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Abstract
Thin layers of MoOx have been deposited by thermal evaporation followed by post-deposition annealing. The density of states 
distributions of the MoOx films were extracted deconvoluting the absorption spectra, measured by a photothermal deflection 
spectroscopy setup, including the small polaron contribution. Results revealed a sub-band defect distribution centered 1.1 eV below 
the conduction band; the amplitude of this distribution was found to increase with post-deposition annealing temperature and film 
thickness. 
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1. Introduction
Silicon-based heterojunction technology (HJT) is one of the most promising candidates for high performance and low-cost solar 
cells with world-record efficiency close to 27% in interdigitated back contact architecture [1]. The HJT exploits the excellent 
passivation properties of hydrogenated amorphous silicon (a-Si:H), although the use of doped a-Si:H has drawbacks such as parasitic 
absorption and low-thermal budget to cope with back-end metallization.  

Replacing the p-type a-Si:H with a doping-free transition metal oxide (TMO) such as molybdenum oxide (MoOx), is a viable 
alternative allowing conversion efficiency up to 23.5% [2] rivaling the traditional contact despite its lower level of optimization. 
Moreover, the hole selectivity capability of the MoOx is exploited for other classes of electronic devices such as organic light-
emitting diodes [3], organic photovoltaic cells [4], thin-film solar cells [5]. Thus, the optimization of this hole-selective layer has 
been investigated over the past years, highlighting the role of the defect density of states (DOS) [6–8]. Nonetheless, information on 
the DOS, linked to oxygen vacancies [9], lacks for TMOs. 
We aim to fill this gap by providing insights into the MoOx defect density needed for accurate simulation and optimization of HJT 
solar cells with this TMO as a hole-selective contact. Therefore, chemical, morphological and optical characterizations were 
conducted on thin films of MoOx. Finally, the DOS of MoOx samples were extracted from the deconvolution of the absorption 
spectra [10,11], including the absorption related to excitation of electrons from small polaron states filled by electron transfer from 
the oxygen vacancies. A systematic study of the effects of both layers thickness and post-deposition annealing (PDA) treatments on 
the extracted DOS is furthermore presented. 

2. Experimental
Thin films of molybdenum oxide were deposited by thermal evaporation on quartz substrates with desired thicknesses of 20, 50 and 
100 nm. After deposition, the layers were annealed at different temperatures (TPDA from 100 to 250 °C) for 30 minutes in ambient 
air. The desired thickness of the samples was confirmed by ex-situ ellipsometry and Rutherford backscattering spectrometry (RBS) 
which did not show , as displayed in Fig. 1, any significant variation between   as-deposited and annealed samples.  
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Fig. 1: RBS spectrum of the 20 nm MoOx samples as-deposited 

and after annealing at 250°C for 30 minutes. 
 
The structure and morphology of the samples were investigated through Raman spectroscopy and Scanning Electron Microscopy, 
respectively. The measurements show that all the samples were amorphous, independently on the PDA and the thickness, with no 
significant surface morphology variation. The chemical composition was studied by X-ray photoelectron spectroscopy (XPS). The 
optical properties were analyzed through ellipsometry and photothermal deflection spectroscopy (PDS). 
 

3. Results  
The Mo 3d binding region is presented in Fig. 2. From XPS measurement, the presence of a doublet structure with a spin-orbit 
separation of 3.0 eV is highlighted. The Mo 3d level is deconvoluted with two doublet components, a dominating one associated 
with the presence of Mo6+ [12] and a weak doublet shifted 2 eV to lower energy indicating the presence of Mo5+ (linked to the 
oxygen vacancies) [12]. 

 
Fig.2: XPS spectrum of the Mo 3d binding region. 

The absorption spectra, presented in Fig 3, decay exponentially from lower wavelength to a valley at about 490 nm and then rises 
to a peak around 900 nm. There are no significant differences between the curves in the wavelength range of 350-400 nm; while the 
peak observed in the Vis-NIR range tendentially grows as the annealing temperature rises. This increase in the absorption is referred 
to MoOx reduction in the annealed samples. Interestingly, for the 20 nm thick MoOx films (Fig. 3a), the spectra of the samples 
annealed at 200°C and 250 °C have a comparable magnitude, whilst, for the higher thicknesses, such behavior is less evident. 
Furthermore, for the 50 nm thick samples (Fig. 3b), the spectrum of the sample annealed at 100°C is similar to the as-deposited one; 
for the 100 nm case (Fig. 3c), such behavior is more evident since the as-deposited sample presents a spectrum higher than the 
sample annealed at 100°C.  
a)

