
3D mesh object watermarking
Improving robustness of feature vertex localisation by centre-of-volume

Matthijs C. van Andel1

Supervisor(s): Zekeriya Erkin1, Devriş İşler2,3

1EEMCS, Delft University of Technology, The Netherlands
2IMDEA Networks Institute

3Universidad Carlos III de Madrid, Spain

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2024

Name of the student: Matthijs C. van Andel
Final project course: CSE3000 Research Project
Thesis committee: Zekeriya Erkin, Devris Isler, Asterios Katsifodimos

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Digital modelling is becoming more prevalent
in many applications. The underlying 3D mesh
objects are therefore getting increasingly valu-
able, such that methods for ownership pro-
tection are required. Watermarking is a so-
lution to this problem, yet the research com-
bining watermarking and 3D mesh objects is
limited. This work aims to improve an exist-
ing watermarking method that embeds water-
marking bits into a 3D model by selecting fea-
tures, or the vertices with a larger mean cur-
vature. We propose an improvement where
a centre of mass calculation is changed to a
centre of volume, aiming to achieve better ro-
bustness against mesh simplification attacks on
3D mesh objects by use of this volume cen-
tre instead of a mass centre. The proposed
method of applying the watermark reaches an
accuracy score that is 15.78 percentage points
higher on average than the original method,
when attacked by mesh simplification. There-
fore, this work shows a more robust approach
to the method build upon.

1 Introduction
With advancements in digital modelling and 3D graph-
ics in many applications such as virtual reality, aug-
mented reality or medical imaging, the need for safe-
guards against unauthorised use or manipulation is grow-
ing quickly [6]. Watermarking plays a big role in this
field [10], [7], as the aim of watermarking is to embed
data into any model such that the utility of the data of
that model remains equal or as high as possible. The em-
bedding should be such that it is robust against attacks
or attempts to remove this watermark, without severely
degrading the utility of the original data. Robustness is
defined by how easily the watermark is removed, or how
much of the utility of the data has to be sacrificed before
the watermark is undetectable.
Additionally, there exists a partition of watermarking al-
gorithms that are called fragile, watermarks that break
as soon as the underlying data is changed. These frag-
ile methods are mainly used to validate that the original
data has not been tampered with. The watermarking of
3D mesh objects is particularly difficult, because there
is no specific ordering of the data. Perceivability is an-
other aspect that makes watermarking difficult, because
changes in the data of a model quickly result in visible
alterations to the shape of a 3D mesh.
Currently, all existing watermark embedding and detec-
tion methods could be split up into two different cate-
gories; blind and informed watermarking. Blind water-
marking does not require the original mesh to be able
to retrieve the watermark, where informed watermarking

detects the watermark only in correspondence to the orig-
inal data. Blind watermarking is often much preferred,
because it could save a lot of time and resources for the
owner of the original data. Another benefit of the blind
detection approach is that a watermark could be publicly
verified.
Sufficiently different watermarking techniques for 3D
mesh objects exist [9], yet no standard has been achieved.
In [4] an algorithm is proposed that is based on em-
bedding the watermark in the features of a point cloud
model. The idea is to transform vertices to a spherical co-
ordinate system, to then embed the watermark by chang-
ing the azimuth angles of defined feature vertices. In this
work, we propose a change to the algorithm of [4] to
improve on robustness, particularly against mesh simpli-
fication attacks. Instead of weighting each vertex equally
as proposed in [4] when calculating the origin of the new
coordinate system, we propose to calculate the origin of
this new coordinate system by computing the centre of
volume of a mesh. The idea is to improve the robustness
of the origin calculation not by relying on the distribution
of vertices, but rather on the shape of the 3D mesh object.
Other computations from [4] are not changed, however,
because the weight of the mesh will now no longer rely
on local details as heavily as before, mesh simplification
attacks will have a different impact and the improved al-
gorithm is noticeably more robust against mesh simplifi-
cation attacks.
The remainder of this paper is divided into the sections
(2) Related work, where a brief overview of other works
is given, followed by section (3) Attacks on watermarked
3D mesh objects, where techniques used in this work are
introduced. After that, section (4) Watermarking by fea-
ture localisation which gives a detailed explanation of the
algorithm from [4] and the proposed changes. Next, sec-
tion (5) Experimental setup and results lays out the prac-
tical experiments and shows their results. Afterwards,
section (6) Discussion goes over the ethical aspects as
well as comparing results with previous work. Finally,
we draw conclusions and suggest further work in section
(7) Conclusions and future work.

2 Related work
As previously mentioned, algorithms for watermarking
3D mesh objects already exist. The main body of this
work considers the algorithm proposed in [4], where a
mesh is split into feature and reference vertices. Based
on these sets, the watermark is embedded in the feature
vertices, as explained in chapter 4. The idea of using
certain feature vertices is not new, as [8] already used
detection of features in a mesh to apply the watermark.
However, the approach in [8] is to watermark the selected
feature vertices in the spectral domain, where [4] uses a
new spherical coordinate system.
Within the field of watermarking 3D mesh objects, many
algorithms exist [9], though a standard has not yet been

1



(a) The Stanford Bunny [2]
without attacks.

