
Erasmus Mundus Programme
M.Sc. programme in 
Coastal and Marine Management

CoMEM

Freeze-bond strength
Analysis of experiments and FE modeling
of a shear test on freeze bonds

Ekaterina Kim

July 2009
Thesis work done at NTU



The Erasmus Mundus Master in Coastal and Marine Engineering and Management (CoMEM) is a two-
year, English taught international Master’s programme, in which five high-rated European universities 
participate. Focus is on the key issues involved in providing sustainable, environmentally friendly, legally 
and economically acceptable solutions to various problems in the CoMEM field.

The CoMEM MSc course is taught at five European universities:

    * NTNU, Trondheim, Norway
    * Delft Technical University, Delft, The Netherlands
    * UPC, Barcelona, Spain
    * City University, London, United Kingdom

* University of Southampton, Southampton, United Kingdom

The first year comprises two semesters of 30 ECTS each (course and project work), which will be spent 
at NTNU,Trondheim and Delft University respectively. This year provides academic and social coherence 
through a choice of compulsory and optional courses. It will establish a broad common foundation and 
prepare for the final year.

For the first half of the second year (one semester of 30 ECTS course and project work), three main 
routes with a particular emphasis  are offered: either in environmental engineering at UPC, Barcelona, 
Spain, in environment and management at City University, London, or in business and management at 
the University of Southampton, Southampton, both in the United Kingdom. The third semester allows for 
specialisation in one of these three subjects. In the fourth and final semester a master’s thesis at one of 
the three universities has to be made. The CoMEM programme therefore offers the following posibilities 
as illustrated in the diagram below:

Information regarding the CoMEM programme can be obtained from the programme director’
prof.dr. Marcel J.F. Stive
Delft University of Technolgoy
Faculty of Civil Engineering and Geosciencese
PO Box 5048
2600 GA Delft
The Netherlands
comem@tudelft.nl



Ekaterina Kim

Freeze-Bond Strength. 

Analysis of Experiments and 

FE Modeling

 

of a Shear Test 

on Freeze-Bonds

Trondheim, June 2009

M
as

te
r´

s
th

es
is

N
T

N
U

N
or

w
eg

ia
n

U
n
iv

er
si

ty
of

S
ci

en
ce

an
d
 T

ec
h
n
ol

og
y

F
ac

u
lt
y

of
E

n
gi

n
ee

ri
n
g 

S
ci

en
ce

 a
n
d
 T

ec
h
n
ol

og
y

D
ep

ar
tm

en
t

of
C

iv
il
 a

n
d
 T

ra
n
sp

or
t 

E
n
gi

n
ee

ri
n
g



Master's thesis

Trondheim, June 2009

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology
Department of Civil and and Transport Engineering

Academic supervisor: Sveinung Løset, Knut V. Høyland

Ekaterina Kim

Freeze-Bond Strength
Analysis of Experiments and FE
Modeling of a Shear Test on Freeze-Bonds



 

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 
DEPARTMENT OF CIVIL AND TRANSPORT ENGINEERING 

 

THE UNIVERSITY CENTRE IN SVALBARD 
DEPARTMENT OF ARCTIC TECHNOLOGY 

 

Date:   2009-JUNE-15 

Number of pages (incl. appendices): 128 

Report Title: 

Freeze-Bond Strength. Analysis of Experiments and FE 
Modeling of a Shear Test on Freeze-Bonds 

Master Thesis X Project Work 

Name:  Ekaterina Kim 

Professor in charge/supervisor:  Prof. Sveinung Løset, Dr. Knut V. Høyland 

Other external professional contacts/supervisors: 

 

Abstract:  

 
The objective of this study was to contribute to the knowledge on ice-ridges structures interactions.
This work is a follow-up of previous research on simulations of ice-structure interaction using finite 
element method (Gürtner, 2009b; Konuk, et al., 2009a,b) and a preliminary study of freeze-bond (FB) 
shear strength (Repetto-Llamazares, et al., 2009b). The presented data should be regarded as 
illustrative rather than exhaustive. Many important aspects of ice-ridges structures interactions have 
not been addressed in this thesis.  
 
An analysis of experiments with FBs was performed, and a finite element model was built in order to 
simulate these experiments. Within the framework of the classical theory of elasticity, the numerical 
model incorporates a cohesive model in order to simulate ice fracture along the FB during shear test. 
The cohesive behavior of the FB was described by the bilinear traction-separation law. The approach of 
Camanho and Davila (2002) was applied in order to calculate stresses in the FB under mixed-mode 
loading conditions. A 6-node cohesive finite element was used for implementation of assumed behavior 
of the FB. Information obtained via detailed analysis of the FB shear strength experiments and via 
their numerical simulation can be used for a better understanding of FB failure processes and for a 
numerical modeling of ice-ridges.  
 
The results of numerical simulation confirmed that the finite element model could reproduce 
phenomena commonly observed in actual shear tests of FBs, including the shear strength hardening and 
partly softening behavior. The peak load in simulations was completely determined by the maximum 
traction strength and the initial part of a traction-separation law. This study also showed that from the 
conducted experiments intended to study FB strength in model ice, it is also possible to study ice 
fracture processes as well as post-failure behavior. By improving the experimental procedure as 
described in Repetto-Llamazares, et al. (2009b) it will be possible to study not only FB shear strength
but also the frictional behavior of ice after the FB failure. By video monitoring of the crack initiation 
and growth it will be possible to study a fracture process inside the FB. This work is of appeal to 
different scientists actively participating in investigations in, and possibly also on the standardization 
of methods for, measuring strength of freeze-bonds in order to improve existing analytical and 
numerical models, which are used nowadays for calculation of loads for scenarios of ice-ridges 
interactions with structures.   
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Background 
 
When two ice sheets interact with each other, they may form a new ice feature called 
an ice-ridge. Large ice-ridges can be a significant problem for navigation; they can also 
control the design load levels for sea-ice interactions with offshore structures. Besides 
they can scour the sea floor in relatively shallow waters. Despite the fact that ice-
ridges play an important role in planning of a structure in ice infested waters, both 
properties of ice-ridges and their failure processes are poorly investigated. There is no 
consensus among researchers either on which method to use for estimating ice loads on 
structures or on which parameters of the ice-ridge are important during ice-ridge 
failure. Previous research showed that freeze-bonds (newly created ice between 
adjoining ice pieces due to thermodynamic processes in the ice-ridge) contribute to the 
peak value of load at failure of the ice-ridge. Recently Konuk, et al. (2009a) proposed a 
framework for studying the ice-ridge structure interactions, which takes into account 
the effect of freeze-bonds via use of cohesive zone models within the conventional finite 
element method. For the future development of this modelling technique and any other 
analytical or numerical models, taking into consideration the effect of freeze-bonds, 
both experimental studies of freeze-bonds and numerical simulations, validating 
material properties of freeze-bonds are needed.  
 
Task description 
 
The objective of the work is to contribute to knowledge on ice-ridge interactions with 
structures, focusing mainly on the behaviour of freeze-bonds under shear conditions 
and trying to incorporate knowledge from previous experiments of Repetto-Llamazares, 



et al. (2009b) into a finite element model using ABAQUS version 6.8 with a study on 
the capability of the software to model ice fracture. 
 
General about content, work and presentation 
 
The text for the master thesis is meant as a framework for the work of the candidate. 
Adjustments might be done as the work progresses. Tentative changes must be done in 
cooperation and agreement with the supervisor and professor in charge at the 
Department. (Also including external cooperative partners where this is applicable). 
 
The norm for the work load of this thesis work is defined as 30 studypoints (ECTS). 
The work must be completed within 21 weeks (Easter included). 
 
In the evaluation thoroughness in the work will be emphasized, as will be 
documentation of independence in assessments and conclusions. Furthermore the 
presentation (report) should be well organized and edited; providing clear, precise and 
orderly descriptions without being unnecessary voluminous. 
The report shall include:  

→ Standard report front page. 
Title page with abstract and keywords (signed by the student). 
Text of the Thesis (these pages) signed by professor in charge. 

→ Summary and acknowledgement. Table of content including list of figures, 
tables, enclosures and appendices. If useful and applicable a list of important 
terms and abbreviations should be included. List of symbols is strongly 
recommended. 

→ The main text. 

→ Clear and complete references to material used, both in text and 
figures/tables. This also applies for personal and/or oral communication and 
information. 

→ The report musts have a complete page numbering. 
 

Advice and guidelines for writing of the report is given in: “Writing Reports” by 

Øivind Arntsen. Additional information on report writing is found in “Råd og 
retningslinjer for rapportskriving ved prosjekt og masteroppgave ved Institutt for bygg, 

anlegg og transport” (in Norwegian) posted on http://www.ntnu.no/bat/skjemabank. 
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work. 
 
Documentation collected during the work, with support from the Department, shall be 
handed in to the Department together with the report. 
 
According to the current laws and regulations at NTNU, the report is the property of 
NTNU. The report and associated results can only be used following approval from 
NTNU (and external cooperation partner if applicable). The Department has the right 
to make use of the results from the work as if conducted by a Department employee, 
as long as other arrangements are not agreed upon beforehand. 
 
Tentative agreement on external supervision, work outside NTNU, economic support 
etc 
 
Separate description to be developed, if and when applicable. 
 
Health, environment and safety (HMS) 
 
NTNU emphasizes the safety for the individual employee and student. The individual 
safety shall be in the forefront and no one shall take unnecessary chances in carrying 
out the work. In particular, if the student is to participate in field work, visits, field 
courses, excursions etc. during the Master Thesis work, he/she shall make 

himself/herself familiar with “Feltarbeid HMS retn.linje” (This is in Norwegian, and 
shall be explained to the student if applicable). The document is found on the NTNU 
HMS-pages http://www.ntnu.no/adm/hms/handbok/retningslinjer 
 
The students do not have a full insurance coverage as a student at NTNU. If you as a 
student want the same insurance coverage as the employees at the university, you 
must take out individual travel and personal injury insurance. 
 
Start and submission deadlines 
 
The work on the Master Thesis starts on January 19, 2009 
The thesis report as described above shall be submitted at the latest on June 15, 2009 
 
Professor in charge: Sveinung Løset 
Other supervisors: Dr. Knut V. Høyland 
 
 
_________________________________ 
(signature)        

Prof. Sveinung Løset  
Department of Civil and Transport Engineering



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“…If I had my way for the world to end in fire or ice,  
It seems that ice would be the compromise…” 

 
Orli A.





ACKNOWLEDGMENTS 
 
 
I would like to thank the Norwegian University of Science and Technology for giving 
me a chance to work on this interesting and challenging research topic, especially Prof. 
Sveinung Løset and Dr. Knut V. Høyland for their hospitality and support during the 
period of this study.  
 
I deeply thank PhD student Ada Repetto-Llamazares and Dr. Jenny Trumars for their 
great help and advice and with whom it has been a pleasure to work. 
 
I also thank Prof. Mauri Määttänen for his comments regarding history of ice-structure 
interactions; Prof. Thomas Benz for the discussion of ABAQUS capabilities in ice 
modeling; Dr. Arne Gürtner and PhD student Jani Paavilainen for their advice 
regarding cohesive zone model and Master student Gurvinder Singh for his technical 
help. 
 
Special thanks to Dr. Vigdis Olden, Nicolas Serre, Raed Lubbad, Haiyan Long and 
Siddharth Narayan without whom this work could not be completed. 
 
Finally thanks to Ice that made this research possible. 
 





 xi

CONTENTS 
 
 
Abstract ................................................................................................................................ i 
Acknowledgments................................................................................................................ ix 
Contents .............................................................................................................................. xi 
List of figures .................................................................................................................... xiii 
List of tables..................................................................................................................... xvii 
List of abbreviations and symbols..................................................................................... xix 
 
INTRODUCTION................................................................................................................ 1 

 
General ............................................................................................................................................1 
Objective and organization of the thesis .....................................................................................3 
Limitations of the thesis................................................................................................................3 

 
THEORY AND METHODS................................................................................................ 4 

 
1.1 Overview of Ice - Ridges Structure Interaction....................................................................4 

1.1.1 General ...........................................................................................................................4 
1.1.2 Ice-ridge structure interaction .....................................................................................6 
1.1.3 Uncertainty summary.................................................................................................12 

1.2 Importance of Freeze-bonds (Theory) .................................................................................13 
1.2.1 General .........................................................................................................................13 
1.2.2 FB creation, FB importance......................................................................................14 
1.2.3 Uncertainty summary.................................................................................................18 

1.3 Finite Element Method in Ice-ridges Structure Interaction (Theory) .............................19 
1.3.1 General .........................................................................................................................20 
1.3.2 Background and basic equations of finite element method ...................................26 
1.3.3 Formulation of cohesive model in ABAQUS ...........................................................29 
1.3.4 ABAQUS solution to finite element equations........................................................33 

1.4 Analysis of Freeze-Bond Shear Strength Experiments ......................................................37 
1.4.1 Experiment description ..............................................................................................37 
1.4.2 Ice characteristics........................................................................................................39 

1.5 Finite Element Modeling of the Freeze-bond Shear Strength Experiments ...................39 
1.5.1 Initial data ...................................................................................................................39 
1.5.2 Finite element model ..................................................................................................41 

 
RESULTS............................................................................................................................48 

 
2.1 Analysis of Freeze-bond Shear Strength Experiments ......................................................48 

2.1.1 Freeze-bond shear strength........................................................................................48 
2.2.2 Failure type .................................................................................................................49 



 xii

2.2.3 F(t) behavior (as visual observation) .......................................................................56 
2.2.4 Post-peak force............................................................................................................58 
2.2.5 Fracture energy ...........................................................................................................65 

2.2 Numerical Results of the Freeze-bond Shear Strength Simulations ................................70 
3.2.1 Three-dimensional model (3 elements).....................................................................70 
3.2.2 Considerations on the effect of the problem formulation.......................................71 
3.2.3 Influence of the boundary conditions .......................................................................74 
3.2.4 Influence of the finite element mesh .........................................................................75 
3.2.5 Effect of the material parameters on the fracture behavior ..................................77 

 
ANALYSIS AND DISCUSSION.........................................................................................84 

 
3.1 Freeze-Bond Shear Strength .................................................................................................84 
3.1 Ice-Ice Friction in Freeze-Bonds ..........................................................................................85 
3.2 Analysis of Uncertainties ......................................................................................................89 

3.2.1 Experimental uncertainties ........................................................................................89 
3.2.2 Model ice uncertainties ..............................................................................................90 
3.2.3 Stick-sleep behavior or effect of the sampling frequency .......................................90 
3.2.4 FB development as a function of submersion time and temperature ...................92 
3.2.5 Uncertainties of finite element model.......................................................................93 

3.3 Model Ice and Freeze-bond Failure Mode...........................................................................93 
3.4 Numerical Simulations ..........................................................................................................94 
3.5 Modeling of Ice-ridge Structure Interactions ......................................................................97 
3.6 Summary.................................................................................................................................98 

 
CONCLUSIONS and RECOMMENDATIONS for FUTURE WORK ............................100 

 
4.1 Conclusions ...........................................................................................................................100 
4.1 Recommendations for Future Work ..................................................................................101 

 
REFERENCES...........................................................................................................................103 

 
APPENDIX.......................................................................................................................112 

 
A - History of the Freeze-Bond Experimental Setup..............................................................A1 
B - Estimated Parameters..........................................................................................................B1 
C1 - Power-Law Fit ....................................................................................................................C1 
C2 - Post-failure Behavior .........................................................................................................C1 
D1 - Cohesive Element Verification..........................................................................................D1 
D2 - Input Files ...........................................................................................................................D4 
E - Scheme for Predicting Ice Loads on Structure.................................................................. E1 
F - Data Normality Test ............................................................................................................ F1 



 xiii

LIST OF FIGURES 
 

 
Figure 1 - The first icebreakers ................................................................................................. 1 
 
Figure 1.1 - Geometry of a first year ridge ............................................................................. 4 
 
Figure 1.2 - Interlocking effect and spatial orientation of ice blocks ................................. 6 
 
Figure 1.3 - Predictions for scenario of a first-year ridge interacting with a structure .. 7 
 
Figure 1.4 - Main elements of a numerical simulation ........................................................ 10 
 
Figure 1.5 - Development state. .............................................................................................. 12 
 
Figure 1.6 - Qualitative forms of the Mohr-Coulomb diagram.......................................... 14 
 
Figure 1.7 - Scheme of freezing over an ice block ............................................................... 15 
 
Figure 1.8 - Scheme for estimating ice block temperature variation with time ............. 16 
 
Figure 1.9 - Temperature of ice as a function of time ........................................................ 16 
 
Figure 1.10 - Increase of volume as a function of temperature ......................................... 17 
 
Figure 1.11 - Scheme of frozen together spheres .................................................................. 17 
 
Figure 1.12 - A crack model..................................................................................................... 24 
 
Figure 1.13 - A cohesive zone .................................................................................................. 24 
 
Figure 1.14 - Cohesive laws adopted for the modeling of ice failure ................................ 25 
 
Figure 1.15 - A mixed-mode softening law ............................................................................ 31 
 
Figure 1.16 - A traction-separation law ................................................................................. 31 
 
Figure 1.17 - The procedure of the frontal solution algorithm .......................................... 34 
 
Figure 1.18 - The procedure of the multifrontal solution algorithm ................................ 34 
 
Figure 1.19 - Scheme of how the ice blocks were loaded during submersion .................. 38 
 
Figure 1.20 - Vertical thin section of a consolidated layer................................................. 40 
 



 xiv

Figure 1.21 - Geometry of the tested ice sample. ................................................................ 40 
 
Figure 1.22 - Model of tested ice sample with solid parts and a cohesive layer. ........... 41 
 
Figure 1.23 - Tuning procedure of CE stiffness.................................................................... 42 
 
Figure 1.24 - Tuning procedure of CE maximum traction ................................................. 42 
 
Figure 1.25 - Tuning procedure of cohesive fracture energy .............................................. 43 
 
Figure 1.26 - Geometry of the element COH2D4................................................................. 44 
 
Figure 1.27 - Geometry of the element COH3D8 and C3D8 ............................................. 44 
 
Figure 1.28 - Geometry of the elements CPE4 and CPS4.................................................. 45 
 
Figure 1.29 - Three-dimensional finite element model used to simulate shear test ....... 45 
 
Figure 1.30 - Two-dimensional finite element model used to simulate shear test. ........ 46 
 
Figure 2.1 - Freeze-bond shear strength distribution. ......................................................... 48 
 
Figure 2.2 - Representative plot of curves obtained when testing freeze-bonds............. 51 
 
Figure 2.3 - Shear strength of freeze-bonds as a function of normal pressure ................ 52 
 
Figure 2.4 - Temperature dependence of averaged shear capacity ................................... 53 
 
Figure 2.5 - Averaged shear capacity versus time for ductile fractures ........................... 53 
 
Figure 2.6 - Averaged shear capacity versus normal pressure for brittle fractures ....... 54 
 
Figure 2.7 - Distribution of approximated loading slope.................................................... 54 
 
Figure 2.8 - Summary of the obtained results for the ductile samples ............................ 55 
 
Figure 2.9 - Typical types of F(t) behavior .......................................................................... 57 
 
Figure 2.10 - Measured force versus time .............................................................................. 57 
 
Figure 2.11 - Post-failure behavior of ice samples from series 10140 ............................... 58 
 
Figure 2.12 - A summary of the obtained results of series 10100 and 10200 .................. 59 
 
Figure 2.13 - Ice-ice friction coeffisient similitude versus time and normal pressure .... 60 
 



 xv

Figure 2.14 - Ice-ice friction coefficient similitude as a function of time (13_17_1) ...... 60 
 
Figure 2.15 - Relation between the post-peak shear stress and the normal stress......... 62 
 
Figure 2.16 - Coulomb friction coefficient and cohesion ..................................................... 62 
 
Figure 2.17 - Internal friction coefficient and cohesion....................................................... 63 
 
Figure 2.18 - Shear stress versus normal pressure ............................................................... 64 
 
Figure 2.19 - Energy evolution with time for ductile sample 13_17_1 ............................. 66 
 
Figure 2.20 - Summary obtained for the ductile samples. .................................................. 67 
 
Figure 2.21 - Grouped plot matrix.......................................................................................... 68 
 
Figure 2.22 - A bivariate joint frequency distribution ........................................................ 69 
 
Figure 2.23 - A bivariate joint frequency distribution for ductile samples. .................... 69 
 
Figure 2.24 - Area under the curve F(t) versus post-peak force (ductile samples) ....... 70 
 
Figure 2.25 - A force history during experiment and during simulations. ...................... 71 
 
Figure 2.26 - A finite element model for the pure shear test............................................. 72 
 
Figure 2.27 - Static versus dynamic analysis. ....................................................................... 73 
 
Figure 2.28 - Numerical solution ............................................................................................. 74 
 
Figure 2.29 - Finite element discretizations. ......................................................................... 75 
 
Figure 2.30 - Influence of the finite element mesh on the reaction force......................... 76 
 
Figure 2.31 - von Mises stress.................................................................................................. 76 
 
Figure 2.32 - A plot of effects for Fmax. .................................................................................. 79 
 
Figure 2.33 - A plot of effects for t(Fmax). ............................................................................. 79 
 
Figure 2.34 - A plot of effects for Sl’. ..................................................................................... 80 
 
Figure 2.35 - Interaction plot of E versus K*....................................................................... 81 
 
Figure 2.36 - Effect of cohesive element stiffness on loading slope. ................................. 82 
 



 xvi

Figure 2.37 - Effect of maximum traction on maximum load. .......................................... 82 
 
Figure 2.38 - Effect of fracture energy on evolution of reaction force in time. .............. 83 
 
Figure 3.1 - Force versus time at the beginning of deformation (Sample 13_17_1) ...... 90 
 
Figure 3.2 - Force versus time, one second prior to failure (Sample 13_17_1) ............... 91 
 
Figure 3.3 - Force amplitude versus time .............................................................................. 91 
 
Figure 3.4 - Hypothetic development of freeze-bond strength ........................................... 92 
 
Figure 3.5 - A force measured during freeze-bond shear experiments (1_13kg_2) ......... 97 
 



 xvii

LIST OF TABLES 
 

 
Table 1.1 - Parameters used in each experiment ............................................................ 38 
 
Table 1.2 - Properties of HSVA ice.................................................................................. 39 
 
Table 1.3 - Elastic material properties ............................................................................ 41 
 
Table 1.4 - Finite elements used in numerical simulations............................................. 43 
 
Table 2.1 - Distribution parameters. ............................................................................... 49 
 
Table 2.2 - Unloading slope data ..................................................................................... 52 
 
Table 2.3 - Change in the percentage of brittle and ductile samples............................. 56 
 
Table 2.4 - Estimated parameters. ................................................................................... 68 
 
Table 2.5 - Summary of problem size .............................................................................. 75 
 
Table 2.6 - List of factors and their ranges for the numerical experiments. ................. 77 
 
Table 2.7 - Uncoded design matrix with response values ............................................... 78 
 
Table 3.1 - Comparative table ......................................................................................... 86 
 
Table 3.2 - Fracture properties of ice in assumption of cohesion zone model ............... 95 
  
 
Note: Tables and Figures in appendixes does not included in the Lists above. 
 



 



 xix

LIST OF ABBREVIATIONS AND SYMBOLS 

 
Abbreviations 
 
API RP American Petroleum Institute, Recommended Practice  
BFGS  Broyden, Fletcher, Goldfarb, Shanno method 
CE  Cohesive Element 
CERN  European Organization for Nuclear Research 
CSA  Canadian Standards Association 
CZM  Cohesive Zone Model 
DEM  Discrete Element Method 
DNV  Det Norske Veritas 
DOF  Degree of Freedom 
DS  Danish Standards 
FB  Freeze Bond 
FE  Finite Element 
FEM  Finite Element Method 
FETI  Finite Element Tearing and Interconnecting 
FZP  Fracture Process Zone 
GLO  Germanischer Lloyd (Rules for Offshore Installations) 
HSVA Hamburgische Schiffbau-Versuchsanstalt (Hamburg Ship Model Basin) 
IALA  International Association of Lighthouse Authorities 
IEC  International Electrotechnical Commission 
ISO  International Organization for Standardization 
NDP  Norwegian Petroleum Directorate 
NORSOK Norsk Sokkels Konkuranseposisjon (The Competitive Standing of the 

Norwegian Offshore Sector) 
NPP  Normal Probability Plot 
PCG  Preconditioned Conjugate Gradient 
PDE  Partial Differential Equations 
PIC  Particle in Cell method 
Q/HSn Chinese Code  
RIL Suomen Rakennusinsinöörien Liitto (Finnish Association of Civil 

Engineers) 
SniP  Stroitelnie Normi i Pravila (Construction Norms and Regulations) 
TSL  Traction-Separation Law 
VSN  Vedomstvennye Stroitelnie Normi (Industry Building Code) 
 
2D  Two-dimensional 
3D  Three-dimensional  
 
 
Scalar quantities 
 
a,b   coefficients of the freeze-bond shear model 

pc   heat capacity of ice 



 xx

d    damage evolution function 

Vk k 1, 2 , 3f , =  component of a body force vector along the direction k  

h    thickness of ice 

ch   thickness of a consolidated layer 

fbh   freeze-bond thickness 

kh   keel depth 

sh   sail height 

n   number of data points 

en    number of finite elements 

pn   number of nodes 

fbr   surface radius 

r2   measure of reliability of a linear relationship 
t    time  

ft     failure time, corresponding to a peak force  

sft   start time of a failure process 

k k 1, 2 , 3u , =  component of a displacement vector along the direction k 

v   velocity 

k k 1, 2 , 3x , =  component of a radius-vector along the direction k  
 
 
A   area under the loading curve  

fbA   freeze-bond contact area 

C   cohesive intercept (cohesion) 

fbC   cohesion due to freeze-bonding forces 

iC   cohesion due to interlocking 

sC   shear resistance in the ridge model 

E   elastic modulus 

F    force registered during freeze-bond experiments 

F 1   post-peak force  

bF   buoyancy force 

fF   frictional force during sliding of de-bonded ice samples 

fbF   freeze-bond force 

loadF   force exerted by the weight on the top of ice 

Fmax  maximum reaction force in a numerical simulation 

nF   normal force 

NF    confining load in the ridge model 

pF   peak force 

TF   force resisting to shear in the ridge model 

wiF   total weight of ice 



 xxi

wpF   weigh of the wooden plate 

1I   first invariant  

K *   cohesive-element penalty stiffness  

L   latent heat of sea ice 
N   reaction force 

Q    cold energy 

R   radius of an ice block 

cR    freeze-bond compressive strength 

sR   freeze-bond shear strength  

tR    freeze-bond tensile strength  

S   surface 

uS   unloading slope 

lS ’   loading slope 

crS   critical unloading slope 

crS ’   critical loading slope 

1 2S ,S   parts of a surface 

T    cohesive-element traction 

avT   average ice temperature 

i N , S ,T, =iT   traction stresses in the direction i 

T0   maximum traction 

0 effT   effective traction at the damage initiation 

i i N , S ,T, =0T  maximum traction in the direction i 

i i N , S ,TT , =  stress component in the direction i predicted by elastic traction-

separation behavior for strains without damage 

U   total potential energy 

aU   elastic energy caused by introducing a crack in the plate 

0U    elastic energy of the uncracked plate 

U γ   elastic energy caused by formation of crack surfaces 

V   volume 

SV    sliding velocity 

 
 

α , β , γ  parameters of the Hilber-Hughes-Taylor operator 

fbγ   freeze-bond shear strain 

δ   separation 
d
mδ  mixed-mode effective displacements corresponding to the damage 

initiation  
max
mδ   maximum mixed-mode separation 



 xxii

Nδ   normal separation 

pδ   thickness of the an additional ice layer 

Tδ , Sδ   tangential separations 

ijδ    Kronnecker delta 

Uδ   change in potential energy 

0δ   critical separation 

mδ   effective displacement 

0 mδ  effective displacement, corresponding to complete failure of a cohesive 

element 

kη   keel porosity 

θ   melting temperature of ice 

kθ   keel angle 

λ   thermal conductivity of an ice block 
μ   coefficient of friction 

*μ   friction coefficient similitude 
*

0μ , z   constants of the frictional model 

ν   Poisson’s ratio 

ξ   tolerance in an iteration method 

ρ    density 

iρ   sea ice density 

σ   confining pressure 
τ   shear strength 

iτ   temperature 

fbτ   freeze-bond shear stress 

iceτ   shear strength of ice in the discrete model of an ice-ridge 

υ   salinity 

φ   angle of internal friction 

iφ   angle of internal friction of ice 

rφ   angle resisting to shear in the ridge model 

1 2,χ χ   separation measures 
CΓ   critical mixed-mode energy 

N T S, ,Γ Γ Γ  work done by the traction and its conjugate relative displacement in the 

normal, the first, and the second shear directions, respectively 

0Г   cohesive energy 

0 N 0T 0 S, ,Γ Γ Γ  critical fracture energies required to cause failure in the normal, the first, 

and the second shear directions, respectively.  

