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Abstract 

 

Sub bottom profilers are commonly used as mapping tool for the seafloor and sub-bottom 
structure in the upper few meters of the seafloor. Their recent enhanced performance in terms of 
resolution adds the potential to classify the sediment layers as well. In this research, the seabed surface 
and sub layers classification are investigated using model based techniques. 

The remote sediment classification technique of the seabed surface is achieved by matching the 
back scatter measurements to the predicted backscatter intensity of the model. The model simulates the 
returned signals of a monostatic sub bottom profiler operating at 100 kHz. The back scattering strength in 
the angle domain is estimated using the APL-UW backscattering model. The matching procedure was 
applied on averaged echo envelopes performed by Hilbert transform. The averaging process is essential to 
reduce the stochastic variability of the acquired data. 

The sub layers data was obtained by operating frequencies of (5, 10 and 15 kHz). The layer 
classification was achieved by estimating the geoacoustic parameters such as reflectivity and impedance 
contrast. Two techniques were investigated based on a reflectivity model. The first technique is an 
extension work of D.Simons [11] which aims to estimate the reflection coefficients via the received and 
transmitted energy ratio. The second technique is an implementation of a similar approach but applies the 
attenuation on the received frequency components in place of the nominal components. Both models 
accounted for energy propagation and its corresponding geometrical and sediment attenuation losses.  

The classification techniques were carried out to a dataset that was acquired in the Baltic Sea 
near Rostock in 2004. The acquired dataset is characterized by various bottom types such as mud, sand 
and coarse sediments.  The general description of the acquired areas was used as a reference for the final 
results. 

Due to the lack of core samples, the classification was evaluated by comparing the results of the 
backscatter to the energy model. The results were consistent with the general description of the dataset. 
However, the matching process of the backscatter model is a cumbersome and very sensible to the 
envelope averaging technique. Averaging the reflected signals from the soft sediments has to ensure to 
preserve the surficial and volume back scatter information. On the other hand, at rough surfaces, the late 
arrivals are likely to be irregular reflections or noise that has to be averaged to avoid ambiguous results. 

The initial results of sub layers reflection models were consistent with the data description. 
However, due to the high resolution of the sub bottom profile, the computation procedure can easily fail 
by missing sub layers. In order to reduce the probability of missing layers, an overlapping window 
concept was implemented, where the reflection coefficients are estimated at shorter intervals. The 
methods investigated here leaves room for further optimization through model adjustment such as signal 
interference, backscatters and error propagation. 
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Chapter 1 
  

Introduction 
 

1.1 Motivation 

The increased human marine activities in the oceanic environment, such as building 

offshore wind farms, dredging operations, oil and gas exploration and the studies of marine geology, 

morphology and oceanography have led to an imperative demand for accurate seafloor maps. These 

applications require knowledge of the seafloor topography and detailed information about the 

seafloor composition, both at the sediment surface and in deeper layers. The conventional approach 

of obtaining information about the seafloor composition is to take physical sediment samples. This 

procedure is extremely expensive and time consuming. A much more attractive technique, which 

provides high spatial coverage at limited costs within short time, is acoustic remote sensing. Remote 

sensing is defined as the ‘measurement of a property or a phenomenon by instrumentation that is 

situated at a distance and not in direct physical contact with the object of study’ [29] 

 

Acoustic remote sensing techniques are still being developed and refined, trying to balance 

between robustness and accuracy. One of the most promising techniques for acoustic classification 

of sediments is a physics-based model. This approach makes use of a model to predict the received 

signal or part of it. The unknown sediment parameters are input into this model. The received signal 

is then estimated by minimizing the mismatch between measured and modeled signals. This method 

has been successfully used with single beam and multibeam echo sounders [8, 9]. 

 

The emphasis of this project is to obtain information about the sub layer sediment 

composition by employing a physics based approach. This project was cooperation between the 

German Innomar Sub-Bottom Profiler Manufacture Company, which provided the data sets and the 

acoustic remote sensing group of TUDelft. 

