction. Right reconstructed object intensity profiles along Z (depth)
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For example any small positional inaccuracy due to inac-
curate correction by SMTE-MART of the incoming 
enhanced guess would result in considerable decrease in 
Q. The results shown in Fig. 3 indicate that the above cir-
cumstance is not encountered, at least for the present case. 
The comparison yields Q = 0.87 (at all values of NM) for 
SMTE, whereas the highest value obtained with MART at 
NM = 20 is Q = 0.67, MTE-MART returns a value slightly 
exceeding 0.7.

The number of frames required for SMTE to reach 
convergence may raise issues on its application to short 
sequences (e.g., high-speed burst systems). However, as 
for any sequential algorithm, SMTE can also be applied 
backward in time after marching along the sequence in 
the forward direction. The resulting ‘forward–backward’ 
SMTE will become more computationally expensive, but 
still yield a benefit compared with standard MART or MTE 
in short sequences (typically 2–8 frames). For brevity, this 
mode of operation is not discussed further.

The analysis of ghost particles reduction is performed 
by direct inspection of occurrence and peak intensity of 
ghost particles within the volume. Reducing the presence 
of ghost particles is reported to yield an improved cross-
correlation analysis as their presence potentially corrupts 
the cross-correlation map in proximity of the peak, result-
ing in a bias toward lower values of the velocity gradient 
(Elsinga et al. 2010).

The particle detection scheme required for this analysis 
assumes a 3-D Gaussian blob for the real particles. Any par-
ticle found within one voxel distance from the position of a 
real particle is considered a valid match. All other peaks are 
associated to ghost particles. A histogram of the real and 
ghost particle intensities for MART and SMTE is given 
in Fig. 4 for frame n = 20. The vertical axis is truncated 
to clearly illustrate the distribution of real particles. The 
MART reconstruction yields an intensity of real particles 
that largely overlaps with that of the ghost particles. In con-
trast, SMTE establishes a clear range separation between 

Fig. 3  Left reconstruction signal-to-noise ratio SNRR. Right reconstruction quality factor Q

Fig. 4  Histogram of peak intensities for MART (left) and SMTE (right). Ghost particles in red, real particles in black. Vertical axis truncated to 
ease visualizing the intensity distribution of real particles
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peak intensity of real and ghost particles. This behavior is 
consistent with previous reports on MTE-MART (Novara 
et al. 2010).

A similar behavior is noted in the number of ghost/real 
particles. The ratio of generated ghost particles to real ones 
is approximately 25 for MART and drops to 5 for SMTE. 
In both cases, the number of real particles generated is 
nearly equal to the actual simulated particles.

3.3  Velocity field analysis

The velocity field accuracy is first assessed qualitatively by 
visual inspection of its spatial coherence in comparison with 
the velocity field obtained by cross-correlation analysis of 
the exact particle field. Furthermore, the quantitative analy-
sis is based on the absolute error level. A visual comparison 
of the velocity field at frame number n = 20 is shown in 
Fig. 5. The reference case is chosen as the cross-correlation 

of the exact intensity field in order to account only for the 
errors due to the reconstruction and not those associated 
with the finite spatial resolution. The objects reconstructed 
with MART (NM = 5) and SMTE-MART (NM = 3) are con-
sidered. Contours of the streamwise velocity along a plane 
parallel to the wall and isosurfaces of positive values of the 
Q-criterion for visualization of vortical structures are repre-
sented. The reference velocity field features regions of high 
and low velocity. Around the latter, vortical structures are 
more often detected, elongated along the streamwise direc-
tion or under form of arcs and canes. A hairpin like structure 
is visualized in the top-right region of the selected field, atop 
an elongated low-speed region. This is consistent with the 
observed pattern of coherent structures in turbulent bound-
ary layers at the current Reynolds number (Adrian 2007).

An inspection of the result obtained with the MART recon-
struction yields isosurfaces with no evidence of the charac-
teristic vortical structures. Moreover, the streamwise velocity 

Fig. 5  Velocity fields of frame 
n = 20. The z-coordinate (wall-
normal) is oriented normal to 
the page. Isosurfaces of positive 
Q-criterion, contours of stream-
wise velocity. Top reference 
velocity field from correlation 
of exact objects; center MART 
NM = 5; bottom SMTE-MART 
NM = 3
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contours, which in the reference field reveal elongated alter-
nating streaks of high- and low-speed fluid near the wall, 
are less distinct with the MART reconstruction and appear 
generally biased toward higher velocity values. The latter is 
ascribed to high velocity outlier vectors due to ghost particles 
generated by particles in the outer layer and forming closer 
to the wall. The tracer particles traveling at approximately 
freestream velocity form the largest number of ghost particles 
along the entire depth of the measurement domain. Thus, the 
correlation near the wall with MART is heavily biased by a 
large number of fast-moving ghost particles, which dominate 
the signal against a smaller number of slowly moving actual 
particles subject to strongly sheared motion.

