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Abstract

Currently, most of FMCW radar systems for target detection and localization are based
on the radar system with multiple receiving antennas, but little based on the SISO
system. In this project, we will show a unique signal processing pipeline based on the 8
GHz SISO FMCW radar system. An advanced algorithm of multi-target detection and
tracking will be designed to monitor the range, angle, and Doppler velocity information
of targets.
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Introduction 1
1.1 Problem statement

Nowadays, more and more applications (e.g. intelligent safeguard systems and smart
lighting systems) have been designed for smart building. The sensor network monitors
and provides real-time information of targets to other higher layer applications. Be-
cause of this, the accuracy of localization is important for the sensor network. Besides,
real-time monitoring requires that sensor network is low-power and low-complexity.
Compared to other image-based sensors, the frequency-modulated continuous-wave
(FMCW) radar sensor has obvious advantages for privacy preservation and robustness
of the light from the environment.

Currently, a lot of researches of indoor localization are based on the radar sys-
tem with multiple receiving antennas. According to the phase difference and frequency
difference, the position information and velocity information of targets can be easily
obtained. However, there has been very little research intended to indoor localization
with Single Input Single Output (SISO) FMCW radar system.

1.2 Related work

As a low-power, low-complexity sensor, FMCW radar system has been widely used in
short-range detection for automotive application [18, 20, 25] and indoor localization
[34, 35].

Currently, FMCW radar systems for target detection and localization are mostly
based on Multiple Input Single Output(MISO) systems in K-band [12, 18, 20, 24, 39]
and Multiple Input Multiple Output(MIMO) systems in W-band[19, 26, 30, 33]. The
resolution and design complexity depend on the work frequency of the radar. The
FMCW radar with higher frequency has a better resolution and beam-forming, but a
higher complexity and power. However, only a few researches for the localization have
considered the FMCW radar with lower frequency.

The signal processing pipelines for MISO and MIMO systems are similar. As
the frequency difference between the transmitted signal and the echo signal carries
range and Doppler velocity information of the target, 2D FFT and detection algorithms
are used to detect the range and Doppler velocity of the target. The angle of arrival is
estimated by the phase difference with the antenna array. Then, the paring algorithm
is used to match the position and velocity information of the same target. Besides
the typical Constant False-Alarm Rate (CFAR) detection [11, 36], the deep learning
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method (e.g. Convolutional Neural network(CNN) [33]) can also be used for the
target detection. As a typical SISO system cannot get angle information, few study of
detecting target has focused on SISO FMCW radars.

For multi-target tracking algorithms, there are two main methods: 1) proba-
bilistic hypothesis density (PHD) filter [9, 13, 14, 32], 2) Bayes filter with data
association [8]. The PHD filter uses the random finite sets (RFS) of state and
observation to replace the typical accurate state and measurement, which can
remove the noise effectively. Compared to PHD filter, the data association method re-
lies more on accuracy of the detection algorithm but has less computational complexity.

In summary, current multi-target detection algorithms mostly are based on the
signal processing pipeline with MISO and MIMO radar systems instead of with the
lower frequency SISO system. The main direction of current multi-target tracking
algorithms is PHD filter. However, the performance of multi-target tracking with PHD
filter comes at the expense of a high computational complexity, which is not suitable
for real-time indoor target monitoring.

1.3 Thesis objective

The main objectives of this thesis project are:

. Design new signal processing pipeline for a SISO FMCW radar system

. Improve multi-target detection algorithm to increase the accuracy of detection.

. Optimize low-complexity multi-target tracking algorithm for cases where targets
appear and disappear.

In this project, we consider a methodology for multi-target detection and tracking
for an 8 GHz SISO FMCW radar system. To locate multiple targets with a SISO
radar system, a new signal processing pipeline different from MIMO or MISO signal
processing has to be designed. Time domain sliding window will be adopted to estimate
the angle information of targets. For detection and tracking, an improved multi-target
detection algorithm will be adopted to reduce the background noise and improve the
detection accuracy. Multi-target tracking algorithms with data association also offer
some improvements for cases where targets appear and disappear.

1.4 Outline

The structure of this report is as follows:

. Chapter 2 will introduce the basic data model of an FMCW radar and extend the
basic data model of a radar signal to the multipath propagation and multi-target
cases.
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. Chapter 3 will introduce the pre-processing of FMCW radar signals which can
transfer the time domain radar signal to a joint range, Doppler, and angle domain
signal.

. An improved multi-target detection algorithm will be presented in Chapter 4.

. Chapter 5 will derive the multi-target tracking algorithm.

. Chapter 6 will introduce the simulation model and evaluate the simulation results.

. Chapter 7 will show the results of experimental data with real FMCW radar
system.

. The last chapter lists the conclusions and future work.
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Data model 2
In a general SISO FMCW radar system, a low-frequency FMCW waveform is mixed
with a local oscillator signal and generates the modulated signal, which will be sent by
a transmitting antenna. The receiving antenna receives the echo signal reflected by the
objects. From the frequency difference between the transmitted signal and the received
signal, we can obtain the range and Doppler velocity of targets.

Figure 2.1: The FMCW Radar system block

2.1 Theoretical Background of FMCW radar

In this project, a intra-pulse chirp beam scanning signal (shown in Figure 2.2) is used
as FMCW signal. The frequency of the transmitted signal is modulated linearly such
that the starting frequency fc is 7.3 GHz and the bandwidth B is 1 GHz.
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Figure 2.2: The signal of FMCW radar

Assume that time t can be divided into

t = nT + ts, 0 < ts < T (2.1)

where Tc is the sweep time and T is interval between two chirps.

The instantaneous frequency of the transmitted signal increases linearly for one
chirp. This can be expressed as

f(t) = fc + ρts, 0 ≤ ts ≤ Tc (2.2)

where fc is the starting frequency and B is the bandwidth. ρ = B
Tc

is the rate of the
frequency increase.