 

` 
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1.2 Background 

The ease of acoustic wave propagation in water was discovered a long time ago, but real 

practical realization came into light at the beginning of the 20th century after significant world 

events such as the sinking of the Titanic and World War I. Since then the area of underwater 

acoustics has been studied in great detail, which has led to the development of echolocation, and 

underwater communication. With some degree of simplification, acoustic remote sensing today has 

the same importance in underwater exploration as the radar and radio waves have in the exploration 

of space. The use of sound for underwater sensing is commonly termed sonar, which is an acronym 

for SOund NAvigation and Ranging. 

 

Seafloor mapping is almost entirely performed using acoustic systems. Optical systems are 

limited by the fact that electromagnetic waves do not propagate underwater further than 10-50 

meters due to water absorption [30]. On the contrary, acoustic waves are more practical, as they are 

based on the mechanical vibration of their propagation medium. Since the bond ‘elastic modulus’ 

between water molecules are stiffer than those of air which in turn makes the water more difficult to 

compress than gasses, acoustic waves in water have better transmission characteristics than in air. 

Their propagation speed in water is four to five times higher than in air and even higher in solids 

(e.g. sediments), the sound undergoes less attenuation resulting to travel longer distances. For 

example under the same signal conditions (i.e. equal frequency and power), sound propagation in air 

hardly reaches few kilometers air, while the sound propagation in ocean can exceed up to thousands 

of kilometers.  

 

Typical frequencies associated with underwater acoustics are between 10 Hz and 10 MHz. 

The propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible 

without penetrating deep into the seabed, whereas frequencies range for underwater applications is 

rarely higher than 1MHz due to the rapid absorption within the water column. 

 

Most systems used today for seabed mapping make use of a single acoustic frequency [31, 

32] because different frequencies interact with the seabed or objects in different ways, which 

requires more sophisticated sensor to capture the desired information. For example, high frequency 

sonar can measure accurately the water seabed depths, whereas sub-bottom layers are better 

observed by lower frequencies. This is due to the decreasing sediment sound absorption with 

decreasing frequency. 
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Classical Sub-bottom profilers SBPs are single frequency sonars that aim to explore the 

first layers of sediments below the seafloor over a thickness commonly reaching several tens of 

meters.  It has been for many years a fundamental tool for oceanography and offshore engineering 

due to the ability of this system to determine physical properties of the seafloor and to identify 

geological layers below the seafloor [33]. Sediment structure is directly observed by measuring the 

elapsed time of the received reflections of the acoustic energy when it encounters boundaries 

between layers of different properties.  

 

Many studies [8, 11, 12, and 17] have been published concerning classification techniques 

of seabed surfaces using single beam, multibeam, and side scan sonars, while few paid attention to 

classify sub-bottom layers using a sub bottom profiler. For the latter, the challenge was to develop 

algorithms that automatically characterize the layered sediment types as a contribution step towards 

“what lies where in 3D?”  

 

1.3  Research objectives and methodology 

Underwater acoustic system have for many years been a fundamental tool for 

oceanography and marine geology [32]. Their design and configurations can be set to cover various 

applications.  From the geological perspective, underwater acoustics can explore three distinctive 

zones; surficial, near-surficial and deep sedimentary layers. Figure (1) shows a seabed cross section 

that represents the relation between the three zones and their exploration ranges or so called 

penetration depths. 

 

 

Figure 1: Observation zones 

 

Acquiring information of the illustrated zones requires diversification of the instrumental design 

to emit an acoustical signal with a specific physical parameter such as output power, signal 

frequency and length. For example single beam echo sounders (SBES) are designed to acquire 

surficial data to provide accurate water depth. Typical frequencies range from 10 to 200 kHz.  
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whereas high frequency is
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limited, the transmitted ene
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To allow greater penetration into the substrate, low frequency signal with high energy has 

to be used. Low frequency systems give great substrate penetration due to low attenuation rate, 

frequency is attenuated faster in propagation medium. The transmitted energy depends 

mainly on the signal amplitude (i.e. power) and signal duration. Since the transmitted power is 

limited, the transmitted energy can be increased by distributing the power over a longer time (

pulse width). Such signal characteristics (i.e. low frequency, power and pulse duration) are beyond 

the SBES capabilities and alternative instruments have to be used instead such as ma

