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ABSTRACT

This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the

singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the

H‘ filter. By design, anH‘ filter is more robust than the commonKalman filter in the sense that the estimation

error in theH‘ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The

computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The

authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that

the H‘-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently

reported data assimilation results resulting from the standard SEIK filter.

1. Introduction

In recent years, a number of critical events have mo-

tivated the efforts to predict water levels accurately.

Accurate predictions lead to improved management of

public safety as well as improved management of envi-

ronmental and economic interests. Storm surges from

hurricanes and tropical cyclones are responsible for

many deaths worldwide. For example, the infamous

Bhola cyclone that made landfall in Bangladesh in

November 1970 is responsible for approximately 500 000

deaths, and the cyclone in the southern North Sea in

February 1953 claimed thousands of lives (Murty et al.

1986; Gerritsen et al. 1995; McRobie et al. 2005). More

recently, Hurricane Katrina made landfall in Louisiana

and Mississippi in August 2005 (Knabb et al. 2006). The

vast majority of deaths caused by hurricanes are as a re-

sult of storm surge andmight be preventedwith improved

planning, warning systems, and emergency response. It is,

therefore, imperative that accurate numerical forecasts of

coastal flooding be delivered in real time to aid the co-

ordination of evacuations and enhance the capabilities of

existing warning systems.

Present-day computational models of storm surge are

both sophisticated and make use of fine meshes, but the
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use of finite computational resources and the re-

quirement that forecasts be delivered in a timelymanner

result in significant epistemic uncertainties, and sig-

nificant aleatory uncertainties will always exist (Brown

et al. 2007). Major sources of aleatory uncertainty in

the forecasting of storm surge include the meteoro-

logical forcing andmeteorological effects outside of the

model domain. One way to reduce the effect of these

uncertainties that has been proven efficient in meteo-

rology and oceanography is to update the state of storm

surge forecast models with available data using data

assimilation.

The Kalman filter (KF; Kalman 1960) is a standard

data assimilation method. The KF was originally de-

signed for linear systems in which the model is not only

used to forecast the system state, but also to determine

the uncertainty of the estimate (Maybeck 1979). Be-

cause of its relative simplicity in implementation, the

KF is attractive for many data assimilation problems.

Since geophysical models are often nonlinear, ensem-

ble Kalman filters (EnKFs) were introduced as credible

alternatives to the KF for nonlinear data assimila-

tion problems. EnKF methods provide an efficient and

effective framework to propagate filter uncertainties

forward in time while avoiding the need for lineariza-

tion of complicated model dynamics (Evensen 2003).

These methods can be classified into two main cate-

gories: the stochastic EnKF (Burgers et al. 1998;

Houtekamer and Mitchell 1998), which essentially

updates each forecast ensemble member with per-

turbed data using the KF correction step; and the

square root deterministic EnKF, which, in contrast,

updates the ensemble mean and sample covariance

matrix (Anderson 2001; Bishop et al. 2001; Pham 2001;

Hoteit et al. 2002; Whitaker and Hamill 2002; Luo and

Moroz 2009). In the context of storm surge, consider-

able efforts have been made in recent years to improve

the forecasts of storm surge models using the KF and

its variants (Heemink and Kloosterhuis 1990; Sorensen

and Madsen 2006; El Serafy and Mynett 2008; Butler

et al. 2012).

The KF-based schemes are equivalent to sequential

Bayesian filters in that they adopt Bayes’s rule to up-

date forecasted state variables and statistics using se-

quentially acquired data to form an analysis state and

error covariance. These types of data assimilation

methodologies require basic assumptions on the sta-

tistical properties of both the dynamical and observa-

tional systems. However, these statistical properties

are often poorly known, which could result in weak

performance of the Bayesian filter (Schlee et al. 1967).

For example, if implemented straightforwardly, an EnKF

with a relatively small ensemble size may produce

inaccurate estimations of covariance matrices (Whitaker

and Hamill 2002). Model error statistics are also gen-

erally poorly known and often crude approximations

are used in the filter instead. This often degrades filter

performance and may even cause filter divergence. In

practice, it is customary to conduct covariance inflation

(Pham et al. 1998; Anderson and Anderson 1999) and

localization (Hamill et al. 2001, 2009) to mitigate these

problems. Covariance inflation is often implemented

by postmultiplication of the forecast or analysis error

covariance matrix by a constant factor larger than 1.

Other inflation schemes have been also proposed

through, for example, relaxation to prior (Zhang et al.

2004) or using a multimodel multiphysics approach

(Meng and Zhang 2007).

In contrast with the KF, the so-called robust filters

emphasize the robustness of their error estimates, so

that they may have better tolerances to possible un-

certainties in assimilation. The estimation strategies of

robust filters are not based on the Bayes’s rule. The H‘

filter (HF) (Francis 1987; Simon 2006) is one such ex-

ample. The HF does not assume that the statistical

properties of the system being assimilated are exactly

known. Instead, it allows for the possibility that the user

may have incomplete information of the system. Con-

sequently, rather than looking for the best possible es-

timates based on Bayes’s rule, the HF employs an

optimal robust strategy, namely, the minimax rule

(Burger 1985), to update its forecast (or background)

statistics. This robustness is of interest in practical situ-

ations. For example, in storm surge forecasting, the

system model exhibits vastly different behavior before

and during the occurrence of a hurricane or other ex-

treme event. This is known as the ‘‘change of model

regime’’ phenomenon, which causes further uncer-

tainties and complications in traditional Bayes’s rule–

type data assimilation schemes (Bennet 1992; Hoteit

et al. 2005b). It was shown in Luo and Hoteit (2011) that

the HF could capture such a change better than the KF.

