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Abstract
Large language models (LLMs) are rapidly increas-
ing in parameter count, but this growth is not
matched by an availability of high-quality data.
This discrepancy raises concerns about the sustain-
ability of current approaches to language model im-
provement, especially as forecasts suggest a po-
tential data shortage by the end of the decade.
This study investigates the impact of different to-
kenization strategies on the performance of small
transformer (around 10 million parameters) mod-
els, evaluating three prominent subword tokeniza-
tion methods: Byte-Pair Encoding (BPE), Word-
Piece, and SentencePiece. Additionally, we ex-
amine the trade-off between vocabulary size and
embedding size and measure these factors’ effects
on language understanding and model efficiency
within the BabyLM pipeline with BLiMP and Su-
perGLUE scores. Our findings indicate that while
the different tokenization strategies have minimal
impact on model performance, the trade-off be-
tween vocabulary size and embedding size signif-
icantly affects both language understanding and ef-
ficiency. Increasing the vocabulary size beyond a
certain threshold does not seem to enhance lan-
guage understanding. This research improves our
understanding of how tokenization influences the
language modeling process, specifically within the
context of small language models.

1 Introduction
The introduction of the transformer architecture in 2017 [13]
revolutionized the field of language modeling. Since then, the
size of these models has increased dramatically, from 1.5 bil-
lion parameters with GPT-2 in 2019 to over 1 trillion param-
eters with Google’s Switch Transformers by 2022 [4]. How-
ever, this rapid expansion in size requires a corresponding
increase in high-quality data to effectively train these mod-
els—a requirement that is not expected to be met in the near
future. Forecasts suggest a potential shortfall of high-quality
data by 2026 [14], prompting a need to explore alternative
methods for enhancing language model performance. Al-
though Large Language Models (LLMs) process significantly
more information over their training cycles than a human does
in a lifetime, they do not yet leverage this information effi-
ciently. Enhancing sample efficiency can be an alternative
direction to improve model performance.

Recent studies have shown that smaller language models
(< 33 million parameters) can exhibit equivalent language
understanding of their larger counterparts, and similarly dis-
play the desired emergent properties (e.g., reasoning and cre-
ativity) that drive their prevalence [3; 17]. Besides that, the
small scale of these models makes them inherently more in-
terpretable [3], while also making their local deployment eas-
ier, leading to better support for privacy, personalisation, and
democratisation.

Research has yet to fully understand how architectural
choices impact natural language understanding and task-

specific performance in small LMs. Although studies like
Eldan et al. [3] suggest that small LMs can outperform larger
models like GPT-2 by narrowing their training data, quanti-
tative evaluations in applied settings are lacking. Similarly,
Warstadt et al. [17] identify architectural optimizations as a
promising direction, yet comprehensive surveys of these de-
cisions across models are rare. Moreover, studies on LMs
applied to downstream tasks often neglect to explore beyond
default hyperparameters, much less delve into architectural
choices [19].

This research is dedicated to exploring a part of that gap,
focusing on tokenization strategies and their parameters, on
which there has been little to no published work. While exist-
ing studies on transformer models often reuse tokenizers from
other projects without any modifications, it has been demon-
strated that tailoring the tokenizer to the specific task can sig-
nificantly improve results. Our study seeks to deepen the un-
derstanding of how tokenization impacts the performance of
small language models (LMs), which remain under-explored
in this context.

We investigate the three most prominent subword tokeniza-
tion methods: Byte-Pair Encoding [12], WordPiece [10], and
SentencePiece [7], exploring various vocabulary sizes for
each. In our experiments, we analyze the trade-off between
vocabulary size and transformer embedding size, maintaining
a constant total parameter count to suit the small LM context
of this research. This tradeoff allows us to analyse the bal-
ance between the information contained in a token, and the
embedding size on which the model fits this information.

To comprehensively evaluate the impacts of our tokeniza-
tion strategies and parameters, we utilized the BLiMP [18]
and SuperGLUE [15] benchmarks to assess language un-
derstanding and tested model efficiency in inference and
generative settings. We conducted experiments using both
ROBERTA [8] and GPT-NEO [1] models, given that they
represent the two main transformer architectures: encoder,
and decoder. We pretrained them on the TinyStories dataset,
which is known for its cognitive simplicity, allowing the mod-
els to focus primarily on language comprehension.