Ω    area 
 
 



 xxiii

Vector and tensor notation 
 

( ce )
fa   transformation tensor in a cohesive crack model 

( e )
fa ,a( e )

g  incidence matrix (connectivity matrix) 

k k 1, 2 , 3, =e  orthogonal unit vectors (base vectors) 

Sf   vector of surface forces 

Vf   vector of body forces 
( e ) ( e )

V S,f f   vectors of nodal forces 

0 0

( e ) ( e ),ε σf f  vectors of nodal forces 

k   element stiffness matrix 
( ce )k   cohesive element stiffness matrix 

n    unit vector of the outward pointing normal to a body surface 
r    radius-vector of a point (position vector) 

rs    residual vector in the Newton’s method 

rn    vector in an iteration method 

u   displacement vector  

u (ce)   vector of cohesive-element nodal displacements 
(e)u   local vector of nodal unknowns of an element 

Su   displacement vector prescribed on a boundary 

u +   displacement vector of top nodes 

u -   displacement vector of bottom nodes 
x    position vector of an arbitrary point of a finite element 

(e)x   coordinate vector of finite element nodes 
 
 

( ce ) ( e ),B B  matrix, defining strains from nodal variables 
4C     fourth - rank tensor of a material stiffness 

D( ce )   constitutive matrix of a cohesive element 
( e )D    elasticity matrix containing material properties 

F    global vector of nodal forces 

G    transition matrix in an iterative method 

I   unit tensor 

J    Jacobi matrix 

K   global stiffness matrix 

L    sum of all Lagrange multiplier forces 

M   mass matrix 
( e )fN   matrix of finite-element shape functions 

f (ce)Ν    matrix of cohesive-element shape functions 



 xxiv

( e )gN   matrix of finite-element approximate functions 
4 S    fourth-rank tensor of the elastic complaisance 

T   vector of cohesive-element tractions 

U   displacement vector in global coordinates 

X    global coordinate vector 
 
 

δ   vector of cohesive-element separations in local coordinates 

uδ   vector of infinitesimal displacement increments 

ε   strain tensor 

0ε   vector of initial strains 

σ   stress tensor 

0σ   vector of initial stresses 

  
 
Δ   vector of cohesive-element separations in global coordinates 

 
 
 



 

Ekaterina Kim                                                                                                                                     Trondheim 2009 
 

1

INTRODUCTION 

“…The ice was here, the ice was there, 
The ice was all around: 
It cracked and growled, and roared and howled, 
Like noises in a swound! …” 

 
Samuel Taylor Coleridge 
“The Rime of the Ancient Mariner”, 1797–98 

General 
 
The history of ice-structure1 interaction probably dates back to the times when 
engineers were involved with design of the research vessel Fram as it is mentioned by 

Gürtner (2009b). The first Finnish icebreaker Murtaja (Figure 1a) was built in 1890. 
Before that, winter navigation between Finland and Sweden had been started by 

Express II in 1877 as mentioned by Prof. M. Määttänen (personal communication, 
2009). The first Russian icebreaker Pilot (Figure 1b) was built in 1864 by the bow 

conversion of the steam-powered propeller tug (“Pilot (Icebreaker),” Wikipedia, 2009). 

 

 

 
 

(a)  (Brady, 2009) (b) (“Jaanmurtajien historia,” Wikipedia, 2009) 

 
Figure 1 - The first icebreakers in Finland (a) and in Russia (b). 

 
Wikipedia defines icebreakers history from the 1830 century, when the development of 
steam engine and reinforced inclined bows enabled oar powered postal ships and sail 

boats to break the ice (“Jäänmurtajien historia,” Wikipedia, 2009). In many cities of 
Europe there are old bridges over rivers that have wedged shapes and inclined leading 
edges to break the ice during the spring ice runoff, but maybe it had been a long 
process of errors and trials (Prof. M. Määttänen, personal communication, 2009).  

 
 
 
 1 Structure - any man-made obstacle exposed to ice action (sub-sea pipeline, hull of a vessel, legs of 

the oil platform, etc.)  
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It is a fact that knowledge on ice was gained by man over many centuries, and ice-
structure interaction discipline has a much longer tradition that it is usually assumed. 
As reported in Johannessen, et al. (2006), as early as in the late 9th century Ottar 
started a voyage of discovery lasting months, along the coast of Norway and Russia up 
to the White Sea. As reported in Suhanovsky and Slobodyanyuk (2007) the world map 
had not yet been drawn in parallels and meridians, but the Arctic was already known 
to men. At present, in connection with constantly rising human demands and climate 
change, investigations of ice influence on structures become widely practiced. Recently 

books (Vershinin, et al., 2005; Løset, et al., 2006; Gudmestad, et al., 2007; Vershinin, 
et al., 2008) are published, where authors generalized stored knowledge and experience 

on ice and its influence on structures. “Arctic sea routes opening up with climate 

change” says the People & the Planet website. “Water ice was found to be one of the 
most abundant minerals in the outer Solar System by Voyager spaceprobes. The 
disruptive properties of the ice must be studied in order to make clear the formation 

process of outer planets and satellites” says Kato, et al. (1995). 
 
Nowadays ice science is mainly technology driven. Besides open to general use 
literature on ice, some experimental data and technical reports are inaccessible due to 
their privacy. Often it happens, that confidential investigations repeat a work done by 
a PhD student and the other way around. To date, the problem of ice-ridge2 influence 
on structures is one of importance. From an engineering perspective large ice-ridges 
control the design load levels for sea ice interactions with offshore structures. Also 
they can be a significant navigation problem in ice covered waters. In addition they 
can scour the seafloor in relatively shallow waters. Ice scouring has an influence on the 

design of pipelines and other sub-sea facilities. For big lakes such as Minnesota’s lakes 
the result of ice ridging may include significant damage to retaining walls, docks and 
boat lifts and even cabins. Ice information is required by a wide spectrum of users 
operating at high latitudes. These include fishing activities in areas such as the 
Barents Sea and the region around Svalbard, and merchant vessels on-route through 
ice-infested regions in the Baltic or the Canadian, Alaskan and European Arctic. 
Greater exploitation of the Arctic for its offshore oil and gas reserves has lead to a 
requirement not only for accurate and timely monitoring but also reliable design 
statistics for offshore construction.  
 
In spite of the importance of ice-structure interaction and the availability of a large 
amount of literature on ice, the process of ice failure is not yet completely understood; 
data of ice force from full-scale measurements available for research are lacking 

(Gürtner, 2009b). Many doubts still remain regarding the action of ice-ridges on 

structures (Løset, et al., 2006). “It is believed, that in order to understand the failure 
of ice and ice loads on structures, the ice-structure interaction should be studied as a 

process and simulated” says Paavilainen, et al. (2009). 
 
 

 
 
2 Ice-ridge - line or wall of broken ice forced up by pressure (World Meteorological Organization (WMO) sea 

ice nomenclature WMO/OMM/BMO - No.259 Suppl.No.5) 
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Objective and organization of the thesis 
 
The main intent of this work has been to contribute to the knowledge on ice-ridges 
interaction with structures by (i) gathering information via face-to-face discussions, 
email communication and survey of literature including project reports, news articles, 
Web pages, and other resources, (ii) study the behavior of adfrozen ice via detailed 
analysis of the freeze-bond (FB) shear strength experiments (Repetto-Llamazares, et 
al., 2009b). Another aim of this work was to build a finite element model to simulate 
direct shear test on adfrozen ice samples in order to extract material parameters of the 
model ice. These parameters are needed to simulate the processes of ice fracture. One 
part of the present work is a follow-up of previous research on ice-structure interaction 

by Gürtner (2009b) and Konuk, et al. (2009a,b). These authors introduced a 
methodology for simulating different ice-structure interactions scenarios that was 
investigated within the present study. Another part of this work is a follow-up of the 
preliminary study of the FB shear strength (Repetto-Llamazares, et al., 2009b). The 
objective of this part of the work was to analyze earlier obtained trends for FB shear 
strength, and, despite the fact that the conducted experiments were intended to study 
freeze-bond shear strength, to try and extract any additional information which could 
be used for better understanding of FB failure processes and for numerical modeling of 
the ice-ridges. 
 
The thesis is divided into four chapters. Chapter 1 comprises a state-of-the-art 
knowledge on ice-ridges structures interactions; a theory, explaining the importance of 

the FB in ice-ridges; a basic theory behind the algorithm proposed in Gürtner (2009b) 
and Konuk et al. (2009a,b) for the modeling of ice-ridges structure interactions. 
Chapter 1 also gives a summary of the experimental setup used to study the FB shear 
strength and describes the finite element model, which was built to study material 
properties of ice, and the algorithm proposed for modeling ice-ridges structure 
interactions.  Chapter 2 presents the results from interpretation of model tests 
presented in Repetto-Llamazares, et al. (2009b), and the results of simulations of the 
FB shear tests. Chapter 3 concerns the discussion of the results in Chapter 2 and 
summarizes work which has been done. In Chapter 4 conclusions and recommendations 
for future work are given.  

Limitations of the thesis  
 
The data presented in this study should be regarded as illustrative rather than 
exhaustive. The main focus of the work has been the investigation of freeze-bond 
behavior under shear conditions and incorporation of knowledge, gained during the 
experiment, into the finite element (FE) model with additional investigation of FE 
software capabilities in modeling ice fracture. Many important aspects of ice-ridge 
structure interaction have not been addressed in this thesis. Knowledge on ice-
structure interaction discipline is at a particularly dynamic stage in the world, which 
means that there are new developments and announcements happening on a monthly 

basis. Therefore, this work need to be seen as “snapshot” that was current at the time 
it was taken; it is expected that specific facts and figures presented in this work may 
become dated very quickly.  
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THEORY AND METHODS 1
1.1 Overview of Ice - Ridges Structure Interaction 

1.1.1 General 
 
First year ridges are formed due to relative motion of level ice sheets. Under pressure 
an entire ice sheet may buckle and break in bending, creating two interacting ice 
sheets. The edges of the floes break into smaller pieces, called ice rubble. While the ice 
fields continue to collide against each other the thickness of the rubble pile at the 
interaction zone increases and gradually forms a ridge type formation. The resulting 
floating ridge consists of two parts: the sail and the keel (Figure 1.1). The ridge keel 
can be divided into two parts: the consolidated layer and the rubble (unconsolidated or 
partly consolidated part). The ridge sail is located above the waterline and it is 
composed of floes that are only partly frozen together. Often the ridge sail is covered 
by the snow. The consolidated layer is just below the waterline. In this layer water 
between the ice blocks is completely frozen resulting in a conglomerate ice plate. The 
thickness of the consolidated layer develops with time depending on temperature 
history. The rubble consists of broken ice blocks with irregular shapes. Blocks are 
found to be in contact with each other, and can freeze together, creating freeze-bonds, 
thus changing the contact conditions with time.  

kh

rubble }keel

 
 

Figure 1.1 - Geometry of a first year ridge (Määttänen and Lija, 2005). 

 
Multi-year ridges develop in high Arctic from the first year ridges. During summer 
season the shape of the first year ridge is smoothed, salinity of ice decreases and fresh 
water pools form at upper parts. If during summer the temperatures variations of the 
environment surrounding the ridge are not enough to completely melt the ridge, then 
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during next winter this mixture of low salinity ice and fresh water freezes together 
forming a stronger ice conglomerate, called multi-year ridge. 
 
Many analytical models of a ridge keel exist. One of them is given by Vershinin, et al. 
(2005) and described below. 
 
Immediately after ridge formation, unconsolidated keel is characterized by initial 
cohesion (Ci), called interlocking and a friction between the ice blocks. As soon as the 
rubble comes to rest after its formation, adjacent ice blocks start to freeze together at 
their points of contacts and freeze-bonds are formed. The keel parameters are changed 
and the internal friction as well as cohesion of such medium have a more complex 
meaning. Formation of freeze-bonds results in a partial or complete loss of interlocking 
forces. Anisotropy rises during process of ridge formation and during creep (vertical 
ridge recomposing). Stronger freeze-bonds (bigger contact area) appear to be 
horizontally oriented. Due to peculiarities in behavior of discrete medium under the 

load and due to failure of definitions such as “internal friction” and “cohesion” 
(Vershinin, et al., 2005) introduces new parameters: rφ  - angle, resisting to shear and 

Cs - structural shear resistance. Both rφ  and Cs exist only prior to the moment of 

irreversible fracture. Cs is the sum of interlocking force and freeze-bond force. Force, 
resisting to shear (FT) of discrete medium is: 
 

FT=Cs+ FN tan( Nr( F )φ ), (1.1)

 
where FN is the confining load. 
 
Internal resistance appears due to frictional forces acting between the ice blocks. It 
exists only at the limited zones of contact. Structural resistance appears due to 
interlocking of the blocks and their further rotation and due to presence of freeze-
bonds forces. Quantitative values of these parameters depend on many factors such as 
ridge porosity, ice block thickness, level of consolidation, etc. Ice-ridges, built 
artificially, might not correspond to the natural ice-ridges even if similitude has been 
fulfilled. 
 
The spatial orientation of the blocks (Figure 1.2) can be divided into two main classes: 

the orientation type “end-side”, (E-S), and the orientation type “side-side”, (S-S). The 
type of orientation is defined by the angle between the axes of the two blocks. The E-S 
type is for angles more than 45o, and S-S is for angles less then 45o. The E-S 
orientation is unstable and changes to S-S with a shear displacement of the ice-ridge. 
Field measurements in the Sakhalin area show that the S-S orientation dominates in 
ridges. This might allow one to consider that the internal structure of the ice-ridge is 
stable. The ice-ridges found in nature can be described with a discrete cohesive model. 
In this model the ice properties, the porosity of the medium, quantity and quality of 

contacts are the same as for the ‘real’ ridge. If a continuum model is used to describe 
the ice-ridge, then it is necessary to control the criteria governing equivalence between 
the discrete and the continuum model.  
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Figure 1.2 - Interlocking effect and spatial orientation of ice blocks (the E-S  
orientation is between the blocks with axes a and b; the S-S  orientation is between 

the blocks with axes b and c) (Vershinin, et al., 2005). 
 
Thus, ridge formation and its aging process play an important role. They result in 
variation in ridge porosity, keel strength, pressure, and cohesion between ice blocks. 
Mechanical and physical properties of ice-ridges are one of the main parameters 
defining the design level of ice load. These properties are relatively well understood for 

the level ice but less for the ice-ridge (Timko, et al., 2000; Heinonen and Määttänen, 
2001). At the same time measuring strength parameters is an almost insuperable 
problem under field conditions. In order to define ice-ridge mechanical and physical 
properties in-situ full-scale, in-situ small scale, laboratory tests or numerical 
simulations can be used. 

1.1.2 Ice-ridge structure interaction 
 
Unfortunately, designing a structure against ice loads is not yet a mature engineering 
discipline. Currently in the world there is no common technique for ice-ridge load 
estimation. A study has been performed by Timco and Croasdale (2006) to investigate 
the general level of agreement when predicting ice loads from various international 
experts. They reported a large range of predicted loads from first-year ridges (factor of 
five) and multi-year floes (factor of seven) interacting with a vertical-sided structure. 
Four different approaches can be used to define an ice-ridge load on a structure: (1) 
use of Codes, (2) full-scale data, (3) analytical models, or (4) numerical models. Timco 
and Croasdale (2006) show that using full-scale data or analytical models as the basis 
for determining ice-ridge load on vertical structure is the dominating approach used by 
international experts (Figure 1.3). Each from the four aforementioned approaches is 
discussed below. 
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Figure 1.3 - Predictions for scenario of a first-year ridge interacting with a vertical-

sided structure. “An analytical model based on full-scale data” is categorized as full-
scale data (Timco and Croasdale, 2006). 

1.1.2.1 Codes 
 
The ridge load estimations techniques used vary from country to country. Estimation 
techniques are influenced by different local knowledge about local ice conditions. 
Northern European countries, Russia and China have their own national design 
practices and recommendations for ice-ridge loads calculations. Timco, et al. (1999a), 
Määttänen and Lija (2005), Bruun and Gudmestad (2006), Masterson and Frederking 
(2006) compared different calculation algorithms realized in national design practises, 
recommendations and standards for calculating ice-ridge loads. Among them are API, 
CSA, DNV, DS, GLO, IALA, IEC, ISO, NORSOK, NPD, Q/HSn 3000-2002, RIL, 
SNiP, and VSN. 
 
Coverage of ice-ridge forces in different codes differs considerably. According to 
Määttänen and Lija (2005) some codes give detailed guidelines how to calculate the 
forces from the ice-ridges while others may just warn of the significant ice forces 
exerted on a structure. They reported that the multi-year ridge scenario is missing in 
IEC, RIL, SNiP and VSN. For the first-year ridge scenario GL does not give design 
guidelines. CSA does not suggest any method for first-year ridge keel loads. SNiP, 

VSN, IEC suggest a ridge load to be calculated similar to a crushing load. Many codes 
do not have clear guidelines for ice-ridge load calculations for different structure 
geometries (vertical/conical structure, wide/narrow structure). The solutions in the 
codes are given by formulas, while graphs represent the coefficients. All these solutions 
include a number of parameters, which are hard to define in a real situation. As a 
matter of fact, calculation principles in national design practises, recommendations and 
standards mainly come from the experience of the authors. Basically, such experience 
is gained from full-scale observations. Let us consider the Baltic Sea. Only first-year 
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sea ice exists there (Toikka and Hallikainen, 1992), and an ice-ridge building process is 
mainly dominated by rafting, therefore, it is reasonable that RIL does not have any 
guidelines for the multi-year ridge scenario. In the Barents Sea ice-ridge building 
processes mainly dominated by ridging and, therefore, differences between calculation 
algorithms and recommendations in NORSOK and RIL are to be expected. 

1.1.2.2 Full-scale measurements 
 
Full-scale investigations of actions from first-year ridges in the Beaufort Sea were done 
by Wright and Timco (1994) and Timco, et al. (1999b). According to Gürtner (2009b), 
only limited full-scale data of ice forces are available for research. For more than ten 
years leading oil companies around the world have been using advanced technology, 
like underwater sonars, for the automated and continuous monitoring of the ridges 
geometry. Data obtained from such monitoring are confidential and are published only 
after several years.  
 
Full-scale observations on ridge interactions with offshore structures show that the 
details of the ridge failure mechanism are variable. Therefore, an accurate theoretical 
estimation of the forces caused by ice-ridges is not feasible (Määttänen and Lija, 2005). 

“First-year ice actions in sub-arctic (or temperate) Bothnian Bay of the Baltic Sea are 

often different from what is commonly assumed in literature” writes Dr. T. Kärnä 
(personal communication, 2009). And he continues: “Some of the observations of mine 
include: 
 

→ The sail-area of an ice-ridge was the weak link in all ridges that I observed. So, 
what is the consolidated layer here? 

→ All ridges that I observed had an area of rafted ice adjacent to the ridge 
sail. This rafted ice provided the highest load - not the area of the ridge sail 
where the strong part is usually assumed to exist.  Ice-induced vibrations were 
also caused by the rafted and refrozen part of an ice-ridge.  

→ Ice-ridges never failed in the manner that we are postulating in simple formulas, 
such as Dolgopolov’s formula. Instead, several kind of load-releasing mechanism 
restricted the ice load.  

→ The relatively thin ice (< 0.5 m) did not keep its integrity at a low ice speed - 
so bending failure or a mixed-modal failure was common. Ice crushing all over 

the ice-structure interface was common at higher ice speeds (> 0.1 m/s).”  
 
Full-scale measurements are expensive, not always possible and time consuming, but 
can we rely on the measurements? Reported full-scale data might not reflect reality 
due to an inaccuracy in measuring devices (Jefferies, et al., 2008). 

1.1.2.3 Analytical models 
 
Several approaches and theories have been proposed to calculate the forces that a first-
year ridge of sea ice would exert on an offshore structure. The theoretical approaches 
vary widely and depend upon the shape of the structure (vertical or sloped) and the 
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(assumed) failure mode of the ice. Vershinin, et al. (2005) comment that methods for 
estimating ice-ridge loads on vertical-sided structures are most developed. Analytical 
models referred to vertical-sided structures are discussed in Timco, et al. (1999a). 
Loads predicted by analytical models of Korzhavin (for a consolidated layer), 
Dolgopolov, Prodanovic, Mellor, Hoikkanen, and Weaver (for the local failure), and 
models of Croasdale, Prodanovic (for the global failure) were compared with the full-
scale measured load. Authors conclude that although there appeared to be a reasonable 
agreement between the predicted and measured loads, a large number of assumptions 
had to be made to predict the load. Although there are a number of calculation models 
available for determining ridge keel forces, they all have the following inadequacies 
(Timco, et al., 1999a): 
 

→ Results depend very much on the shape and position of the failure plane 
assumed. 

→ They are over-simplified in their treatment of a ridge and structure geometry. 

→ They depend very much on ridge properties that are difficult to determine. 

→ There are significant disagreements between the models. 
 
Use of analytical models, reviewed in Timco, et al. (1999a), for predicting the loads 
due to ridge keels and sails should also be viewed with caution. 
 

It is conveniently to treat ice-ridge loads as the sum of loads from a consolidated layer 
and ice rubble (Vershinin, et al., 2005). This approach allows applying separately 
methods for calculating loads from level ice and methods for calculating pressure of 
Coulomb medium. When ridges interact with conical structures (as in the level ice case 
scenario) the mechanism of ice failure is changed. The method to treat ice load as the 
sum of loads from a consolidated layer and rubble is no more feasible. Ice-ridge actions 
on conical structure in field conditions have been poorly investigated. In case of an ice-
ridge interaction with conical structures model tests are usually used in order to 
estimate the loads. Such tests with conservation of the Froude number leads to 
technical difficulties. Therefore if the ice-ridge interacts with a conical structure, then 
the computational methods based on mechanics and involvement of experimental data 
plays a special role. Vershinin, et al. (2005) gives different methods for calculating 
both loads form ice-ridge on vertical structures and loads form ice-ridges on conical 
structures. Wang (2000) gives an analytical method for ice-ridge crack loads on a 
multifaceted conical structure. Nevel (2001) presents analytical methods for calculating 
ice-ridge forces on a downward breaking cone. 
 
Still many questions remain unresolved regarding properties of ridge keels and their 
interaction with structures. The process of an ice-ridge interaction with a structure is 
not well understood yet. 

1.1.2.4 Numerical models 
 
The main elements of a numerical simulation are illustrated in Figure 1.4. 
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Figure 1.4 - Main elements of a numerical simulation (Szabó 2007). 

 
The first and the most important step in a numerical simulation is the description of 
the physical system. After the first step is accomplished a mathematical model has to 
be defined. This second step is very important in the numerical simulation. The choice 
of the mathematical model depends on the level of accuracy required and the targets of 
computation. The process between the first and the second step is called 
conceptualization. Here, decisions have to be made about the level of topological 
details to be included, material properties, boundary conditions, solution algorithms, 
etc. In the third step it is important to ensure that a numerical solution is an adequate 

representation of the ‘exact’ solution, associated with the mathematical model. 
 
Solving the problem of an ice-ridge structure interaction is a difficult task, which 

requires high computational power. These days a processor’s clock speed reaches its 
peak because more clock speed will generate more heat and require more power. 
Therefore, researchers built processors with more than one processing unit in it e.g. 
dual core to get more processing power. Also to do complex computational tasks, 
supercomputers are usually used as they provide a processing power equal to the sum 
of their clients. For example, to do the computational work needed for the Large 
Hadron Collider, CERN developed a system in which any user on internet could 
provide the idle cycle of their processor, which could then be used for processing 
information. Currently researchers are trying to build a quantum computer to make 
computations even faster. But it is in research phase at the moment (G. Singh, 
personal communication, 2009). With development of technology new possibilities are 
opening for modeling of ice-structure interactions. 
 
Nowadays, it is common for relatively new ice science to borrow some modeling 
techniques from state-of-the-art mechanics in soil and rock, metal science, concrete 
science, etc. For example, a relatively new technique to simulate crack initiation and 
crack growth was used by Gürtner (2009b) to simulate the ice fracture process. In his 
simulations a cohesive zone approach was implemented into a multi-material model of 
ice, structure and water. The applicability of such approach for ice related problems 
was shown in examples. Konuk, et al. (2009a) suggests that frozen ice rubble in the 
ridge sail/keel can be modeled with the help of cohesive element technique. The 
discretization algorithm proposed by Konuk, et al. (2009a) will be discussed later. 
 
Not so many attempts at simulating ice-ridge structure interaction have been made. 
On the other hand more work has been done to simulate ice failure against offshore 
structures and ice-ridge gouging. Sand and Horrigmoe (2001) built a finite element 
(FE) model to simulate multi-year ridge interaction with a conical structure. The FE 
Method (FEM) was used to simulate ice-ridge failure against offshore structure by 
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Martonen (2003). Numerical simulations of ice-structure interactions with FEM were 
done by Chehayeb, et al. (1986). Sand and Horrigmoe (1998) simulated level ice 
interactions with a sloping structure. In Gürtner (2009b) an overview of numerical 
methods used for simulating of ice accumulations in offshore structures is given. 
Among them are the Discrete Element Method (DEM) and the Particle in Cell (PIC) 
method. An attempt to simulate ridge keel failure by the FEM was made by Heinonen 
(1999) and Heinonen (2004). FEM was used to simulate punch tests on ice rubble by 

Liferov, et al. (2003). A 2D computer Finite Difference program “Inhomogeneity”, 
which gives possibility to determine the load dependence on the ice strength 
heterogeneity, has been developed by Shkhinek, et al. (2007). FEM was used to model 
the ice-rubble behavior by Shafrova, et al. (2004) and Liferov (2005). Numerical 
simulations of dynamic ice forces on offshore structures were done by Blackerby 
(2006). FEM was used for modeling of ice-rubble accumulations and ice-structure 
interactions by Gürtner (2009b). McKenna, et al. (1997) used the discrete element 
code to model a force from pack ice, Løset (1994a, b) used DEM to simulate the ice 
forces on a boom. A combination of FEM and DEM is being used for modeling of ice 
interactions with sloping structures (a two-dimensional model) and the full-scale punch 
tests in ridges (a three-dimensional model) by J. Paavilainen (personal communication, 
2009) and A. Polojärvi (personal communication, 2009) respectively. Numerical models 
of seabed scour by an ice-ridge are being developed by many researchers. 
 
As numerical models are easy to change and control, there is a tendency to use verified 
numerical models to investigate some important effects which can not be found 
directly from experiments (Prof. J. Tuhkuri, personal communication, 2009). 
Commercial software such as ADINA, PAFEC (Varstad, 1983), ABAQUS, (Heinonen, 
1999), ANSYS, (Horrigmoe, et al., 1994; Sand and Horrigmoe 1998; Sand and 
Horrigmoe, 2001; Martonen, 2003; Derraji-Aouat and Lau, 2005; Blackerby, 2006; Sand 
and Fransson, 2006), PLAXIS, (Liferov, et al., 2003; Shafrova, et al., 2004 and Liferov, 
2005) and LS-DYNA (Derraji-Aouat and Lau, 2005; Yu, et al., 2007; Gürtner, 2009b) 
are often used for simulations of ice failure processes. The software package DECICE 

(“Making Waves”, Oceanic Consulting Corporation, 2009), finite difference program 

“Inhomogeneity” (Shkhinek, et al. 2007), purpose-built finite difference code (Moslet, 
2008) and probably many other programs were developed to model ice and solve ice 
impact problems. 
 
Even though there is a large amount of literature on the subject of numerical modeling 
of ice-structure interactions there is no clear agreement among the authors regarding 
modeling of the ice-ridges. The numerical techniques used for predictions of design 
loads are unexplored. The most common approach is to divide the ice-ridge in three 
parts: a consolidated layer sail and rubble. The consolidated layer is usually modeled 
in the same way as the level ice. There are three different approaches to treat the sail 
and the rubble: (i) continuum, (ii) discrete, (iii) pseudo-discrete. It is not clear which 
approach is the best. No guidelines exist on which approach should be used. Many 
questions remain unsolved regarding modeling of crack growth in ice. In order to more 
accurately reflect real world conditions in the simulations a good constitutive model 
for sea ice is needed.  
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Besides the uncertainty in the “reality of ice-ridge structure interactions”, there are 
three different types of errors in validated numerical models. They are: (i) errors in the 
mathematical model or hypothesis being tested, (ii) errors in the numerical 
approximation, (iii) errors in the experiment and statistical variations. Unless the 
errors in the numerical approximation and the experiment are controlled, it will not be 
possible to judge whether the problem, if any, is in the hypothesis being tested or in 
the model (Szabó, 2007).  
 
From Figure 1.4 a simple question arises: if the process of an ice-ridge interaction with 
a structure is not well understood yet and if there are doubts regarding modeling of 
the ice fracture, then how accurate can simulated predictions be? Can we rely on 
them? The fundamental question of computational engineers regarding whether or not 
it is possible to predict the response of the structure to an ice-ridge excitation via 
numerical simulations with a high degree of reliability remains unanswered. 

1.1.3 Uncertainty summary 
 
Even if a large body of literature exists on the subject of the ice-ridge structure 
interaction, the physical process of the ice-ridge structure interaction is not well 
understood. No common techniques exist for estimation of loads exerted by an ice-
ridge on a structure. Proposed calculation algorithms require initial data which is 
difficult to define in practice. Coverage of ice-ridge forces in different codes differs 
considerably. There is a lack of full-scale data available for research. Almost no 
numerical tools are available to model ice-ridges. Laboratory or full-scale tests are 
needed to validate the numerical models.  

Analytical Models

Empirical Models Numerical Models

Poorly developed

Undeveloped Undeveloped

Undeveloped

 
Figure 1.5 - Development state. 

 
The state of the art in the knowledge of ice-ridge structure interaction is schematically 
shown in Figure 1.5. At present, much work has already been done in building 
analytical models, and many full-scale and laboratory tests have been carried out. But 
there is still a need for improvements. In comparison with analytical models numerical 
models are poorly developed. There is a need in both methodologies to solve ice-ridge 
interaction problem and experimental (full-scale) data for the validation of numerical 
models. As it can be seen from Figure 1.5 all three model families are interconnected. 
Unfortunately the knowledge field, directed towards connecting those modes, is almost 



Theory and Methods 

 

Ekaterina Kim                                                                                                                                     Trondheim 2009 
 

13

undeveloped. The reason for such uncertainties might be that historically in the 
general engineering discipline, designing for collision (impact) is done on the basis that 
an impact is an extremely unlikely event. 

1.2 Importance of Freeze-bonds (Theory) 
 
In Section 1.1 it was shown that the physical behavior of ice rubble and its thermo-
mechanical properties are not well understood. There is no consensus among the 
experts regarding what load is exerted on a structure by an ice-ridge. The deformation 
process of ice-ridges remains unclear. Experiments show that the failure of the non-
consolidated part of the ridge keel happens due to displacements at the contacts 
between the ice blocks (Vershinin, et al., 2005). Besides, the process of producing 

‘correct’ model ridges seems undeveloped. The relation between model experiments and 
full-scale measurements is not straightforward (Repetto-Llamazares, et al., 2009b).  
 