Many of the features observed in the reference veloc-
ity field can be retrieved in the analysis conducted with the 
objects reconstructed with SMTE. Although a higher noise 
level is observed, the scenario is considerably more favora-
ble within the SMTE results, with the alternating streaks 
clearly identified in agreement with the reference field.

The measurement accuracy is assessed quantitatively by 
evaluation of the total error, determined by the RMS of the 
difference between the measured and actual velocity field. 
In Eq. 3, i is the grid node index and N the total number of 
vectors in the measurement domain.

The total error, varying along the sequence of frames, 
is reported in Fig. 6. In this case, the reference velocity 
field is given by the DNS data. The data series showing the 
smallest error (approximately 0.1 voxels) is that obtained 
cross-correlating the exact particle field. The level of the 
error associated to the analysis with 5 MART iterations is 

(3)ε�x =

√

√

√

√

1

N

N
∑

i=0

(�x − �xactual)
2

above 0.6 voxels, which compares well with a recent study 
of tomographic PIV measurement uncertainty from the 
authors (Lynch and Scarano 2014). Increasing the num-
ber of iterations to 20, the minimum error level achievable 
using MART is approximately 0.4 voxels. Based on the 
freestream displacement of 12 voxels, the corresponding 
dynamic velocity range (DVR; Adrian 1997) of this simu-
lated measurement reduces to only 30 levels. The SMTE 
result converges to a total error between 0.15 and 0.2 vox-
els, depending on the number of MART iterations. The 
close approximation to the result obtained cross-correlating 
the reference objects indicates that SMTE has reduced the 
occurrence of ghost particles to a level that is negligible.

3.4  Computational time

The computational effort required to realize MTE-MART 
was already reported as being much greater than standard 
MART processing (Novara et al. 2010). Given that MART 
calculations are already computationally demanding, the 
application of MTE-MART has become impractical for large 
image sequences. In contrast, the SMTE-MART procedure 
does not require additional iterations and achieves a supe-
rior result to both standalone MART and MTE even when 
fewer MART iterations are used. The only additional com-
putational step over MART is the generation of the enhanced 
guess. The computational cost is summarized in Fig. 7, 
where the approximate wall-clock time required for each of 
the processing tasks is shown. The computation time is bro-
ken into segments for reconstruction, correlation and (in the 
case of MTE and SMTE) enhanced guess generation. The 

Fig. 6  Total RMS error. Reference curve indicates correlation per-
formed on reference objects (no reconstruction errors)

Fig. 7  Approximate wall-clock time for a single snapshot reconstruc-
tion using MART, MTE and SMTE processing
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result is averaged over the 25 frames considered, not includ-
ing the initial reconstructions performed using 5 MART iter-
ations. The wall-clock time is approximated by dividing the 
CPU time by the number of CPU cores (presently 48).

Both the SMTE NM = 1 and NM = 3 results have a com-
putation time shorter than even the standalone MART, at 
under 10 min per frame. Furthermore, the computational 
load of cross-correlation exceeds that of the reconstruction. 
In contrast, the case of MART NM = 20 takes four times as 
long to reconstruct as the MART NM = 5 case, but with an 
identical time spent in cross-correlation. Finally, the MTE 
is longer in both reconstruction and cross-correlation due to 
the iterative procedure. In total, the SMTE approach results 
in a method over four times faster than MTE and margin-
ally less time consuming when compared to MART.

4  Experimental assessment of a turbulent trailing edge

4.1  Test conditions and measurement apparatus

The present analysis follows closely that performed by 
Novara and Scarano (2012). Data are gathered from a time-
resolved tomographic PIV experiment on turbulent flow 
past the trailing edge of an airfoil. Details of the experi-
ment are provided in Ghaemi and Scarano (2011).

