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We present an efficient phase retrieval approach for imaging systems with high numerical aperture based
on the vectorial model of point spread function. The algorithm is in the class of alternating minimization
methods and can be adjusted for applications with either known or unknown amplitude of the field in
the pupil. The algorithm outperforms existing solutions for high numerical aperture phase retrieval: (1)
the generalisation of the method of Hanser et al. based on the extension of the scalar diffraction theory by
representing the out-of-focus diversity applied to the image by a spherical cap and (2) the method of Braat
et al. which assumes through the use of extended Nijboer-Zernike expansion the phase to be smooth. The
former is limited in terms of accuracy due to model deviations while the latter is of high computational
complexity and excludes phase retrieval problems where the phase is discontinuous or sparse. Extensive
numerical results demonstrate the efficiency, robustness, and practicability of the proposed algorithm in
various practically relevant simulations.

OCIS codes: (100.5070) Phase retrieval, (010.7350) Wave-front sensing, (100.3190) Inverse problems.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Phase retrieval is a prominent inverse problem in optics which
aims at recovering a complex signal at the pupil plane of an op-
tical system given one or several out-of-focus intensity images
measured along the optical axis. Various formulations and mod-
ifications of phase retrieval have originated from a wide range
of important applications in adaptive optics [1–4], microscopy
[5, 6], astronomy imaging [7, 8], X-ray crystallography [9, 10],
etc. For optical systems with low numerical aperture (NA), the
intensity distribution in the focal plane and the complex signal in
the pupil plane are simply related via the Fourier transform [11].
This fundamental relationship has given rise to a wide range of
phase retrieval algorithms [12–17] in the low-NA settings since
the pioneering work of Sayre [18] revealing that the phase of
a scattered wave can be recovered from the recorded intensity
images at and between Bragg peaks of a diffracted wavefront.
Recent overview on this topic can be found, for example, in
the surveys [19–22]. An essential condition for the validity of
the Fresnel approximation is that the effect of light polarization
on the diffracted images is negligible. For high-NA optical sys-
tems, however, the vector nature of light cannot be neglected
and point-spread-functions (PSFs) are formed according to a
more involved formulation [23, 24], which is called the vectorial

PSF model in this paper, to be distinguished from the scalar one
according to the Fresnel approximation. In contrast to a vast
number of existing phase retrieval algorithms in the low-NA
settings, only few solution approaches have been proposed for
phase retrieval in the high-NA settings

The first and natural solution approach to high-NA phase
retrieval is to adapt the scalar diffraction theory for high-NA
imaging systems [25]. The main modification is that the addi-
tional defocus term used to calculate the corresponding out-of-
focus image in the low-NA settings is replaced by an appropriate
spherical cap in the high-NA settings [25–28], see Sections 2A&2B.
For higher-NA imaging systems (NA ≥ 0.6), however, the ac-
curacy of this phase retrieval approach is limited due to model
deviations. This approach can be enhanced in manner by an ad
hoc Gaussian fitting scheme [27]. However, this ad hoc scheme
does not give consistent results in terms of phase restoration and
cannot be theoretically supported or analyzed.

Another existing approach to deal with high-NA phase re-
trieval is based on the decomposition of the generalized pupil
function (GPF) as a weighted sum of extended Nijboer–Zernike
(ENZ) basis functions [29, 30] in a vector diffraction theory set-
ting. The main challenge of this approach is to evaluate the
complex-valued coefficients of the polarized field components
decomposed in terms of Zernike polynomials [31]. The numeri-
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cal complexity of this approach is high since the integrals that
need to be evaluated have no closed-form solution. Moreover,
since the GPF is approximated by a finite number of ENZ basis
functions, it is not valid to phase retrieval applications where
the phase is sparse (discontinuous).

In this paper, we present a new phase retrieval approach for
high-NA imaging systems, which is directly based on the vec-
torial PSF model. The algorithm is in the class of alternating
minimization methods, and can be adjusted for both cases of ap-
plication with either known or unknown amplitude of the field
in the pupil. The proposed algorithm overcomes the highlighted
drawbacks of the two existing solution approaches indicated in
the previous paragraphs. Numerical experiments demonstrate
that for wavefronts with small amplitude (to exclude phase
wrapping issues) the algorithm enables to precisely (up to a
piston term) retrieve the wavefront from several vectorial PSFs
in the noise-free setting.

The effectiveness and robustness of the algorithm numerically
shown in Section 5 demonstrate its potential for applications to
practical high-NA imaging systems. More importantly, our ap-
proach paves the way to extend the class of projection algorithms
for phase retrieval in the setting of scalar diffraction theory to
the framework of the vectorial one. It is worth recalling that pro-
jection methods outperform the phase retrieval algorithms of the
other classes in terms of computational complexity, convergence
speed, effectiveness and robustness [22]. Laying a groundwork
for designing various projection algorithms for phase retrieval
in the high-NA settings is another important outcome of this
paper. That will be reported in forthcoming publication.

To avoid possible confusion in terms of terminology, we men-
tion that the term vector phase retrieval was also used in a dif-
ferent manner in the literature [32] where the objective is to
restore two one-dimensional complex signals from the intensity
of their Fourier transforms and the intensity of two structured
interference patterns of the transformed signals.