(b) Bunny attacked by mesh
simplification.

(c) Bunny attacked by non-
uniform mesh simplification.

(d) Bunny attacked by addi-
tive noise.

Figure 1: Original mesh and attacked variants.

set. Next to different approaches, these algorithms fall
into different categories. Modern approaches to 3D mesh
watermarking attempts to retrieve the watermark in a
blind fashion, meaning that the original data is not re-
quired at the extraction phase [1]-[8], [10].
Additionally, watermarking algorithms that break the
watermark when the original data has been changed are
also proposed [6], with the purpose of detecting unautho-
rised manipulation, instead of ownership detection. In
[6] the idea of the watermark is to be reversible, such
that the high-detail original mesh could be used. The
purpose of the robustness of the algorithms proposed in
[3], [4], [8] and [10] are rather to detect original owner-
ship of the underlying model. Others apply these water-
marking algorithms to 3D-printing [1] and scanning, to
be able to detect ownership of the digital model that was
3D-printed.

3 Attacks on watermarked 3D mesh
objects

This chapter introduces various attacks possible on 3D
mesh watermarks, such as mesh simplification. Exam-
ples of these attacks are shown in Figure 1.

3.1 Mesh simplification
Simplification of a mesh is achieved by creating a new
mesh that retains the same shape as its original, whilst
having a percentage of its vertices removed. An example
of a simplified mesh is seen in Figure 1b. The edges
to these vertices are replaced, such that the resulting
mesh has no gaps or other errors. Important to note
here, when mesh simplification is applied with a high
attack strength, the usability of the mesh decreases
rapidly. Therefore, the aim when attempting to design a
watermarking algorithm is to design the algorithm such
that it is robust against up to a decided point of strength.

Another approach to this attack is to perform the
attack non-uniformly. That is, a mesh is cut into two or
more parts, each of them attacked by the simplification
algorithm with varying strengths. The results are then
added back together. This approach is shown in 1c,
where half of the bunny has been simplified, whilst the
other half remains untouched.

3.2 Additive noise
Another method of disturbing the original data structure
of a mesh is by adding random noise to the vertex posi-
tions. This attack is performed by applying formula 1:

Vi = Vi + dr · r⃗ (1)

where Vi represents vertex i of the set V , containing
all the vertices of a mesh. The vector r⃗ represents a
random vector with length 1 and the value dr represents
a random value in the range of zero to d, where d repre-
sents the maximum length a vertex could be translated,
therefore representing the strength of the noise attack.

Additive noise is a very destructive attack because of the
fluctuation in the position in neighbouring vertices, as
seen in 1d. Consequentially, the attack is easily perceived
by the human eye. Meshes attacked by the additive noise
attack are disturbed on every vertex of the mesh, creating
much rougher surface areas. The severity of the attack
should therefore be limited when comparing the robust-
ness of a watermark, as the data model would quickly
lose utility. Data without utility is not regarded impor-
tant to protect by watermarking, since its value has been
drastically decreased.

4 Watermarking by feature localisation
This chapter introduces the details of the algorithm pro-
posed in [4], next to introducing the proposed changes to
improve on this algorithm.

2



4.1 The watermarking algorithm
This paper is based on an algorithm to watermark a 3D
point cloud [4]. The algorithm in [4] is based on feature
vertex localisation, meaning that the most important ver-
tices of a mesh are the ones possibly carrying the water-
marking information. Each vertex is either a feature ver-
tex or a reference vertex. The watermarking algorithm
consists of the following steps: feature vertex localisa-
tion, creating a new coordinate system and embedding
the watermark data.

Feature vertex localisation
The main idea of [4] is to change the azimuth angle of
feature vertices, after they have been transformed to a
spherical domain, which is calculated using the reference
vertices. The azimuth angle of a position is the rotation
on the horizon with respect to the origin, where the hori-
zon is often the y-axis.

The first step in achieving the watermark is locating
these feature vertices. To calculate this, a bumpy per-
formance S is introduced. This measures the roughness
of an area by computing a score using the normal vector
of a vertex Vi, and the normal vectors of all the vertices
with an edge to Vi. The normal vector n⃗i for vertex Vi is
calculated by taking the mean of all the directions to its
neighbours. This can be seen in formula 2:

n⃗i =

∑Ni

j=1(V⃗i − V⃗j)

Ni
(2)

After that, the bumpy performance S is calculated using
formula 3:

S(Vi) =

Ni∑
j=1

(n⃗i · n⃗j) =

Ni∑
j=1

(xixj + yiyj + zizj) (3)

where the sum of all dot products between normal vec-
tors of neighbouring vertices is taken. The reference of
(xi, yi, zi) represent the x, y and z components of the
normal vector n⃗i. The idea of formula 3 is to project nor-
mal vectors on their neighbours to measure the bumpy
performance, where a lower value means higher change
in angle. Using a threshold T , all vertices are split into
two sets; all vertices with a bumpy performance smaller
or equal to T are labeled feature vertices stored in Sf .
The other vertices form the reference vertices, Sr. The
set of feature vertices Sf will carry the watermark in-
formation, where the reference vertices Sr will be used
to create a new coordinate system. Given that the wa-
termark capacity is M , the vertices will be divided such
that there are M bins. The capacity of a watermark de-
notes how many bits of data could be embedded into the
model. The threshold T is then chosen such that there
are no shallow bins, that is, each bin contains at least two
feature vertices.

