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Abstract
Machine learning is used more and more in scientific contexts, from the recent break-
throughswithAlphaFold2 inprotein fold prediction to theuseofML inparametrization
for large climate/astronomy models. Yet it is unclear whether we can obtain scientific
explanations from such models. I argue that when machine learning is used to conduct
causal inference we can give a new positive answer to this question. However, these
MLmodels are purpose-built models and there are technical results showing that stan-
dard machine learning models cannot be used for the same type of causal inference.
Instead, there is a pathway to causal explanations from predictive MLmodels through
new explainability techniques; specifically, newmethods to extract structural equation
models from such ML models. The extracted models are likely to suffer from issues
though: they will often fail to account for confounders and colliders, as well as deliver
simply incorrect causal graphs due to ML models tendency to violate physical laws
such as the conservation of energy. In this case, extracted graphs are a starting point
for new explanations, but predictive accuracy is no guarantee for good explanations.

Keywords Scientific explanation · Machine learning · Causal inference · Artificial
intelligence

1 Introduction

Machine learning models1 are quickly gaining ground in scientific practice. A partic-
ular success is the use of deep learning model AlphaFold 2 to predict protein folding
(Jumper et al., 2021), but examples abound. There is, for example, usage of deep

1 It should be noted here that the term ’machine learning’ has both narrow and broad interpretations. In
a broad interpretation it is any computer method that solves a problem by fitting a function to data. In
that case, simple models such as those based on linear regression count as machine learning. I follow the
narrower definition of machine learning common in the literature discussed here, where the term is only
applied to methods such as deep neural networks and random forest algorithms, which are distinguished
by their use of a large number of parameters and non-linearity.
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learning in climate models (Rasp et al., 2018), astronomy (Agarwal et al., 2012),
and materials science (Schmidt et al., 2019). These machine learning models are
primarily predictive models: they are used because they can very accurately predict
outcomes (e.g. protein folds, or climate parameters). An important exception is the
case of neuroscience (Milkowski, 2013; Piccinini, 2010; Stinson, 2018) because of
the direct modeling offered by machine learning models in that area. I will set aside
that field here to focus on the other areas of science. There, it is not clear that opaque
machine learning models, which predict well but where we do not understand why
they arrive at a certain prediction (Das & Rad, 2020) can be used to arrive at sci-
entific explanations (López-Rubio & Ratti, 2021; Srećković et al., 2021). The most
advanced machine learning tools, deep neural networks, present us with two difficul-
ties: they are very complex (easily containingmillions of parameters that are fine-tuned
based on large data sets) and they lack internal representations that are legible to us
(other models have explicit variables standing for e.g. physical quantities, deep neural
networks have activation functions that respond to complex combinations of input fea-
tures which we cannot interpret). As a result, it is difficult to see how we can acquire
causal explanations when using these complex models. There are worries that “if
you do molecular biology with machine learning techniques, and if you want to have
the best machine learning performances, then you cannot even in principle elaborate
fully-fledged mechanistic explanations” (López-Rubio & Ratti, 2021, p. 3152).

Recently, Sullivan (2019), Knüsel and Baumberger (2020), Jebeile et al. (2021) and
Meskhidze (2023) have argued that there is in fact a possibility to get more from these
models than just predictions. They focus precisely on the predictive machine learning
models just mentioned, and follow the idea that under certain conditions [primarily
that link uncertainty is low, meaning that there is “scientific and empirical evidence
supporting the link connecting the model to the target phenomenon” (Sullivan, 2019,
p. 30)] this is possible without the models being explainable. This approach has been
extensively criticized in a recent paper by Räz and Beisbart (2022). I agree with those
criticisms, but will leave that debate to the side for the current paper. Instead, my goal
here is to offer a different positive answer to the question whether we can arrive at
scientific explanations from machine learning models.

First, I argue in Sects. 2 and 3 that machine learning models that are used in causal
inference can be seen as generating scientific explanations, at the very least if we
take a causal account of scientific explanation (Halpern & Pearl, 2005; Woodward,
2005). On such an account, we can explain a target phenomenon by giving a cause
for that phenomenon, which will cover both the actual case and answer a range of
what-if-things-had-been-different questions. The general approach of causal inference
(described in Sect. 2) aims to determine such causal relations, and if successful, gives
us the cause(s) for the target phenomenon. My argument, then, is that if machine
learning models can provide us with causal relations for scientific phenomena, then
they can thus provide uswith (causal) scientific explanations. After all, causal relations
are precisely what we should be providing according to Woodward (2005) and others
in order to explain scientific phenomena. The challenge thus is to show that machine
learning models can, in some cases, provide these causal relations. In this, I extend
the work of Pietsch (2016) who argued that causal modeling is possible with big data.
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The added contribution here is a close connection to causal inference techniques and
a link to specific ML models that can be used for causal inference.