As the transmitted signal is not continuous, the instantaneous phase of the transmitted
signal is only related to the current chirp:

φ(nT + ts) = 2π

∫ ts

0

f(t)dt+ ϕ0

= 2π(fcts +
ρ

2
t2s) + ϕ0

(2.3)

where ϕ0 is the initial phase.

Therefore, the complex form of the transmitted signal is

sT (t) = aT e
jφ(t) = aT e

j(2π(fcts+
ρ
2
t2s)+ϕ0) (2.4)

where aT is the amplitude of the transmitted signal.

The transmitted signal is reflected by the object and then received by the re-
ceiving antenna. The received signal sR(t) can be regarded as a signal attenuated and
delayed version of the transmitted signal,

sR(t) ∝ sT (t− τ(t)) (2.5)
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With an object in linear motion, the time delay τ(t) denotes the round-trip time be-
tween the radar and the object.

τ(t) =
2(R + vt)

c
=

2(R + v(nT + ts))

c
(2.6)

where R is the initial distance of object, v is the Doppler velocity, and c is the speed
of light.
The received signal can be expressed as

sR(t) = aRe
jφ(t−τ(t)) = aRe

j(2π(fc(ts−τ(t))+ ρ
2
(ts−τ(t))2)+ϕ0) (2.7)

where aR is the amplitude of received signal.

By mixing the transmitted signal and received signal, we can get the beat-frequency
signal:

sB(t) = aT e
jφ(t)aRe

−jφ(t−τ(t))

= aTaRe
j(2π(fcts+

ρ
2
t2s)+ϕ0)e−j(2π(fc(ts−τ(t))+

ρ
2
(ts−τ(t))2)+ϕ0)

= aTaRe
j2π(fcτ(t)+ρτ(t)ts− ρ2 τ(t)

2)

(2.8)

According to Equation (2.6),

sB(t) = aTaRe
j2π(fc

2(R+v(nT+ts))
c

+ρts
2(R+v(nT+ts))

c
− 2ρ(R+v(nT+ts))

2

c2
)

= aTaRe
j2π[( 2fcR

c
− 2ρR2

c2
)+ts(

2fcv
c

+ 2ρR
c

+ 2ρvnT
c
− 4ρv2nT

c2
− 4ρRv

c2
)+t2s(

2ρv
c
− 2ρv2

c2
)+nT ( 2fcv

c
− 4ρRv

c2
)− 2ρv2n2T2

c2
]

(2.9)
As c is the speed of light and v � c, the terms with c2 in the denominator are quite small
and can be neglected [31]. The beat-frequency signal can be simplified and rewritten
as

sB(t) ≈ aTaRe
j2π[ 2fcR

c
+( 2fcv

c
+ 2ρR

c
+ 2ρvnT

c
)ts+

2ρv
c
t2s+nT

2fcv
c

]

≈ aTaRe
j2π 2fcR

c ej2π
2fcv
c
nT ej2π

2ρR
c
ts

= aBe
j2πfdnT ej2πfbts

(2.10)

with t = nT + ts.
The amplitude of the beat-frequency signal aB, Doppler frequency fd, and beat
frequency fb are:

aB = aTaRe
j2π 2fcR

c (2.11)

fd =
2fcv

c
(2.12)

fb =
2ρR

c
(2.13)
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2.2 Beam scanning

Our FMCW radar system is a SISO radar system with one transmitting antenna
and one receiving antenna. Both antennas are specially designed frequency scanning
antennas with ”rampart” shape. In this 8 GHz FMCW radar, the main direction of the
antenna beam changes linearly with increasing signal frequency. As the instantaneous
frequency of transmitted signal increases linearly for one chirp, there is a linear
relationship between the main direction of the antenna beam and fast time ts. For one
chirp, the antenna scans different angle in different time.

The main direction angle of the beam is

θ(t) = θ0 + µ(f(t)− fc) = θ0 + αts (2.14)

where θ0 is the initial angle and α is the rate of angle increase.

Figure 2.3: Beam scanning for one chirp

Based on this feature, for each chirp, the main direction of beam can sweep from -2
deg to 60 deg with 1 GHz scanning bandwidth. If we change the direction of excitement,
the radar will sweep the other symmetrical sector with 2 deg to -60 deg. In this project,
the radar scans both sectors from -60 deg to 60 deg, which can be seen in Figure 2.3.

2.3 Multipath propagation Model

As our FMCW radar system is designed for an indoor environment, the received signal
will not only come from one reflected path. It is necessary to consider the effect of
multipath interference.
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For the basic propagation model, the signal propagation between the transmit
antenna and the receive antenna can also be expressed by an impulse response function
h(t) [29]. According to Equation (2.4), the received signal sR(t) can be rewritten as

sR(t) = h(t) ∗ sT (t) = βδ(t− τ(t)) ∗ sT (t) (2.15)

h(t) = βδ(t− τ(t)) (2.16)

where β is the gain of path, δ(.) is Dirac delta function, and τ(t) is the time delay.

Next, we extend the impulse response function to a multipath propagation model.
Assume that the received signal of one object has L reflected paths. The multi-channel
impulse response function h(t) can be rewritten as

h(t) =
L∑
j=1

hj(t) =
L∑
j=1

βjδ(t− τj(t)) (2.17)

where hj(t) is the impulse response function of path j, βj is the gain of path j, and
τj(t) is the delay of path j.

Therefore, the received signal for a multipath propagation model becomes

sR(t) =

[
L∑
j=1

βjδ(t− τj(t))

]
∗ sT (t)

=
L∑
j=1

βjsT (t− τj(t))

=
L∑
j=1

aRje
j(2π(fc(ts−τj(t))+ ρ

2
(ts−τj(t))2)+ϕ0)

(2.18)

where aRj is the amplitude of received signal of path j.