Our contributions from the study of the impact of different
tokenization strategies and the trade-off between vocabulary
size and embedding size on small LMs are as follows:

• We demonstrate that beyond a certain vocabulary thresh-
old, there is no additional benefit to language under-
standing in our small model settings.

• We establish that there are no significant differences
in language understanding or model efficiency among
Byte-Pair Encoding, WordPiece, and SentencePiece to-
kenization strategies.

• We introduce a new method for measuring language
model generation speed that accommodates compar-
isons across models with varying average token sizes.

• We provide a replication package1 for reproducing our
findings, and our models2 published on HuggingFace.

1https://github.com/AISE-TUDelft/tiny-transformers
2https://huggingface.co/collections/AISE-TUDelft/brp-tiny-

transformers-666c352b3b570f44d7d2a519



2 Related Works

2.1 Transformers

The introduction of the transformer architecture by Vaswani
et al. in 2017 [13] has revolutionized the field of language
modeling. This architecture powers well-known tools such
as ChatGPT, Gemini, and Claude. Transformer architec-
tures are typically categorized into three styles: decoder-
only, encoder-only, and encoder-decoder hybrids. Decoder-
only models, such as those used in GPT, employ causal
self-attention to condition each prediction solely on preced-
ing information, making them ideal for text generation tasks.
Conversely, encoder-only models like BERT utilize bidirec-
tional self-attention, allowing them to process both preced-
ing and succeeding information, which is advantageous for
tasks like text classification. Lastly, the encoder-decoder hy-
brids, as initially described by Vaswani et al., combine fea-
tures of both architectures, using the encoder to process in-
put sequences and the decoder to generate output sequences,
making them suitable for sequence-to-sequence tasks such as
machine translation, as can be seen in Figure 1.

Figure 1: Encoder-Decoder hybrid transformer model architecture.
[13]

2.2 Tokenization
Transformer architectures traditionally begin with a tokeniza-
tion step, where natural language inputs are converted into
vector-representable tokens. The basic method of splitting
text into words offers the advantage of high compression,
i.e., average length of a sentence measured in tokens. It
does, however, result in a large vocabulary that increases the
model size and creates Out-of-Vocabulary (OOV) issues [12].
OOV occurs when tokenizers, trained on a fixed corpus, en-
counter new words during training or inference, a common
challenge with languages with agglutinative forms such as
German [12]. In such cases, the model must default to an
’unknown’ token, potentially ignoring close semantic rela-
tionships with word already present in the vocabulary.

To mitigate the Out-of-Vocabulary (OOV) issue, one ef-
fective approach is using a character tokenizer that splits in-
puts into individual characters. Since all words are com-
posed of characters from a consistent set, such as Unicode
or UTF-8, this method eliminates OOV tokens and results in
a smaller vocabulary, reducing model size. However, charac-
ter tokenization significantly lowers the degree of compres-
sion, meaning that the fixed-size context window of tradi-
tional transformer models will contain less information.

Word and character tokenization methods represent two ex-
tremes in managing vocabulary size. Most tokenizers opt
for a middle ground approach known as subword tokeniza-
tion, which balances the vocabulary size with a high degree
of compression. This method involves creating tokens for
frequently used character combinations, including common
words like ’the’ and crucial morphemes like ’aly’ and ’ize’.
It also retains character tokens to address unseen words ef-
fectively, thereby eliminating the OOV problem. A visual
representation of this tradeoff can be seen in Figure

Figure 2: Representation of Character, Word, and Subword tok-
enization.

There have been three main subwork tokenization algo-
rithms:

• Byte Pair Encoding (BPE) [12] - It starts with a token
vocabulary composed out of characters. It then itera-
tively merges the tokens that are most frequently seen
consecutively in the training data until the desired vo-
cabulary size is reached.

• WordPiece [6] - Works identically to BPE except for the
token merging criterion. Instead of merging the tokens
that are most frequently seen consecutively, it merges
the tokens that increase the likelihood of the data by the



greatest amount, e.g., {c → e : 10, c → v : 1, u → d :
20, u → a : 20} will lead to c and e being merged.

• SentencePiece [7] - This algorithm isn’t a subword to-
kenization method itself, but a wrapper on subword to-
kenization methods. It supports both BPE and Unigram
Language Model [6] as its base subword tokenizers. It
works by pruning a large vocabulary of tokens via en-
tropy reduction while minimizing the impact on a spec-
ified loss function (usually related to data likelihood).

