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Abstract

Type systems and their accompanying checkers provide support for the programmer to write better and safer code,
faster, with less effort and with less errors. There are however properties that can not be checked at compile time yet.
Refinement types are potentially the solution. They can prove properties of the behaviour of code without actually
running and therefore avoid costly bugs in software. This is done by decorating types with predicates that tell
something about the value of that type. This paper discusses an implementation of a refinement type system for a
functional language.
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I. Introduction

Type systems and their accompanying checkers
provide support for the programmer to write

better and safer code, faster, with less effort and
with less errors. Take for instance the following
invalid line of code: 5 + "12". Conventional type
checkers will fail this line before run-time and
give some form of feedback as to why the line
of code is considered invalid. In this particular
case it will indicate that addition can only be done
with numerical values, like 5, but not with string
representations of numbers, like ”12”. If ”12” is
to be added to 5 then it should be parsed to a
number first. Altering the line results the code
snippet to: 5 + parse("12") and the type-checker will
successfully run and the code can be executed.

The aforementioned example illustrated the use
and benefit of types in programming languages
during programming. The type-checker prevented
a bug in the code without potentially catastrophic
failures if the bug would have been deployed. It is
reasonable to assert that if type-systems and their
checkers would become more advanced, then more
errors could be prevented. Take for instance the ar-
guably faulty implementation of the mathematical
division function in the next code snippet.

fun div ( a : int , b : i n t ) → i n t = a / b

What would happen if b is equal to zero? Di-
vision by zero is undefined behaviour and this
could cause an exception to be thrown or a similar
construct. Remedying this faulty behaviour could

be done in multiple different ways. To start, ex-
ception handling could be done, this is however
not a particular elegant solution. If functions ul-
timately become more complex and consequently
start throwing a multitude of different exceptions
then the code handling the errors becomes unclear
and actual functional code becomes less apparent.

An improvement would be that the function
would never be called with input that is not sup-
ported. This could be done by doing a check in the
form of an if-statement in the code before calling
a function. It is not favorable to do this check all
the time. Performance is unnecessarily reduced,
code complexity is increased and the human pro-
grammers could make mistakes, forgetting to do
the checks or check the wrong properties.

Refinement types potentially provide the solu-
tion. Y. Mandelbaum, D. Walker, and R. Harper
[1] state that "One of the major goals of program-
ming language design is to allow programmers to ex-
press and enforce properties of the execution behavior
of programs.". At the moment, conventional type-
systems are unable to enforce many properties
which are apparent at compile time [1].

Refinement types helps expressing and enforc-
ing these properties. As the name suggest, re-
finement types allow ordinary types to be refined.
Normally this means that a type can be written
with an accompanying predicate [2] [3], a predicate
that tells something about the value of the type.
For example: int { v > 0 } indicates the positive
integers, v is special variable indicating the value
of the type itself [2]. Then int { v < 0 } indicates
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the negative integers and int { 4 < v ∧ v < 9 } in-
dicates all the integers between 4 and 9. Types
are therefore interpreted as sets of values and a
refinement type is the subset of the values of the
base type such that for every value in the subset
the predicate holds [4].

To illustrate the use case in a more practical
fashion, take a look at the divisor in the earlier
example. The divisor can be any integer but the
value zero, so the parameter b could be refined
with the predicate v 6= 0.

fun div ( a : int , b : i n t { v 6= 0 } )
→ i n t = a / b

A refinement-type-checker checks and enforces
that div is never called in a program with an argu-
ment for b that interprets to zero. If the program
is validated, then the program can be safely exe-
cuted and no DivisionByZeroException or a similar
construct is ever thrown while not checking all
the time if b is not equal to zero. This will save
performance, reduce code complexity and avoid
bugs.

This paper researches the definition of
refinement-type-systems, the implementation of
refinement-type-checkers and the use of refine-
ment types. In this paper a formal definition of a
refinement type system for a functional program-
ming language is defined, an implementation of
that type system is developed and examples illus-
trating the use cases are given.

The main objective is to implement a fully featured
type checker that validates refinement types, for the
source check the GitHub repository [5]. Contribu-
tions made in the paper are:

• An introduction to refinement types, exam-
ples with regard to the application of refine-
ment types and difference compared to con-
ventional type systems.
• Declarative definition of a refinement type sys-

tem for a functional programming language.
• Insights in the practical and algorithmic im-

plementation of a type checker of such a type
system.

II. Syntax and Semantics

The syntax for the language is given in 1. The
programming language is functional and delib-
erately kept simple. The language is functional
because that programming paradigm lends itself
for relatively simple implementation. This does

not necessarily mean that refinement types cannot
be implemented for imperative, object-oriented
or other programming paradigms. For instance
a refinement-type-system has been developed for
Typescript [6]. Typescript is a multi-paradigm pro-
gramming language. It is including functional,
imperative and object-oriented. The language is
kept simple because more advanced features can
be desugared to simple features and because other
features do not automatically imply an impact on
the type system. This way the type system and the
typing rules can be kept concise, simple and less
repetitive.

A program is defined as a collection of global
functions. There are no other constructs like global
variables and importing of other files.

Each function has an identifier, potential param-
eters, which are explicitly typed, a return type and
an expression.

All possible expressions are kept to a minimum.
The expressiveness is large enough to give some
insightful examples that illustrate the potential use
of refinements and small enough to avoid repeti-
tiveness in the definition later on.

The language supports the four main arithmetic
operations: addition, subtraction, multiplication and
division.

