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Preface

This document describes the design and process of
building a network-based bootloader for the LPCX-
presso boards. It is our bachelor’s thesis for the bach-
elor Computer Science at the TU Delft. Our assign-
ment was executed as part of the “Snowdrop” re-
search group in the Embedded systems department.

We were both interested in embedded program-
ming close to the hardware but struggled to find an
bachelor’s thesis assignment in that area. We arrived
at the research group via Maurice Bos who was al-
ready doing a project there.

The “Snowdrop” research group was at the time in
the middle of implementing the protoSPACE floor,
which is a floor where each tile has a RGB LED, a
pressure sensor and can talk to its four direct neigh-
bors. A central CAN bus connected to all the tiles
was designed in to be able to debug and work with
the network. After some meetings with Stefan Dul-
man we arrived at the assignment of writing support
tools for the protoSPACE floor. We ended up imple-
menting a CAN bootloader, allowing a programmer
to deploy code on the nodes, or a subset of the nodes,
in the floor without having to re-flash them.

We learned a lot about embedded software in this
project. Both of us want to continue in the embedded
software field and this project gave us an insight in
what embedded software is about.

We want to thank the Snowdrop group for adopt-
ing us in their group and allowing us to work with
their resources. Stefan Dulman and Andrei Pruteanu
for supervising the project and feedback on our re-
ports. Also Steffan Karger and Agostino Di Figlia
for answering a lot of our questions.
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Summary

In our Bachelor’s project, we joined the Embed-
ded Systems department of the Faculty of Electri-
cal Engineering Mathematics and Computer Science.
A select group of the Embedded Systems depart-
ment, called “Snowdrop” is developing applications
concerning large scale adaptive systems. As a play-
ing field for their applications, the group uses the
protoSPACE floor, consisting of 189 tiles with each
containing a microprocessor.

The product to develop is a network-based boot-
loader that can program multiple microprocessors si-
multaneously. This would decrease the amount of
testing time for developers of the floor, as currently
each microprocessor has to be programmed individu-
ally.

We have had some setbacks during the develop-
ment of the bootloader. This was largely due to the
debugging time of hardware related bugs, which was
not taken into consideration before the start of the
project.

During the final weeks, the bootloader software has
been tested on a part the protoSPACE floor, as the
floor itself is also in development. As these tests are
not yet finished, the only preliminary result is that 16
successful node flashing was performed by the boot-
loader software.

We have not found a bootloader as general as this
one. It only needs the LPC1769 microprocessor and
an external crystal oscillator and it doesn’t require
any change to the user application. This makes the
bootloader a good candidate for other projects that
use the LPC1769 microprocessor.

All in all, we are happy that we have chosen this
project as it is a level-wise daring one. Our learn-
ing experience was way more precious than the time
spent on the project.
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Chapter 1

Introduction

Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Tile 7 Tile 8 Tile 9

Figure 1.1: Overview of the protoSPACE system, the
arrows are the UART connections and the red line is
the CAN bus.

In this chapter we want to introduce the assign-
ment briefly and discuss the role of our work in the
research group. The content will overlap with our
project proposal which is included in Appendix B.

1.1 protoSPACE

protoSPACE is a joint venture between the Hy-
perbody research group from the Faculty of Ar-
chitecture and the Snowdrop research group from
the Faculty of Electrical Engineering, Mathemat-
ics and Computer Science. Hyperbody is interested
in interactive architecture and Snowdrop in locally-
interacting agents that generate complexity in large-
scale systems. These interests come together in the
protoSPACE floor, seen in Figure 1.2.

The protoSPACE floor consists of tiles which each
have a pressure sensor to sense if someone is standing
on the tile and a RGB LED. Each tile can commu-
nicate with its four direct neighbors via UART and

a central CAN communication bus is connected to
each tile for debugging, as seen in Figure 1.1. This is
of interest to the Hyperbody group because it is an
interactive architecture, via the pressure sensors and
the LEDs the floor can interact with a person or a
group of people. The protoSPACE floor is of interest
to the Snowdrop group because every node only has
knowledge about its direct neighbors. This makes it
a locally-interacting agent. With a relatively simple
program on each node a network can perform a com-
plex task.

The long term goal for the protoSPACE project is
to have buildings that interact with the user and do
that with agents. The advantage of that implemen-
tation is that in large and complex systems a central
governing agent that makes all decisions is not feasi-
ble and puts limits on the size of the system.

1.2 Problem statement

The main assignment we worked on was developing
debug tools for developing on the protoSPACE floor.
Debugging and deploying applications on the floor is
really hard.

Deploying applications involves manually flashing
all the tiles you are going to test on, so walking with
your flashing tool from tile to tile updating the code.
This in practice meant that tests were only done on
small portions of the floor and that no real applica-
tion has been deployed on all 189 tiles in the network.
Developing an application to flash all or a subset of
all tiles with a piece of software will make deploying
code on the floor easier.

Another part of our assignment, for which we did
not have enough time to implement, was making tools
for debugging applications on the floor. The problem
here is that debugging deployed applications is hard.
The tiles all run a virtual machine such as eLua or

1



Figure 1.2: The protoSPACE 3.0 room.

Proto. Ideally you would want to be able to inspect
the internal state of a tile via the CAN bus.

2



Chapter 2

Orientation

Before starting the implementation we off course
did a study on what we needed to do and how we
we’re going to do it. We discuss our orientation in
this chapter, which will overlap with our orientation
report in Appendix C.

We have already discussed the goals of the
protoSPACE project, now we want to look into more
technical details of the project. The hardware that
will go into the floor will be discussed, we will discuss
the microprocessor we are going to have to program
for and the tools at our disposal to develop and debug
with.

2.1 Hardware

Our code will be deployed on the second generation
hardware for the floor. The first generation hardware
did not function according to the requirements and
had to be redesigned. The design behind the second
generation hardware is discussed in [5] and will only
be briefly touched upon here.

The hardware for each tile consist of two parts, the
LPCXpresso board and the LPCXpresso shield. The
assembly is pictured in Figure 2.1. The LPCXpresso
board is the blue board on the top and the shield is
the green bottom board.

2.1.1 CAN

The bootloader we develop and all other development
tools for the protoSPACE floor, such as debugging
tools, use the CAN bus to be able to communicate
with all nodes easily. We will explain how the CAN
bus works. The limitations imposed by the CAN bus
through the implementation in the floor are discussed
in subsection 2.1.3.

A CAN bus is a communication protocol imple-
menting the first 2 layers of the OSI layer model, the

Figure 2.1: The LPCXpresso LPC1769 board and the
LPCXpresso shield V3 assembly.

physical and the data link layer. In simple terms
the CAN standard defines the physical side, such as
the wires and the transceiver, and the frame format,
i.e. how a CAN frame looks like and how other nodes
should respond to a frame. The entire CAN standard
is discussed in more detail in [2].

CAN Physical layer

We discuss the physical layer of a CAN network and
what constraints the network has to conform to.

A CAN network consists of at least two nodes con-
nected via 2 signals, CAN Low and CAN High. This
is a twisted pair signal, which means that the actual
signal is the difference in voltage between CAN Low
and CAN High. A twisted pair connection has a lot of
good electrical properties such as a good resistance to
noise and interference. This makes CAN a standard
that is also used a lot in the automotive industry.

A CAN bus has a line topology, as seen in Fig-
ure 2.2. This means that the wires connect through
the nodes in a line, with a clear start and end node.
As seen in Figure 1.1 is this done in the protoSPACE

3



Table 2.1: CAN arbitration table.

Dominant Recessive
Dominant Dominant Dominant
Recessive Dominant Recessive

floor by running the CAN bus up and down the floor.
Every node has a CAN transceiver which does the

translation from the electrical signals at the physical
layer to just a serial bit format, as seen in Figure 2.2.
The transceiver just provides an interface from the
CAN High and CAN Low signal to the microproces-
sor. The microprocessor has the data link part of the
CAN standard built in.

The start and end node of the CAN bus should be
terminated, which means that CAN Low and CAN
High should be connected with an 120 Ohm resistor.
This is to prevent reflections on the bus.

The speed of the bus is not fixed in the CAN stan-
dard. The speed of the bus is limited by the length
of the cables, the number of nodes and the number
of connectors. All these factors add parasitic capaci-
tance to the bus, this is further described in [2].

A node at the physical level puts a bit on the bus
and other nodes receive that bit. You have the dom-
inant bit, the 0, and the recessive bit, the 1. In Ta-
ble 2.1 can you see the arbitration table. Nodes that
are trying to send a recessive bit but read back a
dominant bit know that they have lost arbitration
and back off from the bus. This means that CAN
has non-destructive arbitration, if two or more nodes
on the bus collide a node wins and continues so no
time is lost because of arbitration.

CAN Data link layer

The CAN standard also defines two types of data
frames that can be used. We will only discuss the
standard frame. The extended frame that was later
added to the standard is discussed in [3].

Every CAN frame consist of an 11 bit ID and be-
tween 0 and 8 bytes of data. The CAN frame with
all fields is drawn in Figure 2.3.

All frames are broad-casted onto the entire bus, so
every node receives every frame. All frames need to
be acknowledged to be considered sent by a node, and
every node acknowledges all frames. So if on a bus
of 10 nodes 9 receive the frame correctly, then the
sender will only see that the frame got acknowledged
and consider the frame sent.

Every message has a CRC field, as seen in Fig-

ure 2.3. This means that if a message is received by
a node, it is already checked that that message was
received correctly.

In Figure 2.3 it is shown that the identifier of a
CAN message is the first part sent in a frame (after
the start of frame bit). This is done so that the iden-
tifier of the frame also determines the priority of the
message. Messages with low identifiers have more 0
bits early in the message and the 0 bit is dominant on
the CAN bus. If a node sees that it has lost arbitra-
tion in the identifier field it tries again after the frame
has been sent. If however a node sees that it has lost
arbitration outside of the identifier field it sees this
as an bus error. After a small amount of bus errors
the CAN node shuts itself down to prevent itself from
breaking the bus. This can happen for example if the
nodes operate at different speeds or the length of the
CAN cable is too long for the speed the bus is used
on.

2.1.2 LPCXpresso

LPCXpresso is a low-cost development board. There
are different LPCXpressos for different processors.
We use the LPC1769 as the main processor, the
LPC1769 as a micro-processor will be discussed in
section 2.2.