I follow the influential work of Pearl (2009) to structure the discussion on causal
inference, andwhethermachine learning can be used to arrive at causal explanations of
scientific phenomena. On his framework causal inference happens in essentially two
steps: first, a directed acyclic causal graph (or, equivalently, structural equations) is
formulated for the specific case. This specifies which variables influence which other
variables, and is crucial for the causal inference process. Without a causal graph in
place, causal inference is not possible, and with different causal graphs the same data
will give different results in the second step. As such, these assumptions are crucial
(and are often verified afterwards by seeing how results respond to changes to the
causal graph that should not have an effect, such as introducing a random extra cause).
The second step is to estimate the treatment effect(s) in the causal graph. This comes
down to estimating the strength along the arrows in the causal graph, or the coefficients
in the structural equations and effectively shows what the exact causal influence is of
a cause on the target phenomenon.

Interestingly, both causal inference steps can be accomplished usingmachine learn-
ing models, and even using deep neural networks. Causal graphs can be learned from
data with the help of machine learning (Sect. 2) and specific double machine learn-
ing techniques allow the calculation of treatment effects using neural networks when
given a causal graph (Sect. 3). Together, this shows (so I argue) that there are definitely
some machine learning models that can provide causal explanations. In Sect. 4 I then
expand on these results to consider the prospects of scientific explanations from pre-
dictive MLmodels. There, I argue that recent techniques to extract structural equation
models from deep neural networks give us good reason to think that through better
explainability of suchmodels we can get (candidate) scientific explanations. However,
these predictive models lack some of the properties of the ML models considered in
Sects. 2 and 3 and so these candidate explanations are likely to be incorrect when
adopted directly. Still, they can provide a good starting point for new causal scientific
explanations and thus explainable AI can help us extract explanations from predictive
ML models as well.

2 Learning causal graphs

Causal inference requires assumptions about the direction in which variables influence
each other. Where correlations go both ways and can be directly calculated from
observational data, causal relations are not so easily inferred. After all, there are
plenty of correlations that do not correspond to causal relations (take the example of a
correlation between drownings and ice cream sales, which is the result of a common
cause: nice weather). To arrive at causes, correlations thus fall short. As Pearl says:
“Causal analysis goes one step further; its aim is to infer not only beliefs or probabilities
under static conditions, but also the dynamics of beliefs under changing conditions,
for example, changes induced by treatments or external interventions” (Pearl, 2009,
p. 99). In order to get to these causal relations assumptions need to be made. Again:
“behind any causal conclusion there must be some causal assumption, untested in

123



  202 Page 4 of 16 Synthese          (2023) 202:202 

Fig. 1 A simple causal graph
with a confounder X, treatment
T and outcome Y. Change the
direction of both arrows from X
and it becomes a collider

observational studies.” (Pearl, 2009, p. 100) These assumptions are the causal graphs,
or (equivalently) structural equations that describe our choices about the direction
of causation. In other words, these graphs/models describe whether X causes Y, or
Y causes X (or that the two are independent). They also tell us what variables are
confounders (variables that influence both the outcome and the treatment) and which
are colliders (variables influenced by both the outcome and the treatment), and howwe
can control for these to arrive at correct estimations of the strength of causal relations
(the treatment effect). An example causal graph with a confounder X for treatment T
and outcome Y is shown in Fig. 1.

How does machine learning come in here? Well, it turns out that to some extent
causal graphs can be learned from observational data [for a review see Glymour et al.
(2019)]. And (purpose-built) machine learning models are one way to do so. To see
how, I’ll discuss two methods to learn causal graphs: constraint-based methods and
scoring methods. For both I show how machine learning can be applied and how they
yield new causal graphs.

First, one can follow a constraint-based method (cf. Spirtes et al., 2000): starting
with a maximally connected graph one estimates conditional independencies between
variables to remove edges (one direction at a time) from that graph. Ideally this results
in a graph where enough edges are removed to fill in the direction of causal inference.
This happens using two inference rules:

1. “For each triple of variables (A, B, C) such that A and B are adjacent, B and C are
adjacent, and A and C are not adjacent, orient the edges A – B – C as A → B ← C,
if B was not in the set conditioning on which A and C became independent and the
edge between them was accordingly eliminated. We call such a triple of variables
a v-structure” (Glymour et al., 2019, p. 4).

2. “For each triple of variables such that A → B – C, and A and C are not adjacent,
orient the edge B – C as B → C. This is called orientation propagation” (Glymour
et al., 2019, p. 4).

