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1
INTRODUCTION

1.1 MAGNETISM
Magnetism is probably the physical phenomenon that has captivated people’s fas-
cination the longest. It was first observed in terms of the attractive force that lode-
stone, a mineral rich in magnetite, exerted on iron. One of the first accounts of the
attractive force of lodestone in Western literature was written by the pre-socratic
philosopher Thales of Miletus (approx. 624 BC - 546 BC) and was later discussed
by Socrates, as reported in the Platonic dialogue “Ion”[1].

The first application of magnetism is the compass used for navigation. Al-
though its exact date of invention is unknown, it is usually credited to the Chinese.
In 121 AD the first Chinese reference occurs that mentions the fact that lodestone
can be used to magnetize a needle [1]. However, the actual use of a compass by the
Chinese is only recorded much later and the first description of the actual use of
a compass is thus attributed to Alexander Neckam (1157-1217), who mentions in
his De naturis rerum a pivoted needle used by sailors to keep their course – a com-
pass [2]. The compass is not only the first example of an application of magnetic
phenomena, but also an example for a magneto-mechanical system, viz. a sys-
tem in which the mechanical and magnetic degrees of freedom are coupled. Such
systems are the focus of this thesis.

In the framework of classical electrodynamics, the magnetic moment is de-
fined as the lowest order contribution to the multipole expansion of the magnetic
field caused by a current distribution [3], as is demonstrated below. The Biot-
Savart law states that a local current density distribution ~j creates a magnetic flux

1



2 1. INTRODUCTION

density:

~B(~x) = 1

c

∫
d3x ′~j (~x ′)× (~x −~x ′)

|~x −~x ′|3 = 1

c
∇×

∫
d3x ′ ~j (~x ′)

|~x −~x ′| . (1.1)

In the case of steady state currents, i.e. when ∇·~j = 0, the two Maxwell’s equations
for the magnetic flux density read

∇·~B = 0 and ∇×~B = 4π

c
~j . (1.2)

Since ∇· ~B = 0, a vector potential ~A with ~B = ∇× ~A can be introduced. The vector
potential created by a current distribution ~j is of the form

~A(~x) = 1

c

∫
d3x ′ ~j (~x ′)

|~x −~x ′| +∇ψ , (1.3)

whereψ is an arbitrary scalar function that can be freely chosen. Using the Coulomb
gauge, ∇·~A = 0, Eq. (1.2) yields

∆~A =−4π

c
~j , (1.4)

i.e. the components of ~A in Cartesian coordinates fullfill the Poisson equation.
Using

∆
1

|~x −~x ′| = −4πδ(~x −~x ′) (1.5)

and Eq. (1.3) in Eq. (1.4) one finds ∆ψ = 0. Since ∆ψ = 0 has to hold true in all
space, it needs to vanish identically. Thus, one finds the vector potential generated
by a current distribution to be

~A(~x) = 1

c

∫
d3x ′ ~j (~x ′)

|~x −~x ′| (1.6)

when the Coulomb gauge, ∇·~A = 0, is used.
The magnetic moment is now introduced by performing a series expansion of

the vector potential ~A(~x) created by a local current distribution in a small volume
V ′, that is far from the observer at~x. We can expand the denominator in Eq. (1.6)
as

1

|~x −~x ′| =
1

|~x| +
~x ·~x ′

|~x|3 + . . . . (1.7)

Since for steady state currents ∇ ·~j = 0 the zeroth order term in the expansion of
~A(~x), Eq. (1.6), drops out and we are left with

~A(~x) = 1

c|~x|3
∫

d3x ′~j (~x ′)(~x ·~x ′)+·· · =− ~x
2c

×
∫

d3x ′
[
~x ′×~j (~x ′)

]
+ . . . . (1.8)
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The magnetic moment~µ can now be defined as

~µ= 1

2c

∫
d3x ′~x ′×~j (~x ′) . (1.9)

The force acting on a current distribution ~j in a magnetic field reads

~F = 1

c

∫
dx ′3~j (~x ′)×~B(~x ′) . (1.10)

If the magnetic field varies slowly over the region with non-zero current distribu-
tion, one can employ a Taylor expansion for the magnetic field, e.g. the i -th com-
ponent may be expanded as Bi (~x) = Bi (~x)|~x=0 +~x · ∇Bi |~x=0 + . . . . The force then
reads

~F = 1

c

∫
dx ′3~j (~x ′)×[

(~x ′ ·∇)~B(0)
]+·· · =∇×[

~B(0)× ~m]+·· · =∇(~m ·~B(0))+·· · . (1.11)

The force can also be interpreted as the negative gradient of a potential energy U ,
i.e. ~F =−gradU and therefore

U =−~m ·~B . (1.12)

It was first suggested by Ampère [4] that ferromagnets can be interpreted as
molecules of circulating currents. As we have seen in Eq. (1.9), a local current dis-
tribution gives rise to a magnetic moment ~µ. This “molecular current hypothesis”
was later, in 1854, expanded by Weber [1] and provided a first theory on the origin
of the magnetic moment.

1.2 GYROMAGNETISM: BARNETT AND EINSTEIN-DE HAAS

EFFECTS
The definition of the magnetic moment ~µ, Eq. (1.9), gives rise to a close relation-
ship with the angular momentum~L. Suppose the current distribution is given by a
number of charged particles with charges qi , masses Mi and velocities ~vi located
at~xi . The current distribution then reads

~j (~x) =∑
i

qi~viδ(~x −~xi ) (1.13)

and the magnetic moment is given by

~µ= 1

2c

∑
i

qi (~xi ×~vi ) =∑
i

qi

2Mi c
~Li , (1.14)
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where in the last step we have used the expression~Li = Mi (~xi ×~vi ) for the orbital
angular momentum of the i th particle. If all particles have the same charge to mass
ratio, i.e. qi /Mi = e/M , one can relate the magnetic moment to the total orbital
angular momentum of the current distribution:

~µ= e

2Mc

∑
i

~Li = e

2Mc
~L = γ~L . (1.15)

As a consequence of Eq. (1.15), a coupling between the magnetic and mechani-
cal degrees of freedom exists. Such gyromagnetic effects were looked for – albeit
without success – already by Maxwell in 1861 [5, §575]. However, only the work by
Barnett [6] resp. Einstein and de Haas [7] in 1915 led to a first determination of the
gyromagnetic constant γ, which was found to be by a factor of g ≈ 2 larger than
the classically expected value of e/(2Mc). This anomalous g -factor provided a first
hint at the quantum nature of the electron magnetic moment or spin.

1.2.1 THE EINSTEIN-DE HAAS EFFECT

The Einstein-de Haas effect is the label for the mechanical rotation of a body that is
induced by changing its magnetization. This effect was first sought after by Owen
Willans Richardson in 1908 [8], but Albert Einstein and Johannes Wander de Haas
reported a first determination of the gyromagnetic ratio using this method in 1915
[7].

The Noether theorem states that rotational symmetry implies the conservation
of the total angular momentum. Now let us consider a free magnet located in a
magnetic field along its symmetry axis. If the magnetization is now changed from
– say – being oriented antiparallel to the magnetic field to parallel orientation, a
mechanical rotation of the magnetic body is induced as the total angular momen-
tum in direction of the magnetic field needs to be conserved. This is the key idea of
Einstein’s and de Haas’ experiment, whose experimental setup is sketched in Fig.
1.1: A ferromagnetic body is suspended from a thin wire. By applying a magnetic
field pulse along the symmetry axis, the body is magnetized and thus inducing
the body to move. In the absence of mechanical damping and torsion the motion
would be a uniform rotation due to the conservation of the total angular momen-
tum, whereas otherwise a damped torsional motion is observed. Einstein and de
Haas could now determine the gyromagnetic ratio by bringing the coupled mag-
netic and mechanical degrees of freedom in resonance.

Let us denote the mechanical angular momentum in the direction of the sym-
metry axis with L∥ = I∥φ̇, where I∥ is the moment of inertia of the body and φ the
rotation angle, and the magnetic moment with M∥. The mechanical equation of
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~M
γ

~M
γ

~L

FIGURE 1.1: The Einstein-de Haas effect refers to the mechanical rotation of a suspended body induced
by changing its magnetization.

motion reads

L̇∥ = T −2I∥κφ̇− I∥
(
Θ

I∥

)2

φ , (1.16)

where κ is the damping constant of the mechanical motion,Θ the torsion constant
of the wire and T a torque, that reflects the conservation of the total angular mo-
mentum of the coupled mechanical and magnetic degrees of freedom. Therefore,

Ṁ∥ =−γT . (1.17)

As a consequence, in the absence of torsion and damping, a uniform rotation is
induced by inducing a magnetic moment in the body since then γL̇∥ + Ṁ∥ = 0.
Einstein and de Haas assumed that by applying a pulsed magnetic field, the mag-
netization of the body, M∥ switches from +δM to −δM and vice versa. Assuming
this is repeated with frequencyω, we can expand T in a Fourier series. Taking only
the lowest harmonic in the expansion into account,

T = 2δM cos(ωt ) , (1.18)

which leads to a solution φ= |A|cos(ωt −ψ) with phase angle

tanψ= 2ωκ

ω2
0 −ω2

, (1.19)
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Source
λ
4

λ
4

λ
2

ω

FIGURE 1.2: A schematic of the experiment conducted by Beth [10]. The dashed lines show the path of
the linearily polarized light, while the straight lines the path of circularly polarized light. The different
colors denote the two different polarizations which differ by an angle of π/2. All in all, a photon that
traverses the setup deposits an angular momentum of 4ħ in the suspended λ/2-plate, which is shown
in gray in the figure.

where ω0 =Θ/I∥ is the resonance frequency, and amplitude

|A| = 2δM

I∥γ
√

(ω2
0 −ω2)2 +4ω2κ2

. (1.20)

By employing the resonant enhancement, Einstein and de Haas inferred the gy-
romagnetic ratio γ from the observed maximal amplitude. Einstein’s and de Haas’
initially published g -factor was close to one – as expected by classical electrody-
namics when the charge is carried by electrons (see section 1.2). In fact, as de Haas
later admitted [9] they had taken two sets of measurements, one yielding a g -factor
of 1.02 and another yielding 1.45. The latter was dismissed by the two investiga-
tors as being due to disturbances in the experimental setup and thus one of the
first evidences of the anomalous g -factor of the electron spin went unnoticed.

An optical experiment that is similar in spirit to the Einstein-de Haas experi-
ment was devised by Beth [10], which is shown in Fig. 1.2. A linearly polarized
light beam is left circularly polarized by a λ/4-plate, i.e. a photon has angular mo-
mentum −ħ when entering the measurement apparatus. A suspended λ/2-plate
changes the the polarization from left- to right-circular polarized, i.e. −2ħ angu-
lar momentum is transferred to the suspended λ/4-plate and causes it to rotate
(due to conservation of total angular momentum). The light beam is sent through
another λ/4 and reflected back, so that another −2ħ angular momentum is trans-
ferred to the suspended λ/2-plate. This experiment is in the same spirit as the
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FIGURE 1.3: Barnett explained magnetization by rotation with the following classical analogy: One
may consider the magnetic moment~µ as the wheel of a gyroscope oriented in some direction A. If this
gyroscopic wheel is spun around an axis C , the wheel will align itself more with the axis of impressed
rotation C . Restoring torques in the rotating frame of reference may be modelled by springs (S). This
picture was taken from [13].

Einstein-de Haas experiment in that it proves that quantum mechanical angular
momentum can be converted to mechanical angular momentum.

1.2.2 THE BARNETT EFFECT
First attempts to observe magnetization induced by mechanical rotation of the
body – the Barnett effect – were made by Barnett in 1909 [11]. However, it took an-
other six years before quantitative results on this issue were obtained [6] – almost
simultaneously with Einstein’s and de Haas’ work on rotation induced by magne-
tization.

In order to explain the Barnett effect, we need to distinguish two frames of ref-
erence: the laboratory frame of reference fixed in space and a body frame of refer-
ence, which are linked by a rotation matrix R such that

~abody = R~alab . (1.21)

In addition, the time-derivatives in laboratory and body frame of reference are
linked by the Euler equations [12], i.e.

~̇alab = R−1 [
~̇abody +~ωbody ×~abody

]
, (1.22)

where ~ωbody denotes the rotation axis.
We now assume that the magnetic moment ~µ is rotated around the ~zlab axis

with a fixed frequency Ω. Barnett [6, 13] made the following classical analogy (see
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Fig. 1.3). We can model the magnetic moment~µ as the wheel of a gyroscope, whose
rotation axis we assume to be the ~zbody axis. In the rotating frame, the angular

momentum~Lbody obeys

~̇Lbody =~Lbody ×~ωbody +~Tbody , (1.23)

where ~Tbody denotes a restoring torque. If it were not for this restoring torque, a
gyroscopic wheel on which an external rotation frequencyΩ around an axis~zLab is
impressed should align itself with the impressed axis of rotation. In a steady state,

i.e. when ~̇Lbody = 0 we have

0 =~µbody ×
(
~ωbody

γ

)
+~Tbody , (1.24)

where γ~Lbody =~µbody. The first term in Eq. (1.24) can be interpreted as the torque
of a “Barnett gauge field”

~Bbody =
~ωbody

γ
(1.25)

on the magnetic moment ~µbody. The magnetic moment aligns itself more parallel
to the axis of rotation if γ> 0 and more antiparallel to it if γ< 0.

Experimentally, Barnett verified in 1915 [6] for rotating ferromagnets, which
were rotated with frequencies of up to ν = ω/(2π) = 50 Hz, that the magnetic flux
density is proportional to the frequency of rotation as stated by (1.25). The propor-
tionality is

ħ
gµB

= 3.1 ·10−11 Ts

2π
.

So even for the maximum frequencies achieved in Barnett’s experiment, the mag-
netic flux density through the rotating ferromagnet was orders of magnitudes lower
than the magnetic field of the earth, which is of the order of 50 µT.

1.3 EFFECTIVE MAGNETIC FIELD
The first law of thermodynamics demands that for any reversible change of a closed
system

dU +dEpot = δW +δQ , (1.26)

where dU refers to the variation of internal energy U , dEpot is the change in the
potential energy, δW is the work performed and δQ is the heat absorbed by the
system. The second law of thermodynamics states that

dS ≥ δQ

T
, (1.27)



1.3. EFFECTIVE MAGNETIC FIELD 9

where dS is the change of entropy and the equal sign holds true for reversible pro-
cesses.

Let dV be a small volume of magnetic material with magnetization density ~M .
Furthermore, let us define ~M = ~MdV so that ~M is the magnetic moment con-
tained in dV . In an external magnetic field ~Hext one finds

dEpot = ~M ·d~Hext + ~Hext ·d ~M (1.28)

and the work performed on the system when the magnetization is changed by d ~M

is given by
δW = ~Hext ·d ~M . (1.29)

For systems where the temperature T is constant rather than the entropy S, one
can introduce appropriate thermodynamic potentials such as the Helmholtz free
energy F ( ~Hext,T ) =U −T S or the Gibbs free energy G(~M ,T ) = F + ~M · ~Hext. One
finds with the first and second law of thermodynamics

dF ≤− ~M ·d~Hext −SdT , (1.30)

where the equal sign holds for reversible processes. At constant external magnetic
field and temperature dF ≤ 0, which means that if constraints are removed the
Helmholtz free energy will decrease to a minimum. In the following let us consider
the different terms contributing to the Helmholtz free energy functional.

One of the basic properties of ferromagnets is the presence of uniformly mag-
netized domains due to the presence of an exchange interaction that penalizes
deformations in the magnetization. In the isotropic case, the contribution to the
free energy caused by exchange interaction must consist of an even power series
of the gradients of the magnetization components [14], i.e.

Fexchange =
∫
Ω

dV A
[
(∇mx )2 + (∇my )2 + (∇mz )2] , (1.31)

where A denotes the exchange constant. A first microscopic derivation of this en-
ergy was provided by Heisenberg [15], who considered localized spins on a lattice.

The coercivity of ferromagnets can be expressed in terms of easy directions (or
planes) that minimize the free energy due to an effective crystal magnetic field.
For a uniaxial anisotropy, the contribution to the free energy to lowest order in Θ,
whereΘ is the angle between the magnetization and the anisotropy axis, reads [16]

Fan =
∫
Ω

dV K1 sin2Θ . (1.32)

For K1 > 0, the anisotropy axis is an easy axis, whereas for K1 < 0 it is a hard axis,
i.e. the magnetization in equilibrium is perpendicular to it.
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The contribution to the free energy by magnetic dipolar interactions is given
by

Fm =−1

2

∫
Ω

dV ~M ~Hm , (1.33)

where ~Hm denotes the magnetostatic field. According to Maxwell’s equations in
magnetized media [3]

∇· ~Hm =−4π∇· ~M (1.34)

in the volume Ω with constant magnetization density and ∇· ~Hm = 0 outside of Ω
and

∇× ~Hm = 0 (1.35)

everywhere. At the surface ∂Ω ofΩ, the conditions

~n · [~Hm
]
∂Ω =~n · ~M and ∇× [

~Hm
]
∂Ω = 0 (1.36)

must be fulfilled. In the last equation, ~n denotes an outward pointing unit vector
that is perpendicular to the surface of Ω. In a uniformly magnetized ellipsoid, the
field inside the ellipsoid can be written as [14]

~Hm =−D~M , (1.37)

where D is the demagnetization tensor with trace 4π.
The external field ~Hext contributes to the Helmholtz free energy as

Fext =−
∫
Ω

dV ~M · ~Hext . (1.38)

The free energy is now given by F = Fexchange +Fan +Fm +Fext. In the following

we write ~M = Ms ~m, i.e. ~m is the unit vector of magnetization direction. At equilib-
rium with constant external field ~Hext and temperature, the free energy is minimal
according to Eq. (1.30). The ground state configuration can be found by imposing
the constraint that the variation of the free energy vanishes for variations ~δm of
the unit-magnetization vector ~m, i.e. |~m +δ~m| = 1. Denoting the volume density
of the Helmholtz free energy F with f , one finds

δF =
∫
Ω

dV
∂ f

∂~m
δ~m . (1.39)

The variation of the unit magnetization vector can be written as δ~m = ~m × δ~θ,
where δ~θ represents an elementary rotation by the angle δθ. Then

δF =
∫
Ω

dV ~δθ

[
∂ f

∂~m
× ~m

]
=

∫
Ω

dV ~δθ
[
~m × ~Heff

]
, (1.40)

implying that at equilibrium ~m × ~Heff = 0.
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1.4 LANDAU-LIFSHITZ-GILBERT EQUATION
We now turn to discuss the undamped equations of motion of a quantum spin with

operator ~̂S in a magnetic field ~B . For a spin-1/2 particle ~̂S = ħ~̂σ/2, where ~̂σ is the
vector of Pauli-matrices. Disregarding the orbital degrees of freedom, the Hamil-
tonian Ĥ is simply given by the dipolar interaction Ĥ = µB σ̂ · ~B . The Heisenberg
equation of motion for the spin-1/2 particle then reads [17]

iħd~̂S

dt
= 2iµB~B × ~̂S . (1.41)

The change of angular momentum per unit-time on the right hand side is the
torque exerted on the particle spin. As it was experimentally established by Bar-
nett resp. Einstein and de Haas, the magnetic moment ~µ of an electron is related
to its angular momentum by

~µ= γ~L , (1.42)

where γ = gµB /ħ < 0 is the gyromagnetic ratio and g ≈ 2. Thus, Eq. (1.41) is the
equation of motion of a magnetic moment. By replacing the the operators in Eq.
(1.41) by expectation values, we obtain an equation of motion of for the classical
magnetization [18].