2. POINT-SPREAD-FUNCTION MODELS

A. Scalar PSF model for low NA
For low-NA imaging systems, the PSF I(u) can be related to the
wavefront aberration Φ(x) as

I(u) =
∣∣∣F (χ(x) · ejΦ(x)

)∣∣∣2 ,

where x = (x, y), u = (u, v) ∈ R2 are the coordinates in the
pupil and focal planes respectively, I(u) is the intensity of the
optical field in the focal plane, χ and Φ are respectively the
amplitude and the phase of the collimated beam in the pupil
plane, and F is the (two-dimensional) Fourier transform.

In this model, the out-of-focus PSF (see Fig. 1) corresponding
to some distance zd from the focal plane is calculated by adding
a corresponding phase diversity term, φd, expressed via the
defocus Z0

2 (the Zernike polynomial of order two and azimuthal
frequency zero):

φd(x) =
π

2λ
NA2zdZ0

2(x). (1)

From now on, the coordinates x and u respectively corre-
sponding to the pupil and focal planes will be omitted for the
sake of brevity. The out-of-focus PSF at a distance zd from the
focal plane is given by the formula:

I(φd) =
∣∣∣F (χ · ej(Φ+φd)

)∣∣∣2 . (2)

B. Scalar PSF model for high NA
The imaging model presented in this section is based on the
scalar diffraction theory for high-NA imaging systems. The
main difference from the model of Section 2A is that due to the
presence of large ray angles, the additional phase term can not
be approximated by a scaling of the defocus as in Eq. (1). Instead,
it should be modified to a spherical cap [25, 26]:

φd =
2π

λ
zdkz, (3)

with
kz =

√
1− k2

x − k2
y ,

where λ is the wavelength and (kx, ky) are the x- and y-
components of the unit wave vector which satisfy:

k2
x + k2

y ≤ NA2.

In addition, an obliquity factor

1/
√

cos θ = k−1/2
z (4)

should be introduced into the amplitude to account for the angle
θ between the Poynting vector and the normal to the imaging
plane. The PSF with aberration Φ and out-of-focus displacement
zd is calculated according to Eq. (2) with φd given by Eq. (3)
instead of Eq. (1) and the modified amplitude χ/

√
cos θ in place

of χ.

C. Vectorial PSF model

δz = zd

z0 z0 + zd
z0 + 3zd

z0 − 3zd

Ex

(Exx, Eyx, Ezx)

x
y

z

u
v

z(kx, ky, kz)

χ(x)

I−3(u)

I0(u) I1(u)

I3(u)

θ

Pupil plane

Imaging planes
Exit sphere

Fig. 1. A schematic diagram depicts the vectorial PSF model
and the setup of phase retrieval given several out-of-focus
measurements. A collimated beam with (possibly unknown)
amplitude χ at the entrance pupil plane is focused by an apla-
natic system at plane z = z0, not necessarily on axis. Several
out-of-focus PSFs are registered in z-planes with known dis-
placements from the focal plane. For high values of NA, the
bending of rays introduced by the lens produces a significant
z-component of the electrical field (here shown on example
of x-polarisation component Ex), which should be taken into
account when calculating the intensity in the imaging planes.

For high-NA optical systems (for example, NA ≥ 0.6 according
to [29]), the bending of the rays created by a lens introduces a
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significant z component of the electromagnetic field in the re-
gion behind the lens, which introduces discrepancy with the
scalar model of Eq. (2). One can model the PSF according to
the vector theory of diffraction by considering the x, y, z com-
ponents of the field right after the lens separately for x and y
components (for a collimated beam, the z component is approx-
imately zero) of the electromagnetic field just before the lens
[24, 26, 27, 33]. Thus, vectors Ex(1, 0, 0) and Ey(0, 1, 0) of unit
length in x- and y-directions produce field with components de-
noted (Exx, Eyx, Ezx) and (Exy, Eyy, Ezy) respectively (see Fig. 1)
and given by, see, for example, Table 3.1 of [24] or Eq. (3) of [27]:

Exx = 1− k2
x

1 + kz
, Exy = −

kykx

1 + kz
,

Eyx =−
kxky

1 + kz
, Eyy = 1−

k2
y

1 + kz
,

Ezx =− kx, Ezy = −ky.

(5)

The six field components can be used to calculate the total elec-
trical field energy at any point after the lens, in particular, they
determine the intensity seen by an imaging plane in any orienta-
tion. For instance, the z-components do not have the Poynting
vector along the z-direction and do not contribute to the intensity
registered by a detector perpendicular to z-axis, and thus they
may be discarded when calculated the PSF at z-planes. However,
a more general approach adopted in this paper is to keep all
the six field components and account for the angle between the
Poynting vector and the imaging plane via the obliquity factor
[24, 27]. For imaging planes perpendicular to z-axis as depicted
in Fig. 1, the obliquity factor is given by Eq. (4). By resetting
χ := χ/

√
cos θ, one can integrate the obliquity factor into the

amplitude χ and, as a consequence, it will no longer be explicitly
involved in the subsequent analysis. Then each of the right-
hand-side terms in Eq. (5) can be treated as a corresponding
amplitude modulation in the entrance pupil for calculation of a
PSF with the scalar Fourier method of Eq. (2):

pcc =
∣∣∣F (Ecc · χ · ejΦ

)∣∣∣2 . (6)

In the above and elsewhere in this paper the index cc stands for
one of the six pairs of coordinate indices: xx, yx, zx, xy, yy and
zy. One thus obtains six constituent PSFs according to Eq. (6),
which can be used to calculate the vectorial PSF corresponding
to any linear polarisation in the entrance pupil. For unspecified
polarisation state, all the six PSFs are summed incoherently:

I = ∑
cc

pcc.