This was supported by the fact that in general the esti-

mation error of the HF grows with the uncertainties in

assimilation at a finitely bounded rate (except for the

special case when the HF reduces to the KF itself), while

the estimation error of the KF does not possess such

a guarantee. Recently an ensemble time-local H‘ filter

(EnTLHF) was proposed in Luo andHoteit (2011) as an

analogy to the EnKF for high-dimensional data assimi-

lation problems. The EnTLHF was constructed based

on the EnKF, and that the computational complexity of

the EnTLHF is in general comparable to that of the

EnKF. It was further demonstrated that an EnKF with

a certain covariance inflation technique is in fact an

EnTLHF.
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In this paper, we have developed and implemented

a robust EnTLHF filter for storm surge forecasting

based on the singular evolutive Kalman filter (SEIK).

The data assimilation system uses the Advanced Cir-

culation (ADCIRC; Luettich and Westerink 2005)

model and available data from hindcast studies of

Hurricanes Katrina and Ike. Recently, similar experi-

ments were reported with the standard SEIK filter

demonstrating improved water level forecast using

ADCIRC (Butler et al. 2012). In those experiments

validated hindcast studies over the western NorthAtlantic

and Gulf of Mexico were used to generate the obser-

vations from Hurricanes Katrina and Ike, and then

a coarser mesh of the Gulf of Mexico was used for the

forecast. In those studies, the application of the SEIK

filter was able to improve the water level prediction up

to 0.5m in the areas of interest during the landfall

events. However, while the SEIK filter proved capable

of improving forecasts by significant amounts, the

predicted water levels still lacked accuracy as com-

pared to the truth, which motivates the current study.

Here, the same set of experiments are repeated with an

EnTLHF and results are then compared with those

recently reported using the standard SEIK filter for

different inflation factors (Butler et al. 2012). The re-

sults suggest that the SEIK filter implemented in the

framework of the H‘ filter strongly improves the ac-

curacy of the short range forecasts of storm surge re-

sulting from hurricanes as compared to the traditional

SEIK filter.

The paper is organized as follows. The storm surge

prediction model is described in section 2. Section 3 and

its subsections describe the SEIK filter with inflation

factor and the EnTLHF in the framework of SEIK filter.

In section 4, the numerical results from the two different

storm events are presented. Conclusions follow in sec-

tion 5 including remarks of ongoing research to improve

long-range forecasts of storm surge.

2. ADCIRC coastal circulation and storm surge
model

Computational models of storm surge have recently

seen an increase in attention because of the devastating

2005 hurricane season. As a result, a multi-institutional

research team has undertaken the further develop-

ment and application of the state-of-the-art ADCIRC

model (Luettich and Westerink 2005) to model the

shallow-water equations that describe large-scale water

motions and depth-integrated horizontal flow. ADCIRC

discretizes the shallow-water equations, consisting

of a coupled Generalized Wave Continuity Equation

(GWCE; Lynch and Gray 1979; Kinnmark 1985) and

momentum equations, using finite-element methods

defined on unstructured meshes in space and finite-

difference schemes in time. The resulting scheme is

essentially explicit in time, except for the solution of

a mass matrix in the GWCE discretization. Coupling of

ADCIRC with a wind-wave model for capturing wave-

induced initial states has recently been completed

(Dietrich et al. 2011). The code has been parallelized for

distributed memory, multicore computers, and has been

demonstrated to achieve excellent scalability on these

platforms (Tanaka et al. 2011). For the specific theory and

numerical formulation of the ADCIRCmodel, we direct

the interested reader to Luettich and Westerink (2005).

A typical spatial domain on which ADCIRC is used

is the Gulf of Mexico possibly including the western

North Atlantic, as seen in Fig. 1. The ADCIRC model

has undergone extensive verification and validation,

in particular by comparison with data from previous

storms [e.g., see Westerink et al. (2008); Bunya et al.

(2010); Dietrich et al. (2010); and Kennedy et al. (2011)

for hindcast studies of hurricanes ranging in time from

1965 to 2008]. The extensive data collected and funda-

mental knowledge gained from these hindcast studies

has led to the recently developed real-time forecast-

ing system based on the ADCIRC model, called the

ADCIRC Surge Guidance System (ASGS; Luettich and

Westerink 2005). In this model, data on the hurricane

track and forward speed, and wind characteristics (wind

speed, central pressure, and radius-to-maximum winds),

are obtained every 6 h from the National Weather Ser-

vice. This input is used to generate a parametric wind

field, which provides forcing to ADCIRC. To be useful

to emergency managers, the storm surge model must

compute predicted water levels along the coast within

FIG. 1. Western North Atlantic domain and bathymetry (m). The

Gulf of Mexico is circled in black.
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a 1–2-h time window. Typically the output desired is

maximumwater elevations,measured over a given coastal

region during the entire storm event, and time histories

of water levels and/or currents at critical locations along

the coast. In the numerical results, data were obtained

from ADCIRC hindcast studies while the data assimi-

lation experiments used the forecast mode of ADCIRC

to propagate the state variables forward in time (see

section 4 for more details).

3. Data assimilation methodology

We first recall the algorithm of the SEIK filter before

describing its implementation in the framework of ro-

bust H‘ filtering.

a. The singular evolutive interpolated Kalman filter

The SEIK filter uses a square root ensemble Kalman

formulation (Tippett et al. 2003) to solve the Bayesian

filtering problem (Pham 2001; Hoteit et al. 2005a;

Nerger et al. 2012). As any Bayesian-based filter, it op-

erates in two steps as a succession of a forecast with the

model and an analysis step to update the forecast step

with the new data. At the forecast step, the SEIK filter

uses aMonte Carlo approach integrating an ensemble of

states forward in time with the numerical model as a way

to propagate the state probability distribution function.