This will not always allow the learning of the full causal graph. There is, in other
words, no guarantee that all edges will be covered by these two inference rules. As
such, conditional independence algorithms at best converge to theMarkovEquivalence
class (assuming that the conditional independence estimates are correct and there are
no unmeasured confounders) where some edges can go either way. Learning causal
graphs in this manner is thus both highly dependent on how conditional indepen-
dence is estimated [importantly Shah and Peters (2020) have shown that there exists
no uniformly valid test for conditional independence] and will not always produce a
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full causal graph. This nicely illustrates the difficulty of learning causal graphs from
data, and is in line with Pearl’s quote that there are always some untested assumptions
involved. In this case, those causal assumptions will be that the particular conditional
independence test used on the data allows us to conclude causal independence of the
two variables and is possibly supplemented by additional causal assumptions to com-
plete the causal graph. For example, in the situation where there are only two variables
there is no way to determine whether A causes B, or B causes A using independence
testing. It is possible to observe whether the variables influence each other, but with-
out actually changing one variable and seeing the effect of this intervention we cannot
decide this situation. In practice we of course have access to many more variables than
just the two, but situations will still occur where the direction of certain edges cannot
be decided using a constraint-basedmethod. Then, additional causal assumptions have
to be made.

To return to the focus of this paper, conditional independence tests can be performed
with the help of machine learning models. In this case, the method as reviewed by
Glymour et al. (2019) is thus executed using machine learning and thus gives us
an instance of a causal graph learned using machine learning. For example, Sen et
al. (2017) do so by turning the question of conditional independence testing into a
classification problem, which machine learning models can handle. Their basic idea
is that if two variables are conditionally independent, then a classifier (such as a
machine learning model, including deep neural networks) will have a hard time to
predict one variable based on the other. If, on the other hand, there is some causal
dependence there, then it will be possible to predict the values of the first variable
using the values of the second variable. Note, however, that this requires a purpose-
built machine learning model and that standard predictive models cannot be used for
conditional independence tests. Specifically, Sen et al. (2017) startwith 3n independent
and identically distributed samples from three variables X , Y and Z . They then process
2n samples in a nearest-neighbour bootstrap algorithm to generate n samples that are
close to how the three variables would be distributed if X were independent from Y ,
given Z. These new samples are labelled with a 1, the original n samples that were not
used in the bootstrapping are labelled with a 0. Finally, a machine learning model is
trained on a mixture of the two sets of samples to predict whether it was an original
sample (labelled with 1) or a generated sample (labelled with 0). If the machine
learning model has a high accuracy, then the original samples are distinguishable
from the conditionally independent samples and so it’s likely that X and Y are not
independent. If the model performs (close to) randomly, then it is likely that X and
Y are conditionally independent. As is clear, this requires quite a bit of work and a
specifically designed machine learning model. This is a feature that is repeated in
other approaches found in the literature: e.g. Bellot and van der Schaar (2019) and
Shi et al. (2020) both use specific generative adversarial networks (a type of deep
neural network/machine learning model) to approximate conditional distributions and
test independence hypotheses on that basis. In short, conditional independence testing
with machine learning models is possible, but requires purpose-built models.

It is thus possible to use machine learning for causal discovery (i.e. learning causal
graphs from data) when taking a constraint-based approach. A similar possibility for
using machine learning is seen for the other method, a scoring approach. Instead of
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estimating conditional independence, this method uses a scoring function to search
for the causal graph that best fits the observational data (where the choice of scoring
function contains causal assumptions). This effectively comes down to an optimization
problem (learning the graph that maximizes fit with the data) and so is well-suited for
the use of machine learning. And indeed, there is a good number of approaches to
do so, of which I’ll highlight two here to give an impression of the possibilities. As
we’ll see, for all these approaches there is again an important causal assumption: that
a graph more similar to the actual causal graph will get a higher score than one that
is less similar. This assumption, that the scoring function tracks causality, is a rather
uncertain one, as scoring methods frequently give us incorrect causal graphs. Still, it
can be a useful method when arriving at a causal graph in other ways is difficult.