Creating a spherical coordinate system
For 3D mesh objects, the order of vertices is not con-
sistent through models. Therefore, [4] proposes a new
spherical coordinate system in order for data to have the
same order between the process of watermark embed-
ding and extraction. In the last step of the algorithm, this
new coordinate system is used to embed watermarking
bits.
The first step into creating this new coordinate system
is to establish the new origin. This is done through the
calculation of the centre of mass of the reference set Sr,
using:

Vo =
1

Nr

Nr∑
i

Vi (4)

where Vo represents the new origin coordinates, Nr

denotes the length of the reference set Sr, and Vi with
(i = 1, 2, ..., Nr) are vertices in Sr.

With the new origin established, we can now create
the new axes by creating a covariance matrix Cov and
computing the eigenvalue decomposition of matrix Cov:

Cov =

 ∑Nr

i=0 x
2
i

∑Nr

i=0 xiyi
∑Nr

i=0 xizi∑Nr

i=0 xiyi
∑Nr

i=0 y
2
i

∑Nr

i=0 yizi∑Nr

i=0 xizi
∑Nr

i=0 yizi
∑Nr

i=0 z
2
i

 (5)

with the eigenvalue decomposition of Cov given as:

Cov = UHUT = U(diag(h1, h2, h3))UT (6)

where H denotes the diagonal matrix that consists of
eigenvalues sorted in a descending order, or more for-
mally: h1 > h2 > h3. The matrix U represents the
accompanying orthonormal matrix, such that the ith col-
umn of U denotes the ith eigenvector, and corresponds
to eigenvalue hi of matrix H . The three columns of U
are the directions of u, v and n for the first, second and
third column respectively. The directions u, v and n rep-
resent the new axes of the spherical coordinate system,
and hold a rotation with respect to the x, y and z axes
of the original Cartesian coordinate system. To compute
the new coordinates of a vertex in the new coordinate
system, matrix Mc→s is created, representing a rotation
and translation matrix that yield a transformation from
Cartesian coordinates to the new axes of u, v and n:

Mc→s =

ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1



·

1 0 0 −Vox

0 1 0 −Voy

0 0 1 −Voz

0 0 0 1


(7)

where Vo represents the established origin. After ap-
plying formula 7 the vertices are converted to spher-
ical coordinates. In [4] the spherical coordinates are

3



represented as (ρi, ϕi, θi), denoting a conversion from
Cartesian components (Viu, Viv, Vin) of vertex Vi, trans-
formed using formula 7. The spherical coordinates are
calculated with:

Vs = (ρi, ϕi, θi)

= (
√

V 2
iu + V 2

iv + V 2
in, arctan(

Viv

Viu
),

arccos(Vin/ρi))

(8)

where Vs represents the resulting spherical coordinates
of transformed vector Vi.

The last step before embedding the watermark data
into these feature vertices is to apply a normalisation to
the ρ component of the feature vertices, making the effect
of the watermark less perceivable. Additionally, normal-
isation of the ρ component allows for robustness against
scaling attacks. The ρi component of feature vertex i is
normalised according to formula 9, whilst retaining the
other components:

ρni =
ρi − ρmin

ρmax − ρmin
(9)

where ρni represents the normalised ρ component, and
ρmin and ρmax represent the minimum and the maxi-
mum ρ components of all feature vertices before normal-
ising.

Embedding the watermark
With the spherical coordinates computed, the model is
divided into M bins with equal width. These bins are
filled based on the θi angle of Vsi. To compute the feature
vertices of a single bin, we use the watermark capacity to
retrieve the boundaries of a bin:

Rm = {θm|(m− 1) · 360
M

≤ θ ≤ m · 360
M

}

with m ≤ M
(10)

where Rm represents the vertices contained in bin m,
θ denotes the azimuth angle of a vertex. It is these
azimuth angles that will be changed when embedding
the watermark bits, one per bin, while leaving the other
components unchanged.