The LPCXpresso is designed as a complete devel-
opment toolchain. For the hardware this means that
half of the board is populated with a flash tool. Nor-
mally, to flash a processor a JTAG or SWD flash
device is needed. On the LPCXpresso this is inte-
grated. Together with the LPCXpresso IDE, fur-
ther discussed in subsection 2.3.2, you can proto-
type code for the LPC1769 very rapidly. The LPCX-
presso is cheap because NXP, the manufacturer of
the LPC1769, sponsors the platform to allow people
to get experience with their processors and subse-
quently design products with them.

The LPCXpresso for the LPC1769 comes with a
debug LED and I2C EEPROM flash memory, which
can be used for permanent storage.

2.1.3 Shield

The LPCXpresso shield is custom developed for the
protoSPACE floor, version 3 is shown in Figure 2.1. It
adds all hardware not directly available on the LPCX-
presso board, such as the CAN transceiver and the
power regulators.

The CAN bus goes through the Ethernet connec-
tors on the shield. The Ethernet cables were chosen
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Figure 2.2: A CAN network.
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Figure 2.3: The CAN standard data frame format.
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because Ethernet also uses a twisted pair in the ca-
ble. Ethernet cables are however more widespread
than CAN cables and are cheaper. There were spe-
cial termination Ethernet stumps made to serve as
CAN bus terminators.

The other connectors on the shield are for the
UART connections to the neighbor nodes, the wire-
less transceiver and the pressure sensor. All of these
peripherals are described in Steffan Karger’s paper
[5].

2.2 Micro-processor

The part of the hardware we were going to do the
actual work on is the micro-processor. The LPC1769
was used in the design, in this section we will explain
how the LPC1769 works in general. The complete
working of the LPC1769 is described in the LPC17xx
User manual [7].

2.2.1 Peripherals

A micro-processor is not fast compared to a desk-
top processor. The LPC1769 can run at top speed
at 120MHz. To be able to execute complex tasks
and communicate with other chips efficiently, manu-
facturers add peripherals to a micro-processor. For
example a CAN peripheral. The CAN peripheral on
the LPC1769 has the CAN protocol build in. A pro-
gram can just tell the peripheral to send a message
over the bus, and the peripheral will take care of the
timing, arbitration and all other details. Peripherals
are implemented in hardware so the sending of the
CAN message can go in parallel with the program
code.

In the LPC1769 the program communicates with
the peripherals via setting values at specific places
in memory, which are called registers. The program
can also change processor settings such as the clock
source to use or what pins of the processor are used
for what function.

A micro-processor can use interrupts. Interrupts
are small pieces of code that are called at an event.
Examples of such events are the passing of some time
or the receiving of a CAN message. Interrupts need
to be enabled by setting a register. Also, a function
pointer to the interrupt handler needs to be put in
a specific place in memory, in the interrupt vector
table.

2.2.2 Memory

The LPC1769 has a specific layout of its memory
which we will discuss in this section. The mem-
ory layout defines where in the address space of the
LPC1769 certain items are located, such as flash,
RAM and peripherals. An abbreviated overview of
the LPC1769 memory is visible in Figure 2.4.

0x1000 7FFF

0x1000 0000

Local Static RAM

0x0FFF FFFF

0x0008 0000

reserved

0x0007 FFFF

0x0000 0401

Flash Memory

0x0000 0400

0x0000 0008

Interrupt vector table

0x0000 0007

0x0000 0004
Stack pointer

0x0000 0003

0x0000 0000
Start pointer

Figure 2.4: Relevant parts of the LPC1769 memory.

At the very start of the flash are the start and
stack pointer. These two pointers determine how the
processor is initialized when switched to user code.
Directly above these variables is the interrupt vector
table with pointers to all the interrupt handlers.

In the flash memory is the application code. The
bootloader and the bootloaded program both have to
be in this region.

In the reserved space are all the peripherals and a
lot of unused space. RAM is at the top of the address
space.

As a programmer you can put whatever you
want in the flash memory. From 0x0000 0000 to
0x0007 FFFF you can put whatever you want during
flashing. In the area above you can only set things
during runtime of the processor (only in registers and
in RAM) and it will be gone when the processor re-
boots.
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Figure 2.5: Relevant parts of processor boot se-
quence.

2.2.3 Boot sequence

The LPC1769 has a specific boot sequence, which
is shown in Figure 2.5. There is already an UART
bootloader on the LPC1769. This is called In Sys-
tem Programming, or ISP. To enter this mode when
booting, a specific pin has to be pulled to ground.

The LPC1769 also verifies whether the code in the
processor is valid. This is verified by looking at a cer-
tain word in the interrupt vector table, which should
be the hash of the previous entries in the interrupt
vector table. This way, the LPC1769 determines if
there is a valid program in the flash. You can have a
corrupt program when flashing went wrong or when
the processor was just shipped from the factory.

2.3 Development tools

In this section we will discuss the tools available to
us for completion of the project.

Figure 2.6: A debug session with the logic analyzer.

2.3.1 Workplace

We worked in the lab on the 9th floor of the Faculty
of EEMCS. The lab was intended for master students
of the Embedded Systems group. This had the ad-
vantage that we were sitting in the same room as the
master students that also worked on the protoSPACE
floor.

The protoSPACE room with the floor itself is ac-
tively being used in architecture.

2.3.2 LPCXpresso IDE

The LPCXpresso IDE is an Eclipse-based develop-
ment environment. It works well with the LPCX-
presso boards to allow fast prototyping. There is
however a limit on the free version for code size
when downloading and debugging via the LPCX-
presso IDE. This implicates that you cannot use the
upper half of flash memory when using the LPCX-
presso IDE. A solution was found for this problem
which is bootloading the code via the onboard UART
bootloader and an USB to UART interface cable.
You can’t however start a debugging session over the
UART cable.

2.3.3 Logic analyzer

We had a logic analyzer available to us to debug our
system with. With a logic analyzer a developer can
visually inspect a logical as a function of time. We
had a Salea Logic. That logic analyzer can also debug
protocols, so it is also a good way to see what is really
happening on the CAN bus. The analyzer was used
for both the UART and CAN bus, as can be seen in
Figure 2.6.
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Chapter 3

Design

In this chapter we discuss the design of the project.
After the orientation phase, described in chapter 2,
we started designing the bootloader. We started with
gathering requirements to describe the functionality
of the bootloader and the constraints on the boot-
loader. Afterwards we generated concepts and com-
pared them to each other with their conformance to
the requirements.

3.1 Terminology

In the course of this report some jargon is used. To
avoid confusion over the meaning of e.g. names and
abbreviations, the following list with descriptions is
made.

EEPROM Electrically Erasable Programmable
Read-Only Memory.

Flashing Writing data to the flash memory of a
node.

Programming Flashing a node with an application.

Bootloader Software to load applications after
startup of a node.

I2C Computer bus to drive the EEPROM chip.

IDE Integrated Development Environment.

Node A LPCXpresso board with a shield, which is
part of the protoSPACE network.

Programmer The node that connects the host to
the CAN bus.

Host The entity on the PC side.

User application The applications that are pro-
grammed on the nodes.

XTAL Crystal oscillator.

IRC LPC1769 internal clock.

3.2 Requirements

Before the start and during the first week of the
project a couple of meetings took place with the re-
searchers working on the protoSPACE floor. During
these meetings the researchers described what prob-
lem they wanted solved and what hardware was al-
ready there. Furthermore, we investigated the envi-
ronment in which the CAN bootloader has to operate,
this is explained in chapter 2. Out of these meetings
a list of requirements was composed.

3.2.1 Requirements

We identified the following requirements.

1. The bootloader must be able to bootload a pro-
gram from a PC onto a node;

2. The bootloader must be able to bootload multi-
ple nodes at the same time;

3. The bootloader should be able to only program
a select subset of all the nodes in the network;

4. The bootloader must be able to start a boot-
loaded program;

5. The bootloader must work on the hardware that
goes into the floor, which is the LPC1769 on the
LPCXpresso in the in-house developed LPCX-
presso shield v3;

6. The bootloader should be able to program the
entire floor, which are 189 nodes;
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7. The bootloader should be able to program the
entire floor in 5 minutes with a binary with the
eLua VM in it and a simple eLua program;

8. The bootloader should be robust;

9. The bootloader should put as little constraints
on the user program as possible;

10. The bootloader should be kept as generic as pos-
sible.

We want to elaborate on the last three require-
ments.

With robust we meant that you should not be able
to break the bootloader. You cannot easily re-flash
the entire floor if you break the bootloader, which is
a lot of work. So the bootloader needs to deal with
unexpected and wrong input without breaking itself.
Breaking the user application is more acceptable be-
cause you can still re-flash the user application if the
bootloader still works.

What we meant with putting as little constraints as
possible on the bootloaded program is that we found
implementations that required the bootloaded pro-
gram to be compiled differently of not use some func-
tionality of the processor. We want to build a boot-
loader that can bootload any program for the floor.
This way a developer for the floor can try some things
out on his desk and then move to the floor without
having to think about the differences. You don’t want
a program to work differently on the floor because of
the bootloader implementation.

The requirement that the bootloader should be
kept as generic as possible came from us. We want to
try to develop a generic LPC1769 bootloader that we
can open source and which can be useful to more peo-
ple than just us. Off-course we should not sacrifice
functionality for generality.

3.3 Booting the bootloader

The goal of the bootloader is to be able to reprogram
the nodes whenever you want to. But the user appli-
cation can also be running, and you do not want to
influence that application. We identified 2 concepts
to be able to start the bootloader.

3.3.1 Separate bootloader

In this concept the bootloader is completely separate
from the user application. This way the user appli-
cation cannot break the bootloader when something

goes wrong. But it also means that the bootloader
cannot be started halfway through the user applica-
tion without changes in the user application.

As later will be discussed in subsection 5.8.2, the
flash memory of the LPC1769 is divided into several
sectors of either 4 or 32 kilobytes. The bootloader
has to reserve a sector for itself in this concept, which
is bad for transparency because the user application
could use that sector and since the bootloader uses
less than 4kB does this mean flash space of the pro-
cessor gets wasted.

3.3.2 Linking bootloader in user ap-
plication

This concept links the bootloader code inside the user
application. When the node resets, the user applica-
tion is called and the user application subsequently
has to call the bootloader software. When the boot-
loader software is finished the user application can
run its actual code. This concept scores bad on the
little constraints as possible requirement. The boot-
loader has to be called from the user application, so
the user application has to be changed before boot-
loading. On the robust requirements this concept
also scores bad, because if you accidentally flash the
wrong binary or if something goes wrong with flash-
ing the bootloader is broken and you’d have to re-
flash the floor.