Then, the beat-frequency signal sB(t) can be rewritten as

sB(t) = sT (t) · s∗R(t)

=
L∑
j=1

aTaRje
j2π(fcτj(t)+ρτj(t)ts− ρ2 τj(t)

2)

=
L∑
j=1

sBj(t)

(2.19)

where sBj(t) denotes the beat-frequency signal of path j, and is given by

sBj(t) = aTaRje
j2π(fcτj(t)+ρτj(t)ts− ρ2 τj(t)

2) (2.20)
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2.4 Multi-target Model

As the objective of this project is to detect and track multiple targets with an FMCW
radar, the data model should also consider the multi-target case. Assume that the
number of targets is N . The received signal of target i has Li reflected paths.

Assume that the environment background noise n(t) is homogeneous. Consider-
ing the reflection of multiple targets and background noise, the received signal can be
rewritten as

sR(t) =
N∑
i=1

Li∑
j=1

hij(t) ∗ sT (t) + n(t) (2.21)

hij(t) = βijδ(t− τij) (2.22)

where i is the target index, βij is the gain of target i with path j, and τij is the delay
of target i with path j.

Then, the beat-frequency signal with noise can be expressed as

sB(t) =
N∑
i=1

Li∑
j=1

aTaRije
j2π(fcτij+ρτijts− ρ2 τ

2
ij) + n(t)sT (t)

≈
N∑
j=1

Li∑
j=1

sBij(t) + nB(t)

(2.23)

where aRij is the amplitude of received signal of target i with path j, and nB(t) is the
noise of the beat-frequency signal after low pass filtering.
The beat frequency signal of target i with path j is given by

sBij(t) = aTaRije
j2π(fcτij+ρτijts− ρ2 τ

2
ij) (2.24)

where τij is the delay of target i with path j.

Assume the Doppler velocity of target i with path j is vij and the range of
target i with path j is Rij. Then, the delay can be express as

τij(t) =
2(Rij + vijt)

c
(2.25)

Similar with Equation (2.10), the beat frequency signal of target i with path j:

sBij(t) = aBije
j2πfdijnT ej2πfbij ts (2.26)

with t = nT + ts.

fdij =
2fcvij
c

(2.27)
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fbij =
2ρRij

c
(2.28)

where fdij is the Doppler frequency, and fbij is the beat frequency.

Assume the angle of target i with path j is θij. Considering beam scanning of
antenna, the radar can receive signal from target i with path j only in a certain time
with ts = tsij . According to Equation (2.14), tsij can be expressed as

tsij =
1

α
(θij − θ0) (2.29)

Then, the beat frequency signal of target i with path j can be rewritten as

sBij(t) = aBije
j2πfdijnT ej2πfbij tsδ(ts − tsij)

= aBije
j2πfdijnT ej2πfbij tsδ(ts −

1

α
(θij − θ0))

(2.30)

2.5 Conclusion

In this chapter, we have introduced the background theories of SISO FMCW radar
system and established the data model of signal processing with multipath propagation
and multi-target cases. The data model will be the basis of the whole signal processing
pipeline.
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Pre-processing of the radar
signal 3
The signal processing of the FMCW radar system can be divided into three parts:
pre-processing, multi-target detection, and multi-target tracking, which can be seen in
Figure 3.1. To locate the target in real-time, we set Nd chirps as a frame. we pre-
process and detect targets from the radar signal of each frame, and apply the detection
results of different frames to multi-target tracking.

Figure 3.1: Signal processing block of FMCW radar system

This chapter will mainly discuss the pre-processing of the FMCW radar signal.
The details of multi-target detection and tracking will be introduced in next Chapters.

In this chapter, we will introduce the initial point of signal processing, FMCW
matrix, and the two steps of pre-processing. With angular slide window and 2D FFT,
the time domain FMCW matrix can be transform into Doppler velocity, range and
angle domain and generate the 3D feature matrix.

3.1 FMCW matrix

For the first frame, after low-pass filtering and ADC sampling, the beat frequency
signal sB(t) (Equation (2.23)) is discretized by in-chirp sampling, and chirp-by-chirp
sampling. Let t = nT + ts, and sample ts as ts = m/fs with the sample rate fs. nT is
called slow time, while ts = m/fs is fast time. Then, the number of bins for one chirp
is M = fsTc.

13



Figure 3.2: FMCW matrix

The Nd×M matrix generated by the discretized beat-frequency signal is defined as
the FMCW matrix

SB =


sB(0, 0) sB(0, 1) · · · sB(0,M − 1)
sB(1, 0) sB(1, 1) · · · sB(1,M − 1)

...
...

...
sB(Nd − 1, 0) sB(Nd − 1, 1) · · · sB(Nd − 1,M − 1)

 (3.1)

sB(n,m) =
N∑
i=1

Li∑
j=1

sBij(n,m) + nB(n,m) (3.2)

0 ≤ n ≤ Nd − 1, 0 ≤ m ≤M − 1

where nB(n,m) is the noise of the discretized beat-frequency signal.

Based on Equation (2.30), the discredized beat frequency of target i with path
j can be expressed as

sBij(n,m) = aBije
j2πfdijnT ej2πfbij

m
fs δ(

m

fs
− 1

α
(θij − θ0)) (3.3)
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1 ≤ i ≤ N, 1 ≤ j ≤ Li

where N is the number of targets and Li is the number of reflected paths for target i.

3.2 Angular slide window

For MIMO and MISO systems, the angle of arrival estimation is based on the phase
difference from the antenna array. However, as a SISO system only has single receiving
antenna, we cannot use the same method to estimate the angle information. In this
project, a new method is needed to extract the angle information for the SISO FMCW
radar system.