The importance of the freeze-bonds (FBs) during the ice-rubble failure is discussed by 
many authors (Ettema and Urroz, 1989; Surkov and Truskov, 1993; Surkov, et al., 
2001; Shafrova, et al., 2004; Vershinin, et al., 2005; Liferov, 2005; Liferov and 
Bonnemaire, 2005; Repetto-Llamazares, et al., 2009b) as well as the FBs contribution 
to the peak-load value at failure of ice rubble. So, FBs seem to play an important role 
in the ice-ridge failure process but not many attempts have been made to study the 
appearance of FBs and their characteristics. Besides, the lack of data on the FBs and 
the different techniques used for the investigation of FB properties make the 
comparison of results complicated. Different FB test setups are given in the Appendix 
A. 

1.2.1 General 
 
Many analytical and numerical models attempt to describe a medium consisting of 

broken ice pieces by elastic-plastic behavior with a Mohr-Coulomb yield surface. 

Ettema and Urroz (1989) write: “Shear behavior of ice rubble cannot be adequately 

characterized in terms of linear Mohr-Coulomb criterion tan Cτ σ φ= +  (τ  - shear 

strength, σ  - confining pressure, φ  angle of internal friction, and C - cohesive 

intercept), as shear is subjected to the influence of freeze bonding, which causes 

individual pieces to fuse together, and ice piece deformation and disintegration”. 
Vershinin, et al. (2005) suggest a Mohr-Coulomb diagram for the ice rubble as shown 
in Figure 1.6. The given diagram is based on the analytical solutions suggested by the 
authors, and postulates of the plasticity theory.  
 

The Mohr-Coulomb diagram for the partly consolidated medium should be an envelope 

(the consolidation process doesn’t decrease the strength of the medium) and a part, 

which is tangential to the Mohr-Coulomb diagram (for high values of σ - compression) 
for the unconsolidated medium. A decreasing degree of consolidation results in an 
increasing frictional angle, i.e. increase of slope of Mohr-Coulomb diagram. It can be 

presumed, that nonlinearity of Mohr-Coulomb diagram is a violation of Amonton’s 
laws regarding the independence of friction coefficient on vertical confining load, due 
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to small contact areas and, thus, the medium has a nonlinear dependence on the 
hydrostatic confinement.  

 

partly
consolidated at time T2

unconsolidated at time T0

partly
consolidated at time T1

( )normal stress σ

( )shear stress τ

iC

C

T2 > T1> T0

fbC

 
Figure 1.6 - Qualitative forms of the Mohr-Coulomb diagram for a partly consolidated 

and unconsolidated media (Vershinin, et al., 2005) 

 
According to Vershinin, et al. (2005), the cohesion of a partly consolidated ridge (C) 
can be calculated as the sum of the cohesion due to interlocking forces (Ci), which is 
considered as the cohesion of the unconsolidated ridge, and the cohesion due to freeze-
bond forces (Cfb). Ridge interlocking forces are dependent on the ice-rubble thickness 

and could be defined almost precisely by direct measurements (Punch-test on 
unconsolidated ridges and Shear-box test in the laboratory). The value of interlocking 
is a few times lower than the value of cohesion during consolidation process and, as it 

can be presumed, it doesn’t rise above 3-5kPa (experiments in the Baltic Sea with 
poorly consolidated ridges). 

1.2.2 FB creation, FB importance 
 
Information in this section is based on Chapter 3 in Vershinin, et al. (2005). 
Unfortunately, from the source it was not always clear whether the presented data are 
based on theory or on the experiments.  
 
When an ice-ridge is formed, especially at low air temperature, ice freezes over the 
surface of the broken ice pieces due to internal cold energy. So, ice blocks freeze 
together at their contacts, creating FBs. Figure 1.7 shows schematically of the freezing 
process over the an ice block of radius (R). For simplicity, it is supposed that the ice 
block has a spherical shape. 
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2R

( )pδ η

( )Q η

 
Figure 1.7 - Scheme of freezing over an ice block (Vershinin, et al., 2005) 

 
The amount of cold energy in the ice block (Q( )η ) at the moment of the ice-ridge 

creation can be written as: 

 
avT

3
i p i i i

0

4
Q( ) ( ) c ( , ) R d

3
η θ τ υ τ ρ π τ= − ⋅ ⋅ ⋅∫  (1.2)

 
where avTη θ= − ; cp is heat capacity of ice as a function of salinity (υ ) and 

temperature ( iτ ); θ  is the melting temperature of ice; Tav is the average ice 

temperature; iρ  is the sea ice density. The thickness of the additional ice layer 

( p p( )δ δ η= ) can be found from: 

 
3 3

p 2
i i p

4 ( R ) 4 R
Q( ) L 4 LR

3

π δ π
η ρ πρ δ

+ −
= ≈ ⋅  (1.3)

 
where L is the specific latent heat of sea ice.  
 
Note: Oceanic flux is assumed to be zero in this model.  

 
An ice block submerged in water undergoes three stages of thermal changes. First the 
temperature changes as ice piece is colder than the surrounding water, and the initial 
condition at the ice boundary become important. Later the steady-state stage 
advances, which ends with the stage of equilibrium temperature between the ice block 
and surrounding water. 
 

The heat flow through the area (Ω) over the time ( tΔ ) can be calculated by Equation 
1.4 if the following assumptions can be made: 
 
(1)  The temperature gradient along the ice block thickness is given in Figure 1.8 
 
(2) The initial stage of temperature change proceeds locally and fast without 

significant changes of the total amount of cold in the ice block. 
 
(3) The effect of frozen-over ice on the temperature variation is negligible. 
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ice melting temperature

average ice temperature

ice
thickness

assumed ice temperature variation

 
Figure 1.8 - Scheme for estimating ice block temperature variation with time 

(Vershinin, et al., 2005) 

 
 

p i

Q( t ) Q( t t ) ( t ) ( t t )

t h / 2

Q( t ) c h / 2 ( t )

Δ η η Δλ
Δ Ω

Ω η ρ

− + + +=
⋅

= ⋅ ⋅ ⋅ ⋅
 (1.4)

 
Where pc , λ  are the heat capacity and the thermal conductivity of the ice block 

respectively, averaged through the ice thickness (h);  
 
Then, averaged variation of the ice temperature as a function of time is shown in 
Figure 1.9. 
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Figure 1.9 - Temperature of ice as a function of time (Vershinin, et al., 2005). 

 
Freezing process over the ice block varies with time. From calculations it can be seen 

that such a process for the ice block, with thickness less then one meter, doesn’t 
significantly progress in time if this process lasts more then ten days. Hence for ice-
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ridges older then one month it can be assumed that ( t ) pδ δ≈ . Volume of newly 

created ice by the freezing-over process is shown in Figure 1.10 as a percentage of the 
volume of the ice block. 
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Figure 1.10 - Increase of volume as a function of temperature; (Ice salinity 3.5% and 

θ =-1.5oC) (Vershinin, et al., 2005). 
  
A model of a ridge consolidation can be represented as a cell structure consisting of 
frozen together spheres. The physical parameters of the ice at the contacts are defined 
by properties of the FB as a function of salinity and temperature. The properties of 
horizontally oriented FBs differ from those of vertically oriented ones. The ice-ridge re-
compaction process, which takes place after the ice-ridge has been created, results in 
an increase of horizontally oriented FBs, especially at the upper part of the ridge. 
Vertically oriented FBs are less affected by the re-compaction process. Horizontally 
and vertically oriented FBs are illustrated in Figure 1.11a and Figure 1.11b 
respectively. 

FB

force due to buoyancy

Newly created ice by freezing 
over process 

2 fbr
 

FB

sR

Newly created ice by freezing 
over process 

iceτ

(a) FB confinement (b) FB – ice strength relation scheme 

 
Figure 1.11 - Scheme of the frozen together spheres, (a)-horizontally oriented, (b)-

vertically oriented FB (Vershinin, et al., 2005). 
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FB strength corresponds to the strength of sea ice with high brine content. 
 
For the vertically oriented FBs Vershinin, et al. (2005) give following strength 
parameters: 
 
(1) Compression strength of FB is Rc=0.4-0.6MPa; 
 
(2) Tension strength of FB is Rt= 0.2-0.3MPa; 
 

The strengths ratio is c

t

R tan( 45 / 2 )

R tan( 45 / 2 )

φ
φ

+=
−

, iφ =20o - angle of internal friction 

of ice; 
 

(3) In according with Coulomb’s theory the shear strength of FB is 
1 / 2

s c tR 1 / 2( R R )= =0.14-0.21MPa. 
 
Strength parameters for horizontally oriented FBs are higher than for vertically 
oriented ones due to the increase of freezing surface with re-compaction process of the 
ridge. 
 
The keel of an ice-ridge can be considered as a continuum cohesive medium. Cohesion 
of such medium (C) can be estimated as: 

 
2

fb iC F / 4R C ,= +  (1.5)

 
where Ffb  is the FB force along the surface of radius (rfb), see Figure 1.11a; iC  is the 

specific cohesion due to interlocking, defined from experiments; R is the radius of the 

sphere, see Figure 1.7. Ffb is found from the relationship: 2
fb s fbF R rπ= ⋅ . 

1.2.3 Uncertainty summary  
 
From what was presented in Sections 1.2.1 and 1.2.2, it can be seen that the existence 
of FBs might significantly affect the ice-ridge failure process and therefore the load 
exerted onto a structure by an ice-ridge. Unfortunately almost no analytical, numerical 
or empirical models exist which directly take into account the phenomenon of freeze-
bonding. In most of the state-of-the-art models, describing ice-ridge structure 
interaction, influence of the FB are implicitly incorporated with other assumptions, for 
example, together with the assumption of failure plane. During the phase of model 
validation, the influence of FB on the final result is often ignored. Thus, a deeper 
study of the physical processes governing the behavior of both model ice-ridges and 
ice-ridges in nature may bring additional knowledge which will allow: (i) improvement 
of existed models of ice-ridges, (ii) improvement of correlation between model and full-
scale experiments; (iii) improvement of numerical models.  
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1.3 Finite Element Method in Ice-ridges Structure Interaction 
(Theory) 
 
Though several numerical models have been built to simulate loads exerted on a 
structure from ice-ridges, this work concentrates on the algorithm proposed by Konuk, 
et al. (2009a) as it looks promising for simulations of ice fracture processes. The 
approach is relatively new and therefore has many uncertainties, offering plenty of 
opportunities for investigation. 
 
According to Konuk, et al. (2009a), for the scenario of an ice-ridge interaction with a 
structure the frozen rubble in the keel or sail can be modeled by utilizing the cohesive 
element method and the frozen consolidated layer of ice-ridges can be treated as the 
level ice. The authors propose the following discretization algorithm to model ice-
ridges: 
 

1. The consolidated layer is discretized by inserting cohesive elements between the 
internal element boundaries in horizontal and vertical planes. Properties of the 
cohesive elements (CEs) inserted in the horizontal planes differ from those 
inserted in vertical planes. The bulk ice is discretized using a structured or 
unstructured finite element mesh. 

 
2. The rubble in the keel and sail are descretized using an unstructured element 

mesh consisting of three-dimensional continuum elements. A set A(ce) of CEs are 
introduced along some selective element boundaries. This cohesive element set is 
a simulation of the freeze-bonds between the ice blocks. Later some of the 
groups (or single) of CEs trapped between the cohesive surfaces are deleted. 
Created in this way voids represent porosity of the ice rubble. 

 
3. The surface area between the keel (sail) and the consolidated layer is populated 

with a set B(ce) of CEs. 
 

4. A set C(ce) of CEs is inserted in the remaining element boundaries. It represents 
Cohesive Zone Model1 properties of the ice blocks. 

 
Author of this study believes that the approach proposed by Konuk, et al. (2009a) will 
be used in near future for simulations of ice-ridge structure interactions. A study has 

been done in order to get an idea of the properties of cohesive elements from the ‘A(ce)’ 
set and therefore to contribute to the future development of the method.  
 
 
 
 
 
 
 
 
1Cohesive Zone Model is a model developed to account for the nonlinear stress field around the crack 
tip and to model the softening behavior during propagation of the crack (Konuk, et al., 2009a) 
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1.3.1 General 
 
The numerical model described in next subsections is based on the basic principles 
presented in this part of thesis. Information given in Subsections 1.3.1 and 1.3.2 is 
based on works by Belov (2004), Zienkiewicz, et al. (2005) and Belytschko, et al. 
(2006). A reader familiar with the basic principles of elasticity theory, finite element 
method and cohesive zone model (or cohesive crack model), may skip Subsections 1.3.1 
and 1.3.2. 

1.3.1.1 Foundations of the elasticity theory  
 
Let V denote a volume occupied by a part of body, and S the surface, bounding this 
volume. The quasistatic problem of elasticity formulated in terms of displacements for 
a heterogeneous anisotropic medium includes the solution of three differential 
equations of equilibrium (Equation 1.6) with respect to components of the 
displacement vector.  

 
( )4 : 0∇ ⋅ ∇ + =C(r) u fV  (1.6)

 
In Equation 1.6 the symbol ‘:’ denotes a contraction of a pair of repeated indices; ‘ ⋅ ’ 
denotes a contraction of inner indices as in Belytschko, et al. (2006);  

 
 r e e e ek k 1 1 2 2 3 3x x x x= = + +   is the radius-vector of considered point; 

 

C(r) e e e e4
ijkl i j k lC=    is the fourth-rank tensor of material stiffness; 

 

ek

kx

∂∇ =
∂

  is Hamilton’s nabla operator;  

 

  u ek ku=   is the displacement vector;  

 

  f eV Vk kf=  is the vector of body forces; 

 
Three types of boundary conditions are commonly encountered in the solution of 
differential equations (Equation 1.6). 
 
1. Kinematic boundary conditions describe the behavior of a body at points laid within 
its volume (Equation 1.7). 

 
u u rS S ( )=  (1.7)

 
In Equation 1.7 S is the body surface; u eS S k ku=  is the displacement vector prescribed 

on S. 
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2. Static boundary conditions are described by Equation 1.8. 

 
( )n C(r) u f4

S
S

:⋅ ∇ =  (1.8)

 
In Equation 1.8 f eS S k kf=  is the vector of surface forces (prescribed on S); n ek kn=  is 

the unit vector of outward pointing normal to the body surface.  
 
3. Mixed boundary conditions are described by Equation 1.9. 

 
( )u u r n C r u f

1 2

4
S S 1 2S S
( ) ; ( ) : ; S S S= ⋅ ∇ = = ∪  (1.9)

 
In Equation 1.9 S1 and S2 are parts of the surface S. It is also possible to define 
combined boundary conditions, when from a total three equations one (two) equations 

are formulated in terms of displacements and two (one) - in terms of forces. 
 
If the dynamic problem of elasticity is considered, then a contribution of inertia forces 
is considered separately (Equation 1.10). 

 
( )4

V: ρ∇ ⋅ ∇ + =C(r) u f u��  (1.10)

 
In Equation 1.10 ρ  is the body density and the superposed dots denote the time 

derivative 2 2/ t∂ ∂ . In Equation 1.10 the term with ��u  can be considered as a body 

force which acts in the direction opposite to the acceleration (d’Alembert force). Since 
the governing differential equation for the dynamic problem is second order in time, 
two sets of initial conditions are needed. These conditions are specified at the initial 

time 0t t=  from which the given set of equations evolves. 

1.3.1.2 Basis equations 
 
For small strains ( )u 1∇ <<  the strain tensor ( ε ) can be approximated by Cauchy’s 
relationships:  
 

e e e eji
ij i j i j

j i

u1 u
,

2 x x
ε

⎛ ⎞∂∂= ≈ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
ε  (1.11)

 

31 2
11 22 33

1 2 3

uu u
, ,

x x x
ε ε ε ∂∂ ∂= = =

∂ ∂ ∂
 are the normal strains;  

ji
ij ij ij

j i

uu
,

x x
ε γ γ

∂∂= = +
∂ ∂

1
2

 are shear strains. 

The first invariant of the strain tensor is a volumetric strain written as: 
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1 11 22 33I ( ) trace( ) ,ε ε ε= = + +ε ε  (1.12)

 
Constitutive equations for a linear-elastic heterogeneous anisotropic medium can be 
written as following: 
 

e e C r e e4
ij i j ijkl kl i j( ) : Cσ ε= = =σ ε  (1.13)

e e S r e e4
ij i j ijkl kl i j( ) : Sε σ= = =ε σ  (1.14)

 

where σ is the stress tensor; 11 22 33, ,σ σ σ  are the normal stresses, 12 23 31, ,σ σ σ  are the 

shear stresses S r4 ( )  is the fourth-rank tensor of elastic complaisance. In Equations 

1.13 and 1.14 C r S r4 4 4( ) : ( ) = I  (I is the unit tensor). Equations 1.13 and 1.14 are 

reciprocal formulations of Hooke’s law. 
 
If displacements are large (e.g. undeformed and deformed configurations of the body 
the nonlinear or second-order terms of the finite strain tensor have to be considered. 
The strain tensor can be written as:  
 

e e e eij i j ij i j ,ε η= +ε  (1.15)

 
Second term in Equation 1.15 represents nonlinear part of the tensor. 

1.3.1.3 Principle of virtual displacements 
 
Consider a body V, which is at the equilibrium state under an action of body forces 

( fV ), surface forces ( fS ), and displacements (uS ). Under such conditions 

displacements fields (u r( ) ), deformations and stress fields ( r( )ε ) and ( r( )σ ), 

respectively, appear inside the body. If the displacements of the body (u) at its 

equilibrium state show the infinitesimal increments ( uδ ) (Equation 1.16), which are 

compatible with both geometrical and kinematic constrains (superimposed on the 
body), then such additional displacements are called virtual displacements (Harris, 
1959). 

 

( )u u u
1 1S S S 0δ= ⇒ =  (1.16)

 
When a body is in the equilibrium state subjected to virtual displacements, the work 

done by external forces is equal to the change in potential energy ( Uδ ) due to virtual 

displacements (Equation 1.17). 

 
f u f u

2

V S

V S

dV dS Uδ δ δ⋅ + ⋅ =∫ ∫  (1.17)

 



Theory and Methods 

 

Ekaterina Kim                                                                                                                                     Trondheim 2009 
 

23

Uδ can be considered as the internal virtual work done by the stresses (Equation 

1.18): 

 
For dynamic problems the first term in Equation 1.17 can be rewritten as: 

 
f u u u uV

V V V

dV dV dVδ δ ρ δ⋅ = ⋅ − ⋅∫ ∫ ∫ ��F  (1.19)

 
where F  is the prescribed body force. 
 
The principle of virtual displacements is also valid for large deformations. In this case 
Equation 1.17 should be written using more complex measures of stresses and strains.  

1.3.1.4 Cohesive Zone Model (CZM) 
 
Fracture mechanics can be performed on a variety of length scales ranging from a 
global (macroscopic) scale to a micro- (atomic) scale. The transition of stresses and 
displacements from a macro- to micro-scale is performed by use of local approaches. A 
general concept of the local approach is that the global failure of material is initiated 
by the local behavior in the area where stresses concentrations exist (i.e. crack tip). 
One of the local approaches is the cohesive zone modeling, which has been successfully 
employed to simulate fracture in ice by Wang, et al. (2006), Paavilainen, et al. (2009), 
Gürtner (2009b) and Konuk, et al. (2009a,b). Cohesive zone model (CZM) is a 
relatively new phenomelogical model, used mainly for the numerical simulations of 
crack propagation and it is based on previous works by Dugdale (1960), Barrenblatt 
(1962), Needleman (1987) and Tvergards (1990a, 1990b). Hillerborg, et al. (1976) 
applied the cohesive model to brittle fracture using the finite element method. 
Needleman (1987) was probably the first, who used the CZM for the crack propagation 

analysis of ductile materials. In recent years, many scientists use CZMs in many 
numerical investigations (e.g. a crack growth in ductile and brittle materials, interface 
debonding, analysis of a sandwiched structures), where the cohesive element technique 
is incorporated within the classical finite element frameworks. It should be noted that 
convergence proofs for the cohesive element technique are still in a development stage 
(Konuk, et al., 2009a).  
 
The idea of CZM is based on the consideration that stresses at the crack tip are finite. 

The crack tip is divided into two zones (Figure 1.12): a “Traction free surface” and 

“Traction on surfaces”. The traction free surface corresponds to the physical length of 
crack, which is a stress free; and the traction on surfaces is the fracture process zone 
(FZP), where the yielding and degradation of material occur. It is loaded by a finite 
stress called traction stress or cohesive stress (T). 

V

U : dVδ δ= ∫ σ ε  (1.18)
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Figure 1.12 - A crack model, where FZP is a fracture process zone and traction (T(x)) 

is a function of distance from the crack tip (Gürtner, 2009b). 

 
Most of recently developed CZMs are based on a mathematical framework of the 
conventional finite element method. In the cohesive model implemented into ABAQUS 
6.8 finite element code, the cohesive stress is considered as a function of material 
separation and not of the distance from the crack tip. In the finite element 
representation of the CZMs, cohesive elements are inserted as an interface between 
continuum elements, and the damage, occurring in the element interfaces, follows a 
constitutive equation named cohesive law (Scheider and Brocks, 2003a), see Figure 
1.13. If assume that each of these cohesive elements contains sufficient information 
about the crack growth in Mode I in the material, the cohesion-decohesion behavior for 
the Mode I can be obtained by applying a tensile load on a single element. The area 
under the cohesion-decohesion curve can be considered as the energy of separation and 
the cohesion-decohesion curve can be considered as the traction-separation law (TSL) 
for cohesive elements. In this model the crack can propagate only along element 

boundaries. Separation (δ ) in these cohesive elements is calculated from the difference 
in displacements of continuum elements adjacent to them. A cohesive element fails 

when the maximum opening ( 0δ ) named critical separation is reached. The maximum 

traction (T0 ) of cohesive strength is defined as a stress at the surface of continuum 

element. T0  and 0δ  are used as fracture parameters of the material. 

 
Figure 1.13 - A cohesive zone obeying a traction-separation law and the surrounding 

undamaged material (Anvari, 2008). 
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The post-failure behavior of a cohesive element is defined either by the specified shape 
of TSL and by the value of critical separation or by the TSL shape and by the value of 

cohesive energy ( 0Г ). 0Г  is the energy absorbed by the cohesive element, calculated 

as: 

 
o

0
0

T( )
δ

Γ δ δ= ∫ d  (1.20)

 
It should be noted that the δ  can occur in normal or tangential directions. The value 

of 0Г  can be obtained experimentally as it coincides with the J - integral at the crack 

initiation. 

Cohesive laws 
 
According to Anvari (2008), most of scientists, working with the CZM, can be split in 
two main groups based on their beliefs: Group 1, which claims that the shape of TSL 
does not have or has very little influence on the behavior of crack growth (Lin, et al., 
1998; Needleman, 1990; Siegmund and Needleman, 1997; Tvergaard and Hutchinson, 
1992) and Group 2,  which has belief in the effect of TSL shape (Falk, et al., 2001; 
Scheider and Brocks, 2003b; Zhang, et al., 2003). For example, Scheider and Brocks 
(2003b) write that the influence of TSL on the result of calculations is strong, and the 
values of the cohesive parameters depend on the choice of that function and that the 
transferability of parameters from one TSL to another is not satisfied. Uncertainties 
regarding a physical meaning of TSL for cohesive elements are discussed in Anvari 
(2008). 
 
Only few studies, where the cohesive model was employed to simulate ice fracture 
processes, were done. Figure 1.14 illustrates different cohesive laws adopted for ice by 
Paavilainen, et al. (2009), Gürtner, et al. (2008) and Wang, et al. (2006). 

 
(a) linear (b) bilinear (c) trilinear 

 
Figure 1.14 - Cohesive laws adopted for the modeling of ice failure by Paavilainen, et 
al. (2009) (a); for the modeling of sea ice breakup in McMurdo Sound by Wang, et al. 

(2006) (b) and for the modeling of in-plane fracture of model ice by Gürtner, et al. 

(2008) (c); (T0 - maximum traction; Г0 - cohesive energy; δ0 - critical separation; χ 1 

and χ 2 - separation measures). 
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In Paavilainen, et al. (2009) the linear softening behavior (Figure 1.14a) is considered 
as a material property. In Gürtner, et al. (2008) the utilized cohesive law (Figure 
1.14c) is regarded as a phenomenological characterization of FPZ and the maximum 
traction is related to the tensile capacity of ice, while Wang, et al. (2006) mentioned 
that the particular shape of traction-separation curve (Figure 1.14b), describing 
cohesive law, is regarded as a material property.  
 

1.3.2 Background and basic equations of finite element method 
 

1.3.2.1 Concept of FEM 
 
The general idea of FEM is that any continuous variables (e.g. temperature, 
displacement, pressure) can be approximated by a discrete model, which is built-up on 
the set of piecewise-continuous functions. These functions are defined on a finite 
number of subdomains via values of a continuous quantity at a finite number of points 
in the considered region.  
 
At present, FEM has become a numerical technique for finding approximate solutions 
of partial differential equations (PDE) and integral equations. Today, the FEM as well 
as many other state-of-the-art numerical methods are used mainly to gain insights into 
key variables and their causes and effects or to construct reasonable arguments as to 
why events can or cannot occur based on the numerical model, or to make qualitative 
or quantitative predictions about the future. 
 
According to Eckard (2009), the finite-element analysis serves the opportunity to 
speed-up the design process. One of the advantages of using FEM is that any type of 
domain and boundary conditions can be handled including multi-material domains. 
 

The vector u r( )  is defined within a domain (V) limited by a surface (S). The main 

conception of FEM is a building of discrete-element model of the domain and a 
continuous function (a trial function). In order to do this the domain V  has to be 
approximated by a finite number of subdomains called finite elements (FE). This 

process is referred to as discretization. The vector-function u r( )  is interpolated at 

every FE by a polynomial function which is defined by nodal values of u r( ) . 

1.3.2.2 Discretization of a domain (FE model) 
 
A region V subdivided into a finite elements can be written as ( e )

eV , e 1, n= , where 
ne is the total number of FEs. Every FE shares its nodes with other FEs and the nodes 

are numbered as p pJ , J 1, n , n=  is the total number of nodes. The FE model is 

characterized by the global coordinate vector (X) (Equation 1.21). 
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{ }X
p

T
j J 1 ,n

T,X ,
=

= … …  (1.21)

 
A coordinate vector of FE nodes x (e) is formed from X (Equation1.22). 

 

{ }T

i
g

( e ) ( e ) ( e )
gi 1 ,m

, x , == =x a X… …  (1.22)

 
where a( e )

g  is the incidence matrix. 

 
The choice of element type and its configuration as well as the number of nodes 
depends on the considered problem and required accuracy. 
 

1.3.2.3 Construction of a FE trial function 
 
Nodal values of an unknown function and, if necessary, values of its derivatives are 

considered as basic variables (i.e. degrees of freedom or DOFs). Let’s introduce the U, 

as a global vector of nodal unknowns for the whole body and the u( e ) as a local vector 
of the nodal unknowns of an element (Equation 1.23). 

 
{ }U T T

J J 1 ,np
,U ,

=
= … … ; u a U( e ) ( e )

f=  (1.23)

 
where a( e )

f  is the incidence matrix (often called the connectivity matrix). 

 
If the nodal values of an interpolation function are taken as the DOFs of a FE, then 
such element is called Lagrange element; if the values of derivatives are used then the 
FE is called Hermite element. 
 
After the choice of nodal unknowns, a polynomial interpolation is constructed. The 
polynomial is based on the law of change of the unknown function within the domain 
of FE and it is expressed through values of unknown function at nodes. 
 

The displacement vector uT
1 2 3( u ,u ,u )=  in an arbitrary point of FE (е) and its 

position vector xT
1 2 3( x , x , x )=  can be written as following: 

 
f ( e ) f ( e )

f

( e ) ( e )
= =u N u N a U  (1.24a)

x N x N a Xg ( e ) g ( e )
g

( e ) ( e )
= =  (1.24b)

 

where N f ( e )
is the matrix of polynomial interpolants (shape functions); N g( e )

is the 
matrix of approximate functions. 
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1.3.2.4 Stiffness matrix and load vector of an element 
 

Based on the strain tensor for small deformations ( )u
S= ∇ε  a strain vector can be 

written as: 

 
B u B a U( e ) ( e ) ( e ) ( e )

f= =ε  (1.25)

 
where B ( e ) is the matrix which defines strains from nodal variables.  
 
The relation between stresses and strains is linear (Equation 1.26). 

 
( ) ( )D D B a U( e ) ( e ) ( e ) ( e )

0 0 f 0 0= − + = − +σ ε ε σ ε σ  (1.26)

 
In Equation 1.26 D( e )  is the elasticity matrix, containing material properties; 0ε  is the 

vector of initial strains (temperature strains) and 0σ  is the initial stress vector.  

 
Substituting Equations 1.25, 1.26 and 1.24a into Equation 1.27, which is the principle 
of virtual displacements written in the matrix form for a static problem, we get 
Equation 1.28.  

 
u f u f

2

T T T
V S

V V S

: dV dV dSδ δ δ= ⋅ + ⋅∫ ∫ ∫ε σ  (1.27)

KU F=  (1.28)
 
In Equation 1.28 following symbols are used: 
 

K a k a
n

( e ) ( e ) ( e )
f f

e 1

e T

=

= ∑   is the global stiffness matrix; 

k B D B( e ) ( e ) ( e ) ( e )

V

T

( e )

dV= ∫  is the element stiffness matrix; 

( )F a f a f f f f
0 0

n
( e ) ( e ) ( e ) ( e ) ( e ) ( e ) ( e )
f f V S

e 1 e

e T T

ε σ
=

= = + + +∑ ∑   is the global vector of 

nodal forces, where the nodal forces are given by Equation 1.29. 