Also is this really complex. Because the bootloader
is among the code to be flashed, the sector the boot-
loader is in will get blanked and then flashed again
at some point of the flashing process. To solve this
you would have to specially link the bootloader for
operating from RAM, then copy the bootloader code
to RAM and then start flashing.

3.3.3 Chosen concept

We choose the separate bootloader concept because
this concept was more robust and easier to imple-
ment. The lost space because of the reserved sector
is not as important as the robustness of the system.

3.4 Bootloader location

The most influential design decision is the location
of the bootloader code in the flash memory of the
LPC1769. It will influence the transparency of the
bootloader software to the user application. Two con-
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cepts are considered: placing the bootloader code at
the top and at the bottom of the flash memory.

3.4.1 Top of flash

In this approach the bootloader code is placed at a
high address in the flash memory, as graphically de-
picted in Figure 3.1. To put the bootloader code at
the top of the flash, the bootloader code start at the
start of the highest sector. Unfortunately, the highest
sector is of size 32kB, meaning that the much smaller
bootloader in this fashion takes all 32kB. As there is
plenty of flash memory left (512kB − 32kB), this is
not a big issue. The eLua VM with a eLua program
is approximately 180kB large, so there is still enough
space left for bigger and more complex programs.

Placing the bootloader at the top of the flash mem-
ory has its problems, e.g. it asks for a different way
of starting up a node. When reprogramming occurs,
the first sector can be overwritten. As seen in sub-
section 2.2.2 the start, stack and interrupt vector ta-
ble reside at the bottom of the flash. So if the user
application resides here all interrupt service routines
pointers are overwritten with the handlers of the user
application. This also means that the user applica-
tion now gets booted instead of the bootloader, which
we do not want. Since the bootloader software should
be executed first, this creates a problem.

This problem can be solved by copying both the re-
set handler and the stack pointer of the bootloader.
When placing these values, and not the user applica-
tion’s values at the reset handler’s and stack pointer’s
locations, the node will after reset start executing the
bootloader software. Then, the bootloader software
can subsequently call the user application.

This however introduces a new problem: how does
the bootloader after the node resets know where in
the flash memory the user application starts? This
is solved by saving two pointers needed to start the
user application: a pointer to the user application’s
reset handler and the user application’s stack pointer.
Both values are received during the transmission of
the user application to the node. All that is needed is
save the values somewhere where they are not over-
written. As the bootloader knows the storage loca-
tions of these values, the bootloader can retrieve them
as such.

Another problem that might occur is that the user
application is of such a large size or linked in such a
way that it wants to overwrite the bootloader code.
This would brick the node as the node still expects
bootloader code it wants to execute after the node is

Bootloader
...

User application

...
Vector table

Figure 3.1: LPC1769 flash memory showing locations
of bootloader and user application code when placing
the bootloader at the top of flash memory. Dots in-
dicate possible unused memory.

reset. This problem is fixed by only programming a
user application when it does not want to overwrite
the bootloader code. To deal with this problem, po-
sitioning the bootloader code at the top of the flash
memory is common practice.

An advantage of this approach is that the boot-
loader is totally transparant to the user application,
as required by requirement 9. Now, any user applica-
tion that does not violate the space of the bootloader
code can be programmed onto the node without mod-
ification.

3.4.2 Bottom of flash

In this approach the bootloader code is placed at a
low address in the flash memory, as depicted in Fig-
ure 3.2. This implicates that the linker script of the
user program has to be changed to not use the piece
of flash memory that the bootloader resides in. As
the linker script has to be changed for the user appli-
cation to be able to be used alongside the bootloader,
the bootloader is not transparent to the user appli-
cation. As transparency is described by requirement
9, this method is not chosen to be used.

3.4.3 Chosen concept

As the both the bottom of flash and the linking in of
the bootloader methods do not meet the transparency
requirement 9, these methods are not chosen. For the
top of flash method the boootloader code only has to
be linked to the top of the flash once, which does not
interfere with requirement 9. The top of flash method
does meet this requirement and is hence the chosen
concept.
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...

User application

...
Bootloader
Vector table

Figure 3.2: LPC1769 flash memory showing locations
of bootloader and user application code when placing
the bootloader at the bottom of flash memory. Dots
indicate possible unused memory.

3.5 Interrupts

We had to decide if we were going to use interrupts
or implement everything in a polling fashion.

3.5.1 Use interrupts

The main advantage of interrupts is that you can use
the standard NXP library.

A disadvantage is that it is more complex because
in the separate bootloader concept you have to re-
place the interrupt table with stubs that call the user
application interrupts or move the interrupt table
(you can specify an offset in a register).

3.5.2 Polling

Using polling to implement all functionality means
we keep checking in a loop for an event to take place.
The disadvantage of this is that you cannot do things
in parallel. In other embedded systems applications
that would be a problem but it isn’t for the boot-
loader.

Another disadvantage is that we would need to im-
plement the drivers ourselves. We could still use the
provided NXP library as an example though.

3.5.3 Chosen concept

We choose to implement the drivers ourself in a
polling fashion. This way we did not have the com-
plexity of trying to rewire the interrupts.

3.6 Modules

We split our software in modules to organize it and
decouple our system. The modules we designed for

are shown in Figure 3.3. The lowest modules are
drivers that directly set registers in the LPC1769.

Every module has an init() and deinit() function.
The init function is to setup the module, by initial-
izing needed peripherals and variables. The deinit
function is to tear down the module, by deinitializing
peripherals and variables. We need to deinitialize the
peripherals to make sure the processor is in the reset
state when booting the user program. If, for exam-
ple, the clock or the CAN peripheral is already con-
figured the user program may behave wrongly. Every
module has an initialize function so the implementa-
tion behind the module does not matter. For exam-
ple, whether you solve storage with I2C (which needs
to initialize peripherals) or with storing them in the
image (which does not need initialized peripherals)
should not matter.

This decoupling is like the facade pattern from ob-
ject oriented languages. The storage module gives an
easy interface to the EEPROM chip via the I2C mod-
ule. This means that the main function does not need
to worry where and how the pointers are stored. In
the development process we actually redesigned and
rewrote the storage module to store the pointers in
the processor flash instead of the external EEPROM.
We only had to rewrite the storage module and throw
away the I2C module to make that change.

3.7 Computer network commu-
nication

We need to be able to program the network via a
computer. We looked at a few concepts for this prob-
lem.

3.7.1 USB to CAN tool

We looked at a few USB to CAN tools such as PCAN
from PEAK systems. Most of these tools have an API
to program them on the computer. All of these tools
are very expensive though, the PCAN costing about
200 euros.

We still needed to develop programs and tools that
worked with the bought-in parts. We also set a gen-
erality requirement: we want to develop a general
bootloader that works on LPC1769, a requirement
which this solution scores bad on because you need
to buy a USB to CAN tool.
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Figure 3.3: The modules we designed and their dependencies.

3.7.2 Link binary in Programmer
node

This concept uses a special node, which we will call
the programmer from now on, which connects the
host via a UART bridge to the CAN bus. The topol-
ogy of such a network is graphically depicted in Fig-
ure 3.4.

This concept was actually implemented while de-
veloping the programmer side of the protocol. The
idea is to compile the binary of the user application
into the programmer node. With the ld utility we
can link in a binary file in the programmer program
that we then send over the CAN bus.

The flashing of the programmer binary can be done
via the TTL-232R-3V3 cable from FTDI. This ca-
ble is an USB to UART interface. The lpc21isp tool
works with this cable and can flash the full size of the
LPC1769. This cable was already used by the devel-
opers for the floor to circumvent the 128kB memory
size limit from LPCXpresso.

A disadvantage of this technique is that there is no
real communication back to the host computer from
the programmer node. So you cannot get a status
back to the host if the tool failed.

Developing an application with which developers
can easily flash programs is possible but the actual
flashing will take longer because the ld utility also
has to run.

3.7.3 UART communication with
Programmer node

The communication can also be implemented over a
new UART protocol, connecting the host with the
programmer. Both the host and the programmer can
talk by this protocol.

The advantage of this method is that it is very ex-
tensible. If in the future more actions need to be
added, just the protocol needs to be adapted. The
drawback of this method is that designing and im-
plementing such a protocol is much work, much more
compared to the first method.

3.7.4 Chosen concept

We choose the last concept, that implements a pro-
grammer node that communicates with the host via
UART. The main reason is because of its extensibil-
ity.

Moreover, the client noted that he wants to have
debugging tools for the whole floor. The communica-
tion to facilitate such tools can very well make use of
an adapted version of the protocol. This would not
have been possible with the first method.

Note that the aforementioned extensibility is not
a requirement for this project. Going for the first
method would make it much easier for this project
and meet the requirements. However, it would make
it much harder for the client to create new tools.
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Programmer
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Figure 3.4: Network topology of the CAN bus (red
lines) and UART connections (black arrows). The
programmer (green) connects the host (orange) via a
UART bridge to the CAN bus.

3.8 User interface

Requirement 1 indicates that a host application has
to be supplied for users to program nodes. Hence, a
command line tool acts as the front end to the user to
perform actions on the CAN bus. As the user group
of the programming tool will consist only of students
and employees of the Embedded Systems department,
there is no need for a graphical user interface. This
was also underlined by the client.

Requirement 3 indicates that a user should be able
to select certain nodes to program. To facilitate such
functionality, one method is to supply a list of node
configurations to the command line tool. The com-
mand line tool can garnish the necessary information
out of the list to select certain nodes. The advantage
of this approach is that the list only has to be sup-
plied once. A disadvantage is that the data in the
list may be outdated, e.g. some nodes in the list may
not be on the CAN bus anymore but are still in the
list. Depending on the implementation of the CAN
protocol this can lead to faulty behavior. Another
disadvantage is that managing a file for a network of
many nodes can become difficult.

Another method is to scan all the nodes on the
CAN bus, i.e. all nodes that are connected to the
CAN bus must send their IDs on the CAN bus. The
command line tool will query the user to either select
or not to select every node that has send their ID. The
advantage of this method is that the information is
not outdated, unless a node is removed before it is
selected by the user. The disadvantage is that when
a user wants to program the nodes every node has to
be manually selected. This is not efficient and is not
doable in large networks.