Although subword tokenization is the most prominent in
current language models, a new wave of token free ap-
proaches have been proposed in the last few years [21] [20].
Token free approaches remove the cumbersome and some-
times language dependent process that is tokenization, mak-
ing the training of the transformer a truly end-to-end process.
Token free transformers also have the benefit of being modal-
ity agnostic, since they can learn directly from the input byte
data. Two of the most notable proposed transormer based
token free approaches have been MegaByte [21] and ByT5
[20].

3 Approach
Tokenization as a component of the language modelling pro-
cess is is frequently overlooked and under-researched. Most
work on transformer models reuse, without adaptation, al-
ready trained tokenizers from other projects. The GPT-2 to-
kenizer, for example, is still one of the most used tokenizers
despite it being almost 5 years since its release. And this per-
sistent neglect of tokenization does not stem from a lack of
influence on model performance. On the contrary, it has been
shown that fine-tuning the tokenizer for the specific task at
hand can yield significant results [2].

The main purpose of this work is to enhance our under-
standing of the impact of tokenization on language modeling,
particularly in small transformers with fewer than 33 million
parameters. We aim to systematically compare various tok-
enization strategies, focusing also on their most relevant pa-
rameter: vocabulary size. The literature reveals a notable lack
of studies examining different tokenization methods and vo-
cabulary sizes across both small and larger language models
(LLMs).

3.1 Tokenization Strategies
Over the past decade, various algorithms have been proposed
to generate token vocabularies for language models, primar-
ily focusing on subword tokenization. These methods typi-
cally operate by iteratively analyzing the frequency of sub-
word units in a specific text corpus, leading to vocabular-
ies that capture fundamental morphological elements, such as
morphemes. This approach allows models to efficiently de-
compose words into meaningful, reusable components, which
aids in learning efficiency.

Although these various algorithms all aim to identify the
most common subwords within a text corpus, they differ in
the criteria they employ for this task. These differences natu-
rally result in distinct token vocabularies, even when applied
to the same training data. It is then relevant to assess how

these variances in tokenization strategies affect language un-
derstanding and the speed of inference and generation. For
this, we have chosen to examine the three most prominent
subword tokenization strategies: BPE (Byte-Pair Encoding)
[12], WordPiece [6], and SentencePiece [7], to evaluate their
respective impacts on model performance.

Figure 3: Visual representation of the trade-off between vocabulary
size and embedding dimession in a transformer embedding matrix.
As the embedding size increases, the vocabulary size decreases.

3.2 Vocabulary Size - Embedding Size Tradeoff
All of the subword tokenization strategies we examine re-
volve around an important parameter: vocabulary size. This
parameter has an important impact on model performance,
as a larger vocabulary usually has larger tokens, containing
higher information on average and thus increasing model con-
textual reach. The vocabulary size is responsible for the num-
ber of columns on the embedding matrix, with a larger vo-
cabulary increasing the width of the matrix as can be seen in
Figure 3.

The other dimension of the embedding matrix is known as
the embedding size. This dimension determines the number
of features each token embedding will have. The choice of
embedding size also influences model performance; a smaller
embedding size compacts the token embeddings into a more
constrained vector space, which can lead to a loss of infor-
mation and diminish the model’s ability to discern certain to-
kens. On the other hand, while a larger embedding size might
enhance the model’s ability to distinguish token embeddings,
it also increases the computational load and potential for over-
fitting.

Both vocabulary size and embedding size influence model
performance, as well as the speed of inference and generation.
Our research aims to determine how, within the constraints of
a fixed total parameter count, different allocations of vocab-
ulary size and embedding size affect the model’s language
understanding capabilities and its operational speed. An in-
tuition for how these parameters interact with each other can
be observed in Figure 3.

4 Experimental Setup
4.1 Research Questions
The concrete research questions we aim to answer are the fol-
lowing:



1. How does the use of different tokenization strategies
(Byte-Pair Encoding, WordPiece, SentencePiece) im-
pact the performance metrics of small scale (< 33 mil-
lion parameters) transformers in terms of language un-
derstanding, inference speed, and generation speed?

2. In small-scale transformers, how does balancing vocab-
ulary size with embedding size influence model perfor-
mance in terms of language understanding, inference
speed, and generation speed?