 

f N f( e ) f
V V

V

T( e )

( e )

dV= ∫ ; f N f( e ) f
S S

S

T( e )

( e )
2

dS= ∫  

f B D( e ) ( e )
0

V

T

0
( e )

( e ) dVε = ∫ ε ; f B( e )
0

V

T

0
( e )

( e ) dVσ = − ∫ σ  
(1.29)
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In Equation 1.29 f f f f
0 0

( e ) ( e ) ( e ) ( e )
V S, , ,ε σ  are FE vectors of nodal forces, which are 

equivalent to the acting body forces ( fV ), surface forces ( fS ), initial strains fields ( 0ε ) 

and initial stresses fields ( 0σ ) respectively. In a case of linear behavior, K is a linear 

factor of U. It is independent of the stresses status and constant. For a case of 
nonlinear behavior the K is expressed as a function of the displacements. In order to 
form the matrix K and the right-hand-side of Equation 1.28 the FE type, number of 
DOFs, element connectivity, node data and material data have to be known. 
 
To get the values of U  matrix Equation 1.28 has to be solved. To solve a nonlinear 
problem, the vector F has to be divided into stages called increments. After the 
solution is found, displacements, stresses and strains at any point of the body can be 
calculated utilizing interpolation principles. 

1.3.3 Formulation of cohesive model in ABAQUS 
 
This subsection is based on ABAQUS 6.8 Documentation. It describes the cohesive 
model which was used in numerical experiments of this study. The presented 
information helps us understand commands used in the input files (Appendix D2) for 
the numerical simulations described in Section 1.5. 
 
The cohesive zone is discretized with a single layer of cohesive elements (CEs) with a 
thickness close to zero. The constitutive equation of cohesive elements is established in 
terms of relative displacements (separations) and tractions across the interface. The 
vector Δ , defining separations of CE in terms of nodal displacements in global 
coordinates, is calculated from the displacements of adjacent continuum elements as 
the difference between displacements of top and bottom nodes (Equation 1.30a). In 

local coordinates separations (δ ) can be obtained by Equation 1.30b.  

 
Δ f(ce) (ce)-+ -u u u= = Ν  (1.30a)

( ce ) ( ce )=f(ce) (ce) (ce)
fa u B uδ = Ν  (1.30b)

 
In Equation 1.30a and 1.30b +u  and -u  are the displacements vectors of the top and 

bottom nodes of the element, respectively; f (ce)Ν is the matrix of the CE shape 

functions; (ce)u  is the vector of CE nodal displacements in global coordinates;. ( ce )
fa is 

the transformation tensor; ( ce )B  is the matrix connecting the δ  and (ce)u . For a three-
dimensional problem the cohesive model assumes three components of separations (a 

normal separation ( Nδ ) and two tangential separations ( Tδ  and Sδ ) and corresponding 

to them three traction components N T ST ,T ,T .  

 
Each of the traction stresses is a nonlinear function of separations and obeys bilinear 
law described farther in the text. The CE stiffness matrix (Equation 1.30c) is derived 
from the principle of virtual displacements. 
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k B D B
T

( ce ) ( ce ) ( ce ) ( ce )

( ce )

d
Ω

Ω= ∫  (1.30c)

 
where D( ce )  is the constitutive matrix of the CE which relates element tractions to 
element separations and the superscript (ce) defines parameters related to CEs. 

1.3.3.1 Cohesive law 
  
For a single variable response the constitutive equation for mixed-mode loading 
conditions is defined by a penalty stiffness (K*) (Camanho and Davila, 2002), a 

damage evolution function (d), mixed-mode effective displacements ( d
mδ ), 

corresponding to the damage , and effective displacements ( 0 mδ ), corresponding to the 

complete failure of CE (i.e. total decohesion) as: 
 

( ce )δ=T D  (1.31)
 

where ( ce )D is the constitutive operator of CE, which depends on the state of cohesive 

element defined by a relation between 0 mδ , d
mδ  and a maximum mixed-mode 

separation ( max
mδ ) as described below. The mixed-mode softening law is illustrated in 

Figure 1.15. 
 
Figure 1.15 shows the traction on the vertical axis (Z) and the magnitudes of the 
normal (representing) and the shear separations (shear Modes II and III) along the two 
horizontal axes (Y,X). The unshaded triangles in the two vertical coordinate planes 
represent a bi-linear response under a pure normal deformation (Mode I) on the Y-Z 
plane and a pure shear deformation (Mode II, Mode III) in the X-Z plane. All 
intermediate vertical planes (that contain the vertical axis) represent the damage 
response under mixed-mode conditions with different mode mixes and, therefore, any 
point on the 0-X-Y plane represents mixed-mode separations. The dependence of 
damage-evolution data on the mode mix was defined analytically based on an energy 
definition. 
 

Functions T( )δ  under pure Mode I loading conditions and under pure Mode II or 

Mode III loading conditions are illustrated in Figure 1.16a and Figure 1.16b, 
respectively, which corresponds to a brittle material (Konuk, et al., 2009b). 
 
A nonlinear relation between the traction and separation was considered. The model 
initially assumes linear-elastic behavior prior to damage. Same penalty stiffness in 
Modes I, II and III were assumed in order to reduce the number of unknown 
parameters in the model and, therefore, tractions before softening onset are: 

 
i , i N ,S ,Tδ= =iT K *  (1.32)
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0 Nδ
0T , 0Sδ δ

0 NT0T 0 ST ,T 2 2 2
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠⎝ ⎠
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calculated u sin g power law criterion
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−
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Z

 
 

Figure 1.15 - A mixed-mode softening law (ABAQUS 6.8). 

 
In Equation 1.32, iT  is the traction stresses in the direction i; δ  are separations of CE; 

the symbol N denotes a normal direction and symbols S and T denote tangential 
directions. 

T

δ

0NT

0Nδ

softening LINEAR=

/unloading reloading

T

δ

0 0,S TT T
softening LINEAR=

/unloading reloading

0 0,S Tδ δ

0NΓ

0 0,S TΓ Γcompression 0 0,S Tδ δ− −

 
(a) Mode I (b) Mode II or Mode III 

 
Figure 1.16 - A traction-separation law used to define the behavior of cohesive 

elements in pure normal (a) and two tangential (b) directions. 
 
Under mixed-mode loading damage is assumed to be initiated when a quadratic 
interaction criterion involving the ratios of traction stresses reaches the value of one 
(Equation 1.33). 

 
2 2 2

N ST

0 N 0T 0 S

T TT
1

T T T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (1.33)
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where the Macauley bracket  specifies that  

 
2 2

ST

0T 0 S

TT
1

T T

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

under compressive loading N( 0 )δ ≤ . The cohesive layer does not undergo any damage 

under the pure compression. The aforementioned criterion was successfully used for the 
modeling of the delamination processes of composite materials (Camanho and Davila, 
2002). The damage evolution (Equation 1.38) is defined based on the energy that is 
dissipated as a result of a damage process (cohesive or fracture energy). In order to 
account for the dependence of fracture toughness on the mixed-mode loading it was 
assumed that that failure under mixed-mode conditions is governed by a law written 
as: 
 

SN T

0 N 0T 0 S

1+ + =ГГ Г
Г Г Г

 (1.34)

 
where NГ , TГ , and SГ  refer to the work done by the traction and its conjugate 

relative displacement in the normal, the first, and the second shear directions, 

respectively; 0 NГ , 0TГ , and 0 SГ  refer to the specified critical fracture energies 

required to cause failure in the normal, the first, and the second shear directions, 
respectively.  
 
Stress components of the traction-separation model are affected by damage (d) 
according to Equations 1.35 - 1.37. 

 
if NT 0≥  then N NT ( 1 d )T= − , otherwise no damage (d=0) (1.35)

S ST ( 1 d )T= −  (1.36)

T TT ( 1 d )T= −  (1.37)

 
where NT , ST  and TT  are stress components predicted by the elastic traction-

separation behavior for the current strains without damage. 

 
max d

0 m m m
max d
m 0 m m

( )
d

( )

δ δ δ
δ δ δ

−=
−

, [ ]d 0 ,1∈  (1.38)

 
In Equation 1.38 0 m 0 eff2 / Tδ = СГ , 0 effT  is the effective traction at damage initiation; 

max
mδ  is the maximum value of the effective displacements (

2 2 2
m N S Tδ δ δ δ= + + ) 

attained during the loading history; with assumed mode-mix, fracture energy 

N S T= + +СГ Г Г Г  when the condition (Equation 1.34) is satisfied. 



Theory and Methods 

 

Ekaterina Kim                                                                                                                                     Trondheim 2009 
 

33

The basic approach of described cohesive model is similar to the CZM in Gürtner 

(2009b), however, many details are different (e.g. function T( )δ  under the pure 

normal and shear loading; formulations of the constitutive behavior under mixed-mode 
conditions, dependences of penalty stiffness on the direction, etc.). 

1.3.3.3 Unloading of the cohesive elements  
 
If due to a change of deformation direction the stress state removes from the limiting 
traction-separation curve the material elastic stiffness is reduced by damage as shown 
in Figure 1.16. The separation vanishes when the traction decreases to zero. Reloading 
subsequent to unloading also occurs along the same linear path until the softening 
envelope is reached.  

1.3.4 ABAQUS solution to finite element equations  
 
Only relevant methods, taken from the ABAQUS 6.8 Documentation, are given in this 
subsection. 
 
ABAQUS version 6.8 solves a system of finite element equations implicitly, satisfying 
the differential equations at each time increment after the solution at previous 
increment is found (ABAQUS/Standard) or explicitly, marching a solution forward 
through time in small time increments without solving a coupled system of equations 
at each increment (ABAQUS/Explicit). Implicit methods implemented in ABAQUS 
can handle static, quasi-static, dynamic large deformation problems, involving 
nonlinearities. According to King (2009), implicit methods even with the fast sparse 
solvers and advanced algorithms struggle to solve sophisticated contact problems. 
Explicit methods can handle dynamic problems involving the most complex contact 
conditions. 

1.3.4.1 Linear solution methods 
 
Matrices assembled by a finite element procedure are generally very sparse. The ratio 
between nonzero elements and the total number of elements in the global matrix varies 
usually between 0.1 and 0.2 (Belov, 2004). Equation solvers that can deal with sparse 
matrices for the finite element analysis can be classified into two categories, the direct 
and the iterative solvers. 

Direct multifrontal method (Gauss Elimination) 

 
Consider a set of algebraic equations (Equation 1.28), where the K is the square 
coefficient matrix (stiffness matrix), U is the vector of unknown parameters (nodal 
unknowns), F  is the vector of known values (specified forces).  
 
ABAQUS uses a multifrontal method to solve Equation 1.28. The solution procedure 
consists of (i) a triangular decomposition of K by utilizing Gauss elimination principle 
and (ii) a backward substitution technique to compute unknown DOFs. The process of 
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Gauss elimination reduces the matrix K to the upper triangular matrix by the 
operations performed in the coefficient array. 
 
A general idea of the multifrontal method is simultaneous assembly of equations and 
eliminating unknowns. The multifrontal solution method (Duff and Reid, 1973; Kwon, 
et al., 2003) is an extension of the frontal solution scheme (Irons, 1970; Fialko, 2003; 
Belov, 2004) and it is able to deal with multiple frontal matrices1, which results in a 
significant reduction of total operation counts.  

 
 

Figure 1.17- The procedure of the frontal solution algorithm (Kwon, et al., 2003). 
 

 
 

Figure 1.18 - The procedure of the multifrontal solution algorithm with four 
independent wave fronts being employed (Kwon, et al., 2003). 

 
In contrast to the frontal method (Figure 1.17), where only those equations that are 
actually required for the elimination of specific unknowns are assembled, several 

independent fronts (Figure 1.18) (frontal matrices) are employed in the multi-frontal 
method. Later these fronts are merged completely. 
 
Multifrontal solution method is now considered as one of the most efficient direct 
solvers for general sparse systems of linear equations from standpoint of computation, 
memory requirements, and parallel speedup (Kim, et al., 2005). This method requires 
precise node numeration.  
 

1In frontal solution scheme as soon as the coefficients of an equation are assembled from the 

contributions of all relevant elements to a dense matrix called ‘frontal matrix’, the corresponding 
variables are eliminated. 
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Iterative method 

 
Iterative methods based on a successive approximation of the solution in the following 
form: 
 

= +G rU Un+1 n n  (1.39)
 

where G  is the transition matrix; rn  is a vector. 

 
For linear systems ABAQUS utilizes the domain decomposition method based on 
Finite Element Tearing and Interconnecting (FETI) algorithm, which solves a 
boundary value problem by splitting it into smaller problems on subdomains and 
iterating to coordinate the solution between adjacent subdomains. General principle of 
FETI method is that the FEM is silted into non-overlapping sets of elements called 
subdomains. The stiffness matrix for each subdomain is factored independently with a 
direct solver described above and immediately saved in memory. Then, a system of 
Lagrange multipliers is formed and solved with preconditioned conjugate gradient 
(PCG) iteration algorithm. An approximate solution is recovered from subdomain 
solutions and Lagrange multipliers.  

1.3.4.2 Nonlinear solution methods 
 
Nonlinearities arises from large-displacement effects (large strains, rotations, etc.), 
material nonlinearity (plasticity, creep, etc.) and boundary nonlinearities (contact, 
friction). Nodal displacements in this case are considered functions of time. To solve a 
nonlinear system of equations ABAQUS uses several methods in which the solution is 

obtained as a series of increments. Among them are Newton’s method, BFGS 
(Broyden, Fletcher, Goldfarb, Shanno) method and direct cyclic algorithm (modified 

Newton’s method in conjunction with a Fourier representation of the solution and the 

residual vector).  In this study Newton’s method was used to solve nonlinear system of 
FE equations.  

Newton’s method 

 
In Newton’s method the solution to a nonlinear system of algebraic equations 
(Equation 1.40), which arises from the finite element discretization of a system of 
nonlinear partial differential equations, is procured by iteratively solving a sequence of 
linear systems of obtained via Taylor series expiation of the left-hand-side of Equation 
1.40 in the vicinity of an assumed solution. 
 

K U U F( ) 0− =  (1.40)

 

Newton’s iteration scheme can be written as: 
 

n 1 n n n( ) ( )+ = −U U U U-1J rs  (1.41)
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where U n , U n 1+  are two consequent approximations of the solution; 

 

n n n( ) ( )= −U K U U Frs   is the residual vector; 

 

n
n

n

( )
( )

∂=
∂

U
U

U

srJ   is the tangent stiffness matrix (Jacobi matrix); 

 
The termination of the iteration procedure is determined by convergence criteria, 
ensuring that the residual is very small and the difference between successive solutions 

is less than a specified tolerance (ξ ), see Equation 1.42. 

 

U Un 1 n ξ+ − ≤  (1.42)

 

Nonlinear dynamics 
 
A finite element approximation of equilibrium equations, formulated for dynamic 
problems, can be written as: 
 

��MU + KU = F  (1.43)

 

where M is the “consistent” mass matrix, obtained by consistent use of the 
interpolation. If the first-order elements (provided with linear interpolation) are used, 
then M is the diagonal lumped mass matrix, obtained by adding the each row of the 
consistent matrix onto the diagonal. The methods, available in ABAQUS for the 
analysis of dynamic linear and nonlinear problems, use explicit or implicit integration 
operators. ABAQUS/Standard uses implicit the Hilber-Hughes-Taylor operator, 
introduced by Hilber, et al. (1978) for integration of Equation 1.43. The integration 
operator matrix must be inverted and a set of nonlinear equilibrium equations must be 
solved at each time increment. ABAQUS/Explicit uses the central-difference operator 
and diagonal element mass matrixes. 

The Hilber, Hughes and Taylor operator 

 
The operator solves the following modified equilibrium equations: 
 

  α α��
t+Δt t+Δt t+Δt t t t+Δt(1+ )( - ) - ( - )+ 0+ =MU KU F KU F L  (1.44)

 
where the subscript t refers to time and tΔ refers to the time step; α  is the parameter, 
which controls the amount of numerical damping; L is the sum of all Lagrange 

multiplier forces. The operator definition is completed by Newmark’s equations in a 
standard form: 
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2 21

2
t t tβ βΔ Δ Δ⎛ ⎞+ − +⎜ ⎟

⎝ ⎠
+ � �� ��

t+Δt t t t t+Δt=U U U U U  (1.45)

( )1 t tγ Δ γΔ− ++� � �� ��
t+Δt t t t+Δt=U U U U  (1.46)

 

where β  and γ  are parameters of the operator. Equations 1.44, 1.45 and 1.46 are 

solved iteratively, for each time step, for each displacement DOF of the structural 
system. 

The central-difference operator 

 
The equilibrium Equation 1.43 is explicitly integrated using following rule: 

 
i 1 i

it t

2

Δ Δ+ ++� ��i+1/2 i-1/2=U U U  (1.47)

i 1tΔ ++� �i+1 i i+1/2=U U U  (1.48)
 
In Equation 1.47 and 1.48 the superscript i refers to the increment number i-1/2 and 
i+1/2 refer to the mid-increment values. 
 

1.4 Analysis of Freeze-Bond Shear Strength Experiments  
 
In this section a summary of the experiments used to study the freeze-bond behavior 
under shear conditions is given. The first part of the section describes the experimental 
setup and the second part presents ice characteristics used in the freeze-bond 
experiments. Information presented in the second part is based on data obtained via 
personal communication with A. Repetto-Llamazares. 

1.4.1 Experiment description 
 
Model experiments were performed in the Hamburg Ship Model Basin (HSVA) in order 
to study freeze-bond shear strength. A detailed description of the experimental 
procedure can be found in Repetto-Llamazares, et al. (2009b). Only a brief summary is 
given here. Two ice blocks (HSVA model ice) with dimensions 0.14 x 0.14 x 0.03m 
were brought together in contact and submersed below water level allowing FB to form 
(Figure 1.19). After a specific time adfrozen ice blocks were taken out of the water and 
tested for direct shear at constant velocity of 0.7mm/s. A total of 58 experiments were 
performed. Eight of these were taken from rafted layers of ice found in model ridges, 
described in Repetto-Llamazares, et al. (2009a). The main parameters varying during 
the experiments were: (i) confining pressure during the test and freezing; (ii) ice 
temperature prior submersing; (iii) submersion time (Table 1.1). 
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Figure 1.19- Scheme of how the ice blocks were loaded during submersion and the 
forces involved. (Fload - force exerted by the weight on top of the ice, Fwp - weigh of the 

wooden plate, Fb  - buoyancy force, Fwi - total weight of ice, N -reaction force) 
(Repetto-Llamazares, et al., 2009b). 

 
Table 1.1 - Parameters used in each experiment: initial temperature of the ice ( iτ ), 

normal stress applied while making the freeze-bond and while testing them (σ ) and 
time of submersion of the samples ( tΔ ) (Repetto-Llamazares, et al., 2009b). 

Test#
iτ (Co) σ (Pa) tΔ (hr)

125 

637 

1205 
10110 -7.5 

2040 

20 

125 

637 

1205 
10120 -14 

2040 

20 

147 

295 

637 
10130 -1.2 

2040 

20 

1 

4.5 10210 -7.5 637 

10 

1 

4.5 10220 -12 637 

10 

185 

365 

305 

10410 
Ridge 
3000 

-1.3 

1380 

20 

205 

205 

245 

10510 
Ridge 
4000 

-1.7 

187 

9 
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1.4.2 Ice characteristics 
 
Thin sections of some ice samples (HSVA ice) were examined in the polarized light. In 
this study it was assumed that the ice used during tests had a similar microstructure. 
A vertical thin section of ice found in the consolidated layer of a model ridge is 
illustrated in Figure 1.20a. The consolidated layer consists of two pieces of frozen-
together rafted ice with the thickness approximately 30-35 mm. To increase brittleness 
of the ice and reduce its density air bubbles (diameter 200 mμ  to 500 mμ ) were 

incorporated into the model ice (Figure 1.20b) (Evers and Jochmann, 1993). From 
Figure 1.20 it can bee seen that the internal structure of ice is not completely 
homogeneous. Granular ice is embedded into the columnar structure (Figure 1.20a).  
 
Presence of a freeze-bond disturbs uniform distribution of air bubbles along the ice 
thickness (Figure 1.20b). Within the freeze-bond area crystals differ from the rest of 
the ice and no air is trapped into the crystal structure. Besides, there are voids of 
different size, shape and spacing between them. 
 

1.5 Finite Element Modeling of the Freeze-bond Shear Strength 
Experiments 
 
From a series of experiments described in Section 1.4 one ice sample was chosen for 
the numerical simulation. The sample showed brittle fracture and freeze-bond shear 
capacity of 205N for initial ice temperature of -14oC and a submersion time of 20hours. 

1.5.1 Initial data  
 
A rational model describing the geometry of tested ice sample and the testing device, 
which is able to take into account static and inertial properties of the whole 
experimental procedure, is shown in Appendix A.  
 
Geometrical characteristics of the model are given in Figure 1.21. An approximate 
value of freeze-bond thickness obtained from the thin section in Figure 1.20b is equal 

to 5-6mm. It should be noted that the ‘true’ (exact) value of FB thickness for a given 
ice sample might not be 5mm as the thin section analyses were done only for few 
rafted ice samples found in model ice-ridge and not for the considered ice sample. 
 
Properties of material (HSVA ice) are given in Table 1.2. 
 

Table 1.2 - Properties of HSVA ice 
Properties Values 

density 850kg/m3 
elastic modulus 50MPa-350MPa, (Evers Jochmann, 1993)

Poison’s ratio 0.3 

flexural strength 20-160kPa, (Evers Jochmann, 1993) 
unconfined compressive strength (vertical) 140-230kPa, (Evers Jochmann, 1993) 
unconfined compressive strength (horizontal) 115-155kPa, (Evers Jochmann, 1993) 
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Figure 1.20 - Vertical thin section of a consolidated layer, layers of columnar and 

granular crystals): (a) - Complete view of the ice sample; (b) - Magnified part of the 
freeze-bond area. 

 

 
Figure 1.21 - Geometry of the tested ice sample. 
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1.5.2 Finite element model 
 
The three-dimensional (Figure 1.22a) and two-dimensional models (Figure 1.22b) 
considered in this study consisted of solid (volumetric) parts and a cohesive layer 
inserted between them. Solid parts represent the ice blocks and the cohesive layer is 
attributed to the freeze-bond between them. 

 
 

(a) (b) 

Figure 1.22 - Model of tested ice sample with solid parts and a cohesive layer. The 
three-dimensional (a) and the two-dimensional (b) model. 

1.5.2.1 Material parameters and assumptions 
 
For the present set of experiments both the cohesive law (TSL) and the constitutive 
behavior of model ice were not known. Moreover, ice failure processes in the presence 
of freeze-bond were poorly investigated. Hence, several assumptions regarding the 
constitutive behavior of the model ice and the behavior of freeze-bond were made: 
 
1. Shafrova (2007) showed that the freeze-bond strength is lower than the ice 

strength. In the model it was assumed that during shear tests ice fails along the 
freeze-bond and a plastic state in ice itself is not reached. Elastic properties of 
ice used in the simulations are given in Table 1.3. The values in Table 1.3 were 
based on the values in Table 1.2. 

 
Table 1.3- Elastic material properties 

Properties Labels Values 
Elastic Modulus E 200 MPa 
Poisson’s ratio ν  0.3 
Density ρ 810 kg/m3 

 
2. The freeze-bond failure is assumed to be brittle and triangular cohesive law 

(Figure 1.16), as it well represents brittle behavior, was assumed for the freeze-
bond area. Cohesive law parameters were retrieved by trial and error to match 
FE solution with experimental results. Density of the freeze-bond was assumed 
to be equal to the density of tested ice (810kg/m3). 
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In reality, as the freeze-bond fails, a frictional sliding of the surfaces should be taken 
into account. According to Scheider (2001), determination of friction coefficient of 
fracture surfaces is a difficult task. From the experiments (Section 1.4) it was found 

that after the short distance of sliding the ice-ice friction changes significantly, and the 
sliding mechanism was not clear. Due to high uncertainty regarding frictional behavior 
of ice, the sliding was not implemented in the numerical model described in this 
section.  

Extraction of CE parameters 

 
Procedure of extraction of CE parameters (K*, T0 and Г0) followed the algorithm as it 
is described below. 
 
1. The values of normal and tangential CE stiffness (K*N , K*T, K*S ) were chosen 
such that the experimental loading slope was equal to the slope obtained through the 
numerical solution (Figure 1.23). For simplicity it was assumed that K*N =K*T=K*S. 

 
2. The value of maximum traction (T0) in normal and tangential directions was chosen 
such that the maximum force in experiments was equal to the maximum force in 
numerical calculations (Figure 1.24). It was assumed that the values of maximum 
normal and tangential tractions are the same T0N =T0T= T0S. 

force,N

time, s

averaged experimental slope
inumerical solution with K

1inumerical solution with K +

 
Figure 1.23 - Tuning procedure of CE stiffness (K*); the subscript i denotes trial 

number. 

force,N

time, s

experimental curve
0

jnumerical solution with T

1
0

jnumerical solution with T +

 

Figure 1.24 - Tuning procedure of CE maximum traction, T0; the subscript j denotes 
trial number. 
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3. The value of cohesive fracture energy Г0 in normal and tangential directions was 
chosen such that the post-failure behavior obtained via numerical calculations was 
relatively close to the post-failure behavior in the experiments (Figure 1.25). It was 
assumed that the values of normal and tangential cohesive fracture energies are the 
same Г0N =Г0T= Г0S. Since the smaller the angle between the loading slope and post-
failure slope the more the iterations needed to reach the convergence of solution, the 
value of cohesive fracture energy was limited by the convergence requirements. 
 
The commercial finite element code ABAQUS 6.8 was used to make a 2D plane stress, 
plane strain and 3D model of the shear setup. As a computational model can not be 
fully verified, guaranteeing 100% error-free implementation (Macal, 2005), simple case 
was tested in ABAQUS 6.8 in order to increase the degree of statistical certainty of 
the finite element code (see Appendix D). 

force,N

time, s

experimental curve

0
knumerical solution with Г
1

0
knumerical solution with Г +

convergence limit

  
Figure 1.25 - Tuning procedure of cohesive fracture energy (Г0); the subscript k 

denotes a trial number. 
 

1.5.2.2 Model discretization 
 
Two families of finite elements were used in the simulations (Table 1.4). 
 

Table 1.4 - Finite elements used in numerical simulations 
Model Solid elements Cohesive elements 

Two-dimensional formulation CPE4; SPS4 COH2D4 
Three-dimensional formulation C3D8 COH3D8 

 
Characteristics of used elements are given below. 

Cohesive elements 
 
COH2D4 is a 4-node two-dimensional cohesive element with two degrees of freedom in 
each node. It can be used to model the behavior of adhesive joint interfaces in 
composites, etc., where the integrity and strength of interfaces may be of interest. The 
geometry of the element is shown in Figure 1.25.  
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Figure 1.26 - Geometry of the element COH2D4 (ABAQUS 6.8). 

 
COH3D8 is an isoparametric 8-node three-dimensional cohesive element with three 
degrees of freedom at each node and it can be used in the same way as COH2D4. The 
geometry of the element is shown in Figure 1.27. 

 

Figure 1.27 - Geometry of the element COH3D8 and C3D8 (ABAQUS 6.8). 

Solid elements 
 
CPE4 is an isoparametric 4-node bilinear plane strain quadrilateral element with two 

degrees of freedom in each node. It assumes that the out-of-plane strain ZZ 0ε = . The 

element can be used to model thick structures. The geometry of the element is shown 
in Figure 1.28. 
 
CPS4 is an isoparametric 4-node bilinear plane stress quadrilateral with two degrees of 

freedom in each node. It assumes that the out-of-plane stress ZZ 0σ =  and it is suitable 

for modeling thin structures. The geometry of the element is shown in Figure 1.28. 
 
C3D8 is a 8-node linear brick having three degrees of freedom at each node. The 
elements can be used for linear analysis and nonlinear analyses involving contact, 
plasticity, and large deformations. The geometry of the element is shown in Figure 
1.27. 
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Figure 1.28 - Geometry of the elements CPE4 and CPS4 (ABAQUS 6.8). 

 
Three-dimensional and two-dimensional finite element modes used in the simulations 
are shown in Figure 1.29 and Figure 1.30 respectively. Models consist of three elements 
- two solid elements and one cohesive element between them. 

 

1205Paσ =

0.0007 /XU m sΔ =0X Y ZU U U= = =

0X Y ZU U U= = =

0X Y ZU U U= = =

 
Figure 1.29 - Three-dimensional finite element model used to simulate shear test. 

 
Ice was assumed to behave as an isotropic homogeneous elastic medium with 

constitutive equations given by Equation 1.13, where elasticity tensor 4C  is written as: 
 

( )e e e e e e e e4
ijkl i j k l ij kl ik jl il jk i j k l

E 1

1 1 2 2

ν δ δ δ δ δ δ
ν ν
⎡ ⎤= = + +⎢ ⎥+ −⎣ ⎦

CC  (1.49)

 

where ij kl ik jl il jk, , , , ,δ δ δ δ δ δ  is Kronnecker deltas. The expression (1.49) was obtained 

by rewriting equation for the elasticity tensor (“Linear elasticity”, Wikipedia, 2009) in 
terms of E and ν . 
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A quasistatic problem of elasticity formulated in terms of displacement is given by 
Equation 1.6. A system of finite element equations for the static analysis due to 
presence of cohesive elements (nonlinear constitutive behavior, D(ce) is a function of 
nodal displacements) and due to geometrical nonlinearities (Equation 1.15) is given by 
Equation 1.40. Large displacement theory was used (nlgeom=YES). 
 
The behavior of the freeze-bond part was specified in terms of triangular traction-
separation law (see Subsection 1.3.3). 

1205Paσ =

0X YU U= = 0X YU U= =

XΔU = 0.0007m/s

 
Figure 1.30 - Two-dimensional finite element model used to simulate shear test. 

 

1.5.2.3 Boundary conditions  
 
Boundary conditions for the model were specified as following:  
 

→ The displacements of the bottom face of the lower ice piece were set to zero in 
all directions. 

→ The displacements of the top face of the of the upper ice piece were allowed 
only in the directions of applied loads. 

 

1.5.2.4 Loads 
 
Loads were applied in several steps: 
 
Within the Step 1 vertical pressure of 1205Pa (as during the experiment) was applied 
to the top face of the upper ice piece (Figure 1.29 and Figure 1.30). 
 