The airfoil model is a NACA-0012 of 40 cm chord 
placed at zero angle of attack. The freestream velocity is 
14 m/s, yielding a chord Reynolds number of 370,000. The 
boundary layer thickness δ99 at the trailing edge is 9.5 mm. 
At this location a measurement volume of 40 × 24 × 8 mm 
is realized. The experimental apparatus consists of a 
Quantronix Darwin-Duo Nd:YLF laser (2 × 25 mJ/pulse at 

1 kHz) and four high-speed Photron Fastcam SA1 CMOS 
cameras (1024 × 1024 pixels at 5400 fps). The illumina-
tion is increased by the multi-pass technique, reflecting the 
beam multiple times throughout the volume (Ghaemi and 
Scarano 2010). Seeding is provided by a stage smoke gen-
erator producing particles with 1 μm nominal diameter.

The cameras are fitted with 105 mm focal length Nikon 
objectives operating at f/# = 22 and arranged in a linear 
configuration (see Fig. 8). The particle image diameter dτ

* is 
1.5 px as determined via autocorrelation analysis. Both the 
laser and camera systems are operated in single-frame con-
tinuous mode to record a time-resolved image sequence at 
a frequency of 12 kHz. Synchronization and image acqui-
sition are controlled from a PC with LaVision DaVis 7.4 
software and a high-speed controller.

Two experiments are conducted at a particle image den-
sity of 0.05 and 0.2 ppp. These correspond to particle con-
centrations of 3 and 12 particles/mm3, respectively. Details 
on the particle density estimation can be found in Novara 
and Scarano (2012). Image preprocessing consists of two 
steps: First, the historical minimum is calculated at each 
pixel for each camera. Then, the images are subtracted 
by the corresponding minimum. The images are further 
divided by the time-average value at each pixel to normal-
ize the intensity within each camera image and among 
cameras. No spatial filtering (smoothing) is applied. Exam-
ple preprocessed images are given in Fig. 8.

The case ppp = 0.05 is used to refine the camera map-
ping functions via the volume self-calibration technique 
(Wieneke 2008). Residual calibration errors are below 
0.1 pixels. The reconstructed volume is discretized by 
900 × 550 × 250 voxels with a pixel-to-voxel ratio of 1.0. 
The cross-correlation analysis is identical to the synthetic 

Fig. 8  Left tomographic PIV setup (reproduced from Ghaemi and Scarano 2011). Right individual particle images after preprocessing (cropped 
to 500 × 200 pixels) at ppp = 0.05 (top) and 0.2 (bottom)
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case, but using interrogation volumes of 24 × 24 × 24 
voxels (1.2 × 1.2 × 1.2 mm3) at 75 % overlap. This cor-
responds to NI = 15 particles within an interrogation region 
for ppp = 0.2.

4.2  Reconstruction quality

The laser sheet intensity distribution for the reconstructed 
volume of frame 35 in the sequence is given in Fig. 9. The 
MART (NM = 5) reconstruction has an intensity distribu-
tion that does not exhibit any region with higher inten-
sity. Therefore, also the edges of the illuminated region 
are not visible. Increasing iterations (NM = 20) and using 
the MTE-MART deliver a small region of local maximum 
barely distinguishable above the background level. With 
the introduction of SMTE-MART the boundaries of the 
illuminated volume become better defined. Note that the 
SMTE-MART NM = 1 (a single MART update), although 
better than regular MART and MTE-MART, is less defined 
than the cases with additional MART updates.

The SNRR is calculated by considering an average of 
regions inside and outside of the illuminated volume and 
is displayed in Fig. 10. The trend is similar to that observed 
earlier in the synthetic data (see Fig. 3): The SNRR of 
MART remains below 1.2 and MTE yields a value approxi-
mately 1.5. The SNRR of SMTE-MART increases along 
the sequence, requiring 15–30 frames to approach a value 
of 3. The SMTE results with a single MART iteration are 
poorer (SNRR < 2) than those obtained with 3 or 5 itera-
tions, confirming the previous observation and indicating 
that for experimental data, there is benefit in using more 
than a single MART update with SMTE-MART.

4.3  Velocity field analysis

A rendering of the instantaneous velocity field is shown in 
Fig. 11. The blue isosurfaces represent low-speed regions 
(50 % of the freestream velocity) throughout the velocity 
field. Brown isosurfaces indicate positive values of Q-cri-
terion. A significant difference in the low-speed streaks is 
seen between MART and SMTE, the former being unable 
to capture the streaks throughout the entire streamwise 
direction. Furthermore, an improvement in the spatial 
coherence of the Q-criterion is evident in the SMTE result, 
which allows a less ambiguous identification of hairpin and 
cane structures.