As shown in the previous section, the interactions of the magnetization with
the environment give rise to an effective magnetic field, which leads to the Landau-
Lifshitz (LL) equation of motion for the magnetization:

d~M

dt
= γ~M × ~Heff . (1.43)

Various microscopic processes govern the interaction of the individual magnetic
moments with the environment, which lead to dissipation or energy transfer from
the magnetic system to the environment. This transfer can be incorporated into
the equation by means of an additional damping term, leading to the well-known
phenomenological Landau-Lifshitz-Gilbert equation [18, 19]

∂~M

∂t
= γ~M × ~Heff −

αγ̂

Ms

~M × ∂~M

∂t
, (1.44)

where the damping parameterα> 0 and γ̂= γ/|γ| denotes the sign of the gyromag-
netic constant. A closely related equation was proposed by Landau and Lifshitz be-
forehand [20]. In order to arrive at a correct description of the dynamics with large
damping, Gilbert derived the damping torque using a Lagrangian description aug-
mented by a Rayleigh dissipation functional [18]. For small damping parameters
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~Heff

~m

~Td

~Tfield

FIGURE 1.4: The effective magnetic field ~Heff exerts a torque ~Tfield =−γ~m × ~Heff on the magnetic mo-
ment (shown in blue), whereas the Gilbert damping term exerts a torque ~Td = α~m × ~̇m (shown in red)
that tends to align the magnetic moment with the direction of ~Heff.

α, the two forms of damping torque, i.e. the Gilbert and Landau-Lifshitz forms, are
equivalent.

It is easy to see by multiplying Eq. (1.44) by ~M , that

d

dt
|~M |2 = 0 (1.45)

and thus for all t the LLG equation conserves the modulus of the magnetization,

|~M(~r , t )| = |~M(t0,~r )| = Ms . (1.46)

A consequence is, that all magnetization dynamics described by the Landau-Lifshitz-
Gilbert equation at position~r takes place on a sphere with radius |~M | = Ms .

By scalar multiplication of the Landau-Lifshitz-Gilbert equation, Eq. (1.44),
with γ~Heff − sig(γ)α/Ms∂~M/∂t , one finds

∂~M

∂t
·
(
γ~Heff −

α

Ms
sig(γ)

∂~M

∂t

)
= 0. (1.47)
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With this we find for the time-derivative of the free energy F

d

dt
F =

∫
Ω

dV

[
δ f

δ~M

∂~M

∂t
+ δ f

δ~Ha

∂~Hext

∂t

]
=

∫
Ω

dV

[
−~Heff

∂~M

∂t
− ~M · ∂

~Ha

∂t

]

= −
∫
Ω

dV

[
α

Ms |γ|

(
∂~M

∂t

)2

+ ~M · ∂
~Hext

∂t

]
(1.48)

where f denotes the energy density. Since α > 0, this implies that the free energy
is a monotonously decreasing function in time if the external field ~Hext is constant
in time.

1.5 NANOMECHANICAL SYSTEMS
Refining fabrication processes and increased understanding of the involved ma-
terials has enabled the microelectronics industry to continuously shrink the size
of the electronic elements used on computer chips. By employing the same tech-
niques, researchers managed to produce mechanical elements – beams, cantilevers
and membranes – with ever smaller size, giving rise to the field of micro-electro-
mechanical-systems (MEMS) and with further miniaturization to nano-electro--
mechanical-systems (NEMS). NEMS can have high resonance frequencies ω0 be-
yond 1 GHz and quality factors Q ∼ 103 −105 [21].

The coupled magnetovibrational dynamics of a cantilever with a ferromagnetic
single-domain tip has been studied by Kovalev et al. [22–24] (see Fig. 1.5). Here, a
constant magnetic field ~Hc is oriented along the y-axis of the cantilever. In addi-
tion, an oscillating field ~Hosc along the x-axis as well as the crystal anisotropy and
demagnetization fields contribute to the effective magnetic field ~He f f . When the
ferromagnetic tip is of length∆L ¿ L, where L denotes the length of the cantilever,
the magnetovibrational coupling may be treated as a boundary condition to the
mechanical equation of motion [22]. The magnetic susceptibilityχω = (mx /Hosc )ω,
which is the linear response of the magnetization in x-direction to an oscillating
field Hosc in the same direction, reads

χω

γ2MsV
=

[
ω2 −ω2

m

HA +H0 +νMs )
+ ω2GL tan(kL)

2kc2(HA +νMs +H0(1−GL tan(kL)/2kc2)

]−1

,

(1.49)
where HA is the crystalline anisotropy, c the transverse velocity of sound, V the
volume of the cantilever and k =ω/c the wave number. ν describes the demagne-
tizing dipolar field and ω2

m = γ(HA +νMs )γHA is the unperturbed magnetic reso-
nance frequency.
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FIGURE 1.5: A nano-cantilever with a magnetic tip exhibits coupled magneto-mechanical dynamics.

The Einstein-de Haas effect in a NiFe film, which was deposited on a sillicon
microcantilever of 200µm×20µm×600nm size was observed by Wallis et al. [25],
yielding a magnetomechanical g -factor of 1.82.

An electrical equivalent of Beth’s experiment [10] has been performed by Zolfa-
gharkani et al. [26]: They observed the spin-flip torque by nanomechanical means.
To this end, they fabricated a nanomechanical device consisting of a suspended
nanowire, which contained a ferromagnetic/normal metal in its middle. If a cur-
rent is driven through the wire, a non-equilibrium spin accumulation δm =µB∆N ,
where µB is the Bohr magneton and ∆N the number of non-equilibrium spins, is
created at the interface of normal-metal to ferromagnet. ∆N is given by

∆N = Is

e
τs f , (1.50)

where τs f denotes the spin relaxation time and Is = I↑− I↓ = P (I↑+ I↓), with P =
(I↑ − I↓)/(I↑ + I↓), denotes the spin-polarized current. The decaying spin current
exerts a torque on the lattice ammounting to

T = ħ
2

Is

e
, (1.51)

which was shown to be mechanically detectable in a suspended structure.
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1.6 THIS THESIS
In Chapter 2, we carry out a theoretical feasibility study concerning the observ-
ability of the Barnett effect in magnetic nanostructures and thin films. To this end,
we modify the Landau-Lifshitz-Gilbert equation in order to take into account that
magnetization is damped only when moving in a frame of reference that co-rotates
with the lattice. We find, that in order to observe the Barnett effect in thin films of
permalloy or GaMnAs with the magneto-optical Kerr effect, rotation frequencies
that are on the brink or beyond the experimentally feasible ones are required since
a relatively strong shape anisotropy field has to be overcome. We also assess the
observability of the Barnett effect in a magnetic wire containing a domain wall.

In Chapter 3, we present the linear response matrix for a sliding domain wall in
a rotatable magnetic nanowire, which is driven out of equilibrium by mechanical
torque and/or applied magnetic field. Applying Onsager’s reciprocity relation, we
find a unified description of the Barnett effect – magnetization by rotation – and
Einstein-de Haas effect – mechanical rotation induced by magnetization.

In Chapter 4 we study the alignment of rapidly rotating cosmic dust grains with
respect to a magnetic field. This system is an example of the interplay between the
two gyromagnetic effects – the Barnett and Einstein-de Haas effect. In addition,
the alignment of cosmic dust grains is an important issue in astronomy, as aligned
dust grains cause a polarization of starlight which paves the way to starlight po-
larimetry. The latter allows for the mapping of cosmic magnetic fields, which play
an important role in the evolution of our universe. In particular, we discuss the
alignment of a single dust grain by setting up the coupled magneto-mechanical
equations of motion taking the conservation of the total angular momentum into
account.

In Chapter 5 we discuss the magnetization of a free electron gas by rotation. We
find that the eigenstates of the rotating electron gas resembles the Landau levels
one finds for a free electrong gas subjected to a magnetic field. However, in the
case of a rotating electron gas, the radial motion of the electron is not quantized as
in the case of an applied external magnetic field.
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2
BARNETT EFFECT IN THIN

MAGNETIC FILMS AND

NANOSTRUCTURES

The Barnett effect refers to the magnetization induced by rotation of a demagnetized
ferromagnet. We describe the location and stability of stationary states in rotating
nanostructures using the Landau-Lifshitz-Gilbert equation. The conditions for an
experimental observation of the Barnett effect in different materials and sample ge-
ometries are discussed.

This chapter has been published in Applied Physics Letters 95, 122504 (2009) [1].
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At the dawn of quantum mechanics, the Barnett [2, 3] effect (magnetization
induced by rotation) confirmed that magnetization is associated with angular mo-
mentum. Furthermore, Barnett measured the gyromagnetic ratio of electrons in
ferromagnets and the anomalous g -factor of the electron for the first time. The
Barnett effect can be understood in terms of a rotating gyroscopic wheel, that
aligns itself with the axis of rotation until a stationary state in the rotating frame
of reference is achieved. Since angular momentum~L is associated with magneti-
zation ~M =−γ~L, with γ= gµB /ħ= g |e|/2m being the gyromagnetic ratio, mechan-
ical rotation induces a net magnetization antiparallel to the axis of rotation. The
torque acting on the magnetization in the rotating frame of reference is equivalent
to a torque due to the presence of a gauge magnetic field

~Hrot =−γ−1~ω . (2.1)

There has recently been a renewed interest in the coupling of magnetization
with mechanical motion, for example in mechanically detected ferromagnetic res-
onance spectroscopy measurements [4]. A nano-magnetomechanical system con-
sisting of a cantilever and a thin magnetic film shows coupled magnetovibrational
modes [5, 6]. Furthermore, the nanomechanical current-driven spin-flip torque
at the normal-metal/ferromagnet interface of a suspended nanowire has been de-
tected [7].

In Barnett’s original experiments, rotation frequencies ofω. 500 Hz generated
a change of the magnetic field of the order of 10−4 Gauss in macroscopic sam-
ples. Although in nanostructures detecting such small fields may become more
challenging, a range of powerful techniques have recently been developed, which
could be utilized for the purpose. To date, very small changes in the magnetization
can be measured using the magneto-optical Kerr effect, Faraday spectroscopy, su-
perconducting quantum interference devices (SQUID’s) or Hall micromagnetom-
etry [8]. Therefore, we present here a theoretical feasibility study of the Barnett
effect in magnetic thin films and nanostructures. Our focus is the dynamics in
magnetic thin films and nanoclusters, which we study by means of the Landau-
Lifshitz-Gilbert (LLG) equation for the magnetization vector ~m:

~̇m =−γ~m × ~Heff +α ~m × ~̇m∣∣
Lat , (2.2)

where ~Heff is the effective magnetic field, ~m is the unit vector of magnetization and
α the dimensionless damping constant. We can separate the dynamics caused by
the rotation of the system as a whole from the dynamics in the rotating frame of
reference by the transformation ~m = R(φ)~mR and ~Heff = R(φ)~H R

eff, where R(φ) is a
unitary matrix describing the rotation by a time-dependent angle φ(t ) around the
axis of rotation and ~mR (~H R

eff) denote the magnetization (effective magnetic field)
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in the rotating frame of reference. The damping is caused by the magnetization
motion relative to the lattice:

~m × ~̇m∣∣
Lat = R(φ(t ))

(
~mR × ~̇mR

)
. (2.3)

In the rotating frame of reference Eq. (2.2) becomes

~̇mR = ~mR × (−γ~H R
eff + φ̇(t )~ez +α ~̇mR

)
. (2.4)

In this derivation, we have tacitly assumed that the Hamiltonian transforms triv-
ially under rotation, i.e. rotation only generates the gauge Zeeman field Eq. (2.1)
in the rotating frame of reference. [Note that if rotation stems from a rotating field
[9–11] rather than the lattice, we would have to use a different form of damping,
viz. ~m = R(φ)~mR in ~m × ~̇m. Then the right hand side of Eq. (2.4) contains an addi-
tional termαω~mR×~ez and the stationary states of Eq. (2.4) depend on the damping
constant α.]

Following Barnett [2], we are looking for stationary state solutions in the ro-
tating frame of reference, i.e., solutions ~mR for which ~̇mR = 0, at constant angular
velocity φ̇(t ) =ω= const.. From Eq. (2.4) it follows that the stationary states obey:

0 = ~mR × (−γ~H R
eff +ω~ez

)
. (2.5)

Here the magnetization in the lab frame of reference precesses around the axis of
rotation (z-axis) at a fixed angle. We analyze the stability of the stationary states in
spherical coordinates, i.e.,

~mR = (sinθcosφ, sinθ sinφ,cosθ) (2.6)

by linearizing the set of equations resulting from Eq. (2.4) for small deviations
(δθ,δφ) from the equilibrium (rotating-frame) positions (θn ,φn). When ~Heff = 0,
e.g., in a spherical particle without crystal anisotropy, the stationary states are given
by ±~ez . Clearly the stationary state at~ez is unstable and −~ez is stable.

For a film with free energy F = DM 2
z /2, i.e., D > 0 refers to a easy-plane mag-

netization and D < 0 to an easy-axis magnetization parallel to the axis of rotation,
~Heff is given by ~Heff = −Ms diag{0,0,D}~m, where diag{. . . } refers to a diagonal ma-
trix with entries 0 and D and Ms refers to the saturation magnetization. Without
limiting generality, we consider the case that ω> 0. By using Eq. (2.6) in Eq. (2.4):

θ̇ =−αφ̇sinθ = α

1+α2

(
ω+γMsD cosθ

)
sinθ . (2.7)

Thus, the stationary states are given by sinθ1 = 0 and, if ω≤ γMs|D|, by

cosθ2 =− ω

γMsD
. (2.8)
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These fixed points do not depend on the coordinate φ due to the axial symmetry.
For small deviations δθ from θ = 0,π, the linearized Eq. (2.7) yields

δθ̇ = α

1+α2

(
γMs D ±ω)

δθ , (2.9)

where the + (−) sign refers to the steady state at θ = 0 (θ =π). Forω< γMs|D| there
are additional stationary states cosθ = −ω/γMsD . For small deviations δθ from
arccos(−ω/γMsD) the linearized Eq. (2.7) reads

δθ̇ = α

1+α2

ω2 −γ2M 2
s D2

γMsD
δθ . (2.10)

We can now identify three different regimes: ω> γMs |D|, ω< γMs |D| and D < 0 or
D > 0 (regions I, II and III in Fig. 2.1a). If ω> γMs |D|, i.e., region I in Fig. 2.1a, one
sees from Eq. (2.9) that the stationary state θ = 0 (θ = π) is unstable (stable). See
cartoon I in Fig. 2.1b. Whenω< γMs |D|, additional steady states given by Eq. (2.8)
exist. If also D < 0 (region II in Fig. 2.1a), i.e., easy axis anisotropy, it follows from
Eq. (2.9) that θ = 0,π are stable and from Eq. (2.10) that cosθ2 = −ω/γMs D are
unstable stationary states (see cartoon II in Fig. 2.1b). However, if D > 0 (region III
in Fig. 2.1a), i.e., easy plane anisotropy, according to Eqs. (2.9) resp. (2.10) θ = 0,π
are unstable and cosθ2 =−ω/γMs D are stable stationary states (see cartoon III in
Fig. 2.1b).

To summarize, in a system with in plane magnetization, i.e., D > 0, the stable
stationary states acquire a z component by rotation. The rotation acts like a mag-
netic field along the magnetic hard axis. Fig. 2.2 shows the z-component (compo-
nent along the axis of rotation) of the magnetization in the stationary state in theω
vs. γMs D plane. In this regime the magnetization displays a hysteresis loop when
ω is cycled. The larger γMs D , the slower the transients become.

Limit cycles do not exist, since when ω is constant, we find for the time-de-
rivative of the free energy Ḟγ/Ms = −α( ~̇mR )2. In other words, the magnetization
approaches its stationary state.

When the axis of rotation no longer coincides with the anisotropy axis of the
crystal, the rotational symmetry around the axis of rotation is broken. As a con-
sequence, only a finite number of fixed points exists. For an autonomous system
on the unit sphere such as the LLG equation with time-independent effective field,
it follows from the Poincare index theorem [12, 13] that the number of (un)stable
fixed points minus the number of saddles must be equal to two. A magnetic needle
along the y-axis, i.e., ~Heff = Ms diag{0,D,0}~m spun around the z axis exhibits four
stationary states when ω < γMs|D|: θ1,2 = 0,π and cosθ3,4 = −ω/γMsD , cosφ3,4 =
0. If D > 0, then θ1 = 0 is an unstable and (θ3,4,φ3,4) stable stationary states whereas
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FIGURE 2.1: I, II and III indicate regions in the (ω,γMs D) plane with stable and unstable stationary
states located at ∓~ez , respectively, (region I), stable stationary states at ±~ez and unstable stationary
states located at a fixed angle θ = arccos(−ω/γMs D) in the upper half plane (region II) and stable sta-
tionary states located in the lower half plane and unstable stationary states at ±~ez (region III).
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FIGURE 2.2: The z component of the magnetization for the easy-plane configuration, i.e., D > 0, in
the rotation frequency ω vs. anisotropy field γMsD plane. Both x and y axes are scaled by the same
frequency unit.
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θ2 =π is a saddle point. In the opposite case, i.e., D < 0, (θ3,4,φ3,4) are unstable and
θ2 =π is stable, whereas θ1 = 0 is a saddle point.