Lachapelle et al. (2019) propose a method that uses the inner workings of small
neural networks to learn causal graphs. The basic idea is that they train fully-connected
neural networks to predict each variable of interest, based on all the other variables
that are considered. If variable X is not used to predict the value of Y, then that is
evidence that there is no arrow from X to Y. If X is used to predict Y, then that is
evidence for an arrow from X to Y. In a little more detail: this method starts with the
fitted neural networks and takes the sum of all path products from input (variable) i
to output (variable) k. That’s feasible, since the neural networks are small: e.g. when
there are two hidden layers than there are three weights on any path from i to k, one
from the input to hidden layer 1, one from hidden layer 1 to hidden layer 2 and a final
one from hidden layer 2 to the output. If every path from i to k has a product of the
weights along that path that equals zero, then the two are independent (i.e. there is
no arrow between them in the causal graph). In practice, a threshold of ε = 10−4 is
applied during optimization, where any weights are permanently set to zero if they fall
below the threshold. The non-zero sums result in amatrix that then needs to be adjusted
such that the corresponding graph (with an arrow from i to j iff matrix entry Ai j > 0)
is acyclic. That is where the scoring function comes in, and a maximum likelihood
optimization problem is formulated using the acyclicality constraint, which is solved to
provide the best fitting causal graph.2 As such, the method produces a unique causal
graph, but without strong guarantees that it is the correct graph. For example, the
method has to employ various strategies to avoid overfitting the neural networks to the
data to obtain more plausible graphs. Lachapelle et al. (2019) note that adding edges
can never reduce the maximal likelihood, and it is therefore necessary to stop training
as soon as the performance no longer increases, as well as to prune the graph after
training and to do a preliminary selection for any neural networks with more than 50
nodes. You get a unique, completely filled in, causal graph at the end but there are no
guarantees that any of the edges are correct.

2 To be precise, the method looks at neural networks j for each variable X (indexed 1 to d). The parameters
(i.e. weights) of these neural networks are represented in vector φ( j). The maximum likelihood problem

solved over all these neural networks is then the equationmaxφEX PX

∑d
j=1 log p j (X j |X

π
φ
j
; φ( j)), where

X
π

φ
j
is the set of parents of node j in graph Gφ . Essentially, the idea is that one optimized the predictive

accuracy of all these neural networks together, where each neural network aims to predict the value of
variable X j in terms of the values of all the other variables.
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The other approach to highlight has similar benefits and drawbacks. Kalainathan
et al. (2018) present a method to learn causal graphs using generative adversarial
networks (a type of neural network), and produce unique causal graphs—but with a
good number of false positive and false negative arrows in the resulting graphs. Still,
the approach is interestingly different: instead of training shallow neural networks for
all the variables at the same time it uses a single, second, machine learning model to
score a range of neural networks representing alternative causal graphs. First, different
machine learningmodels are trained to generate the data distribution (predict the values
of one variable) based on constraints in line with alternative causal graphs. A model
only uses those variables to predict Y that have a path leading to Y in the candidate
causal graph. So, a causal graph with an arrow from X to Z but no arrow from Y to
Z will be represented by a neural network that aims to predict/generate values for Z
based solely on the values of X. Had there been arrows from both X and Y in the
causal graph, then the values for Z would be generated based on the values of both X
and Y. By creating a large number of neural networks, each corresponding to different
causal graphs, it then becomes possible to evaluate which causal graph best fits the
actual situation. To do so, a second machine learning model is trained to distinguish
between the true data and the data generated by the various neural networks.Whatever
generated data is discriminatedworst from the true data (i.e. produces themost realistic
results) is then considered to be based on the true causal graph. Machine learning does
all the work here. At the same time, the results are imperfect. There is no guarantee
that a good score in mimicking the data distribution is due to a stronger similarity
to the causal graph, and in experimental findings a wide range of causal graphs is
found for the same dataset. For example, for the true arrow x1 → x2 the method
only correctly identified this edge in 54 out of 100 runs, and included the arrow in the
opposite direction in 35 runs. Whether edges are correctly identified varied greatly;
some were found in 92 of the 100 runs, others in only 4, and finally one incorrect edge
was included in as many as 95 runs. The method is sensitive to how the weights are
initialized, but even then it performs better than many other causal discovery methods
that do not use neural networks. Still, the variation in causal graphs identified as well
as the sometimes very confident false positives show the difficulty of learning causal
graphs from data. Onemisses the essential element of interventions in the world that is
the only sure way to identify causes, and so where the constraint-based method would
fall short in identifying some edges the scoring-based method will make mistakes in
its push to always return a fully filled-in, unique, causal graph.

How do all these machine learning models fit in with the overarching question
of whether machine learning can be used to arrive at new scientific explanations? In
all of these cases, the machine learning models are crucial to make the step from a
situation/data set where we do not know what the causal relations might be to a causal
graph that maps out (possible) causal relations between the real-world variables in
the data. This means that the result of using the machine learning models is a causal
graph, which we didn’t have before, that describes which causal relations there are
in relation to the target phenomenon. As such, the machine learning models really
take centre stage in the causal discovery process (in virtue of them we get the causal
graphs) and thus in the mapping of causal relations, which on the causal accounts of
explanations entails that they also provide scientific explanations. Moreover, these are
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how-actually explanations (as opposed to how-possibly explanations) as they are, if
all goes well, the causal relations that are present in the actual world captured by the
data. The only caveat is that in all of the methods described in this section we get
causal graphs with as of yet unknown causal strengths. We may learn that X causes Y,
but we do not know how big the influence of X is on Y. To determine that, we need to
calculate treatment effects, to which I turn next.