Fig. 9  Reconstructed light intensity distributions for frame n = 30 to 35. Left reconstructed intensity distributions, summed along streamwise 
direction. Right reconstructed intensity profiles, summed along streamwise and transverse directions

Fig. 10  Reconstruction signal-to-noise ratio, SNRR. Legend identical 
to Fig. 9
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Time-resolved tomographic PIV has been recently 
used to investigate the temporal evolution of coherent 
structures (Schroder et al. 2011; Elsinga et al. 2012). The 
prediction of properties such as the lifetime of energy-
containing eddies (Elsinga and Marusic 2010) and their 
stability strongly relies on an accurate description of 
their spatial pattern and their temporal evolution and the 
measurement noise plays a crucial role in biasing the 
estimate of such properties. The comparison of MART 
and SMTE is given here through visualization of these 
structures at subsequent recordings. In Fig. 12, a portion 
of the data is shown for four time instants where isosur-
faces of Q-criterion are used to identify hairpin and cane 
structures. The isosurfaces are color-coded blue to red to 
designate subsequent time instants. A higher spatial and 
temporal coherence is observed for the results obtained 
with SMTE reconstruction. In contrast, the results based 

on the MART reconstruction are much more difficult to 
interpret in terms of time sequence.

A more objective assessment of the measurement pre-
cision is made invoking the assumption of incompress-
ible flow whereby the velocity field divergence is zero. 
A nonzero measured value gives an estimate of the error 
in determining the tensor (Zhang et al. 1997) and further 
derived quantities such as the Q-criterion. A PDF of the 
divergence is given in Fig. 13 (left). Compared with MART, 
the SMTE exhibits a narrower distribution around zero, 
indicating a measurement better satisfying this condition. 
The performance of all methods throughout the sequence is 
associated to the standard deviation of the divergence and 
illustrated in Fig. 13 (right). Beginning from a nearly equal 
value at the start of the sequence, the SMTE decreases 
over approximately 10 frames to a value about 1.5 times 
less than MART (i.e., approximately 0.07 vox/vox from 

Fig. 11  Instantaneous velocity field snapshot for frame n = 30 using MART (left) and SMTE NM = 5 (right). Blue isosurfaces are streamwise 
velocity 50 % of the freestream velocity, and brown isosurfaces are of positive Q-criterion

Fig. 12  Overview of coherent structures identified by the Q-criterion for MART NM = 5 (left) and SMTE NM = 5 (right). Regions A and B des-
ignate two convecting hairpin structures



 Exp Fluids (2015) 56:66

1 3

66 Page 12 of 16

0.11 vox/vox). The decrease in divergence for the first 1–2 
frames of normal MART cases is due to the time-marching 
predictor for the cross-correlation as mentioned earlier.

Finally, the robustness of the measurements is inquired 
using the cross-correlation signal-to-noise ratio (SNR), 
defined by the ratio of highest to second highest peak in 
the 3-D correlation map. A value >1.5 is often considered 
as acceptance criterion for a reliable correlation analysis 
(Keane and Adrian 1990). In Fig. 14, the PDF of SNR is 
shown for MART and SMTE. The former has a distribu-
tion with maximum occurrence in the range between 1.2 
and 1.5. MTE is slightly shifted to higher values with a 
plateau up to a value of 2. The SMTE analysis is centered 
around a value of 3.5. The slight shift of the distributions 
with varying number of MART iterations in SMTE may 
not be regarded as an improvement in the measurement 

robustness. It is instead ascribed to the residual of the inten-
sity field transported from the previous recording.

Assuming that velocity fluctuations are passively trans-
ported by the flow, the measurement precision can be esti-
mated a posteriori making use of the space–time correlation 
function. The time that separates uncorrelated measure-
ments is their temporal separation ∆t = 83 μs. Novara 
and Scarano (2012) provided an estimate of the Lagran-
gian time scale for the intrinsic evolution of turbulent fluc-
tuations, which was estimated in the order of 10 ms: two 
orders of magnitude longer than ∆t. As a consequence, a 
high degree of correlation is expected between the velocity 
fields in a time series of 10–30 frames. Any rapid drop of 
the velocity spatiotemporal correlation peak from the unit 
value at the origin signals the presence of noisy fluctuations 
affecting the measurement.