For typical magnetic materials, the critical frequencies to fully rotate the mag-
netization from in-plane to perpendicular-to-plane orientation are inaccessibly
high: ω ∼ 200 GHz for permalloy with Ms ∼ 1000 emu/cm3 and D ∼ 4π, and ω ∼
4 GHz for a GaMnAs film [14] with Ms ∼ 15 emu/cm3 and D ∼ 4π. However, to
identify the Barnett effect, it is sufficient to observe small changes in the z compo-
nent of the magnetization: Mz = −ω/γD . For example, in metals polar magneto-
optic Kerr spectroscopy is reported to be sensitive to magnetic moment changes
down to∼ 10−15 emu at a spot diameter of 0.5 µm [15]. For a 10 nm thick permalloy
film (D ∼ 4π) this corresponds to a change in the magnetization of Mz ∼ 1 emu/cm3

which is achieved by a rotation frequency of ω& 200 MHz. A Kerr angle of 0.3 deg
has been measured when the magnetization of GaMnAs is fully aligned perpendic-
ular to the axis of rotation by an external magnetic field [14]. Together with a re-
ported angular resolution in polar Kerr measurements [16] of ∼ 10−4 deg this yields
a required rotation frequency of a few MHz. However, since the cubic anisotropy
is important in GaMnAs [14], the above number serves as a lower bound for the
frequency estimate. The Barnett effect can be observed at lower spinning rates by
choosing a material with small anisotropies. The perpendicular anisotropy in thin
magnetic films can be tuned by the layer thickness to cancel the shape anisotropy
[17–20].

The Barnett effect can be also used to move domain walls. Consider a wire
along the y axis, which contains a transverse Bloch wall in the xz plane. When
the wire is rotated around the z axis, the Bloch domain wall moves with a velocity
[21] v = λwω/α, where λw is the width of the transverse Bloch domain wall. For
λw ∼ 100 nm and α∼ 10−2 this yields v ∼ (10 m/s) · (ω/MHz).

It might be easier to observe the Barnett effect by vibration rather than rotation,
but the mechanical vibration amplitude δϕ then becomes an additional control
parameter. The magnetization response is enhanced when the harmonic vibra-
tion and FMR frequencies coincide. At this magnetopolariton mode [5], a z com-
ponent of the magnetization is excited in a needle in the x y plane that oscillates
around the z axis. Assuming a vibration amplitude δϕ (rad), Mz oscillates with an
amplitude Msδϕ/2α.

In the ideal case of zero anisotropy only the temperature-induced thermal acti-
vation of the magnetization has to be overcome in order to observe a Barnett effect,
which sets the lower bound on frequency according to V Msω& γkB T . For a spher-
ical particle with diameter d and saturation magnetization Ms this yields a mini-
mum frequency of about 500 MHz at T = 1 K, Ms = 10 emu/cm3 and d = 10 nm.
For a 10 nm thick film with Ms = 10 emu/cm3 and area A = 1 µm2 with compensat-
ing form and crystal anisotropies, the required rotation frequency is about 25 kHz.
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In conclusion, we discussed the Barnett effect in magnetic nanostructures, which
gives a handle to manipulate magnetization by mechanical means. We find that
the rotation frequencies necessary to fully switch magnetizations in conventional
materials are very high and beyond present experimental possibilities. However,
the Barnett effect can be observed via partial magnetization of very soft materi-
als, rotation-induced domain-wall motion, and vibrations close to magnetic reso-
nance frequencies.
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3
COUPLED

MAGNETO-MECHANICAL

DYNAMICS IN A SUSPENDED

FERROMAGNETIC WIRE

We present the linear response matrix for a sliding domain wall in a rotatable mag-
netic nanowire, which is driven out of equilibrium by mechanical torque and ap-
plied magnetic field. Applying Onsager’s reciprocity relation, we find a unified de-
scription of the Barnett effect – magnetization by rotation – and Einstein-de Haas
effect – mechanical rotation induced by magnetization.

This chapter is an abridged version of an article published in Physical Review B 81, 0244427 (2010) [1].
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3.1 INTRODUCTION
In 1915, two experimental works on gyromagnetic effects were published: While
Einstein and de Haas [2] demonstrated that reversing the magnetic moment of
a ferromagnetic cylinder leads to mechanical rotation, Barnett [3] demonstrated
that mechanical rotation of a demagnetized ferromagnet creates a net magne-
tization along the rotation axis. The latter work provided first evidence of the
anomalous g -factor of the electron and therefore of the electron spin. Both ef-
fects are governed by the same gyromagnetic tensor [4]. Interest in the coupling
of magnetic and mechanical degrees of freedom has recently been revived in the
field of micro-electro-mechanical systems (MEMS) and nano-electro-mechanical
systems (NEMS). Kovalev et al. [5–7] studied theoretically the coupled magneto-
mechanical dynamics of a cantilever with a ferromagnetic tip while Ketteman et
al. [8] provided a theoretical study of the torque exerted by a decaying spin-current
on a mounted wire. Experimentally, the Einstein-de Haas effect in a magnetic can-
tilever was studied by Wallis et al. [9] while Zolfagharkani et al. [10] reported the
first detection of the mechanical torque induced by the decay of a spin-current.
This latter experiment can be interpreted as a variation of the experiment per-
formed by Beth [11], where the mechanical torque induced by circularly polarized
light on a suspended λ/2-plate was measured. In the previous chapter, Chapter
2, we presented a theoretical feasibility study on the Barnett effect in magnetic
nanostructures. In particular, we estimated the domain-wall velocity in a rotating
one-dimensional magnetic nanowire.

In this chapter, we investigate in linear response the dynamics of magneto-
mechanical system consisting of a rotatable magnetic nanowire containing a slid-
ing domain wall. To this end, we first review nonequilibrium thermodynamics in
the next section before discussing our magneto-mechanical element.

3.2 NONEQUILIBRIUM THERMODYNAMICS
In this section, we review nonequilibrium thermodynamics following [12]. The
second law of thermodynamics dictates that the entropy S is maximal in equilib-
rium. When considering small deviations of the n state variables ai = Ai − Āi from
their equilibrium values Āi , we can thus write the fluctuations of the entropy ∆S
from their equilibrium value as

∆S =−1

2

n∑
i=1

n∑
k=1

ĝi k ai ak ≤ 0, (3.1)

where the matrix of coefficients ĝ is positive definite and symmetric. The conju-
gate variable or force associated with the fluctuating state variable ai can be de-
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fined by

Xi = T
∂S

∂ai
=−T

n∑
k=1

ĝi k ak , (3.2)

where T denotes the equilibrium temperature. The fluctuations Ai will relax to
their equilibrium values Āi according to

Ji = ȧi =
n∑

k=1
L̂i k Xk , (3.3)

where L̂ is the response matrix. The system responses Ji are called fluxes, rates etc.
The entropy generation rate reads

Ṡ =−∑
i

ȧi
∑
k

ĝi k ak = 1

T

∑
i

Ji Xi = 1

T

∑
i ,k

L̂−1
i k Xk Xi . (3.4)

Onsager [13] discovered a symmetry property of the response matrix elements,
which is due to the microscopic time-reversal symmetry:

L̂i k (~Hext, ~m) = εi εk L̂ki (−~Hext,−~m) , (3.5)

where εi = 1 if the state variable ai is even under time reversal and εi = −1 other-
wise. The time-reversal (anti)symmetry in the presence of external magnetic field
~Hext and equilibrium magnetic ordering of unit length ~M(~r ), which parametrizes
the position-dependent direction of the magnetization, has been made explicit.
The inverse of the response matrix L̂, for which

Xi =
n∑

k=1
L̂−1

i k Jk , (3.6)

has the same Onsager symmetry property, i.e.

L̂−1
i k (~Hext, ~m) = εi εk L̂−1

ki (−~Hext,−~m) . (3.7)

3.3 MAGNETOMECHANICAL ELEMENT
The standard model system for studying domain wall motion is a quasi-one-di-
mensional magnetic nanowire with easy-axis anisotropy that contains a transverse
domain wall. In the following, we study the coupled magneto-mechanical dynam-
ics of such a wire when it is mounted in such way that it can rotate freely around
its symmetry axis. Furthermore, we choose the tail-to-tail topology rather than the
head-to-head topology. The system we are studying is depicted in Fig. 3.1.
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Hext

τext
mech

x

rw0 l

FIGURE 3.1: A magnetic nanowire of length l is mounted in such a way that it can rotate around the
x-axis. A tail-to-tail domain wall is located in the wire at position rw . A magnetic field Hext and a torque
τext

mech can be applied along x.

The equation of motion of the magnetization in the lattice frame of reference
Ms ~m(x, t ), where Ms is the constant saturation magnetization and ~m a unit vector,
is governed by the Landau-Lifshitz-Gilbert equation appended by a Barnett gauge
field term as we have discussed in Chapter 2:

~̇m =−γ~m × ~Heff +α~m × ~̇m + ~m ×~xφ̇ , (3.8)

where γ> 0 is the modulus of the gyromagnetic ratio and φ̇ the angular velocity of
the wire rotating around the~x-axis. The effective field ~Heff is the functional deriva-
tive of the free energy F with respect to the magnetization, which has contributions
from the applied, anisotropy and exchange fields:

~Heff =− δF [~m]

Msδ~m(~r )
=~x(Hext +K mx )−K⊥mz~z + Aex∇2~m , (3.9)

where the unit vector of magnetization ~m = (mx ,my ,mz ) can be parametrized as
~m = (cosθ, sinθcosψ, sinθ sinψ). K > 0 and K⊥ > 0 are the anisotropy constants
and Aex is the exchange stiffness. In the absence of pinning the Walker ansatz [14],

lntan
θ(x, t )

2
=−x − rw (t )

λw
and ψ(x, t ) =ψ(t ) , (3.10)

provides a solution for a domain wall with time-dependent postion rw and squared
width λ2

w = Aex/(K +K⊥ sin2ψ). The angle ψ describes the tilt of the magnetiza-
tion with respect to the x − z-plane, which vanishes at equilibrium. In the case of
sufficiently small, steady state driving forces the polar angle ψ is constant. Conse-
quently, it is not treated as a dynamical variable in what follows. Using the Walker
ansatz, Eq. (3.10), in the Landau-Lifshitz-Gilbert equation, Eq. (3.8), one finds

ṙw = λw

α
(φ̇−γHext) , K⊥ sin2ψ=−2(φ̇−γHext)

αγ
. (3.11)
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The Walker ansatz yields solutions which are valid up to a critical threshold at
which |sin2ψw | = 1. To linear order in the driving field, the domain-wall width
λw can be approximated by its equilibrium value λw =p

Aex/K .
Let us now focus on the mechanical degree of freedom of the wire, which is

governed by the damped oscillator equation:

I φ̈+βmechφ̇= τmech , (3.12)

where I designates the moment of inertia of the wire, βmech the mechanical damp-
ing parameter and τmech the total mechanical torque acting on the ~x-axis. The
combined, i.e. mechanical and magnetic, angular momentum of a freely rotating
wire with cross-section A along its symmetry axis~x is given by

Lx =− AMs

γ
(l −2rw )+ I φ̇ , (3.13)

which is dissipated to the environment at a rate L̇x = −βmechφ̇. This leads us to a
Einstein-de Haas torque, induced by the moving domain wall, of

τmech
EdH =−2AMs

γ
ṙw . (3.14)

In the following we limit our discussion to overdamped systems, i.e. we limit
the discussions to frequencies smaller thanβmech/I . In this case the angular accel-
eration φ̈ and the moment of inertia drop out of the problem. The rotation velocity
φ̇ is then directly proportional to the total torque τmech = τmech

ext +τmech
EdH , i.e.

βmechφ̇= τmech
ext − 2AMs

γ
ṙw . (3.15)

In the following, we will show that the above results are consistent with On-
sager’s reciprocity principle and the second law of thermodynamics. Disregarding
thermal effects, we may switch from the entropy S to the free energy F :

F (rw ,φ) = Fw +Fφ = (2rw − l )AMs Hext +E(φ) , (3.16)

where E(φ) is the mechanical energy that governs the external torque: τmech
ext =

−∂φE(φ), l is the total length of the wire and the domain-wall position rw is mea-
sured with respect to the left end of the wire. We omit the internal energy of the
domain wall, which below the Walker threshold may be treated as a rigid particle-
like massless object specified by its position. The conjugate forces associated with
rw and φ are

Xw =− ∂F

∂rw
=−2AMs Hext (3.17)
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and

Xφ =−∂F

∂φ
= τext

mech . (3.18)

Using Eqs. (3.11) and (3.15) we find the energy dissipation to be

T Ṡ =−Ḟ =−2AMs Hextṙw +τmech
ext φ̇= 2αAMs

γλw
ṙ 2

w +βmechφ̇2 ≥ 0, (3.19)

which is positive definite. By rewriting the equations of motion, Eqs. (3.11) and
(3.15), we find that the cross terms obey Onsager’s symmetry

(
1+ 2AMs

γ

λw

αβmech

)(
φ̇

ṙw

)
=

 1
βmech − λw

αβmech

λw

αβmech
λwγ

2αAMs

(
Xφ

Xw

)
. (3.20)

We note, that the antisymmetry of the off-diagonal terms stems from Onsagers’s
reciprocity, which relates here the response of the tail-to-tail domain wall to that
of its time-reversed partner, a head-to-head domain wall. The inverse of Eq. (3.20)
reads (

Xφ

Xw

)
=

(
βmech 2AMs

γ

− 2AMs
γ

2AMs
γ

α
λw

)(
φ̇

ṙw

)
. (3.21)

We may rewrite Eq. (3.20) as

(
φ̇

ṙw

)
=

 1
β̃mech − λw

α̃βmech

λw

α̃βmech
λwγ

2α̃AMs

(
Xφ

Xw

)
=

(
Lφ,φ Lφ,w

Lw,φ Lw w

)(
Xφ

Xw

)
, (3.22)

where

β̃mech =βmech + 2λw AMs

γα
(3.23)

and

α̃=α+ 2λw AMs

γβmech
. (3.24)

The magnetomechanical coupling creates an apparently increased damping of the
magnetization dynamics and/or the mechanical motion that is proportional to the
number of spins in the domain wall. When βmech, the mechanical damping pa-
rameter, becomes large the mechanical motion is quenched and α̃→ α, i.e. the
excess Gilbert damping is suppressed.

The Onsager response function derived above contains the mechanical damp-
ing parameter βmech and the Gilbert damping constant α as phenomenological
constants. The latter, however, has been determined microscopically by scattering
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theory [15]. Using the conventional notation in terms of transmission (t̂ , t̂ ′) and re-
flection (r̂ , r̂ ′) matrices, the scattering matrix in the space of the transport channels
to and from the wire at an energy E and spin indices σ, σ′ reads

Ŝσ,σ′ (E) =
(
r̂σ,σ′ (E) t̂σ,σ′ (E)
t̂σ,σ′ (E) r̂σ,σ′ (E)

)
. (3.25)

The energy pumped out of the system with a parametric time-dependence of the
scattering matrix [16] is given by

JE = ħ
4π

Trs
∂Ŝ

∂t

∂Ŝ†

∂t
= ħ

4π
(ṙw )2Trs

∂Ŝ

∂rw

∂Ŝ†

∂rw
, (3.26)

where Trs denotes the sum over all states in the left and right leads (including spin).
This expression was used by Brataas et al. [17] to derive the Gilbert damping con-
stant microscopically. The energy pumped out of the system due to the moving
domain wall is also given by (see Eq. (3.4))

JE = (ṙw )2

Lw w
(3.27)

and thus it follows from (3.26)

Lw w =
( ħ

4π
Trs

∂Ŝ

∂rw

∂Ŝ†

∂rw

)−1

. (3.28)

Comparing this to the previously obtained expression for Lw w , Eq. (3.22), we re-
cover the Gilbert damping parameter as calculated by Hals et al. [16] in the absence
of rotation:

α= γħλw

8πAMs
Trs

∂Ŝ

∂rw

∂Ŝ†

∂rw
. (3.29)

3.4 NUMERICAL ESTIMATES
Elias et al. [18] have grown single-crystalline FeCo wires inside multiwall carbon
nanotubes. In this system, the outer wall nantubes form almost ideal bearings for
the rotation of the inner tubes [19]. This system could be a possible realization
of the model discussed in this chapter. For the magnetic parameters we use val-
ues close to that of permalloy, namely α = 0.01, λw = 100 nm and Ms = 106 A/m.
Furthermore, we choose a wire area cross section of A = 100 nm2 and the mag-
netic wire to be of length l = 1 µm. The mechanical damping parameter βmech was
found to beβmech/l = 0.044 u·nm/ps, where 1 u = 1.66·10−27 kg is the atomic mass
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unit, in [20] for a (4,4) nanotube rotating in a (9,9) nanotube bearing. With these
values we find ( τext

10−21 Nm
− Hext

0.1 T

)
=

(
0.07 105

−0.05 0.5

)(
φ̇

1 GHz
ṙw

105 m
s

)
. (3.30)

The strong coupling between the mechanical degree of freedom and the magne-
tization dynamics is caused by the small friction of the nanotube-lubricated rota-
tion.

3.5 SUMMARY AND EXTENSIONS
In this chapter, we have discussed the coupled magneto-mechanical dynamics of
a mounted ferromagnetic wire containing a domain wall. As we have discussed
above, the mechanical motion induced by the magnetic field is quantified by the
Onsager coefficient Lφw (Einstein-de Haas effect), which is identical with the Bar-
nett response function −Lwφ, which describes the magnetization dynamics in-
duced by mechanical rotation.