4.2 Datasets
To train the three sub-word tokenization algorithms—Byte-
Pair Encoding [12], WordPiece [6], and SentencePiece
[7]—we use the BabyLM dataset [16]. This dataset com-
prises 100 million words of both written and spoken En-
glish, featuring children’s content and general adult dialogue.
It was specifically selected for its suitability for small-scale
language models, focusing on fundamental language under-
standing while minimizing domain-specific knowledge. This
allows the tokenizer to better generalize across various forms
of English. Additionally, the diverse linguistic content of
BabyLM makes it befitting of the model performance evalua-
tion described in 4.4, which has a very large focus on linguis-
tic coherence, while putting less emphasis on fact remember-
ing and complex reasoning.

For the pre-training of the language models, we utilize
the TinyStories dataset [3], which contains 2.1 million short
children’s stories generated by GPT 3.5 and GPT 4, with
each story averaging about 175 words. This dataset was
specifically chosen for its emphasis on grammatical structure
and cognitive simplicity, characteristics that are beneficial for
small language models. Importantly, it is also devoid of spe-
cialized domain knowledge, thereby allowing the models to
concentrate on modelling fundamental sentence structure and
grammar. Previous research has demonstrated that small lan-
guage models (with fewer than 33 million parameters) pre-
trained on this dataset have surpassed GPT-2 (which has 125
million parameters) in tasks measuring natural language un-
derstanding [3].

4.3 Models and Tokenizers
For all of the subwork tokenizers trained, we pretrain a
ROBERTA and a GPT-NEO model. We make use of their
respective Hugging Face implementations3 4. We test with
these two model architectures as they represent the two main
transformer styles available: decoder and encoder respec-
tively. There have been newer decoder and encoder style
models proposed, with more complex optimizations such as
flash-attention, but these possess the simplicity that is suit-
able for the scope of this project. All of the models trained
had 2 transformer blocks, 4 attention heads within each block,
a context window of 512 tokens and an intermediate size of
1024, totalling a fixed ballpark of 9 million parameters, and
we trained the models for one epoch.

For each of the subword tokenization strategies, we trained
six tokenizers with the following vocabulary sizes: 1,000;

3https://huggingface.co/docs/transformers/model doc/gpt neo
4https://huggingface.co/docs/transformers/model doc/roberta

3,000; 6,000; 10,000; 15,000; and 20,000. To maintain a
fixed parameter count across models, corresponding embed-
ding sizes were adjusted to 780, 700, 604, 516, 412, and 348,
respectively. This range of values was chosen to cover a broad
spectrum within the vocabulary size - embedding size spec-
trum, facilitating the understanding of the significance of this
trade-off, particularly in terms of model efficiency and lan-
guage understanding. It is worth noting that we have trained
the SentencePiece tokenizer with the Unigram model [6] as
its base.

4.4 Evaluation Metrics
Language Understanding
To evaluate all of pretrained models, we utilise of the
BabyLM evaluation pipeline 5 [16], which includes three
main components: BLiMP, GLUE, and SuperGLUE. The
BLiMP component specifically measures the language un-
derstanding of models by presenting pairs of sentences—one
grammatically correct and the other incorrect—and scoring
the model based on its ability to assign a higher likelihood to
the correct sentence [18; ?]. GLUE and SuperGLUE, on the
other hand, extend the evaluation to a broader range of lan-
guage understanding and reasoning tasks, following a fine-
tuning process. The BabyLM pipeline integrates both GLUE
and SuperGLUE tasks.

Generation Speed
To accurately evaluate the efficiency of different subword to-
kenization strategies and the trade-off between vocabulary
size and embedding size, we focused on measuring the text
generation speed of GPT-NEO models. ROBERTA mod-
els, which are not autoregressive without finetuning, were
excluded from this test. Traditionally, generation speed is
measured in tokens per second. However, this metric proved
inadequate due to variations in vocabulary sizes, as models
with smaller vocabularies generate fewer, larger tokens com-
pared to those with larger vocabularies. Since we wanted
to measure the speed at which information is generated, and
not tokens specifically, include another measure. Initially we
considered using bits per second, but this approach tended to
overestimate the speed of models generating more characters
that require larger encoding sizes, such as those from the ex-
tended ASCII set. To ensure a more accurate measurement,
we opted to assess generation speed in characters per second,
explicitly excluding spaces and any characters specific to the
tokenization algorithms.

All speed tests were conducted using an NVIDIA GeForce
RTX 3080 GPU with 10 GB of VRAM. For each model, in-
puts were generated with a batch size of 256, each sequence
consisting of 32 tokens and producing outputs of 250 tokens.
Prior to testing, we execute a warm-up stage consisting of
three runs using a batch size of 150 to ensure GPU optimiza-
tion. The performance metrics were then calculated by aver-
aging the results over 25 consecutive runs.