The logical operators not and or are supported
as well. These operators together are functionally
complete [7]. This means that every truth table
can be expressed using an term consisting of only
these two operators. Other logical operators like
and and xor are therefore redundant and can be
omitted.

Equality and inequality can be checked using the
operators = and <. Most of the other, normally
supported operators in other programming lan-
guages are not supported. For instance the greater
than operation (>), the less and equal operation
(≤) are not supported. These operators can be de-
fined using or desugared into the already present
operators.

Increasing the expressive power of the language
are the function application and the if-then-else
expression.

Refinements that can be applied to the types are
kept relatively simple. The type checker has to
solve constraints based on these refinements. In
order to keep these constraints decidable and solv-
able in reasonable time, the predicates are limited
to boolean expressions without function applica-
tions and if-then-else expressions, that is the only
difference in this language between predicates and
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〈program〉 ::= 〈function〉*

〈function〉 ::= fun 〈id〉 (〈param〉*) →
〈type〉 = 〈expr〉

〈expr〉 ::= not 〈expr〉
| 〈expr〉 or 〈expr〉
| 〈expr〉 * 〈expr〉
| 〈expr〉 / 〈expr〉
| 〈expr〉 + 〈expr〉
| 〈expr〉 - 〈expr〉
| 〈expr〉 = 〈expr〉
| 〈expr〉 < 〈expr〉
| if 〈expr〉 then 〈expr〉 else
〈expr〉

| 〈id〉 (〈expr〉*)
| 〈id〉
| 〈const〉

〈type〉 ::= 〈base〉 〈refinement〉

〈base〉 ::= int | bool

〈refinement〉 ::= { 〈pred〉 }

〈pred〉 ::= not 〈pred〉
| 〈pred〉 or 〈pred〉
| 〈pred〉 * 〈pred〉
| 〈pred〉 / 〈pred〉
| 〈pred〉 + 〈pred〉
| 〈pred〉 - 〈pred〉
| 〈pred〉 = 〈pred〉
| 〈pred〉 < 〈pred〉
| 〈id〉
| 〈const〉

〈const〉 ::= 〈int〉 | true | false

〈param〉 ::= 〈id〉 : 〈type〉

〈id〉 ::= [a-z] [a-z 0-9]*

〈int〉 ::= [0-9]+

Figure 1: Syntax of Core Language

fun one ( ) → i n t { v = 1 } = 1

fun div ( a : int , b : i n t { v 6= 0 } )
→ i n t = a / b

fun min ( a : int , b : i n t )
→ i n t { v = a or v = b } =

i f a < b then a e lse b

fun f i b ( n : i n t { v ≥ 0 } )
→ i n t { v ≥ 0 } =

i f n < 2 then n
e lse f i b ( n − 2) + f i b ( n − 1)

Figure 2: Sugared Code Examples

expressions. This leaves us with a set of possible
first-order predicates that are quantifier-free. It
is known that these predicates are decidable and
therefore checkable at compile time [3].

To illustrate, some code samples in 2 are given
that can be written in the language, considering
that some desugaring is allowed.

III. Type System

In other papers that discuss refinement types, a
rather theoretical approach is taken with regard to
the type system. On a very fundamental level is
reasoned about types, functions and expressions.
In this paper the approach is flipped in a sense.
The first step in the research was to have a working
fully featured refinement-type-checker. The next
step was to translate the algorithmic implemen-
tation to a more declarative implementation with
typing rules. This way the typing rules are close
to an actual implementation.

The pipeline of the system is: parsing → base
type checking→ refinement checking→ potential
interpretation. Interpretation is not implemented
as it is out of scope of the paper.

The first step is lexing and parsing. For this
a parser-generator was used, namely ANTLR [8].
Any other form of parsing is naturally correct as
long the resulting abstract syntax tree conforms
with the core language syntax in 1.

The second step is the base type checker. This
step was done separately from the refinement type
because both checkers effectively check different
things. The base-checker actually checks the types
and the refinement-checker checks that the refine-
ments hold. Since the scope of this paper focuses
more on the refinement-checker, it means that the
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base typing rules are not discussed. The rules are
worked out and included in 3 for referencing pur-
poses. One thing to note in the base-type-checker
is that the refinements, the predicates are disre-
garded. This shows an important notion of refine-
ment types. Refinement types do not give more
power to a language, a refinement-type-system
is a conservative extension [1] to a conventional
type-system. Any program with refinements (and
that type-checks) works in a system without refine-
ments as well, the reverse does not hold.

The third step is refinement checking. During
this check it is assumed that all types hold in the
program. So, all refinements actually evaluate to
a boolean and all other expressions type check as
well. The typing rules are shown in 4 and 5. Some
rules are very repetitive. For example the Add

and Sub in 5 are almost identical. Only the more
radical typing rules will be discussed the others are
expected to become clear from explanation from
similar typing rules.

i. Context Variants

Before discussing the typing rules it is convenient
to discuss the different types of contexts that are
used. In conventional type-systems and their rules
the context is conventionally annotated with: Γ.
The context contains function descriptions and the
types of certain variables or parameters, not dis-
similar in the typing rules of the base checker in
this language. In the refinement checker, Γ is used
differently. The context still contains, and only
contains, function descriptions. Therefore, Γ con-
tains function descriptions but not variables and
parameters. Do note that the function descriptions
contain the names of the parameters as well. This
is needed later on to type check dependent types.
Also note that not the types of the parameters and
the return type are part of the function description
only the refining predicates. The types have al-
ready been checked by the base-type-checker and
the types are assumed to be correct.