Only the Gaussian part of the resulting forecast distri-

bution is then used in the analysis step, so a Kalman

correction step is applied on the mean and the co-

variance matrix of the ensemble to update the forecast

distribution with the new incoming data. The essential

difference between a square root filter (e.g., the ETKF)

and the SEIK is the following. A square root filter de-

composes a background covariance as the product of

a certain square root matrix and its transpose, and then

updates the square root matrix to its analysis counter-

part at the correction step. In contrast, the SEIK filter

decomposes a background covariance in the form of

LULT (with more details provided later). Here L is

a matrix constructed based on the background ensemble

and needs no update, while U is a symmetric, positive

semidefinite, matrix in the dimension of the ensemble

size N minus 1 (i.e., N 2 1), and needs to be updated at

the correction step. The equivalence between the square

root filter and the SEIK was shown in the recent paper

Nerger et al. (2012).

After every analysis step, a resampling step is needed

in the SEIK to generate a new analysis ensemble to start

a new filtering cycle. Similar to the deterministic square

root ensemble Kalman filters (Tippett et al. 2003), the

ensemble adjustment Kalman filter (EAKF; Anderson

2001), and the ensemble transform Kalman filter (ETKF;

Bishop et al. 2001;Wang et al. 2004, 2006), the SEIK filter

samples the analysis ensemble so that the ensemblemean

and sample covariance matrix exactly match the com-

puted analysismean and its covariancematrix. In contrast

with the EAKF and ETKF, in which re sampling is de-

terministic, the SEIK filter samples the analysis ensemble

randomly (Pham 2001; Hoteit et al. 2002). Stochastic re-

sampling has the advantage of providing representative

ensembles while randomly redistributing the variance

among the ensemble members (Leith 1974; Houtekamer

et al. 1996; Sakov and Oke 2008).

To describe the SEIK filter algorithm, consider the

following discrete dynamical system:

Xt(tk)5M(tk, tk21)X
t(tk21)1hk , (3.1)

where Xt(tk) denotes the vector representing the true

state of the system at time tk, M(t, s) is the state transi-

tion operator that takes as inputs the state at time t and

outputs the state at time s, and hk is the system noise

with covariance matrixQk. At time tk, the observed data

vector is given by

Yk 5HkX
t(tk)1 �k . (3.2)

Here Hk is the observation operator and �k is the ob-

servational noise with covariance matrix Rk. Note that

both the transition and the observational operators

M and H can be nonlinear.

One can start the SEIK filter from a forecast or an

analysis step, depending on whether data are available

at the initial time or not. At the initial time, an analysis

(or forecast) ensemble is needed. The procedure to

generate an initial ensemble is discussed in section 4.

Assuming now that an analysis ensemble of Nmembers

Xa
i (tk21) has been computed at time tk21, a forecast step

is then applied as described below.

1) MONTE CARLO FORECAST STEP

The numerical model is integrated N times from tk21

to tk starting from Xa
i (tk21) to compute the forecast en-

semble members Xf
i (tk) as

X
f
i (tk)5M(tk, tk21)X

a
i (tk21)1hi

k , (3.3)

where hi
k are sampled from the distribution of the sys-

tem noise.1 The forecast state is then taken as the fore-

cast ensemble average:

1 The formula works for additive model error, as assumed in the

present study. Nonadditive model error can be accounted for in

a very similar way by inserting random noise simulated from the

distribution of the model error, if known, as discussed by Evensen

(2003).
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Xf (tk)5
1

N
�
N

i51

X
f
i (tk) , (3.4)

and the associated forecast error covariance is approx-

imated by

Pf (tk)5
1

N
�
N

i51

[X
f
i (tk)2Xf (tk)][X

f
i (tk)2Xf (tk)]

T .

(3.5)

For convenience in the correction step, one can rewrite

(3.5) as

Pf (tk)5Lk[NTTT]21LT
k , (3.6)

where Lk is n 3 (N 2 1) with the ith column given by

Xf
i (tk)2Xf (tk) and T is a N 3 (N 2 1) full-rank matrix

with zero column sums, given by Hoteit et al. (2002):

T5

�
IN21

0

�
2

1

N
[1N , . . . , 1N]N3(N21) ,

with IN21 being the (N2 1)-dimensional identity matrix,

and 1N being the N-dimensional vector with all its ele-

ments being 1. With inflation, the forecast error co-

variance is taken as

Pf (tk)5Lk[l
21NTTT]21LT

k , (3.7)

with l the inflation factor2 usually chosen slightly larger

than 1.

2) KALMAN CORRECTION STEP

New incoming data are used to update the forecast

state Xf(tk) with the standard Kalman correction:

Xa(tk)5Xf (tk)1Gk[Yk 2HkX
f (tk)] , (3.8)

where the Kalman gain matrix Gk is given by

Gk 5LkUk(HL)TkR
21
k , (3.9)

with (HL)Tk 5 [Hk(l
1
k), . . . ,Hk(l

N21
k )] and lik the columns

of Lk. The matrix Uk in (3.9) is updated using

U21
k 5 l21NTTT1 (HL)TkR

21
k (HL)k . (3.10)

The analysis filter error covariance matrix is then

Pa(tk)5LkUkL
T
k . (3.11)

3) RESAMPLING STEP

To start a new filtering cycle, one has to resample an

ensemble of N analysis states from the estimated anal-

ysis mean Xa(tk) and covariance matrix Pa(tk). Re-

writing Pa(tk) as

Pa(tk)5Lk(C
21
k )TVT

kVkC
21
k LT

k . (3.12)

Here Ck is the Cholesky decomposition of U21
k 5CkC

T
k

andVk is a random orthonormal matrixVk21 with zero

column sums,3 which plays the same role as the ‘‘cen-

tringmatrix’’ generated by the spherical simplexmethod

in Wang et al. (2004, 2006). The new analysis ensemble

members are then taken as

Xa
i (tk)5Xa(tk)1

ffiffiffiffi
N

p
Lk(Vk,iC

21
k )T, 1# i#N ,

(3.13)

where Vk,i denotes the ith row of Vk. One can see

from (3.12) that sampling the analysis members in this

way ensures that the sample mean and sample co-

variance of the ensemble are exactly Xa(tk) and Pa(tk),

respectively.