3 Calculating treatment effects

Given a causal graph (or an equivalent structural causal model) from the causal dis-
covery phase it is possible to estimate the strength of causal relations. Typically this
is referred to as calculating/estimating the (average) treatment effect, as the change
of the value of the cause is called treatment—and we want to know the effect of that
change. And so put very simply, we can take a linear scenario where this treatment
effect is simply the coefficient θ regulating the effect of treatment T on output y in
the equation:

y = θT + g(X) + U

where X is the set of variables that also influence y, and which thus need to be
controlled for when estimating the strength of the causal relation between T and y.
This formulation also conforms well to what standard predictive machine learning
models do (in a more general setting where we take y = g(T , X) + U to not assume
linearity): they give the output as a function of the different variables at play. However,
simply estimating the treatment effect based on this single equation will not work: it
neglects the effect that variables X can have on treatment T . As Chernozhukov et
al. (2017, 2018) discuss in detail, direct estimations of treatment effects (i.e. based
on standard predictive machine learning models) are systematically biased precisely
because theymiss this extra effect. So, it isn’t possible to correctly estimate the strength
of causal relations using predictive machine learning models.

To illustrate that problem, it helps to look at an example of one such machine
learningmodel. Caruana et al. (2015) report on amachine learningmodel that predicted
the risk of death for patients entering the hospital with pneumonia. Curiously, this
model assigns a lower risk score to patients with asthma than to patients without
asthma. It does so for the simple reason that in the data that the model learned from,
patients with both asthma and pneumonia are immediately sent to the intensive care,
and therefore receive more intensive medical treatment than patients without asthma.
That extra confounder (the level of medical care) biases the estimation of the causal
effect (from asthma to probability of dying from pneumonia). As such, the predictive
model cannot be used to estimate the strength of the underlying causal relations,
because it isn’t possible to control for the effects of other variables on the causal
relation we’re interested in. What is needed instead is double machine learning, as
developed by Chernozhukov et al. (2017).

Their basic idea is that there are two equations that need to be taken into account
(keeping it linear for the sake of simplicity, but note that in general the equations are
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non-linear to take full advantage of the machine learning techniques used):

y = θT + g(X) + E1

T = m(X) + E2

where the second equation gives us the effect of the other variables on the treatment. If
we look back at Fig. 1, that means that θ covers the arrow from T to y, g(X) the arrow
from X to y and m(X) the arrow from X to T that was previously missing. By solving
two prediction problems it becomes possible, then, to arrive at an unbiased estimation
of the treatment effect. The first step here is to fit a machine learning model to estimate
m(X) in the bottom equation, and thus get an estimate of residual Ŵ = T − m(X).
Second, a different machine learningmodel is fitted to g(X) in the top equation, giving
the residual V̂ = y − ĝ(X). Finally, the residuals V̂ are regressed on Ŵ to remove
the bias of the effect from X to T, and yielding the ‘debiased’ treatment effect θ . A
last bit of bias removal is done by ensuring that the machine learning models are fit
on different data than the residual regression, to prevent overfitting should the error
terms E1 and E2 be correlated (Chernozhukov et al., 2017).

While this involves some extra work, double machine learning has shown to be of
value when conducting causal inference, thus providing a clear case where machine
learning models can help us arrive at causal relations and with that causal explana-
tions. For again it is really the machine learning that does the work of inferring the
treatment effect. Yes, we need a causal graph that is specified beforehand to know
which equations the machine learning models should be fitted to (supplying the causal
assumptions), but this is no different than standard practice in causal inference (which
is also split up into these two phases). We still go, thanks to machine learning, from
a situation where we have a causal graph with unknown treatment effects, to one
where we have a causal graph with estimated treatment effects. Moreover, machine
learning (and especially deep neural networks) can have added value to the process,
as Baiardi and Naghi (2021) nicely discuss in the context of econometric research.
They highlight that the flexibility of complex machine learning models (in terms of
what functions they can approximate) is helpful when estimating treatment effects in
situations with complex interactions between variables. ML models also allow for the
inclusion of a large number of covariates, where other methods are often more lim-
ited. And,machine learningmodels are helpful for estimating heterogeneous treatment
effects, where the strength of the causal relation varies depending on other variables.
In short, the nonlinearity of machine learning models is a helpful feature for these
estimations of treatment effects and makes them more robust.