The second context used is the context annotated
with Θ. This context maps variables of the lan-
guage to created variables in the constraint solver.
A large portion of the refinement typing rules is
the translation of the expressions and predicates
to something a constraint solver can understand.
The constraint solver will collect all the assertions
while type-checking and determine if the refine-
ments are actually valid. If that is not the case
then checking fails and the program is invalid and

rejected.
A constraint solver is needed is therefore needed,

the implementation uses a constraint solver devel-
oped by Microsoft called Z3. Z3 implements the
SMT-LIB version 2.0 standard [9]. This is a stan-
dard on how to declare, define and encode con-
straints. Multiple constraints solvers implement
this standard and therefore it constraint solving
does not rely on specific features only present in
Z3. Other solvers that implement the same stan-
dard could be used as well, like AProVe [10], CVC4
[11] and Yices [12]. Coming back to the context
Θ, this maps the variables from the language to
the variables used by the constraint solver. These
variable can then be substituted when translating
the expressions and predicates.

The third and final context is annotated with Φ.
This context contains assertions, assertions that can
be interpreted by the constraint solver. The asser-
tions are all boolean expressions or predicates and
the constraint solver can be asked if the assertions
and constraints can be satisfied. If it can be satis-
fied then a model is returned with possible eval-
uations of the variables such that the constraints
hold.

ii. Typing Rules

With this elementary understanding of the differ-
ent variants of contexts used the typing rules can
be discussed. The root of the typing rules is the
Prog rule in 4. The rule checks that a program is
well-formed, indicated with the � symbol, which
means that all the functions are well-formed. The
first premise in the rules sequents collects the func-
tion descriptions as discussed earlier. Therefore,
function type with the parameter’s names as well.
This context is immutable for the rest of the check-
ing procedure, since only global functions are al-
lowed and all are known at compile time. The
other premises of the rule check that every func-
tion is well-formed.

The Prog rule checks that every function is well-
formed. That means that given the contexts Γ, Θ
and Φ containing the function descriptions, the
parameters mapping to solver variables and the
constraints that the body expression of the function
must have the refinement given to the return value
of the function. The Fun rule in 4 checks this
property. There are no Θ and Φ contexts yet, these
will be created with the parameters of the function,
If there are none then they will naturally be empty.
If there are parameters then they will translated to
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Well Typed Program Rules:

Γ = f0 := (x00 : t00 . . . x0n : t0n)→ t0, . . . , fq := (xq0 : tq0 . . . xqm : tqm)→ tq
Γ ` fun f0 (x00 : t00 . . . x0n : t0n)→ t0 = e0 : �

...
Γ ` fun fq (xq0 : tq0 . . . xqm : tqm)→ tq = eq : �

BaseProg
fun f0 (x00 : t00.p00 . . . x0n : t0n.p0n)→ t0.p0 = e0

...

fun fq (xq0 : tq0.pq0 . . . xqm : tqm.pqm)→ tq.pq = eq

 : �

Well Typed Function Rules:

Γ, x0 : t0, . . . , xn : tn ` e : t
BaseFun

Γ ` fun f (x0 : t0 . . . xn : tn)→ t = e : �

Well Typed Expression Rules:

Γ ` e0 : int Γ ` e1 : int
BaseMult

Γ ` e0 ∗ e1 : int
Γ ` e0 : int Γ ` e1 : int

BaseDiv

Γ ` e0/e1 : int

Γ ` e0 : int Γ ` e1 : int
BaseAdd

Γ ` e0 + e1 : int
Γ ` e0 : int Γ ` e1 : int

BaseSub

Γ ` e0 − e1 : int

Γ ` e0 : int Γ ` e1 : int
BaseLess

Γ ` e0 < e1 : bool
Γ ` e0 : t Γ ` e1 : t

BaseEq

Γ ` e0 = e1 : bool

Γ ` e : bool
BaseNot

Γ ` not e : bool
Γ ` e0 : bool Γ ` e1 : bool

BaseOr

Γ ` e0 or e1 : bool

Well Typed Constant Rules:

BaseNum

Γ ` n : int
BaseTrue

Γ ` true : bool
BaseFalse

Γ ` false : bool

Well Typed Variable Rules:

Γ(x) = t
BaseVar

Γ ` x : t

Well Typed Special Expression Rules:

Γ( f ) = (t0 . . . t0)→ t Γ ` e0 : t0 · · · Γ ` en : tn
BaseApp

Γ ` f e0 . . . en : t

Γ ` ec : bool Γ ` e0 : t Γ ` e1 : t
BaseITE

Γ ` if ec then e0 else e1 : t

Figure 3: Base Typing Rules
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Well Formed Program Rules:

Γ = f0 := (x00 : p00 . . . x0n : p0n)→ p0, . . . , fq := (xq0 : pq0 . . . xqm : pqm)→ pq
Γ ` fun f0 (x00 : p00 . . . x0n : p0n)→ p0 = e0 : �

...
Γ ` fun fq (xq0 : pq0 . . . xqm : pqm)→ pq = eq : �

Prog
fun f0 (x00 : t00.p00 . . . x0n : t0n.p0n)→ t0.p0 = e0

...