Within the Step 2 gradually rising horizontal displacements were applied as it shown 
in Figure 1.29 and Figure 1.30 to simulate a constant sliding speed of 0.0007m/s. 
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The nonlinear system of equations (Equation 1.40) was solved with Newton implicit 
method (Subsection 1.3.4.2) in ABAQUS/Standard, where linear systems of equations 
were solved with the direct multifrontal method (Subsection 1.3.4.1). 
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Information presented in this chapter brings additional knowledge which can allow: (i) 
improvement of existed models of ice-ridges, (ii) improvement of correlation between 
model and full-scale experiments; (iii) improvement of numerical models of ice-ridges. 
Section 2.1 presents results of the interpretation of freeze-bond shear strength 
experiments. Section 2.2 presents results of the numerical simulations of freeze-bond 
shear tests. 

2.1 Analysis of Freeze-bond Shear Strength Experiments 
 

2.1.1 Freeze-bond shear strength 
 
Repetto-Llamazares, et al. (2009b) did a preliminary analysis of the experiments and 
focused mainly on FB shear strength as a function of confining pressure and 
submersion time. The shear strength of an ice sample (Rs) was calculated as maximum 
force divided by contact area. A statistical distribution of FB shear strength in the 
experiments of Repetto-Llamazares, et al. (2009b) is shown in Figure 2.1.  

 
Figure 2.1 - Freeze-bond shear strength distribution. 

RESULTS 2
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Several distribution types were fitted to the data as illustrated in Figure 2.1. Fitting 
was done in MATLAB with dfittool, Freedman - Diaconis Rule was used to set bin 
widths and locations, (see MATLAB help for more details). Parameters of fitted 
distributions are given in Table 2.1. 

 
Table 2.1 - Distribution parameters. 
Distribution type Mean Variance 

Log-Logistic 2446 4.6·106 
Inverse Gaussian 2670 3.7·106 
Generalized extreme value 2739 2.6·107 
Lognormal 2585 3.4·106 

 
As it can be seen from Figure 2.1, the Rs values were significantly scattered, it could 
be due to experimental uncertainties described in Repetto-Llamazares, et al. (2009b) 
and also due to a fact that FB shear strength is a function of time, temperature, 
confining pressure used to form FBs, etc.  The Log-Logistic distribution seems to be 
the best fit to most of the experimental data.  
 
In order to help in the interpretation of obtained trends in Repetto-Llamazares, et al. 
(2009b) and to gain knowledge on the ice failure process from the 58 conducted 
measurements several additional parameters were estimated (see Appendix B) and 
analyzed.  
 

2.2.2 Failure type 
 

2.2.2.1 Ductile or brittle 
 
It is well known that ice exhibits either ductile or brittle behavior, depending upon the 
conditions under which it is loaded. In ductile fracture (ductile behavior), the crack 
grows slowly and is accompanied by a large amount of plastic deformation. The crack 
will not grow unless an increased stress is applied. On the other hand, in dealing with 
brittle fracture, cracks spread very rapidly with little or no plastic deformation. The 
cracks that propagate in a brittle behavior will continue to grow once they are 
initiated. It is commonly known in ice science that two behaviors can be distinguished 
by comparing their stress-strain curves. The ice response for ductile and brittle 
materials is exhibited by both qualitative and quantitative differences in their 
respective stress-strain curves. This gives rise to the question of which criteria may be 
used to distinguish between brittle and ductile fracture of ice. 
 
A tendency of ice samples to fail either in brittle or ductile manner has been observed 
by Repetto-Llamazares, et al. (2009b). In this study ductile and brittle samples were 
separated from one another based on following criteria:  
 

(i) Visual observations of post-peak behavior of loading history within period 

f f ft 0.3 s t t 0.3 s− ≤ ≤ + , where tf  is the failure moment, corresponding to 

the peak force, see Figure 2.2;  
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(ii) A critical value (Scr) of unloading slope (Su). The values of Su were calculated 

as Su=
ft t

dF

dt >

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (Table 2.2); 

 

(iii) A critical value (Scr’) of loading slope (Sl’). The values of Sl’ were calculated 

as Sl’=
sf ft t t

dF

dt ≤ ≤

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where tsf is the start time of the failure process (Figure 

2.2), see Appendix B. 
 
It is worth noting that:  
 

→ The force measured after time tf was always less than F(tf). Mathematically it 

can be written as F(t>tf) < F(tf); 

→ For most of the cases maximum registered force or peak force (Fp) corresponded 

to the F(tf) and therefore, it was further considered that  p fF F( t )≈ ; 

→ No negative registers of F existed within the time span [tsf, tf] or for tsf ≤ t≤ tf 
F(t) ≥ 0; 

→ Estimations, made by visual observations, were highly dependent on the 
software used for visualization, scale used in the plots and the eye of the 
observer. 

 

It can be shown that the observer’s skill in interpreting a model and obtaining the 
necessary results is an important factor. 
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Figure 2.2 - Representative plot of curves obtained when testing freeze-bonds in direct 
shear device; (a) - Brittle behavior, sample 23_7_3; (b) - Ductile behavior, sample 

13_7_1 (tf - the time corresponding to the failure; tsf - start time of the failure process).  

Criterion (ii) 

 
At first, brittle samples were selected from the total set of experiments based on the 

criterion (i), then for the selected brittle samples values of Su=
ft t

dF

dt >

⎛ ⎞
⎜ ⎟
⎝ ⎠

 were 

calculated (Table 2.2a). In Table 2.2a the values of Su for some ductile samples are 
also shown. This was done to give the reader an idea of representative values. As it 
could be seen from Table 2.2a the calculated slope value for FB_R4_3 is too low and 
can be compared with the slope for ductile samples. This raises questions regarding the 
validity of using only visual observation for a brittle/ductile judgment. 
 
Samples with Su < Scr were considered to be ductile. Assuming that Scr = 400N/s, it 
was possible to find a new set of brittle samples (Table 2.2b). New set consisted of 14 
samples in total, 13 samples were associated to higher forces. All 14 samples had post- 
peak behavior of loading history as it shown in Figure 2.2a.  
 
In Figure 2.3 the effect of normal pressure (confining pressure σ) on the FB shear 
strength for ductile samples, defined by criterion (ii) is shown. Samples found in the 
model ridges were not considered. Each point in Figure 2.3 to Figure 2.6 was 
calculated as an average of the n measurements available. The shear strength increased 
as normal pressure increased. For the low ice temperature a linear dependency could 
be assumed between σ and Rs.  
 

 
 

b) Ductile behavior 
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Table 2.2 - Unloading slope data, Su is the unloading slope: (a) – criterion (i); (b) -
criterion (ii)  

 

file Su file Su
13_7_4 -3031 13_7_1 -187
23_7_3 -4632 10h_13_2 -62
23_7_jump -2816 average -125
7_4_2_jump -1578 std 88
13_17_1 -3072
23_17_1 -5082
23_17_2 -2146
1_3000gr1 -686
1_4kg_3 -2136
1_buoy_1 -1176
1_buoy_2 -501
7_10_1 -416
7_10_3 -864
1h_12_1 -1968
FB_R4_3 -96
average -2013
std 1502

Ductile fractureBrittle fracture

 

file Su
13_7_4 -3031
23_7_3 -4632
23_7_jump -2816
7_4_2_jump -1578
13_17_1 -3072
23_17_1 -5082
23_17_2 -2146
1_3000gr1 -686
1_4kg_3 -2136
1_buoy_1 -1176
1_buoy_2 -501
7_10_1 -416
7_10_3 -864
1h_12_1 -1968

average -2150
std 1459

Brittle fracture

 
(a) - Data summary, criterion (i) 

 (b) - Improved data set for 
brittle fracture, criterion (ii) 
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Figure 2.3 - Shear strength of freeze-bonds as a function of normal pressure (ductile 
samples, criteria (i) and (ii)). 

 
The temperature dependency was complex as is more clearly shown in Figure 2.4. 
Initial temperature of ice samples (Ti) used in the 10110 and 10210 tests was about     
-7.5 oC; in 10120 Ti = -14.0 oC; in 10130 Ti = -1.2 oC; in 10220 Ti = -12.0 oC; in 10410 
Ti = -1.3 oC; and in 10510 Ti = -1.7 oC (Table 1.1). 
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Figure 2.4 - Temperature dependence of averaged shear capacity at different normal 

pressures (ductile samples, criteria (i) and (ii)).  

 
If the temperature was lower than -7oC, then shear capacity increased with rise in 
temperature (except for the normal pressure of 637Pa) but it decreased at temperature 
higher than -7oC.  
 
The submersion time dependency is shown in Figure 2.5 for ductile fracture. There was 
a decreasing tendency of the freeze-bond strength versus increasing submersion time. 
Temperature dependency was complex and will be discussed later.  
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Figure 2.5 - Averaged shear capacity as a function of the submersion time. Ductile 

samples, criteria (i) and (ii).  
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Figure 2.6 - Averaged shear capacity for brittle fractures (criteria (i) and (ii)) as a 
function of normal pressure. 

Criterion (iii) 

 
Averaged (approximated) loading slope (Sl’) was calculated as:  
 

' f sf
l

f sf

F( t ) F( t )
S , [ N / s ]

( t t )

−=
−

 (2.1)

 

where tf  is the failure time; tsf  is the start time of the failure process; F  is the force 
registered during experiments. 
  

Approximated loading slope varied in each sample. Distribution of Sl’ is shown in 
Figure 2.7.  
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Figure 2.7 - Distribution of approximated loading slope. 
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Two characteristic peaks can be seen from the distribution. The first peak corresponds 
to the loading slopes ranged between 10-15N/s and the second peak corresponds to the 
slopes ranged between 25-30N/s. 
 
In order to distinguish between brittle and ductile samples, a critical loading slope was 

introduced (Scr’). Samples with Sl’ < Scr’ were assumed to be ductile. A value of        

Scr’ = 39N/s was chosen on the basis that the most of the brittle samples obtained by 

use of the criteria (i) and (ii) had the Sl’ values higher than 39N/s. Seven brittle 
samples were found from all measurements. Five out of seven samples were brittle by 
visual observation (criterion (i)). A summary for ductile samples (loading slope is less 
than 39N/s) is shown in Figure 2.8. Each point in Figure 2.8 was calculated as an 
average of the n measurements available. Samples found in the model ridges were not 
considered here. 
 

Slope<39(N/s)

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500

normal pressure, Pa

sh
ea

r c
ap

ac
ity

, P
a

10110 10120 10130

Slope<39(N/s)

0
500

1000
1500
2000
2500
3000
3500
4000

0 5 10 15 20 25

time of submersion, h

av
er

ag
ed

 sh
ea

r c
ap

ac
ity

, P
a

10210 10210 (7_10h_3 excluded) 10220

 
(a)- Shear capacity for ductile fractures 
(criterion (iii)) as function of the normal 

pressure. 

(b)- Shear capacity for ductile fractures 
(criterion (iii)) as function of the 

submersion time. 

 
Figure 2.8 - Summary of the obtained results for the ductile samples with loading slope 

less then 39N/m. 
 
Similar trends as in Figure 2.3 and Figure 2.5 can be seen in Figure 2.8. However using 
the loading slope (criterion (iii)) as the criteria to separate brittle from ductile samples 
is probably not the best approach. The dependencies shown in Figure 2.8a are more 
complex than given in Figure 2.3, which is probably an artifact introduced by 
excluding samples with loading slope >39N/s. 
 
The tilted and re-tested samples mentioned in Repetto-Llamazares, et al. (2009b) 
could significant affect the results as shown in Figure 2.8b. Assume the following: in 
the test 10210 all measurements were valid, contact surfaces were parallel to each 

other during the test and no tilting was reported. Let’s exclude brittle samples from 
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analysis based on the averaged loading slope value (e.g. criterion (iii)), saying that all 
samples with slope >39N/s could be considered as brittle ones. Calculated shear 
capacity of the freeze-bonds as a function of the submersion time is shown in Figure 
2.8b (black rhombuses). 
 
Now assume that during the tests 10210 with submersion time of ten hours one 
measurement was not valid due to tilting of the sample during experiment. Removing 
one measurement from the analysis we obtained a new point (Figure 2.8b, white 
circle). Thus the lack of both statistical data and the presence of tilted and retested 
samples might lead to misinterpretation of the temperature dependencies as well as 
general trends. Most probably the general trends reported in Repetto-Llamazares, et 
al. (2009b) were found correctly.  

2.2.2.2 Summary 
 
The percentage of brittle and ductile samples obtained by using of different criteria is 
given in Table 2.3. 
 

Table 2.3 - Change in the percentage of brittle and ductile samples 
Criterion Brittle, % Ductile, % 

(i) 26 74 
(ii) 24 76 
(iii) 12 88 

 
Further in this study only the value of post-failure slope and visual observation of the 
post-failure behavior (criterion (ii) + criterion (i)) will be used to differentiate between 
ductile and brittle samples. 

2.2.3 F(t) behavior (as visual observation) 
 
As the force was measured as a function of time t, all results could be grouped based 

on following types of F(t) behavior: smooth or ‘line’ and  saw-toothed behavior (‘saw 

(1)’, ‘saw (2)’, ‘saw (3)’ and ‘mix’). Examples for the ‘saw (1)’, ‘saw (2)’, ‘saw (3)’, ‘line’ 
and ‘mix’ type of failure are given below (Figure 2.9). Measured force plotted versus 

time within time space of f f ft 0.3 s t t 0.3 s− ≤ ≤ +  is shown in Figure 2.9. 

 
Different types of saw-toothed failure behavior leads to the different failure loads F(tf) 
as it can be seen from Figure 2.10 but no particular load levels could be associated 

with the ‘saw (1)’, ‘saw (2)’, ‘saw (3)’, ‘line’ and ‘mix’ types of failure. In Figure 2.10 

measured force plotted versus time within time space of f f ft 0.3 s t t 0.3 s− ≤ ≤ + .  

 
The values of the FB shear capacity did not seem to be correlated with the curve 
types in Figure 2.9.  
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Figure 2.9 - Typical types of F(t) behavior (from all results). 
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Figure 2.10 - Measured force versus time ft( t 0.3 s )± : the lower curve corresponds to 

the ‘saw (1)’ type, both middle and upper curves are ‘saw (3)’ type. 
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Measured response types in the figures above include: (i) signal noise; (ii) material 
response; (iii) response of measuring device. Types of curves in Figure 2.9 were 
probably related to the ice structure but it is hard to tell how they were related.  

2.2.4 Post-peak force  
 
Post-peak force F1 was estimated as: 
 

F1=F(tf+1.0s) for ductile fracture, [N] 
F1=F(tf+delta+1.0s) for brittle fracture, [N] 

(2.2)

 
where delta (in seconds) is the time needed for the load to drop down. It was 
introduced to exclude very steep slopes from the future F(t) plots. And it could be 

shown that f fF( t 1 ) F( t delta 1 )+ ≈ + + . 

 
The curves F(t) (after the failure had occurred) were smoothed by the moving average 
of every four points in Excel (Appendix C). Figure 2.11 illustrates representative 
curves for the samples series 10140 in order to give the reader an idea regarding post-
failure behavior. In the figures in Appendix C the brittle samples can be recognized 
from ductile samples based on the post-failure behavior. Post-failure behavior of brittle 
samples started with a lower force value and then slowly rose with time.  
 
From the measurements of force versus time it could be seen that the post-failure 
behavior was a saw-toothed, with different saw-tooth amplitude, and measured force 
F1 converged to the 8N-30N value. For samples from the ice-ridge (Test 10410 and 
Test 10510) the force after failure converged to value in range 13N-23N which was 
slightly lower than series 10100 and 10200, which could be explained by lower value of 
normal pressure, used during series 10410 and 10510. Figure 2.12 summarizes the 
results of series 10100 and 10200. Each point was calculated as an average of the n 
available measurements without distinguishing between brittle and ductile samples.  
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Figure 2.11 - Post-failure behavior of ice samples from series 10140 (Samples taken 

from the rafted layers of ice found in the model ridges). 
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Figure 2.12b shows a decreasing tendency of F1 when the submersion time increases up 
to 10hours.  F1 increased with increasing of normal load.  
 
From Figure 2.11 it can be seen that F1 convergences to approximately the same 
value. This value depended on the normal pressure, the initial ice temperature and the 
submersion time (Figure 2.12). For the tests with the same confining pressure, 
submersion time and initial ice temperature F1 did not vary much even if the samples 
showed brittle or ductile behavior. 
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Figure 2.12 - A summary of the obtained results of series 10100 and 10200: (a) - A 

force F1 versus normal pressure; (b) - A force F1 as a function of the submersion time.  

 
It was assumed that F1 is correlated to the frictional force (Ff) during the sliding of 
the de-bonded ice samples. If Ff is the frictional force and Fn is the normal force, then 
by definition the friction coefficient is: 

f

n

F

F
μ =  (2.3)

 
In this study it was not possible to say either if the tested samples were tilted or if the 
samples started sliding relative to each other at the time when F(t)=F1. Hence, only a 

similitude (an approximation) of friction coefficient ( *μ ) could be obtained by 

selecting the value of force F1 and dividing it by the normal force applied on the ice 
sliding interface. 
 
Figure 2.13a gives the ice-ice friction coefficient similitude plotted against temperature 
in a range -1.2oC to -14oC at different normal pressures for ductile samples (submersion 
time of 20hours).  
 
There was almost no temperature dependence of friction coefficient similitude at 

normal pressures of 637Pa and 2038Pa. At temperatures lower than -7oC,  *μ  slightly 

decreased with rising temperature form -7 oC to -1.2 oC at normal pressure of 632Pa. 
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Figure 2.13 - (a) - Temperature dependence of ice-ice friction coefficient similitude at 
different normal pressure (ductile samples, submersion time is 20hours, sliding velocity 

is 0.0007m/s.);  (b) - Normal pressure dependence of ice-ice friction coefficient 
similitude at different temperatures(ductile samples, submersion time is 20hours sliding 

velocity is 0.0007m/s).  
 

Normal stress dependence of *μ  at temperatures -14, -7 and -1.2 oC is shown in Figure 

2.13b. *μ  decreased when normal stress increased. 

 
The values of ice-ice friction coefficient similitude ( *μ ) slightly higher than one 

(Figure 2.13) can be explained with the following example: 
 
Example 1 
 

Figure 2.14 shows development of *μ  in time, starting just after the failure.  

13_17_1 after failure (100Hz)

0
1
2
3
4
5
6
7
8

6.37 6.57 6.77 6.97 7.17 7.37
time, s

fri
ct

io
n 

co
ef

fic
ie

nt
 s

im
ilit

ud
e

13_17_1 after failure (100Hz)

0.4

0.6

0.8

1

1.2

1.4

7.37 7.57 7.77 7.97 8.17 8.37

time, s

fri
ct

io
n 

co
ef

fic
ie

nt
 s

im
ilit

ud
e

 
Figure 2.14 - Ice-ice friction coefficient similitude as a function of time (sample 

13_17_1). 
 

To calculate *μ  evolution in time measured force was divided (point by point) by the 

applied normal force value. Figure 2.14 (left) shows *μ  evolution within the first 
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second after the failure, while in Figure 2.14 (right), the evolution of *μ  within the 

next second is illustrated.  
 

Figure 2.14 shows that at the end of first second the *μ value was above one, which 

implies that the force required to slide an ice block along the surface of another ice 
block was greater than the normal force of the surface on the ice sample. Within the 

next second *μ  reached a value which was lower than one. 

 

Extremely high values of *μ  in Figure 2.13b can be explained with the following 

example:  
 
Example 2  
 
The assumption of fF 1 F=  in Equation 2.3 was wrong and fF 1 F≠ . From Figure 

2.12a it can be seen that for the considered sliding system (ice-ice) the frictional force 
F1 is related (not proportional) to the normal load (P) as: 
 

*
0 nF 1 F z ,μ= +  (2.4)

 

where *
0μ  and z  are the constants, which can be treated as a coefficient of Coulomb 

friction and cohesion, respectively.  
 
Such behavior was probably a combination of following phenomena: 
 

→ Not only friction mechanisms were involved. At the end of one second since the 
load peak was reached freeze-bond has softened but it was still in the plastic 
state. 

→ Model ice was different from the real ice;  

→ The roughness of contacting ice surfaces was significant immediately after the 
failure and changed as ice slides; 

→ A transition between static and kinetic friction; 

→ An effect of the ice sintering due to low sliding velocity. 
 
In reality, due to sliding of ice samples relative to each other, the contact area will 

decrease with time. Such effect wasn’t taken into account due to mainly two reasons: 
the exact position of ice blocks relative to each other was unknown during experiments 
and sliding velocity was low. Figure 2.15 shows an example at -14 oC temperature. 
Analogous to the study in Maeno, et al. (2003), from the definition of the friction 

coefficient (Equation 2.3), and dividing the expression above (Equation 2.4) by the nF  

we got: 
 

* *
0

n

z

F
μ μ= +  (2.5)
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According to this relation (Equation 2.5) the friction coefficient similitude approaches 
*

0μ  at larger normal stress and increases rapidly with decreasing normal stress at 

smaller normal stress. This was in good observations of *μ  in Figure 2.13b.  

 

For high normal stresses the value of * 0.7μ = was found. 
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Figure 2.15 - Linear relation between the post-peak shear stress and the normal stress 
at -14oC temperature. 

 
By linear fitting of the data points as shown in Figure 2.15, the Coulomb friction 
coefficient and cohesion were estimated at each temperature (Figure 2.16a and Figure 
2.16b respectively). The shear stress in Figure 2.15 was obtained by dividing F1  by 
the surface area of the ice blocks.  
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Figure 2.16 - Estimated Coulomb friction coefficient plotted against temperature (a), 

cohesion plotted against temperature (b). 

 
The adhesion (cohesion in Figure 2.6b divided by the Coulomb friction coefficient in 
Figure 2.6a) ranged from 1.2 to 2.1kPa, which are one to two orders of magnitude 
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smaller than the flexural strength of model ice (Table 1.2) and one to two order of 
magnitude higher than adhesion reported in Maeno, et al. (2003). 

 
The relation between normal pressure (σ ) and freeze-bond shear capacity ( sR ) at 

temperatures of -14oC, -7 oC and -1.2 oC showed that it can be reasonably expressed by 
a linear function.  
 

sR =aσ +b, (2.5a)

 
where a and b are constants. As it can be seen that the empirical relation is similar to 
the so-called Mohr-Coulomb failure criterion, a can be regarded as the internal friction 
coefficient and b as the cohesion strength.  
 
By linear fitting of data points in Excel, internal friction coefficient a=0.67 was 
estimated at temperature -14oC (Figure 2.3). After the first second since failure 
occurred, the normal stress dependence of frictional stress at -14oC could be expressed 
by a linear relation (Figure 2.15). By linear fitting of data points internal friction 
coefficient was found as a=0.34. 
 
Figure 2.17 shows estimated values of internal friction coefficient (a) and cohesion (b), 
obtained by linear fitting of data points, as a function of temperature (white squares 
represents values corresponding to the peak force (ductile failure), black circles show 
values corresponding to F1 force (ductile failure)).  
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Figure 2.17 - Internal friction coefficient (a) and cohesion (b) as a function of 
temperature for ductile ice behavior 

 
In Figure 2.17 correlation coefficient squared (r2) was calculated as: 
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 (2.5b)

 
where n is the number of data points used for the linear fitting. r2 is a measure of the 

reliability of the linear relationship between normal (σ ) and shear stress ( SR ) values. 

Predictions of coulomb friction based on the linear relationship SR =aσ +b are less 

reliable if the value of r2 far away from one. 
 
Let us redraw Figures 2.17a and 2.17b by combining the coulomb friction data and the 
cohesion data and plotting them on axes of shear stress and normal stress using 
Equation 2.5a. Obtained in such a way plots better illustrates behavior of both cold ice 
(Figure 2.18a) and warm ice (Figure 2.18b). In Figure 2.18 the dashed line (called 
peak) denotes shear behavior of FB at the time tf and the solid line (called post-peak) 
denotes shear behavior of FB at tf +1.0s. 
 
As it can be seen from Figure 2.17a, as temperature decreases the difference between 
internal friction coefficients at failure and at one second after the failure increases. An 
opposite trend was found for the cohesion (Figure 2.17b). The value of internal friction 
at failure was higher than after the failure for low temperatures. The cohesion strength 
at failure was always higher than the cohesion after the failure for the considered 
temperatures. 
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Figure 2.18 - Shear stress versus normal pressure: (a) - cold ice with the initial 
temperature of -14oC and (b) - warm ice with the initial temperature of -1.2oC. 

 
Figure 2.18 shows that resistance to sliding of FB depends on: (i) pressure acting 
normal to the surface of sliding, (ii) initial temperature of ice used to establish FB and 
(iii) on time. The closer FB to its melting point (soft FB) the higher is its non-
frictional resistance (corresponding to the peak force). From Figure 2.18 can be seen 
that the angle of internal friction, corresponding to the post-peak force, is less sensitive 
to the change of ice temperature than those corresponding to the peak force. 
Therefore, though physical mechanisms governing FB behavior at failure and after it 
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are connected implicitly, FB behavior prior to and after its failure should be 
considered separately. 

2.2.5 Fracture energy 
 
The macroscopic potential energy of the system, consisting of the internal stored 
elastic energy and the external potential energy of the applied loads, varies with the 
size of the crack (Yue, 2009). Therefore the fracture process is associated with the 
consumption of energy. The energy relation can be expressed by:  
 

0 aU U UU = γ− −  (2.6)

 
where U is the total potential energy of the system; U0 is the elastic energy of the 
uncracked plate; Ua is the decrease in the elastic energy caused by introducing the 

crack in the plate and Uγ is the increase in the elastic-surface energy caused by the 
formation of the crack surfaces. 
 
The FB experiments were conducted at constant velocity (v) of 0.7mm/s. The 
displacement measuring device was placed in the piston of the pulling system. The 
area under the loading curve can be calculated as: 
 

f

sf

t

t
A = F(t)dt∫ , [N·s] (2.7)

 
where tsf  is the start time of the deformation process; tf  is the failure time. 
 
U or total work done by the pulling system for the unidirectional movement can be 
written as: 

f

sf

x

x
U = F(x)dx∫ , [J] (2.8)

 
where x is the direction of movement, xsf  is the position of the piston at time tsf  and 

xf   is the position of the piston at time tf. 

If  
dx

v
dt

=  is constant, then dx v dt= ⋅  and U can be written as: 

 
f

sf

t

t
U = v F(t)dt v A= ⋅∫ , [J] (2.9a)

 
Therefore the area (A) under the loading curve F (t) estimated as shown in Equation 
2.9a is related to the total input energy to the system (U) by a proportionality 
constant given by v.  
 

Lets denote fbA  the FB contact area, fbh  the FB thickness; fbγ  the FB shear strain 

(the relative in-plane displacement (u) of two parallel layers in a FB (the top and the 
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bottom of FB) divided by their separation distance ( fbh )) and fbτ  the FB shear stress. 

Assuming fb fbF(t) ( t )Aτ=  and fb fbu hγ= , Equation 2.9a can be rewritten as: 

 

fb fb

fb

fb fb fb fb fb fb fb fb fb fb

fb fb fb

f f

sf sf

0

t t u( failure )

t t 0

( failure ) ( failure )

0

( failure )

0

( ) A h ( )

V ( )

U = v F(t)dt F(t) vdt F(u)du

= A h d d

d

γ γ

γ

τ γ γ τ γ γ

τ γ γ

=

⋅

=

= ⋅ =

⋅ = =

∫ ∫ ∫

∫ ∫

∫

 (2.9b)

 
where V  is the FB volume. It was also assumed that the displacements of the pulling 
piston (total displacements) equal to the displacements of FB. FB shear stress is a 

unique function of FB shear strain, fb fb s( failure ) Rτ γ = . 

 
Figure 2.19a shows the evolution in time of the total energy of the system before 

failure of the FB in brittle sample 13_17_1. Total energy of the system at time (t=ζ) 
was calculated as: 
 

j j
j 1 j

j 1 j
j 0 j 0

( F( t ) F( t ))
U( ) Uj ( t t ) 0.0007 , [ J ]

2

ζ ζ

ζ
= =

+
+

= =

+
= = ⋅ − ⋅∑ ∑  j=0,1,2,... (2.9c)

 

Figure 2.19b illustrates evolution of energy increment iU( t )Δ  in time before failure of 

FB in brittle sample 13_17_1. iU( t )Δ  was calculated as: 

 

i 1 i
i i 1 i

( F( t ) F( t ))
U( t ) ( t t ) 0.0007 , [ J ]

2
Δ +

+
+= ⋅ − ⋅  i=0, 1, 2,… (2.9d)

 
A part of U in Figure 2.19 was consumed by the pulling system, the other part of the 
energy was transferred to the ice sample and absorbed through the various damage 
mechanisms (deformation of ice, crack initiation, crack propagation, etc.). 
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(a) - Total system energy versus time. (b) - Energy increment versus time. 

 
Figure 2.19 - Energy evolution with time for ductile sample 13_17_1. 
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Both elastic (continuously rising) and yielding (almost flat) regions can be seen from 
Figure 2.19b. Some perturbations in the energy increment can also be seen within the 
yielding part of the curve, which probably can be explained by processes of 
microcracks initiation. The flat region of the curve is followed by a sharp rising part, 
which might be ascribed to the formation of crack resulting in failure. 

 
Total input of energy as a function of the normal pressure (for ductile samples) is 
shown in Figure 2.20a. Total input of energy as a function of submersion time is shown 
on in Figure 2.20b. The A value was calculated by simple trapezoidal rule in Excel. 
Each point in Figure 2.20 was calculated as an average of the n available 
measurements. Samples found in the model ridges were not considered here. 
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Figure 2.20 - Summary obtained for the ductile samples. Area under the curve F(t) 

prior failure: (a) - Total input of energy as function of the normal pressure; (b) - Total 
input of energy as function of the submersion time. 

 
The temperature effect was complex. There was an increasing tendency with increase 
in normal load (Figure 2.20a). Slightly decreasing tendency with increase of 
submersion time can be seen from Figure 2.20b. 
 