Therefore, the vectorial PSF model with an additional phase
term φd is given by

I(φd) = ∑
cc

∣∣∣F (Ecc · χ · ej(Φ+φd)
)∣∣∣2 . (7)

The PSF with out-of-focus displacement zd is obtained by plug-
ging Eq. (3) into Eq. (7).

Remark 2.1. The imaging model of this section can be related to
the introduced by McCutchen [26, 33] three-dimensional Fourier
transform of the angular spectrum given by the complex amplitude
on the exit sphere of the optical system, which, in turn, for aplanatic
systems focusing a collimated beam is given by the field in the entrance
pupil plane. This allows one to use the model without change for off-
axis cases as well. For the systems violating the Abbe sine condition,
the field amplitude on the exit sphere should be used instead of the
pupil plane amplitude.

Remark 2.2. The phase diversity φd can be more general than a
term compensating for out-of-focus displacement given by Eq. (3), for
example, it can be introduced by using phase modulator devices.

3. PROBLEM FORMULATION

A. Phase retrieval problem

For an unknown phase aberration Φ ∈ Rn×n, let rd ∈ Rn×n
+

(d = 1, . . . , m) be the measurement of m PSF images gener-
ated by Eq. (7) corresponding to different phase diversities φd.
The phase retrieval problem is to restore Φ given rd and φd
(d = 1, . . . , m) and the physical parameters of the optical system.
Mathematically, we consider the problem of finding Φ ∈ Rn×n

such that

rd = ∑
cc

∣∣∣F (Ecc · χ · ej(Φ+φd)
)∣∣∣2 + wd (d = 1, . . . , m) , (8)

where χ is the (possibly unknown) amplitude of the generalized
pupil function and wd ∈ Rn×n (d = 1, . . . , m) represent noise.

B. Maximum-likelihood formulation
Let us define

Id[χ, Φ] := ∑
cc

∣∣∣F (Ecc · χ · ej(Φ+φd)
)∣∣∣2 (d = 1, . . . , m) (9)

and denote their concatenation by I[χ, Φ]. Let r and w be the
concatenations of rd and wd (d = 1, . . . , m), respectively. We as-
sume that the measurement noise along pixels is independent
and identically distributed with the conditional probability den-
sity function denoted by P . Then the co-log-likelihood function
of the noise distribution for each of the pixels is given by:

L(w) := − logP(I[χ, Φ] | r). (10)

Using Eq. (10), we can associate the problem (8) with a
maximum-likelihood formulation (minimum-co-log-likelihood)
given by [34]:

min
χ∈Rn×n

+ , Φ∈Rn×n
f (χ, Φ) := ∑

pixels
L (r− I[χ, Φ]) . (11)

When the noise in Eq. (8) is of Gaussian model, the objective
function f reduces to (a scaling of) the energy kernel and Eq. (11)
becomes a nonlinear least squares problem:

min
χ∈Rn×n

+ , Φ∈Rn×n
f (χ, Φ) :=

m

∑
d=1
‖rd − Id[χ, Φ]‖2

F . (12)

Remark 3.1. When the amplitude χ of the GPF is known, one can
always reset Ecc := Ecc · χ without loss of generality. In that case, χ
can be omitted in this section and elsewhere in the paper, particularly
in expressions (8)–(12).

Remark 3.2. In this paper, we investigate the problem where the
intensity images are registered with a sufficiently large number of
photon counts, and hence Poisson noise can be approximated by a
Gaussian distribution in view of the central limit theorem. Therefore,
the assumption on Gaussian model of noise in order to derive Eq. (12)
has no restriction for practical applications involving Poisson noise
provided that a sufficiently large number of photons are counted. For
completeness, a specification of Eq. (11) for the case of Poisson noise is
also available but more involved in terms of numerical complexity, see,
for example, [35, 36].
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4. ALGORITHMS

Based on the vectorial PSF model (7), we propose a new solution
approach for the nonlinear least squares problem (12) in both
cases of known and unknown the amplitude χ. In the sequel,
the index d stands for 1, 2, . . . , m, where m ≥ 2 is the number of
input PSF images.

Algorithm 1. Vectorial PSF model-based Alternating Minimiza-
tion with amplitude constraint (VAM+)

Input:
rd ∈ Rn×n

+ — m PSF images
φd ∈ Rn×n — m phase diversities
χ — amplitude of the GPF
N — number of iterations, and τ — tolerance threshold
Φ0 — initial guess for Φ.

Iteration procedure: given Φk

1. xk
cc = Ecc · χ · ejΦk

2. Xk
cc,d = F

(
xk

cc · ejφd

)
3. Ik

d = ∑cc |Xk
cc,d|

2

4. Yk
cc,d =

Xk
cc,d√
Ik
d

· √rd

5. yk
cc,d = e−jφd · F−1

(
Yk

cc,d

)
6. yk

cc =
(

∑m
d=1 yk

cc,d

)
/m

7. Φk+1 = arg
(

∑cc

(
Ecc · yk

cc

))
.

Stopping criteria: k > N or ∑m
d=1

∥∥∥Ik
d − Ik+1

d

∥∥∥
F
< τ.

Output: Φ̂ = Φend — the estimated phase.