As the chirp frequency shows a linear change with time for one chirp, the origi-
nal received signal can be divided into different angle signals using sliding window in
time domain. Several sliding windows belonging to different angles are used in each
row of the FMCW matrix. Each sliding window should be designed to enhance the
signal of one specific angle and reduce the signal belonging other angles.

Figure 3.3: FMCW matrix with angle

Assume that the number of the sliding windows is Na. The step size of the angel
depends on the number of sliding windows. According to Equation (2.14), the angle
resolution is denoted by ∆θ = αTc

Na
.

After performing the angular sliding window in fast time domain, we can get a
new Nd ×M ×Na time domain array:

SA = sA(n,m, l) = sB(n,m)wl(m) (3.4)

0 ≤ l ≤ Na − 1
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wl(.) is the angular sliding window for angle θl = θ0 + ∆θl in time domain. Con-
sider avoid spectrum leakage, we use Hamming window to generate the angular sliding
window [27].

wl(m) = w(m)δ(m− fs
α

(θl − θ0) +
Nw

2
) = w(m)δ(m− fs

α
∆θl +

Nw

2
) (3.5)

where w(.) is the Hamming window

w(n) =

0.54− 0.46 cos(
2πn

Nw − 1
) 0 ≤ n ≤ Nw − 1

0 other
(3.6)

Nw is the width of Hamming window in samples.

Then, the FMCW matrix of angle θl can be rewritten as

sA(n,m, l) =

[
N∑
i=1

Li∑
j=1

sBij(n,m) + nB(n,m)

]
wl(m)

=
N∑
i=1

Li∑
j=1

sAij(n,m, l) + nA(n,m, l)

(3.7)

sAij(n,m, l) = sBij(n,m)wl(m)

≈ aBije
j2πfdijnT ej2πfbij

m
fs δ(θij − (θ0 + ∆θl))

(3.8)

where nA(n,m, l) is the noise of the beat frequency signal after angular sliding window.

3.3 Range-Doppler 2D FFT

The time domain matrix with angle index l is defined as

SA(l) = [sA(n,m, l)| 0 ≤ n ≤ Nd, 0 ≤ n ≤M ] (3.9)

To get the range and velocity information of targets, the Fast Fourier Transform
algorithm is used to process the matrices SA(l), l = 0, 1, . . . Na − 1.

First, perform an FFT to the fast-time domain of the matrix SA(l). Different
rows correspond to chirps at different time. Then, perform an FFT to the slow-time
domain to generate range-Doppler matrix [37].
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Figure 3.4: 2D FFT

Ignoring the side lobe effect of window function, the 3D feature array can be ex-
pressed as

X = x(p, q, l) =

Nd−1∑
n=0

[
M−1∑
m=0

sA(n,m, l)e−j
2π
M
qm

]
e
−j 2π

Nd
pn

=
N∑
i=1

Li∑
j=1

sij(p, q, l) + nx(p, q, l)

(3.10)

sij(p, q, l) =

Nd−1∑
n=0

[
M−1∑
m=0

sAij(n,m, l)e
−j 2π

M
qm

]
e
−j 2π

Nd
pn

= Aijδ(
q

M
−
fbij
fs

)δ(
p

Nd

− fdijT )δ(θij − (θ0 + ∆θl))

(3.11)

where nx(p, q, l) is the noise after 2D FFT, and sij(p, q, l) is the frequency domain
signal of the taget i with path j. p, q are the new index of Doppler bins and range
bins.

As sij(p, q, l) carries the beat frequency, Doppler frequency and angle informa-
tion of target i with path j, we can easily estimate Rij vij and θij by detecting
sij(p, q, l) from feature array X.

In this project, set the number of the sliding windows Na = 20. To show the
result of pre-processing, We simulate two moving targets, target 1 and target 2. At
one frame, the range, Doppler velocity, and angle of target 1 are 4.03 m, -0.78 m/s,
and -18.64 deg, while the range, Doppler velocity, and angle of target 2 are 4.32 m,
0.90 m/s, and 17.51 deg.
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Figure 3.5: Range-Doppler matrix with angle index l = 3, . . . , 17

The feature array after pre-processing can be seen in Figure 3.5. We will show
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the Rang-Doppler plot with angle index l = 3, . . . , 17. The indexes of feature array
p, q, l have corresponding Doppler velocity, range, and angle value. To show the
results clearly, we use the Doppler velocity, range, and angle value to replace the
indexes of feature array in the figures.

From Figure 3.5, we can clearly see that Rang-Doppler plot with angle -13.33
deg and -20 deg has the signal of one target, and Rang-Doppler plot with angle 13.33
deg and 20 deg has the signal of the other signal. The pre-processing results correspond
to true values of simulated targets.

3.4 Conclusion

In this chapter, we have introduced a unique pre-processing method for SISO FMCW
radar system. The pre-processing method uses time-domain angular sliding windows
to extract angle information of targets and uses 2D FFT to obtain range, Doppler
velocity information. After pre-processing, we can obtain a 3D feature array from the
time domain radar signal.
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Multi-target detection 4
After pre-processing the FMCW radar signal and generating a feature array, we need
a detection algorithm to determine whether targets exist in the feature array with
background noise and clutter. In this project, considering the cases of target appearing
and disappearing, the number of targets is unknown and inconstant. The main idea
of the multi-target detection algorithm is based on Constant False-Alarm Rate(CFAR)
method. To remove the effects of noise and multipath propagation, the clustering
algorithm is also needed after the CFAR detection.

4.1 Background of CFAR algorithms

Before deriving multi-target detection algorithm, we will briefly introduce the basic
CFAR algorithms for one dimensional signal sequence.