Each bin represents one bit of the watermark data. The
main idea of this step, proposed in [4] is to change the
angle of the feature vertices by half a bin, as long as they
stay in the same bin. This forms bins where most feature
vertices are either in the upper or lower half of the bin.
Whether the upper or lower half is selected, depends on
the bit to embed, as seen in formula 11:

θmi =

{
θmi +∆, if wm = 1

θmi −∆, if wm = 0
(11)

where δ represents half of the width of a bin, or ∆ =
360/2M . The azimuth angle of the ith feature vertex in

bin m is represented by θmi, the bit to embed is denoted
by wm. Vertices that are carrying watermark informa-
tion should not have their azimuth angle changed such
that it no longer is contained in the same bin. Therefore,
the azimuth angle is only changed if a vertex meets the
requirements shown in formula 12:

if wm = 1, (m− 1) · α ≤ θi <

(
m− 1

2

)
· α

if wm = 0,

(
m− 1

2

)
· α ≤ θi < m · α

(12)

where α represents the width of a bin. When formula
12 and formula 11 are combined, the resulting bin will
have either the upper or the lower region filled with
vertices, because of the updated azimuth angles. The
transformations are now applied in an inverse manner, to
retrieve the watermarked mesh.

Retrieving the watermark
The retrieving of the algorithm of [4] is blind. This
means that the original data is not necessary to be able to
prove ownership. The first steps of the extraction are very
similar to watermarking a 3D mesh, where the bumpy
performance S is calculated and vertices are split into
reference and feature sets Sr and Sf respectively. Then,
as in the embedding phase, a new coordinate system is
introduced, including the calculation of a new origin.
Afterwards, all the feature vertices are transformed, and
separated into bins. The difference between embedding
and retrieving the watermark lies in the step after cre-
ation of the bins. Within each bin, the amount of vertices
in the lower and upper half are summed. Then, formula
13 is used to extract the watermarking bit embedded in a
bin:

w′
m =

{
0, if sum0 > sum1

1, if sum0 ≤ sum1
(13)

where sum0 and sum1 represent the amount of feature
vertices in the lower and upper half of the bin, respec-
tively.

4.2 Centre of volume
In the algorithm explained in the previous section, the
new coordinate system is created around an origin point,
calculated with the centre of mass. This however may be
vulnerable to manipulation, for example by duplicating
a vertex. Since the origin point in [4] is regarded as the
average point of all the vertices, addition of points such
that the shape of the model does not change will influ-
ence the origin point, which quickly degrades the quality
of the watermark embedded into the model. Therefore,
we propose an alternative method for calculating this ori-
gin point, using centre of volume. The idea is to calcu-
late a new origin that is at the center of the shape of the
2D representation of the model, regardless of the density

4



(a) Bunny. (b) Armadillo. (c) Dragon.

Figure 2: 3D mesh objects experimented on, shown as wireframes.

of vertices in a certain area. This approach will disre-
gard duplicated points, and will only take into account
the added or decreased volume when vertices are manip-
ulated. Since the spherical coordinate system is estab-
lished using reference set Sr in [4], the volume centre is
computed with the same set in this work.

Table 1: Model Information.

Model Name Vertex count Triangle
count

Bunny 34.900 208.353
Armadillo 173.006 1.037.832
Dragon 438.135 2.614.242

Creating the 2D hull
Computing the 2D hull of a mesh is done through
the Quickhull algorithm [5]. The main idea behind
this method is to select the furthest points from the
current hull, labeling them as hull points, after which all
vertices within the hull are disregarded. This process is
recursively repeated until no vertex is left. The result is a
set of points Pt which describe the smallest 2D hull such
that all vertices of the mesh model are included. Within
this algorithm, the z-value of the vertices are not taken
into account, since we calculate a 2D hull to compute
the new origin.

The first step in computing the 2D hull is selecting the
minimum pmin and maximum pmax points, where the
coordinate has the minimum or maximum value on the x
axis:

min = min
(xi,yi,zi)∈Sr

xi

max = max
(xi,yi,zi)∈Sr

xi
(14)

and labelling them as hull points by adding them to P .
A line Lp is constructed such that the starting point is
pmin and the endpoint is pmax. All remaining vertices

are now split into two partition sets Pl and Pr, which
represent all the vertices to the left or right of the line re-
spectively. Afterwards, in both partitions the point with
the highest distance to the line on the x, y plane is se-
lected and added to the hull, pLmax and pRmax for Pl

and Pr respectively. The computation continues recur-
sively, as a new line is constructed between the latest
two points added to P and the newly found maximum
distance point. When there are no more vertices outside
of the shape constructed from P , the 2D hull is complete.

Computing the centroid
The centroid of the 2D hull is used to compute the origin
point for the coordinate system. The centroid C is com-
puted by calculating the signed area, a weighted mass
centre method. We first calculate a partial signed area
Asi for every vertex i:

Asi = xi · yi+1 − xi+1 · yi (15)

where the vertices from P are represented as
{P0(x0, y0), P1(x1, y1), . . . , Pn(xn, yn)}, taking
Pn as the last vertex in the set. Next, the total signed
area Ai is calculated by taking the sum of all the partial
signed area values:

Ai =
1

2
·

n∑
i=0

Asi (16)

where Asi denotes the partial signed area per vertex. Fi-
nally, the coordinates Cx and Cy are computed with for-
mula 17:

Cx =
1

6 ·Ai
·

n∑
i=0

(xi + xi+1) ·Asi

Cy =
1

6 ·Ai
·

n∑
i=0

(yi + yi+1) ·Asi

(17)

where the weighted average is taken by using the partial
signed area computed in formula 15. Note that indices
are cyclic, meaning that Pn+1 means the same as P0.