As a final example to show that we do acquire causal scientific explanations at
the end of this process of inferring a causal graph and estimating treatment effects,
consider the work done in Cao et al. (2022). They conducted a study on the use of
chemical dispersants to tackle oil spills, and the effect of the salinity of the water on
their effectiveness. They start out with a causal graph (drawn in Fig. 2) and used double
machine learning to estimate the strengths of the various causal relations. As can be
seen, this calculation directly explains why oil degrades in the presence of dispersants:
the dispersants increase cell abundance and productivity, after which it is these extra,
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Fig. 2 Reproduction of the
results in Cao et al. (2022),
showing the estimated strengths
of causal relations obtained
through double machine
learning

and more productive, cells that speed up oil degradation. This causal graph doesn’t
show effects of salinity, but that is merely because it shows the average treatment
effect. A calculation of heterogeneous treatment effects shows that “dispersant addi-
tion had negative effects on oil biodegradation ratio under low salinities, but positive
effects under high salinities. On the other hand, the effects of dispersant addition on
oil biodegradation increased along with the salinity rise. The results indicated that
dispersant addition could alleviate the negative impact on oil biodegradation caused
by salinity increasement” (Cao et al., 2022, p. 7). A clear (how-actually) explanation
of the degradation of oil, and one arrived at thanks to a machine learning model.

To sum up, we see that machine learning models can be used arrive at a (causal,
how-actually) scientific explanation. Both causal inference steps can be conducted
using machine learning, meaning that we can go from a situation where we have
merely observations of a target phenomenon to one where we have identified possible
causes, confounders and colliders (causal discovery) and where we have quantified
what effect these have on the phenomenon in question (estimated treatment effects)
using nothing but machine learning and the right data. Of course, in practice we will
have to evaluate the causal graph and we will have to be careful about the data we use,
but that is no different for other methods used to find the causes for a phenomenon.
The important point is that it is, for a specific set of machine learning models, clearly
possible to use them to arrive at causal relations and thus at scientific explanations (if
something like the causal account is correct).

4 Prospects for explanations from other MLmodels

The above result is very specific to a class of especially designedMLmodels. So, what
can we expect from the more standard predictive ML models? Can we get scientific
explanations from them? As mentioned in the introduction, a range of authors has
answered this with a cautious yes, often giving low link uncertainty as the criterion
for acquiring such explanations. If we re-evaluate these claims in the light of whether
they produce clearly new causal scientific explanations, then it becomes clear that low
link uncertainty on its own does not automatically give us new causal explanations.
As mentioned, Sullivan (2019) has been thoroughly criticized by Räz and Beisbart
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(2022) and so I won’t discuss those cases further. Instead, I will look at Meskhidze
(2023) as a more detailed example arguing for the ability to get scientific explanations
from ML models.

Her example involves a machine learning model used in cosmology. She discusses
PkANN, a machine learning model that predicts the large scale distribution of matter,
using as its training data the outputs of a large number of runs of (physics-based) N-
body simulations. The machine learning model emulates these N-body simulations,
and does so with good accuracy (less than 1% deviation from the N-body simulation
outputs) at a much lower computational cost. The setup is thus one where a machine
learning model has been trained on a physics-based model, and is used in practice
primarily for performance-based reasons. Meskhidze (2023) then proceeds to discuss
what explanations can be obtained from this machine learning model in detail. She
relates this in particular to the distinction Batterman (1992) makes between type (i)
and type (ii) why questions: type (i) why questions ask why a phenomenon occurred
in some particular circumstance while type (ii) why questions ask why phenomena of
this general type occur across a variety of circumstances.

To start with, she sees limitations on what one can expect: “cosmological N-body
simulations can answer Batterman’s type (ii) why questions: why phenomena of this
general type occur across a variety of circumstances. As minimal models of structure
formation, they allow one to abstract away from any details of particular cosmolog-
ical models, and, in doing so, reveal patterns evident across various instantiations of
cosmological parameters. Machine learning algorithms exploit these patterns. This
means, however, that machine learning algorithms cannot answer Batterman’s type
(ii) why questions” (Meskhidze, 2023, p. 12). In other words, the lack of physical
representations and coherence with physical laws is considered problematic to the
acquisition of certain explanations. This is typical of ML models trained in this way.
Kawamleh (2021) gives a nice discussion of an ML model predicting climate change
which violates conservation of energy laws (especially outside its training domain)
and argues this is going to be the case for all similar ML models because they all lack
physical representations. And, indeed, Meskhidze (2023) observes the same thing for
PkANN. However, she argues that another type of why question can be answered by
the machine learning model: “machine learning algorithms can answer type (i) why
questions: why, for example, our universe has the particular distribution of matter it
does. By filling out the parameter space of interest, such methods can point cosmol-
ogists to the relevant values of the cosmological parameters that led to a particular
distribution of matter” (Meskhidze, 2023, p. 12). As a machine learning model can
supply particular values with high accuracy, the idea is that it can therefore contribute
to these ’how-actually’ explanatory questions.