Consider a noisy signal sequence x(i), i = 1, 2, . . . , L. The detection model of
x(i) can be expressed as

{
H0 : x(i) = n(i)

H1 : x(i) = s(i) + n(i)
(4.1)

If the noise power σ2
n is known and constant, then we can define the threshold T = fσ2

n

with factor f and define H0 if y(i) = x(i)2 < T . This leads to a constant false alarm
rate Pfa. However, in most cases, the noise power σ2

n is inconstant. If we want to
keep a constant Pfa, the factor f has to vary with the different noise power. We can
estimate the local noise power and use the certain relationship between f , σ2

n, and Pfa
to generate factor f and threshold T . This is the main idea of CFAR method. The
basic block of CFAR can be seen in Figure 4.2.
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Figure 4.1: Basic CFAR algorithm

Assume that x(i) is the test cell. We define the N neighbors of x(n) as the reference
cells and define the closest right and left neighbours as guard cells. Then, use the
reference cells to estimate the local noise power of x(i). Different CFAR methods
adopt different strategies of estimation (CFAR processor) [7].

For the Ordered statistics Greatest of (OSGO) CFAR, the CFAR processor has
three steps:

. Sort the right neighbor reference cells and left neighbor reference cells indepen-
dently.

. Select the kth smallest reference cells of both sides, which are denoted by y1(i)
and y2(i).

. Select the maximum of y1(i) and y2(i) as the estimate of local noise power σ̂2
n(i),

i.e. σ̂2
n(i) = max(y1(i), y2(i))
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Figure 4.2: OSGO CFAR processor

According to the certain relationship between false alarm rate Pfa and factor f [3], if
we set a constant Pfa, we can get the factor f and generate the threshold for x(i).

4.2 Multi-target detection based on CFAR

4.2.1 Problem statement

Simply speaking, the multi-target detection is to find the local maximum in the fea-
ture array X. Similar with Equation (4.1), we define the model for the multi-target
detection: 

H0 : x(p, q, l) = nx(p, q, l)

H1 : x(p, q, l) =
N∑
i=1

Li∑
j=1

sij(p, q, l) + nx(p, q, l)
(4.2)

According to the index p, q, l of the cell with H1, we can get the corresponding range,
Doppler velocity, and angle information. As the corresponding index of feature array
for different target and path are different, assume that each cell with H1 only includes
one target with strongest target signal in p, q, l.

Then, the detection model can be simplified and rewritten as{
H0 : x(p, q, l) = nx(p, q, l)

H1 : x(p, q, l) = max
0≤i≤N,0≤j≤Li

sij(p, q, l)) + nx(p, q, l)
(4.3)

The corresponding range, Doppler velocity, and angle of x(p, q, l) with H1 belong to
target i which maximize sij(p, q, l).

4.2.2 3D OSGO CFAR

The typical method to detect targets is use 2D CFAR in Range-Doppler domain
[15, 28] and angle of arrival estimation in angle domain [10]. Then, use a paring
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algorithm to match the range, Doppler velocity and angle of the same target. This
detection method needs the paring algorithm with high accuracy. In this project, we
use multi-target detection based on 3D OSGO-CFAR, which is not need to use paring
algorithm.

To detect targets in 3D feature array, we extend the 1D OSGO CFAR into three
dimensions. Assume that the test cell is x(p, q, l). The distribution of reference cells
can be seen in Figure 4.5.

Figure 4.3: The distribution of reference cells

Then, the CFAR processor for three dimensional detection will become:

. Sort the Doppler reference cells, range reference cells, and angle reference cells
independently.

. Select the kth smallest reference cells for Doppler, range, and angle reference cells,
which are denoted by y1(p, q, l), y2(p, q, l) and y3(p, q, l).

. Select the maximum of y1(p, q, l), y2(p, q, l) and y3(p, q, l) as the estimate of local
noise power σ̂2

n(p, q, l), i.e. σ̂2
n(p, q, l) = max(y1(p, q, l), y2(p, q, l), y3(p, q, l))
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Figure 4.4: 3D OSGO CFAR processor

Similar with 1D OSGO CFAR, the factor f can be computed by the given constant
false alarm Pfa [3]. Then we can get a threshold T to decide which hypothesis x(p, q, l)
belongs to.

If x(p, q, l) belongs to H1, there is a target signal in x(p, q, l). The range, Doppler
velocity and angle of the target can be given by index of x(p, q, l). According to
Equation (3.11), Equation (2.28), and Equation (2.27), the corresponding range,
Doppler velocity and angle of the index p, q, l can be expressed as

R(q) =
fsc

2ρM
q = ∆Rq (4.4)

v(p) =
c

2NdTfc
p = ∆vp (4.5)

θ(l) = θ0 + ∆θl (4.6)

where ∆R, ∆v, ∆θ are the range, Doppler velocity and angle resolution.

The measurement vector of x(p, q, l) with H0 is denoted as

ẑu = [R(q), v(p), θ(l)]T (4.7)

We perform 3D CFAR for each cell in feature array X. Assume that the total number
of detection results of feature array is U .

4.2.3 Improved detection algorithm

Assume that x(p0, q0, l0) has been already detected and the detection result is H1. If
x(p0, q0, l0) is used as reference cell for other test cell, x(p0, q0, l0) with H1 will lead to
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a large increase of the estimate of local noise power and threshold. This is also defined
as masking effect [15]. As the masking effect cause more miss detection, a improved
algorithm is necessary for multi-target detection.

The idea of the improved detection algorithm comes from CLEAN algorithm
[17], but simplify the CLEAN algorithm. The main idea of this algorithm is ”remov-
ing” detected target signal from the reference cells to reduce the masking effects [38].
When we have detected x(p0, q0, l0) with H1, we add a feedback and reset the value of
test cell as σn(p0, q0, l0). Then, if the test cell is x(p1, q1, l1), while x(p0, q0, l0) is the
reference cell of x(p1, q1, l1), σn(p0, q0, l0) will be replace the true value of x(p0, q0, l0) to
estimate σ2

n(p1, q1, l1). The feedback can reduce the masking effects caused by detected
local maximum.