The precision is therefore estimated by considering the 
drop of the maximum value of the spatiotemporal correla-
tion function. A similar approach was followed by Sciac-
chitano et al. (2012) and Lynch and Scarano (2013). The 
spatiotemporal correlation function of the streamwise 
velocity component between two subsequent exposures 
separated by a time delay dt and displacements dx, dy and 
dz is

where N is the number of grid nodes in the measurement 
domain. The mean value of the velocity field is subtracted 

(4)

φu(dx, dy, dz, dt)

=

∑N
i,j,k=0 u(i, j, k, t) · u(i + dx, j + dy, k + dz, t + dt)

√

∑N
i,j,k=0 u(i, j, k, t)2

·
∑N

i,j,k=0 u(i + dx, j + dy, k + dz, t + dt)2

Fig. 13  PDF of the divergence (left) for frame number n = 30, and standard deviation of the divergence (right) as a function of frame number. 
Legend identical to Fig. 9

Fig. 14  PDF of the correlation signal-to-noise ratio (SNR) for frame 
n = 30. Legend identical to Fig. 9
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prior to calculation, and the normalization guarantees that 
the result is bounded in the range between −1 and 1. The 
correlation of dx with dt (dy and dz set to zero) for the 
wall-normal velocity for MART, MTE-MART and SMTE 
are shown in Fig. 15. All results yield a similar advection 
velocity (indicated by the slope of the maximum φ). How-
ever, the time over which the data are correlated is signifi-
cantly shorter for the MART reconstruction (0.5 ms) in 
comparison with MTE (< 1 ms) and in particular SMTE 
(>1.5 ms).

To quantify the degree of correlation retained by SMTE, 
the three-dimensional spatiotemporal correlation is deter-
mined and the correlation peak is tracked in all three 
dimensions as a function of time. The peak value of the 
correlation function is shown in Fig. 16 for the streamwise 
(left) and wall-normal (right) velocity components. For the 
streamwise component, a reduction in correlation to 0.93 

is noted for MART, compared with 0.94 for MTE and 0.96 
for SMTE. This corresponds to relative error levels of 7, 6 
and 4 % for the three methods, respectively. The wall-nor-
mal component is affected by larger errors, with a reduc-
tion to 0.86 for MART, 0.88 for MTE and 0.91 for SMTE.

5  Experimental assessment of a swirling jet

5.1  Test conditions and measurement apparatus

A second experimental test case demonstrates the utility of 
SMTE to treat experimental data obtained with fewer cam-
eras, but at a seeding density typically practiced for sys-
tems with more cameras. The reduced cost and complexity 
of a tomographic PIV setup is attractive in realizing time-
resolved tomographic PIV experiments.

Fig. 15  Spatiotemporal correlation of the wall-normal velocity as 
a function of time delay and streamwise shifts at a position 5 mm 
in height from the trailing edge. Left MART NM = 5; center MTE-

MART NM = 5 NE = 2 NO = 2; right SMTE-MART NM = 5, with an 
overlay of the estimated convection velocity uc

Fig. 16  Maximum spatiotemporal correlation of the streamwise (left) and wall-normal (right) velocity as a function of time delay
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Data are gathered from an experiment on low Reynolds 
number swirling jets conducted in the Jet Tomography 
Facility (JTF) at TUDelft. The jet consists of a 19.7-mm-
diameter nozzle issuing vertically into a clear octagonal 
water tank (see Fig. 17). The swirl is introduced within the 
nozzle by a four-vane cylindrical channel insert. Imme-
diately after the insert the nozzle ends sharply as a trun-
cated pipe (Ianiro and Cardone 2012). The exit velocity is 
0.05 m/s yielding a Reynolds number of 1000.

Neutrally buoyant polyamide particles with median 
diameter of 56 µm (VESTOSINT® 2157) are used as 
seeding particles. The water is recycled to maintain a con-
stant seeding density equal to about 0.3 particles/mm3. 
The illumination is provided by a Quantronix Darwin-
Duo Nd/YLF laser (2 × 25 mJ/pulse @ 1000 Hz). The 
laser beam is shaped in order to feature a quasi-cylindrical 

illumination volume with a diameter approximately 
50 mm at the top of the measurement domain and 45 mm 
at the nozzle exit.

Particle images are recorded by three LaVision Imager 
pro HS CMOS cameras (2016 × 2016 pixels, 11 µm pixel 
size) subtending an angle of 90°. Nikon objectives of 
105 mm focal length are set with an aperture f/# = 22 to 
provide focused imaging of the particles over the illumi-
nated domain. This configuration yields a digital resolution 
of 18.6 pixels/mm. Images are acquired at 100 Hz, corre-
sponding to maximum displacements of 10 voxels within 
the reconstructions. The particle image density is approxi-
mately ppp = 0.04 along the jet axis; for a three-camera 
system, this is a relatively high level of seeding density and 
the reconstruction quality factor Q is estimated below 0.8, 
as shown in Scarano (2013).