A possible extension of the system discussed here, albeit beyond the scope of
this thesis, is the introduction of temperature and voltage gradients across the
magnetic nanowire, which are linked to their corresponding fluxes, namely heat
JQ = U̇ and charge currents Jc = q̇ . The linear response matrix then reads ~J = L̂~X ,
where

~X =
(
−∆V , −∆T

T
, τext

ext , −2AMs Hext

)
(3.31)

and

L̂ =


Lcc LcQ Lcφ Lcw

LQc LQQ LQφ LQw

Lφc LφQ Lφφ Lφw

Lwc LwQ Lwφ Lw w

 . (3.32)

According to Onsager symmetry, Lxw (~m) = Lw x (−~m) = Lw x (~m) as well as Lxφ(~m) =
Lφx (−~m) =−Lφx (~m) for x = (c,Q) if the system is mirror symmetric with respect to
a plane normal to the wire. Onsager symmetry also allows us to draw further con-
clusions: We know that a temperature gradient can induce a spin-transfer torque
[21], which is represented by LwQ . According to Onsager symmetry, an opposite
effect exists, i.e. a heat current induced by magnetization dynamics. Furthermore,
since Lφc =−Lcφ the magnetic wire can be employed as both electromotor [5] and
electric generator.
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4
ALIGNMENT OF RAPIDLY

ROTATING GRAINS OF COSMIC

DUST

Starlight polarimetry is presently the only method to observe the magnetic field tex-
ture on a cosmic length scale. The polarization of starlight is universally attributed
to the anisotropic extinction by the alignment of anisotropic dust grains with respect
to the magnetic fields. We discuss the alignment dynamics of a single dust grain by
the Landau-Lifshitz-Gilbert equation, taking the Barnett and Einstein-de Haas ef-
fects (conservation of angular momentum) into account.
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4.1 INTRODUCTION
More than sixty years ago it was discovered that starlight can be polarized [1, 2]. To
date this observation is universally attributed to the anisotropic extinction arising
when irregularly shaped dust grains are aligned with respect to a preferred direc-
tion. Cosmic magnetic fields provide such a preferred direction, thus allowing their
mapping by starlight polarimetry.

Over the years, many mechanisms have been proposed in order to explain the
alignment of dust grains. Davis and Greenstein [3] introduced paramagnetic re-
laxation as a mechanism of energy dissipation: Unless its angular momentum is
aligned with the magnetic field, a grain “feels” an oscillating magnetic field in its
restframe, which induces a time-dependent magnetization and therefore energy
dissipation. After Spitzer and Tukey [4] had argued that dust grains may contain
ferromagnetic inclusions, this mechanism was extended to ferromagnetic parti-
cles [5]. It is now accepted that paramagnetic relaxation rates are enhanced by
small ferromagnetic inclusions that display “superparamagnetism” [6, 7]. Purcell
[8] introduced two new concepts to the grain alignment problem: First, he showed
that grains can rotate suprathermally, i.e. their mean rotational energy can be
much higher than the particle lattice temperature and even that of the surrounding
gas, which can lead to rotation frequencies of up to 100 kHz, presumably by the re-
coil during the desorption of hydrogen molecules. Second, Purcell introduced the
Barnett effect [9] – rotation by magnetization – to the problem and showed that
it leads to faster relaxation and alignment. More recently, radiative torques have
been found to cause rapid rotation of particles with a diameter above 0.1 µm and
align the grain with the magnetic field [10].

A remaining conundrum is the observation that dust grains smaller than 0.05
µm do not polarize starlight [10, 11]. Mathis [6] suggested that with decreasing
size of the particle, it becomes statistically less likely that the particle contains su-
perparamagnetic, ferromagnetic or ferrimagnetic impurities, thus making Davis-
Greenstein type of relaxation mechanisms less efficient for small grains. For grains
smaller than a critical size, thermal fluctuations may play an important role: Due
to the degradation of H2 formation sites, the Purcell torques will occasionally cha-
nge their direction and the particle will thus spin down to thermal rotation fre-
quencies, flip and spin up again [12]. For grains smaller than a critical radius of
0.1 µm, thermal trapping takes place [13]: For sufficiently small modulus of angu-
lar momentum, the flipping rate due to thermal fluctuations becomes large and
the Purcell torque is no longer able to spin the grain up to suprathermal rotation
before the next flipping event takes place.

In summary, the grain alignment process involves the following components:
Grains are subject to two systematic torques that may drive the grain to suprather-
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mal rotation, H2 formation torques and torques due to starlight. The latter play
only an important role for grains with radii & 0.1 µm. Achieving suprathermal
rotation speeds may be suppressed by thermal flipping events and random col-
lisions. Once the grain rotates suprathermally, the grain dynamics becomes im-
mune from disalignment by random collisions. In this situation, alignment will be
accomplished from the combined effect of starlight torques and (para)magnetic
dissipation.

When magnetic damping is invoked as an alignment mechanism, the time-
scales derived by Davis-Greenstein [3] and subsequent works, e.g. [5] for ferro-
magnetic particles, are usually employed, which do not consider the contribution
of the Barnett effect. The Barnett effect is so far employed in grain-alignment dis-
cussions in order to justify why the major axis of inertia aligns itself with the axis
given by the total angular momentum on a time-scale much faster than the align-
ment of the angular momentum vector with the magnetic field [14].

In this Chapter, we contribute to the discussion by computing the relaxation
time for a single oblate ellipsoid that contains ferromagnetic inclusions. In our
approach, we do not make any assumptions about the relative orientation of total
angular momentum and major axis of inertia, contrary to aforementioned previ-
ous work. We assume that the dynamics can be described by the coupled mechan-
ical and magnetic degrees of freedom. We fully take the Barnett and Einstein-de
Haas effects (conservation of angular momentum) into account. Furthermore, we
argue that energy is dissipated only by magnetization damping as already in pre-
vious works, e.g. [3, 5]. In our approach, we model the magnetization dynamics
with a modified Landau-Lifshitz-Gilbert equation, which takes the rotation of the
crystal lattice into account.

Our approach obeys the conservation of the total angular momentum J∥ along
the magnetic field. However, a rotating magnetic moment looses angular momen-
tum and energy by electromagnetic radiation, thus rendering J∥ time-dependent.
In the treatment presented here, however, we assume that viscous magnetization
damping is more efficient than radiative losses. The estimate justifying this as-
sumption can be found in Appendix B.

Heating effects due to the viscous magnetization damping that might lead to
a temperature-dependent magnetization and thus possibly to longer time-scales
are disregarded, since we assume that the lattice is efficiently equilibrated with the
cosmic radiation field. In addition, we assume that the modulus of the magneti-
zation remains constant at all times as it is the case with ferromagnetic inclusions.
This is compatible with the estimate that 10% of atoms in interstellar dust are iron
[4, 15], of which up to 5% may form iron clusters [16]. Furthermore, mixed MgO-
FeO-SiO are assumed to exist and exhibit ferromagnetic behaviour [17]. Thus dust
grains with ferromagnetic ordering are a reasonable assumption for certain types
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of cosmic clouds.

4.2 EQUATIONS OF MOTION
In this section, we set up the coupled magneto-mechanical equations of motion
of a dust grain that contains a magnetic cluster with constant magnetic moment
|~M | =: Ms . To this end, we first introduce the Euler angles φ,Θψ, that let us distin-
guish a laboratory frame of reference and a frame of reference co-rotating with the
particle. With the Landau-Lifshitz-Gilbert (LLG) equation, we model the dynamics
of the magnetic moment. A change in the magnetization will affect the rotational
state of the particle (Einstein-de Haas effect), which will lead us to the equations
of motion for the mechanical angular momentum.

In the following we distinguish the body frame of reference, which rotates with
the particle, from the laboratory frame of reference. We assume that the origins of
both frames of reference are located at the center of mass of the particle. The refer-
ence frames are related by the Euler anglesφ,Θ andψ (see Fig. 4.1 for a definition)
[18]. A vector ~qlab in the laboratory frame is related to its projection in the rotating
frame by ~qbody = R~qlab, where R denotes the rotation matrix linking the body and
laboratory frames of reference. The rotation matrix that rotates the system by an
angle η around the x- resp. z-axis is given by

Rx,z (η) = ~ex,z~e
T
x,z +cosη

[
~ey~e

T
y +~ez,x~e

T
z,x

]
∓sinη

[
~ez,x~e

T
y −~ey~e

T
z,x

]
, (4.1)

where~eT
x = (1,0,0),~eT

y = (0,1,0) and~eT
z = (0,0,1) and the superscript T denotes the

vector transpose. The rotation matrix that links the body and laboratory frames of
reference is then given by R = Rz (ψ)Rx (Θ)Rz (φ), where ψ, Θ and φ are the Euler
angles defined in Fig. 4.1. The time-derivatives in the laboratory and body frame
of references are related by the identity

~̇qlab = R−1 [
~̇qbody +~ωbody ×~qbody

]
, (4.2)

where

~ωbody = φ̇
sinΘsinψ

sinΘcosψ
cosΘ

+ Θ̇
 cosψ
−sinψ

0

+ ψ̇
0

0
1

 (4.3)

is the angular velocity in the body frame of reference.
The magnetization dynamics of sufficiently small ferromagnets can be describ-

ed in the macrospin spin model by the Landau-Lifshitz-Gilbert (LLG) equation [19,
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xLab

yLab

zLab

xBody

yBody

zBody

ON

θ

φ

ψ

FIGURE 4.1: Definition of the Euler angles. The coordinate system Σlab (blue axes) denotes the system
of inertia, whereas the coordinate system Σbody is the rotating coordinate system (black axes), whose
coordinate axis are parallel to the moments of inertia Ix,y,z . θ denotes the angle between zlab and zbody.
φ is the angle between xI and ON , where ON denotes the line of intersection between the xlab − ylab
and xbody − ybody planes. ψ is the angle between ON and the xbody axis.

20]

~̇Mlab = ~Mlab ×γ~B eff
lab −

αγ̂

Ms

~Mlab × ~̇Mlab

∣∣∣
body

, (4.4)

where ~B eff
lab is the effective magnetic field, ~Mlab is the magnetization vector, α > 0

the dimensionless Gilbert damping constant, Ms the modulus of the total mag-
netic moment, γ the gyromagnetic ratio and γ̂ = γ/|γ| denotes its sign, which is
positive for protons and negative for electrons. The microscopic origin of the mag-
netization damping is the spin-orbit interaction, by which the energy in the mag-
netic system can leak to the lattice. This implies that the damping term in Eq. (4.4)
is governed by the magnetization motion relative to the lattice, viz. [21, 22]

~Mlab × ~̇Mlab

∣∣∣
body

= R
(
~Mbody × ~̇Mbody

)
. (4.5)

Transforming Eq. (4.4) to the body frame of reference:

~̇Mbody = ~Mbody ×
[
γ~B eff

body +~ωbody

]
− γ̂α

Ms

~Mbody × ~̇Mbody . (4.6)

Rotation is seen to induce a (Barnett) gauge field ~ωbody/γ acting on the magne-
tization in the body frame [22]. In the laboratory frame, the LLG equation of a
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magnetic moment in a rotating particle is given by

~̇Mlab = ~Mlab ×γ~B eff
lab −

αγ̂

Ms

~Mlab × ~̇Mlab

−αγ̂
Ms

~Mlab × (~Mlab ×~ωlab) . (4.7)

We observe that the Barnett field is not apparent, but that the rotation of the lattice
manifests itself as an additional damping term in the laboratory system.

The interplay between the Einstein-de Haas effect (rotation by magnetization)
and the Barnett effect (magnetization by rotation) is schematically depicted in Fig.
4.2. By virtue of Noether’s theorem, the total angular momentum ~J is conserved
in the direction of the external magnetic field. This implies that in the laboratory
frame the total angular momentum ~Jlab = ~Llab + ~Mlab/γ, where ~Llab denotes the
mechanical angular momentum, experiences a torque by the external magnetic
field ~B ext

lab
~̇Jlab = ~Mlab ×~B ext

lab . (4.8)

In what follows, we assume that the effective magnetic field equals the external
one, i.e. we disregard internal magnetic fields associated with crystal anisotropies
or dipolar interactions. Then:

~̇Llab = α

Ms |γ|
[
~Mlab × ~̇Mlab + ~Mlab ×

(
~Mlab ×~ωlab

)]
. (4.9)

Eqs. (4.7), (4.8) and (4.9) provide the full set of equations that describes the motion
of a rotating magnetic particle in an external magnetic field, taking fully into ac-
count the conservation of total angular momentum. The free energy of the whole
system reads

F = 1

2
~ωT

bodyI~ωbody − ~Mbody

(
~B ext

body +
~ωbody

γ

)
, (4.10)

where I denotes the moment of inertia tensor. We consider in the following sym-
metric tops and chose the body frame such that I = diag(I⊥, I⊥, I∥). The problem
defined by the equations above is non-linear and an exact solution cannot be ob-
tained analytically. Our numerical simulations on rotating spheres with magnetic
inclusions show that the dynamics immediately following initialization of a fast ro-
tation is usually erratic. However, the time scale of orientation of the rotation axes
to weak external magnetic fields is governed by a deterministic slow approach to
a stable steady state. We therefore proceed by first determining stationary stable
states in a magnetic field and then finding the relaxation times associated with
small deviations from these steady states.
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~M ~L

magnetic field

Einstein - de Haas

Barnett

FIGURE 4.2: Schematic interplay between Barnett and Einstein-de Haas effect in a rotating magnetic
grain: A change in the magnetization ~M affects the mechanical angular momentum~L via the Einstein-
de Haas effect. Vice versa, the mechanical state affects the magnetic state via the Barnett effect. In the
presence of an external magnetic field, the component of the total angular momentum parallel to the
external field is conserved, while the other experience torques.

4.3 STEADY STATES
In the previous section, section 4.2, we have set up coupled magneto-mechanical
equations of motion for a dust grain with constant magnetic moment |~M |. Since
the resulting equations of motion, Eqs. (4.7), (4.8) and (4.9), are non-linear, we
need to linearize the equations of motion around the steady state in order to re-
cover the time-scales governing the alignment process. The first step in this direc-
tion is to determine the steady states, which is the focus of this section.

We assume that the lattice of the dust grain is in thermal equilibrium with
the universe via electromagnetic interactions except for the rigid body motion,
i.e. translations and rotations. We focus here on the relaxation of the rotational
modes in the presence of magnetic moments. When ~̇Mbody 6= 0 energy and an-
gular momentum leak to the lattice by viscous damping. In a steady state, there-

fore, ~̇Mbody = 0. Eq. (4.6) requires then that ~Mbody × (γ~B ext
body +~ωbody) = 0, i.e., the

magnetization must be (anti)parallel to the combined external and Barnett fields.
Therefore

~Mlab,body =± Ms

|~ωlab,body +γ~B ext
lab,body|

(
~ωlab,body +γ~B ext

lab,body

)
, (4.11)

where Ms denotes the saturation magnetization and "lab,body" means that Eq.
(4.11) holds in either reference frame. Since the external magnetic field in the labo-
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ratory frame is constant in time, it follows from Eq. (4.2) that ~̇B ext
body = ~B ext

body×~ωbody.

Since in the steady state the sum of external and Barnett fields in the body frame
of reference is constant in time leads to ~̇ωbody = ~ωbody ×γ~B ext

body and thus ~̇ωlab =
~ωlab ×γ~B ext

lab. This is a constant precession around the external field, which might
be chosen along the x-axis. We can parametrize that motion and compare it with
the expression in terms of the Euler angles as

~ωlab =Ω
 cosG

sinG sin A
sinG cos A

=
Θ̇cosφ+ ψ̇sinΘsinφ
Θ̇sinφ− ψ̇cosφsinΘ

φ̇+ ψ̇cosΘ

 , (4.12)

whereΩ is the constant rotation frequency, G the constant angle between~ωlab and
the external magnetic field and Ȧ = γBext is the frequency of the precession of~ωlab

around the external magnetic field, which can have either sign to indicate the chi-
rality. Introducing the angle Γ between the axis defined by the direction of I∥ (the
z-axis of the body frame of reference) and ~B ext, we find

cosΓ := sinΘsinφ . (4.13)

From Eq. (4.2) and ~̇Mbody = 0 it follows that

~̇Mlab + ~Mlab ×~ωlab = 0, (4.14)

which according to Eq. (4.9) means ~̇Llab = 0, i.e. in the steady state the mechanical
angular momentum is constant in time and thus cannot precess. In the body frame
the moment of inertia tensor is diagonal:

~Lbody = Ibody~ωbody =
I⊥ 0 0

0 I⊥ 0
0 0 I∥

~ωbody . (4.15)

We can introduce a new Cartesian axes

~v1 =
 sinΘsinφ
−sinΘcosφ

cosΘ

 , ~v2 =
 cosΘsinφ
−cosΘcosφ

−sinΘ

 , ~v3 =
cosφ

sinφ
0

 . (4.16)

Since ~qbody = Rz (ψ)Rx (Θ)Rz (φ)~qlab, we see that the moment of inertia tensor in
the laboratory frame of reference can be written as

Ilab = I⊥1+∆I
(
~v1~v

T
1

)
, (4.17)
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where∆I = I∥−I⊥ and T denotes the vector transpose so that~v1~vT
1 is a 3×3 matrix.

We have ~̇Llab = İlab~ωlab + Ilab~̇ωlab = 0, where

İlab =∆I
[
Θ̇~v2~v

T
1 + φ̇sinΘ~v3~v

T
1 + Θ̇~v1~v

T
2 + φ̇sinΘ~v1~v

T
3

]
, (4.18)

and~ωlab is given by Eq. (4.12). The coefficients of~v1,2,3 in ~̇Llab = 0 results in a set of
three equations,

0 = I∥γB0ΩsinG
[
sinΘcosφcos A+ sin A cosΘ

]
, (4.19)

∆I Θ̇(~vT
1 ~ωlab) = −I⊥γB0ΩsinG

~vT
2

 0
cos A
−sin A

 , (4.20)

∆I φ̇sinΘ(~vT
1 ~ωlab) = −I⊥γB0ΩsinG

~vT
3

 0
cos A
−sin A

 . (4.21)

With Eq. (4.12) it follows that Eqs. (4.19) to (4.21) are true for Ω = 0, i.e. a particle
at rest. Multiplying ~ωlab, Eq. (4.12), by ~vT

3 yields

Θ̇=~vT
3 ~ωL =Ω[

cosφcosG + sinG sin A sinφ
]

(4.22)

while multiplying ~ωlab by ~vT
1 yields

φ̇sinΘ=−~vT
2 ~ωL =Ω[−cosΘcosG sinφ+ sinG(sinΘcos A+cosφcosΘsin A)

]
.