The decision was made to go for the first option. To
cope with outdated information newly found nodes
are appended to the list. Moreover, nodes that are no
longer on the CAN bus are disabled for programming
in the list. The combination of this method these
solution creates a command line tool that is simple
to operate, even for large networks.
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Chapter 4

Software development process

In this chapter the software development process
is discussed. It discusses the software development
method used and how it gives shape to this project.
It also discusses how source code is managed, docu-
mented and tested. Finally, the feedback of the Soft-
ware Improvement Group (SIG) on the software is
discussed.

4.1 SCRUM

Software development process method SCRUM is
used during the course of this project.

For meetings, daily scrum meetings are used to dis-
cuss the progress of the last day and what is to be
done during the day. Once every week, a meeting is
held with the Snowdrop group, which is the sprint
planning meeting. Here, the development team and
the clients sit together and discuss the progress of the
software development and a planning is made for the
following week. These meetings are also useful as it
gives information of other members of the Snowdrop
group. For example, one member wanted to use the
bootloader and could make a planning for himself by
knowing when the bootloader would roughly be func-
tional.

As there are only two persons working on the
project not all of SCRUM’s tools are used. For exam-
ple, the role of scrum master is never assigned as it
becomes more or less redundant. Instead, both devel-
opers are just part of the development team. Stefan
Dulman (the main client) and Andrei Pruteanu serve
as product owners.

A detailed backlog is not used. As there is a daily
talk between the two developers the necessity is not
there to use an actual backlog. However, a list with
things to do is used. This list only serves the purpose
as a reminder for and prioritizing what needs to be
done. It does not, in contrast to a backlog, serve as

a real planning document.
Though it may not look as a strict use of SCRUM,

the techniques that are being used serve their purpose
well. In the end, no changes to these techniques were
needed.

4.2 Version control

Source code management system Git is used to man-
age all the written code. Git was chosen as it is much
more efficient and can handle branches better than
other source code management systems such as SVN.
Also, Git is, in contrary to many other systems, fully
distributed. This means that all information may be
stored on multiple locations, not one central one. As
such, Dropbox is also used as a git repository, which
served as a back-up during the project.

The necessity of good branching performances is
needed as the project contains a numerous subsys-
tems. Source code management works a lot better
when using branches for each individual subsystem.

Proper structuring the Git repository saves a lot
of time during the software development process.
Therefore, the Git repository is structured in a man-
ner that is suggested by Vincent Driessen’s A suc-
cessful Git branching model [4].

The project’s three subsystems Bootloader, Pro-
grammer and Host have their own branch in which
patches can be committed for only a specific subsys-
tem. As part of the source code is shared among
the subsystems a library branch is used. Whenever
needed, a subsystem can merge this branch to use
new functionality. A separate branch reports is used
to store LATEX files for the writing of the reports.

At the point that testing is to be conducted, an octo
merge is performed. By doing this, the latest patches
of all subsystems and the library are merged into one
branch, the develop branch. Now, the develop branch
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has includes all the latest patches. This makes it eas-
ier to switch from inspecting the bootloader code to
the programmer code, as switching between branches
is no longer needed. An octo merge is graphically
depicted in Figure 4.1, which displays the gitg ap-
plication which is a graphical front-end for Git.

4.3 Documentation

The code of embedded systems applications is gener-
ally low-level, which makes the code relatively hard
to comprehend. Also, embedded systems code gener-
ally consist of register reading and setting code, which
makes it even harder to comprehend. As well docu-
mented source code improves its readability and un-
derstandability, a large amount of time is spent to
properly comment the code inside the source code
files. These comments both explain what happens
when a function is called and why it is called.

Besides the documentation in the source code files,
another often used manner of source code documen-
tation is use: Doxygen. Doxygen is a documentation
generator that is able to generates a large set of both
textual as graphical documentation formats of the
source code. In this project, Doxygen is used to cre-
ate several diagrams and a set of HTML pages that
denotes the API of all subsystems.

4.4 Testing

Automated testing of embedded systems applications
can be practically not doable, also for this applica-
tion. For example, automated testing of hardware
specific bus drivers. If one wants to test such a driver,
the easiest way would be to use a simulator to mimic
bus traffic. As this would take such a large amount of
time and effort to set up it is not used, as the effort to
make them outweighs the benefits of automated tests.
Instead, several non-automated testing approach are
used, such as visual inspection using a logic analyzer
as discussed in subsection 2.3.3. As this testing ap-
proach is not automated and it does not guarantee a
well functioning product, it gives the developer some
much wanted feedback.

Another way of testing is the use of LPCXpresso’s
on-board LED. By programming a node with an ap-
plication that turns on the LED, visually inspecting
the LED gives feedback on the result of the program-
ming action. The LPCXpresso also facilitates the

Figure 4.1: A snapshot during development of the
Git commit tree. Multiple local and remote branches
can be seen. Also, an octo merge can be seen, which
merges the bootloader, host, library and programmer
branch into the develop branch.
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reading of the microcontroller’s memory and periph-
erals.

SIG also observed that there was no test code in
the first code upload. SIG suggested to add at least
some test code so that the client can make changes
to the code and can automatically test the original
code. As mentioned before, the client does not need
test code as such, so it is also not included in the final
code upload.

4.5 SIG

The first code upload to SIG was rated very well,
receiving four out of five points. The reason the code
did not get a perfect rating was due to the size and
complexity of some functions.

On some degree this analysis is correct. For exam-
ple, there was a function that was unnecessarily on
the larger and could be very well split up. On this
part, the advice was taken and code was adjusted
accordingly.

However, a larger function may be advantageous.
For example, driver functions generally have larger
functions as usually a large quantity of settings need
to be performed. Usually these settings are noted in
the manufacturer’s manual which is also read by other
developers. It is easier for other developers to see
a one-to-one correspondence of the manual’s setting
sequence and the code’s. Breaking up the code does
not improve this.

Also, performing these settings are usually bound
to a certain sequence, breaking up the code in small
functions may lead other developers in failing this
sequence. As the examples above, having a somewhat
larger function and better readability is chosen above
function length.

As mentioned in section 4.4 SIG pointed out to add
test code. As discussed, this advice is not followed.
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Chapter 5

Implementation

5.1 Startup

The purpose of this network-based bootloader is to
listen for a while to the network for new applications
and programs these or otherwise starts existing ap-
plications. The workings of this bootloader is graph-
ically depicted in Figure 5.1.

After resetting, the bootloader is the first applica-
tion that is executed. The bootloader software first
initializes all components, such as network drivers,
clock settings and timers.

Secondly, the bootloader software checks whether
there is already a user application stored on the flash
memory. If yes, the bootloader will forever wait for
new applications to be available. If not, the boot-
loader will wait for a fixed amount of time for new
applications to be available on the network.

When a user application is available, the boot-
loader programs this application into the node’s flash
memory. Finally, the bootloader components are
deinitialized to make sure the user application is exe-
cuted with the ’standard’ settings. After deinitilizing,
the bootloader code starts the user application.

5.2 CAN protocol

A CAN protocol is implemented to transmit data
from the programmer to the nodes on the CAN
bus and backwards. The current protocol supports
the scanning, the programming and the resetting of
nodes. The CAN protocol implemented to program
nodes is graphically depicted in Figure 5.2.

Firstly, the programmer puts a 0x100 message on
the CAN bus which makes just rebooted nodes go
into bootloading mode. The programmer does this
for two seconds, a time long enough for every node
to receive it. Nodes in bootloading mode will listen
to subsequent messages from the programmer, nodes

not in bootloading mode will eventually load the ex-
isting user application.

Secondly, the programmer broadcasts a 0x101 mes-
sage asking all nodes in bootload mode to send their
node ID. The nodes respond by sending a 0x102 mes-
sage with their node ID as payload.

Thirdly, the programmer selects the nodes to pro-
gram individually by sending one 0x103 message per
node with payload the ID of the node. Selected nodes
will listen to data sent by the programmer containing
the new user application.

Fourthly, the programmer starts sending the new
user application to be programmed on the previously
selected nodes. The programmer receives a user ap-
plication in blocks of 4kB for easier flashing, will be
discussed in subsection 5.8.3.

A block is described by a block sector number and
its 4kB block data. The programmer first broadcasts
the block sector number in a 0x104 message, so the
nodes know in which sector to place the data to be
received.

The programmer subsequently sends the block data
in 0x105 messages, eight bytes of data per message.
This is the maximum amount of data bytes per CAN
frame, as discussed in subsection 2.1.1.

When all the block’s data is sent, the programmer
sends a 0x106 message with the computed hash of the
block as payload. Every node also computes the hash
of the received block, compares it and sends a mes-
sage with the result back to the programmer. This is
done by sending a 0x107 message with payload the
ID of the node, the result of the hash and the result
of the flashing process. The hashing model used is
discussed in subsection 5.4.2, flashing is discussed in
subsection 5.8.2.

When all blocks are sent, the programmer sends a
0x108 message which will tell all nodes to reset. This
will make the nodes run the just programmed user
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Initialize
bootloader

compo-
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plication
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Figure 5.1: Flow chart of bootloading process. “Boot” is a flag indicating whether the node is in bootloader
mode.

18



application.

5.3 CAN node identification

Every LPC1769 micro-controller has a 128-bit unique
identifier, meaning that every node on the CAN bus
is guaranteed to be unique. However, as discussed in
subsection 2.1.1 a CAN frame has a 11-bit identifier,
implicating that uniquely addressing a node cannot
take place by using the CAN frame identifier.

Discussions by other users of the chip on NXP’s
discussion website indicate that using only the first
four bytes of the unique identifier results in a decently
unique identifier [8]. This approach is used as the
network is small enough to use the smaller identifiers.

As the identifier is still too large to fit in the CAN
identifier field, the identifier is placed in the data field.
This implicates that only a maximum of four bytes
can be used for other data in a CAN frame. As for
the CAN protocol discussed in section 5.2, not much
data is needed to be send along with the identification
bytes. As such, this approach of node identification
is used.

5.4 CAN sequence check

The CAN bus protocol has a checksum field, as de-
scribed in subsection 2.1.1. Using this checksum field
the CAN receiver can verify the data of a CAN frame.
What is not included in the CAN protocol is a way
of checking whether the sequence of CAN frames re-
ceived by the receiver is the same sequence as the
CAN frames were sent by the transmitter.

As the sequence of CAN frames is vital for the suc-
cessful programming of a binary file to a node, the se-
quence of CAN frames needs to be guaranteed. This
can be either done by appending a sequence number
to every CAN frame or to create a hash of the 4kB
block.