Inference Time
To assess the efficiency of the ROBERTA and GPT-NEO
models, we implemented a test that measures the time taken

5https://github.com/babylm/evaluation-pipeline-2023



for a forward pass through the transformer models using a
specific dataset. For this purpose, we selected sentences from
the argument structure subtask of the BLiMP dataset, which
consists of 16,496 short sentences, due to their structural
simplicity. We recorded the total time required to process
all these sentences in sequence, providing a comprehensive
measure of inference speed. All tests were conducted on an
NVIDIA GeForce RTX 3080 GPU with 10 GB of VRAM.

5 Results
5.1 Language Understanding Evaluation
The relationship between vocabulary size and embedding size
is illustrated in Figure 4, revealing a non-linear relationship
that resembles exponential decay. This indicates that as vo-
cabulary size increases, only minor reductions in embedding
size are necessary to achieve the same proportional increase
in vocabulary, whilst maintaining total parameter count. This
curves were obtained under the specific model parameters
outlined in Subsection 4.3.
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Figure 4: Vocabulary size vs. the Embedding size per token in the
vocabulary for a model with 9M parameters.

In Figure 5, we analyze the performance of different tok-
enization strategies and vocabulary sizes on the BLiMP and
SuperGLUE language understanding metrics for ROBERTA
models. We can observe that there is a sharp decrease in both
BLiMP and SuperGLUE scores for the vocabulary sizes of
1000 tokens, when compared to the remaining vocabulary
sizes. From vocabulary sizes of 3000 tokens onwards, the
BLiMP scores stabilize, showing little variation across in-
creases in vocabulary size, which indicates a plateau in per-
formance improvement. The SuperGLUE scores, on the other
hand, show a slight negative trend as vocabulary sizes in-
crease, suggesting that the decrease in embedding size might
be affecting model performance. The variation in scores be-
tween the different tokenization strategies (Byte-Pair Encod-
ing, WordPiece, and SentencePiece) do not exhibit a consis-
tent or significant pattern.

The same analysis as described above can be found for
GPT-NEO models in Figure 6. This analysis reveals a notably
lower performance at a vocabulary size of 1000 tokens for
all tokenization strategies. For the Byte-Pair Encoding and
WordPiece strategies, there is a consistent increase in BLiMP
scores as the vocabulary size expands up to the 10,000 token

mark, after which the scores plateau, suggesting diminishing
returns beyond this point. The SentencePiece strategy shows
improvements up to the 15,000 token mark, beyond which
its performance declines. A similar pattern is observed with
SuperGLUE scores, where SentencePiece deteriorates post-
15,000 tokens, whereas Byte-Pair Encoding and WordPiece
peak at the 6,000 token mark before stabilizing.
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Figure 5: ROBERTA model scores with Byte-Pair Encoding, Word-
Piece, and SentencePiece tokenizers on both SuperGLUE and
BLiMP tasks for the different vocabulary sizes.
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Figure 6: GPT-NEO model scores with Byte-Pair Encoding, Word-
Piece, and SentencePiece tokenizers on both SuperGLUE and
BLiMP tasks for the different vocabulary sizes.

5.2 Efficiency Assessment
In Figure 7 we can see how an increase in vocabulary size
affects the average token length for each of the tokenization
strategies. We can observe a clear logarithmic pattern, which
indicates that new tokens aren’t significantly larger. Senten-
cePiece also showcases a distinctly larger average token size
when compared to the other two approaches.

In Figure 8, the generation speed, measured in tokens per
second and characters per second for the GPT-NEO models
is depicted. The results, for all of the tokenization strategies,
show a consistent growth, in tokens per second, for vocabu-
lary sizes until the 15,000 mark, after which it stabilises. The
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Figure 7: Average characters per token for Byte-Pair Encoding,
WordPiece, and SentencePiece tokenizers for the different vocab-
ulary sizes.

character per second measurement, shows the same pattern,
with a higher slope, due to the increase in average token size.
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Figure 8: GPT-NEO model geneneration speed with Byte-Pair En-
coding, WordPiece, and SentencePiece tokenizers measured in both
tokens/s and chars/s for the different vocabulary sizes.