fun fq (xq0 : tq0.pq0 . . . xqm : tqm.pqm)→ tq.pq = eq

 : �

Well Formed Function Rules:

x0 : p0 . . . xn : pn ⇒ Θ; Φ Γ; Θ; Φ ` e : p
Fun

Γ ` fun f (x0 : p0 . . . xn : pn)→ p = e : �

· ` x0 : p0 ⇒ x′0 ; φ0
x0 := x′0 ` x1 : p1 ⇒ x′1 ; φ1

...
x0 := x′0, . . . , xn−1 := x′n−1 ` xn : pn ⇒ x′n ; φn

Params

x0 : p0 . . . xn : pn ⇒ x0 := x′0, . . . , xn := x′n ; φ0, . . . , φn

Θ, x := x′ ` p φ
Param

Θ ` x : p⇒ x′; φ

Γ; Θ; Φ ` e : p⇒ ν; Φ′
Base

Γ; Θ; Φ ` e : p

Well Formed Expression Rules:

Θ ` ν : p⇒ φ Γ; Θ; Φ ` e⇒ e′; Φ′ Φ, Φ′, ν = e′ ` ¬∃m.m � ¬φ
Hold

Γ; Θ; Φ ` e : p⇒ ν; Φ′, ν = e′

Θ, v := ν ` p φ
Ref

Θ ` ν : p⇒ φ

Figure 4: Refinement Typing Rules Part 1
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contexts with the Params rule in 4.
The Params rule starts with an empty Θ con-

text for the first parameter and translates the pa-
rameter with the Param rule, in 4, to a solver
variable and an assertion. Please note that the
refinement-checker assumes that there is no such
thing as a base type, meaning that every type is
a refinement type. The base type can be given
by giving a tautology as predicate. For instance
int {v = v} is equivalent to the base type int.
The translated solver variable is collected and
used as given Θ context for the second param-
eter. This allows for parameters that are depen-
dent on earlier parameters. A function description
like: fun zot(a: int {v < 3}, b: int {v < a}) is there-
fore possible. This process continues until the last
parameter. All the generated solver variables are
collected into a Θ context and all the generated con-
straints are collected into a Φ context. These con-
texts are the ones that are returned by the Params

rule.

ii.1 Hold Typing Rule

With the initial contexts in place the Base rule in
4 can be applied. This is actually a Hold rule, in
4, with the returned elements omitted. The Hold

rule is discussed instead. What the Hold rule does
is checking if the expression e has the refinement p
given the contexts Γ, Θ and Φ. The rule returns the
generated solver variable ν and a Φ context with
assertions learned when traversing the abstract
syntax tree of e. The rule has three premises.

The first premise uses the Ref rule to generate an
assertion φ while given a Θ context and a unique
solver variable ν. In the algorithmic implementa-
tion a solver variable is created with a unique name
by using a counter and appending that number to
the string "_". So, example variable names are "_0",
"_1" and "_123". Naturally there are other correct
strategies. It is only imperative that the variables
are unique. The Ref rule generates the constraint
by temporarily adding v = ν to the Θ context
and then substituting the variables in the predicate
with their matching solver variables. Note the dif-
ference between v and ν. v is the variable written
in the language that indicates the value of the type
and ν (nu) is the solver variable that is uniquely
generated to represent the value of that type in the
constraint solver. Substitution is indicated with the
 symbol. So, Θ ` p φ states that the variables
in p are substituted with the matching variable in
Θ into the assertion φ. This simple substitution

is possible as a consequence of the choice to keep
the predicates simple. Recall that this was done
to keep the predicates decidable. The predicates
that can be expressed in the core language can be
expressed too in the constraint solver. Therefore
only substitution of variables is needed.

The second premise of the Hold rule translates
the expression e into an alternate expression e’ un-
derstandable by the constraint solver. Additional
assertions are returned as well. The responsible
typing rules are discussed later in the section.

The third premise actually checks that the refine-
ment of the return type holds with the constraint
solver. The premise looks like this: Φ, Φ′, ν =
e′ ` ¬∃m.m � ¬φ. Given the Φ context given
in the conclusion of the Hold rule, the returned
assertions of the expression translation (Φ′) and
the additional constraint that the return value ν
is equal to the translated expression e’, the solver
is asked if there is not a model m such that that
model m satisfies (�) the inverse of the generated
constraint φ by the Ref rule. A model here is an
evaluation of the generated solver variables that
makes all the given assertions hold. If a model,
that makes the inverse of φ hold, does not exist
then the function is well-formed, if it does exist
then the function is not well-formed.

Some reasoning behind why this is the case: A
constraint solver is given some assertions and can
be asked to give a model such that the assertions
hold. Proving a constraint is not supported by
the SMT-LIB version 2.0 standard [9] and therefore
not by Z3. To prove that given some assertions
that another assertion is valid, meaning that it
always holds if the given assertions hold, then
the existence of a model that makes the inverse
of the to be validated assertion hold should be
unsatisfiable. If something is always true then
it logically follows that the something is never
false. Because the solver can not be asked whether
something is always true it was chosen to ask if
the inverse never holds. This can be asked of a
constraint solver.

ii.2 Translation Rules

It was earlier conveniently assumed that some typ-
ing rules existed that translated an expression e
to an alternative constraint-solver understandable
expression e’. These typing rules are worked out
and given in 5. To start with a simple example
rule, take the typing rule Mult, this rule translates
a multiplication expression. The premises trans-
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Base Expression Translation Rules:

Γ; Θ; Φ ` e0 ⇒ e′0; Φ0 Γ; Θ; Φ ` e1 ⇒ e′1; Φ1
Mult

Γ; Θ; Φ ` e0 ∗ e1 ⇒ e′0 ∗ e′1; Φ0, Φ1

Γ; Θ; Φ ` e0 ⇒ e′0; Φ0 Γ; Θ; Φ ` e1 ⇒ e′1; Φ1
Div

Γ; Θ; Φ ` e0/e1 ⇒ e′0/e′1; Φ0, Φ1

Γ; Θ; Φ ` e0 ⇒ e′0; Φ0 Γ; Θ; Φ ` e1 ⇒ e′1; Φ1
Add

Γ; Θ; Φ ` e0 + e1 ⇒ e′0 + e′1; Φ0, Φ1

Γ; Θ; Φ ` e0 ⇒ e′0; Φ0 Γ; Θ; Φ ` e1 ⇒ e′1; Φ1
Sub

Γ; Θ; Φ ` e0 − e1 ⇒ e′0 − e′1; Φ0, Φ1

Γ; Θ; Φ ` e0 ⇒ e′0; Φ0 Γ; Θ; Φ ` e1 ⇒ e′1; Φ1
Less

Γ; Θ; Φ ` e0 < e1 ⇒ e′0 < e′1; Φ0, Φ1

Γ; Θ; Φ ` e0 ⇒ e′0; Φ0 Γ; Θ; Φ ` e1 ⇒ e′1; Φ1 Eq

Γ; Θ; Φ ` e0 = e1 ⇒ e′0 = e′1; Φ0, Φ1

Γ; Θ; Φ ` e⇒ e′; Φ′
Not

Γ; Θ; Φ ` not e⇒ not e′; Φ′
Γ; Θ; Φ ` e0 ⇒ e′0; Φ0 Γ; Θ; Φ ` e1 ⇒ e′1; Φ1

Or

Γ; Θ; Φ ` e0 or e1 ⇒ e′0 or e′1; Φ0, Φ1

Constant and Variable Translation Rules:

Θ(x) = x′
Var

Γ; Θ; Φ ` x ⇒ x′; · Num

Γ; Θ; Φ ` n⇒ n; ·

True

Γ; Θ; Φ ` true⇒ true; · False

Γ; Θ; Φ ` false⇒ false; ·

Special Expression Translation Rules:

Γ( f ) = (x0 : p0 . . . xn : pn)→ p
Γ; Θ; Φ ` e0 : p0 ⇒ x′0; Φ0

...
Γ; Θ; Φ ` en : pn ⇒ x′n; Φn

Θ, x0 := x′0, . . . , xn := x′n ` x′ : p⇒ φ
App

Γ; Θ; Φ ` f e0 . . . en ⇒ x′; Φ0, . . . , Φn, φ

Γ; Θ; Φ ` ec ⇒ e′c; Φc Γ; Θ; Φ, Φc, e′c ` e0 ⇒ e′0; Φ0 Γ; Θ; Φ, Φc,¬e′c ` e1 ⇒ e′1; Φ1
ITE

Γ; Θ; Φ ` if ec then e0 else e1 ⇒ if e′c then e′0 else e′1; Φc, Φ0, Φ1

Figure 5: Refinement Typing Rules Part 2
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late both the sub-expressions and return both new
assertions. So, if the expression is: e0 ∗ e1 then the
premises translate e0 to e′0 and an assertion context
Φ0 and e1 to e′1 and an assertion context Φ1. The
conclusion then returns the multiplication of the
e′0 and e′1 and the combination of Φ0 and Φ1. Thus,
the returned expression is e′0 ∗ e′1 and the returned
assertion context is Φ0, Φ1. A large collection of the
other rules work in a similar way. For instance but
not limited by Div, Less, Not. These very similar
typing rules are under the header "Base Expres-
sion Translation Rules" in 5 and are not discussed
further.

There are three typing rules that are similar to
each other as well. The typing rules Num, True,
False under the header "Constant and Variable
Translation Rules" in 5. They are similar because
they do not have any sequents. The expression true
always translates to true with an empty additional
Φ context (·). Something not dissimilar holds for
the other two rules.

A variable x is translated to a solver variable
x’ with an empty Φ context if the variable x is
matched to x’ in the Θ context. The Var typing
rule is used for this.

Now only the more interesting function applica-
tion expression and if-then-else expression trans-
lation rules remain to be discussed. Lets look at
the function application translation first, the App

typing rule. Function application is supported in a
sense in constraint solvers however function appli-
cations of recursive functions are not. To exclude
recursive functions would make the language less
powerful. It was therefore decided to develop a
translating procedure that would allow for recur-
sive functions and their applications. In a nutshell,
the arguments are checked to hold the refinement
put upon the parameters of the called function and
the entire function application is then substituted
with a solver variable that has the same type as the
return type of the applied function.

The first premise in the App rule is to retrieve
the function description of f. Since the base checker
already succeeded, this step always succeeds too.

The next steps is to check every argument of
the function application if the refinement of its
fellow parameter is obeyed. This is checked by
using the earlier discussed Hold typing rule. The
already given contexts Γ, Θ and Φ are also given
to these rules and if correct, a solver variable and
additional assertions are returned by each rule.

The third premise collects the parameters and
the matching solver variables combines these with

the given Θ context. This new context is used to
translate the returned refinement of the function to
an assertion. Note that there is a circular relation
between the typing rules Hold and the translating
rules. The Hold rule translates the expression
however the translating rule can use the Hold rule
again in the App rule.