In step 4 of the above algorithms, we use the following arith-
metic convention: 0

0 = 1/
√

6. This is simply for ensuring the
uniqueness of that step and has no substantial effect on the
performance as well as the analysis of the algorithms.

Algorithm 2. Vectorial PSF model-based Alternating Minimiza-
tion (VAM)

Input: the same input as Algorithm 1 except
χ0 — initial guess for χ.

Iteration procedure: given χk and Φk

1. xk
cc = Ecc · χk · ejΦk

2-7. steps 2–7 of Algorithm 1

8. χk+1 =

∣∣∣∑cc Ecc · yk
cc

∣∣∣
∑cc |Ecc|2

.

Stopping criteria: the same as Algorithm 1.
Output: Φ̂ = Φend — the estimated phase

χ̂ = χend — the restored amplitude.

Remark 4.1. The idea of Step 8 of Algorithm 2 can be traced back at
least to the work of Gonsalves [37].

Remark 4.2. In the setting of out-of-focus images, i.e. the phase
diversities φd are given by Eq. (3), the displacement values zd and the
number m of images typically used for scalar phase retrieval algorithms
are expected to be relevant for VAM and VAM+.

Remark 4.3 (stopping criteria). Since running additional iterations
of VAM and VAM+ does not decrease the quality of phase retrieval in
the sense that the PSFs reconstructed from the temporally estimated
wavefront will not diverge any further from the data PSFs, the max-
imum number of iterations should be set sufficiently large whenever
time consuming is not a major factor of concern. It is predetermined
according to the number of data images, for example, N can be tens
of thousands for VAM with two input images (respectively, VAM+

with one image) while it can be hundreds for experiments given seven
or more images. In the presence of noise, error-reduction in terms of
PSF restoration can be too small after some number (smaller than N)
of iterations. One may then opt to terminate the algorithm using a
predetermined threshold value τ which is ideally the machine precision.
We note that for offline applications without restriction on computing
time, this stopping criterion is not really needed and can be dropped.

The proposed algorithms belong to the class of the Fourier
transform-based methods and can be viewed as descendants
of the classical Gerchberg-Saxton algorithm [12]. Algorithm
1 is (referred to as VAM+) designed for phase retrieval given
multiple intensity images and the amplitude constraint of the
GPF. Algorithm 2 (referred to as VAM) is the adjusted version
of Algorithm 1 tuned for phase retrieval applications where the
amplitude of the GPF is not available. It can be viewed as the
vectorial PSF model-based extension of the scalar PSF model-
based alternating minimization proposed by Hanser et al. [25]
for phase retrieval in the high-NA settings. In this paper, the
latter is referred to as the SAM algorithm and will serve as the
basic for demonstrating the advancement of VAM and VAM+

algorithms. For convenience of the reader, it is also recalled in
Algorithm 3.

Algorithm 3. Scalar PSF model-based Alternating Minimiza-
tion (SAM)

Input:
rd, φd, N and τ — the same as Algorithm 1
x0 — initial guess for χ · ejΦ.

Iteration procedure: given xk

1. Xk
d = F

(
xk · ejφd

)
2. Yk

d =
Xk

d

|Xk
d|
· √rd

3. yk
d = e−jφd · F−1

(
Yk

d

)
4. xk+1 =

(
∑m

d=1 yk
d

)
/m.

Stopping criteria: k > N or
∥∥∥xk − xk+1

∥∥∥
F
< τ.

Output: Φ̂ = arg
(

xend) — the estimated phase.

The three algorithms above fall in the class of alternating
optimization methods, in particular, they can be proven to be
descent methods for minimizing an associated objective func-
tion. The descent property of VAM and VAM+ algorithms for
minimizing the objective function given by Eq. (12) is clearly
demonstrated in the numerical experiments in Section 5C. Note
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that descent property of the SAM algorithm is with respect to
its own objective function. In optimization, an optimal solution
is more desirable than the optimal value of the objective func-
tion. On the one hand, a direct measure of the distance from the
temporal estimate to an optimal solution, which is not known
in advance, is not obtainable in practice. On the other hand, the
temporal objective value can be useful for establishing an error
bound of the temporal approximate solution provided that the
objective function satisfies a corresponding error bound property
[38]. The latter is a property of the objective function itself and
does not relate to a particular solution method. For the objective
function given by Eq. (12) associated with VAM and VAM+, the
error bound property is not trivial and further analysis in this
direction is quite involved and requires a priori mathematical
assumptions, see e.g. Ref. [39].

In terms of computational complexity, the evaluation of the
Fourier transform constitutes the major part of their complexity.
Since one iteration of a fast two dimensional Fourier transform
algorithm costs a scaling of n2 log(n) flop counts, the complexity
of the above Fourier transform based algorithms is O(n2 log(n)).