Estimated in this way FB shear strength (Rs), post-peak frictional force (F1) and area 
under the loading curve (A) characterize the behavior of adfrozen samples of the model 
ice. In order to view all the possible pair-wise relationships between Rs , F1 and  A a 
grouped plot matrix of these parameters was created (Figure 2.21). In Figure 2.21 the 
histograms of considered parameters were placed along the main diagonal. It can be 
seen that an increase of Rs resulted in an increase of A both for brittle and ductile 
samples and samples found in the model ridges. Higher values of A and Rs 
corresponded to the brittle samples, while almost no difference was found between 
values of F1 in ductile and brittle samples (see Table 2.4). Table 2.4 summaries 
obtained results for all 58 measurements. Average and standard deviation for A, Rs 
and F1 are given for the brittle and ductile samples. Brittle samples were separated 
from the ductile samples based on the criteria (i) and (ii).  
 

(a) (b)  
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Table 2.4 - Estimated parameters. Area under the loading curve, ( A ± standard 

deviation), freeze-bond shear strength ( sR ± standard deviation) and a force at one 

second after failure ( F 1 ± standard deviation). 

Ductile ice Brittle ice 

A( duct ) 28.8 13.8 N s= ± ⋅  

sR ( duct ) 1861 712Pa= ±  

F 1( duct ) 17.7 6.2N= ±  

A( brit ) 203.4 165.4 N s= ± ⋅  

sR ( brit ) 5548 3228Pa= ±  

F 1( brit ) 17.4 5.0N= ±  

  

 
 

Figure 2.21 - Grouped plot matrix of FB shear strength (Rs), force at one second after 
failure (F1) and area under the loading curve (A). 

 
Temperature dependencies were complex and will be discussed later. 
 
As the U is a linear function of A (Equation 2.9a), there is also a relation between U 
and Rs (Equation 2.19b). A bivariate joint frequency distribution of U and Rs for the 
complete data set, consisting of 58 measurements, is presented as two-way frequency 
table in Figure 2.22 while a bivariate joint frequency distribution of U and Rs for 
ductile samples is presented in Figure 2.23. The bodies of the two-ways tables 
represent the joint frequencies. The differences between the values of the joint 
frequencies appear as the intensity of color to indicate whether the value of joint 
frequency is high or low (The higher the value of joint frequency the darker is the 
color). As it can be seen from Figure 2.22, 70% of the tested ice samples had total 
input of energy to the system ranged from 4 to 39mJ and shear strength ranged from 
0.6 to 2.7kPa. Within the set of ductile samples (Figure 2.23) most of the samples 
having higher value of Rs also had higher value of U. 
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For series 10100 and 10200 a trend can be seen between the area (A) under the loading 
curve and a force (F1), see Figure 2.21. Figure 2.24 illustrates the relation between the 
A and F1 for the ductile samples (criteria (i) and (ii)). Each point in Figure 2.24 was 
calculated as an average of the n available measurements. 
 
For both series 10100 and 10200 the area under the loading curve increased when the 
force F1 increased. For series 10100 and 10200 the correlation coefficient between the 

data sets (series 10100 - 23 ductile samples; series 10200 - 12 ductile samples) of A and 
F1  was equal to 0.8.  

640 1666 2692 3718 4744 5770 6796 7822 8848 9874 10900
- - - - - - - - - - -

1666 2692 3718 4744 5770 6796 7822 8848 9874 10900 11926
0.004 - 0.039 20 21 1 0 0 0 0 0 0 0 0
0.039 - 0.074 1 2 2 1 0 1 0 0 0 0 0
0.074 - 0.109 0 2 0 1 0 0 0 0 0 0 0
0.109 - 0.144 0 0 0 0 0 0 0 0 1 0 0
0.144 - 0.179 0 0 0 0 0 0 0 0 0 0 0
0.179 - 0.214 0 0 0 0 0 0 0 0 1 0 0
0.214 - 0.249 0 0 0 0 1 0 0 0 0 0 0
0.249 - 0.284 0 0 0 0 0 0 0 0 0 0 1
0.284 - 0.319 0 0 0 0 0 0 0 0 0 0 0
0.319 - 0.354 0 0 0 0 0 0 0 0 0 1 0
0.354 - 0.389 0 0 0 0 0 1 0 0 0 0 0

Total 58

( )U J

( )sR Pa

 
Figure 2.22 - A bivariate joint frequency distribution of total input of energy to the 

system (U) and freeze-bond shear strength (Rs) for the complete data set consisting of 
58 measurements. 

 

640 1014 1388 1762 2136 2510 2884 3258 3632 4006
- - - - - - - - - -

1014 1388 1762 2136 2510 2884 3258 3632 4006 4380
0.004 - 0.008 2 0 0 0 0 0 0 0 0 0
0.008 - 0.012 1 3 1 0 0 2 0 0 0 0
0.012 - 0.016 2 2 3 2 0 0 0 0 0 0
0.016 - 0.02 1 1 2 1 0 0 0 0 0 0
0.02 - 0.024 0 2 0 3 1 1 0 0 0 0

0.024 - 0.028 0 1 0 2 2 0 1 0 0 0
0.028 - 0.032 0 0 1 1 1 0 0 0 0 0
0.032 - 0.036 0 0 0 0 1 0 0 0 0 0
0.036 - 0.04 0 0 0 0 0 0 0 0 0 0
0.04 - 0.044 0 1 0 0 2 0 0 0 0 1

Total 44

( )sR Pa

( )U J

 
Figure 2.23 - A bivariate joint frequency distribution of total input of energy to the 

system (U) and freeze-bond shear strength (Rs) for the data set consisting of 44 
measurements of ductile samples. 

 
For future statistical models of experiments it might be interesting to check the 
assumption of normality for F1, A and Rs. As it can be seen from Figure 2.1 and 
Figure 2.21, neither the histogram of Rs nor that of A can be represented by a normal 
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distribution. Despite the short tail of left part of the distribution for F1 the histogram 
of F1 seems to be closer to a normal distribution. Normality test for both whole data 
set of F1, Rs and U=0.0007A and only for ductile samples is given in Appendix F. 
From the plots in this Appendix it can be seen that distributions other than the 
normal distribution should be used for both entire data sets of F1, U and Rs and for 
the same sets with only ductile samples. The non-normality of data might have come 
partly from the experimental setup and partly from the nature of freeze-bonds. 
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Figure 2.24 - Area under the curve F(t) prior to failure (A) versus post-peak force 

(F1), (ductile samples): (a)- Test series 10100, FB submersion time of 20hours; (b) - 
Test series 10200. Vertical confinement is approximately 660Pa. 

2.2 Numerical Results of the Freeze-bond Shear Strength 
Simulations 
 
In this section numerical solutions to the problem described in Section 1.5 are 
presented. 

3.2.1 Three-dimensional model (3 elements) 
 
A finite element solution for the three-dimensional problem with tuned CE properties 
is shown in Figure 2.25 (black). The procedure of matching experimental solution with 
experimental results was described in Subsection 1.5.2.1 of Section 1.5. 

 
In Figure 2.25 reaction force during simulations was calculated as the sum of reaction 
forces at nodes to which horizontal displacements were applied. 
 
Tuned parameters of cohesive elements, corresponding to the evolution of force in 
time, (Figure 2.25) were following: 
 

→ CE penalty stiffness K*N =K*T=K*S=K*=2.9MPa, which corresponds to the 
elastic modulus of FB E=1.45kPa for the FB thickness of 0.5mm; 

 

(a) (b)  
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→ Maximum CE traction T0N =T0T= T0S=T0=10.5kPa; 
 

→ CE Fracture energy Г0N =Г0T= Г0S.=22.3N/m, which corresponds to the 
physically implausible values of critical separation for given TSL shape (Figure 
1.15) as usually brittle materials are considered as materials with a low value of 
δ0, varying in the range of a few microns. 
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Figure 2.25 - A force history during experiment and during simulations. 

 
The value of the peak force was governed by the value of the maximum traction and 
the penalty stiffness of the CE (i.e. elastic part of the TSL), while the post-peak 
behavior was defined by the specified value of the fracture energy. 

3.2.2 Considerations on the effect of the problem formulation  
 
The choice of the mathematical model is dependent on the skills and experience of 
modeler. The following subsections present results of examinations of: (i) the influence 
of two- and three-dimensional analyses on the value of reaction force (calculated as the 
sum of reaction forces at nodes to which horizontal displacements were applied); (ii) 
the influence of the static and dynamic analysis on the value of reaction force 
(calculated as the sum of reaction forces at nodes to which horizontal displacements 
were applied); (iii) the influence of the nonlinear geometry on the value of reaction 
force (calculated as the sum of reaction forces at nodes to which horizontal 
displacements were applied); (iv) the influence of choice of the cohesive model used for 
simulating de-bonding on the value of reaction force (calculated as the sum of reaction 
forces at nodes to which horizontal displacements were applied).   
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3.2.2.1 Two-dimensional versus three-dimensional model 
 
Two-dimensional FE model was formulated using material properties, which were 
found by trial and error so as to match experimental results with the numerical 
solution for the three-dimensional problem (Figure 1.29). For the model consisting of 
the two plane-stress (CPS4) solids and CE (COH2D4) with out-of-plane thickness 
equal to 0.14 (Figure 1.30) no differences between reaction forces in two- and three-
dimensional model were found. There was almost no difference in the reaction forces 
calculated using plane-stress or plane-strain formulation as the reaction force is mainly 

defined by the behavior of CE that doesn’t feel the differences between plane-stress 
and plane-strain. 

3.2.2.2 Static versus dynamic analysis 
 
One of the reasons for choosing dynamic explicit analysis was that stresses and 
displacements can be greater in the dynamic model than in the static model. Besides, 
as was mentioned earlier, explicit methods are better at handling dynamic problems 
involving complex contact conditions. 
 
In order to compare implicit static analysis with explicit dynamic in the presence of 
cohesive elements a simplified model of pure shear was considered (Figure 2.26). 

0.0007 /XU m sΔ =0X Y ZU U U= = =

0X Y ZU U U= = =

0X Y ZU U U= = =

0Y ZU U= =

0Y ZU U= =

0Y ZU U= =

0Y ZU U= =

3 8C D

3 8COH D

3 8C D

 
Figure 2.26 -A finite element model for the pure shear test. 

 
Finite element formulation of the dynamic problem (Equation 1.10, Equation 1.19) 
leads to a system of nonlinear equations (Equation 1.43). Equation 1.43 was solved 
using an explicit central-difference time integration scheme (Subsection 1.3.4.2) in 
ABAQUS/Explicit. 
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Figure 2.27 shows reaction forces calculated using dynamic and static approaches. In 
Figure 2.27 the reaction force during simulations was calculated as the sum of reaction 
forces at nodes to which horizontal displacements were applied. The numerical solution 
in Figure 2.27 (white curve) oscillates about the static solution (black line) in a 
damped manner. The oscillatory behavior is not realistic. It is the numerical effect 
introduced by the initial load step. 
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Figure 2.27 - Static versus dynamic analysis. 

3.2.2.3 Effect of geometrical nonlinearities 
 
No large deformations effects were found in neither 2D nor 3D models. Resulting 
reaction force calculated with account of nonlinear geometry effects (step, 
nlgeom=YES) was almost the same as the reaction force obtained through the 
geometrically linear analysis (step, nlgeom=NO).  

3.2.3.4 Cohesive element versus contact surfaces 
 
A contact interaction model (similar to the model in Figure 2.26) was used to simulate 
de-cohesion of initial bonded ice pieces. Instead of inserting a cohesive element 
between two continuum elements the interaction between two ice pieces was simulated 
using a surface-based cohesive behavior. The surface-based cohesive behavior was 
modeled within the general contact framework in ABAQUS/Explicit (see ABAQUS 6.8 

Section “Contact formulation of general contact in ABAQUS/Explicit”). The surface-
based behavior was specified in terms of traction-separation similar to the response of 
the cohesive elements. Input files for the surface-based cohesive model and for the 
model in Figure 2.26 are given in the Appendix D2. Though the same constitutive 
behavior in terms of tractions and separations was specified and the same cohesive 
properties were chosen for both surface-based and cohesive zone models, it is 
important to remember that the damage in surface-based cohesive behavior is an 
interaction property and not a material property. Definitions of strains and 
displacements (used for cohesive elements) here are reinterpreted as contact 
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separations. Contact separations are understood to mean relative displacements 
between the nodes on the slave surface and their corresponding projection points on 
the master surface along the contact normal and shear directions. For surface-based 
model stresses were defined in ABAQUS as the cohesive forces acting along the 
contact normal and shear directions divided by the current area at each contact point. 
Besides, thickness effects are not considered for cohesive surfaces. To exclude the 
thickness effect form the cohesive element formulation the constitutive element 
thickness in the Y direction (Figure 2.26) was set to 1.0 which implies 

N N S S T T; ;ε δ ε δ ε δ= = =  for the cohesive element. In Figure 2.28 differences among 

calculated values of reaction forces are shown for the surface-based model (dashed 
line); static cohesive zone model (black solid line) and dynamic cohesive zone model 
(white solid line). 
 
Reaction force in Figure 2.28 was calculated as the sum of reaction forces at nodes to 
which horizontal displacements were applied. As it can be seen from Figure 2.28 the 
differences between the reaction forces calculated for different models are not 
significant. 
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Figure 2.28 - Numerical solution for the static cohesive zone model (black); dynamic 

cohesive zone model (white) and surface-based cohesive model (dashed line). 

3.2.3 Influence of the boundary conditions 
 
The calculated reaction force of the model described in the Section 1.5 was unaffected 

by the change of the vertical pressure as a cohesive element doesn’t undergo damage 
under compression. The change of the vertical pressure led to the change of the stress 
state in the continuum elements while the total reaction force (in the direction 
opposite to the specified displacements) remained unchanged.  
 
Displacements applied in the direction opposite to what is given in Figure 1.29 
correspond to the process of ice pushing (instead of pulling). Such change in the 

loading direction changed the stress state of the continuum elements but it didn’t 
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affect the reaction force as the damage in tangential directions can occur in both ways 
as it shown in Figure 1.16b. 

3.2.4 Influence of the finite element mesh 
 
Two different finite element meshes (Discretization A and Discretization B) were 
considered (Figure 2.29). Discretization A of the 3D model was done by using sweep 
meshing technique in ABAQUS/CAE while Disretization B was built from the bottom-
up approach using the input file. The cohesive element in case of Discretization B had 
zero geometrical thickness while CEs in Discretization A had a thickness of 0.5mm 
(ABAQUS/CAE requires an artificial thickness of the FB). To exclude the thickness 
effect a constitutive thickness of 1.0 was assumed for the cohesive elements. 
Discretization B in Figure 2.29 was similar to the discretization used in Gürtner 
(2009b).  

 
Material parameters, boundary conditions and loads were the same as for the model 
described in Section 1.5. The size of the considered problem for different FE meshes is 
summarized in Table 2.5. 

 

  
Discretization A (ABAQUS/CAE) Discretization B (Input file) 

 
Figure 2.29 - Finite element discretizations. 

 
Calculated reaction force is shown in Figure 2.30 for the Discretization A (solid line) 
and for the Discretization B (dashed line). 

 
Table 2.5 - Summary of problem size 

 Discretization A Discretization B 
Number of elements 63 3 
Number of nodes 128 16 
Total number of variables 384 48 

 
As it can be seen from Figure 2.30 there is almost no influence of the finite element 
mesh on the reaction force, although there was a difference in the stress state in the 
whole ice sample (Figure 2.31).  
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Figure 2.30 - Influence of the finite element mesh on the reaction force: the 

Discretization A (solid line), the Dicretization B (dashed line). 

 

Discretization A 

  

Discretization B 

 
 

Figure 2.31 - von Mises stress created by ABAQUS/CAE at time corresponding to the 
peak value of reaction force. 
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For the Discretization A it was possible to decrease the value of the fracture energy 
(Г0N = Г0T= Г0S= Г0=20N/m in order to simulate the sharper load drop measured 
during experiment while for the Discretization B the decrease of the Г0  lower than 
22.3N/m was not possible due to limitations required for the convergence of numerical 
solution. 
 
The smaller the element size the closer is the stress state to the physical reality. 
Probably, with decreasing the element size (element shape being the same) and by 
tuning the value of the fracture energy it will be possible to reach more realistic stress 
state and a more physically plausible value of critical separation.  

3.2.5 Effect of the material parameters on the fracture behavior 
 
To explore the effect of varying parameters of both cohesive and solid elements some 
numerical trials based on the three-dimensional model in Section 1.5 were done. The 
objective of the numerical simulations was to identify the significant parameters 
affecting the evolution of reaction force in time. A design and analysis of numerical 
experiment were done in accordance with Chapter 9 in Antony (2003) and Trumars 
(2009). 
 
The responses of interest in the simulations were the maximum reaction force (Fmax) 
registered during first six seconds of sliding with the speed of 0.0007m/s and time 
t(Fmax) at which Fmax is occurred. The reaction force itself was calculated as the sum of 
reaction forces at nodes to which displacements were applied. 
 
Four main effects and three two-order and one three-order interactions were identified 
from the experience gained through the tuning procedure (Subsection 1.5.2.1). Under 
two-order interaction it is considered that the effect of one of the variables differs 
depending on the level of the other variable.  
 
The value of the fracture energy affects the response of cohesive element only if its 
damage had occurred. Influence of the fracture energy on the behavior after damage 
will be considered separately. The list of main and interaction effects is shown below: 
 
Main effects: Maximum traction (T0); Penalty stiffness of CE (K*); Elastic modulus of 
ice (E) 

Interaction effects: T0×K*; T0×E; E×K* and T0×E×K* 
 
Each parameter was studied in three levels. The ranges of parameters are shown in 
Table 2.6. 
 

Table 2.6 - List of factors and their ranges for the numerical experiments. 
Parameters Labels Units Low level Medium level High level 

Maximum traction T0 kPa 5 10.5 70 
Penalty CE stiffness K* MPa 1.5 2.9 20 

Elastic modulus of ice E MPa 50 200 350 
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The uncoded design matrix showing all the real factor settings along with their 
respective response values is shown in Table 2.7. 
 
For the high values of maximum traction and low values of penalty CE stiffness the 

cohesive element often didn’t undergo any damage within considered time frame (six 
seconds). In Table 2.7 such trials can be distinguished from the rest as for them the 
value of t(Fmax)  was equal to six. For the trials 12, 15 and 18 it was necessary to 
increase the value of fracture energy up to 23N/m in order to satisfy requirements of 

convergence. For rest of the samples Γ0= 22.3N/m.  Therefore statistical analysis and 

interpretation of the numerical results was done only for the trials with Γ0= 22.3N/m 
which was treated as a full two-level factorial design with three factors.  
 
Table 2.7 - Uncoded design matrix with response values (T0 - maximum traction; E - 
elastic modulus of ice; K* - penalty stiffness of CE; Fmax - maximum reaction force; 

t(Fmax)  - time measured from beginning of sliding; Sl’ - ratio between  Fmax and t(Fmax)  
or loading slope). 

1 5 50 1.5 97.9 4.8 20

2 5 50 2.9 98 2.51 39

3 5 50 20 97.9 0.4 245

4 5 200 1.5 98 4.77 21

5 5 200 2.9 97.9 2.48 39

6 5 200 20 98 0.37 265

7 5 350 1.5 98 4.77 21

8 5 350 2.9 98 2.47 40

9 5 350 20 97.9 0.37 265

10 10.5 50 1.5 122.4 6 20

11 10.5 50 2.9 205.7 5.26 39

12 10.5 50 20 205.4 0.84 245

13 10.5 200 1.5 123.2 6 21

14 10.5 200 2.9 205.6 5.19 40

15 10.5 200 20 205.5 0.78 263

16 10.5 350 1.5 123.3 6 21

17 10.5 350 2.9 205.6 5.18 40

18 10.5 350 20 205.5 0.77 267

19 70 50 1.5 122.4 6 20

20 70 50 2.9 234.8 6 39

21 70 50 20 1479.8 6 247

22 70 200 1.5 123.2 6 21

23 70 200 2.9 237.7 6 40

24 70 200 20 1600.2 6 267

25 70 350 1.5 123.3 6 21

26 70 350 2.9 238.2 6 40

27 70 350 20 1619.5 6 270

Fmax, [N]  t(Fmax), [s] Sl’, [N/s]Standard order To, kPa E, Mpa K*, MPa

 
 
Though the built numerical model is fully deterministic, a determination of significant 
main and interaction effects was done.  
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The results for main and interaction effects for Fmax , t(Fmax)  and Sl’ are illustrated in 
Figures 2.32 2.33 and 2.34 respectively.  Effects were calculated as in the example 
presented by Trumars (2009). The ice friction, ice thickness and velocity in that 

example correspond to T0, K* and E, respectively, in this study. The values of y1…y8 
in the example correspond to the responses of interest for trials 1, 19, 7, 25, 3, 21, 9, 
and 27 (Table 2.7) respectively. Effects were compared with the average (dashed line) 

of each response (t(Fmax)  and Fmax ) and Sl’. It can be seen that some effects are 
comparable with the average and it is reasonable to expect that these effects have a 
significant impact on the result. 
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Figure 2.32 - A plot of effects for Fmax. 
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Figure 2.33 - A plot of effects for t(Fmax). 
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Figure 2.34 – A plot of effects for Sl’. 

 
The plots in Figure 2.32 and Figure 2.33 indicate that factors T0 , K* and their 
interaction have a significant impact on the maximum reaction force and time at 
which this force is reached, while the plot in Figure 2.34 shows that factor K* has a 
significant effect on the loading slope. It is should be noted that due to the fact that 

cohesive element hasn’t been damaged during trials 19, 25, 25 and 27, the effect of K* 
on Fmax is significantly overestimated and therefore results obtained via analysis in this 
section should be treated with accuracy. 
 
From Table 2.7 it can also be seen that change in T0 affects both Fmax and t(Fmax) in 

the same way, so Sl’ remains unaffected. From the analytical point of view it simply 
can be explained by that fact that in the mathematical model T0 is parameter 
responsible for a damage initiation and therefore behavior prior to the damage is 
unaffected by this parameter. 
 

From Figure 2.32 to 2.34 it can be seen that the effect of E on Fmax, t(Fmax) and Sl’ is 
significantly less than the effect of K* on those. From Table 2.7 it can be seen that for 

fixed T0=10.5kPa and K*=2.9MPa influence E on t(Fmax) and Sl’ is higher than on 
Fmax. The interaction effect between E and K* for T0=10.5kPa on Fmax is illustrated in 
Figure 2.35. 
 
Figure 2.35 shows that the difference between the maximum reaction forces obtained 
for K*=20MPa and K* = 2.9MPa is greater for the trials with smaller E. There was 
almost no difference among maximum reaction forces obtained with high E values. For 
K*=2.9MPa an increase in E resulted in a slight decrease of maximum force, while for 
the K*=20MPa an increase in E had the opposite effect. These variations in behavior 
for different E were less important than those for K*. Effect of K* will be discussed 
later. 
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Figure 2.35 - Interaction plot of E versus K*. 

 
From the above the following conclusions can be made: 
 

→ Peak force Fmax is completely determined by the maximum traction strength and 
the initial part of TSL. The linear behavior prior to peak load is determined by 
the penalty stiffness of cohesive element and only partly affected by the elastic 
material properties of ice.  

 

→ Material properties of freeze-bond are more important than properties of ice for 
the given model as all significant effects on considered responses related to 
them.  

 
The effects of cohesive element properties are discussed below. 

3.2.5.1 Effect of the cohesive element stiffness 
 
For Fmax , t(Fmax) and Sl’  the cohesive element penalty stiffness K* is one of the main 
effects which was considered to be significant. Figure 2.36 illustrates its effect on the  

Sl’ value. The data for the plot in this figure were taken from Table 2.7. The effect of 
K* on the value of Fmax for trials where damage of cohesive element have occurred, can 
be considered insignificant. 
 

The increase in K* resulted in increase of Sl’. Linear dependency between K* and Sl’ is 
explained by Equations 1.30a, 1.30b, and 1.32 in Subsection 1.3.3 and the fact that 
due to loading conditions horizontal displacements at nodes (Figure 1.29) were 
proportional to the time t. 
 
As can be seen from Figure 2.36 the closer the stiffness of the cohesive element to the 
ice elastic constant E the more sensitive is the loading slope to a change in the value 
of E. 
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Figure 2.36 - Effect of cohesive element stiffness on loading slope. 

3.2.5.2 Effect of the maximum traction 
 
For Fmax , t(Fmax) the maximum traction is certainly significant (Figures 2.32 and 2.34). 
Figure 2.37 illustrates the effect of the maximum traction on the value of maximum 
force. The higher the value of maximum traction the higher was the maximum force.  
As the loading slope is unaffected by the maximum traction (Figure 2.34) therefore it 
is to be expected that t(Fmax) also increases when maximum traction increases. Perhaps 
the dependency between maximum traction and maximum force is linear and non-

linearity in Figure 2.37 can be explained by that fact that the cohesive element didn’t 
undergo any damage (within six seconds of sliding) when the maximum traction was 
equal to 70kPa and therefore if the sliding were allowed for more than six seconds it is 
expected that the value of maximum force corresponding to the damage initiation of 
cohesive element will be much higher than is shown in Figure 2.37 (a point labeled as 

“no-damage”).  
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Figure 2.37 - Effect of maximum traction on maximum load. 

3.2.5.3 Effect of the fracture energy 
 
The value of the fracture energy affects the post-damage behavior of a cohesive 
element (Figure 2.38). A higher energy resulted in a bigger value of the area under the 
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TSL (Equation 1.20). Hence the post-peak slope in Figure 2.38 increased with the 
fracture energy. The reaction force in this figure was calculated as the sum of reaction 
forces at nodes to which displacements were applied; the values of reaction force 
correspond to E=200MPa, K*=2.9MPa and T0=10.5Pa. 
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Figure 2.38 - Effect of fracture energy on evolution of reaction force in time. 
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ANALYSIS AND DISCUSSION  3
 
This chapter covers the following topics: 
 

→ Discussion of some results presented in Chapter 2 and their comparison with 
previous studies; 

→ Uncertainties of results presented in Chapter 2; 

→ Discussion on a model ice microstructure and freeze-bond failure; 

→ Finite element model of the freeze-bond shear test; 

→ Modeling of ice-ridge structure interactions. 
 

A short summary of the work is presented at the end of the chapter. 
 

3.1 Freeze-Bond Shear Strength 
 
The freeze-bond shear strength obtained from all experiments in Repetto-Llamazares, 

et al. (2009b) was 2.7 2.3 kPa±  which is one order of magnitude lower than the freeze-
bond shear strength in the ridge keel, reported in the third chapter in Vershinin, et al. 
(2005). The obtained results of experiments (Repetto-Llamazares, et al. 2009b) were 
difficult to compare with earlier results of freeze-bond shear strength due to the 
following reasons: 
 

→ Ice used in previous studies had different initial salinity and temperature; 

→ Tested ice samples had different shape and size; 

→ Experimental setup was not the same (different time to create freeze-bond was 
used as well as different confining pressure); 

→ Loading procedure varied from one author to another (see Appendix A). 
 
Even if the comparison of the results can be made using some assumptions it will not 
be possible to judge whether the obtained difference is due to use of model HSVA ice 
or due to the assumptions that were made. 
 
It is unclear why the Log-Logistic distribution in Figure 2.1 approximated measured 
shear capacity of freeze-binds so well. It is uncertain whether it says something about 
the physics of freeze-bond sear capacity or it is simply related to the flexibility of the 
distribution and limited number of measurements. Nevertheless, it is interesting to 
note that Log-Logistic distribution also represents well the inferred heat flux over most 
of the Earth (Shapiro and Ritzwoller, 2004). 
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The decrease in the freeze-bond shear capacity at the higher temperatures (Figure 2.4) 
can be explained by the increased effect of ice softening near its melting point. 
 
It was difficult to comment on the behavior of brittle samples (Figure 2.6), due to lack 
of data. From the experiments of Repetto-Llamazares, et al. (2009b) it was not 
possible to draw conclusions on whether the brittle behavior occurs randomly or 
whether there is a factor provoking such behavior?  
 
As ice is a material with non-uniform properties varying in space and time, it is 
difficult to ensure that the ice sample to be tested next will have the same properties 
as the previous sample. Therefore the number of ice samples, prepared in order to 
make some statistics, should be larger than the recommended number for experiments 
with engineering materials as concrete, metal, ceramics and even soil. A randomized 
test setup might be applied to smooth results due to natural variability of ice. 
 
In Subsection 2.2.5, due to the lack of additional information it was not possible to 
comment further on whether or not the microcrack was already initiated at lower yield 
point and subsequently followed by a main crack leading to failure of the freeze-bond. 
Hence it was difficult to say something about the fracture energy of ice itself from the 
conducted experiments without any further assumptions. Thus we could speak only 
about the area under the loading curve which indicates the total input of energy to the 
system. 
 
For the ductile samples the higher energy input into the system (higher the value of 
freeze-bond shear capacity, higher the value of the area under the loading curve) 
resulted in a bigger height of the asperities created by the crack grow and fracture. 
Sinha (1982) argues that grain boundary sliding resulting initiation of microcracks 
which appear when critical delayed elastic strain is reached. This occurs when shear 
stress is generated across the grain boundaries and depends on the grain size. In 
accordance with Sinha (1979, 1982) large grains give longer time to start crack 
nucleation. Therefore if the bigger grains give higher ductile shear strength it could 
also lead to rougher surfaces. Hence, assuming that rate of change of asperity height is 
the same for all samples during the first second of post-peak behavior, the observed 
correlation between the area and the post-peak force F1 in Figure 2.24 is 
straightforward.  

3.1 Ice-Ice Friction in Freeze-Bonds   
 
The ice-ice friction in freeze-bonds discussed in this section is, to the best of author 
knowledge, new, and suggests many avenues for further investigation. 
 