(4.23)
For sinG = 0, Eq. (4.19) is fulfilled and Eq. (4.20) resp. Eq. (4.21) become

0 =∆IΩ2 cosφcosΓ (4.24)

and
0 =∆IΩ2 cosΓcosΘ , (4.25)

where we used Eq. (4.22) resp. (4.23). Since cosΓ = sinΘsinφ these two condi-
tions imply that for Ω 6= 0 either cosΓ = 0, i.e. I∥ is oriented perpendicular to the
magnetic field, or |cosΓ| = 1, i.e. I∥ is parallel to it.

If sinG 6= 0, Eq. (4.19) requires that

sinΘcosφcos A+ sin A cosΘ= 0. (4.26)

This can be achieved when both cosφ and cosΘ are constant and equal to zero.
Then Eq. (4.22) yields

Θ̇=±ΩsinG sin A
!= 0, (4.27)
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which is only true for Ω= 0, i.e. the particle is at rest, or sinG = 0 – the latter con-
tradicting our initial assumption of sinG 6= 0. Since sin A and cos A are periodic
in time, Eq. (4.26) may be fulfilled as well when sinΘcosφ and cosΘ are peri-
odic with the same period. To find those solutions, we may expand sinΘcosφ and
cosΘ in a Fourier series. Taking into account only the first harmonic sinΘcosφ=
c0+c1 sin A+c2 cos A and cosΘ= d0+d1 sin A+d2 cos A, with coefficients c0,1,2 and
d0,1,2. Using this ansatz in Eq. (4.26) one finds that d2 = −c1 and all other co-
efficients vanish. Therefore Θ = ±A and cosφ = ∓1 also fulfills Eq. (4.26). With
Θ̇=±γBext Eq. (4.20) yields

∆IΩsinGΩ=−I⊥ΩsinG . (4.28)

ForΩ 6= 0 this relation is only fulfilled for sinG = 0, contrary to our initial assump-
tion.

We conclude that in the steady state the axis defined by the moment of inertia
I∥ is either perpendicular or parallel to the direction defined by the external mag-
netic field, whereas the axis of rotation and the magnetic moment are (anti)parallel
to it. The energy of Eq. (4.10) for these steady states read

F =
J 2
∥

2Is
+ 3

2

M 2
s

γ2Is
−2σ

Ms

γ

J∥
Is

−σMs B0 , (4.29)

where σ = +
(−) 1 denotes the (anti)parallel orientation of ~M with ~B ext, J∥ the total

angular momentum in direction of ~B ext and Is = I∥,⊥ for |cosΓ| = 1 respectively
cosΓ = 0. The steady state with major axis of inertia oriented along the magnetic
has lower kinetic energy. In addition, we find the steady state rotation frequency
of the particle

Ω=
J∥−σMs

γ

Is
. (4.30)

4.4 LINEARIZED EQUATIONS OF MOTION
In the previous section, we have determined the steady states of a rotating dust
grain containing a constant magnetic moment Ms . We now proceed to linearize
the magneto-mechanical equations of motion obtained in section 4.2 in the vicin-
ity of the steady states.

So far, our treatment holds for arbitrary ellipsoids. The subsequent treatment
for prolate ellipsoids is complicated, since the steady state conditions only deter-
mine the angle φ while leaving the other two Euler angles unspecified. Further-
more, observational data suggests that cosmic dust grains are of oblate shape [23].
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For these reasons, we consider the linearized equations of motion for an oblate
particle, i.e. I∥ > I⊥ (pancake like), in what follows.

As in the previous section we assume that ~B ext
lab ∥ ~xlab. We choose this orien-

tation of the magnetic field deliberately, since choosing the magnetic field along
the ~zlab-axis and with our choice of Euler angles would lead to the problem of
“gimbal lock”, i.e. in the steady state φ̇ (rotation around zlab-axis) and ψ̇ (rotation
around figure axis zbody) would coincide. In the steady state R−1~zbody =~xlab. This
is the case for φ= (n +1/2)π, Θ= (k +1/2)π where n,k ∈Z, i.e. we distinguish two
steady states with cosΓ = ±1. Considering small deviations of ~ωlab and~Llab from
the steady state,

~ωlab =
Ω+ (−1)n+kδψ̇

(−1)nδΘ̇+Ωδφ
δφ̇− (−1)nΩδΘ

=
Ω+δωx

δωy

δωz

 (4.31)

and

~Llab =
 I∥(Ω+δωx )

I⊥δωy +∆IΩδφ
I⊥δωz −∆I (−1)nΩδΘ

 , (4.32)

where ∆I = I∥ − I⊥ and Ω is the rotation frequency in the steady state. Similarly,
deviations of the magnetization and total angular momentum can be written as

~Mlab =σ
 Ms

δmy

δmz

 and ~Jlab =
 J∥
δJy

δJz

 . (4.33)

With~Jlab =~Llab + ~Mlab/γ, δωx = 0,Ω= J∥/I∥−σMs /(γI∥):

~ωlab = 1

I⊥


I⊥
I∥ J∥
δJy

δJz

− σ

γI⊥


I⊥
I∥ Ms

δmy

δmz

+ ∆I

I⊥
Ω

 0
−δφ

(−1)nδΘ

 . (4.34)

Introducing

δms = δmy + i sδmz , δJs = δJy + i sδJz , (4.35)

with chirality s =±1, and comparing Eqs. (4.31) and (4.34), we obtain an equation
of motion for δΓs = (−1)nδΘ+ i sδφ :

δΓ̇s =−σ
γ

1

I⊥
δms + 1

I⊥
δJs + i s

I∥
I⊥
ΩδΓs . (4.36)
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Using Eq. (4.34) in Eq. (4.7) yields the linearized equation of motion for δms ,

˙δms = −
αγ̂

J∥
I∥ + i sσγB0 +αγ̂∆I

I⊥
σMs
γI∥

A∗
s

δms

+αγ̂
A∗

s

Ms

I⊥
δJs + i sαγ̂

A∗
s

MsΩ
∆I

I⊥
δΓs , (4.37)

where As =σ− i sγ̂α. Furthermore, linearizing Eq. (4.8) yields

˙δJs =−i sσB0δms . (4.38)

In conclusion, Eqs. (4.36) to (4.38) provide a linearized set of equations for the mo-
tion of the particle near the steady state. The motion of the grain in the vicinity of
the steady state can be decomposed in a linear combination of eigenmodes~ek eEk t ,
where ~ek , Ek are eigenvectors resp. eigenvalues given by a coefficient matrix de-
fined by Eqs. (4.36) to (4.38). The real part of the eigenvalues Ek is the time-scale
with which each eigenmode decays (when ReEk < 0) or increases (when ReEk > 0).
In order to obtain the time-scales of the alignment process, we thus need to ob-
tain these eigenvalues. Unfortunately, however, we have not been able to find an
analytical expression for the eigenvalues, so that we need to employ a perturbative
approach. In the following section, we discuss the limit of the damping constant
α¿ 1, whereas in section 4.6 we discuss the limit in which the magnetic moment
in the particle is negligible compared to the mechanical angular momentum com-
ponent along the direction of the magnetic field.

4.5 TIME SCALES IN THE LIMIT OF VANISHING DAMPING

Only in specially engineered materials the damping constant for magnetic motion
αÀ 0.01. For local magnetic moments in an insulating matrix the magnetization
dynamics may be damped even less. So the regime of weak damping appears to
be appropriate for the particles believed to be found in cosmic clouds. Eqs. (4.36)
to (4.38) constitute a system of coupled differential equations for the vector ~xT

s =
(δms /Ms ,δJs /J∥,δΓs ) with

~̇xs =
(
R0 −αγ̂R1 +O (α2)

)
~xs , (4.39)
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where

R0 = J∥
I∥

 −i sp 0 0
−i spm 0 0
−mI∥/I⊥ I∥/I⊥ i s (1−m) I∥/I⊥

 , (4.40)

R1 = σ
J∥
I∥

1+p +m ∆I
I⊥ − I∥

I⊥ −i s (1−m) ∆I
I⊥

0 0 0
0 0 0

 , (4.41)

with m = σMs /γJ∥ and p = γB0I∥/J∥, and O (α2) denotes terms of order α2 and
higher that are assumed to be negligibly small. Solutions of Eq. (4.39) are given by
~xs = ∑

i ci~ei eEi t , where ci are coefficients determined by the initial conditions, ~ei

and Ei the eigenvectors resp. eigenvalues of the matrix R0 − γ̂αR1. Since typically
α ¿ 1, we can employ the perturbation theory outlined in appendix A. We now
discuss the two leading terms in this expansion.

To zeroth order in α the eigenvalues and eigenvectors are given by

~e0
1 =

 1
m
0

 with E 0
1 =−i sγB0 , (4.42)

~e0
2 =

 0
−i s (1−m)

1

 with E 0
2 = 0, (4.43)

~e0
3 =

0
0
1

 with E 0
3 = i s

J∥
I⊥

(1−m) . (4.44)

The eigenmode associated with~e0
1 describes an undamped precession of both mag-

netization and total angular momentum vector around the magnetic field, the
eigenmode associated with ~e0

2 a static deflection of the total angular momentum
vector and major axis of inertia from the steady state and the~e0

3-eigenmode is an
undamped rotation of the major axis of inertia around the direction given by the
magnetic field.

The positive-definite Hermitian matrix

K = 1

1−m

1−m + 2m2

1−m − 2m
1−m −i sm

− 2m
1−m

2
1−m i s

i sm −i s 1−m

 (4.45)

allows us to define a scalar product 〈~a|~b〉 ≡~a†K~b such that (~e0
i )†K~e0

j = δi , j , where

δi , j is the Kronecker δ. With K given by Eq. (4.45) and using Eq. (A.13), we obtain
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the first-order correction in α for the eigenvalues E1,2,3, the real-parts of whose are
the inverse time-scales for the alignment processes:

ReE1 = − 1

τ~M ,~J→~B

=−αγ̂σ
(

J∥
I∥

+γB0 − σMs

γI∥

)
, (4.46)

ReE2 = − 1

τ~J ,I∥→~B

=−αγ̂Ms

γI∥
, (4.47)

ReE3 = − 1

τI∥→~B

=−αγ̂∆I

I⊥
Ms

γI∥
. (4.48)

The inverse time-scale ReE1 =−1/τ~J ,~M→~B , describing the alignment of total angu-
lar momentum and magnetization with the external magnetic field, is determined
by the magnitude of the combined Barnett- and external magnetic fields. For a sta-
ble steady state, the real parts of the eigenvalues must be negative. This allows us
to determine σ, the orientation of the magnetization with respect to the magnetic
field: ReE1 < 0 implies that γ̂σ=−1 if J∥/I∥+γB0 −σMs /(γI∥) > 0 and vice versa.

4.6 TIME SCALES IN THE LIMIT OF SMALL MAGNETIC MO-
MENT

Similarly, we can investigate the time-scales in the limit of small magnetic mo-
ment but possibly large damping. To this end, we introduce the small parame-
ter σMs /(γJ∥), thereby assuming that the magnetic moment is sufficiently smaller
than the mechanical angular momentum parallel to the magnetic field, i.e. |I∥ω|À
|Ms /γ|.

Eqs. (4.36) to (4.38) may then be written as a matrix differential equation for
the vector~xT

s = (δms /Ms ,δJs /J∥,δΓs ) :

~̇xs =
[

R0 + σMs

γI∥
R1

]
~xs , (4.49)

where

R0 =
J∥
I∥

1

1+α2

−As (αγ̂+ i sσp) αγ̂
I∥
I⊥ As i sαγ̂∆I

I⊥ As

0 0 0

0
I∥
I⊥ |As |2 i s|As |2 I∥

I⊥

 , (4.50)

R1 =

−
∆I
I⊥

αγ̂

1+α2 As 0 − αγ̂i s
1+α2 As

∆I
I⊥

−i sp 0 0

− I∥
I⊥ 0 −i s

I∥
I⊥

 , (4.51)
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As =σ− i sγ̂α and p = γB0I∥/J∥.
In the absence of magnetism σMs /γI∥ = 0 the solution of (4.49) is given by

~xs = ∑
i ci~e0

i eE 0
i t , where ci are coefficients determined by the initial conditions,~e0

i
and E 0

i are the eigenvectors resp. eigenvalues of the matrix R0 given by Eq. (4.50).
We find the eigenvalues resp. eigenvectors of R0 to be

E 0
1 = i s

J∥
I⊥

with ~e0
1 =

−Q1

0
1

 ,

E 0
2 = − J∥

I∥
As (αγ̂+ i sσp)

1+α2 with ~e0
2 =

1
0
0

 ,

E 0
3 = 0 with ~e0

3 =
i sQ0

−i s
1

 , (4.52)

where

Q1 =
−i sαγ̂As

(
∆I
I⊥

)
i s

(
I∥
I⊥

)
|As |2 + As (αγ̂+ i sσp)

(4.53)

and

Q0 =− αγ̂

αγ̂+ i sσp
. (4.54)

The eigenmode associated with~e0
1 describes an undamped precessional motion of

the magnetization and the axis with main moment of inertia around the magnetic
field. The eigenmode associated with ~e0

2 is a damped magnetization precession.
The eigenmode associated with the eigenvalue E 0

3 = 0 is just a static deflection
from the steady state orientation: The axis with moment of inertia I∥ lies in the
xl ab − zl ab-plane, as does the total angular momentum vector. In addition, the
magnetization is not fully aligned with the direction given by the magnetic field.

We now derive the eigenvalues for these eigenmodes to the next order in our
small parameter, which provide the time scale of the alignment of the grain with
the magnetic field. The matrix

K =
 1 Q0 − i sQ1 Q1

Q∗
0 + i sQ∗

1 k1 Q1Q∗
0 + i sk2

Q∗
1 Q∗

1 Q0 − i sk2 k2

 , (4.55)

with k1 = 2+ |Q1|2 + |Q0|2 + 2sIm(Q1Q∗
0 ) and k2 = 1+ |Q1|2, is a positive-definite

Hermitian matrix that defines a scalar product with (~e0
i )†K~e0

j = δi j , where δi j is
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the Kronecker delta. In first order in σMs /γJ∥, we obtain with Eq. (A.13)

ReE3 = − 1

τ~J→~B

= σMs

γI∥
Re

[
(~e0

3)†K R1~e
0
3

]
=

(
σMs

γI∥

)
pRe(i sQ0)

= −
(
σMs

γI∥

)
σp2αγ̂

α2 +p2 , (4.56)

which is the inverse time-scale 1/τ~J→~B of the~Jlab alignment. Similarly,

ReE1 = − 1

τI∥→~B

= σMs

γI∥
Re

[
(~e0

1)†K R1~e
0
1

]
=

(
σMs

γI∥

)(
∆I

I⊥
+1+p

)
ReQ1

= −
αγ̂σ

(
σMs
γI∥

)(
∆I
I⊥

)(
∆I
I⊥ +1+p

)2

α2
(
∆I
I⊥

)2 +
(
1+ ∆I

I⊥ +p
)2 , (4.57)

which is the inverse time-scale 1/τI∥→~B for the alignment the main axis of inertia

with ~B ext
lab.

4.7 ORDER OF MAGNITUDE ESTIMATES
In this section we estimate the time-scales for the regimes described above. In
evaluating our time-scales and putting them into perspective with previously found
time-scales, we assume the particle to be of oblate shape with half axes b > a and
thus I∥ = 2mb2/5 and I⊥ = m(a2 +b2)/5, where m denotes the mass of the grain.
The grain has a volume of V = (4π/3)ab2 = (4π/3)r 3

eff, where reff is the effective
radius of the grain.

An insecurity of our estimates is the permanent magnetic moment residing in
the particle. Observational data suggests that up to 5% of the atoms in cosmic dust
grains are iron forming clusters [16]. An upper bound for the magnetic moment
residing in a dust grain being given by

N = Ms

µB
= 4 ·0.05ρV NA

0.95 ·mH20 +0.05 ·mFe
≈ 8 ·106 ·

(
reff

0.1 µm

)3
(

ρ

3 g
cm3

)
, (4.58)

with Avogadro constant NA = 6 ·1022 mol−1, density ρ, volume V = (4π/3)r 3
eff and

the molar masses mH2O and mFe for water and iron, when employing the assump-
tion that the dust grain mainly consists of ice and iron, the latter forming one
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cluster with uniform magnetic moment. Furthermore, we assumed that each iron
atom supplies a magnetic moment of 4µB , as the electron configuration of the iron
atom suggests.

In section 4.6 we considered the time-scales for alignment in the regime when
|Ms /(γJ∥)|¿ 1, i.e. when the magnetic moment is negligible compared to the total
angular momentum in direction of the external field. |Ms /(γJ∥)| ¿ 1 implies that
|Ms /(γI∥)| ¿ |Ω|, where Ω is the steady state rotation frequency. For Ms = NµB ,
with N given by Eq, (4.58), our estimates remain valid when

|Ω|À 8 kHz ·
(

reff

0.1 µm

)−2 ( a

b

) 2
3

. (4.59)

Considering that dust grains may rotate suprathermally [8] with frequencies up to
100 kHz, Eq. (4.59) is a good estimate for particles reff & 0.1 µm.