Figure 4.5: 3D OSGO CFAR with improved detection algorithm

The feature array after the feedback of x(p0, q0, l0) can be expressed as

X = x(p, q, l) =


σn(p0, q0, l0), if p = p0, q = q0, l = l0
Li∑
j=1

sij(p, q, l) + nx(p, q, l), other
(4.8)

4.3 Clustering

After detecting each cell in the feature array X, we can get several measurement
vectors ẑu, u = 1, . . . , U . However, as the effects of multipath propagation and noise,
one target has multiple corresponding measurement vectors and U is larger than the
true number of targets N .

To reduce the effects of multipath propagation and noise, we need a clustering
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algorithm without known the number of clusters. In this project, we use density-based
spatial clustering of applications with noise (DBSCAN) algorithm to cluster measure
vectors and remove the result of miss detection.

Assume that the measure vectors belonging to the same target are in the same
cluster. According to the DBSCAN algorithm [4], the measurement vectors which
belong to same cluster should satisfy that:

. The normalized distance between the measurement vectors of same cluster (same
target) has to be less than the given distance threshold ε

. The number of vectors in a cluster must be larger than the given minimum number
NDBSCAN

The main idea of DBSCAN algorithm is scanning all vectors and their neighborhoods
and checking whether these vectors satisfy the two conditions. If a vector cannot join
any cluster, the vector will be defined as noise and be removed.

Figure 4.6: Clustering for two targets

After clustering, we select the center vector as the measurement vector of each
cluster (each target) to make sure one target correspond to one measurement vector.

The measurement vectors after clustering are denoted as ẑg, 1 ≤ g ≤ N̂

ẑg = [Rg, vg, θg]
T (4.9)

where N̂ is the estimate number of targets.

4.4 Conclusion

In this chapter, we have presented an improved multi-target detection algorithm, which
is based on OSGO CFAR. We apply the multi-target detection algorithm in the feature
matrix and use the clustering algorithm in the detection result to remove the noise and
reduce the effect of multipath propagation.
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Multi-target tracking 5
The pre-processing part and multi-target detection part are the signal processing for
one frame. To detect and track targets in real time, we need to perform the multi-
target detection algorithm for each frame. For frame k, the detection results can be
rewritten as ẑg(k), 0 ≤ g ≤ N̂(k). N̂(k) is the estimate number of targets at k frame.

Considering the target appearing and disappearing, N̂(k) can vary with different frame.

5.1 Tracking model

For the multi-target tracking, the detection results ẑg(k) = [Rg(k), vg(k), θg(k)]T , g =

1, , . . . , N̂(k) cannot be directly used in the tracking algorithm. The detection results
should be matched with the targets of tracking algorithm with data association. The
measurement vectors after the data association are denoted as zi(k), i = 1, , . . . , N̂(k).
For the same target, the target index i of zi(k) has to be uniform with the previous
frames. The multi-target tracking progress is shown in Figure 5.2.

Figure 5.1: Multi-target tracking

Assume that the tracking of different targets is independent. For each target we
run separate tracking algorithm. Assume that the multi-target detection and tracking
system is a one step Markov system with additive noise. The constant velocity motion
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model of target i can be described as

si(k) = Fsi(k − 1) + wi(k − 1) (5.1)

zi(k) = Hsi(k) + vi(k) (5.2)

where si(k − 1) is the state vector of target i at frame k − 1 with covariance matrix
Pi(k − 1). zi(k) is the measurement vector of target i at frame k.

Assume the process noise wi(k) and the measurement noise vi(k) are additive
and white Gaussian distributed. The covariance matrix of wi(k) is Qi, while the
covariance matrix of vi(k) is Ri

Qi =

1 0 0
0 1 0
0 0 1



Ri =

2∆R 0 0
0 2∆v 0
0 0 2∆θ

 ≈
1 0 0

0 1 0
0 0 12


Assume the target is moving with constant velocity. Then, the state-transition matrix
is,

F =

1 TNd 0
0 1 0
0 0 1

 =

1 0.04 0
0 1 0
0 0 1


where TNd is the duration time of one frame.

The observation matrix is,

H =

1 0 0
0 1 0
0 0 1


According to the given movement model and the measurement vectors generated by
multi-target detection, we can get the state of detected targets for each frame.

5.2 Linear Kalman prediction

As linear Kalman filter is optimal method for the linear model, our multi-target
tracking is based on Kalman filter [6].

For target i, the predicted state at frame k is

si(k|k − 1) = Fsi(k − 1) (5.3)
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The predicted covariance at time k is

Pi(k|k − 1) = FPi(k − 1)FT + Qi (5.4)

We do linear Kalman prediction for each target and obtain the state vectors si(k|k −
1), i = 1, , . . . , N̂(k).

5.3 Data association

5.3.1 GNN

To associate the detection results with tracking targets, we need to use the Global
Nearest Neighbor (GNN) method. By evaluating each observation in track gating
region, choose the “best” one to incorporate into track.

We use the Mahalanobis distance [1] between predicted observation Hsi(k|k − 1) and
the multi-target detection result ẑg(k) as a matching score of target i and target g.
The distance matrix based on Mahalanobis distance can be expressed as

D = d(i, g) =
√

(ẑg(k)−Hsi(k|k − 1))TPi(k|k − 1)−1(ẑg(k)−Hsi(k|k − 1)) (5.5)

1 ≤ i ≤ N̂(k − 1), 1 ≤ g ≤ N̂(k)

where N(k − 1) is the number of targets at frame k − 1 and N(k) is the number of
targets at frame k. The less Mahalanobis distance d(i, g) is the more possible target i
and target g are the same target.