In Subsection 2.2.4 factors affecting the coefficient of ice-ice friction included the 
roughness and hardness of the surfaces in contact and the type of molecular interaction 
between them. Modern sciences of surfaces, abrasion, and lubrication explain sliding 
friction in terms of chemical bonding and stick-slip processes (Beaty, 2009). The 
friction coefficient can take different values depending on whether the bodies with 
their surfaces in contact are motionless (static friction) or moving (dynamic friction). 
With a decrease in the value of the friction coefficient there is an increase of the error 
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in case of tilting (Schmitz, et al., 2009). In this study it was not possible to say either 
if the tested samples were tilted or if the samples started sliding relative to each other. 
Hence, only a similitude (an approximation) of friction coefficient was obtained. 
 

For the high normal stresses the value of ice-ice friction coefficient similitude * 0.7μ =  

(Subsection 2.2.4) was high in comparison with the reported data on ice-ice friction 

coefficient (Maeno, et al., 2003). From the other side the value of * 0.7μ =  

(Subsection 2.2.4) agrees well with Lishman, et al. (2009), where authors report time-
averaged ice-ice friction coefficient μ =0.6 for the slip rate of 3mm/s (experiments in 

the HSVA ice tank). They also mention relatively high roughness of the contact surfaces 
with visible asperities and notches on the millimetre scale. 
 
Table 3.1 describes measurements of ice-ice friction coefficient similitude for model ice 

( *μ ) compared with ice friction coefficient ( μ ) measurements conducted by different 

authors. 
 

Table 3.1 - Comparative table 

Frederking and Barker (2002) 
Repetto-Llamazares, et al. (2009b) & This 

study 
Friction of sea ice on various 

construction materials, with known 
roughness 

Ice-ice post failure behavior, surface 
roughness is unknown 

? Constant velocity test 
The frictional force varies 
substantially*, even when the normal 
force is constant. Two different 
frequencies observed for the different 
samples would appear to be a function 
of the sample material surface.  

Stick - slip force oscillations were noted. 

Speed and specimen roughness has the 
strongest influence. 

Ice surface roughness after the failure 
probably had the strongest influence. 

Temperature has a weak effect on 
friction coefficient. There is also a 
weak trend of lower friction coefficient 
at higher contact pressure.  

The temperature effect was complex. 
Friction coefficient similitude decreased 
with increasing normal stress. 

Considerable variability in friction 
coefficient values over a single test 
sample is observed. 

There were differences between one sample 
and another, the test parameters were 
being the same. 

* Load oscillations were not related with stick-slip motion. 
 

Fortt, et al. (2003) 
Repetto-Llamazares, et al. (2009b) & This 

study 
Sliding along the Coulombic shear 

faults in ice 
Freeze-bond shear strength experiments 

and ice-ice post failure behavior 
Fresh water S2 columnar ice grown in 

laboratory 
HSVA saline ice 

Constant velocity test Constant velocity test 
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At high displacement velocities 
(0.8mm/s) the deformation is noisy. 
The applied stress increases, reaches a 
maximum, and then drops suddenly, 

followed by a “stick-slip”. 
At intermediate speeds (0.08mm/s) the 
deformation is less noisy. Stress versus 
displacement curves is characterized 
by an initial rapid increase, followed 
by a gradual rising to a rounded peak. 
There is no sudden-type failure; 
instead the stress gradually decreases. 

For the velocity used in the experiments 
(0.7mm/s) stick-slip force oscillations were 
noted. Force versus time curves (after 
theirs peak) were characterized by sudden 
load drops and by a gradually decreasing 
force. 
 

A little effect of grain size (column 
diameter) of the parent specimen on 
the behavior. 

??? 

There is little evidence of damage 
extending beyond the fault into 
adjacent material. 

Ice failed along the freeze-bond. 

Within the lower confinement or 
sliding* range, the shear strength of 
the fault increases with increasing 
normal stress. 

Freeze-bond strength slightly increased 
with increasing of normal pressure. 

The concept of brittle versus ductile 
behavior is applied to the sliding* 
deformation of ice. At higher speeds 
(i.e., Vs > 0.08 mm/s) sliding* 
exhibits brittle-like behavior, which is 
characterized by sudden load drops 
and by strain-rate softening, while at 
lower speeds (e.g. Vs = 0.0008 mm/s) 
it exhibits ductile-like which is 
characterized by strain-rate hardening.

Attempt to apply the concept of brittle 
versus ductile behavior to the freeze-bond 
failure process has been done based on the 
post-peak behavior. It was not clear if such 
a criterion is a valid measure. 

Within the brittle-like regime, the 
shear resistance obeys a power-law 
dependence on normal stress at the 
onset of sliding*, while once sliding* 

has commenced it obeys Coulomb’s 
law. The parameters of Coulomb law 
are essentially independent of 
displacement. 

Freeze-bond strength slightly increased 
with increasing of normal pressure. From 
the linear, power, exponential and 

logarithmic trend types, the ‘power type’ 
had the highest correlation coefficient (r2); 
but still the value of r2 was too low (< 0.5) 
to consider a power law as description of 
relationship between the freeze-bond shear 
strength and normal pressure (see 
Appendix C1). Beyond the failure (at the 
end of one second) the shear resistance 
increased linearly with normal stress and 

obeyed Coulomb’s law. 
It is likely that the onset of sliding 
requires the breaking of bonds that 

Sliding* required the breaking of freeze-
bonds. 
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reformed during the time lapse 
between the faulting and the sliding* 
stages. 

* “Sliding” means deformation within a narrow band of damage (i.e., the fault). That kind of 
deformation is rather chaotic and probably consists of a complicated mixture of several processes, 
including interfacial sliding, fracture, and melting and, at the lower speeds, creep and sintering. 

Vs  - sliding velocity 

 
Maeno, et al. (2003) 

Repetto-Llamazares, et al. (2009b) & This 
study 

Pure polycrystalline distillated water 
ice 

HSVA saline  ice 

Both surfaces were finished flat and 
smooth with careful planning 

Surfaces represent ice interface just after 
the failure 

Saw-toothed, stick-slip frictional 
behavior is noted for sliding velocity 
roughly from 10-3 to 10-5m/s. 

Saw-toothed behavior was dominating for  
sliding velocity of 0.0007m/s. 

Maximum reported value μ =0.46 for 

sliding velocity of 0.0005m/s at -27oC 
and normal stress 2.9kPa. 

*μ =0.7 for sliding velocity of 0.0007m/s 

at -14oC, and normal stress 2.0kPa. 

μ  temperature dependence is complex *μ  temperature dependence was complex 

At temperatures lower than about -5oC, 
μ  decreases with rise in temperature, 

but it increase at temperatures higher 
than - 5oC. 

At temperatures lower than about -7oC, 
*μ  slightly decreased with rise in 

temperature, but it was almost constant at 
temperatures higher than -7 oC. 

μ  decreases with increasing of normal 

stress but it almost constant above 
5kPa. 

*μ  decreased with increasing of normal 

stress. 

The temperature dependence of 0μ  

resembles that of μ . 

The temperature dependence of *
0μ  did 

not resemble that of *μ . 

The estimated adhesion strength ranges 
from 10 to 250Pa. 

The adhesion strength ranged from 1.2 to 
2.1 kPa. 

Adhesion strength increases as the 
temperature is lowered. 

Adhesion strength increased as the 
temperature was lowered. 

 

Nanetti, et al. (2008) 
Repetto-Llamazares, et al. (2009b) & This 

study 
Saline ice-steel friction, roughness of 

steel surface is known 
Ice-ice post failure behavior, surface 

roughness is  unknown 
Creep test, Saline ice Constant velocity test, HSVA saline ice 

A stick-sleep motion with a 
characteristic frequency of 0.1Hz is 
observed. 

Stick-slip force oscillations were noted. 

The period decreases with time and 
tends to become a constant (the higher 
load the more evident this trend). 

In most of the cases period of oscillations 
corresponded to the sampling frequency of 
100Hz. 
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The amplitude is dampened with time, 
the higher the load the quicker the 
effect. 

Force amplitude was dampened with time*.

There can be many differences between 
one sample and another, the test 
parameters being the same. 

There can be many differences between one 
sample and another, the test parameters 
being the same. 

Knekkis is a step machine, some of 
observed load oscillations might be due 
to a systematic behavior of the 
machine itself and not to the physics 
of ice/steel interaction. 

Some of observed load oscillations might be 
due to a systematic behavior of the loading 
device itself and not to the physics of 
ice/ice interaction. 

The ratio of the mean rate of axial 
displacement to the frequency of stick-
sleep oscillations is comparable to the 
nominal roughness length. 

??? 

The higher the roughness the later the 
onset of the stick-slip motion, and the 
higher the amplitude of the oscillations

??? 

 * only one test sample 13_17_1 was considered 
 

Sukhorukov and Marchenko (2009) 
Repetto-Llamazares, et al. (2009b) & This 

study 

Interaction of ice with steel surfaces 
Ice-ice post failure behavior, surface 

roughness is  unknown 
Constant velocity test, freshwater ice Constant velocity test, HSVA saline ice 

Stick-slip oscillations of the load are 
observed in all experiments with high 
and middle surface roughness. 

Stick-slip force oscillations were noted. 

The axial displacement during stick-
slip motion is comparable to the 
roughness length. 

??? 

 

3.2 Analysis of Uncertainties  
 

3.2.1 Experimental uncertainties 
 

In the shear tests (Section 1.4) used to measure the shear strength of freeze-bonds, the 

ice sample in ‘split’ wooden frames was sheared laterally by moving the top wooden 
frame relative to the bottom frame, thereby producing a thin failure zone. Besides 
experimental uncertainties mentioned in Repetto-Llamazares, et al. (2009b), the shear 
stress generated on the horizontal plane is far from uniform, as failure is expected to 
propagate from the edges towards the centre of the sample (Figure 2.31, Discretization 
A). The presence of freeze-bond changes the stress state in the ice sample in 
comparison with the uniform ice. The cross-sectional area being sheared does not 
remain constant throughout the test, which makes the analysis of results more 
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difficult. The actual displacements of the freeze-bond may differ from those measured 
in the piston of the pulling system. 

3.2.2 Model ice uncertainties 
 
Consolidated parts of rafted ice found in ice-ridges were created by the refrigeration 
procedure under the laboratory conditions. As was mentioned by Zufelt and Ettema 
(1996) the freeze-bond strength between ice pieces may be insufficiently scaled, as 
refrigeration is used to consolidate ice piece accumulation. This fact makes 
comparisons with the full-scale results difficult.  

3.2.3 Stick-sleep behavior or effect of the sampling frequency 
 

In Table 3.1 five of six authors (including this study) reported stick-slip oscillations 
during the process of ice sliding. Besides, for the HSVA ice Lishman, et al. (2009) 
reports stick-slip behavior observed at low slip rates (3mm/s), with frictional buildup 
at fixed displacement followed by sudden movement and relaxation of slip. 
 
In this study stick-slip behavior, for example, can be seen for the sampling frequency 
of 100Hz for the ice sample 13_17_1. Spectral analysis showed that the main frequency 
of oscillations is equal to the sampling frequency. This raises a question regarding the 
effect of sampling frequency on the obtained results. In Figures 3.1 to 3.3 the effect of 
sampling frequency is illustrated for the ice sample 13_17_1. These figures shows the 
results obtained from the freeze-bond shear test. The test was conducted at -14oC 
temperature, confinement pressure of 637Pa for submersion time of 20hours. 
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Figure 3.1 - Force versus time at the beginning of deformation (Sample 13_17_1). 

Effect of sampling frequency: (a) - sampling frequency of 100Hz; (b) - sampling 
frequency of 50Hz. 
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Figure 3.2 - Force versus time, one second prior to failure (Sample 13_17_1). Effect of 

sampling frequency: (a) - sampling frequency of 100Hz; (b) - sampling frequency of 
50Hz. 
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Figure 3.3 - Force amplitude versus time. Effect of sampling frequency (Sample 

13_17_1): (a) - Sampling frequency of 100Hz, before the failure; (b) - Sampling 

frequency of 50 Hz, before the failure; (c) - Sampling frequency of 100Hz, after the 

failure; (d) - Sampling frequency of 50Hz, after the failure. 
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From Figures 3.1 to 3.3 a significant influence of the sampling frequency can be seen 
on the registered force during testing as well as its amplitude. Small force 
perturbations, corresponding to the horizontal 0.2mm piston displacement in the 
loading device, can be seen for both sampling frequencies. The reason for such 
perturbations was not clear. One reason could be related to the to the ice 
microstructure shown in Figure 1.20 (e.g. grain size in the freeze-bond area or spacing 
between the air bubbles). For a sampling frequency of 100Hz the force amplitude rose 
with time and decreased as failure progresses. From the registered force during testing 
(sampling frequency of 100Hz) every second point was deleted in order to get the 
values of force amplitude for a sampling frequency of 50Hz. For a sampling frequency 
of 50Hz the force amplitude was almost constant initially. Subsequently, three 
characteristic peaks of force amplitude can be seen just before fracture as shown in 
Figure 3.3b. It is probable that these peaks were related to the crack formation and 
growth. The highest peak started approximately at 6.2 seconds, which corresponded to 
the increase in force (see Figure 3.2a,b) and to the increase in the total consumption of 
energy by the system (Figure 2.19b). The height of the peak can be related to the 
crack length. 

3.2.4 FB development as a function of submersion time and 
temperature 
 
Earlier Shfrova (2007) showed that FB strength develops with time available for the 
creation of such a FB (submersion time). It was suggested that freeze-bond strength 
increases with the submersion time. After some time it reaches its maximum and starts 
to decrease. General temporal development of the strength is illustrated in Figure 3.4b. 
For the cold ice with -14oC as its initial temperature, freeze-bonding was already 
exhibited and was strong after one minute of submerging (Repetto-Llamazares, et al., 
2009b). However FB was not observed until one hour of submersion for the warmer ice 
(with initial temperature of -3oC). Hence, temperature dependence of freeze-bond shear 
capacity as well as the temperature dependency of any other parameters considered in 
this analysis should be treated with accuracy.  
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Figure 3.4 - Hypothetic development of freeze-bond strength: (a) - suggested by Prof. 

K. V. Høyland (personal communication, 2009); (b) - from Shafrova (2007). 
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If shear capacity of freeze-bonds is a function of time and temperature as given in 
Figure 3.4a (the relations of uniaxial strength versus submersion time proposed in 
Figure 3.4b are based on the observations) then, at a fixed submersion time it will be 
hard to say if, for example, colder ice will exhibit a stronger freeze-bond. 
 
If the hypothesis in Figure 3.4a is correct, its effect on the re-compaction and 
deformation process of the rubble in the ice-ridge, described in Vershinin, et al. (2005) 
still remains unclear.  

3.2.5 Uncertainties of finite element model 
 
No constitutive model describing the fracture of model ice with air bubbles 
incorporated into its structure exists. To simplify the model the assumption that ice is 
an isotropic and homogeneous elastic medium had been made. This assumption is 
however debatable as (i) it can be seen from the thin section in Figure 1.20 the 
distribution of air bubbles is not homogeneous along the entire sample thickness (ii) in 
some registers a nonlinear behavior of force in time can clearly be seen. The material 
property (elastic modulus of 200MPa) was assumed to be in the range of reported 
values in Evers and Jochmann (1993). The actual value of E during experiment was 
unknown. Besides, E can vary from one experiment to another, since the internal 
structure of the ice is not completely homogeneous (during testing there were samples 
with higher air content than the other ones) as mentioned in Repetto-Llamazares, et 
al. (2009b).  
 
In the cohesive model, the TSL shape and the behavior under mixed-mode conditions 
were assumed in the model. Unless both the experimental uncertainties (i.e. the surface 
of the ice was uneven and quality of the initial contact surface of the ice blocks was 
unknown; density, salinity and air content of each sample were not known, etc. as 
mentioned by Repetto-Llamazares, et al. (2009b)) and the uncertainties of numerical 
approximation (i.e. constitutive behavior of model ice and properties of tested ice; TSL 
shape;  behavior under mixed-mode loading) are controlled, it will not be possible to 
judge whether the model or the retrieved cohesive element properties should be 
rejected or not.   

3.3 Model Ice and Freeze-bond Failure Mode 
 
The structure of the model ice (Subsection 1.4.2, Figure 1.20) differs from the 
structure of natural sea ice. For the natural sea ice the most important parameter in 
characterizing the substructure is the brine layer spacing or platelet width (Chapter 3 
in Loset, et al., 2006). Is the same true for model ice? From Evers and Jochmann 
(1993) it is known, that higher air content results in weakening of the crystal structure 
and lowering of ice strength. Such model ice has well scaled mechanical properties like 

density and /E σ  ratio. When the piece of ice as in Figure 1.20 is loaded, stress 
concentrations around inhomogenities may cause the formation of microcracks. These 
microcracks may grow and develop into one macrocrack. Under constant load a 
microcrack can grow after its formation eventually leading to failure which is, by 
definition, brittle failure. From Figure 1.20 it can be seen that even if the assumption 
is made that failure occurs along the freeze-bond, the high degree of variability in the 
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shear strength (for a given experimental procedure) can still be expected due to 
complex initial conditions along a freeze-bond.  
 
Though the understanding of fracture processes in ice is important for establishing 
correct ice-ridge structure interaction descriptions, the condition under which the first 
microcrack appears as well as the criterion for the ductile-brittle transition in ice is 
under discussion for the natural ice. The same is true for the model ice and therefore 
there is not enough information at present to discuss the possible effects of model ice 
microstructure (i.e. grain size, orientation, air content) and the effects due to the 
presence of freeze-bonds on the ice failure modes. From experiments (Section 1.4) it 
was not possible to say which conditions provoke brittle or ductile (respectively failure 
mode A and B in Repetto-Llamazares, et al., 2009b) behavior. Besides, a few tested 
samples were failed in the brittle mode (Table 2.3), which created difficulties during 
their analysis. It was mentioned by Vershinin, et al. (2005) that the ice blocks in a 
ridge keel are under high confinement and therefore they might not exhibit a brittle 
behavior. This study therefore focused on the definition and analysis of ice samples, 
which exhibit ductile behavior, which was thought to be reasonable. 

3.4 Numerical Simulations 
 
The state of stress in three-dimensional model with discretization A (Figure 2.31) 
might be closer to the existing reality. Neither the boundary conditions, nor the 
discretization used, nor the effects of nonlinear geometry significantly influenced the 
reaction force. It was mainly affected by the elastic properties of ice and cohesive 
element properties. Therefore the numerical model can not model FB shear strength as 
a function of normal pressure unless other cohesive behavior is specified. In order to 
improve the model it is possible to define a constitutive response of cohesive element 
(instead of using traction-separation behavior) assuming, for instance, elastic-plastic 

FB behavior with a yield function f ( )Φ τ σ= +  or introduce a new damage initiation 

criterion (which depends on a state of compression) into the traction-separation model. 
As the ice was assumed to be an elastic homogeneous and isotropic medium and only 
the fracture of cohesive elements was defined, the peak force (Figure 2.30) is a function 
of cohesive element properties. The size of cohesive elements and therefore their 
properties depend on the goal of the simulation and the assumptions of the cohesive 
model. In order to simulate ice fracture process (e.g. speed of the crack growth, stress 

state along the failure plane) the ‘true’ values of the fracture energy (or maximum 
separation), maximum traction together with the sufficient discretization should be 
used in order to ensure that each of these cohesive elements contains sufficient 
information about the crack growth in the material. 
 
Table 3.2 summarizes cohesive zone model parameters, which were used for modeling 
ice fracture process. It is important to note that in Gürtner (2009b) unknown CE 
properties for HSVA model ice were retrieved by trial and error to match FE solution 
with experimental results. Gürtner (2009b) writes that the cohesive element properties 
are true material properties. 
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Table 3.2 - Fracture properties of ice in assumption of cohesion zone model (CE - 
cohesive elements; TSL - traction-separation law;  χ1 and χ2  - separation measures; T0 
- maximum traction; δ0  - critical separation; Г0 - cohesive energy). 

Cohesive properties (fracture parameters) 

Author Ice Discretization 
TSL 

T0, 
[kPa]

0δ , 

[μm] 

Г0N/ Г0T, 
[N/m] 

Wang, et 
al. 

(2006) 

First-year 
sea ice in 
McMurdo 
Sound, 

Antarctica 

? 

Bilinear 
(Figure 

1.14b), with 
separation 

measure 0.72 

130 110 12.7B 

Gürtner, et 
al. 

(2008) 

Model 
HSVA 

FE mesh: 20x20mm, 
5625 elements in 
each layer. The total 
number of CE 
layers: 2A. 

Trilinear 
(Figure 1.14c) 

with 
separation 

measures 0.1 
and 0.85 

71C 200C 12/19C 

Gürtner 
(2009b) 

Model 
HSVA 

FE mesh: 50x50mm, 
~2500 elements in 
each layer. The total 
number of CE 
layers: 2A. 

Trilinear 
(Figure 1.14c) 

with 
separation 

measures 0.2 
and 0.65 

35C 70C 1.8D 

Gürtner 
(2009b) 

First-year 
sea ice 

FE discretization: 
200x200mm, 2500 
elements in each 
layer. The total 
number of CE 
layers: 4A. 

Linear (Figure 
1.14a) with 

normal 
stiffness 

5Gpa/m and 
tangential 
stiffness 

50Gpa/m 

600C ? ? 

Paavilainen 
et al. 
(2009) 

? 

2D discrete elements 
45x45mm tied by the 
Timoshenko non-
linear beam elements

Linear (Figure 
1.14a) with 

stiffness 
70MPa 

50 725 10-15F 

This study 
3D 

Model 
HSVA 

FE discretization: 
140x140mm, one 
element and one CE 
layer. 

Triangular 
(Figure 1.16) 
with normal 

penalty 
stiffness is 
equal to 

tangential 
penalty 

stiffness of 
2.9MPa 

10.5 4248E 
22.3 

/22.3E
 

This study 
3D 

Model 
HSVA 

FE mesh: 47x47mm, 
nine CE elements 
and one CE layer. 

Triangular 
(Figure 1.16) 
with normal 

penalty 
stiffness is 
equal to 

tangential 
penalty 

stiffness of 
2.9MPa 

10.5 3810E 
20 

/20E
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AThe number of elements and the total number of CE layers were not specified by the author. They 
were calculated from available information (figures, ice floe dimensions, etc.); 
BCritical fracture energy (Wang, et al., 2009); 
CHorizontal cohesive elements (Gürtner,  2009b); 
D The value was back-calculated from the TSL using Equation 1.20; 
E The values were limited by the convergence of numerical solution; 
FThe value was based on the personal communication with J. Paavilainen. 

 

Gürtner, et al. (2008) mentioned that the maximum traction may be related to the 
tensile capacity of the HSVA ice, and cohesive element properties given in Table 3.2 
give acceptable results for the in-plane direction. In Wang, et al. (2006) the particular 
shape of TSL is regarded as a material property. Information presented in Wang, et al. 
(2006) is obtained through back-calculations such that experimental results match the 
predicted results, where TSL was assumed to be independent of the rate of separation. 
In Paavilainen, et al. (2009) ice sheet is modeled with elastic beams and its fracture is 
modeled according to finite element method by using nonlinear Timoshenko beam 
elements and a cohesive crack model. Besides the beam elements tied discrete elements 
together. Hence, such a modeling technique (combined finite-discrete element method) 
was different from the method used in Gürtner, et al. (2008), Gürtner (2009b) and in 
this study. It should be noted here that the laws used for coupling of normal and 
tangential separations as well as the fracture criterion vary among different authors. 
 
In this study the value of the maximum traction (T0=10.5kPa), from retrieved 
properties of cohesive element, seems to be physically plausible for representation of 

freeze-bond tensile strength. The value of the fracture energy (Г0=20-22N/m) and 

therefore value of the critical separation ( 0 4mmδ ≈ ), corresponding to Г0 are high 

enough to be full-scale material properties. Use of finer FE mesh might help to 

decrease the Г0 value and hence 0δ . 

 
If we assume that the maximum traction specified in the numerical simulations by 
Gürtner, et al. (2008), Gürtner (2009b) and in this study related to the tensile strength 
of the model ice and strength of freeze-bonds respectively then the ratio between these 
strengths was in the order of 0.15-0.3 which corresponds to the laboratory experiments 
with the arctic sea-ice (for a submerging time up to 60hours) where the ratio between 
the FB strength and the strength of the ice itself is found to be 0.15 ± 0.15 (Shafrova, 
2007).  
 
In the numerical model the actual loading slope was approximated by a linear 
function. For some of the tested samples (Section 1.4) this assumption might not 
model all characteristics of loading behavior well. Figure 3.5 shows representative plots 
of the ductile curves from the experiments of Repetto-Llamazares, et al. (2009b). 
Figure 3.5 illustrates typical nonlinear behavior of the ice sample plus testing device 
prior to fracture. Therefore for this sample, the assumption regarding liner behavior 
prior to fracture is incorrect and retrieved cohesive properties for this sample might 
not be realistic. 
 
It should be noted that within this study only shear test for only one ice sample was 
simulated. Therefore, by using the finite element model (Section 1.5) and by tuning 
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cohesive element properties consequently for the other brittle samples (Section 2.1) it 
is expected that there will be some variation in the tuned values of maximum tractions 
due to the presence of high variation in the shear capacity of FB for brittle samples. 

0

10

20

30

40

50

0 1 2 3 4

time, s

fo
rc

e,
 N

failure

ft

linear approximation

 
Figure 3.5 - A force measured during freeze-bond shear experiments: Ductile sample 

1_13kg_2. 
 
To simulate shear tests for the ductile samples trilinear (trapezoidal) TSL shape 
(Figure 1.14c) should be used. Unfortunately, the influence of the TSL shape on the 
results was not investigated in this work as a TSL shape other than that in Figure 1.16 
would have to be implemented in the ABAQUS UMAT routine (due to time 

constraints it hasn’t been done in this study). 
 
It can be illustrated by the representative example (Figure 3.5) taken from 
experimental data that the model described in Section 1.5 needs some improvements to 
be able take into account nonlinear behavior prior to failure as well as confining 
pressure dependence. Temperature dependence as well as a constitutive model, 
describing ice behavior other than linear elastic behavior, can be implemented in the 
model, where the anisotropy and non-homogeneity of ice can be included. Besides, the 
anisotropy of freeze-bond can be modeled by specifying different cohesive parameters 
in different directions, and their behavior under mixed-mode conditions can be 
formulated in different ways. By combining finite element analysis with random field 
theory, an investigation can be performed, for instance, on the shear capacity of freeze-

bonds with spatially random cohesive properties. As a result of such ‘improvements’ in 
the numerical model, the model becomes more complex and hence, more input 
parameters will be needed. This raises the traditional question of where to get reliable 
material data. 
 
For the cohesive model in ABAQUS 6.8 it is important to note that the geometrical 
size of the zone discretized with cohesive elements should be narrow compared to the 
size of the specimen and interfacial strengths are relatively weak when compared with 
the adjoining material, as is the case in composite laminates. 

3.5 Modeling of Ice-ridge Structure Interactions  
 
With rising human demands the number of techniques for modeling crack growth 
process in different engineering materials such as metals, concrete, ceramics, etc. are 
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also continuously rising but there are no guidelines or recommendations on when to 
use which technique (Gürtner, 2009a). 
 
Though it has been shown by several authors that the cohesive parameters are not 
material constants in a strict sense (Seigmung and Brocks, 1999) and as mentioned by 
Paavilainen (2009), that the element length does have an effect on the parameters of 
the cohesive model (the Young’s modulus, tensile strength and critical crack opening 
displacement are connected to the element length by an inequality, which limits the 
choice of material parameters and element length), the modeling technique proposed 
by Gürtner (2009b) and extended by Konuk, et al. (2009a,b) for the ice-ridges seems to 
be very much in perspective. The positive aspect of the cohesive element framework 
proposed by Konuk, et al. (2009a) for modeling dynamic interaction of ice-ridges with 
structure is that the approach can lead to very good results in terms of simulated force 
and with an increase in computational power it will be possible to take into account a 
random field theory in the models. With current state-of-the-art knowledge in ice 
mechanics, to implement such approach several, probably, phenomenological but it 

seemingly physically plausible parameters T0 and Г0 of the ice and the freeze-bonds 
will be needed. These parameters for both ice and freeze-bonds can be found from the 
experiments. In future the concept in Konuk, et al. (2009a) can be incorporated in 
large numerical models that can take into account not only temporal and spatial 
variability of the ice properties. As example, the numerical scheme for predicting ice 
loads exerted on structures located in ice infested waters was proposed in Appendix E. 
For this numerical scheme not just statistical data on physical and mechanical 
properties of ice but also climate data of the area (temperature, wind, etc.) will be 
needed to compute ice loads.   
 

3.6 Summary 
 
An overview of the problem of ice-ridge structure interactions was done and weak 
knowledge areas were outlined.  
 
Within the interpretation of the results of freeze-bond shear experiments: 
 

→ An attempt to present obtained results of freeze-bond shear strength from 
statistical standpoint was done. The log-logistics distribution with mean 2446 

and variance 4.6⋅106 well represented the set of freeze-bond shear strength 
values, expressed in pascals. 

 

→ Ductile samples were separated from brittle ones based on: (i) visual 
observations of post-peak behavior of loading history, (ii) critical value of 
unloading slope, (iii) critical value of loading slope. Approach (i) in combination 
with (ii) was recommended to use in future. Technique (iii) seems to be a weak 
measure as actual loading slope was varying during experiments. 

 

→ Several types of load oscillations were noted (‘saw (1)’, ‘saw (2)’, ‘saw (3)’, ‘line’ 
and ‘mix’). Observed oscillations were related to the effect of sampling 
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frequency and the model ice structure. In most of the measurements, the 
frequency of measured load oscillation was equal to the sampling frequency of 
100Hz. 

 

→ Post-peak force behavior was analyzed for total 58 test runs. For all tests the 
values of measured force at the end of the first second after failure converged to 
values between 8-30N depending on the normal load and submersion time. The 
load value at the end of the first second after failure did not show significant 
variation in brittle or ductile samples.  