5. NUMERICAL EXPERIMENTS

Throughout this section, the vectorial PSF model (7) is taken
as the forward imaging model for generating the PSF images.
We simulate an imaging system having circular aperture with
NA value of 0.95, except for the analysis of numerical aperture
in Section 5A. The amplitude χ of the GPF is (a scaling of) the
two dimensional Gaussian distribution truncated at 0.5 on the
boundary of the aperture. The wavelength of the illuminating
light is λ = 300nm, the image size is 128× 128 pixels and the
pixel size is 60nm. For each analysis, we perform 75 phase re-
trieval experiments for 75 wavefront realizations taking values
in one wavelength, i.e. [−π, π]. Without otherwise specified,
data of each experiment consists of a set of seven out-of-focus
PSF images which are uniformly separated by one DOF (depth
of field/focus) along the optical axis (with zd =DOF in nota-
tions of Fig. 1). It is important to emphasize that the solution
approach proposed in Section 4 is applicable to not only phase
retrieval given out-of-focus images as depicted in Fig. 1, but
any phase-diverse phase retrieval with known phase diversities
(cf. Remark 2.2). White Gaussian noise is used for all experi-
ments with noisy data. Except for the robustness analysis on
various levels of noise in Section 5B, the intensity images af-
ter being normalized to unity energy are corrupted by white
Gaussian noise at the signal-to-noise ratio of 40 dB (decibel).
Recall that the signal-to-noise ratio expressed in decibels is de-
fined by: SNR = 10 ln (P/P0), where P and P0 are the powers
of the signal and noise, respectively. The quality of phase re-
trieval is measured by the relative root mean square (RMS) error:
‖Φ̂−Φ‖F

/
‖Φ‖F, where Φ and Φ̂ are the data and the estimated

wavefronts, respectively. Since phase retrieval is ambiguous up
to (at least) a piston term (the first Zernike mode), in this paper
the Frobenius norm of a phase object is always computed after
the removal of its piston term. The algorithms considered in this
section are of error-reduction type. Hence, running additional
iterations would not decrease the quality of phase retrieval in
terms of the reconstructed PSFs. For offline applications simu-
lated below, the stopping criterion based on a tolerance threshold
τ described in Section 4 is not so relevant and will be dropped.
Each experiment consists of 150 iterations, except those for ana-
lyzing convergence properties of the algorithms in Sections 5C
& 5D where a few more hundreds of iterations are needed.

A. Analysis of numerical aperture

This section demonstrates the advanced features of the vectorial
PSF model based-approach compared to the scalar one proposed
by Hanser et al. [25]. Fig. 2 summarizes the performance of Algo-
rithms 1-3 on 75 experiments for six different NA values ranging
from 0.7 to 0.95 in the presence of noise. The RMS errors of the
restored wavefronts relative to the correct solution are shown.
Suffering model deviations, SAM algorithm (the black color) is
much less accurate than VAM (the red color) and VAM+ (the
blue color). VAM and VAM+ also have smaller error variance
than SAM as indicated by the black boxes which are much taller
than the corresponding red and blue ones. This demonstrates
the consistency of the phase retrieval approach based on the
vectorial PSF model proposed in this paper. With additional in-
formation of the amplitude χ, the overall performance of VAM+

is slightly better than that of VAM.

0.7 0.75 0.8 0.85 0.9 0.95
Numerical aperture (NA)

0
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e 

RM
S 

er
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SAM
VAM
VAM +

Fig. 2. Experiments with noise show the advantages of VAM
and VAM+ over SAM for various NA values. The relative
RMS errors of the restored wavefronts compared to the cor-
rect solution are presented for 75 wavefront realizations and
six different NA values ranging from 0.7 to 0.95. The perfor-
mance of VAM (the red color) and VAM+ (the blue color) is
consistent for all experiments. Suffering model deviations,
SAM (the black color) is significantly outperformed by the oth-
ers in terms of both accuracy and consistency. VAM+ slightly
outperforms VAM thanks to the additional information of χ.

As shown in Fig. 3, the error of phase retrieval by SAM (the
black curve) is approximately proportional to the NA value since
the occurrence of light polarization becomes more substantial
for higher NA values. It increases from 5.5% (on average) for
NA = 0.7 up to 8.5% for NA = 0.95 as indicated by the upward
black curve while the relative errors of VAM (the red curve) and
VAM+ (the blue color) are around 2%. The performance of VAM
and VAM+ depends very little on the NA value since the latter
information has been consistently incorporated into the problem
setting and the input data. One may notice slightly better phase
retrieval for NA = 0.95 compared to the smaller values, but
this mainly comes from the approximation of presenting the
results rather than from the quality of phase retrieval. More
specifically, since the image resolution is fixed at 128× 128 pixels
for all experiments, larger NA value corresponds to finer grid
on the circular aperture, which in turn makes the conversion
from a phase screen to Zernike polynomials and vice verse more
accurate. Fig. 3 also reflects the level of deviation between the
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scalar and the vectorial PSF models for different NA values in
the sense that more model deviation leads to higher error of
phase retrieval.
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Fig. 3. The errors of phase retrieval over 75 experiments are
presented for six different NA values. The relative errors of
VAM (the red curve) and VAM+ (the blue curve) are consistent
about 2% while that of SAM (the black curve) increases from
5.5% for NA = 0.7 up to 8.5% for NA = 0.95. The error of
phase retrieval by SAM is approximately proportional to the
NA value as indicated by the upward black curve.

B. Noise analysis
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Fig. 4. Experiments demonstrate the robustness of VAM and
VAM+ against noise. The two algorithms are consistent and re-
liable for SNR from 35 dB as demonstrated by small variation
ranges of errors. The performance of SAM (the black color)
is almost unaffected by noise with SNR from 30 dB, however,
due to model deviations it is clearly outperformed by VAM
(the red color) and VAM+ (the blue color).