b. The H‘ SEIK filter

In a recent work, Luo and Hoteit (2011) proposed the

EnTLHF for large-scale nonlinear data assimilation

problems. The EnTLHF is an ensemble implementation

of the time-local H‘ filter (TLHF) derived in Luo and

Hoteit (2011). In the TLHF, one aims at finding an

analysis ~Xa(tk) at the kth assimilation cycle that satisfies

the inequality

kXt(tk)2
~Xa(tk)k

2

S
k

#
1

gk
(kXt(tk)2

~Xf (tk))k
2

[~Pf (t
k
)]21

1 khkk2Q21
k

1 k�kk2R21
k
)

(3.14)

in the worst possible cases. Here, Sk is a positive definite

weight matrix that is chosen by the filter designer, ~Xf (tk)

and ~Pf (tk) are the estimated background state and co-

variancematrix [similar toXf(tk) andP
f(tk) in the SEIK],

2 Inflation was originally introduced in the form of a forgetting

factor in the SEIK filter, which is the inverse of the inflation factor,

in the context of the SEIK filter.

3A procedure for computing anVk using Householder matrices

can be found in Hoteit et al. (2002).
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and gk is a scalar, called the local performance level.

Thus, the three terms, kXt(tk)2 ~Xf (tk)k2[~P f (tk)]
21 , khkk2Q21

k
,

and k�kk2R21
k
, represent the ‘‘energy’’ of the uncertainties

in specifying the background (analogous to the un-

certainty in specifying the initial conditions), the model

error, and the observation error, respectively. By as-

suming that the analysis ~Xa(tk) is a linear update of the

background ~Xf (tk), one obtains a filter solution that

resembles the celebrated Kalman filter [see Simon

(2006) for the deduction]. The filter is then robust in the

sense that it bounds the state estimate error by the total

uncertainties in the system.

Luo andHoteit (2011) showed that when the system is

linear, the KF and the TLHF have basically the same

algorithms except that it introduces the extra term

2gkSk in the inverse covariance update formulas, which

becomes

[~Pa(tk)]
215 [~P f (tk)]

211 (Hk)
T(Rk)

21Hk 2 gkSk ,

(3.15)

subject to the constraint [~Pa(tk)]
21 $ 0. When gk 5 0,

then the TLHF simply reduces to the Kalman filter.

For analogy to the EnKF, the EnTLHF is an en-

semble implementation of the TLHF. When gk . 0,

then 2gkSk , 0 in (3.15), so that the estimated co-

variance matrix ~Pa(tk) is larger than that with gk 5 0.

In this sense, the presence of the extra term 2gkSk

in (3.15) introduces inflation to the covariance matrix,

similar to that in the EnKF. In fact, as shown in Luo

and Hoteit (2011), the EnTLHF provides a robust

strategy for conducting covariance inflation, while an

EnKF with certain covariance inflation is essentially

an EnTLHF.

In the context of the SEIK filter, one can estimate the

background mean ~Xf (tk) and covariance ~P f (tk) in the

EnTLHF according to (3.4) and (3.6), respectively. Let

Dk 5Lk[NTTT]21LT
k such that ~P f (tk)5Dk by (3.6). If in

(3.15) we set

gkSk 5 (Dk)
212 (lDk)

21 ,

with l being the inflation factor as in (3.7), and write
~Pa(tk) in the form of LkUkL

T
k [with the dimension of Uk

being (N 2 1) 3 (N 2 1)], then it can be shown that

(3.15) reduces to the update in (3.7) in the SEIK filter.

However, based on (3.15), we can also derive other

update schemes with inflation. For instance, by choosing

Sk 5 (LkL
T
k )

21 and Ck 5 [NTTT]21, we have

(Uk)
215C21

k 1 (HkLk)
TR21

k (HkLk)2gkI , (3.16)

where I is the identity matrix with a suitable dimension.

LetF21
k 5C21

k 1 (HkLk)
TR21

k (HkLk), and suppose that

through spectral decomposition, F21
k can be decom-

posed asF21
k 5VkDkV

T
k , where Vk is a matrix consisting

of the normalized eigenvectors of F21
k , and Dk is a di-

agonal matrix with kth diagonal entry corresponding

to the kth eigenvalue sk,i (sk,j # sk,i if j . i). To make

sure that (Uk)
21 is positive semidefinite, we require gk#

sk,N21. One can choose gk 5 csk,N21, with c 2 [0, 1)

being a scalar, so that (Uk)
21 5Vk[Dk 2 csk,N21I]V

T
k . As

a result,

Uk 5Vk(Dk 2 csk,N21I)
21VT

k

5Vkdiag

 
1

sk,1 2 csk,N21

, . . . ,
1

(12 c)sk,N21

!
VT
k ,

(3.17)

and the eigenvalues 1/(sk,i2 csk,N21) (i5 1, . . . ,N2 1)

of Uk are larger than 1/sk,j, their counterparts of Fk.