One mechanism that randomizes the alignment of dust grains is collisions with
surrounding gas molecules. The time-scale for this process was found to be [24]

τdrag =
3I∥

4
p
πnH2 mH2 vthr 4

effΓ∥
(√

1− ( a
b

)2
) , (4.60)

where vth =
√

2kB Tg /mH2 is the thermal speed of the surrounding H2 molecules,

nH2 is the number density, mH2 the mass of a hydrogen molecule and Γ∥ is a geo-
metric factor,

Γ∥(e) = 3

16

(
3+4(1−e2)g (e)− 1

e2

(
1− (1−e2)2g (e)

))
(4.61)

and g (e) = (2e)−1 ln[(1+e)/(1−e)]. One finds

τdrag ∼ 1.6 ·106 yr ·
(

reff

0.1 µm

)(
Tg

20 K

)− 1
2
(

nH2

30 1
cm3

)
. (4.62)

The time-scales τI∥→~B and τ~J ,I∥→~B in section 4.5 as well as τ~J→~B and τI∥→~B in

section 4.6 are the time-scales on which the alignment of both the total angular
momentum ~J and the major axis of inertia with the magnetic field occurs. To put
them into perspective, we compare these time-scales with the time-scales for the
same processes derived by Davis and Greenstein [3] for paramagnetic relaxation
and the one derived by Henry [5] for ferromagnetic relaxation as well as the time-
scale τdrag on which the orientation of the grain gets randomized by collisions with
gas molecules (Eq. (4.62)).



54 4. ALIGNMENT OF RAPIDLY ROTATING GRAINS OF COSMIC DUST

The time scales τI∥→~B and τ~J ,I∥→~B in section 4.5 as well as τ~J→~B and τI∥→~B in

section 4.6, are proportional to the parameter (γI∥)/(Msα). We also observe that
the time scales we obtained in section 4.6 coincide with those derived in section
4.5 in the limit α¿ 1. The alignment time-scales are then proportional to

τ= I∥|γ|
Msα

∼ 1.3 ·10−4 s ·
(

reff

0.1 µm

)2 1

α

(
b

a

) 2
3

, (4.63)

when the magnetic moment of the grain is NµB with N given by Eq. (4.59). We
see that in our model, grain alignment happens instantaneously compared to the
time-scale due to gas-grain collisions, Eq. (4.62). This implies, that an ensemble of
grains will be almost perfectly aligned.

The time-scale for paramagnetic alignment was determined by Davis and Green-
stein [3] to be

τDG = I∥
K V B 2

0

. (4.64)

K is related to the imaginary part of the magnetic susceptibility χ by Im(χ) = Kω
and is estimated to be K ≈ 1.2 ·10−13s · (20 K/T ) [10], with T being the grain tem-
perature. Thus, the time-scale for paramagnetic alignment can be estimated to be

τDG ≈ 1.2 ·106 yr ·
(

ρ

3 g
cm3

)(
reff

0.1 µm

)2 (
B0

5 µG

)−2 (
b

a

) 2
3

. (4.65)

We observe that τDG is quadratic in reff, whereas τdrag is linear. This implies that for
large grains the time-scale for disalignment by gas collisions may be shorter than
the alignment time, thus leading to imperfect alignment.

Henry [5] investigated the alignment process of ferromagnetic grains with uni-
form magnetization density and assuming that the shape anisotropy, given by the
geometry of the grain, is the dominant contribution to the effective magnetic field.
This is different from our approach, where we have assumed that shape anisotropy
is negligible since we imagine a spherical magnetic cluster embedded in a much
larger grain. The time-scale governing the alignment process was found to be the
same as in Eq. (4.64), with K being now given by

K = 2γ2(Ms /V )2(N⊥−N∥)

T2ω
4
0

(4.66)

with demagnetization factors N∥, N⊥, resonance frequencyω0 and relaxation time
T2. For Fe K = 3 ·10−7 s at low temperature and when the ratio of long and short
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FIGURE 4.3: Comparison of τ, the time-scale for alignment of the major axis of inertia and total an-
gular momentum with the magnetic field, with the time-scales derived by Davis and Greenstein (τDG)
resp. Henry (τFM) for the same process for paramagnetic resp. ferromagnetic grains. τdrag is the time-
scale on which the grains get randomized due to collisions with surrounding gas. We observe, that the
time-scale derived in this chapter are much shorter than the previously derived time-scales for grain
alignment. We chose ρ = 3 g/cm3, a/b = 0.5, B0 = 5 µG, Tg = 20 K, nH2 = 30 cm−3 and α= 10−2.

axis of the particle is two [5], leading to

τFM ≈ 0.5 yr ·
(

ρ

3 g
cm3

)(
reff

0.1 µm

)2 (
B0

5 µG

)−2 (
b

a

) 2
3 ≈ 4 ·10−7τDG . (4.67)

As with the alignment time-scale τ derived by us, τFM is instantanous compared to
the time-scale given by gas-grain collisions.

In Fig. 4.3 we summarize the different time-scales. We observe, that the time-
scales we have obtained for the alignment process are much shorter than the time-
scale due to paramagnetic damping, due to magnetic damping in a uniformly fer-
romagnetic grain or the time-scale on which gas-grain collisions take place. We
can attribute the smallness of our time-scale in comparison to the τDG to the fact,
that a permanent magnetic moment of just some µB is larger than the paramag-
netism induced by the weak magnetic field present in the grain alignment prob-
lem. In comparison to τFM, we have rapid alignment due to our disregarding of
effective fields due to anisotropy, leading to quicker energy dissipation due to mag-
netization damping.
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4.8 CONCLUSIONS AND OUTLOOK
We studied the alignment of rotating magnetic grains with respect to an exter-
nal magnetic field, carefully taking the conservation of angular momentum into
account. The magnetization dynamics was modelled with the Landau-Lifshitz-
Gilbert equation with a modified damping term in the laboratory frame in order to
account for the viscous magnetization damping due to the motion of the magne-
tization relative to the lattice. We identified possible steady states, and calculated
the time-scales for alignment in the special case of an oblate spheroid. We find
that the time-scales determining the alignment of the long axis of inertia depend
only on the magnetic moment and the shape and size of the particle but not on the
rotation frequency resp. mechanical angular momentum of the particle. The time-
scale for the alignment of the major axis of inertia are proportional to the magnetic
moment of the particle. If small particles have consistently a smaller magnetic mo-
ment, their alignment process will take longer resp. they might get randomized by,
e.g., collisions before they reach alignment.

We disregarded the contribution of crystal anisotropies to the effective mag-
netic field. When the anisotropy field dominates over both Barnett and external
magnetic fields, the magnetic moment is locked to a specific direction in the lat-
tice frame of reference. Then the damping term vanishes and the particle will not
align itself with the direction of the magnetic field but carries out a precessional
motion, that is damped only by other processes such as radiative losses. Our es-
timated alignment time scales are therefore a lower bound to the expected ones.
More work is needed to narrow down the alignment time scales in the presence of
magnetic anisotropies.

In the present chapter, we only focused on an isolated particle, thus neglect-
ing collisions with other particles or interactions with surrounding gas molecules.
Such interaction adds stochastic torques to the problem. As a result, the time-
evolution of the probability distribution of an ensemble of particles becomes the
important quantity, whose time-evolution may be described by the Fokker-Planck
equation [25]. The probability distribution then yields a mean axial alignment of
the dust grains, which is the experimentally accessible quantity.

REFERENCES
[1] J. S. Hall, Observations of the Polarized Light From Stars, Science 109, 166

(1949).

[2] W. A. Hiltner, Polarization of Light From Distant Stars by Interstellar Medium,
Science 109, 165 (1949).

http://dx.doi.org/10.1126/science.109.2825.166
http://dx.doi.org/10.1126/science.109.2825.165


REFERENCES 57

[3] L. Davis, Jr. and J. L. Greenstein, The Polarization of Starlight by Aligned Dust
Grains., Astrophysical Journal 114, 206 (1951).

[4] L. Spitzer, Jr. and J. W. Tukey, A Theory of Interstellar Polarization., Astrophys-
ical Journal 114, 187 (1951).

[5] J. Henry, Polarization of Starlight by Ferromagnetic Particles., Astrophysical
Journal 128, 497 (1958).

[6] J. S. Mathis, The alignment of interstellar grains, Astrophysical Journal 308,
281 (1986).

[7] R. V. Jones and L. Spitzer, Jr., Magnetic Alignment of Interstellar Grains, Astro-
physical Journal 147, 943 (1967).

[8] E. M. Purcell, Suprathermal rotation of interstellar grains, Astrophysical Jour-
nal 231, 404 (1979).

[9] S. J. Barnett, Magnetization by Rotation, Phys. Rev. 6, 239 (1915).

[10] B. Draine, in The Cold Universe: Saas-Fee Advanced Course 32, edited by
D. Pfenniger (Springer, 2004).

[11] D. C. B. Whittet, in Astrophysics of Dust, edited by A. N. Witt, G. C. Clayton, &
B. T. Draine (2004), vol. 309 of Astronomical Society of the Pacific Conference
Series, pp. 65–+.

[12] L. Spitzer, Jr. and T. A. McGlynn, Disorientation of interstellar grains in
suprathermal rotation, Astrophysical Journal 231, 417 (1979).

[13] A. Lazarian and B. T. Draine, Thermal Flipping and Thermal Trapping: New
Elements in Grain Dynamics, The Astrophysical Journal Letters 516, L37
(1999).

[14] A. Lazarian, Tracing magnetic fields with aligned grains, Journal of Quantita-
tive Spectroscopy and Radiative Transfer 106, 225 (2007), ISSN 0022-4073.

[15] P. G. Martin, On the value of GEMS (glass with embedded metal and sulphides),
Astrophysical Journal - Letters 445, L63 (1995).

[16] B. T. Draine and A. Lazarian, Magnetic Dipole Microwave Emission from Dust
Grains, The Astrophysical Journal 512, 740 (1999).

[17] W. W. Duley, Magnetic alignment of interstellar grains, Astrophysical Journal
- Letters 219, L129 (1978).

http://dx.doi.org/10.1086/145464
http://dx.doi.org/10.1086/145464
http://dx.doi.org/10.1086/145463
http://dx.doi.org/10.1086/146566
http://dx.doi.org/10.1086/164499
http://dx.doi.org/10.1086/149086
http://dx.doi.org/10.1086/157204
http://dx.doi.org/10.1103/PhysRev.6.239
http://dx.doi.org/10.1086/157205
http://dx.doi.org/10.1086/157205
http://stacks.iop.org/1538-4357/516/i=1/a=L37
http://stacks.iop.org/1538-4357/516/i=1/a=L37
http://www.sciencedirect.com/science/article/pii/S0022407307000337
http://dx.doi.org/10.1086/187890
http://stacks.iop.org/0004-637X/512/i=2/a=740
http://stacks.iop.org/0004-637X/512/i=2/a=740
http://dx.doi.org/10.1086/182622


58 4. ALIGNMENT OF RAPIDLY ROTATING GRAINS OF COSMIC DUST

[18] L. D. Landau and E. M. Lifshitz, Mechanics (Butterworth Heinemann, 1976),
3rd ed.

[19] T. Gilbert, A Lagrangian formulation of the gyromagnetic equation of the mag-
netic field (Abstract Only), Physical Review 100, 1243 (1955).

[20] T. Gilbert, A phenomenological theory of damping in ferromagnetic materials,
Magnetics, IEEE Transactions on 40, 3443 (2004).

[21] A. A. Kovalev, G. E. W. Bauer, and A. Brataas, Nanomechanical Magnetization
Reversal, Phys. Rev. Lett. 94, 167201 (2005).

[22] S. Bretzel, G. E. W. Bauer, Y. Tserkovnyak, and A. Brataas, Barnett Effect in
Magnetic Thin Films and Nanostructures, Applied Physics Letters 95, 122504
(2009).

[23] R. H. Hildebrand and M. Dragovan, The Shapes and Alignment Properties of
Interstellar Dust Grains, Astrophysical Journal 450, 663 (1995).

[24] A. Lazarian and W. G. Roberge, Barnett Relaxation in Thermally Rotating
Grains, The Astrophysical Journal 484, 230 (1997).

[25] W. G. Roberge and A. Lazarian, Davis-Greenstein alignment of oblate
spheroidal grains, Monthly Notices of the Royal Astronomical Society 305, 615
(1999), ISSN 1365-2966.

http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1103/PhysRevLett.94.167201
http://dx.doi.org/10.1103/PhysRevLett.94.167201
http://dx.doi.org/10.1063/1.3232221
http://dx.doi.org/10.1063/1.3232221
http://dx.doi.org/10.1086/176173
http://dx.doi.org/10.1086/176173
http://stacks.iop.org/0004-637X/484/i=1/a=230
http://stacks.iop.org/0004-637X/484/i=1/a=230
http://dx.doi.org/10.1046/j.1365-8711.1999.02464.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02464.x


5
THE BARNETT VS. LANDAU

LEVELS IN THE ROTATING FREE

ELECTRON GAS

The Barnett effect – the reorientation of the electron spin induced by rotation – was
discovered at the dawn of quantum mechanics and provided first evidence for an
anomalous g -factor of the electron. In recent years, there has been a renewed inter-
est in systems, that couple magnetic and mechanical degrees of freedom. However,
most of this research has focused on the Einstein - de Haas effect, i.e., rotation in-
duced by magnetization. Here we consider the orbital Barnett effect in the rotating
electron gas. We find rotationally induced paramagnetism in a spin-free system,
quite different from the diamagnetic response to an external magnetic field.

59
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5.1 INTRODUCTION
A close relationship between ferromagnetism and angular momentum was first
proposed by Ampère and later elaborated in detail by Weber [1]. However, the so-
called molecular current hypothesis remained unproven until 1915, when Barnett
[2, 3] managed to induce a net magnetization of a demagnetized ferromagnetic
body by mechanical rotation. Shortly thereafter, Einstein and de Haas [4] observed
a mechanical rotation induced by the change of magnetization of a suspended fer-
romagnetic body.

The Barnett effect – magnetization induced by rotation – can be understood
by classical mechanics: A gyroscopic wheel aligns its angular momentum with the
axis of an impressed rotation in order to minimize energy. Modelling a magnetic
moment as a gyroscopic wheel, one finds that rotation is equivalent to a “Barnett
gauge field” [3] in the rotating frame,

~Bg =−~ω
γ

, (5.1)

where ~ω denotes the rotation axis and γ = g |e|/(2m). In this chapter, we demon-
strate that this Barnett gauge field not only acts on the electron spin but has effects
on the orbital degrees of motion that differ from a conventional magnetic field. We
illustrate this by comparing the eigenstates of the rotating two-dimensional elec-
tron gas, which we call "Barnett levels", with the Landau in an external magnetic
field.

Related to the Barnett effect is the Sagnac effect [5], originally devised for light:
a beam of light is split and the two resulting beams are made to enclose a closed
area. Rotating the interferometer, one observes shifts in the interference pattern at
the exit point, since the light beams in both arms experience different path lengths
under rotation. In matter wave interferometers, the Sagnac effect can be under-
stood by means of the Barnett gauge field. It was observed experimentally for
electrons in vacuum [6] and atoms [7]. The Sagnac effect has also been studied
theoretically in mesoscopic quantum rings [8].

Superseded by electron spin resonance to measure g -factors, gyromagnetic
methods have been largely forgotten in the last decades. However, the miniaturiza-
tion of electric circuits and mechanical systems revived some interest. An Einstein-
de Haas type of experiment was discussed in a mesoscopic cantilever with a ferro-
magnetic tip [9–11]. We previously studied the Barnett effect [12] in ferromagnets
by the Landau-Lifshitz-Gilbert equation. For a model system consisting of a sus-
pended magnetic wire we demonstrated the equivalence of Barnett and Einstein-
de Haas effects by invoking the Onsager reciprocity relations [13]. Matsuo et al.
[14] derived the Pauli-Schrödinger equation in a rotating frame, using the covari-
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ant Dirac equation as a starting point. The resulting Hamiltonian contains a spin-
orbit interaction term augmented by a term due to mechanical rotation. With this
Pauli-Schrödinger equation the mechanical generation of spin currents in systems
rotating at non-relativistic speeds was predicted [14, 15].

5.2 ROTATING FRAME OF REFERENCE
Rotation of a quantum state |ψ〉 by an angle φ is represented by a unitary operator
R̂,

|ψ(φ)〉 = R̂(φ)|ψ(0)〉 , (5.2)

while operators transform as

Â(φ) = R̂(φ)Â(0)R̂†(φ) , (5.3)

since rotating both states and operator by the same angle must leave the expecta-
tion value unchanged. For rotations around the z-axis [16],

R̂(φ) = e−
i
ħ Ĵzφ , (5.4)

where Ĵz = L̂z + ŝz is the total angular momentum operator in the z-direction, with
L̂z being the orbital and ŝz the spin angular momentum operator.

Rotation introduces a time-dependence into the Hamiltonian, which can be
removed by switching to the rotating frame of reference. Let us denote the orbital
coordinate as Θ(t ) = ΘRot +φ(t ), where φ(t ) is the angle by which the system has
been rotated and ΘRot denotes the orbital variable in the rotating frame of refer-
ence. We can remove an explicit time dependence by transforming to the rotating
frame of reference using Eqs. (5.3) and (5.2). The Schrödinger equation in the ro-
tating frame then reads

iħ d

dt
|ψ(ΘRot)〉 =

(
Ĥ0(ΘRot)− Ĵz

dφ(t )

dt

)
|ψ(ΘRot)〉 , (5.5)

in which Ĥ0 and the eigenstates no longer depend on the time-dependent coordi-
nates. The total Hamiltonian Ĥ0 − Ĵz dφ(t )/dt may still be time-dependent when
the angular velocity is not constant. In the following, we denote |ψ(ΘRot)〉 as |ψRot〉
and |ψ(ΘRot +φ(t ))〉 as |ψLab〉.