Going for the sequence number approach means
that two bytes are needed to indicate the number of
a CAN frame. This is due to the fact that a 4kB
block constitutes 512 CAN frames, as 8 data bytes
go into one CAN frame. To send 4kB with sequence
numbers 4096

6 = 683 CAN frames are needed. This
results in a percentage increase of 33.4% of traffic on
the CAN bus.

Another approach is the use of a hash function to
create a hash of the 4kB data block. At the end of a
4kB block the transmitter and the receiver calculate

Programmer Node

[0x100] Go into bootling mode

2 seconds, all nodes2 seconds, all nodes

[0x101] Ask nodes for their ID

[0x102] Node ID

All nodesAll nodes

[0x103] Select node for programming

All nodes to programAll nodes to program

[0x104] #Sector to write to

[0x105] 8 bytes of data

Every 8 bytes of blockEvery 8 bytes of block

[0x106] Hash of block

[0x107] Result of programming block

Blocks of fileBlocks of file

[0x108] Reset node

All nodesAll nodes

Figure 5.2: Diagram of CAN protocol used to pro-
gram nodes.
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their hashes. The transmitter sends its hash to the
nodes and the nodes respond with the result of the
comparison of the hash. In this fashion, only one
CAN frame is sent by the transmitter (the hash) and
n are sent by the n nodes. As the n CAN frames
sent by the nodes are also used for other result also
used in the aforementioned approach, eventually only
a single CAN frame is needed for sequence checking.

There are two types of hashes used during imple-
mentation. Firstly, a CRC32 algorithm was used.
Secondly, a new iterative hash function was created
and used.

5.4.1 CRC32

The first sequence checking implementation used an
existing CRC32 library [1]. However, the generation
of the hash took a large portion of time. The logic
analyzer showed that the time to calculate the hash of
the 4kB block takes roughly the same time as it takes
transmit the 4kB. Checking the sequence of frames
now doubled the time to download a binary file via
CAN. This was not acceptable and as other imple-
mentations did not have significant speedups, another
hashing scheme had to be found.

5.4.2 Iterative hashing

As the CRC32 implementation showed, starting the
generation of a hash just after a block has been sent
takes a significant amount of time. What would be
more suitable is to have a scheme that generates a
partial hash after each transmission of a CAN frame.
This keeps the CAN bus busy, as the CAN frame is
being sent while the hash is newly updated. When
the last CAN frame of the block is sent, the total
hash is directly sent. This generates little extra time
for the transmission of a block on the CAN bus, see
Figure 5.3.

Unfortunately, such an iterative hashing scheme
was not found and thus had to be designed and im-
plemented. A fast algorithm is listed in 1. This algo-
rithm consists of four 32 bit hashes that are updated
after each received CAN frame. Each hash repre-
sents two bytes of the data field on the CAN frame,
e.g. hash0 is based on the first two bytes of the data
field. The algorithm solely uses addition and binary
operations, making it very fast.

As a single CAN frame can consist of eight data bits
not all hashes can be send, as the aim is to send only
one CAN frame containing the hash. A recombina-
tion function is listed in 2, which creates two hashes

out of the four hashes that remained after 512 times
the calling the hash update function. The only thing
this function does it performing the XOR operation on
the first and the fourth hash and the second and the
third hash.

The preceding algorithms are not scientifically
proven, i.e. the strength of the hash function is not
proven or determined. However, during the testing
of a large set of data blocks, its corresponding hashes
seemed to be unique. As this is not in any sense a sci-
entifically determined property, it should not be used
as a checksum function. However, because of the test
results and because of its speed, the hash function
seems a suitable function for the sequence checking
problem.

5.5 Clock

A big part of the functionality and capabilities of the
processor is defined by the clock the processor uses.
There are a lot of different clocks in the processor,
which all come from the same source and then get
divided and multiplied to create a new clock.

5.5.1 Clock source

The first thing you have to decide is what clock source
to use. There are 3 possible clock sources, the in-
ternal oscillator, the external oscillator and the real-
time clock oscillator. The internal oscillator is a fixed
4MHz clock The external oscillator frequency is de-
termined by an external component, on the LPCX-
presso it is 120MHz. The real-time clock oscillator is
a slow (32kHz) internal oscillator used for generating
a 1Hz clock to keep time with.

The only peripheral on the bootloader that was
influenced by the clock is the CAN peripheral. On
several places in the user manual it says that you
should not use the IRC oscillator if you want to use
CAN speeds above 100kbit/s. Our upper speed limit
for the CAN bus was 100kbit/s so we tried getting
it to work with the IRC. After setting everything
up our CAN communication didn’t work perfectly,
we had a lot of missed messages and error frames.
With the logic we figured out that we were not get-
ting a true 100kbit/s signal, it was about 103kbit/s
and each node had a different deviation from the
100kbit/s speed. This was because the IRC is not
precise enough, even though the user manual said it
should be.
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Figure 5.3: Difference in computation time between CRC32 implementation and iterative hashing function
when sending 4kB of data over the CAN bus.

Algorithm 1 Updating set of 4 hashes after receiving CAN frame number q with frame data.

function updateHashes( (hash0
i−1, . . . ,hash3

i−1), frameData)
for i = 0→ 3 do

fstNib← frameData[2i]
sndNib← ShiftLeft(frameData[2i + 1], 8)
hashi

q ← hashi
q−1 + (q + 1) · (BitwiseOR(fstNib, sndNib)

i← i + 1

q ← q + 1
return (hash0

i , . . . ,hash3
i )

Algorithm 2 Combining 4 hashes into 2 hashes.

function combineHashes( (hash0, . . . ,hash4))
for i = 0→ 1 do

hashi ← BitwiseXOR(hashi,hash4−i−1)
i← i + 1

return (hash0,hash1)
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After the IRC we tried the XTAL as the clock
source, with which we got it working.

5.5.2 Dividers and multipliers

A lot of manipulations are done on the clock signal to
get all the clocks the processor requires. The entire
path is shown in Figure 5.4.

There are still a lot of constraints on what values
you can set in what register and what speed the clock
has to be at a certain point. For example, a constraint
on fOCC is that

275MHz ≤ fOCC ≤ 550MHz

Our way of approaching this problem was to de-
termine a wanted fCAN and trying to work to that.
The fCAN is determined by the desired speed of the
CAN bus,

tnominalCANbit = (TSEG1 + TSEG2 + 3) · 1

fCAN

TSEG1 and TSEG2 are time segments in 1 bit in
the CAN standard. They determine at what point
the bit is sampled. We will not elaborate on setting
TSEG1 and TSEG2.

After determining fCAN we can solve the following
equation

fCAN =

fXTAL
NSEL

·MSEL·2
CPUCLKDIV

PCLKSEL0

BRP

and get our clock settings. NXP has provided
a spread sheet which we used when solv-
ing this equation at ics.nxp.com/support/

documents/microcontrollers/xls/lpc17xx.pll.

calculator.xls. We ended with a CPU clock of
96MHz.

5.6 UART

As discussed in section 3.7 the host is connected to
the programmer via a UART bridge. The UART pro-
tocol discussed in this section is able to send binary
files from the host to the programmer.

5.6.1 Protocol

The UART protocol has to be able to send binary
files to the programmer applications. The protocol
also has to be able to either select specific nodes or
select all active nodes for programming.

If the user application supplies a list of nodes to
select, the host has to send the IDs of these nodes
to the programmer. After sending the IDs to the
programmer, the host starts sending data of the file
to programmer. The file is split in blocks of 4kB
and is sent one by one to the programmer. This is
graphically depicted in Figure 5.5.

Besides supporting the programming of nodes, the
protocol supports the scanning of nodes. This makes
it possible to retrieve all the IDs of the active nodes.
Having the IDs of such nodes makes it easier to selec-
tively program nodes as explained above. The proto-
col to enable network scanning is graphically depicted
in Figure 5.6.

The UART protocol is very extendible. The pro-
tocol uses a set of identifiers. These identifiers are
the first messages of the protocol send by the host to
the programmer. For example, for the programming
of nodes identifier 0x01 is used, scanning uses 0x02.
Adding more identifiers is fairly easy and can be later
be used to support debugging tools.

5.6.2 Transmission verification

The UART hardware on the nodes is able operate in
full duplex mode, meaning that both sending and re-
ceiving can be done simultaneously. This functional-
ity is used for verification of data transmissions from
host to programmer. When the programmer receives
data, it immediately retransmits the received data
back to the host. If the host receives the same data
it has sent, the data transmission was successful. The
advantage of verifying data transmissions this way is
that it does almost no extra time.

The preceding use of full duplex only verifies data
transmission from host to programmer, not from the
programmer to the host. Retransmitting data sent
by the programmer to the host is not possible. This
would create a cycle and the retransmission scheme
would never end. Hence, data verification using full
duplex is only possible in one direction.

As most data is sent from host to programmer,
this direction is chosen to use the full duplex verifi-
cation scheme. Also, the host sends applications to
the programmer. Having an error in such applica-
tions is worse than having an error programmer to
host communication, e.g. the ID of a node.
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Figure 5.4: The clock signal path.

Host Programmer

[0x02] Initiate progamming nodes

#Nodes to program

Node ID

Nodes to programNodes to program

Size of file

Block data

Mark block end

Block programming result

Block finished

Blocks of fileBlocks of file

Mark end of file

Acknowledge end of file

Figure 5.5: UART protocol for selective node pro-
gramming.

Host Programmer

[0x01] Scan network

#Nodes active

Node ID

Active nodesActive nodes

Mark end of scanning

Figure 5.6: UART protocol for scanning of nodes.

5.7 Storage

As discussed in section 3.4, part of the design is to
save two pointers at every node that are needed to
start the user application on a node. As they need to
used after rebooting, these pointers need to be stored
in non-volatile memory. Two locations for the point-
ers were considered: the on-board EEPROM chip and
the interrupt vector.

5.7.1 I2C EEPROM

As discussed in section 2.1, this project uses the
LPCXpresso LPC1769 development board. This
board comes with an on-board EEPROM chip: the
24LC64, manufactured by Microchip. This chip has
a storage capacity of 64kB and is connected to the
LPC1769 microcontroller by a I2C bus. The chip can
be seen on the left side of Figure 5.7.

To be able to read from and write data to the EEP-
ROM chip a driver has to be written. As interrupts
are not enabled the driver needs to use a polling im-
plementation.