Following the typical GNN method [23], we define a N̂(k − 1) × N̂(k) permuta-
tion matrix A, a(i, g) ∈ {0, 1}, which subject to a(i, g) = 1 when target i and target
j are matched and a(i, g) = 0 when target i and target j are not matched. Each

permutation matrix A denotes one permutation for data association. If N̂(k − 1) and

N̂(k) are known, there are max(N̂(k),N̂(k−1))!
|N̂(k)−N̂(k−1)|! possible A permutation matrices.

The score of the permutation matrix A is defined as

e(A) =

N̂(k)∑
g=1

N̂(k−1)∑
i=1

d(i, g)a(i, g) (5.6)

Then, the data association problem will become the problem to find a permutation
matrix A minimizing the score e(A), which can be solved by Hungarian method [16].
Then, we can get the optimal permutation matrix A∗. If a∗(i, g) = 1, target i and
target g are the same target. The measurement vector of target i at frame k is

zi(k) = ẑg(k), a∗(i, g) = 1 (5.7)
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a∗(i, g) = 1, 1 ≤ i ≤ N̂(k)

Figure 5.2: Data association

Consider the targets appearing, we add distance checking to the basic GNN
algorithm. Assume that if target i and target g are the same target, the maximum
distance is dmax. If ∀i : d(i, g) > dmax, we define that target g is a new appearing
target, which will be given a new target index following i.

5.4 Linear Kalman update

We use the measurement vectors after data association to update the state vectors of
corresponding target.
For target i, the Kalman gain is

Ki = Pi(k|k − 1)HT (HPi(k|k − 1)HT + Ri)
−1 (5.8)

The updated state of target i at frame k is

si(k) = si(k|k − 1) + Ki(zi(k)−Hsi(k|k − 1)) (5.9)

si(k) = [R̂i, v̂i, θ̂i]
T (5.10)
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si(k) contains the smoothed estimate of range, Doppler velocity, and angle, which are
the output of the signal processing of FMCW radar system.

The updated covariance matrix of target i at frame k is

Pi(k) = (1−KiH)Pi(k|k − 1) (5.11)

which will be used into the tracking for the next frame.

5.5 Conclusion

In this chapter, we derive a low-complexity multi-target tracking algorithm to track
targets. The tracking algorithm uses the data association to associate target states at
different frames, then track each target independently. After multi-target tracking, we
can obtain range, Doppler velocity, and angle of targets, which are also the final results
of signal processing.
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Simulation and Evaluation 6
The simulation of target motion is based on the Headed social force model (HSFM) [5].
Assume that the maximum range of radar is 10 m, and the field of view is a 120 deg
sector with 10 m radius. Assume that the minimum distance between two targets and
the minimum distance between target and boundary of field of view are both 0.5 m.

(a) Scenario for 2 targets (b) Scenario for 3 targets

(c) Scenario for 4 targets (d) Scenario for 5 targets

Figure 6.1: The sketches of target trails for different scenarios
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We have scenarios for two, three, four, and five targets. Each scenario repeats 500
random linear motion trails. The sketches of target trails for four scenarios are shown
in Figure 6.1.

In this project, we use the Root Mean Square Error (RMSE) to evaluate the
tracking results. The RMSE of range, angle and Doppler velocity are shown as follow:

(a) RMSE for 2 targets (b) RMSE for 3 targets

(c) RMSE for 4 targets (d) RMSE for 5 targets

Figure 6.2: Range RMSE

From Figure 6.2, the RMSE of range for different targets can decrease to 0.5m after
tracking. Comparing with the results of two targets, the RMSEs of range for other
scenarios are higher at the beginning but can be decreased effectively after tracking.
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(a) RMSE for 2 targets (b) RMSE for 3 targets

(c) RMSE for 4 targets (d) RMSE for 5 targets

Figure 6.3: Angle RMSE

Similar to the RMSE of range, the RMSE of angle for different targets can also
decrease to 0.5 deg after tracking. However, as the angle resolution ∆θ is larger than the
range resolution, to accurately detect the angle of targets is more difficult than range.
From Figure 6.3, when increasing the number of targets, there are some fluctuations
during the tracking.
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(a) RMSE for 2 targets (b) RMSE for 3 targets

(c) RMSE for 4 targets (d) RMSE for 5 targets

Figure 6.4: Doppler velocity RMSE

From Figure 6.4, the RMSE of Doppler velocity decrease rapidly in the beginning
and end but tend to flatten out in the middle. Because the simulation assumes that
the target walking from the start point needs to accelerate from rest, while the target
close to the end point needs to accelerate slow down to rest.

6.1 Conclusion

In this chapter, we simulated the motion trails and designed four scenarios with different
number of targets. For each scenario, we use the RMSE to evaluate the results of 500
Monte Carlo simulations. Comparing the results of different scenarios, we can see that
multi-target detection and tracking algorithm has a good performance for the cases
with two and three targets. But when the number of targets increases, the accuracy of
angle results will decrease.
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Experimental Validation 7
7.1 Experimental platform

In this project, the experimental platform is an 8 GHz FMCW radar system, which can
be seen in Figure 7.1. The transmitting antenna and receiving antenna are both fre-
quency scanning antenna with ”rampart” shape. The FMCW radar system receives the
echo signal from targets. After mixing, ADC sampling, and low-pass filtering, the radar
system will output the beat frequent signal. The subsequent signal processing steps
(pre-processing, multi-target detection, and tracking) will be completed in MATLAB.

Figure 7.1: FMCW radar platform

The parameters of radar system are shown on Table 7.1. The parameters of radar
system for simulation and experiment are the same. The results of simulation and
experiment will be compared in the next section.
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Parameters Value

Bandwidth(B) 1 GHz

Starting frequency(fc) 7.3 GHz

Interval between two chirps(T ) 2.6 ms

Sweep time(Tc) 0.082 ms

Number of chirps per frame(Nd) 16

Number of samples per chirp(M) 512

Interval between two frames 0.0416 s

Table 7.1: Parameters of the 8 GHz FMCW radar system

7.2 Experimental Results

The experimental environment is a room with 7.08 m width and 11.75 m length. The
field of view of the experimental FMCW radar system is shown as the light gray area
in Figure 7.2. We establish a polar coordinate system and set the position of FMCW
radar as the origin point. The scanning angle is from -60 deg to 60 deg.