Image preprocessing consists only of dark image sub-
traction; no sliding minimum subtraction or smoothing 
is performed. The reconstructed volume is discretized by 
850 × 2080 × 1000 voxels at 1.0 voxels/pixel. The cross-cor-
relation analysis uses interrogation volumes of 48 × 48 × 48 
voxels (2.6 × 2.6 × 2.6 mm3) at 75 % overlap. This corre-
sponds to NI = 6 particles within an interrogation region.

5.2  Reconstruction quality

The reconstructed intensity field for MART and SMTE is 
shown in Fig. 18. Note that the illumination is cylindrical 
compared with the previous cases. The MART reconstruc-
tion shows a hexagonal pattern due to the formation of ghost 
particles in all regions where intersections of the camera 
lines of sight occur. The width of this hexagonal pattern is 
also not equal to the actual size of the illumination. After 
approximately 10 frames, SMTE retrieves a clear circular 

Fig. 17  Photograph of swirling jet in the Jet Tomography Facility 
at TUDelft with three high-speed cameras viewing the measurement 
volume

Fig. 18  Reconstructed light intensity distribution. White lines indicate camera viewing directions
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pattern for the intensity distribution. Moreover, individual 
particles are reconstructed with higher contrast and are 
clearly identified.

5.3  Velocity field analysis

A comparison of the velocity fields is shown in Fig. 19, 
aiming at confirming the more clear measurement of the 
flow structures. Gray isosurfaces denote the velocity mag-
nitude equal to 70 % of the jet exit velocity. These isosur-
faces trace the paths taken by the jets emanating from each 
of the four swirling vanes. A clear difference is noticed 
between MART and SMTE at the nozzle exit, where 
MART is unable to resolve one of the jet cores due to the 
contamination of the cross-correlation by slow-moving 
ghost particles generated by the surrounding quiescent 
fluid. The coherent vortical structures outlined by the blue 
isosurfaces also exhibit marked differences. The vortical 
pattern represented with the MART analysis has significant 
jitter, and a number of large-scale structures are strongly 
underestimated. The SMTE analysis recovers more infor-
mation, improving the spatial and temporal coherence of 
structures throughout the velocity field.

6  Conclusions

The analysis of time-resolved tomographic PIV 
sequences can be performed in a computationally effi-
cient and accurate manner on the basis of the MTE 
technique. A novel algorithm was introduced that 

replaces the time-sliding-kernel concept of the original 
MTE principle with the time-marching approach. For a 
given image sequence, the reconstruction of the previ-
ous frame is propagated in time using the velocity field 
and used as an enhanced initial guess for the follow-
ing reconstruction. The method relies on time-resolved 
image sequences and is thus termed sequential MTE 
(SMTE).

Synthetic tomographic PIV images generated from 
DNS of a turbulent boundary layer were used to eval-
uate the reconstruction and velocity error. After a 
sequence of 5–10 frames, SMTE was shown to signifi-
cantly improve the reconstruction accuracy and to yield 
higher reconstruction signal-to-noise ratio, compared 
with standalone MART. The reduced presence of ghost 
particles reduced the random and bias errors of velocity 
field, particularly near the wall where the mean shear 
level is highest. Furthermore, the reduced number of 
reconstruction iterations needed by SMTE results in 
faster computations than MTE-MART and even of the 
standalone MART.

An experimental assessment on a densely seeded image 
sequence of an airfoil trailing edge showed an improvement 
in both reconstruction and velocity field quality compared 
with standalone MART. The SMTE technique retrieves the 
laser beam distribution within the reconstructed volume 
after approximately 20 frames, which was not possible for 
standalone MART and barely possible for MTE-MART. 
Although in the synthetic case a single MART update 
could be used for SMTE, it is observed that for experi-
ments SMTE requires more than a single MART update 
to obtain accurate reconstructions across the sequence. 
Velocity fields obtained with SMTE reconstruction appear 
increased in their spatial and temporal coherence in com-
parison with standalone MART, confirmed by the evalua-
tion of the divergence and the spatiotemporal velocity cor-
relation function.

An experiment on a swirling jet showed that SMTE can 
also give important benefit for measurements using a three-
camera system at seeding densities typically reserved for 
systems with more cameras. The combination of negligi-
ble computational cost of SMTE over standalone MART 
and the higher fidelity of the object reconstruction makes 
SMTE an attractive processing technique for time-resolved 
tomographic PIV datasets.
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