Yet, are these particular values enough for an answer to the why question? If we
look at causal accounts of explanation, then something is missing. For Woodward
(2005) a scientific explanation consists of both the actual values and a generalization
covering counterfactual cases. Similarly, for mechanistic accounts one needs both a
causal mechanism (sketch) and particular values to answer these why questions. In
the cosmology case we do, of course, have access to a covering rule (causal relation)
and mechanism sketch, in the form of the physical laws used in N-body simulations.
So, we can get the type (i) explanations by combining the correct values with these
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physics-based models. But isn’t the physics-based model doing the explaining in that
case? It seems that PkANN can make finding values more efficient, but that it is not
the machine learning model itself that supplies the causal explanation. After all, the
physics-basedmodel is needed tomeet the requirements of causal accounts of scientific
explanations. To make the same point in a different way: had we just had PkANN then
we would not have been able to supply a causal explanation, because PkANN does
not give us a causal mechanism sketch or the kind of generalization that Woodward
(2005) is asking for. PkANN just like other predictive ML models, does not account
for confounding variables. Nor do we know what function PkANN is approximating
(Das & Rad, 2020), which further complicates the use of just PkANN to provide a
(causal) scientific explanation. As a result, the machine learning model plays a very
minor role here, as essentially a more convenient way to calculate the values figuring
in an explanation3 that still employs the physics-based model. Without a clearer path
to getting a causal explanation out of the ML model on its own I’m skeptical that this
kind of case gives us an example of howML can be used to acquire (causal) scientific
explanations.

Rather than looking at ML models in terms of accuracy compared to training data
and physics-based models [as Knüsel and Baumberger (2020) and Jebeile et al. (2021)
do in a similar way to Meskhidze (2023)], I find it more promising to look at the
prospects of explainable AI techniques. If we better understand why an ML system
provides us with a certain prediction then we might use that insight into the ML mod-
els to acquire explanations. Explainable AI has theoretically been linked to causal
scientific explanations (Beckers, 2022; Buijsman, 2022) and there have recently been
some attempts in explainable AI to extract structural equation models from standard
(deep) neural networks that naturally link to the question central to this paper. Biswas
et al. (2022) is one example, where a structural equation model is created using vari-
ables representing familiar properties in an attempt to mirror the behaviour of the ML
system. More interesting here are the techniques aiming to abstract a set of structural
equation models from (deep) neural networks (Geiger et al., 2021, 2023; Wu et al.,
2023) based on theoretical work on abstracting causal models by Beckers and Halpern
(2019). These explainable AI techniques aim to abstract a set of structural equations
(often displayed in graph form, to mirror the graph representation of the neural net-
work they start with) from the much larger set of equations that make up the neural
network. The idea is that we can start with the neural network as a directed acyclic
graph, and in fact one that meets all the requirements of a structural equation model.
However, it lacks representations and has so many nodes that some abstraction is
needed. So, the method aims to find a smaller, interpreted, structural equation model
that is a more abstract version [in the way defined by Beckers and Halpern (2019)
in terms of there being a translation function τ that maps the effects of interventions
from the less onto the more abstract causal model] of the neural network. Geiger et al.
(2021) do this by first formulating a hypothesis structural equationmodel, whosemore
abstract representations are then linked to parts of the neural network. The abstract
model is then verified through the performance of interventions on the abstract model,

3 Note that these are not, as in Sect. 3, values of treatment effects but rather are values of variables figuring
in the explanation. The causal graph thus remains the same, it is only instantiated in a particular way based
on the outcomes of PkANN.
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the effects of which are checked against their effect on the neural network itself. Wu
et al. (2023) applied this technique to Alpaca, a large language model with 7 billion
parameters. For a specific task consisting of an instruction (‘Please say yes only if it
costs between [X.XX] and [X.XX] dollars, otherwise no.’) and then a price (e.g. ‘3.50
dollars’) they managed to formulate simple structural equation models consisting of at
most two additional nodes. Despite this simplicity these models correctly captured the
behaviour of Alpaca on the task in 85% of all test cases, additionally generalizing well
to variations of the instruction (different price boundaries). So, while there is undoubt-
edly a lot of work still to do in developing this method, there are some promising first
steps towards techniques that can extract manageable structural equation models from
(very large) deep neural networks.

As a cautionary note before moving on, the authors of these papers typically present
the resulting structural equation models as causal models. I am hesitant to directly
speak of causation in the setting where the output of an ML model is ’caused’ by
the input of the ML model. ML models are best seen as software and these are stan-
dardly classified as abstract objects (Duncan, 2017; Turner, 2011), so applying talk
of causation directly to the ML model (as opposed to a particular implementation on
a physical machine) is somewhat problematic. There is counterfactual dependence
though, and structured in such a way that it’s possible to use the techniques of causal
inference. Thanks to that the resulting models are structural equation models using
physical variables (e.g. a temperature variable as the outcome and variables for CO2
and amount of sea ice as initial variables) and can therefore be interpreted as candidate
causal models for the physical world, separately from their link to an ML model.