5.3 EIGENSTATES OF A ROTATING TWO-DIMENSIONAL EL-
ECTRON GAS

Consider a two-dimensional free electron gas (2DEG) with radius R residing in the
x− y-plane that is rotated around the z-axis with angular frequencyω. The Hamil-
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tonian in the rotating frame of reference is that of a free electron, i.e.,

ĤRot = ħ2~̂k2

2m
−ω Ĵz . (5.6)

Exploiting the axial symmetry, we can rewrite (5.6): In polar coordinates (r,θ) and
with the boundary condition ψ(r = R) = 0, we obtain the normalized eigenstates
that we refer to as Barnett levels:

ψn,k,σ(r,θ) = e i nθ

p
πR J|n|+1( j|n|,k )

J|n|
(

j|n|,k
R

r

)
|σ〉 (5.7)

with eigenenergies

En,k,σ =
ħ2 j 2

|n|,k
2mR2 −ħω

(
n + σ

2

)
, (5.8)

where |σ=±1〉 denote the spin wave functions with sz |σ〉 = (σħ/2)|σ〉 and Jn is the
nth-order Bessel function of the first kind with zeros at x = jn,k . We see that rota-
tion shifts the energy by −ħω(n+σ/2), but leaves the eigenstates in comparison to
a non-rotating electron gas unchanged.

According to Eq. (5.8) that rotation lifts the degeneracy of states with opposite
spin and orbital angular momentum with respect to the axis of rotation. At the
Fermi surface, the electron velocity is v = ħkF /m ≈ 104 m/s for kF = 106 cm−1,
which is much larger than the velocity of the outer edge of the 2DEG, which is
given by ωR = 1 m/s for a 2DEG with radius R = 1 µm rotating with 1 MHz. For
electrons on classical trajectories at r = R the velocity in azimuthal direction is
given by vΘ = Lz /(mR). In the eigenstates Lz =ħn and using |n| < j|n|,k , one finds

ħ2 j 2
|n|,k

mR2 Àħω|n| , (5.9)

implying that the Barnett splitting is a minute correction to the eigenenergies if
ω¿ ħkF /(mR) = vF /R. In fact, for ω = 1 MHz ħω ≈ 7 · 10−10 eV, which is almost
three orders of magnitude below the hyperfine splitting of hydrogen [17].

Comparing the Hamiltonian of a 2DEG in a magnetic field B0 along the z-axis,

ĤLL =
~̂p2

2m
+ |e|

2m
B0

(
L̂z + gs ŝz

)+ |e|2
2m

B 2
0

4
r̂ 2 , (5.10)

with Eq. (5.6), we realize that ~B and ~ω act quite differently on the electrons: apply-
ing a magnetic field causes an effective parabolic confinement which is absent in a
rotating electron gas. In contrast to the magnetic field ω couples identically to the
spin and orbital degrees of freedom.
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The eigenvalues in (5.8) resemble the Landau level spectrum, E LL
n,σ =ħωc

(
n + 1

2

)
,

where ωc = 2µB B0/ħ, with Bohr magneton µB = |e|ħ/(2m), is the cyclotron fre-
quency. However, Landau levels are characterized by a discrete and highly degen-
erate energy spectrum, whereas in the case of rotation each orbital mode n is as-
sociated with an infinite number of states with different radial components whose
energies form a non-degenerate continuum of states.

We illustrate the difference between Barnett and Landau wave functions by
perturbation theory when λ = R4B 2

0 |e|2/ħ2 ¿ 1. For R = 1 µm, λ < 1 for B0 .
0.5 mT. The Landau levels then read

ψn,k,σ

(
r̃ = r

R
,Θ

)
= e i nΘ

p
π

[
J|n|( j|n|,k r̃ )

J|n|+1( j|n|,k )

− ∑
s 6=k

(
R2B0|e|

ħ
)2 p

2J|n|( j|n|,s r̃ )κk,s

j 2
|n|,k − j 2

|n|,s

]
|σ〉 (5.11)

with energies

E =
ħ2 j 2

|n|,k
2mR2 +µB B0(n + gsσ)+ R2m

ħ2 (µB B0)2κk,k , (5.12)

where

κk,q =
∫ 1

0 dr̃ r̃ 3 J|n|( j|n|,k r̃ )J|n|( j|n|,q r̃ )

J|n|+1( j|n|,k )J|n|+1( j|n|,q )
. (5.13)

In a free electron gas with EF Àħ2/(2mR2), states with n À 1 are occupied. The
difference between the probability distributions obtained from Eqs. (5.7) and (5.11)
is plotted for angular momentum 100ħ, i.e. n = 100, in Fig. 5.1 for the four lowest
energy states andλ= 0.01. The diamagnetic term acts as an effective confinement,
since the probability of finding an electron near the edge of the disk is smaller for
Landau than for Barnett levels. Expressed differently, in the rotating case centrifu-
gal forces push the electrons to the outside of the disk that do not act in the case of
a magnetic field.

5.4 MAGNETIZATION BY ROTATION – THE BARNETT EF-
FECT

The magnetization 〈mz〉, where 〈. . .〉 refers to grand-canonical averaging, induced
by an applied magnetic field B in the z-direction can be obtained from the grand
canonical potential Ω as 〈mz〉 = −(∂Ω/∂B)T,µ. For the Barnett magnetization, i.e.,
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FIGURE 5.1: Difference between the wave functions of a (rotating) two-dimensional electron gas and
one in an applied magnetic field for the lowest energy eigenstates with 〈Lz 〉 = 100ħ.

magnetization by rotation, we can establish a similar relation as follows: The work
needed to increase the rotation frequency by dω is given by

δW = 〈H(ω+dω)−H(ω)〉 =−〈Jz〉dω , (5.14)

where in the last step we used the Hamiltonian in the rotating frame of reference,
Eq. (5.5). The total angular and magnetic momenta are related by

〈mz〉 =−γJ 〈Jz〉 , (5.15)

where γJ = g JµB /ħ with Bohr magneton µB and g J the Lande g -factor of the total
angular momentum. Thus

δW = 1

γJ
〈mz〉dω (5.16)

and the complete differential of the grand canonical potential becomes

dΩ=−SdT −N dµ+ mz

γJ
dω . (5.17)

Therefore,

〈mz〉 = γJ

(
∂Ω

∂ω

)
T,µ

. (5.18)
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We can now compute the Barnett area magnetization density, Mz = 〈mz〉/πR2,
in the 2DEG with energy eigenvalues En,k,σ given by Eq. (5.8). Then,

Mz = −kB T
γJ

πR2

∑
n,k,σ

∂

∂ω
ln

(
1+e−β(En,k,σ−µ)

)
= − γJħ

πR2

∑
n,k,σ

(
n + σ

2

)
f (En,k,σ) . (5.19)

We can evaluate the sum over states at low temperatures and small rotation fre-
quencies, ħω¿ ħ2 j 2

|n|,k /(2mR2). Since the zeroth order term and terms propor-
tional to σn in the first order term drop out when summing over n and σ=±1, we
can write

Mz =− γJ

πR2

∑
n,k,σ

δ

(ħ2 j 2
|n|,k

2mR2 −µ
)
ħ2ω

(
n2 + 1

4

)
. (5.20)

We can identify a term proportional to the energy density of states per unit area of
the 2DEG

D(E) := 1

πR2

∑
n,k,σ

δ

( ħ2

2mR2 j 2
|n|,k −E

)
= 2

π2

m

ħ2 . (5.21)

We still have to compute the term proportional to n2 in Eq. (5.20). The Bessel
function zeros obey |n| < j|n|,1 < j|n|,2 < ·· · < j|n|,k and for large |n|

jn,1 ≈ n + cn1/3 +O (n−1/3) , (5.22)

where c ≈ 1.856 [18]. Denoting the highest occupied angular momentum quantum
number with |nmax | and using µÀħ2/(2mR2) we find

|nmax | ≈
√

2mR2µ

ħ2 À 1 (5.23)

and

∞∑
n=−∞

n2
∞∑

k=1
δ

( ħ2

2mR2 j 2
|n|,k −µ

)

=
√

2mR2

ħ2µ

|nmax |∑
n=0

n2
∞∑

k=1
δ

 j|n|,k −
√

2mR2µ

ħ2

 . (5.24)

The factor

ρn(x) :=
∞∑

k=1
δ( jn,k −x) (5.25)
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is the density of zeros of the Bessel function of the first kind in the interval [x, x +
dx]. For large n [19]

ρn(x) ≈ 1

π

√
1− n2

x2 . (5.26)

and

(5.24) =
√

2mR2

ħ2µ

nmax∑
n=0

n2 1

π

√
1− n2

n2
max

= 2mR2

ħ2

1

π

∫ 1

0
dxx2

√
1−x2 = mR2

8ħ2 . (5.27)

Finally,

Mz = −γJ

2
ħ2ωD(µ)− γJωm

4π

= −γJ

π2 mω− γJωm

4π
. (5.28)

The Barnett magnetization is thus purely paramagnetic, i.e., pointing in direction
of the Barnett gauge field −ω/γJ . The first term in Eq. (5.28) stems from the cou-
pling of the electron spin with the Barnett gauge field. The coupling of the electron
spin with an applied magnetic field manifests itself in Pauli paramagnetism, i.e.
Mz =χPauliB0 with [20]

χPauli =µ2
B D(µ) = 2

π2 m
(µB

ħ
)2

. (5.29)

Using χPauli in the first term of Eq. (5.28), we can write it as

Mz |Pauli =χPauli

( g J

2

)2
(
− ω

γJ

)
, (5.30)

where g J = γJħ/µB . In an free electron gas in an applied magnetic field, the orbital
motion of the electron gas gives rise to Landau diamagnetism with a susceptibility
of χLandau =−χPauli/3. In the case of a rotating free electron gas the second term in
Eq. (5.28) stems from the orbital motion of the electrons, which is also a paramag-
netic response to the Barnett gauge field −ω/γJ . The orbital contribution Mz |orbital

to the magnetization Mz of Eq. (5.28) can be written as Mz |orbital = χorbital(−ω/γJ )
with

χorbital =−3π2

2

( g J

2

)2
χLandau = π2

2

( g J

2

)2
χPauli . (5.31)
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Since γJ /g J ≈ 1011 (Ts)−1, the Barnett gauge field BBarnett = −ω/γJ is small for ro-
tation frequencies achievable in the laboratory. For ω = 1 MHz, BBarnett ≈ 10−5 T.
As a consequence, the achievable Barnett area magnetization density can be esti-
mated to be

|Mz | ≈
( ω

1 MHz

)(
m

me

)
·10−14 A, (5.32)

where me is the mass of the free electron.

5.5 ROTATION-INDUCED EFFECTS IN A ROTATING ELEC-
TRON GAS WITH SPIN-ORBIT INTERACTION

By taking the non-relativistic limit of the Dirac equation in the rotating frame of
reference, Matsuo et al. [14] arrived at the Pauli-Hamiltonian for a rotating system:

Ĥ =
~̂π2

2m
−~ω·(~̂r×~̂π)−~ω·~̂S− g

2
µB~B ·~σ−λ|e|

2ħ
[
~̂π×~E ′−~E ′×~̂π

]
+λ|e|

2
div~E ′+|e|φ , (5.33)

where ~̂π = ~̂p + |e|~A, |e| the elementary charge, ~̂S = ~̂σħ/2 is the spin angular mo-
mentum operator, ~E ′ = ~E + (~ω×~r )× ~B is the effective electric field in the rotating
frame of reference, φ the electric potential, g the electron g -factor and λ is the
spin-orbit-coupling constant. λ = ħ2/4m2c2 is negligible in vacuum. However, in
some condensed matter systems coupling to the lattice can be described by the
same Hamiltonian with an effectively enhanced λ [21, 22]. In the previous sec-
tion we have discussed the rotation-induced magnetization, whereas Matsuo et al.
focused on the mechanical generation of spin currents in systems described by
the Hamiltonian of Eq. (5.33). Another way to explore the effects of mechanical
rotation is studying the energy corrections of electronic states. Since for B0 = 1 T
ωc ≈ 1011 Hz, we may assume that |~ω|¿ωc in almost all practical cases. Therefore,
we may treat the effects of mechanical rotation perturbatively. Assuming that both
~B and ~E are constant and oriented along the z-direction as well as assuming that
the electron’s motion is restricted to the x − y-plane, the Hamiltonian of Eq. (5.33)
reduces to that of a Rashba 2DEG rotating in a magnetic field:

Ĥ = Ĥ0 + Ĥpert , (5.34)

where

Ĥ0 =
~̂π2

2m
− λ|e|

ħ
~̂σ(~̂π×~E)+ g

2
µB~̂σ ·~B . (5.35)

and

Ĥpert =−ħω
2
σ̂z −ω(x̂π̂y − ŷπ̂x )+ λ|e|

ħ ωB0σ̂z (x̂π̂y − ŷπ̂x )+ωB0λ|e| (5.36)
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is the perturbation due to rotation. In the following discussion, we follow an ap-
proach outlined in [23] that does not make use of any particular gauge. Observing
that

[π̂x , π̂y ] =−iħ|e|B0 (5.37)

for all gauges allows us to define the lowering operators

â = π̂x − i π̂y√
2mħωc

and b̂ = i â† +
√

mωc

2ħ (x̂ + i ŷ) , (5.38)

where ωc = |e|B0/m is the cyclotron frequency. One sees that

[â, â†] = [b̂, b̂†] = 1 and [â, b̂] = [â†, b̂] = 0. (5.39)

We can introduce the ground state |0〉 with â|0〉 = b̂|0〉 = 0. By using the properties
of the ladder operators â and b̂ one sees

〈0|b̂n âm(â†)k (b̂†)l |0〉 = δk,mδl ,nk !l !〈0|0〉 . (5.40)

Using Eqs. (5.37) and (5.38), the unperturbed Hamiltonian can be written as

H0 =ħωc

(
â†â + 1

2

)
+ ħωc g

4
σz − λ|e||~E |

ħ
√

2mħωc

(
0 i â

−i â† 0

)
(5.41)

with eigenvalues [24]
Ek>0,l ,σ =ħωc (k +σδ) , (5.42)

and corresponding eigenstates

|k > 0, l ,σ〉 = 1√
2k !l !〈0|0〉

(−iχσ(â†)k−1(b̂†)l

(â†)k (b̂†)l

)
|0〉 , (5.43)

where σ=±1,

δ=
√√√√1

4

( g

2
−1

)2
+ 2kλ2|e|2|~E |2

ω2
c l 2

Bħ2
(5.44)

(with lB =√ħ/(|e|B0)) and

χσ = ħωc lBp
2λ|e||~E |

(
σδ− 1

2

(
1− g

2

))
. (5.45)

The Rashba spinorbit parameter in thin films α = λ|e||~E |, where |~E | is the electric
field confining the electrons to a two-dimensional system. For a gold film on a sil-
ver substrate [25] a spin orbit splitting of ∆k = 0.025 Å corresponding to α= 0.4 eV
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was found. With this, we can estimate ħωc lB /(λ|e||~E |) ¿ 1, assuming that B0 = 1 T.
As a result, we have in good approximation

δ≈
p

2k
λ|e||~E |
ħωc lB

and χσ ≈
p

k . (5.46)

For k = 0

E0,l =
ħωc

2

(
1− g

2

)
and |0, l〉 = (b̂†)l

p
l !

(
0
1

)
|0〉 . (5.47)

We note that the unperturbed eigenstates are degenerate in the quantum num-
ber l . Therefore, the first order energy corrections are given by the eigenvalues of a
matrix with entries 〈k, l̃ ,σ|Hpert|k, l ,σ〉, where Hpert is given by Eq. (5.36). With the
eigenstates given by Eq. (5.43) and Eq. (5.40) one easily sees that

〈k, l̃ ,σ|σz |k, l ,σ〉 = 0. (5.48)

The angular momentum operator can be expressed in terms of the operators a, b,
a† and b† as

L̂z = x̂π̂y − ŷπ̂x =ħ
(
â†â + ââ† + i b̂â − i b̂†â†

)
. (5.49)

and one obtains

〈k, l̃ ,σ|L̂z |k, l ,σ〉 =
δl̃ ,lħ

|χσ|2 +k

(|χσ|2(2k −1)+k(2k +1)
)≈ 2ħkδl̃ ,l (5.50)

and

〈k, l̃ ,σ|σz L̂z |k, l ,σ〉 =
δl ,l̃ħ

|χσ|2 +k

(|χσ|2(2k −1)−k(2k +1)
)≈−ħδl̃ ,l . (5.51)

We see with Eqs. (5.50) and (5.51) that the matrix with entries 〈k, l̃ ,σ|Hpert|k, l ,σ〉
is diagonal and that in first order perturbation theory rotation does not lift the
degeneracy in l . The first order energy correction to the eigenstate |k, l ,σ〉 is given
by

∆Ek,l ,σ ≈−2ħωk . (5.52)

Similarly, for k = 0 we obtain from Eq. (5.47)

∆Ek=0,l =−ωħ
2

. (5.53)

We note that rotation does not lift the degeneracy with respect to the quantum
number l . Furthermore, in first order perturbation theory the result is indepen-
dent of the spin-orbit coupling constant.
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For B0 = 1 T corresponding to ωc ≈ 1.8 · 1011 Hz resp. ħωc ≈ 10−4 eV, we see
that the rotation-induced energy-splitting is only a minor correction, since ħω ≈
7 ·10−10 eV for ω = 1 MHz, which is about four orders of magnitude smaller than
the hyperfine splitting of hydrogen [17].

5.6 CONCLUSIONS
We explored the differences between the “Barnett gauge field” due to rotation and
an applied external magnetic field for the two-dimensional electron gas. The “Bar-
nett levels” in the rotating 2DEG differ from the Landau levels in an applied mag-
netic field, e.g., by the lack of degeneracy: Whereas the Landau levels are highly
degenerate, the Barnett levels are not. In addition, mechanical rotation introduces
a centrifugal term in the Hamiltonian, which leads – in comparison to the case of
an applied magnetic field – to a shift of the expectation value of the radial coordi-
nate towards the edge of the disk.

Rotation may be considered as a Barnett gauge field BBarnett = −ω/γJ . Spin-
polarization due to rotation leads to a paramagnetic response (g J /2)2χPauli, where
χPauli is the susceptibility found for the usual Pauli paramagnetism of a free elec-
tron gas. However, since the Barnett gauge field couples only linearly to the orbital
degrees of freedom of the electron, we find not a diamagnetic response – as for an
applied field where we have Landau diamagnetism −χPauli/3, but also a paramag-
netic response.