The last translating rule is that of the if-then-
else expression. Not particularly difficult, though
two concept need to be noted. The if-then-else
expression is supported by the SMT-LIB version
2.0 standard [9]. Therefore it can be translated
somewhat simple in that sense.

The condition expression is the first to be
translated and results in a expression e′c and a
context Φc. Then the expression e0 is translated.
Note that the context Φc and the assertion e′c is
given to the given assertion context of the rule.
Because the base type checker has already passed
it can be assumed that the condition is a boolean
expression which means that if it is translated
that it can be used as an assertion in a Φ context.
This knowledge is passed such that if an if ex-
pression check is done that in the then expression
that knowledge is also known. For instance:
fun baz(x: int)→ int = if x 6= 0 then div(3, x) else −1 ,
in the second parameter of div, is not allowed
to be zero but there is no refinement on the
parameter x so every value is possible including
zero. The condition of the if-then-else expression
however checks that x is not equal to zero. So in
the then expression this can be assumed to hold
as well. For this reason the condition assertion is
added to the given Φ context when translating
the then expression. The exact opposite is true in
the else expression and therefore the inverse of
the translated condition (¬e′c) is added to that Φ
context when translating e1.

IV. Worked Out Example

It is difficult to understand the typing rules by ex-
plaining them in such an abstract manner. For this
reason in this section an example will be worked
out. The rule derivations are given and discussed
in detail. The example, shown in 6, chosen is kept
simple yet contains three important features. The
first feature is dependent typing. The return type
of the function foo is dependent on its parameter
a. The second feature is a function application.
The third feature is the learning process from if
expressions. If the parameter b is smaller than 7
then b+ 1 can not be smaller than 5, the refinement

9



fun foo ( a : i n t { v < 5 } )
→ i n t { v = a + 2 } = a + 2

fun bar ( b : i n t { v < 7 } )
→ i n t { v < 9 } =

i f b < 3 then foo ( b + 1) + 3
e lse 0

Figure 6: In Depth Example Code

upon the parameter of foo. However, because it
was checked that b is less than 3 as well. Then
b + 1 is smaller than 5.

i. Program Level

The program is first parsed and the base checker
is then run with the resulting abstract syntax tree.
The process of this is omitted as it is out of the
scope of the paper.

After the base-type-checker has succeeded then
the refinement checker is run. First the Prog typ-
ing rule is applied, see derivation (0) in 7, which
first creates the Γ context out of the function de-
scriptions. Recall that not the types but the re-
finements are used for the function description
and that the parameter names are stored too. The
resulting Γ context looks like this:

Γ = f oo := (a : {v < 5})→ {v = a + 2},
bar := (b : {v < 7})→ {v < 9}

All other contexts are completely written out in
the rule derivations, the Γ context is the exception.
The context is immutable and standard at all the
places where a Γ is needed. So, to save precious
space only Γ is written. The evaluation of Γ is as
shown above.

The two other sequents of (0) are the rule deriva-
tions (1) and (2). (1) checks if foo is well-formed
and (2) checks if bar is well-formed.

ii. Checking Foo

Lets start with the derivation of foo. Derivation (1)
is the application of the Fun rule. The first premise
of the Fun rule creates a Θ and Φ context from the
parameters of the function with the Params rule.
Since the function has only one parameter it means
that the Param is only applied once with an empty
given Θ context. In this case a : v < 5 is translated
to the solver variable a′ and the constraint a′ < 5.
All the generated solver variables and assertions

are collected, only one of each in this case, and
returned as a Θ context and a Φ context. The Θ
context contains the matching a := a′ and the Φ
context contains the assertion a′ < 5. With the
already known Γ context and the generated Θ and
Φ contexts the Base rule can be applied. Already
mentioned is that the Base rule is identical to the
Hold rule albeit the returned solver variable and
Φ context are omitted.

So, rule derivation (3) in 7 is the Hold rule ap-
plied for foo. The first premise applies the Ref rule
and uses a generated solver variable, in this case
ν0, to create the constraint which always needs to
hold. In the premise of that Ref rule v is matched
to ν0 in the Θ context and all the variables in the re-
finement are substituted with the matching solver
variables. The means that v = a + 2 is translated
to ν0 = a′ + 2.

The second premise in derivation (3) is translat-
ing the expression. For this particular function it is
not very interesting to discuss. All that is needed
to know is that the expression a + 2 is translated
to a′ + 2 and that no additional assertions are re-
turned (·). The translating rules are discussed in
depth for the derivation of the bar function later
on. The derivations of the translation are shown in
derivation (4) in 7.

The third and last premise in (3) checks that
given the assertions in Φ (a′ < 5) and that the
returned value ν0 is equal to a′ + 2 that there does
not exist a model such that the model satisfies
¬(ν0 = a′ + 2). This is fairly straightforward that
this is the case. It is impossible for ν0 to be equal to
a′ + 2 and not to be equal to a′ + 2. The constraint
solver concludes as a consequence that the function
foo is well-formed.

iii. Checking Bar

Now that the function foo is known to be well-
formed only bar has to be checked for well-
formedness. The rule derivation (2) in 8 checks
this property, it is again an application of the Fun

typing rule.
The derivations first premise is almost identical

to that of rule derivation (1) in 7. The function has
only one parameter, the parameters name is now
b instead of a and the refinement is now v < 7
instead of v < 5. Otherwise, the derivation is
practically identical. The derivation is therefore
not discussed further.