In Figure 9 the inference time for both GPT-NEO and
ROBERTA models is depicted. There seems to be no sig-
nificant impact of both tokenization strategies and the vocab-
ulary sizes on the inference time for the ROBERTA models.
On the other hand, for GPT-NEO models, there seems to be
an increase in inference time until the 10,000 token mark, and
a plateauing afterwards.

The detailed numerical results can be observed in Ap-
pendix A, as well as on our Wandb6 page

6 Discussion
6.1 Implications
The findings from Subsection 5.2 reveal that there is no sig-
nificant difference in language understanding or model effi-
ciency among the three tokenization strategies studied. How-
ever, it is notable that GPT-NEO models using the Sentence-
Piece tokenizer demonstrate a marginally higher characters-
per-second rate compared to those using Byte-Pair Encoding
and WordPiece. This increased rate is likely attributable to
SentencePiece generating slightly larger tokens on average
for the same vocabulary size, which suggests a potential effi-
ciency advantage in certain contexts.

6https://wandb.ai/tiny-transformers/tokenizers
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Figure 9: Inference time for Byte-Pair Encoding, WordPiece, and
SentencePiece tokenizers with both ROBERTA and GPT-NEO
models for the different vocabulary sizes.

The tradeoff between vocabulary size and embedding size
significantly impacts both model performance and efficiency.
For ROBERTA models, increasing the vocabulary beyond
6,000 tokens does not seem to improve language understand-
ing, and larger vocabularies actually seem to degrade Super-
GLUE scores sligthly. This decline could be attributed to
the reduced embedding size, which limits the model’s abil-
ity to handle the cognitive complexity of SuperGLUE tasks
compared to simpler BLiMP tasks (which don’t observe this
same degradation), as a smaller embedding space restricts the
model’s capacity to encode nuanced information. Moreover,
it could also be the case that these extra tokens may remain
unused, offering no benefits in terms of practical data com-
pression.

With regards to GPT-NEO models, the pattern is slightly
different. Unlike ROBERTA models, which show no ben-
efits from increasing vocabulary size beyond 6,000 tokens,
GPT-NEO models continue to improve up to the 10,000 to-
ken threshold. The reason for this disparity is not fully under-
stood, but it may be related to the unidirectional self-attention
mechanism in GPT models, which perhaps does not utilize
the additional embedding size (which is 604 vs 516) as effec-
tively as the bidirectional attention mechanism in ROBERTA
models.

With regards to model efficiency, the trade-off seems to
also have a significant impact. From 10,000 tokens on-
wards, the inference time for both GPT-NEO and ROBERTA
models seem to stabilize, with GPT-NEO being faster than
ROBERTA, likely due to unidirectional self attention. The
decrease in inference time for GPT-NEO models with vocab-
ularies smaller than 10,000 is intruiguing, specially when the
ROBERTA models show a consist inference time across all
vocabulary sizes. This is especially intruiguing considering
that GPT-NEO generation speeds show a monotonically in-
creasing generation speed for larger vocabularies. Answering
this questions requires further research.

With regards to model efficiency, the trade-off also ap-
pears to have a significant impact. Beyond 10,000 to-
kens, inference times for both GPT-NEO and ROBERTA
models stabilize, with GPT-NEO consistently outperform-
ing ROBERTA in speed, likely due to its unidirectional self-
attention mechanism. Interestingly, while GPT-NEO models



show a decrease in inference time for vocabularies smaller
than 10,000, ROBERTA models maintain consistent infer-
ence times across all vocabulary sizes. This discrepancy is
particularly noteworthy given that GPT-NEO demonstrates
monotonically increasing generation speeds for larger vocab-
ularies. GPT-NEO models show faster generation speed but
slower inference time, with larger vocabulary sizes. Further
research is required to answer why that is the case.

6.2 Limitations
Internal validity evaluates whether the observed results are
truly caused by the independent variables being tested, rather
than by external influences. External validity concerns the
applicability of the study’s findings to different contexts out-
side the study itself. Construct validity assesses whether the
measurement tools accurately reflect the intended concepts of
the study.

Internal Validity
One threat to the internal validity of our findings is the com-
putational limitations encountered during this project. We
were only able to train the models for one epoch, likely result-
ing in underfitting, which introduces additional variance to
the results. Strengthening the validity of our findings could be
achieved by also training multiple models with different seeds
for each tokenization algorithm and vocabulary size. Addi-
tionally, testing a broader range of vocabulary sizes would
help provide a more robust interpretation of the trade-offs in-
volved.