5



Table 2: Watermark extraction accuracy a.

Bunny Armadillo Dragon Average
Mass Volume Mass Volume Mass Volume Mass Volume

Baseline 90.63 97.27 100.00 100.00 99.61 100.00 96.75 99.09
Additive noise

d = 0.001 87.62 97.62 100.00 100.00 99.42 99.96 95.68 99.19
d = 0.01 64.67 92.77 99.9 99.82 81.78 97.79 82.12 96.79
d = 0.05 53.40 75.74 90.63 89.88 75.57 81.43 73.20 82.35
d = 0.1 50.37 67.73 73.24 72.40 67.05 69.10 63.55 69.74
d = 0.2 50.43 56.60 56.35 54.53 56.76 58.71 54.51 56.61

Mesh simplification
5% 62.11 78.91 92.97 97.27 75.00 99.61 76.69 91.93
10% 49.22 66.80 96.09 94.53 69.14 98.44 71.48 86.59
15% 49.61 72.27 91.8 92.58 68.75 99.22 70.05 88.02
20% 56.64 58.98 89.45 89.45 66.02 97.27 70.70 81.90
30% 57.42 69.14 74.22 84.77 58.2 94.14 63.28 82.68

Because of the use of weighted average, the risk of
manipulation by the attacked model is minimised, as this
method is not dependent on the amount of vertices in the
original model. The average complexity of this method
is θ(nlog(n)), which applies if most partitions are bal-
anced, meaning that the set of vertices considered is split
roughly into two equal length sets. The worst case com-
plexity is O(n2), which occurs when all partitions are
highly unbalanced, meaning that a recurrence equation
of T (n) = T (n−1)+O(n) = T (n−1)+cn represents
the balancing of vertices, such that only one vertex is as-
signed to one partition, and all other vertices are assigned
into the second partition.

5 Experimental Setup and Results
To measure the effectiveness of the proposed change,
multiple tests will be executed. The results will then
be displayed, comparing the algorithm of [4] with the
centre of mass approach with our centre of volume
technique. The models used in these experiments are
from the Stanford Computer Graphics Laboratory [2], as
seen in Figure 2, from left to right: Bunny, Armadillo,
Dragon. The Bunny model has the least vertices and
the Dragon model has the most, as seen in Table 1. For
comparability with [4], a watermark with a capacity of
256 bits was embedded with each experiment.

5.1 Hardware setup
All experiments shown in this work have been executed
on the same machine. This computer contains an AMD
Ryzen 7 5800H CPU at 3.2GHz, with 16 cores and 16GB
of RAM. A video card is installed; NVIDIA GeForce
RTX 3060 Laptop GPU, but all code execution was done
on the CPU. The programming language used for all ex-

periments is C#, and the operating system of this ma-
chine is Windows 11. All models experimented on come
from the Stanford 3D Scanning Repository [2].

5.2 Robustness comparison
To measure the robustness of each method objectively,
the extracted watermark bits are compared to the em-
bedded watermark bits using an accuracy score a. This
score is denoted by the percentage of bits that are cor-
rectly extracted from the watermarked mesh. This al-
lows for meaningful and comparable results. These ex-
periments were limited in strength, because attacks even
stronger than currently experimented with would de-
grade the models’ utility beyond worthwhile protection.

Table 3: Spherical origin on Bunny model.

Origin method (and sim-
plification percentage)

Origin point (Carte-
sian)

Mass embedding (1.45, 6.08− 0.48)
Mass extraction (0%) (1.46, 6.05,−0.48)
Mass extraction (30%) (1.56, 5.93,−0.56)

Volume embedding (1.24, 6.72, 0.00)
Volume extraction (0%) (1.23, 6.72, 0.00)
Volume extraction (30%) (1.23, 6.72, 0.00)

5.3 Results
When executing the experiments, for all models the
approach detailed in Section 4 is applied. In summary,
normal vectors were calculated by comparing the direc-
tions of the vertices in the neighbourhood of each vertex.
Next, using these normal vectors, bumpy performance
values were calculated. Based on these performance
values and a threshold value, the vertices were split into

6



0.01 0.05 0.1 0.2
0

20

40

60

80

100

Maximum d value

A
ve

ra
ge

ac
cu

ra
cy

sc
or

e
a

Mass centre
Volume centre

Figure 3: Accuracy against additive noise attacks.

a feature set and a reference set, selecting the features
of a model. A new coordinate system was established
based on the reference set, computing a new origin to
then combine the new origin with a rotation matrix,
consisting of the new axes of the established coordinate
system. All feature vertices were then transformed by
the previously computed matrices, and divided into bins.
These bins were created by dividing a sphere into bins,
such that there is a bin for each watermark bit to be
embedded. Afterwards, the feature vertices in each bin
had their azimuth angles slightly changed to embed the
watermark data, before transforming all feature vertices
back to the original Cartesian coordinate system.
The result is a watermarked 3D mesh object. This
process was applied to each model twice, once with the
origin point of the new coordinate system calculated by
centre of mass as proposed in [4], once with a volume
centre computation.