The second premise of the derivation is again the
application of the Base rule which in turn applies
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Γ = f oo := (a : {v < 5})→ {v = a + 2}, bar := (b : {v < 7})→ {v < 9}
(1)
(2)

(0){
fun f oo (a : int{v < 5})→ int{v = a + 2} = a + 2

fun bar (b : int{v < 7})→ int{v < 9} = if b < 3 then f oo(b + 1) + 3 else 0

}
: �

v := a′ ` v < 5 a′ < 5

· ` a : {v < 5} ⇒ a′; a′ < 5

a : {v < 5} ⇒ a := a′; a′ < 5

(3)

Γ; a := a′; a′ < 5 ` a + 2 : {v = a + 2}
(1)

Γ ` fun f oo (a : {v < 5})→ {v = a + 2} = a + 2 : �

a := a′, v := ν0 ` v = a + 2 ν0 = a′ + 2

a := a′ ` ν0 : {v = a + 2} ⇒ ν0 = a′ + 2 (4) a′ < 5, ν0 = a′ + 2 ` ¬∃m.m � ¬(ν0 = a′ + 2)
(3)

Γ; a := a′; a′ < 5 ` a + 2 : {v = a + 2} ⇒ ν0; ν0 = a′ + 2

Θ(a) = a′

Γ; a := a′; a′ < 5 ` a⇒ a′; · Γ; a := a′; a′ < 5 ` 5⇒ 5; ·
(4)

Γ; a := a′; a′ < 5 ` a + 2⇒ a′ + 2; ·

Figure 7: Workout of Example Part 1

the Hold rule. The derivation of this Hold rule is
given in (5) in 8.

The first premise derivation is again an applica-
tion of the Ref rule. It is very similar to the similar
derivation for the foo function. It is therefore not
discussed in depth, only note that the generated
solver variable is now ν1 and that the generated
constraint is that ν1 < 9.

The second premise is the translation of the ex-
pression of the function into a constraint solver un-
derstandable expression. The derivation is shown
in (6) in 8.

Derivation (6) is an application of the ITE rule,
which has three sequents. The first sequent trans-
lates the condition to an assertion. To avoid rep-
etition this translation is not discussed as well. It
is relatively straightforward that if b is matched to
b’ that the expression b < 3 is then translated to
b′ < 3. The derivation is given in derivation (7) in
8.

The second premise of (6) is derivation (8), also
shown in 8. This derivation translate the expres-
sion f oo(b + 1) + 3 to the expression ν2 + 3. Addi-
tionally the assertions: ν3 = b′ + 1, ν2 = ν3 + 2 are
returned. The function application has been substi-
tuted with a solver variable ν3 and the assertions
ν3 = b′ + 1, ν2 = ν3 + 2 tell something about the
value of this variable.

This translation is done by derivation (8). The

second premise of the derivation trivially translate
the expression 3 to 3 again. The first premise how-
ever translates the function application f oo(b + 1)
to ν2, derivation (10).

Derivation (10), a application of the App rule,
checks first the function matched with the func-
tion identifier. In this case the identifier foo is
matched with (a : v < 5)→ v = a + 2. All but the
last premise checks if the arguments holds their
respective refinements, in this case it is only one
argument. The derivation of the this check is given
in (11).

Derivation (11) is again an application of the
Hold rule. It is not discussed in depth. Do note
that the Hold rule returns a solver variable rep-
resenting the argument and an additional context
with assertions. This is discarded by the Base rule
for the body of a function. It is however impor-
tant for function arguments. The returned solver
variable ν3 and the assertions ν3 = b′ + 1 are used
for dependent typing. If the returned value of
foo is dependent on a parameter, which it is, then
that parameter is later substituted with the solver
variable ν3. The assertions are conveyed as well to
assist the constraint solver. In addition note that
the assertion b′ < 3 was added to the Φ context
when translating the parent if-expression. This
assertion allows the required refinement v < 5 to
hold.
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The last premise in (10), derivation (12), translate
the refinement of the return type of the function foo
into an assertion. The Ref rule is therefore applied
again. Note that a := ν2 and v := ν3 are added to
the given Θ context which allows for v = a + 2 to
be translated into ν2 = ν3 + 2.

This completes the derivation of (10) which in
turn completes the derivation of (8) which brings
us to the last premise of derivation (6). This
premise simply asserts that the expression 0 triv-
ially translates to 0. Now, derivation (6) is complete
as well.

Now all the information is in place to check
whether the refinement on the return type of bar
holds. From the parameters it is known that b′ < 3,
from the application of foo we know that ν3 =
b′ + 1 and that ν2 = ν3 + 2, from the translation
of the body expression we know that ν1 = if b′ <
3 then ν2 + 3 else 0 and from the first sequent in
(5) we know that the constraint ν1 < 9 must hold.
The same as the earlier mentioned strategy is used.
It is checked whether there exists a model such
that it satisfies all the given assertions and that
satisfies the inverse of ν1 < 9. If that does not exist
then, which is the case, then the function bar is
well-formed.

V. Evaluation of Type Checker

Evaluation of the type-system and checker was
done with a test suite [5]. The test suite contained
real world examples like the division function, min
function and the fibonacci function. The suite con-
tained as well contrived examples like the exam-
ples in 6.

All the different features have been tested in
depth for instance dependent typing. Where pa-
rameters are dependent on earlier parameters, re-
turn types are dependent on parameters and the
application of such functions. Naturally, combina-
tions are tested as well.