Marine seismic systems explore the deep structure of the seafloor using seismic waves as in 

based geophysics [34] by using large energy. There are a number of different marin

systems which operate at various frequencies such as sparkers that operate

Hz and boomers which operate between 500 Hz to 5 kHz.   

SBP works with one low frequency only which is sufficient to map the seabed 

layers to certain depth. Nowadays most SBP use a second (higher) frequency to add the 

functionality of SBESs (i.e. accurate water depth and possibly seabed material) such as 

en used in this project. The system is based on an interesting hybrid concept 

sonar (e.g. SBES) and marine seismic systems. The system emits two or more signals with 

different frequencies depending on the application and environmental conditions. F

case the instrument transmits a high frequency signal 100 kHz to provide accurate water depth

low frequency signal to provide information about the substrates operating at frequencies between 

that operate within low kHz range are useful for high resolution assessment of the 

top 100 m of sedimentary material below the sea floor. Figure (2) illustrates the 

band of various underwater acoustic instruments with their corresponding penetration 

vertical resolution (R) [35]. 

Figure 2: Pingers and Chirpers are considered SBP systems, 
Remaining sensors are considered Marine seismic systems

To allow greater penetration into the substrate, low frequency signal with high energy has 

due to low attenuation rate, 

attenuated faster in propagation medium. The transmitted energy depends 

mainly on the signal amplitude (i.e. power) and signal duration. Since the transmitted power is 

rgy can be increased by distributing the power over a longer time (i.e. 

pulse width). Such signal characteristics (i.e. low frequency, power and pulse duration) are beyond 

the SBES capabilities and alternative instruments have to be used instead such as marine seismic.  

deep structure of the seafloor using seismic waves as in 

based geophysics [34] by using large energy. There are a number of different marine seismic 

sparkers that operate between 50Hz to 1000 

frequency only which is sufficient to map the seabed 

layers to certain depth. Nowadays most SBP use a second (higher) frequency to add the 

seabed material) such as SES-2000 

en used in this project. The system is based on an interesting hybrid concept 

The system emits two or more signals with 

different frequencies depending on the application and environmental conditions. For the simplest 

provide accurate water depth and a 

to provide information about the substrates operating at frequencies between 

Hz range are useful for high resolution assessment of the 

top 100 m of sedimentary material below the sea floor. Figure (2) illustrates the operational 

band of various underwater acoustic instruments with their corresponding penetration 

 

: Pingers and Chirpers are considered SBP systems,  
Remaining sensors are considered Marine seismic systems 
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This project is characterized by an interdisciplinary approach. Developing a method for sub 

layer classification requires combined knowledge from various fields like oceanography, signal 

processing, physics and remote sensing. It is possible to subdivide the entire work into three major 

steps. First of all, signal processing and data preparation was applied to the entire dataset in order to 

reduce the noise and measurement artifacts. Second, the enhanced high frequency dataset was used 

to infer the sediment characteristics at the water-seabed surface. In the third step, the subsurface 

composites were inferred from the low frequency signal. 

Signal processing: The data used in this project was acquired by ‘Innomar’ in January 

2007 in the Baltic Sea near Rostock. An SES-2000 standard SBP system was used for acquiring the 

data with filters set to a maximum bandwidth. The filter settings were experimental to ensure that 

the received signal was almost unchanged which consequently caused high noise level. Therefore a 

filtering procedure was necessary to remove the presence of noise to increase the level of confidence 

within the analysis procedure. Other techniques such as alignments and averaging were also 

necessary to treat the stochastic behavior of the acquired dataset.  