0 5 10 15 20 25 30
0

20

40

60

80

100

Simplification strength in percentages (%)

A
ve

ra
ge

ac
cu

ra
cy

sc
or

e
a

Mass centre
Volume centre

Figure 4: Accuracy against mesh simplification attacks.

Some of the watermarked mesh objects were then sub-
jected to attempts to disturb or destroy the watermark,
before attempting a blind extraction of the watermark.
As a baseline, some watermarked mesh objects were not
attacked in any way before attempting the blind extrac-
tion. The results of all experiments are seen in Table

2, as well as a reference to the method used for calcu-
lating the origin point of the spherical coordinate sys-
tem. Because the additive noise attack utilises random
values for the distance d, these experiments have been
executed 20 times, with their average displayed in Ta-
ble 2. An overview of the average scores for additive
noise and mesh simplification are given in Figure 3 and
Figure 4 respectively. The values in the Table represent
the accuracy of the extracted watermark compared to the
embedded data, in percentages.
Analysing the results of Table 2, it can be seen that the
proposed method does not necessarily yield a better ac-
curacy score than its counterpart for every experiment.
However, when comparing the average scores, it can be
noted that all average scores but one are higher when
embedding and extracting the watermark with a volume
centre, instead of a mass centre. Our analysis shows that
the robustness against additive noise is 80.94% average
using a volume centre, over 73.81% when using a mass
centre.

The greatest difference in robustness can be found
when a mesh is attacked by mesh simplification. In this
experiment, the deterioration of the watermark grows
faster when using a mass centre, compared to using a
volume centre. The gap in performance is noticeable,
with an average score of 86.23% when applying the wa-
termark from 3D mesh objects that had been attacked by
this simplification using a volume centre against an av-
erage score of 70.44% when applying the watermarking
process with a mass centre. The trend of the accuracy
score is compared in Figure 4, where the difference of
the two approaches is highlighted again.
Additionally, watermarked meshes have been attacked
by the non-uniform mesh simplification attack twice.
Once, only the front of the model, or the vertices in the
positive z-axis, were taken into account when applying
the simplification. Afterwards, the attack was performed
on the back of the model, or the vertices in the negative z-
axis. The non-uniform mesh simplification attack proves
to degrade the accuracy of the watermark rapidly, regard-
less of the method by which the origin of the spherical
coordinate system was calculated. However, it must be
noted that the non-uniform version of the mesh simpli-
fication attack weighs much heavier on the utility of the
data, since only half of the model was simplified, lead-
ing to a visible distinction between the sections of the
model that were affected and those that were not. This
in turn means that the attack is highly perceivable. How-
ever, results of this experiments yield no conclusion. The
experiment is added as an appendix for transparency, in
Appendix A.

6 Discussion
After comparing experimental results, it is clear that
there is potential for this approach. Especially notable
is the dragon model, for which the proposed method of

7



applying a centre of volume approach kept the obfusca-
tion of a watermark to a minimum when attacked with
mesh simplification, a mesh simplification attack of 30%
still yields a 94.14% accuracy score when using a volume
centre. Attempting an equal embedding with a centre
of mass massively reduces the robustness and the abil-
ity to extract the watermark, yielding a score of only
58.20%. This is resembled in the average scores as well,
where mesh simplification with the volume centre ap-
proach sees an average increase of 15.78 percent points
in the average accuracy score over the approach from [4].
This is an increase in robustness of over 22%. These
differences are likely because of the influence removing
vertices has on the mass centre, as seen in 3. Since mesh
simplification will change the distribution of vertices, the
mass centre is more likely to move with it. Centre of vol-
ume however is impacted less, since the distribution of
vertices is less influential with this approach.
Of note is the non-uniform mesh simplification attack, in
which the watermark is quickly deteriorated. Because of
the seemingly inconclusive results, these results are not
taken into consideration for the analysis of the perfor-
mance of the proposed approach. However, the armadillo
models yields reasonable accuracy scores when water-
marked with the volume centre approach. On average,
the volume centre approach yields higher accuracy than
its counterpart. Yet it must also be noted that the centre
of mass approach yields some low accuracy scores, mak-
ing the non-uniform attack a potential weakness for this
approach. For transparency, the results of these experi-
ments have been added in appendix A.