Therefore, the choice Sk 5 (LkL
T
k )

21 and gk 5 csk,N21

leads to the inflation of the eigenvalues of Uk. In this

regard, our proposed inflation scheme is similar to

that in Ott et al. (2004), in which the authors essen-

tially introduce covariance inflation to the analysis co-

variance, say Pa, by replacing Pa by Pa 1 dI [cf. (42) of

Ott et al. (2004)], where d . 0 plays a role similar to

the covariance inflation factor, and I is the identity

matrix with a suitable dimension. In doing so, all the

eigenvalues of Pa are increased at the same pace, while

in (3.17) the eigenvalue increments of Uk are non-

uniform and actually adaptive with time (as it is so for

the eigenvalue sk,N21 used for inflation). In fact, with

some algebra, it can be shown that the eigenvalues

of Fk receive inflation proportional to magnitude. The

eigenvectors corresponding to larger eigenvalues may

represent more influential directions of the model

in data assimilation. As a result (at the next assimila-

tion cycle), the observation corresponding to these

directions may receive relatively more weights in up-

date. If the true model dynamics undergoes a cer-

tain change that is not well captured by the model

in data assimilation, then by putting more (relative)

weights onto the observation that correspond to the

relatively influential directions, the update formula will

rely more on the corresponding observation, and tend

to reduce the impact of model change by giving less

(relative) weight to the possibly not-so-good back-

ground. For the specific problem of storm surge fore-

casting, the nonuniform inflation is expected to improve

the filter performance during the period of hurricane

landfall.
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4. Numerical experiments

We consider Hurricanes Ike and Katrina as two par-

ticular test cases in our numerical experiments. Hurri-

cane Ike became a category 4 hurricane as it traveled

through the Atlantic, Caribbean, and Gulf of Mexico in

September 2008, and was a category 2 hurricane upon

making landfall along the upper Texas coast in the early

morning hours of 13 September, see left plot in Fig. 2.

Ike was a devastating storm causing massive financial

damages, and was also responsible for nearly 200 deaths

(Berg 2009). Hurricane Katrina was the most devastat-

ing hurricane in recent years as a category 3 hurricane

upon its second landfall and is held responsible for more

than 1800 deaths (Knabb et al. 2006). Katrina formed

in August of 2005 over the Bahamas, made its first

landfall in southern Florida, traveled through the Gulf

of Mexico, and made its second landfall in southeast

Louisiana on the morning of 29 August (see Fig. 2).

The measurement data were obtained from high-

resolution hindcast studies. These studies have been

shown to match the actual measured data from gauges

located throughout the Gulf for a number of recent

hurricanes. The ADCIRC hindcast runs use a time step

of 1 s on high-resolution grids of the same domain cov-

ering the Gulf of Mexico and the western north Atlantic

seaboard (see Fig. 1). The hindcasts use data-assimilated

winds and atmospheric pressure fields provided by

Ocean Weather, Inc. (OWI). The Hurricane Ike hind-

cast was run on a grid of 3 322 439 nodes corresponding

to 6 615 381 elements. The Hurricane Katrina hindcast

was run on a grid of 5 035 113 nodes corresponding to

9 945 623 elements. The measurement data are then

obtained every 2 h from these hindcast studies and is

used for the assimilation experiments. In all the exper-

iments, we set the standard deviation of the measure-

ment noise to produce an assumed 95% confidence

interval of 60.01m.

The data assimilation experiments are run using

a time step of 10 s on a grid of 8006 nodes and 14 269

elements covering the Gulf of Mexico (see Fig. 3).

Separate observation stations are used for tracking Ike

and Katrina (see Figs. 4–5). This is done mainly because

hurricanes Ike and Katrina have distinct tracks (see

plots in Fig. 2). By using separate domains, discretiza-

tions, wind forcing, and time steps for the simulation of

true data versus the data assimilation experiments, we

FIG. 2. (left) Track of Hurricane Ike through the Gulf of Mexico. The circles with annotations are the locations

of landfall at 0710 UTC 13 Sep 2008 and the locations of the hurricane at approximately 48 and 72 h before

landfall. (right) Track of Hurricane Katrina through the Gulf of Mexico. The circles with annotations are the

locations of landfall at 1110 UTC 29 Aug 2005 and the locations of the hurricane at approximately 48 and 72 h

before landfall.

FIG. 3. Discretization of the Gulf of Mexico domain containing

8006 nodes and 14 269 elements. Open boundaries are denoted by

bold boundary lines. All other boundaries are land. The open

boundaries are forced by the five tidal constituents: K1,O1, P1,M2,

and S2. The land boundaries are reflective.
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avoid simulating observation data within the same nu-

merical framework as used in the forecasting/data as-

similation framework. The main differences between

the hindcast simulations taken as truth and the simula-

tions used in the data assimilation runs are summarized

in Table 1. For all the simulations the data are assimi-

lated after every 2-h forecasts of the ensemble members.

A detailed description of these data assimilation ex-

periments can be found in Butler et al. (2012).

We make use of an empirical orthogonal function

(EOF) analysis as presented in Hoteit et al. (2001).

Driving ADCIRC only by tidal forcing terms eliminates

all transient behavior in the state within a few days. We,

therefore, run the ADCIRC model driven only by tidal

forcing terms for 60 days and store the state every 5 h.

The perturbation of these states from their mean value is

used to define a sample covariance matrix from which

the ensemblemembers can be initialized. In this way, we

FIG. 4. The 371 hypothetical observation stations used for Hurricane Ike simulations.

The red-filled circles denote an array of stations where data are simulated from the hindcast

study. The black-filled circles correspond to 43 existing measurement sites. These 43 ob-

servation stations collected data during the storm and were used to validate the hindcast

study.

FIG. 5. The 559 hypothetical observation stations used for Hurricane Katrina simulations.

The red-filled circles denote an array of stations where data are simulated from the hindcast

study.

2712 MONTHLY WEATHER REV IEW VOLUME 141



initialize the ensemble members using a covariance

P from a physically meaningful feature space. The ratio

�j.N21sj/ Tr(P) (with sj being the jth eigenvalue of P)

represents the relative error in the squareL2 norm of using

approximations to the state in the N 2 1-dimensional

feature space and is useful in determining the ensemble

size N given a prescribed error tolerance, which we also

refer to as the percentage of inertia retained by the

EOFs. In the experiments below, we chose to retain

about 90% of the spatial variability of this sequence of

states using the EOF analysis, resulting in an ensemble

size of N 5 10.

To quantify performances, a root-mean-square error

(rmse) metric is used. We are interested in the ability to

forecast the maximum coastal surge. We are also in-

terested in forecasts of water elevations at particular

times, specifically the times leading up to landfall. We

also present figures plotting the pointwise errors for

both maximum water level forecasts and water level

forecasts during the landfall event for each hurricane.