Figure 7.2: Experiment environment

To valuate the performance of two targets detection and tracking, we design four
scenarios.
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(a) Target tracks of Scenario 1 (b) Target tracks of Scenario 2

(c) Target tracks of Scenario 3 (d) Target tracks of Scenario 4

Figure 7.3: Target tracks for different scenarios

. Scenario 1:
Target 1 was walking back and forth between the two points A1(4,−π/3) and
B1(4, π/3), while target 2 was walking back and forth between the two points
A2(5.34, 0.7245) and B2(5.34,−0.7245). A1 and A2 were the start points of target
1 and target 2. The track of target 1 and target 2 were parallel but moving with
opposite directions (Figure 7.3(a)).

This scenario mainly considered the case of target crossing. The tracking
result of scenario 1 is shown in Figure 7.4. Although the range result of target 1
was miss detected when target crossed, tracking algorithm can still keep accurate
track after target crossing.

. Scenario 2:
Similar to Scenario 1, the tracks of target 1 and target 2 for Scenario 2 were also
parallel. However, the direction of two targets were same (Figure 7.3(b)). A1 and
B1 were not changed, but A2 and B2 would exchange, i.e. A2(5.34,−0.7245) and
B2(5.34, 0.7245).

This scenario showed the effect of the target masking. The signal of the
masked target was much weaker than the other one, which would increase the
difficulties of detection and tracking. The tracking result of scenario 2 is shown
in Figure 7.5. The results of target 1 (masked target) had more miss detection
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than the other target.

. Scenario 3:
Target 1 was walking back and forth between the two points A1(5, π/12) and
B1(1.5, π/3), while target 2 was walking back and forth between the two points
A2(5,−π/12) and B2(1.5,−π/3). The tracks of target 1 and target 2 were parallel
but moving with the same direction (Figure 7.3(c)).

This scenario mainly considered the case of targets with the same Doppler
velocity and the same range, which had a high requirement for data association.
The tracking results of scenario 3 were shown in Figure 7.6. As there was no
target masking, comparing with other scenarios, this scenario had the best
performance. The experimental results were matched with simulation results.

. Scenario 4:
Similar to Scenario 3, the tracks of target 1 and target 2 for Scenario 4 were also
parallel, but the direction of the two targets are opposite (Figure 7.3(d)).

The tracking result of scenario 4 is shown in Figure 7.7. The experimental
results of range and Doppler velocity were matched with simulation results.
However, the results of the angle were a bit worse.
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(a) Simulation result of range (b) Experimental result of range

(c) Simulation result of angle (d) Experimental result of angle

(e) Simulation result of Doppler velocity (f) Experimental result of Doppler velocity

Figure 7.4: The results of Scenario 1
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(a) Simulation result of range (b) Experimental result of range

(c) Simulation result of angle (d) Experimental result of angle

(e) Simulation result of Doppler velocity (f) Experimental result of Doppler velocity

Figure 7.5: The results of Scenario 2
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(a) Simulation result of range (b) Experimental result of range

(c) Simulation result of angle (d) Experimental result of angle

(e) Simulation result of Doppler velocity (f) Experimental result of Doppler velocity

Figure 7.6: The results of Scenario 3
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(a) Simulation result of range (b) Experimental result of range

(c) Simulation result of angle (d) Experimental result of angle

(e) Simulation result of Doppler velocity (f) Experimental result of Doppler velocity

Figure 7.7: The results of Scenario 4

7.3 Conclusion

In this chapter, we designed four typical scenarios for simulation and experiment. We
compared and analyzed the simulation results and experimental results for different
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scenarios. In summary, most of the experimental results were matched with simulation
results. Comparing with simulation and experimental results, we can clearly see that
target masking has produced the influence that can’t be ignored in the real environ-
ment.
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Conclusion and future work 8
8.1 Conclusion

The aim of this thesis project is to explore the multi-target detection and tracking
algorithms with an 8 GHz SISO FMCW. According to the new signal processing based
on the SISO system, the angle information of targets can be obtained by a time-domain
sliding window, while the range and Doppler velocity information can be obtained
by 2D FFT. We use the multi-target detection algorithm based on OSGO CFAR to
detect targets from 3D feature array and obtain the range, Doppler velocity, and angle
information of targets. For the multi-target tracking algorithm, independent tracking
and data association are used to track and estimate the position and velocity of targets.

According to the results of simulation and experiment, the multi-target detec-
tion and tracking have a good performance for different scenarios. The detection and
tracking algorithm can clearly distinguish different targets.

8.2 Future work

However, the current algorithm still has some shortages. For the results of simulation
and experiment, the accuracy of Doppler velocity is lower than range and angle.
Besides, the current tracking is based on the single linear motion model, but the
motion in the real environment is usually nonlinear.

To improve the multi-target detection and tracking algorithm, some recommen-
dations are presented to extend this research:

. The current algorithm uses 16 chirps per frame in Doppler FFT. To increase the
accuracy of Doppler velocity, we can double the number of chirps per frame (Nd)
and half the interval time between chirps(T ), which can keep the interval time
between two frames. This improvement needs some hardware improvements of
the FMCW radar system.

. To improve the tracking algorithm, nonlinear method[21] and Interaction Multiple
Model (IMM) [2, 22] can be used in the future. Comparing with the tracking
algorithm based on the linear Kalman filter, the nonlinear and multiply model
methods can better model the motion of the real target.
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