This suggests an easy route towards (causal) scientific explanations from predictive
MLmodels: we need to extract/abstract a structural equationmodel from the predictive
model and then we have a candidate explanation for the scientific phenomenon that
the ML model predicts. However, I do not expect things to be quite as easy as that.
The problem of confounding variables remains, and if we were to abstract a structural
equation model from the ML model predicting risk of death from pneumonia based
on one’s medical information (see top of Sect. 3) then we will still get a causal model
on which having asthma causes a lower risk of death from pneumonia. Likewise, if we
were to abstract a structural equation model from the climate ML model discussed by
Kawamleh (2021) then the resulting causal model would fail to respect conservation
of energy laws. We may get a candidate for a causal scientific explanation, but it is
certainly not going to give us a correct explanation for one’s actual risk of dying. In
other words, the structural equation model may accurately capture the dependencies
inside the ML model, it does not capture the causal dependencies in the actual world.
Perhaps if the confounding variables, in this example that of receiving additional
treatment, are included among the input variables of the MLmodel such biases can be
mitigated. Pietsch (2016) for example, argues for a representative data set that includes
all (or at least a substantial part) of the relevant variables. However, the general issue
that predictive ML models are biased will remain, and adding variables will not be
enough to get out of that problem, at the very least because a predictive ML model
has nothing that accounts for the causal relations between the input variables. Rather,
it might be a way to end up with more useful structural equation models that can
then be refined through testing procedures that involve interventions rather than mere
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predictions. If we obtain causal scientific explanations at the end of such a longer
procedure we can still say that the explanation was obtained in part because of the
initially extracted structural equation model from the ML model. Predictive machine
learning might not give us immediate explanations in such a scenario, but it still
plays an important role in finding new causal scientific explanations. For the more
general case there is therefore also some reason for optimism, though it is tied (on
my exposition of it here) to identifying what dependencies the ML model exploits to
determine the output. That is precisely the kind of requirement of explainability that
Sullivan (2019) aim to avoid by focusing on link uncertainty.

5 Conclusion

Can we acquire scientific (causal) explanations from machine learning models? I
argue that we can answer positively, though with some reservations. I’ve shown that
machine learning models specifically designed for the two steps of causal inference
(learning causal graphs and estimating treatment effects) fit the bill. We can identify
possible causes using purpose-built machine learning models and we can estimate
the strength of the causal relations using double machine learning methods. However,
standard machine learning models are not suited for this type of causal inference, as
they are systematically biased due to the lack of control for confounding variables.
Likewise, standard machine learning models seem difficult to use for learning causal
graphs/causal discovery as they do not give us any information on the causal relations
between the input variables.

That being said, there are promising techniques that aim to extract structural equa-
tionmodels from predictiveMLmodels. These can give us new candidate explanations
to test, based on ML models that manage to predict physical phenomena particularly
well. As these structural equation models will inherit the problems of predictive ML
models (i.e. fail to account for confounding variables as well as include violations of
physical laws) I consider it unlikely that they will immediately yield good explana-
tions without further work on our part. Still, they may be valuable starting points in the
formulation of new scientific explanations and as such this gives us a route to causal
scientific explanations fromMLmodels that is more concrete than that offered by e.g.
Meskhidze (2023). In addition, it introduces some caution to the arguments of Pietsch
(2016), who does not discuss confounders or the tendency of ML models or the law
violations that complicate the extraction of causal explanations from ML models.
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Srećković, S., Berber, A., & Filipović, N. (2021). The automated Laplacean demon: How ML challenges

our views on prediction and explanation. Minds and Machines, 32, 159–183.
Stinson, C. (2018). Explanation and connectionist models. In The Routledge handbook of the computational

mind. Routledge.
Sullivan, E. (2019). Understanding from machine learning models. The British Journal for the Philosophy

of Science, 73(1), 109–133.
Turner, R. (2011). Specification. Minds and Machines, 21, 135–152.
Woodward, J. (2005). Making things happen: A theory of causal explanation. Oxford University Press.
Wu, Z., D’Oosterlinck, K., Geiger, A., Zur, A., & Potts, C. (2023). Causal proxy models for concept-based

model explanations. In International conference on machine learning (pp. 37313–37334). PMLR.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2006.02615

	Causal scientific explanations from machine learning
	Abstract
	1 Introduction
	2 Learning causal graphs
	3 Calculating treatment effects
	4 Prospects for explanations from other ML models
	5 Conclusion
	References