Ethical considerations
This work intends to improve on existing work, where
the goal is to detect ownership of 3D data. As mentioned
in section 1, watermarking has a great many applications
to further improve in this field. The conclusions of this
work are made purely upon the experiments documented
and all experiments conducted have been documented.
The results of the experiments against non-uniform mesh
simplification are seemingly inconclusive. For full trans-
parency, they have been added as an appendix; appendix
A. These results are not taken into account for the full
conclusion of this work, but they are taken into account
when laying out further research opportunities. The code
with which all experiments have been executed, as well
as the code to embed and extract watermarks is found in
appendix B. The models experimented with are all from
Stanford [2], and open source.

7 Conclusions and Future Work
This work shows an improvement of a known algorithm
to watermark 3D mesh objects [4]. The embedding of
this algorithm is achieved by locating feature vertices,
those vertices that make up the important areas of
the shape of the model, constructing a new spherical

coordinate system in which these feature vertices have
the watermarking embedded and to divide the vertices in
bins. Of importance is the construction of the spherical
coordinate system, where the origin is calculated using
mass centre as proposed in [4]. In this work, it is
shown that using a volume centre calculation instead
will improve the robustness of the algorithm proposed
in [4]. The volume centre is calculated by computing
a 2D-convex hull, using the quickhull algorithm. The
centre of volume is the minimally sized outline of a set
of points, such that all the points of the set are contained
within the hull. The weighted centre of this hull is
computed and used as the new origin for the spherical
coordinate in the watermarking algorithm.
This approach proved to be more robust than the origi-
nally proposed mass centre, mainly because the volume
centre approach is not as much influenced by changes of
the vertex distribution of a 3D mesh object.

Future work could further investigate the use of multi-
dimensional volume centre calculations, a more complex
approach to possibly improve on the 2D convex hull pro-
posed in this work. Specifically against non-uniform
mesh simplification attacks in-depth work is required in
an attempt to create a method that is robust against these
attacks, and to further investigate the full effect of the
non-uniform mesh simplification attack against this wa-
termarking approach. Additionally, the robustness of the
algorithm proposed in [4] could be improved by contin-
ued work, to further improve on the robustness of 3D
mesh object watermarking.

References
[1] Arnaud Delmotte et al. “Blind 3D-Printing Water-

marking Using Moment Alignment and Surface
Norm Distribution”. In: IEEE Trans. Multim. 23
(2021), pp. 3467–3482. DOI: 10 . 1109 / TMM .
2020 . 3025660. URL: https : / / doi . org / 10 . 1109 /
TMM.2020.3025660.

[2] Stanford University Computer Graphics Labora-
tory. The Stanford 3D Scanning Repository. http://
graphics.stanford.edu/data/3Dscanrep/. Accessed:
30-05-2024. 1996.

[3] Jing Liu, Yajie Yang, and Douli Ma. “A Blind
3D Point Cloud Watermarking Algorithm Based
on Azimuth Angle Modulation”. In: 11th Interna-
tional Congress on Image and Signal Processing,
BioMedical Engineering and Informatics, CISP-
BMEI 2018, Beijing, China, October 13-15, 2018.
Ed. by Wei Li, Qingli Li, and Lipo Wang. IEEE,
2018, pp. 1–7. DOI: 10.1109/CISP-BMEI.2018.
8633259. URL: https : / /doi .org /10 .1109 /CISP-
BMEI.2018.8633259.

8

https://doi.org/10.1109/TMM.2020.3025660
https://doi.org/10.1109/TMM.2020.3025660
https://doi.org/10.1109/TMM.2020.3025660
https://doi.org/10.1109/TMM.2020.3025660
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://doi.org/10.1109/CISP-BMEI.2018.8633259
https://doi.org/10.1109/CISP-BMEI.2018.8633259
https://doi.org/10.1109/CISP-BMEI.2018.8633259
https://doi.org/10.1109/CISP-BMEI.2018.8633259


[4] Jing Liu et al. “A Watermarking Method for 3D
Models Based on Feature Vertex Localization”.
In: IEEE Access 6 (2018), pp. 56122–56134. DOI:
10 . 1109 / ACCESS . 2018 . 2872783. URL: https :
//doi.org/10.1109/ACCESS.2018.2872783.

[5] Ernst P. Mücke. “Quickhull: Computing Con-
vex Hulls Quickly”. In: Comput. Sci. Eng. 11.5
(2009), pp. 54–57. DOI: 10 . 1109 / MCSE . 2009 .
136. URL: https://doi.org/10.1109/MCSE.2009.
136.

[6] Fei Peng et al. “Semi-Fragile Reversible Water-
marking for 3D Models Using Spherical Crown
Volume Division”. In: IEEE Trans. Circuits Syst.
Video Technol. 33.11 (2023), pp. 6531–6543. DOI:
10.1109/TCSVT.2023.3272955. URL: https://doi.
org/10.1109/TCSVT.2023.3272955.

[7] Xavier Rolland-Nevière, Gwenaël J. Doërr, and
Pierre Alliez. “Triangle Surface Mesh Watermark-
ing Based on a Constrained Optimization Frame-
work”. In: IEEE Trans. Inf. Forensics Secur. 9.9
(2014), pp. 1491–1501. DOI: 10.1109/TIFS.2014.
2336376. URL: https : / / doi . org / 10 . 1109 / TIFS .
2014.2336376.