These figures illustrate the important improvement in

errors obtained using the H‘ SEIK compared to the

traditional SEIK filter for 2-h forecasts of the storm

surge resulting from these hurricanes.

a. Hurricane Ike

For the Hurricane Ike simulations, the spinup period

is set to 1 day starting at 0000 UTC 9 September 2008

and ending at 0000 UTC 10 September 2008. The Ike

simulations end at 0000UTC 14 September 2008, almost

18 h after landfall occurred at 0710 UTC 13 September

2008. The ‘‘spinned up’’ state is taken as the mean

state of the system. The data are assimilated using

371 assimilation stations (see Fig. 4) after every 2-h

forecasts of the ensemble members starting at 0200 UTC

10 September 2008 until 0000 UTC 14 September 2008

resulting in a total of 48 assimilation cycles being

computed.

Tables 2–3 give average rmse of the maximum water

level forecasts for the Ike simulations using SEIK and

H‘ SEIK filters with different values of inflation factor l

and factor c, respectively. The second column in both

tables presents the average rmse of the maximum water

levels forecasted in the landfall area (298–29.88N, 94.48–
95.258W, see Fig. 6). The rmse near the landfall areas

with the SEIK filter varies from within 1.38 to 1.68m,

with the lowest rmse performances obtained using l 5
1.6. Overall, the SEIK filter is able to reduce the rmse by

more than 27% as compared to the initial forecasted

average rmse when no data are assimilated. Improve-

ments aremore pronounced in theH‘ SEIK filter, which

significantly reduces the average rmse of the maximum

forecasted water elevations to a value of 0.80m with the

factor c 5 0.7. This is an overall improvement of more

than 58% as compared to the initial value of the rmse

without data assimilation. The third column in Tables 2–3

TABLE 1. Summary of differences between simulations for

hindcast (truth) simulation used to generate data and simulations

used in data assimilation forecasting experiments.

Data assimilation Truth

Domain Gulf of Mexico Western North

Atlantic

Avg mesh element size 98 km2 1.34 km2

Time step 10 s 1 s

Wind field Dynamic Holland OWI

Bottom friction

formulation

Chezy Hybrid

TABLE 2. The average rmse of the maximum water level fore-

casts are shown for Ike simulations using SEIK filter with different

values of inflation factor l. The second column shows the average

rmse of the maximum water levels forecasted in the landfall area.

The third column shows the average rmse of the maximum fore-

casted water levels where the hindcast data (truth) showed maxi-

mum water elevations greater than 3m (2927 out of 8006 nodes).

The boldface font indicates the best values of rmse corresponding

to inflation factor.

Inflation factor l Coastal rmse Rmse . 3m

— 1.92 1.91

1.0 1.68 1.65

1.1 1.59 1.62

1.2 1.45 1.46

1.4 1.58 1.61

1.5 1.62 1.65

1.6 1.38 1.42

1.7 1.47 1.51

2. 1.52 1.54

TABLE 3. The average rmse of the maximum water level fore-

casts are shown for Ike simulations using EnTLHF with different

values of inflation factor c. The second column shows the average

rmse of the maximum water levels forecasted in the landfall area

(see Fig. 6). The third column shows the average rmse of the

maximum forecasted water levels where the hindcast data (truth)

showed maximum water elevations greater than 3m (2927 out of

8006 nodes). The boldface font indicates the best values of rmse

corresponding to factor c.

Factor c Coastal rmse Rmse . 3m

— 1.92 1.91

0.1 1.43 1.38

0.2 1.40 1.42

0.3 1.47 1.50

0.4 1.34 1.36

0.5 1.30 1.33

0.6 1.17 1.10

0.7 0.80 0.87

0.8 1.35 1.38
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shows the average rmse of the maximum water elevation

forecasts at all nodes that recorded up to 60% of the

maximum surge from the true forecast (i.e., we consider

the rmse at roughly 36.5% of the nodes where the

maximum water elevation forecast of the hindcast

study exceeded 3m). A similar trend is observed and

H‘ with factor c5 0.7 leads to an overall improvement

of 56%.

The inflation factor c plays a role similar to that of

the inflation factor l in the standard SEIK filter. While

a good value can improve filter performance by im-

posing more weight on the assimilated observations,

which could be critical in times of regime change, a bad

one can degrade the filter performance. The focus of

this work is to demonstrate that the combination of

the H‘ filter within the SEIK framework can produce

more accurate results. We, therefore, compare the

performances of the best-case scenarios obtained with

these filters when their inflation factors are chosen

through a systematic trial-and-error search. We focus

the remaining discussion on the best configurations

of the SEIK and H‘ SEIK filters (i.e., with l 5 1.6

and c 5 0.7).

Figure 6 plots the errors from the true forecast of

maximum water elevation in the SEIK and H‘ SEIK

filters. Figure 6 also shows the improvements to the

SEIK filter predictions of maximum water elevation

computed from H‘ SEIK filter. We see in the plot of

Fig. 6 that the H‘ SEIK filter offers a significant im-

provement to forecasts up to 1m at many locations as

compared to the SEIK filter.

Figure 7 plots the averaged rmse of water elevations

(in meters) in the landfall area (see Fig. 8) as obtained

from the SEIK and H‘ SEIK filters. The time interval

here is chosen to clearly show the errors during the

landfall period (i.e., from 1800 UTC 12 September to

1800 UTC 13 September 2008). The H‘ SEIK filter was

able to significantly reduce the errors, keeping them

at an acceptable level at the landfall period (i.e., from

0600 UTC 13 September to 1000 UTC 13 September

2008). This is an important improvement indicating that

the H‘ SEIK filter can produce more accurate short-

range forecasts of extreme events.