External Validity
The main threat to the external validity of this study stems
from the experimental setup, particularly the small size of the
models used. At 10 million parameters, these models are con-
sidered small by today’s standards, even within the scope of
small transformers. This raises questions about the applica-
bility of our findings to larger models, which may exhibit dif-
ferent capabilities. These models also don’t include many of
the optimizations that have been introduced in the last years,
which can put into question the applicability of the findings.

Construct Validity
The language understanding metrics employed, while com-
prehensive, may not capture all facets of language under-
standing. Similarly, the efficiency measures, though rigor-
ously tested through numerous iterations and a warmup pro-
cess, might still vary under different hardware and settings.
Testing these metrics across diverse environments could po-
tentially yield more precise and universally applicable results.

6.3 Future Work
Future work could extend our understanding of the impact of
tokenization and its parameters on model performance and
efficiency in several ways. Replicating the experiments con-
ducted in this study and specifically addressing the threats
outlined in Subsection 6.2 would be particularly valuable.

From the results discussed in Subsection 6.1, there appears
to be a threshold in vocabulary size beyond which there is
no increase in language understanding. Given our focus on
the trade-off between vocabulary size and embedding size, it

seems that the embedding size in these models may be un-
necessarily large. Future research could explore optimizing
embedding size to determine the smallest possible dimen-
sion that does not compromise language understanding. Ad-
ditionally, investigating the specific requirements of embed-
ding size relative to vocabulary size would be valuable, as
our study observed these two factors moving in opposite di-
rections.

Additionally, further investigation into the impacts of vo-
cabulary size and embedding size on model efficiency could
prove beneficial. As highlighted in Subsection 6.1, there are
contradictory trends in inference and generation speeds ob-
served in GPT-NEO models. Delving deeper into the reasons
behind these divergent trends could provide valuable insights.

7 Conclusion
This study explored the impact of different tokenization
strategies and the trade-off between vocabulary size and em-
bedding size on small language models. We found that while
Byte-Pair Encoding, WordPiece, and SentencePiece strate-
gies do not significantly affect language understanding, Sen-
tencePiece does lead to higher generation speeds due to its
tendency to generate larger tokens.

Furthermore, our analysis revealed that beyond a certain
vocabulary threshold, there is no additional benefit to lan-
guage understanding. The trade-off between vocabulary size
and embedding size significantly influences model efficiency
and generation speed. Specifically, an increase in vocabulary
size, which correlates with an increase in average character
per token, significantly impacts generation speeds.

8 Responsible Research
To ensure the robustness of our results, we ensured that the
datasets used for pretraining and evaluating our models were
distinct, thereby preventing test set contamination. As em-
phasized in recent studies on pretraining methodologies [9],
pretraining on the evaluation dataset can artificially inflate
performance metrics, thereby undermining the validity of the
research findings.

To address the ongoing reproducibility crisis in the field
of deep learning—a critical issue highlighted by Semmelrock
et al. [11]—we have provided a comprehensive replication
package. This package includes all the source code needed
to reproduce our results. We also provided all of the rele-
vant hyperparameters and hardware specifications in Section
4. By doing so, we aim to facilitate exact replications of our
findings, thereby enhancing the reliability and transparency
of our research.

In accordance with the Netherlands Code of Conduct for
Research Integrity, we conduct and report all our results with
honesty, transparency, and responsibility, upholding the high-
est standards of research integrity. We adhere to the educa-
tional and normative frameworks outlined in chapters 2 and 3
of the Code [5], emphasizing good research practices.
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A Tables With Numerical Results
This appendix contains tables with the numerical results on
which the graphs from section 5 are based. Here you can find
the results for each model, which is defined with the name.
BERT refers to the ROBERTA models while GPT refers to
GPT-NEO models. The after that comes the vocabulary size
(1k, 3k, 6k, 10k, 15k, 20k). After that the tokenizer is spec-
ified. SentencePiece with ”sp”, Wordpiece with ”wp”, and
Byte-Pair Encoding with ”bpe”.