[8] Patrice Rondao-Alface and Benoıt Macq. “Blind
watermarking of 3D meshes using robust feature
points detection”. In: Proceedings of the 2005
International Conference on Image Processing,
ICIP 2005, Genoa, Italy, September 11-14, 2005.
IEEE, 2005, pp. 693–696. DOI: 10 . 1109 / ICIP.
2005 . 1529845. URL: https : / / doi . org / 10 . 1109 /
ICIP.2005.1529845.

[9] Kai Wang et al. “A Comprehensive Survey
on Three-Dimensional Mesh Watermarking”. In:
IEEE Trans. Multim. 10.8 (2008), pp. 1513–1527.
DOI: 10.1109/TMM.2008.2007350. URL: https:
//doi.org/10.1109/TMM.2008.2007350.

[10] Stefanos Zafeiriou, Anastasios Tefas, and Ioan-
nis Pitas. “Blind Robust Watermarking Schemes
for Copyright Protection of 3D Mesh Objects”.
In: IEEE Trans. Vis. Comput. Graph. 11.5 (2005),
pp. 596–607. DOI: 10.1109/TVCG.2005.71. URL:
https://doi.org/10.1109/TVCG.2005.71.

A Non-uniform mesh simplification
The results of the watermark extraction accuracy after
non-uniform mesh simplification attacks are found in Ta-
ble 4.

B Source code
The source code of this work can be found at:
https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/
Erkin/matthijsvanand-DatasetDatabase-Watermarking/

9

https://doi.org/10.1109/ACCESS.2018.2872783
https://doi.org/10.1109/ACCESS.2018.2872783
https://doi.org/10.1109/ACCESS.2018.2872783
https://doi.org/10.1109/MCSE.2009.136
https://doi.org/10.1109/MCSE.2009.136
https://doi.org/10.1109/MCSE.2009.136
https://doi.org/10.1109/MCSE.2009.136
https://doi.org/10.1109/TCSVT.2023.3272955
https://doi.org/10.1109/TCSVT.2023.3272955
https://doi.org/10.1109/TCSVT.2023.3272955
https://doi.org/10.1109/TIFS.2014.2336376
https://doi.org/10.1109/TIFS.2014.2336376
https://doi.org/10.1109/TIFS.2014.2336376
https://doi.org/10.1109/TIFS.2014.2336376
https://doi.org/10.1109/ICIP.2005.1529845
https://doi.org/10.1109/ICIP.2005.1529845
https://doi.org/10.1109/ICIP.2005.1529845
https://doi.org/10.1109/ICIP.2005.1529845
https://doi.org/10.1109/TMM.2008.2007350
https://doi.org/10.1109/TMM.2008.2007350
https://doi.org/10.1109/TMM.2008.2007350
https://doi.org/10.1109/TVCG.2005.71
https://doi.org/10.1109/TVCG.2005.71
https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Erkin/matthijsvanand-DatasetDatabase-Watermarking/
https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Erkin/matthijsvanand-DatasetDatabase-Watermarking/


Table 4: Watermark extraction accuracy a against non-uniform mesh simplification.

Bunny Armadillo Dragon Average
Mass Volume Mass Volume Mass Volume Mass Volume

Baseline 90.63 97.27 100.00 100.00 99.61 100.00 96.75 99.09
Non-uniform mesh simplification: Front only

5% 52.73 51.95 48.44 92.19 63.28 20.31 54.82 54.82
10% 51.17 44.14 46.09 80.86 47.66 55.47 48.31 60.16
15% 48.44 46.48 44.92 54.69 42.97 47.27 45.44 49.48
20% 49.22 55.08 49.22 53.13 53.13 46.09 50.52 51.43
30% 49.22 47.66 45.70 53.52 55.86 51.17 50.26 50.78

Non-uniform mesh simplification: Back only
5% 61.72 51.17 52.34 91.80 54.69 21.09 56.25 54.69
10% 50.00 53.52 47.27 83.59 49.22 54.3 48.83 63.80
15% 48.44 51.17 45.31 75.78 51.17 46.88 48.31 57.94
20% 51.95 51.56 44.53 71.09 48.83 46.88 48.44 56.51
30% 49.61 48.05 49.61 64.06 48.44 51.56 49.22 54.56

10


	Introduction
	Related work
	Attacks on watermarked 3D mesh objects
	Mesh simplification
	Additive noise

	Watermarking by feature localisation
	The watermarking algorithm
	Feature vertex localisation
	Creating a spherical coordinate system
	Embedding the watermark
	Retrieving the watermark

	Centre of volume
	Creating the 2D hull
	Computing the centroid


	Experimental Setup and Results
	Hardware setup
	Robustness comparison
	Results

	Discussion
	Ethical considerations

	Conclusions and Future Work
	Non-uniform mesh simplification
	Source code