The implementation of the I2C driver worked fine,
though it resulted in a significant larger codebase.
This was not really satisfactional as a large portion
of the codebase had the sole task to read and write
just 8 bytes of data. Also, the use of this EEPROM
chip made the bootloader less general, as additional
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Figure 5.7: Location of the 24LC64 I2C EEPROM
chip (left black) and the LPC1769 microcontroller
(right) on the LPCXpresso LPC1769 development
board.

hardware is needed. Another approach was needed,
without the use of the EEPROM chip.

5.7.2 Reserved interrupt vectors

After the implementation of the I2C driver and the
usage of the EEPROM chip, another non-volatile
storage location was found. This was found in the
LPC1769 chip itself.

In subsection 2.2.2 the memory model of the
LPC1769 is discussed. Part of the memory model,
the vector table is shown in Figure 5.8. It shows that
certain parts of the vector table are reserved. Some of
these parts are used by the microprocessor itself, for
example the four bytes from location 0x001c. These
four bytes later turned out to be used to store a hash
to verify whether a valid user application is stored on
the microprocessor. Other parts of the vector table
however seem to be not always used. The four bytes
at 0x0020 and 0x0024 seem to be not used by any
application tested. This was determined by looking
at the values stored in these eight bytes for a set of
applications. These values turned out to be 0x0000

for each application tested, thus unused. This indi-
cated that the eight bytes are fit to serve as storage
locations for the two pointers.

Due to the fact that the bootloader software is writ-
ten in a modular fashion it was very easy to switch
from the EEPROM implementation to the reserved
interrupt vectors as storage location. During this im-
plementation, the reserved location starting at loca-
tion 0x001c was first tried as storage location. This
however failed. As these reserved locations have an

...

0x0024 Reserved ⇐= Start pointer
0x0020 Reserved ⇐= Stack pointer
0x001c Reserved ⇐= Hash
0x0018 Usage fault handler
0x0014 Bus fault handler
0x0010 MPU fault handler
0x000c Hard fault handler
0x0008 NMI handler
0x0004 Reset handler
0x0000 Top of stack

Figure 5.8: Segment of LPC1769’s vector table. Left
column are the addresses of the pointers to various
handlers described in middle column. Denoted are
the new storage locations for the stack pointer and
start pointer.

undocumented function to the microprocessor, find-
ing out why it failed to work was not easy. Ulti-
mately it was found only what these four bytes serve
for, and turned out to be vital in the flashing of the
bootloader.

Now, as the bootloader does not need the EEP-
ROM chip anymore, the bootloader removed an ex-
ternal hardware dependency. This is a huge advan-
tage, also as other programmer that are programming
for protoSPACE want to use the EEPROM chip for
storing the eLua script so they can do viral program-
ming.

As the current storage location has undocumented
behavior, it can turn out to produce faulty behavior.
Nevertheless, because of the modular fashion of the
bootloader switching back to the EEPROM imple-
mentation is fairly easy and does affect little existing
code.

5.8 Flashing

Once data from the programmer is received via the
CAN bus, the nodes have to write the received data
to the on-chip flash memory. This is done using IAP
commands. Before IAP commands can be used, sev-
eral steps have to be executed, such as the saving of
the start and stack pointers and sector remapping.

5.8.1 Saving of pointers

When a node receives the first block of a new user
application, several steps have to be performed for
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...

0x0024 UA reset handler
0x0020 UA stack pointer
0x001c New hash

...

0x0004 BL reset handler
0x0000 BL stack pointer

Figure 5.9: Segment of LPC1769’s vector table show-
ing user application’s (UA) stack and rest handler
pointer and the bootloader’s (BL) stack and reset
handler pointer.

the node to be able to start-up the user application
later on, which is discussed in section 3.4. The first
block contains both the pointer to the reset handler
and the stack pointer of the new user application. As
discussed in section 5.7, these pointers are stored in
reserved locations of the vector table.

When a node resets, the reset interrupt handler of
the bootloader should be executed. The address that
the microprocessor looks for is at location 0x04, so
at this location the pointer to the bootloader’s reset
handler should be stored. Also, after reset the stack
pointer should be set to bootloader’s stack pointer,
which should be located at 0x00.

The user application’s stack pointer and reset han-
dler pointer are located in the first and the second
four bytes, respectively, of the first block received.
These values are read from the block and subse-
quently the values are stored in the vector table as
shown in Figure 5.9.

Lastly, the microprocessor requires a hash of the
first seven values of the vector table to be placed in
the eight word in the vector table. As the bootloader
changes some of the values in the vector table, the
hash should also be updated accordingly.

5.8.2 In-Application programming

As described in section 5.2 the bootloader software re-
ceives binary files in a number of 4kB blocks. To flash
this data on the on-chip flash memory, In-Application
(IAP) programming is to be used. IAP consists of a
set of predefined functions that user software can call
to perform actions with the on-chip flash, e.g. writing
to flash. The bootloader software uses these functions
to write data received over the CAN bus to its flash
memory. A subset of these IAP functions is actually

needed to perform a write operation. This subset is
listed in Figure 5.10.

Several steps are involved in a successful write op-
eration of a 4kB block in RAM to the on-chip flash.
Firstly, the sector to write to has to be prepared. Sec-
ondly, the sector has to be blanked. If the blanking
procedure is not performed, arbitrary data that was
not written to can be seen as instructions and can
be executed as such. The sector has to be prepared
before it is blanked, as blanking a sector is merely a
writing operation of 0xFF to the sector. Thirdly, a
blank check is performed to determine whether the
previous operation was successful. Fourthly, the sec-
tor has to be prepared again for writing to take place.
Fifthly, the actual write operation takes place and
writes 4kB to the on-chip flash. Lastly, the data
stored in the sector is compared with the original
data. This determines whether the flashing of the
data block is performed successfully.

As mentioned before, not blanking a sector can re-
sult in the execution of arbitrary instructions. How-
ever, data is always written to the on-chip flash in
blocks of 4kB. If all sectors are of this size blanking
would be redundant, as the 4kB would be completely
overwritten. This is not the case: the on-chip flash
is divided into 16 sectors of 4kB and 14 sectors of
32kB. This means that the above sequence of func-
tions calling has to be modified to cope with 32kB
sectors. This is handled by sector remapping, dis-
cussed in subsection 5.8.3.

5.8.3 Sector remapping

Binary files are transmitted over the CAN bus in
blocks of 4kB. Each of those blocks carries a sector
number to denote the current 4kB block that is be-
ing transmitted. This sector number is defined as
nvir: the virtual sector number. To be able to flash
4kB blocks in both 4kB sectors as in 32kB sectors the
virtual sector numbers need to be adapted.

This is done by a bijective function f that takes a
virtual sector number as input and transforms it in a
physical sector number and an offset in that physical
sector number:

f : nvir → (nphy × s) where

nphy(nvir) =

{
(nvir−16

8 ) + 16 if nvir ≥ 16

nvir otherwise

p(nvir) =

{
nvir mod 8 if nvir ≥ 16

0 otherwise
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Function Action
Prepare sector(s) Required for write operation to specified sector(s).
Copy RAM to Flash Copies data from RAM to on-chip flash.
Erase sector(s) Fills sector(s) with string 0xFF.
Blank check sector(s) Checks if erase sector(s) succeeded.
Compare Compares original and flashed data.

Figure 5.10: Subset of IAP commands necessary to perform write operations from RAM to on-chip flash.

Function f maps every 32kB sector to 8 sectors of
4kB. Here, the offset s is used to determine where
in the 32kB sector the 4kB block is to be placed. If
s is zero, it means that the block is to be put on
the beginning of a 32kB block. The working of this
remapping is graphically depicted in Figure 5.12.

The aforementioned sector remapping scheme also
influences the order in which write operations are to
be performed. For example, if there is a 4kB block
and is remapped to a 32kB sector. This sector has to
be cleared depending on the position of the block in
that sector. If the block is mapped to the beginning
(s = 0), then the whole 32kB sector can be cleared.
Otherwise, if the block is mapped somewhere else in
the 32kB sector (s 6= 0) then the block shouldn’t be
cleared as it would destroy all the previously written
data in that 32kB sector.

Because of the added remapping scheme the se-
quence of steps to perform a write operation discussed
in subsection 5.8.2 needs to be altered. Now, a sector
only has to be cleared if s = 0. The altered ver-
sion that incorporates the above remapping scheme
is graphically depicted in Figure 5.11.

Figure 5.12: Sector remapping scheme. Binary file
(left) containing virtual sector numbers (nvir) are
mapped to physical sector numbers (nphy) of the flash
(right). This makes it possible to receive blocks of
fixed size (4kB) and flash them into sectors of vari-
able size (4kB or 32kB).

...
f ... nphy = 17 (32kB)

4kB nvir = 24 =⇒ s = 0
4kB nvir = 23 =⇒ s = 7

nphy = 16 (32 kB)

...
...

4kB nvir = 18 =⇒ s = 2
4kB nvir = 17 =⇒ s = 1
4kB nvir = 16 =⇒ s = 0
4kB nvir = 15 =⇒ nphy = 15 4kB

...
...

4kB nvir = 1 =⇒ nphy = 1 4kB
4kB nvir = 0 =⇒ nphy = 0 4kB

Binary file Flash
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4kB block
in RAM

Calculate
nphy and
offset s

Prepare
sector nphy

s = 0?
Blank

sector nphy

Check
blank

sector nphy

Prepare
sector nphy

Write
4kB to

sector nphy
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4kB in

RAM with
sector

nphy data

yes
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Figure 5.11: Flow chart of steps to perform a write operation from RAM to on-chip flash using IAP pro-
gramming. Here, nphy is the physical sector number, the number corresponding with the flash sector of the
on-chip flash. Offset s is the offset between the virtual sector number and the physical sector number, as
explained in subsection 5.8.3.
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Chapter 6

Conclusion

The problem statement of this project was very
interesting for the both of us. As it was a more ad-
vanced project, we knew that we would learn a lot
about embedded systems. This was the main reason
why we had chosen this project.

We have underestimated the difficulty of and the
time needed for the project. Before the orientation
phase, we thought there might be some time left to
create other debugging tools. The most time con-
suming part of the project was debugging of mostly
hardware related problems.

Also, some very specific knowledge was required to
get thing working. For example, creating a suitable
clock to run the CAN peripheral on the bootloader.