The influence of noise on the performance of VAM and VAM+

is analyzed in this section. Different levels of Gaussian noise
ranging from 25 dB to 55 dB are respectively introduced to 75
simulation data sets. The relative RMS errors of phase retrieval
by VAM, VAM+ and SAM are presented in Fig. 4. Thanks to
the additional information of the amplitude χ, which is not
corrupted by noise in these experiments, VAM+ (the blue color)
outperforms VAM (the red color). As expected, such a difference
is not notable for high SNR (from 50 dB) where they both retrieve
almost exact solutions. The influence of noise on the algorithms
is also reflected by the variance of the retrieval errors which

appears to be inversely proportional to SNR. For SNR from 35 dB,
the two algorithms are consistent and reliable. The complication
of the vectorial PSF model compared to the scalar one explains
why VAM and VAM+ are more sensitive to noise than SAM
(the black color) whose performance is almost unaffected by
noise with SNR from 30 dB. However, for SNR from 25 dB, the
above drawback of VAM and VAM+ compared to SAM is well
compensated by the usage of the correct PSF model. As shown
in Fig. 5, the quality of phase retrieval by VAM (the red curve)
and SAM (the black curve) for SNR 25 dB is at the same level
but the difference becomes more substantial for higher SNR. In
particular, the relative RMS error of VAM+ (resp., VAM) shapely
drops to 5.3% (resp., 4.2%) at SNR 30 dB (resp., 35 dB) while that
of SAM is above 8.5% for all SNR.
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Fig. 5. The average of the relative RMS errors of phase re-
trieval over 75 experiments is presented for 7 different levels
of Gaussian noise. VAM+ (the blue curve) is clearly superior
to VAM (the red curve) and SAM (the black curve). The qual-
ity of phase retrieval by VAM and SAM for SNR 25 dB is at
the same level but the difference becomes more substantial
for higher SNR. The relative RMS error of VAM+ and VAM
shapely decreases for higher SNR while that of SAM remains
high (above 8.5%) for all SNR due to model deviations.

C. Convergence properties

In this section, several convergence properties of VAM and
VAM+ including the descent property with respect to the ob-
jective function of (12) are numerically demonstrated. Fig. 6
presents the objective value versus the number of iterations for
75 phase retrieval experiments in the two settings with and with-
out noise. Descent property is observed for all the experiments.
For noiseless experiments (the solid curves), the objective value
f (χk, Φk) decreases to zero (up to the machine precision) in a
few hundreds of iterations. Recall that since the amplitude χ
is fixed (assumedly known) for VAM+, its objective function
only depends on the sequence Φk. For experiments with noise
(the dashed curves), the sequence of objective values f (χk, Φk)
reaches an objective gap in about 50 iterations. The latter term
is meant to indicate the gap in terms of the objective function
which is different from the feasibility gap, i.e. the distance from
the current estimate to an optimal solution. The objective gap
empirically reflects the inexactness level of the input data in the
sense that lower SNR yields larger objective gap. It is worth
noting that such an objective gap is not mathematically ensured
to be unique since the objective function f is far away from con-
vexity, and hence it is not guaranteed to be the optimal value of
problem (12).

In this section and Section 5D, to observe convergence proper-
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ties of the algorithms we run a few more hundreds of iterations
compared to 150 as in the other sections. However, the tailing
parts of the curves are not plotted in Fig. 6, Fig. 7, Fig. 8 and
Fig. 12 because otherwise different features of the algorithms at
early iterations are hardly visible.
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Fig. 6. Experiments demonstrate descent property of VAM and
VAM+. In the noise-free setting (the solid curves), the objec-
tive value converges to zero, and with the additional informa-
tion of χ, VAM+ (blue) reaches the optimal value faster than
VAM (red). In the presence of noise (the dashed curves), the
objective value reaches an objective gap in about 50 iterations,
and we note that VAM optimizing over both χ and Φ yields a
solution better fitting to the noisy data (smaller objective gap)
than VAM+ optimizing over only Φ.
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Fig. 7. Experiments show the feasibility gap versus the num-
ber of iterations of VAM and VAM+ compared to SAM. Re-
gardless of the presence of noise, the performance of VAM (the
red curves) and VAM+ (the blue curves) is consistent and the
latter one is favorable thanks to the additional information of
χ. Model deviations make SAM (the black curves) much less
accurate than VAM and VAM+.

Let us point out an interesting influence of noise on the objec-
tive gaps shown in Fig. 6. For noiseless experiments (the solid
curves), the objective value of VAM+ (blue) clearly decreases to
zero faster than that of VAM (red) due to the additional knowl-
edge of the amplitude χ, whereas in the presence of noise (the
dashed curves) VAM appears to achieve smaller objective gap
than VAM+. This is because the optimization over both χ and
Φ of VAM in general yields a better fit to the noisy data than the
optimization over only Φ of VAM+.

In the simulation framework, it is possible to monitor the
feasibility gap in iteration, i.e. ‖Φk−Φ‖F as plotted in Fig. 7. For
the experiments without noise (the solid curves), the feasibility
gap of VAM and VAM+ decreases to zero. This demonstrates the
fundamental feature of the phase retrieval approach proposed
in this paper. Roughly speaking, the two algorithms are capable
of inverting the vectorial PSF model (7).