Table 1: BLiMP and SuperGlue Results for BERT Models
Name BLiMP Avg SuperGlue Avg
BERT 1k-sp 0.566 0.582
BERT 1k-bpe 0.574 0.546
BERT 1k-wp 0.556 0.546
BERT 20k-sp 0.610 0.595
BERT 15k-sp 0.603 0.581
BERT 10k-sp 0.604 0.601
BERT 6k-sp 0.599 0.593
BERT 3k-sp 0.601 0.575
BERT 20k-wp 0.610 0.578
BERT 15k-wp 0.592 0.590
BERT 10k-wp 0.600 0.586
BERT 6k-wp 0.598 0.598
BERT 3k-wp 0.592 0.576
BERT 20k-bpe 0.612 0.566
BERT 15k-bpe 0.606 0.570
BERT 10k-bpe 0.590 0.592
BERT 6k-bpe 0.594 0.597
BERT 3k-bpe 0.594 0.594

Table 2: BLiMP and SuperGlue Results for GPT Models
Name BLiMP Avg SuperGlue Avg
GPT 1k-sp 0.525 0.516
GPT 1k-bpe 0.537 0.530
GPT 1k-wp 0.532 0.530
GPT 20k-sp 0.586 0.602
GPT 15k-sp 0.612 0.608
GPT 10k-sp 0.590 0.579
GPT 6k-sp 0.574 0.563
GPT 3k-sp 0.545 0.561
GPT 20k-wp 0.582 0.579
GPT 15k-wp 0.591 0.584
GPT 10k-wp 0.576 0.597
GPT 6k-wp 0.549 0.609
GPT 3k-wp 0.554 0.575
GPT 20k-bpe 0.571 0.586
GPT 15k-bpe 0.566 0.591
GPT 10k-bpe 0.589 0.602
GPT 6k-bpe 0.554 0.604
GPT 3k-bpe 0.540 0.558

Table 3: GPT Models Generation Speed Metrics
Name Tokens per Second Chars per Second
GPT 1k-sp 30,626 66,708
GPT 1k-bpe 29,635 63,235
GPT 1k-wp 30,797 59,054
GPT 20k-sp 73,761 247,641
GPT 15k-sp 74,466 240,839
GPT 10k-sp 56,128 183,672
GPT 6k-sp 45,049 142,986
GPT 3k-sp 36,223 103,568
GPT 20k-wp 69,601 228,795
GPT 15k-wp 70,511 230,779
GPT 10k-wp 51,880 156,725
GPT 6k-wp 44,006 126,051
GPT 3k-wp 35,046 90,094
GPT 20k-bpe 68,969 250,035
GPT 15k-bpe 69,571 235,701
GPT 10k-bpe 52,555 168,361
GPT 6k-bpe 42,799 128,505
GPT 3k-bpe 34,470 90,808

Table 4: BERT Models Inference Time
Name Inference Time (s)
BERT 1k-sp 46.81
BERT 1k-bpe 45.44
BERT 1k-wp 45.73
BERT 20k-sp 44.39
BERT 15k-sp 44.65
BERT 10k-sp 46.02
BERT 6k-sp 45.68
BERT 3k-sp 45.15
BERT 20k-wp 43.39
BERT 15k-wp 43.93
BERT 10k-wp 44.45
BERT 6k-wp 44.25
BERT 3k-wp 45.20
BERT 20k-bpe 44.25
BERT 15k-bpe 43.35
BERT 10k-bpe 44.90
BERT 6k-bpe 45.28
BERT 3k-bpe 44.82



Table 5: GPT Models Inference Time
Name Inference Time (ms)
GPT 1k-sp 31.89
GPT 1k-bpe 30.57
GPT 1k-wp 31.76
GPT 20k-sp 41.64
GPT 15k-sp 41.24
GPT 10k-sp 41.07
GPT 6k-sp 36.36
GPT 3k-sp 34.95
GPT 20k-wp 37.37
GPT 15k-wp 40.03
GPT 10k-wp 40.49
GPT 6k-wp 37.21
GPT 3k-wp 34.64
GPT 20k-bpe 41.20
GPT 15k-bpe 40.62
GPT 10k-bpe 40.91
GPT 6k-bpe 36.80
GPT 3k-bpe 34.50

Table 6: Tokenizer Characterization
Tokenizer Name Average Characters per Token
sp (1k) 2.9849
bpe (1k) 2.5347
wp (1k) 2.0271
sp (3k) 4.2568
bpe (3k) 3.5870
wp (3k) 3.3513
sp (6k) 4.9413
bpe (6k) 4.2359
wp (6k) 4.0741
sp (10k) 5.2835
bpe (10k) 4.6394
wp (10k) 4.5279
sp (15k) 5.5566
bpe (15k) 4.9237
wp (15k) 4.8341
sp (20k) 5.7342
bpe (20k) 5.1218
wp (20k) 5.0324
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