Although the project was a lot harder than ex-
pected, we have managed to create a well function-
ing network-based bootloader. The bootloader meets
all the requirements set in subsection 3.2.1. During
tests with a 16-node mesh, the eLua VM (170kB) was
flashed in one and a half minutes on all nodes. Flash-
ing the nodes one-by-one takes at least half a minute,
so it’s beneficial to use the bootloader for networks
larger than three nodes when flashing the eLua VM.
Also is the bootloader a lot less labor intensive.

The bootloader is really generic. The only hard-
ware needed is the LPC1769 and an external crystal
to have a stable CAN bus. Generality makes it pos-
sible to deploy the bootloader on all kinds of devices.
For example, the code works on the DUTRacing car
DUT11, seen in Figure 6.1, because the same pro-
cessor and crystal is used. We think this shows that
our work can be useful in more projects than just the
protoSPACE floor.

One of the advantages of this bootloader is that
the user applications do not have to be changed. We
found no other bootloader for the LPC1769 for which
you do not have to change the user application.

The source code of this project will be published
on GitHub so others can also use the bootloader.

Though it took a long time to finish this project,
we are very happy with the results and all the things
we learned. We knew we took a risk with this project,
but it really paid off.

6.1 Future work

The bootloader created in this project is just the
scratching of the surface of what is possible with this
hardware. With the CAN bus a whole debugging sys-
tem can be created, to debug every node individually.

One of the things that would have been nice to be
able to do during the project is updating the boot-
loader via bootloading a bootloader updater. This
is just an application that links in the code of the
new bootloader. The application contains IAP com-
mands to write the new bootloader code over the old
bootloader. By programming this application with
the bootloader, new versions of the bootloader can
be programmed using our bootloader.

Another, less important and wanted application is
a graphical user interface to execute the command
line tool of the host. This was needed for the current
users of the bootloader, but might be handy for other
users.

28



Figure 6.1: The DUT11 during a test-run
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Appendix A

Flashing the bootloader manual

This appendix describes how to flash the boot-
loader software on the LPC1769 microcontroller with
the lpc21isp tool. This is needed when adding more
nodes to the network or replacing existing nodes.

As Code Red’s LPCXpresso IDE limits the upload
capacity of code to the LPC1769 to 128kB, files ex-
ceeding this limit cannot be uploaded. This barrier
can be removed by buying a license from Code Red.
As this is expensive and only adds more restrictions
to the bootloader software, a more universal upload
method is the use of the UART bootloader.

To use the UART bootloader, the open-source
flashing tool lpc21isp is used [6]. This tool is used
equip newly added nodes with the bootloader soft-
ware, which is due to linker settings around 500kB in
size.

To use the UART bootloader and the lpc21isp tool,
execute the following steps:

1. Power off the LPC1769;

2. Connect the ISP pin with a ground pin. On the
LPCXpresso LPC1769, the ISP pin is named as
P2.10;

3. Connect a UART device to the LPC1769:

• Connect Tx of the UART device to Rx of the
LPC1769. On the LPCXpresso LPC1769,
Rx is named as P0.3;

• Connect Rx of the UART device to Tx of the
LPC1769. On the LPCXpresso LPC1769,
Rx is named as P0.2;

• Connect the UART device’s group to a
ground pin of the LPC1769.

4. Execute the lpc21isp, which will poll the
LPC1769 UART0 channel for a response
some time. Use the following parameters:
lpc21isp -bin Bootloader.bin [UART device] 115200 14746;

5. Power the LPC1769.

6. lpc21isp will now upload the bootloader code to
the LPC1769.

7. The LPC1769 is now equipped with the boot-
loader software and can now be added to a net-
work.
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Appendix B

Project proposal

Problem

The hyperbody research group (http://www.
hyperbody.bk.tudelft.nl/) in faculty of Architec-
ture has the goal to

explore techniques and methods for design-
ing and building of non-standard, virtual
and interactive architectures.

A room in the faculty of Architecture has been
equipped with a floor with nodes in it. Each of these
nodes has a RGB LED and a pressure sensor. This
room is called protoSPACE 3.0 as seen in Figure B.1.

Every tile in the floor has its own processor. Every
processor can only talk to its direct neighbours. Ad-
vantages of this is that you can just add new tiles with
the code deployed on them and they will seamlessly
integrate into the floor. Traditionally you would do
this with a central server who controlls all the LEDs.
From a certain size however one central server cannot
handle the load. This is why sensor node technology
is a solution. Even if you could implement the pro-
toSPACE 3.0 floor without sensor nodes, with sen-
sor nodes you can extend the floor infinitly without
problems. Since the floor is a prototype there is one
communication bus where all nodes are connected to,
the CAN bus. The system is displayed in Figure B.2.
The CAN bus is the red line and every node can talk
to its neighbours via the black arrows.

The role of the Embedded Systems group in this
effort is to research effective ways of implementing a
node network which is easy to extend and program.
The protoSPACE 3.0 room is already designed and
produced, but still no effective way of programming
and debugging is in place making writing code for the
room a very tedious task.

We want to do our bachelor thesis with the Embed-
ded Systems group and work on the toolchain features
such as programming and debugging a node network.

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6

Node 7 Node 8 Node 9

Figure B.2: A sensor node network with a CAN bus

Proposal

What we want to focus on for our bachelor project is
programming individual nodes and the entire network
over the CAN bus. Right now if you want to flash
the entire network you have to go from node to node
with your programmer. We want to develop a tool
to flash a node. This could be done with a virtual
machine in which we load code over the CAN bus,
the department has experience with proto and eLua.
We could also try to implement a CAN bootloader
on the hardware. This a point of research in our
assignment.

An extension of our assigment is distributed pro-
gramming, so you give your code to a node which then
updates all neighbours untill every node has the new
code. The CAN bus is handy because you can address
a single node in the network, for debugging purposes,
but in real life in large networks you just want to
flash an entire network without having a CAN bus
run through all nodes.

To make this more clear we tried to compile a set
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Figure B.1: The protoSPACE 3.0 room

of tasks we would have to accomplish.

• Familiarize ourselves in protoSPACE 3.0 hard-
ware, which is:

– The LPCXpresso 1769

– Extra board the LPCXpresso 1769 is tagged
on

– The UART protocol for communication be-
tween nodes

– The CAN protocol for monitoring and pro-
gramming nodes

• Design the software to program the nodes

• Implement the program

• Couple our program with a GUI

• Showcase our findings with an application

We think this is a challenging assignment. With
our current knowledge is it hard to estimate how long
we would need to implement such a system. We do
however think we should be able to implement pro-
gramming the nodes over the CAN bus, and if we do
finish that before the end of the project we can focus
on an application in protoSPACE 3.0.

We will be supervised by Stefan Dulman (http:
//www.st.ewi.tudelft.nl/~dulman/). We can also
get support from the master students in his research
group.
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Appendix C

Orientation report

Our main assignment is to implement tools to
develop with on the protoSPACE floor. The first
subproject was to build a CAN Bootloader for the
LPC1769 and in this document will we discuss how
we approached this problem and what design consid-
erations we took into account.

Orientation

To orient ourselves on the assignment of implement-
ing a CAN bootloader we did an example project.
We implemented a CAN driver for the LPC1769 in
the CMSIS library from NXP with the LPCXpresso
shield as hardware platform, this is exactly the hard-
ware platform that is planned to be installed in the
floor of the protoSPACE room. After some struggling
we managed to implement a new project which could
send and receive messages on the CAN bus.

Platform

The hardware platform for our project is the LPCX-
presso LPC1769. This board is plugged into a custom
developed board called the LPCXpresso shield. We
worked on the first version of the hardware board, in
the new version only minor bugs are fixed and the
board is physically smaller overall.

We worked with the assembly as seen in Figure C.1.
An assembly very much alike this one will be imple-
mented in the protoSPACE floor.

The boards are connected with their neighbours
via UART and all boards are also connected to each
other via a single CAN bus, as seen in Figure C.2.

CAN is a communication protocol implementing
the lowest two layers in the OSI network layer model.
CAN works by setting messages with an 11 bit ID and
up to 8 bytes of data on the bus. Every node on the
bus receives every message.

Figure C.1: The LPCXpresso LPC1769 and the
LPCXpresso shield V1 assembly

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6

Node 7 Node 8 Node 9

Figure C.2: A sensor node network with a CAN bus
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Users of protoSPACE want to be able to load ap-
plications onto the nodes in the protoSPACE floor
without having to lift any tiles. That is why a CAN
bootloader is used.

Tools

The LPCXpresso platform comes with an IDE. This
IDE is especially good for debugging code for the
LPCXpresso: you can set breakpoints and step
through the code while visually inspecting all the reg-
isters. The IDE will be very helpful while developing
the CAN bootloader.

The LPCXpresso IDE is free to use for programs
that are smaller than 128kB. As most development
for the nodes is in a high level language like eLua or
proto, a large image with the virtual machine should
be flashed onto the nodes. To circumvent this restric-
tion the built-in UART bootloader of the LPC1769
is used. To work with the UART bootloader cables
are used to communicate between the computer and
processor over UART. These cables can also be used
to send debug information between the hostcomputer
and the processor. We can keep this in mind while
developing for the LPC1769.

Facilities

The faculty has an electronics room with most com-
mon equipment like soldering irons, breadboards and
jumper wires. We can use these as we like for making
test setups for the node.

The research group also has 2 Saleae Logics which
are logic analyzers. With those logic analyzers we can
monitor signals in the hardware which is very useful
while debugging.

Design

After the orientation project we focussed on the main
problem: the CAN bootloader for the LPC1769. We
tried to do a complete as possible design of the
software before starting implementation of the boot-
loader.

Overview LPC1769

The memory of the LPC1769 looks like Figure C.3.
Our program must reside in the Flash memory along
with the user program.

0x1000 7FFF

0x1000 0000

Local Static RAM

0x0FFF FFFF

0x0008 0000

reserved

0x0007 FFFF

0x0000 0401

Flash Memory

0x0000 0400

0x0000 0008

Interrupt vector table

0x0000 0007

0x0000 0004
Stack pointer

0x0000 0003

0x0000 0000
Start pointer

Figure C.3: Relevant parts of the LPC1769 memory

The LPC1769 has a lot of built-in peripherals,
which are hardware functionalities. One can inter-
act with these peripherals via registers. The CAN
peripheral consists of 2 registers, which are needed
to be used to perform all functionality. Implement-
ing all functionality can be done with interrupts or
by polling the registers. In the case of polling the
registers, it is called a blocking implementation since
no other function can be performed by the processor
while waiting for something.