Similar to the case of objective gap analyzed above, the feasi-
bility gap of VAM+ decreases faster than that of VAM thanks to
the additional information of χ. For the experiments with noise
(the dashed curves), the performance of VAM and VAM+ is also
consistent. It takes about 60 iterations to reach an approximate
solution, i.e. an estimate corresponding to the feasibility gap
that is almost no longer reduced by increasing the number of
iterations. In contrast to the analysis of the objective gap shown
earlier in Fig. 6 (the dashed curves), VAM+ outperforms VAM
in terms of feasibility gap and hence it is favorable in these ex-
periments. The influence of noise on the performance of SAM
(in black color) is not observable due to model deviations which
make the algorithm much less accurate than VAM and VAM+.
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Fig. 8. Experiments demonstrate the convergence of VAM
and VAM+ in terms of the change of the estimated phase in
iteration. In both scenarios of noise, the iterative change of the
estimate decreases to zero in a stable and consistent manner.
Thanks to the additional knowledge of χ, VAM+ (the blue
curves) converges slightly faster than VAM (the red curves).

Feasibility gap is a desirable quantity for any solution pro-
cess, but it is not achievable in practice since no exact solution
is known in advance. Instead, one is often interested in how a
certain temporal estimate changes in iteration. For example, the
change of the reconstructed PSFs (resp., the GPF) can be used
as a stopping criterion for VAM and VAM+ (resp., SAM) as pre-
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sented in Section 4. When linear convergence appears to be the
case, such a iterative change can be useful for estimating the rate
of convergence provided that the generated sequence remains in
the convergence area. Our experiments with VAM and VAM+

show the vanishing of the change in terms of temporally esti-
mated wavefront, that is ‖Φk −Φk+1‖F, as presented in Fig. 8
(for VAM, ‖χk − χk+1‖F is also vanishing in the same manner).
Note that this implies the vanishing of the change in terms of
reconstructed PSFs since the imaging model (7) is continuous in
Φ and χ. In both scenarios of noise, the iterative change of VAM
and VAM+ decreases to zero in a stable and consistent manner.
In the noiseless case, the vanishing of the feasibility gap shown
in Fig. 7 already confirmed the retrieval of the exact solution
of Eq. (12). In the presence of noise, the steady decrease of the
feasibility gap in Fig. 7 and the vanishing of the iterative change
in Fig. 8 show that the algorithms find a local solution to that
problem. By the same reason as for the analysis of the objective
gap, the uniqueness of such a local solution is not guaranteed,
and hence a global solution to Eq. (12) is not theoretically guar-
anteed to be obtained though numerical experiments indicate so.
Thanks to the additional information of the amplitude χ, VAM+

converges slightly faster than VAM.

In summary, VAM and VAM+ consistently exhibit desirable
convergence properties in terms of objective gap, feasibility gap,
and iterative change for all the experiments conducted. In the
noiseless setting, they are able to precisely restore the phase as
indicated by the zero feasibility gap in Fig. 7 (the solid curves). In
the presence of noise, the two algorithms also clearly outperform
SAM in terms of both convergence and phase retrieval quality.
A particular example is presented in Fig. 9 where phase retrieval
by VAM (bottom-left), VAM+ (bottom-right) and SAM (top-
right) are shown. The first two algorithms are about six times
more accurate than the last one with relative RMS errors 2.4%
and 2.2% compared to 15.2%. For completeness, four noiseless
vectorial PSF images corresponding to the phase shown in Fig. 9
are presented in Fig. 10.
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Fig. 9. A realization of phase retrieval by VAM (bottom-left),
VAM+ (bottom-right) and SAM (top-right).

Fig. 10. Four noiseless out-of-focus PSFs corresponding to the
phase presented in Fig. 9: the central part of each image with
size 48× 48 pixels is shown.

D. Number of input images
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Fig. 11. Experiments show that more input images lead to
more accuracy of phase retrieval by VAM and VAM+.

In this section, the effectiveness of the proposed algorithms with
respect to the number of PSF images (m) is analyzed. Phase
retrieval experiments with two, four and six noisy PSF images
are respectively conducted for 75 wavefront realizations. Fig. 11
plots the relative RMS errors in iteration of VAM and VAM+.
The overall comparison between the two algorithms with the
same number of input images is the same as in the previous
sections. Fig. 11 shows that phase retrieval is more accurate
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if more input images are used. For example, the relative RMS
errors of VAM+ (blue) given two (the bold curve), four (the
dashed curve) and six (the thin curve) images are respectively
8.3%, 1.6% and 0.5% (on average). This is well explained by
the widely known fact that additional measurements can be
useful for suppressing noise. Note that the complexity of these
Fourier transform-based algorithms is approximately linearly
proportional to the number of input images, hence there is a
trade-off between the computing time versus noise suppression.
Moreover, accurately registering multiple PSF images is often
not a trivial task in many applications.
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Fig. 12. Experiments shows that more input images lead to
faster convergence of VAM and VAM+.

The number of input images also affects the convergence
speed of the algorithms as shown in Fig. 12 where the change
of the restored phase in iteration is plotted. Obviously, more
input images lead to faster convergence of the algorithms. The
additional knowledge of χ makes VAM+ converge faster than
VAM, for example, VAM+ with m = 4 (the blue dashed curve)
converges faster than VAM with m = 6 (the red thin curve). It
is important to keep in mind that faster convergence does not
imply higher quality of restoration, for example, VAM+ with
m = 4 is less accurate than VAM with m = 6 as shown in Fig. 11.