 

→ The area under the loading curve prior to the load-peak (between the starting of 
the failure and the peak force) was calculated an analyzed for all the samples. 
An attempt to correlate the obtained values of the area to the fracture energy of 
ice was done. The area under the loading curve was proportional to the total 
input of energy to the system but further assumptions were needed to discuss 
the fracture energy of ice.  

 

→ Analysis of frictional behavior was done, similar to the study in Maeno, et al. 
(2003). Obtained trends were compared with earlier results on ice-ice frictional 
behavior. Estimated frictional behavior of ice after the failure of the freeze-bond 
agreed with observations in Fort (2003), Maeno, et al. (2003), Frederking and 
Barker (2002) and Nanetti, et al. (2008). 

 
Within the task of numerical simulations of the freeze-bond shear tests: 
 

→ A finite element model for the simulation of freeze-bond shear test was built in 
ABAQUS 6.8. Cohesive element properties were retrieved by trial and error to 
match finite-element solutions with experimental results. Tuned maximum 
traction was found to be 10.5kPa, penalty stiffness of 2.9MPa, fracture energy 
of 22.3N/m.  

 

→ Effects of problem dimensionality, modeling technique (surface-based modeling 
versus cohesive zone model) and boundary conditions as well as influence of 
finite element mesh were studied. 

 

→ Factorial design of numerical simulation was used in order to study effects of 
variables (maximum traction, elasticity modulus of ice and cohesive-element 
penalty stiffness) together with their interaction effects, where two or more 
variables act together. 

 

→ Retrieved cohesive element properties were compared with parameters used in 
earlier studies and some possible improvements for the model were suggested. 
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CONCLUSIONS and 
RECOMMENDATIONS for 
FUTURE WORK  4
 

4.1 Conclusions 
 
In the state-of-the-art knowledge of ice-ridge structure interaction: 

 
→ there are no common techniques for estimation of loads exerted by an ice-ridge 

on a structure;  

→ existed calculation algorithms require initial data which is difficult to define in 
practice; 

→ there is a lack of full-scale data available for research; 

→ almost no numerical tools are available for modeling ice-ridges;  

→ there is a lack of laboratory or full-scale tests, available for validation numerical 
models. 

 
Besides, the existence of freeze-bonds in the ice-ridge might significantly affect ice-
ridge failure process and therefore the load exerted onto a structure by an ice-ridge; 
there are almost no analytical, numerical or empirical models, which directly take into 
account the phenomenon of freeze-bonding. 
 
This study showed that from the conducted experiments intended to study freeze-bond 
strength in model ice it is also possible to study ice fracture processes as well as post-
failure behavior. 

 
The major findings of this study were:  

 
→ The shear capacity of freeze-bonds as well as the post-peak force and the total 

input of energy to the system prior to failure have similar trends. They increase 
with increase of normal load and decrease with submersion time.  

 
→ For the experiments with low initial ice temperatures a linear dependency can 

be assumed between the shear capacity of freeze-bonds and the normal load as 
well as between the post-peak force and the normal load.  

 

→ The force measured after one second since the peak force was reached represents 
the frictional force between two ice blocks. Estimated frictional behavior agrees 
with observations in Fort (2003), Maeno, et al. (2003), Frederking and Barker 
(2002) and Nanetti, et al. (2008). 
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→ The fracture energy for freeze-bonds can not be extracted directly from 
measurements without further assumptions. 

 
→ There is a correlation between the area under the curve prior to failure and the 

force measured after one second since the peak force was reached.  
 

→ By improving the experimental procedure as described in Repetto-Llamazares, 
et al. (2009b) it will be possible to study not only FB process but also the 
frictional behavior after fracture. By video monitoring of the crack initiation 
and growth it will be possible to study fracture process inside the freeze-bond. 

 

→ The peak load is completely determined by the maximum traction strength and 
the initial part of TSL. Retrieved material parameters of freeze-bond for 
cohesive zone model (maximum traction of 10.5kPa, corresponding to the tensile 
strength of freeze-bond), seem to be physically plausible and a ratio between the 
freeze-bond tensile strength (found in this study) and the tensile strength of ice 

(Gürtner, 2009b) coincides with observations in Shafrova (2007). 
 

→ Capabilities of ABAQUS 6.8 are sufficient for modeling brittle fracture of ice. A 
good constitutive model of HSVA ice is needed in order to verify obtained 
properties of freeze-bond. 

 

→ In order to use physically plausible material properties for cohesive zone model 
sufficient discretization of the cohesive zone has to be made. Despite the same 
results, modeling of the given problem using a cohesive zone model is preferable 
to modeling with a surface-based approach in terms of specified parameters of 
the model. 

 

→ Method proposed by Konuk, et al. (2009a) for the modeling of ice-ridges seems 
to be very much in perspective but in order to implement it, additional 
investigations, concentrating on both ice and freeze-bond behavior under mixed-
mode loading at different temperatures, are needed. 

4.1 Recommendations for Future Work 
 
The analyses discussed in this work demonstrate both the difficulties encountered in 
interpreting and explaining experimental results and the difficulties encountered in 
numerical modeling of the experiments. In view of the urgent need for better 
information on the material properties of the model ice and freeze-bonds, the author 
recommends that: 
 

→ studies be conducted to better understanding freeze-bonging process in both 
model and natural sea ice to compare the difference in the fracture behavior of 
different microstructures of ice. 

 



Summary and Conclusions 

 
 

Ekaterina Kim                                                                                                                                     Trondheim 2009 
 

102

→ laboratories provide data on fracture properties of tested ice, and carry out 
studies on the behavior of model ice under mixed-mode loading conditions. 

 
In view of the significant variability in the freeze-bond shear strength over ice samples 
(the test parameters being the same) and due to unexplainable difference in the failure 
behavior of model ice (ductile/brittle), it is also considered important to put greater 
emphasis on the experimental setup for evaluation of freeze-bond shear strength. 
 
Better analysis essentially depends on the improvement made in the planning of the 
experiment and obtaining of better statistics of freeze-bond shear capacity of model ice 
for each of two different failure modes (brittle/ductile). Considering the discrepancies 
observed in values of freeze-bond shear strength measured by different authors, the 
author recommends that: 
 

→ different scientists actively participate in investigations and possibly on 
standardization of methods for measuring strength of freeze-bonds.  

 
In addition to continuation of freeze-bond strength studies combined with the 
numerical modeling of the experiments, it might be recommended that: 
 

→ consideration be given to improvements of existing analytical and numerical 
models, for calculation of loads for scenario of ice-ridges interactions with 
structures.   

 
In view of the importance of variation in environmental conditions for the load exerted 
on structure from an ice-ridge, the author further recommends: 
 

→ that studies on the approaches, combining thermodynamics and mechanics of 
ice, for estimation of ice loads on structures should be continued. 

 
Finally, the difficulties of carrying out analysis of the experiments in presence of high 
dispersion in the result values were noted, and therefore strongly recommended that: 
 

→ future experiments with ice should have enough statistical output in order to 
comply with the requisites of probabilistic methods.  
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A - History of the Freeze-Bond Experimental Setup 
 
 

 

W

Aσ ⋅

fb fbAτ ⋅ fb fbAσ ⋅

F

 
 

Experimental setup (Ettema and Shaefer, 
1986) 

A scheme of loads, acting on the 
tested ice sample. 

 Freeze Bond

Aσ ⋅

W fb fbAτ ⋅

Experimental setup (Prof. A. Marchenko, 
personal communication, 2006) 

A scheme of loads, acting on the 
semicircular ice sample (side view).
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A2

 
History of the Freeze-Bond Experimental Setup 

(continuation) 

 
 

α

 

fb fbAτ ⋅

fb fbAσ ⋅

W

Aσ ⋅

x

y

 

Experimental setup (Shafrova, 2007) 
A scheme of loads, acting on the 

upper piece of the tested ice 
sample. 

W

Aσ ⋅

fb fbAτ ⋅fb fbAσ ⋅

F

Experimental setup (A.H.V. Repetto-
Llamazares, personal communication, 

2009) 

A scheme of loads, acting on the 
upper piece of the tested ice 

sample. 
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APPENDIX  B
B - Estimated Parameters 
 
Table B - Estimated parameters. Start time of the failure process (tsf); failure time 

(tf); approximated loading slope (S’); post-peak force measured after one second of the 
peak occurrence (F1); area under the loading curve (A); approximated area under the 
loading curve (aprx(A)). 

test file failure 
force, (N)

tsf, (s) tf, (s) (tf-tsf), (s) S', (N/s) F1, (N) type failure post-
peak 

A, (N*s) aprx(A), 
(N*s)

|A-aprx(A)|, 
(N*s)

# slope 
change

13_7_1 50.68 52.5 53.58 1.08 46.93 20 saw (3) roof 15.39 27.37 11.98 2
13_7_2 31.24 14.66 15.8 1.14 27.40 15 saw (3) roof 18.22 17.81 0.41 3
13_7_3 16.21 390.62 393.36 2.74 5.92 13 saw (3) roof 23.08 22.21 0.87 5
13_7_4 213.84 14.11 17.53 3.42 62.53 13 saw (3) drop 357.37 365.67 8.30 4

23_7_1 52.08 18.32 19.79 1.47 35.43 27 saw (3) roof 33.33 38.28 4.95 1;2
23_7_3_jump 174.36 159.28 162.62 3.34 52.20 21 saw(1) drop 301.91 291.18 10.73 6
23_7_3 192.16 991 993.39 2.39 80.40 24 saw(3) drop 201.52 229.63 28.11 4

buoy_1 39.99 13.27 16 2.73 14.65 15 saw(2) roof 35.64 54.59 18.95 5
buoy_2 18.57 298.07 298.71 0.64 29.02 9 saw(3) roof 5.54 5.94 0.40 1;2
buoy_3 31.28 378.17 379.59 1.42 22.03 15 saw(3) roof 21.15 22.21 1.06 4
buoy_4 15.1 522.3 523.74 1.44 10.49 9 saw(3) roof 9.3 10.87 1.57 4

0
7_4_1 46.84 1396.28 1397.75 1.47 31.86 28 saw(1) roof 31.47 34.43 2.96 4
7_4_2_jump 84.2 13.63 16.57 2.94 28.64 20 saw(mix) drop 117.53 123.77 6.24 1;3
7_4_3 47.46 7.29 10.32 3.03 15.66 31 saw(1) roof 59.17 71.90 12.73 5

0
13_17_1 98.51 8.22 14.59 6.37 15.46 15 saw(1)+line drop 311.78 313.75 1.97 4
13_17_2 26.86 23.71 27.03 3.32 8.09 18 saw(1) roof 35.85 44.59 8.74 3/drop
13_17_3 24.08 19.02 20.98 1.96 12.29 17 saw(1) roof 25.01 23.60 1.41 8

23_17_1 205.68 16.97 22.21 5.24 39.25 22 saw(1) drop 498.23 538.88 40.65 1;2
23_17_2 117.36 16.14 17.8 1.66 70.70 24 saw(1) drop 85.77 97.41 11.64 1;2

buoy_17_1 18.04 29.81 32.79 2.98 6.05 15 saw(1) roof(flat) 17.89 26.88 8.99 3/drop

14_4kg_1 38.44 808.59 809.85 1.26 30.51 22 saw(1) roof 27.37 24.22 3.15 4
14_4kg_2 48.17 182.41 184.23 1.82 26.47 33 saw(3) roof 35.13 43.83 8.70 5

0
1_13kg_1 24.3 225.28 226.8 1.52 15.99 13 saw(1) roof 13.79 18.47 4.68 1;2
1_13kg_2 45.48 416.94 419.98 3.04 14.96 20 saw(1) roof 43.88 69.13 25.25 4
1_13kg_3 34.73 271.49 274.17 2.68 12.96 20 saw(1) roof 28.17 46.54 18.37 8

1_300gr_1 51.71 239.33 244.27 4.94 10.47 12 saw(1)mix drop 150.89 127.72 23.17 5strange
1_300gr_2 23.74 465.88 467.47 1.59 14.93 11 line roof 15.8 18.87 3.07 4
1_300gr_3 35.88 199.32 201.26 1.94 18.49 13 line roof 28.56 34.80 6.24 3

1_4kg_1 42.1 262.24 265.06 2.82 14.93 27 saw(1) roof 47.81 59.36 11.55 1;3
1_4kg_2 40.21 259.84 261.96 2.12 18.97 29 saw(1) roof 43.96 42.62 1.34 1;2
1_4kg_3 63.68 29.74 33.98 4.24 15.02 24 saw(1) drop (smal 85.09 135.00 49.91 3

1_buoy_1 51.9 1438.14 1439.54 1.4 37.07 11 saw(1) drop(small 22.52 36.33 13.81 2
1_buoy_2 53.07 196.49 200.85 4.36 12.17 11 saw(1) drop 63.81 115.69 51.88 7
1_buoy_3 24.22 169.66 171.3 1.64 14.77 11 saw(1) roof 15.07 19.86 4.79 4

7_1h_13_1 26.72 459.7 461.39 1.69 15.81 14 saw(1) roof 20.95 22.58 1.63 4
7_1h_13_2 61.36 137.53 139.63 2.1 29.22 19 saw(3) roof 36.84 64.43 27.59 4
7_1h_13_3 85.78 234.24 236.25 2.01 42.68 25 saw(3) roof 59.16 86.21 27.05 5

7_4h_13_1 30.59 463.36 464.34 0.98 31.21 13 saw(3) roof 16.29 14.99 1.30 3
7_4h_13_2 37.71 228.68 230.6 1.92 19.64 21 saw(1) roof 32.65 36.20 3.55 3;4
7_4h_13_3 41.57 261.66 263.28 1.62 25.66 19 saw(1) roof 18.68 33.67 14.99 6

0
7_10h_1 49.79 13.15 20.55 7.4 6.73 15 saw(mix) drop 114.61 184.22 69.61 5
7_10h_2 31.35 307.41 309.57 2.16 14.51 14 line roof 24.8 33.86 9.06 5
7_10h_3 122.67 108.79 116.19 7.4 16.58 14 line mix drop 510.44 453.88 56.56 3

0
13_7_1 50.68 52.5 53.58 1.08 46.93 20 saw (3) roof 15.39 27.37 11.98 2
13_7_2 31.24 14.66 15.8 1.14 27.40 15 saw (3) roof 18.22 17.81 0.41 3
13_7_3 16.21 390.62 393.36 2.74 5.92 13 saw (3) roof 23.08 22.21 0.87 5
13_7_4 213.84 14.11 17.53 3.42 62.53 13 saw (3) drop 357.37 365.67 8.30 4

10110

10120

10130

10210
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4h_12_1 32.79 6165.99 6168.72 2.73 12.01 19 line roof 42.26 44.76 2.50 7strange
4h_12_2 35.2 14.69 17.19 2.5 14.08 13 line roof 20.13 44.00 23.87 3

0.00
1h_12_1 43.35 16.83 18.58 1.75 24.77 17 line drop 26.37 37.93 11.56 3
1h_12_2 49.95 13.64 16.12 2.48 20.14 28 line roof 13.87 61.94 48.07 strange

10h_12_1 32.95 551.81 553.89 2.08 15.84 16 saw(3) roof 21.36 34.27 12.91 3
10h_12_2 43.85 292.71 294.96 2.25 19.49 16 saw(3) roof 33.85 49.33 15.48 3
10h_12_3 27.77 9.17 11.3 2.13 13.04 13 saw(3)mix roof 26.3 29.58 3.28 6

13_17_2 26.86 23.71 27.03 3.32 8.09 18 saw(1) roof 35.85 44.59 8.74 3/drop
13_17_3 24.08 19.02 20.98 1.96 12.29 17 saw(1) roof 25.01 23.60 1.41 8

FB_R3_1 35.95 871.62 873.93 2.31 15.56 18 saw(1) roof 37.74 41.52 3.78 3
FB_R3_2 12.55 376.9 379 2.1 5.98 9 saw_mix roof 12.21 13.18 0.97 5
FB_R3_3 24.04 267.12 269.26 2.14 11.23 11 saw(1) roof 32.56 25.72 6.84 5
FB_R3_4 22.66 332.98 340.11 7.13 3.18 15 saw(1) roof 56.45 80.78 24.33 6strange

FB_R4_1 21.54 24.71 27.85 3.14 6.86 17 mix roof 31.83 33.82 1.99 1;3
FB_R4_2 19.96 451.5 454.65 3.15 6.34 14 mix roof 17.95 31.44 13.49 2
FB_R4_3 18 424.04 426.52 2.48 7.26 14 saw(1) drop 19.7 22.32 2.62 8
FB_R4_4 44.83 94.32 97.96 3.64 12.32 21 saw(1) roof 59.91 81.59 21.68 1;3

10220

10410

10510

 
 
In Table, term ‘roof’ corresponds to the ductile fracture (criterion (i)), and ‘drop’ to 

the brittle fracture (criterion (i)). Distinction between the ‘roof’ and ‘drop’ made by 
visual observations. 
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Appendix  C
C1 - Power-Law Fit 
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Figure C1 - Log-log plot of the freeze-bond shear strength as a function of normal 

pressure. 

C2 - Post-failure Behavior 
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Figure C2- Force history - Test 10110.
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Figure C3 - Force history - Test 10120. 
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Figure C4 - Force history - Test 10130.
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Figure C5 - Force history - Test 10210. 
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Figure C6 - Force history - Test 10220.
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Figure C7 - Force history - Test 10410. 
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Figure C8 - Force history - Test 10510. 
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Appendix  D
D1 - Cohesive Element Verification  

 
From previous verification tests (ABAQUS, Verification manual) on cohesive-element 
kinematics it is known that: (i) the response of two-dimensional cohesive elements for 
the deformation in the pure normal and the pure shear mode matches analytical 
results; (ii) degradation of the response of a cohesive element begins when specified 
damage initiation criterion is met. The damage variable evolves according to the 
evolution law specified in terms of displacements or energy dissipation. 
 
Figure D1.1 shows a simple two element model which was based on the model in Feih 
(2005). The difference between the model in Feih (2005) and in this study is that 
instead of verification of UEL user subroutine, a performance of ABAQUS version 6.8 
was tested in modeling of cohesive laws in composite strictures. 

COH2D4

CPS4

1 2
34

56

 
 

Figure D1.1 - Verification model, where COH2D4 is a four-node, two-dimensional 
cohesive element; CPS4 is a four-node bilinear plane stress element. 

 
The nodes 1-4 initially coincide in their position; in Figure D1.1 they are plotted apart 
for a better understanding of the node numbering. 
 
The input file for the two-element model (Figure D1.1) is given below. The elements is 
under plane-stress condition (element, type=CPS4) and the material is linear elastic 
(elastic, type=ISOTROPIC). 

X 

Y 
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*HEADING 
 Cohesive Element Test - COH2D4 
*NODE 
1,0.0,0.0 
2,1.0,0.0 
3,1.0,0.0 
4,0.0,0.0 
5,0.0,1.0 
6,1.0,1.0 
*NSET,NSET=ALL 
5 
*ELEMENT,TYPE=COH2D4,ELSET=ALL 
1,1,2,3,4 
*ELEMENT,TYPE=CPS4,ELSET=eall 
2,4,3,6,5 
*SOLID SECTION,elset=eall,material =mat1 
*MATERIAL,NAME=MAT1 
*ELASTIC,TYPE=ISOTROPIC 
5E9,0.3 
*COHESIVE SECTION,elset=all,material=mat2,response=traction separation,stack direction=2 
*MATERIAL, NAME=MAT2 
*ELASTIC, type=traction 
1.0e05,1.0e05,1.0e05 
*DENSITY 
100.0, 
*DAMAGE INITIATION, CRITERION=MAXS 
35E3,35E4 
*DAMAGE EVOLUTION, TYPE=DISPLACEMENT, SOFTENING=LINEAR 
1.05 
** apply boundary conditions 
*BOUNDARY 
1, 1, 2 
2, 2, 2 
4, 1, 1 
5, 1, 1 
** history data 
*STEP, NLGEOM   
*STATIC 
0.01, 1.0,,0.01 
*CONTROLS, PARAMETERS=TIME INCREMENTATION 
7, 10, 9, 16, 10, 4, 20, 10, 6 
*BOUNDARY 
5, 2, 2, 1.0 
6, 2, 2, 1.0 
*OUTPUT, FIELD,FREQ=1 
*ELEMENT OUTPUT 
S, 
E, 
*NODE OUTPUT 
U, 
RF, 
*OUTPUT,HISTORY,FREQ=1 
*NODE OUTPUT,NSET=ALL 
U2, 
RF2 
*END STEP 
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Figure D1.2 shows results created by ABAQUS/CAE. As the stiffness of the top 
element is large compared to the input stiffness of cohesive element the stress 
distribution in loading direction appears constant (Figure D1.2a). The displacement 
field in the X-direction, which is caused by Poisson effect, varies linearly (Figure 
D1.2b). The original TSL is obtained from the reaction forces and nodal displacements 
(Figure D1.2c). 
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Figure D1.2– Results created by ABAQUS/CAE: S22 are normal stresses acting in 

loading direction (Y-direction); U1 are displacements in the X-direction. 
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D2 - Input Files 
*HEADING 
  Shear test for COHESIVE BEHAVIOR 
**######################## 
**TEST CASE II: SIMPLE SHEAR (MODE 2) 
**######################## 
*NODE, NSET=SPEC1_MODE2 
21, 0., 0., 0. 
22, 0.14, 0., 0. 
23, 0.14, 0., 0.14 
24, 0., 0., 0.14 
25, 0., 0.03, 0. 
26, 0.14, 0.03, 0. 
27, 0.14, 0.03, 0.14 
28, 0., 0.03, 0.14 
121,0., 0.03, 0. 
122, 0.14, 0.03, 0. 
123, 0.14, 0.03, 0.14 
124, 0., 0.03, 0.14 
125, 0., 0.06, 0. 
126, 0.14, 0.06, 0. 
127, 0.14, 0.06, 0.14 
128, 0., 0.06, 0.14 
*NSET, NSET=SPEC1_MODE2_TOP 
125, 126, 127, 128 
*NSET, NSET=SPEC1_MODE2_BOT 
21, 22, 23, 24 
*ELEMENT, TYPE=C3D8, 
ELSET=SPEC1_MODE2 
21, 21, 24, 23, 22, 25, 28, 27, 26 
121, 121, 124, 123, 122, 125, 128, 127, 126 
*ELSET, ELSET=EALL_DISP 
SPEC1_MODE2 
*SURFACE, NAME=SPEC1_MODE2_SURF1 
21,S2 
*SURFACE, NAME=SPEC1_MODE2_SURF2 
121,S1 
** 
*SURFACE INTERACTION,NAME=COH_DISP 
*COHESIVE BEHAVIOR 
2.9E6,2.9E6,2.9E6 
*DAMAGE INITIATION, CRITERION=QUADS 
10.5e3, 10.5e3, 10.5e3 
*DAMAGE EVOLUTION, TYPE=ENERGY, 
MIXED MODE BEHAVIOR=POWER LAW, 
POWER=1, SOFTENING=LINEAR 
24, 24, 24 
*SOLID SECTION, ELSET=EALL_DISP, 
MATERIAL=MAT 
*MATERIAL, NAME=MAT 
*ELASTIC 
200e6,0.3 
*DENSITY 
810. 
*NSET, NSET=NALL_BOT 

*HEADING 
Shear test simulation one COH3D8 and two solids 
C3D8 
**######################## 
**TEST CASE SIMPLE SHEAR 
**######################## 
*NODE, NSET=SPEC1_MODE2 
21, 0., 0., 0. 
22, 0.14, 0., 0. 
23, 0.14, 0., 0.14 
24, 0., 0., 0.14 
25, 0., 0.03, 0. 
26, 0.14, 0.03, 0. 
27, 0.14, 0.03, 0.14 
28, 0., 0.03, 0.14 
121,0., 0.03, 0. 
122, 0.14, 0.03, 0. 
123, 0.14, 0.03, 0.14 
124, 0., 0.03, 0.14 
125, 0., 0.06, 0. 
126, 0.14, 0.06, 0. 
127, 0.14, 0.06, 0.14 
128, 0., 0.06, 0.14 
*NSET, NSET=SPEC1_MODE2_TOP 
125, 126, 127, 128 
*NSET, NSET=SPEC1_MODE2_BOT 
21, 22, 23, 24 
*NSET, NSET=SPEC1_MODE2_TOP_SIDE 
122, 123, 127, 126  
*ELEMENT, TYPE=C3D8, 
ELSET=SPEC1_MODE2 
21, 21, 22, 26, 25, 24, 23, 27, 28 
121, 121, 122, 126, 125, 124, 123, 127, 128 
*ELEMENT,TYPE=COH3D8,ELSET=ALL 
25, 25, 26, 122, 121, 28, 27, 123, 124 
*SOLID SECTION,elset=spec1_mode2,material 
=ice 
*MATERIAL,NAME=ICE 
*ELASTIC,TYPE=ISOTROPIC 
200e6,0.3 
*DENSITY 
810 
*COHESIVE 
SECTION,elset=all,material=fb,response=traction 
separation,stack direction=2 
*MATERIAL, NAME=fb 
*ELASTIC, type=traction 
2.9e6,2.9e6,2.9e6 
*DENSITY 
810 
*DAMAGE INITIATION, CRITERION=QUADS 
10.5E3,10.5E3,10.5e3 
*DAMAGE EVOLUTION, TYPE=ENERGY, 
SOFTENING=LINEAR, MIXED MODE 
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SPEC1_MODE2_BOT 
*BOUNDARY 
NALL_BOT, 1, 3 
SPEC1_MODE2_TOP, 2, 3 
*ELSET, ELSET=QA_TEST_EALL 
EALL_DISP 
*NSET, NSET=QA_TEST_NALL 
 SPEC1_MODE2 
**###############################
###### 
**DYNAMIC, EXPLICIT  STEP 
**###############################
###### 
*AMPLITUDE,NAME=AMP,DEFINITION=TABU
LAR 
0.0,0.0,1.0,1.0 
*STEP 
*DYNAMIC, EXPLICIT 
, 1.0 
*BOUNDARY, TYPE=DISPLACEMENT, 
AMPLITUDE=AMP 
SPEC1_MODE2_TOP, 1, 1, 0.7e-3 
*CONTACT 
*CONTACT INCLUSIONS 
SPEC1_MODE2_SURF1,SPEC1_MODE2_SURF2 
*CONTACT PROPERTY ASSIGNMENT 
SPEC1_MODE2_SURF1,SPEC1_MODE2_SURF2,C
OH_DISP 
*OUTPUT, FIELD, TIME INTERVAL=0.01 
***OUTPUT, FIELD, NUMBER INTERVAL=200, 
TIME MARKS=YES 
*ELEMENT OUTPUT 
S, 
E, 
*NODE OUTPUT, NSET=QA_TEST_NALL 
U,  
*CONTACT OUTPUT 
CSDMG,CSMAXUCRT 
**CFORCE,CSTRESS 
*OUTPUT, HISTORY, TIME INTERVAL=0.01 
*ENERGY OUTPUT 
ETOTAL, ALLWK 
*OUTPUT, HISTORY, TIME INTERVAL=0.01 
*NODE OUTPUT,NSET=SPEC1_MODE2_TOP 
U1, 
RF1 
*CONTACT OUTPUT, 
SURFACE=SPEC1_MODE2_SURF1 
CFT, 
*END STEP 

BEHAVIOR=POWER LAW, POWER=1 
24, 24, 24 
*BOUNDARY 
SPEC1_MODE2_BOT, 1, 3 
SPEC1_MODE2_TOP, 2, 3 
*AMPLITUDE,NAME=AMP,DEFINITION=TAB
ULAR 
0.0,0.0,1.0,1.0 
*STEP 
*DYNAMIC, EXPLICIT 
, 1.0 
*BOUNDARY, TYPE=DISPLACEMENT, 
AMPLITUDE=AMP 
SPEC1_MODE2_TOP, 1, 1, 0.7e-3 
*OUTPUT, FIELD, TIME INTERVAL=0.01 
*ELEMENT OUTPUT 
S, 
E, 
*NODE OUTPUT 
U, 
RF, 
*OUTPUT,HISTORY,TIME INTERVAL=0.01 
*NODE OUTPUT,NSET=SPEC1_MODE2_TOP 
U1, 
RF1 
*END STEP 
 

 



 

Ekaterina Kim                                                  E1                                                Trondheim 2009 

Appendix  E
E - Scheme for Predicting Ice Loads on Structure  
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The idea was taken from Collins and Amos (2008). 
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Appendix  F
 

F - Data Normality Test 
 
Normal Probability Plot (NPP) method was used in order to check if data sets of F1 
and U are approximately normally distributed. NPPs of F1 and U are shown in 
Figures F1 and F2 respectively. NPPs of U and Rs for ductile samples (criteria (i) and 
(ii)) are given in Figures F3 and F4 respectively. Data was plotted against a 
theoretical normal distribution in MATLAB (normplot command) in such way that 
the points should form an approximate straight line. Any departures from this straight 
line indicate departures from normality. 
 

 
Figure F1 - Normal probability plot of force (F1) measured at the end of the first 

second after failure.
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Figure F2 - Normal probability plot of energy input to the system (U). 

 
 

 
 

Figure F3 - Normal probability plot of energy input to the system (U) for ductile 
samples.
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Figure F4 - Normal probability plot of freeze-bond shear capacity (Rs) for ductile 

samples based on criteria (i) and (ii). 
 
In the plots from Figure F1 to F4 the plus signs show the empirical probability 
(vertical axis) versus the data value (horizontal axis) for each point in the data set. 
The solid line connects the 25th and 75th percentiles of the data and represents a linear 
fit. The dashed line extends the solid line to the ends of the sample. The scale of the 
vertical axis is not uniform (see MATLAB Documentation). 
 
From the above plots the following conclusions can be made: 
 

1. The NPPs of F1 and U, Rs for ductile samples (Figure F1 and Figure F3, Figure 
F4 respectively) show a reasonably linear pattern in the center of data. 
However, tails, particularly the tails in Figure F4, show departures from the 
fitted line. Perhaps the distribution other than the normal distribution should 
be used for these data.  

 
2. The NPP of U for the complete set of measurements (Figure F2) shows a 

strongly nonlinear pattern, therefore, the distribution of U is not normal. 
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