FIG. 6. Plots of errors in maximum free surface water level

predictions (m) from true state for (top) simulation using SEIK

filter with (l 5 1.6) and (middle) simulation using H‘ SEIK filter

with (c5 0.7). (bottom) Plot of differences betweenmaximum free

surface water level predictions (m) of simulation using SEIK filter

with (l 5 1.6) and simulation using H‘ SEIK filter with (c 5 0.7).

Note the different color bar range in (bottom).

FIG. 7. The plot of averaged rmse of water elevations (m) for Ike simulations in the landfall

area (see Fig. 8) using SEIK filter with l5 1.6 andH‘ SEIK filter with c5 0.7. The time interval

for these plots is from 1800 UTC 12 Sep to 1800 UTC 13 Sep 2008.
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Figure 8 plots the errors of the true forecast of water

elevations at 0800 UTC 13 September 2008, which is an

hour after Ike made landfall at 0710 UTC on the same

day as they result from both filters. These graphs clearly

show that H‘ SEIK filter simulation is in better agree-

ment with the data, predicting up to approximately 0.6–

1.0m of higher water elevation than the SEIK filter in

majority of the areas across the coastline.

Finally, Fig. 9 plots the hydrographs of simulated data

from the Ike hindcast results at four stations. The sta-

tions shown in this figure correspond to just four of the

many existing stations that collected true data during

Hurricane Ike. In these hydrographs the stars denote

the true measurements at the assimilation times, the

plus signs denote the forecasted results, and the circles

are the analyzed states data for the H‘ SEIK filter with

c5 0.7.We also plot the 95% confidence intervals of the

forecasted data, which are computed using (3.6). We

observe that the analysis steps bring the model closer to

the truth in majority of the cases. In general, the filter

underestimates the level of the surge at the early as-

similation window. This is most likely due to the coarse

scale of the discretization so the dissipation in the model

is more pronounced. Overall, the estimated uncertain-

ties are quite reasonable.

b. Hurricane Katrina

ForHurricaneKatrina simulations, the spinup is set to

6 h starting at 0000 UTC 25 August 2005 and ending at

0600UTC 25August 2005. The spinned-up state is again

taken as the mean state of the system. The first data

assimilation cycle is computed on a 2-h forecast of the

initial ensemble members. The data are assimilated us-

ing 559 assimilation stations (see Fig. 5) every 2 h until

0600 UTC 30 August 2005 resulting in a total of 60 as-

similation cycles being computed. The Katrina storm

surge was significantly stronger, from 4m to approxi-

mately 6.6m over a smaller area as determined by the

hindcast. Hurricane Ike, on the other hand, had a 3–5-m

storm surge over a larger geographic area. For hurri-

cane Ike, 36.5% of the nodes recorded water eleva-

tions within 60% of the overall maximum value, but for

Katrina, only 5.1% of the nodes recorded water eleva-

tions within 60%of the overallmaximumvalue.Accurate

estimation of extreme storm surge over geographically

small areas is an important and numerically challenging

problem of great interest.

For the Katrina simulations we will investigate the

improvements using similar rmse metrics. Tables 4–5

give the average rmse of the maximum water level fore-

casts for the Katrina simulations using the SEIK filter

and the H‘ SEIK filter with different values of inflation

factors l and factor c, respectively. The second column

in Tables 4–5 presents the average rmse of themaximum

water elevation forecasts at all 405 out of 8006 nodes

where forecasts of the hindcast study exceeded 4m. The

rmse of theH‘ SEIK filter varies within the range 0.72–

1.68m as compared to 1.42–2.09m in the SEIK filter.

Using c 5 0.6, H‘ SEIK is able to reduce the rmse by

70% as compared to the initial forecasted average rmse

when no data are assimilated. This is an important im-

provement over the best performance obtained with the

SEIK filter with standard inflation. The third column of

Tables 4–5 shows the average rmse of the maximum

water elevation forecasts at all nodes on which the hind-

cast exceeded 5m (163 out of 8006). The improved per-

formance of the H‘ SEIK using c 5 0.6 is even more

pronounced here with the average rmse reduced to a value

of 0.45 as compared to 2.90 when no data assimilation

FIG. 8. Plots of free surface elevation error (m) at 0800 UTC

13 Sep 2008 from truth for (top) SEIK filter using l 5 1.6 and

(middle)H‘ SEIK filter (c5 0.7). (bottom) Plot of differences (m)

of free surface elevation forecasts at 0800 UTC 13 Sep 2008 be-

tween H‘ SEIK (c 5 0.7) and SEIK filter (l 5 1.6). Note the dif-

ferent color bar range in (bottom).
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was performed. In our experiments we noticed that the

results of theH‘ SEIK filter depend on the parameter c.

Several runs could, therefore, be required in practice to

find a good value of c.

Figure 10 shows the plots of the errors from the

true forecast of maximum water elevation in the SEIK

filter with an inflation factor l5 1.2, andH‘ SEIK with

c 5 0.6 for forecasts of maximum water elevations

in the nearshore areas. We see from these plots that in

the nearshore areas where the storm surge error in

the SEIK simulation was around 2m, the H‘ SEIK

simulation often improves the error to between 0.5

and 1.0m.

We also plot in Fig. 11 the errors from the true fore-

cast of water elevations on 29August 2008, at around the

landfall time in the SEIK andH‘ SEIK filters. AgainH‘

FIG. 9. Plots of station data (m) vs assimilation cycle where data are used to update the

forecast. The stars mark data that are simulated (and then assimilated every 2 h beginning at

0200UTC 12 Sep 2008 and ending at 0000UTC 14 Sep 2008 usingH‘ SEIK filter), the analyzed

state (circles), and forecast state (plus signs) with 95% confidence intervals (vertical dashed

lines centered at plus signs).
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SEIK simulation offers a significant improvement to

forecasts up to 1m at some locations as compared to the

SEIK filter particularly in the area around the landfall

event.