 

b)

 

c)

 
Fig.3: Absorption spectrum of a) 20 nm, b) 50 nm, c) 100 nm thick MoOx films as deposited and after different PDA 



4. Model and discussion  
The density of states of the MoOx was described as the superposition of different distributions, assuming parabolic distribution for 
the valence and conduction bands (NVB, NCB), exponential distribution for the valence and conduction band tails (NVBT, NCBT), and 
Gaussian distribution for the defects states in the bandgap (ND) [11]:  
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with E energy (the zero-energy reference was considered at the edge of the conduction band), E0V and E0C valence and conduction 
band tails, EG energy gap; for Gaussian defect distribution: AD area, ED mean position and W the FWHM. The densities of states of 
the valence (NV) and conduction (NC) band were 7.92×1017 cm-3eV-3/2 and 6.78×1018 cm-3eV-3/2, respectively [11]. 

The peaks in the absorption spectra are attributed to the small polaron [13,14], a quasi-particle describing the interaction of a trapped 
electron with the surrounding atoms [14,15]. Furthermore, small polaron is a typical feature of TMOs [13,16–19].  

Therefore, to achieve the best fit of the absorption spectra, we introduce an additive term in the set of equations (1) to consider the 
polaron contribution. The polaron absorption, αp function of the photon energy (hν), is modeled with a weakly asymmetric Gaussian 
peak [11,13,18]: 

𝛼𝛼𝑝𝑝(ℎ𝜈𝜈) =
𝐴𝐴𝑝𝑝
ℎ𝜈𝜈

exp �−
�ℎ𝜈𝜈 − 2𝐸𝐸𝑝𝑝�

2

8𝐸𝐸𝑝𝑝  𝐸𝐸𝑜𝑜𝑝𝑝
� (2) 

with Ap polaron pre-exponential factor, Ep polaron binding energy, and Eop longitudinal-optical phonon energy. The values of the 
DOS distributions were extracted through the absorption spectra α fitting through the one-electron approximation and including the 
polaron absorption αp [11]: 
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where Ni and Nf are the initial and final states, F is the Fermi-Dirac function. The constant C was calibrated at 4 eV resulting 
4.13∙10-31 cm5·eV2 [11]. The obtained DOS lays about 1.1 eV below the conduction band edge with an amplitude rising with both 
TPDA  and film thickness (Fig. 4a). Interestingly, the defect distribution amplitude rises as the thickness is reduced and for increasing 
TPDA. A similar trend was found for the AP (Fig. 4b), whilst the other parameters of the small polaron remained fixed.  

The resulting coefficients are summarized in Table 1 and are limited for brevity to the 100 nm thick samples.  

Table 1: Defect distributions and small polaron coefficients at different TPDA for the 100 nm thick samples 
TPDA 
(°C) 

Thickness 
(nm) 

E0V 
(meV) 

E0C 
(meV) 

AD 
(ev-1cm-3) 

ED 
(eV) 

W 
(eV) 

AP 
(ev-1cm-3) 

EP 
(eV) 

Eop 
(meV) 

As. dep. 100 100 141 3.41 × 1014 1.14 0.05 2.46 × 103 0.80 52.5 

100 100 117 191 3.61 × 1014 1.16 0.05 2.10 × 103 0.78 43.9 

130 100 115 269 5.07 × 1014 1.18 0.05 4.39 × 103 0.81 52.2 

150 100 118 243 8.89 × 1014 1.18 0.05 7.67 × 103 0.80 52.5 

200 100 128 182 3.21 × 1015 1.15 0.05 2.01 × 104 0.79 55.8 

250 100 83 101 5.07 × 1015 1.11 0.05 2.82 × 104 0.77 54.6 
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Fig.4: Defects area (a) and polaron pre-exponential factor (b) against annealing temperature  

for different MoOx  films thicknesses  

5. Conclusion 
Thin films of MoOx were synthesized by thermal evaporation, subsequentely annealed, and then characterized to provide an insight 
into the DOS. The deconvolution of the absorption spectra resulted in a defect DOS distribution centered 1.1 eV below the 
conduction band edge with its amplitude increasing against both TPDA and film thickness. The small polaron parameters, extrapolated 
from the optical measurements, revealed that both binding and longitudinal-optical phonon energy are independent of the thickness 
and the TPDA, whilst the pre-exponential factor exhibits a similar trend to the amplitude of the defect distribution. The DOS 
characterization here employed for MoOx films has shown to be a valuable method to determine the DOS and could be easily 
extended to other TMOs currently exploited as carrier selective contacts in solar cells.  
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