Furthermore, we used the Hamiltonian for a rotating Rashba system derived by
Matsuo et al. [14] in order to discuss the rotation induced energy splitting. The en-
ergy correction is small for attainable rotation frequencies, making experimental
observation difficult.
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A
PERTURBATION THEORY

Here we outline the perturbation theory for the eigenvalue problem of a general
matrix M as outlined in [1].

The inner product 〈~x,~y〉 of vectors~x,~y ∈Cn has the following properties:

1. 〈~x,~x〉 real and non-negative for all~x ∈Cn

2. 〈~x,~x〉 = 0 if and only if~x =~0
3. 〈~x,~y〉 = 〈~y ,~x〉∗

4. 〈~x,α~y +β~z〉 =α〈~x,~y〉+β〈~x,~z〉
A possible definition of the inner product is

〈~x,~y〉 :=~x†K~y , (A.1)

where K is a Hermitian, positive-definite matrix and~x† denotes the Hermitian con-
jugate of~x. Two vectors~x and~y are said to be K-orthogonal if 〈~x,~y〉 =~x†K~y = 0.

In a linear vector space with an inner product, we call A# the adjoint of the ma-
trix A if 〈~x,A~y〉 = 〈A#~x,~y〉 for all~x,~y in this space. It follows from the inner product
defined by Eq. (A.1), that

A# = K−1A†K . (A.2)

A is called K-normal if it commutes with its K-adjoint, i.e. when AA# = A#A. Let us
consider a complete set of vectors ~ui which are pairwise K-orthogonal and maxi-
mally normalized, i.e.

~u†
i K~u j =

{
0 if j 6= i

1 if j = i
. (A.3)
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The normalized K-dyads Ei , j are defined as

Ei j ≡~ui~u
†
j K . (A.4)

Since the set of ~ui was assumed to be complete, the set of K-dyads Ei j must be
complete as well and may serve as a basis for the expansion of square matrices. An
arbitrary square matrix A can be thus written as

A =∑
i j

ai j Ei j =
∑
i j

ai j~ui~u
†
j K . (A.5)

Multiplying by ~u†
m K from the left and by ~um from the right the expansion coeffi-

cients read
amn =~u†

mK A~un . (A.6)

If the ~ui are eigenvectors of the matrix A, one finds for m = n that am,n =λn , where
λn is an eigenvalue of A, while amn = 0 in all other cases.

Suppose now that
A = A0 +εA1 , (A.7)

where ε is a small parameter. We assume that A0 is K-normal and that the eigen-
value problem of A0 has been solved. Furthermore, the eigenvalues λi of A0 are
non-degenerate and the eigenvectors ~ui are pairwise K-orthogonal and maximally
normalized (i.e. normalized with respect to the inner product defined by K). Fol-
lowing (A.5) we can expand

A0 =
∑

i
λi Ei i =

∑
i
λi~ui~u

†
i K (A.8)

where all λi are distinct. Following (A.5) and (A.6), we can also write

A1 =
∑
i , j

(~ui KA1~u j )Ei , j . (A.9)

In order to obtain the exact eigenvectors and eigenvalues, we make the ansatz ~u′
i =

~ui + ε~vi + ε2~wi +O (ε3) and λ′
i = λi + εµi + ε2νi +O (ε3). Collecting the first order

terms yields
A1~ui +A0~vi =µi~ui +λi~vi . (A.10)

Since the set of eigenvectors is complete, we can expand

~vi =
∑

j
ai j~u j . (A.11)
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With (A.8) and (A.9) and the relation

Ei j~uk =~ui~u
†
j K~uk =

{
0 if k 6= j

~ui if k = j
(A.12)

by comparing the coefficients of the eigenvectors in (A.10) for i = j we obtain the
first order correction of the eigenvalue,

µi =~u†
i KA1~ui . (A.13)
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B
DAMPING BY RADIATION

In this chapter we discuss radiative losses and estimate their strength compared to
Gilbert damping.

We first discuss the multipole fields created by a precessing magnetic moment
following the presentation in [1]. When a time-dependence of e−iωt is assumed,
Maxwell’s equations in a source free region read

∇×~E = i k~B , ∇×~E = 0 (B.1)

∇×~B =−i k~E , ∇×~B = 0, (B.2)

where k =ω/c. A general solution for electromagnetic fields in a source free region
is given by

~E = ∑
l ,m

[
aE (l ,m) fl (kr )~Xl ,m − i

k
aM (l ,m)∇× gl (kr )~Xl ,m

]
, (B.3)

~B = ∑
l ,m

[
i

k
aE (l ,m)∇× fl (kr )~Xl ,m +aM (l ,m)∇× gl (kr )~Xl ,m

]
, (B.4)

where ~Xl ,m denote the normalized vector spherical harmonics. These are defined
as

~Xl ,m = 1p
l (l +1)

~LYl ,m , (B.5)

with angular momentum operator~L =−i~r ×∇ and spherical harmonics Yl ,m . The
functions fl and gl are both linear combinations of the spherical Hankel func-
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tions of first and second kind h1,2(kr ). The multipole moments created by a time-
varying magnetic moment ~Me−iωt , where we take the real part as the physical
quantity, are given by [1]

aE (l ,m) =− 4πk3

p
l (l +1)

∫
d3xY ∗

l ,m

[∇· (~r × ~M)
jl (kr )

]
(B.6)

and

aM (l ,m) = 4iπk4

p
l (l +1)

∫
d3xY ∗

l ,m(~r · ~M) jl (kr ) , (B.7)

where jl denotes spherical Bessel functions. The power radiated away by a source
is given by

P = c

8πk2

∑
l ,m

[|aE (l ,m)|2 +|aM (l ,m)|2] . (B.8)

We now consider a magnetic moment that precesses with frequency ω and at
an angle Θ̃ around the z-axis. Assuming that the magnetization density m0/V is
nonzero in a source region of radius a, we can write

~Me−iωt =Θ(r −a)
m0

V
sinΘ̃

i
1
0

e−iωt . (B.9)

One immediately sees from Eq. (B.6) that aE (l ,m) = 0, since the magnetization
density is assumed to be constant in the source region. By parametrizing the posi-
tion vector~r as~r = r (sinΘsinφ, sinΘcosφ,cosΘ)T one finds

aM (l ,m) =−4πi k4

√
4π

3

m0

V
sinΘ̃δ1,lδm,1

∫ a

0
dr r 3 jl (kr ) , (B.10)

where we exploited the orthogonality of the spherical harmonics. In the limit ka →
0, one finds

k4

V

∫ a

0
dr r 3 j1(kr )

ka→0= − 3

4π
k3 (B.11)

and thus
aM (l ,m) = i

p
12πm0 sinΘ̃k3δ1,mδ1,l . (B.12)

As only the magnetic multipole moment with l = m = 1 is nonzero, using Eqs. (B.8)
and (B.12) we find for the power radiated away by the precessing magnetic mo-
ment m0

P = 3

2
ck4m2

0 sin2 Θ̃ . (B.13)
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A rotating magnetic moment rotating with frequency ω has the potential en-
ergy −m0ω/γ. Thus we can estimate the time τR in which this energy is radiated
away as

τR =
∣∣∣∣∣m0

ω
γ

P

∣∣∣∣∣= 2

3

1

|m0γk3 sinΘ̃| . (B.14)

The time scale at which Gilbert damping leads to the alignment of a rotating mag-
netic moment with the rotation axis is given by τG = (αω)−1. Thus

τR

τG
= 2

3

αc3

m0ω2|γ|sinΘ̃
≈ 1032 α

N (ω/(1 Mhz))
, (B.15)

where we have used m0 = NµB . We may thus conclude that radiative losses are
negligible in comparison to Gilbert damping.

REFERENCES
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SUMMARY

The first technological application of magnetic phenomena has been the compass,
which ultimately enabled the colonization of the world by Europeans in the late
middle ages and thus shaped the early modern era. A compass is also an example
for a magneto-mechanical device, i.e. a device in which the magnetic and me-
chanical degrees of freedom are coupled. There had been no conclusive theory on
the origin of magnetism until the advances in electrodynamics in the 19th century
led to the formulation of the molecular current theory of ferromagnetism. In order
to test this theory, gyromagnetic experiments were devised: The Barnett effect, i.e.
magnetization by rotation, and the Einstein-de Haas effect, where a mechanical
rotation induced by a change of magnetization is studied. These two experiments,
in particular Barnett’s work, provided first evidence of the anomalous g -factor and
thus a hint at the quantum nature of the electron spin.

The most notable technological developments of the last decades have been
in microelectronics. Advances in fabrication techniques and an ever increasing
control of materials enabled the microelectronics industry to comply with Moore’s
law, i.e. that the number of transistors on an integrated circuit doubles roughly
every two years by continuously shrinking the size of the building blocks of the
integrated circuits. Not only did the sizes of electric elements on integrated cir-
cuits shrink, but by employing the same techniques the sizes of mechanical ele-
ments, such as cantilevers, were miniaturized in similar fashion, giving rise to the
field of micro-electro-mechanical devices (MEMS) and eventually nano-electro-
mechanical devices (NEMS).

In line with the emergence of the fields of MEMS and NEMS, the interest in gy-
romagnetic experiments has revived. In particular, the Einstein-de Haas effect in a
cantilever with ferromagnetic tip has been studied previously both experimentally
and theoretically. In this thesis, we focused on the Barnett effect and the inter-
play of this effect with its close relative, the Einstein-de Haas effect. In Chapter
1 of this thesis we introduce the field by reviewing the classical Einstein-de Haas
and Barnett effect as well as the Landau-Lifshitz-Gilbert equation, which we use
extensively in the following chapters.

In Chapter 2, we perform a feasibility study concerning the Barnett effect in
magnetic nanostructures and thin films. To this end, we introduce a modifica-
tion in the damping term of the Landau-Lifshitz-Gilbert equation, which takes into
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account the viscous damping of the magnetization motion relative to the frame
of reference defined by the lattice. This gives rise to a Barnett gauge field in the
Landau-Lifshitz-Gilbert equation in the lattice frame of reference. We study the ef-
fect of this gauge field on the magnetization density and estimate the mechanical
rotation frequencies required to observe the Barnett effect in a thin film by, e.g.,
the magneto-optical Kerr effect. In addition, we discuss the feasibility of moving
domain walls by mechanical rotation of a ferromagnetic wire.

In Chapter 3 we continue our discussion of the Barnett effect in magnetic nanos-
tructures in terms of the magneto-mechanical dynamics of a suspended quasi
one-dimensional magnetic wire containing a tail-to-tail domain wall. The system
may be driven out of equilibrium by a mechanical torque and/or an applied mag-
netic field. Applying Onsager’s reciprocity relation, we find a unified description
of the Barnett effect – magnetization by rotation – and Einstein-de Haas effect –
mechanical rotation induced by magnetization.

In Chapter 4, we focus on the dynamics of rapidly rotating cosmic dust grains.
The polarization of starlight passing through clouds of cosmic dust is attributed to
the fact that the dust grains align their large axis of inertia with respect to the di-
rection provided by cosmic magnetic fields. As the exact mechanisms of this align-
ment and the magnitude of the relevant time-scales remain under discussion, we
investigate the alignment of particles with ferromagnetic inclusions by formulat-
ing the coupled magneto-mechanical equations of motion. To this end, we use
the Landau-Lifshitz-Gilbert equation, modified to take into account the effects of
mechanical rotation, in order to model the magnetization dynamics. We find that
the relevant time-scales for the alignment of the major axis of inertia with the ex-
ternal magnetic field is independent from the mechanical angular momentum of
a particle in contrast to previous works.

In Chapter 5, we discuss the effects of mechanical rotation on a free electron
gas. By taking into account the orbital degrees of freedom of the electrons in the
rotating frame of reference, we find eigenstates that resemble the Landau levels in
a free electron gas subjected to an external magnetic field. However, in the case of
rotation, the electron’s spectrum in the plane perpendicular to the rotation axis is
not degenerate as is the case with the electrons in Landau levels and the plane
perpendicular to the applied magnetic field. Furthermore, we find the Barnett
magnetization induced in a free electron gas to be a purely paramagnetic effect
in contrast to the response to a magnetic field.
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De eerste technologische toepassing van magnetische effecten was het kompas,
dat uiteindelijk de kolonisatie van de wereld door Europeanen in de late Middel-
eeuwen mogelijk maakte, en daarmee vorm gaf aan het begin van de Moderne Tijd.
Een kompas is ook een voorbeeld van een magneto-mechanisch apparaat, d.w.z.
een apparaat waarin de magnetische en mechanische vrijdheidsgraden gekoppeld
zijn. Er was geen sluitende theorie van de oorsprong van het magnetisme totdat
de voortschrijdende inzichten in electrodynamica in de 19e eeuw leidden tot de
theorie van ferromagnetisme op basis van moleculaire stromen. Om deze theorie
te testen werden gyromagnetische experimenten bedacht: het Barnett effect, wat
neerkomt op magnetisatie door rotatie enerzijds, en het Einstein-de Haas effect,
waar een mechanische rotatie wordt veroorzaakt door een veranderende magne-
tisatie anderzijds. Deze twee experimenten, het werk van Barnett in het bijzonder,
vormden het eerste bewijs van de afwijkende g-factor en gaven daarmee een hint
van het kwantum karakter van de elektronspin.

De meest opmerkelijke technologische vooruitgangen van de afgelopen decen-
nia hebben zich voorgedaan in de micro-electronica. Vooruitgang in fabricage-
technieken en een steeds betere beheersing van materiaaleigenschappen hebben
de micro-electronica industrie het mogelijk gemaakt om de wet van Moore bij te
benen, wat wil zeggen dat het aantal transistoren op een geïntegreerde schake-
ling ruwweg elke twee jaar verdubbelt, door de bouwstenen van de circuits con-
tinu te verkleinen. Niet alleen de afmetingen van de elektrische componenten
zijn verkleind, maar door dezelfde technieken toe te passen op mechanische com-
ponenten, zoals buigbare balken, zijn deze op soortgelijke wijze verkleind. Dit
leidde tot de opkomst van het vakgebied van de micro-elektromechanische sys-
temen (MEMS), kort daarna gevolgd door de nano-elektromechanische systemen
(NEMS).

In lijn met de opkomst van onderzoek aan MEMS en NEMS is er hernieuw-
de belangstelling voor gyromagnetische experimenten ontstaan. In het bijzonder
is er zowel theoretisch als experimenteel onderzoek gedaan aan het Einstein-de
Haas-effect in een buigende balk met een ferromagnetische tip. In dit proefschrift
hebben wij ons gericht op het Barnett effect, en het samenspel met het nauw ver-
wante Einstein-de Haas effect. In hoofdstuk 1 introduceren we het vakgebied door
een overzicht van de klassieke Einstein-de Haas en Barnett effecten, tesamen met
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de Landau-Lifschitz-Gilbert-vergelijking te geven, waar we in de daaropvolgende
hoofdstukken uitvoerig gebruik van maken.

In hoofdstuk 2 voeren we een haalbaarheidsstudie uit over het Barnett-effect
in magnetische nanostructuren en dunne films. Hiertoe introduceren we een mo-
dificatie van de dempingsterm van de Landau-Lifschitz-Gilbert vergelijking, om
rekening te houden met de visceuze demping van de beweging van de magneti-
satie relatief aan het referentie-assenstelsel van het kristalrooster. Dit veroorzaakt
een Barnett ijkveld in de Landau-Lifschitz-Gilbert vergelijking. We bestuderen het
effect van dit ijkveld op de magnetisatiedichtheid en schatten de mechanische ro-
tatiefrequenties die benodigd zijn om het Barnett-effect te meten in een dunne
film, bijvoorbeeld door gebruik te maken van het magneto-optische Kerr effect.
Daarnaast bespreken we de mogelijkheid om domeingrenzen te verschuiven door
mechanische rotatie van een ferromagnetisch draadje.

In hoofdstuk 3 zetten we onze discussie van het Barnett-effect in magnetische
nanostructuren voort in termen van de magneto-mechanische dynamica van een
vrijhangend quasi 1-dimensionaal draadje die een staart-op-staart domeingrens
bevat. Het systeem kan uit evenwicht gedreven worden door een mechanische
koppel en/of een aangelegd magneetveld. Door Onsager’s reciprociteitsrelatie toe
te passen vinden we een verenigde beschrijving van het Barnett-effect (magneti-
satie door rotatie) en het Einstein-de Haas-effect (rotatie door magnetisatie).

In hoofdstuk 4 richten wij ons op de dynamica van snel roterende kosmische
stofkorrels. De polarisatie van sterlicht dat door wolken kosmische stof schijnt
wordt toegeschreven aan het feit dat de stofkorrels hun dominante traagheidsas
uitlijnen op de richting van de kosmische magneetvelden. Aangezien de precie-
ze mechanismen van deze uitlijning en de relevante tijdschalen nog steeds on-
derwerp van discussie zijn, onderzoeken wij de uitlijning van ferromagnetische
stofkorrels door de gekoppelde magneto-mechanische bewegingsvergelijkingen te
formuleren op basis van een Landau-Lifschitz-Gilbert-vergelijking die aangepast
is om rekening te houden met de effecten van mechanische rotatie, teneinde de
magnetisatiedynamica te modelleren. Ons resultaat is dat de relevante tijdschalen
voor de uitlijning van de dominante traagheidsas op het extern magneetveld onaf-
hankelijk zijn van het mechanisch impulsmoment van een deeltje, in tegenstelling
tot eerder werk.

In hoofdstuk 5 bespreken we de effecten van mechanische rotatie op een vrije-
elektronengas. Door rekening te houden met de orbitale vrijheidsgraden van de
elektronen in het roterende assenstelsel vinden we eigentoestanden die lijken op
de Landau niveaus van een vrije-elektronengas in een extern magneetveld. Maar,
in het geval van rotatie, zien we dat het spectrum van het elektron in het vlak lood-
recht op de rotatie-as niet ontaard is, in tegenstelling tot het spectrum van elek-
tronen in Landau niveaus (in het vlak loodrecht op het aangelegde magneetveld).
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Verder zien we dat de Barnett-magnetisatie geïnduceerd in een vrije-elektronengas
een louter paramagnetisch effect is, in tegenstelling tot de respons op een aange-
legd magneetveld.
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