Functions and requirements

After analysis of what the bootloader was supposed
to do we defined the following main function.

A bootloader can update the user program
in flash memory.

We use the bootloader as the program that can flash
the node and the user program as the program that is
flashed by the bootloader. After functional analysis
of the problem we identified requirements to within
implement the bootloader.

• The bootloader must work on the LPCXpresso
LPC1769.

35



• The bootloader must be able to flash the node
while the programmer can only communicate
with the node over CAN.

• The bootloader must be able to program one spe-
cific node in the network.

• The bootloader must be able to detect which
nodes in the network are in bootloading mode.

• The node must be able to go into bootloading
mode from all states of the user program.

• The bootloader should be able to detect all nodes
in the network with the bootloader software;

• The bootloader should be able to detect write
errors and be able to communicate them to the
programmer.

• The bootloader should use as little ROM mem-
ory as possible.

• The bootloader should be as transparent as pos-
sible to the programmer that uses the boot-
loader. With this requirement we mean that
the programmer that is using this bootloader
shouldn’t have to think about it, he should not
notice that there is a bootloader in the ROM
where his program also is.

• Flashing all 200 nodes in the network should be
able to be done in less than 5 minutes.

We will discuss how we are planning on implement-
ing different aspects of the bootloader and why we
want to do it that way.

Location of the bootloader

The bootloader has to be in ROM with the user pro-
gram, there is no other option. For the place of the
bootloader we identified two bootloader location con-
cepts mixed with the use of interrupts or no inter-
rupts:

• Compiling the bootloader with the user program;

• Placing the bootloader at the top of the flash
memory and implementing all the peripheral
functions polling;

• Placing the bootloader at the top of the flash
memory and implementing the peripheral func-
tions with interrupts;

• Placing the bootloader at the bottom of the flash
memory.

Compiling in user program

In this concept you make a function that the user pro-
gram should call before executing its own program.
The bootloader and the user program are than in the
same image.

We identified some problems with this approach.
Foremost the bootloader code is somewhere among
the user application code, which means that the code
the bootloader is replacing is also the place where
the bootloader code itself is. This could be solved
by linking the bootloader code like it is in RAM and
then have a piece of code that copies the bootloader
to RAM and starts it.

Another problem is that if someone accidentally
flashes the wrong image or made a mistake in the
program the node becomes bricked. The programmer
will have to go to the physical location of the node
and reprogram it via the JTAG or UART bootloader.

The bootloader itself is also not transparent to the
user. The user application has to change to facili-
tate the bootloader. This makes the bootloader very
platform bound and less re-usable.

Top of flash polling

In this concept we put the bootloader code at the top
of the flash. We overwrite the start pointer during
bootloading by the bootloader to point to the boot-
loader at the top while saving the original start and
stack pointer value. So the bootloader is called at
startup, it can then set up everything needed for the
bootloading and then start the user program. Every
interaction with the peripherals is done via polling
the registers. So the interrupts are disabled when the
bootloader starts so that user application interrupts
do not execute.

We have also identified some problems with this ap-
proach. The CAN bootloader has to be used to load
the user program into flash, programming via the
JTAG interface or the UART bootloader will over-
write the bootloader if the bootloader is not in the
image.

The user program might try to use the memory
where the bootloader is placed. Some user programs
use the flash memory for storing variables needed be-
tween reboots. Using the top of the flash for that
purpose is common practice.

If the bootloader runs during the user program the
bootloader does not know the settings of the clock
and other peripherals. This makes the bootloader
very unreliable since the speed of the CAN peripher-
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als is related to the speed of the main processor clock.
The user program can also disable the CAN periph-
eral completely and interfere with the bootloader.

A requirement is that the program must be able to
go into bootloader mode at all times without pow-
ering down the network to force all processors to
restart. The user application must restart the node
in case the nodes needs to be reprogrammed, so the
implementation is not completely transparent to the
programmer.

Keeping time on an ARM processor is done via the
systick interrupt but in this concept interrupts are
disabled. Since the processor has a known clock the
time each instruction takes can be deduced. Waiting
for a certain amount of time can be approximated by
looping a constant amount. The bootloader does not
have any hard real-time constraints.

Since the user program and bootloader are now
completely separate every program that does not use
the top of the flash can be flashed onto the node with-
out modification. Only restarting the node via CAN
is then not implemented.

Top of flash interrupts

Same as previous concept but now instead of polling
the bootloader is implemented with interrupts. To
achieve this the bootloader must overwrite all inter-
rupts during downloading and have them points to
the bootloader code, the same thing that has to hap-
pen to the start pointer and the stack pointer.

Now the bootloader can intercept all CAN mes-
sages so the bootloader can restart the node when
the re-program message comes, even during the user
program. The bootloader is now completely trans-
parent to the programmer. The user program can still
interfere with the bootloader by changing the CAN
settings or the processor clock. Most user programs
change the clock to use an external hardware crystal.
This would change the speed of the CAN peripheral
disrupting communication with the programmer.

Bottom of the flash

The previous concepts both placed the bootloader
at the top of the flash. The bootloader can also be
placed at the bottom, the linker script of the user pro-
gram then has to be changed to not use that piece of
flash memory.

The difference between the top and bottom flash
concepts is essentially that the bottom of the flash
concept interferes with most user programs while at

the top of the flash the bootloader only interferes with
some user programs.

Chosen concept

The bootloader will be implemented at the top of the
flash. This is because this interferes with less user
programs than a implementation at the bottom of
the flash.

The bootloader will be implemented using polling
for all peripherals and timing. Overwriting interrupts
is hard to implement and no real gain is achieved.
The bootloader does not become more transparent
to the programmer since the programmer still has to
change settings for the CAN such as the peripheral
clock divider.

CAN Protocol

We must design a protocol for the nodes to talk over
the CAN bus. At the time of writing is there no stan-
dard protocol for CAN bootloaders. This bootloader
must also be able to efficiently support flashing multi-
ple devices, which most current bootloader protocols
don’t support. We will refer in the next section to the
programmer as the node that is flashing other nodes
in the network. The programmer is also a LPCX-
presso LPC1769 with shield.

Initialization

In the initialization phase of the protocol the pro-
grammer figures out which nodes are on the bus. The
programmer first gets all the nodes on the bus into
bootloading mode. All nodes at reset wait for about
1 second on the message 0x100. If a node receives
that message in that time they will go into bootload-
ing mode and wait for further commands. The user
program should contain code that if the node receives
the 0x100 message that the node should restart. The
programmer at the start of the bootloading sends the
0x100 message for an amount of time with as goal to
get every node in bootloading mode.

Now that every node is in bootloading mode, the
programmer should know which nodes are on the
CAN bus. The programmer sends a 0x101 message
on the bus as a request for every node to register it-
self. All nodes then respond with a 0x102 message
with their ID as data. A lot of nodes will experi-
ence bit errors in this phase. The nodes should just
continue until they have sent their ID. The ID of the
node is based on the unique processor ID.
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Programmer Node

0x100

5 seconds5 seconds

0x101

0x102 - ID

All nodesAll nodes

Figure C.4: The initialization period

After a certain amount of time the initialization
period is over and the programming of the nodes can
begin.

Downloading

The nodes now need to get flashed with new firmware.
This is done by first selecting all the nodes that we
want to flash with new firmware. The programmer
does this by sending a 0x102 message with the node
ID to every node that needs to be flashed. So if a
node sees a 0x102 message containing its ID it starts
listening to the data from the programmer. If a node
was not selected for flashing it disregards the data
from the programmer.

The programmer sends the new program in blocks
of 4kB, the biggest chunk of data a node can copy to
flash in a single IAP command. The node must keep
track of what sectors need to be cleared and what
sectors do not need to be cleared. The node also au-
tomatically clears the flash sector. The 4kB are sent
per 8 bytes in message 0x103. After the 4kB, the pro-
grammer sends a 4 byte CRC in message 0x104. With
that CRC the nodes can determine if the data they
received is correct. Every node that is listening to the
data needs to respond to the 0x105 message with a
0x106 confirmation message containing information
of whether CRC passed or not. If a node does not
respond to the 0x105 message or if a node failed the
CRC the programmer sends the entire section again
upto 3 times. After 3 times the flashing fails.

The bootloader must take the following constraints
into account:

Programmer Node

0x103 - address

0x104 - data

512 times512 times

0x105 - CRC

0x106 - ID - success/fail

Per nodePer node

Figure C.5: Sending a sector 4kB over the CAN bus

• Interrupts must be disabled or interrupt handlers
must reside in RAM during flash programming

• You must prepare the sectors you are going to
write to with an IAP command before trying to
write to it.

• You can flash blocks of 256, 512, 1024 or 4096
bytes.

• IAP commands use the top 32 bytes of RAM.

If the programmer wants to write to the first sector
the bootloader must change the start pointer to point
to the start of the bootloader. The bootloader must
however save the start of the user program, it saves
it in the Eeprom on the LPCXpresso together with
the stack pointer.

Executing

Now some nodes are flashed, they all have to start up
the new program. The programmer sends the mes-
sage 0x107 to reset all the nodes. The nodes just
restart and startup the bootloader. If the bootloader
does not receive the message 0x100 the user program
is started.

Implementation plan

We want to stepwise implement all functionality. For
all the functions we want to make a minimal working
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Table C.1: CAN IDs and their meaning while bootloading

ID Length Data Meaning
0x100 0 - Go into bootloading mode, reset into bootloader
0x101 0 - All nodes in the network register
0x102 4 Node ID Node with Node ID listen to data
0x103 2 Address Address of the coming 4kB block, 256 bit addressed
0x104 8 Flash data Data to be flashed
0x105 4 CRC CRC of the data to be flashed
0x106 5 Node ID + CRC/flash correct The Node ID and if the CRC/flash was correct
0x107 0 - Reset the node

example showing that it is possible with the least
interfering factors. We also want to work in parallel
on features. Right now we are thinking of producing
the following small applications to in the end get a
bootloader:

• Application at top of flash.

• Application at top of flash that calls back to ap-
plication at the bottom of flash.

• Application that reads and writes to eeprom.

• Application that flashes an unused sector and
reads it back.

• 2 node CAN network that sends data with CRC.

• 2 node CAN network that implement communi-
cation protocol.

• 2+ node CAN network that implement commu-
nication protocol.

• Bootloader!

This all should finally produce a working boot-
loader.
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