5. Conclusions

The robustness in the framework of H‘ filtering has

a natural connection to the covariance inflation tech-

nique. Compared to existing works on covariance in-

flation in the ensemble filtering methodologies, the H‘

filtering theory provides a theoretical framework that

unifies various inflation techniques in the literature, and

establishes the connection between covariance inflation

and robustness. TheH‘ filtering theory also provides an

explicit definition of robustness and the associated

mathematical description.

We have developed an ensemble algorithm for effi-

cient implementation of the HF based on the singular

evolutive interpolated Kalman (SEIK) filter with large-

scale nonlinear data assimilation problems. It is shown

that applying the optimality criteria of the HF on the

SEIK filter leads to an algorithm very similar to that of

the SEIK filter, but with an adaptive inflation scheme.

We referred to this filter as theH‘ SEIK filter. Through

numerical experiments, we verified the relative robust-

ness of the EnTLHF in comparison with the SEIK filter.

Validated hindcast studies over the western North

Atlantic and Gulf of Mexico were used to generate the

true states and observations, and a coarser resolution of

the Gulf of Mexico was used for the data assimilation

simulations. The numerical model used in this study is

the Advanced Circulation (ADCIRC) model (Luettich

andWesterink 2005). We have used data and simulations

corresponding to two different storm events—Hurricane

Katrina and Hurricane Ike—as test cases. The results

suggest that the H‘ SEIK filter provides more accurate

storm surge forecasts than the traditional SEIK filter.

This suggests that the adaptive inflation scheme in theH‘

SEIK filter was proven quite efficient in enhancing the

filter behavior during the period of water surge, within

which the system uncertainties can be important. Al-

though the results shown are only for two different test

cases and focuses on short-range forecasts, they suggest

that the H‘-based filter is more robust for storm surge

forecasting problems.

We studied the relevance of a robust H‘-based en-

semble filter in the context of improving short-range

storm surge predictions. Short-range forecasting prob-

lems are mainly controlled by the initial conditions,

providing a compelling test case to evaluate the behav-

ior of a state-estimation H‘-based data assimilation

technique. Meteorological forcing, which is the main

drive behind long-range storm surge variability, was

considered perfect in this study. Accounting for un-

certainties in the wind forcing is essential for practical

short- and long-range storm surge forecast operations

and this problem will be addressed in future work. One

straightforward way to do that is to use the meteoro-

logical uncertainties from weather ensemble analysis

and forecasts, which are now produced in real time

(Zhang et al. 2011), to force ensemble storm surge

forecasts. Other input parameters to ADCIRC, such as

bathymetry and bottom friction, could also change the

trajectory of the surge under identical forcing terms.

These parameters are typically not known with great

accuracy or fidelity. We believe that using the H‘ SEIK

filter in a framework where state variables are coupled

TABLE 4. The average rmse of the maximum water level

forecasts are shown for Katrina simulations using SEIK filter

with different values of inflation factor l. The second column

shows the average rmse at the 405th of 8006 nodes where

the hindcast data (truth) showed maximum water elevations

greater than 4m. The third column shows the average rmse of

the maximum forecasted water levels where the hindcast data

(truth) showed maximum water elevations greater than 5m (163

out of 8006 nodes). The boldface font indicates the best values of

rmse corresponding to inflation factor.

Inflation factor l Rmse for surge .4m Rmse for surge .5m

— 2.38 2.87

1.0 1.52 1.82

1.1 1.70 2.04

1.2 1.42 1.53
1.3 1.58 1.71

1.4 1.95 2.02

1.6 1.61 1.75

2. Numerically unstable Numerically unstable

TABLE 5. The average rmse of the maximum water level fore-

casts are shown for Katrina simulations using H‘ SEIK filter

(EnTLHF)with different values of c. The second column shows the

average rmse at the 405th of 8006 nodes where the hindcast data

(truth) showed maximum water elevations greater than 4m. The

third column shows the average rmse of the maximum forecasted

water levels where the hindcast data (truth) showedmaximumwater

elevations greater than 5m (163 out of 8006 nodes). The boldface

font indicates the best values of rmse corresponding to factor c.

Factor c Rmse for surge .4m Rmse for surge .5m

— 2.38 2.87

0.1 1.54 1.70

0.2 1.61 1.82

0.3 1.59 1.93

0.4 1.72 1.97

0.5 1.50 1.73

0.6 0.72 0.45

0.7 1.17 1.28

0.8 Numerically unstable Numerically unstable
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with parameter estimation will result in improved storm

surge forecasts. Covariance localization was also not

implemented in this work, although it is likely to en-

hance filters performances, particularly in real fore-

casting exercises. This was not essential for the present

work as localization is expected to have similar impact

on the SEIK andH‘-SEIK filters solution. Furthermore,

ensemble sampling errors are not expected to be amajor

FIG. 10. Plots of errors in maximum free surface water level

predictions (m) from true state for (top) simulation using SEIK

filter with (l 5 1.2) and (middle) simulation using H‘ SEIK filter

with (c5 0.6). (bottom) Plot of differences betweenmaximum free

surface water level predictions (m) of simulation using SEIK filter

with (l 5 1.2) and simulation using H‘ SEIK filter with (c 5 0.6).

Note the different color bar range in (bottom).

FIG. 11. Plots of free surface elevation error (m) at 1200 UTC

29 Aug 2008 from truth for (top) SEIK filter using l 5 1.2 and

(middle)H‘ SEIK filter using c5 0.6. (bottom) Plot of Differences

(m) of free surface elevation forecasts at 0800 UTC 13 Sep 2008

between H‘ SEIK (c 5 0.6) and SEIK filter (l 5 1.2). Note the

different color bar range in (bottom).
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source of uncertainties because of the dissipative nature

of storm surge systems. All these research questions are

being studied by the current coauthors.
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