E. Phase retrieval with discontinuous phase
This section demonstrates that VAM and VAM+ are also efficient
for phase retrieval with discontinuous phase, for example, phase
retrieval with sparse phase constraint for applications in charac-
terizing phase-only objects such as microlenses, phase-contrast
microscopy, optical path difference microscopy and in Fourier
ptychography, where the phase object occupies less than 10% of
the whole field [40]. As mentioned in the introduction, it is not
feasible to accurately approximate a discontinuous wavefront
or its associated GPF with a weighted sum of Zernike modes
because the continuity property is invariant with respect to lin-
ear combination. More precisely, such an approximation would
require a very high order of Zernike polynomials which are fast
oscillating and impede the numerical calculations. As a conse-
quence, solution methods based on modal formulations of phase
retrieval (see, e.g. [41] for a comparison to the zonal formulation)
are no longer relevant. In particular, the solution approach based

on the use of extended Nijboer–Zernike expansion of [29] is not
applicable to the class of problems analyzed in this section.
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Fig. 13. An experiment with noise demonstrates the solvabil-
ity of VAM and VAM+ for phase retrieval with discontinuous
phase. VAM+ (bottom-right) outperforms VAM (bottom-left)
thanks to the knowledge of χ while SAM (top-right) is more
erroneous than the others due to model deviations with rel-
ative RMS error 9.4% compared to 5% and 4.3% of VAM and
VAM+.
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Fig. 14. An experiment with noise demonstrates the solvabil-
ity of VAM and VAM+ for phase retrieval with sparse phase
constraint. The main features observed here resemble those of
Fig. 13.

The discontinuous phase shown in Fig. 13 is obtained by
adding a binary phase to a defocus term, and thus it is not sparse,
i.e. its sampling is not sparse with respect to the pixel basis. The
sparse phase shown in Fig. 14 is (a scaling of) a truncation of
the above discontinuous phase. For experiments with these
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phases, VAM and VAM+ precisely restore the exact solution in
the noise-free setting while SAM suffers model deviations. In
the presence of noise, Fig. 13 and Fig. 14 show the phase retrieval
results for the discontinuous and the sparse phases, respectively.
The overall comparison among the three algorithms is the same
as for the case of continuous phases analyzed in the previous
sections. VAM+ (bottom-right) outperforms VAM (bottom-left)
thanks to the additional knowledge of χ while SAM (top-right)
is more erroneous than the others due to model deviations. This
demonstrates the solvability of VAM and VAM+ for this class of
phase retrieval problems. These results also prove the advantage
of our phase retrieval approach compared to the one of [29] as
we claimed in the introduction. For discontinuous phases, cor-
rection schemes after restoration (e.g. smoothness using Zernike
polynomials) can not be applied for noise suppression. Due to
this disadvantage, the errors of VAM and VAM+ in Fig. 13 (5%
& 4.3%) and Fig. 14 (7.1% & 5.9%) are higher than the ones in
Fig. 9 (2.4% & 2.2%).

F. Amplitude restoration
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Fig. 15. Amplitude restoration by VAM for the experiment
with continuous phase in Fig. 9: the correct amplitude (left)
and its residual (right) relative to the restoration (error 3.3%).
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Fig. 16. Amplitude restoration by VAM for the experiment
with discontinuous phase in Fig. 13: the restoration (left) and
its residual (right) relative to the data (error 1.1%).
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Fig. 17. Amplitude restoration by VAM for the experiment
with sparse phase shown in Fig. 14: the restoration (left) and
its residual (right) relative to the data (error 1.1%).

The dominance of VAM+ over VAM as observed so far demon-
strates the positive influence of the additional information of
χ on phase retrieval. This observation merely shows the effec-
tiveness of χ whenever it is available, it does not imply any
conclusion of comparing the two algorithms. They are two ver-
sions of the same phase retrieval approach reflexively adjusted
for two scenarios of application, i.e. with known and unknown
amplitude of the GPF. This section briefly analyzes the effective-
ness of VAM in restoring the amplitude.

In the noise-free setting, the algorithm precisely restores the
amplitude for all experiments regardless of the continuity of
the phase. In the presence of noise, VAM enables to restore the
amplitude with the same level of accuracy as for retrieving the
phase. For example, Fig. 15, Fig. 16 and Fig. 17 show the am-
plitude restoration by VAM for the experiments presented in
Fig. 9, Fig. 13 and Fig. 14, respectively. The restoration is highly
accurate, the relative RMS errors are 3.3%, 1.1% and 1.1%, re-
spectively. It appears that the discontinuity of the wavefront has
no substantial influence on the quality of amplitude restoration.

6. CONCLUDING REMARKS

We have presented and numerically analyzed a new phase re-
trieval approach for high-NA imaging systems based on the
vectorial PSF model. The solution scheme can be adjusted for
both cases of application with either known or unknown am-
plitude of the GPF. Making use of the correct imaging model,
the proposed algorithms enable to restore phase aberrations at
high level of accuracy. They retrieve the correct solution in the
noise-free setting and perform consistently with error around 5%
for input data with SNR from 30 dB. Numerical results clearly
demonstrate the efficiency and practicability of the proposed ap-
proach in various practically relevant simulations. Our approach
exhibits several fundamental advantages over existing solution
methods for phase retrieval in the high-NA settings including
[25] which is limited in terms of accuracy due to model devi-
ations and [31] which is expensive in terms of computational
complexity and not applicable to problems with discontinuous
wavefronts due to its modal-based approach.

Theoretical support for the phase retrieval approach pre-
sented in this paper is of great importance, however, we think
it does not fit to the scope of this paper and will be reported in
forthcoming mathematical-oriented publication.
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