Other features include the if-then-else expres-
sions and their learning capabilities and recursive
functions like fibonacci.

In terms of time consumption, the largest test
run was a program of around 20 simple functions
which took around 200 milliseconds to complete.
This was including parsing and the base checker.

VI. Related Work

A number of different research papers on refine-
ment typing, refinement type systems and refine-

ment checkers have been published. Yitzhak Man-
delbaum, David Walker and Robert Harper pub-
lished a paper on the theory of refinement typing
[1]. In this paper a ML-style refinement typing sys-
tem is developed and the power of such a system
is indicated with a collection of examples [1].

Another inspiration for this paper was the by
Hongwei Xi and Frank Pfenning [13]. This pa-
per discusses dependent typing in practical pro-
gramming. Another ML-style type system was
developed, only with support for dependent types.
Thus, types dependent on value of other variables.

Noam Zeilberger published some research notes
on the principles of refinement typing [4]. These
principles are discussed by refining the simply
typed lambda calculus. There is a heavy focus on
sub-typing and parametric typing.

Besides heavily theoretical papers there are also
papers published discussing definition of refine-
ment type systems for practical programming lan-
guages. For instance Typescript [14], ML [15], Ruby
[16] and Jolie [17]. These papers however only talk
about such a system in a very theoretical and ab-
stract fashion. Actual implementation of such a
system is not or barely discussed.

Another prominent implementation of refine-
ment types was the refinement type-system Liquid-
Haskell [18], a refinement type-system for Haskell.

VII. Conclusions

To end with some concluding remarks on the de-
veloped refinement-type-system and refinement-
type-checker, it is apparent that such a system is
potentially useful in decreasing bugs in software.
It was also discussed that code complexity could
be decreased and performance increased. It could
therefore be interesting future work to develop
this type system further. For instance increasing
the expressiveness of the language with strings
with string manipulation features and lists with ac-
companying features like appending, folding and
mapping.

Also optimization of the practical implementa-
tion of the system could be future work. When
a program is altered it does not necessarily mean
that all functions have to be type checked again.
If they are not altered then they could be cached.
Perhaps other optimizations could improve perfor-
mance of this system or similar systems in general.
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v := b′ ` v < 7 b′ < 7

· ` b : {v < 7} ⇒ b′; b′ < 7

b : {v < 7} ⇒ b := b′; b′ < 7

(5)

Γ; b := b′; b′ < 7 ` if b < 3 then f oo(b + 1) + 3 else 0 : {v < 9}
(2)

Γ ` fun bar (b : {v < 7})→ {v < 9} = if b < 3 then f oo(b + 1) + 3 else 0 : �

b := b′, v := ν1 ` v < 9 ν1 < 9

b := b′ ` ν1 : {v < 9} ⇒ ν1 < 9 (6)
b′ < 7, ν3 = b′ + 1, ν2 = ν3 + 2,

ν1 = if b′ < 3 then ν2 + 3 else 0
` ¬∃m.m � ¬(ν1 < 9)

(5)

Γ; b := b′; b′ < 7 `
if b < 3

then f oo(b + 1) + 3

else 0

: {v < 9} ⇒ ν1;
ν3 = b′ + 1, ν2 = ν3 + 2,

ν1 = if b′ < 3 then ν2 + 3 else 0

(7) (8) (9)
(6)

Γ; Θ; Φ `
if b < 3

then f oo(b + 1) + 3

else 0

⇒
if b′ < 3

then ν2 + 3

else 0

; ν3 = b′ + 1, ν2 = ν3 + 2

Θ(b) = b′

Γ; b := b′; b′ < 7 ` b⇒ b′; · Γ; b := b′; b′ < 7 ` 3⇒ 3; ·
(7)

Γ; b := b′; b′ < 7 ` b < 3⇒ b′ < 3; ·

(10) Γ; b := b′; b′ < 7, b′ < 3 ` 3⇒ 3; ·
(8)

Γ; b := b′; b′ < 7, b′ < 3 ` f oo(b + 1) + 3⇒ ν2 + 3; ν3 = b′ + 1, ν2 = ν3 + 2

Γ( f oo) = (a : {v < 5})→ {v = a + 2} (11) (12)
(10)

Γ; b := b′; b′ < 7, b′ < 3 ` f oo(b + 1)⇒ ν2; ν3 = b′ + 1, ν2 = ν3 + 2

b := b′, v := ν3 ` v < 5 ν3 < 5

b := b′ ` ν3 : {v < 5} ⇒ ν3 < 5 (13) b′ < 7, b′ < 3, ν3 = b′ + 1 ` ¬∃m.m � ¬(ν3 < 5)
(11)

Γ; b := b′; b′ < 7, b′ < 3 ` b + 1 : {v < 5} ⇒ ν3; ν3 = b′ + 1

Θ(b) = b′

Γ; b := b′; b′ < 7, b′ < 3 ` b⇒ b′; · Γ; b := b′; b′ < 7, b′ < 3 ` 1⇒ 1; ·
(13)

Γ; b := b′; b′ < 7, b′ < 3 ` b + 1⇒ b′ + 1; ·

b := b′, a := ν3, v := ν2 ` v = a + 2 ν2 = ν3 + 2
(12)

b := b′, a := ν3 ` ν2 : {v = a + 2} ⇒ ν2 = ν3 + 2

(9)
Γ; b := b′; b′ < 7,¬(b′ < 3) ` 0⇒ 0; ·

Figure 8: Workout of Example Part 2
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