Surficial Characterization:  For surficial characterization, the high frequency data was 

used as input for a theoretical (model based) algorithm. This model was initially developed by the 

TUDelft acoustic remote sensing group for the processing of the SBES signals. The model was 

modified to simulate the SBP transmitted signal in order to predict echo envelopes that can be 

compared to the observed ones. The basic working principle of the model is based on producing 

echo envelopes for a range of seabed types that then can be correlated to the actual measured signal.  

 

Sub-bottom Characterization: The received echo envelopes near the surficial area are a 

product of complex physical interactions within the stratigraphic layers. These interactions can no 

longer be predicted by the SBES model. Fortunately, these complex behaviors are dominated by 

reflections at layering boundaries which simplifies the task of sediment identification. Consequently 

this task required alternative models to assess the characteristics of the sediment layers, by relating 

the mean grain sizes of the sediments to the acoustic impedance.  This is achieved by precisely 

determining the reflection coefficient at each sediment layer.  

 

The aim of this project is to investigate the feasibility of the proposed classification methods in 

order to discern between seabed types at surficial and near surficial areas. 
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1.4 Outline  

The first section of Chapter 2 describes the technical aspects of the used SBP by comparing 

it to common used SBES systems. The second section gives a short introduction to some of the 

physical processes that are encountered during underwater acoustic propagation. The last section 

gives a comprehensive introduction to the field of sediment classification methods. A more detailed 

acoustic background and modeling aspects are discussed in chapter 3. The discussion is entirely 

devoted to the acoustics theory and the numerical implementation of the model for predicting the 

received echoes. Chapter 4 focuses on the signal processing of the high frequency data, the 

algorithm for matching the acquired data to the prediction of the model and the classification results. 

Chapter 5 is devoted to the sub layer classification. Two physics based models were implemented to 

infer and compare the predicted mean grain size of the sub bottom layers. The chapter ends by 

comparing the results of both methods. Chapter 6 completes the thesis by a number of conclusions 

and recommendations for future work.  
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Chapter 2 
 

Classification and sensor aspects 
Introduction 

The first section of this chapter describes the working principle of the sub bottom profiler. 

Major differences between SBP and SBES will be illustrated in order to give to the reader insight in 

the advantages and limitations of the used SBP system. The second section illustrates the basics of 

seafloor interactions undergone by a transmitted SBP signal.  The third section of this chapter is 

devoted to a comparison between the two known (phenomenological, and physics based) 

underwater classification approaches. 

 

2.1 Sub-bottom profiler 

The function of a sediment profiler is to record echoes from interfaces between 

sedimentary layers that correspond to differences in acoustic impedance. The movement of the 

support platform will allow reconstruction of a vertical cross-section of the sedimentary 

environment obtained as an image of boundaries between layers such as show in figure (1). Good 

horizontal resolution requires a directivity pattern with a very narrow opening angle. The directivity 

pattern is the transducer directional sensitivity of transmission and/or receiving as illustrated in 

figure (3). The directivity pattern of an antenna depends on the transducer geometry, and frequency. 

For the same transducer geometry, higher frequencies give narrow opening angles and lower 

frequencies gives wider opening angles.  
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Figure3: Schematic image of transducer beam pattern scaled in 

dB reproduced from Johannesson and Mitson (1983). 
 

 The transducer dimension design is based on the desired beam pattern. The beam pattern is 

a dimensionless and a relative parameter of the transducer. It is a function of the operational 

frequency, aperture angle, and size and shape characteristics of the vibrating surface. The 

mathematical expression ‘sinc function’ for the normalized directivity pattern that gives the 

transducer sensitivity of the plane circular piston transducer is [7]: 

2
2 ( sin )( )

sin
J kaD
ka

θθ θ
 
 
 
 

=  (1) 

Where J is the Bessel function of first order, k the wave number, a  is the radius of the transducer, 

and � is the aperture angle. The variation of the sensitivity width with look direction is illustrated in 

figure (4) where y-axis represents the directivity response and x-axis =������. 

 
Figure 4: Beam width variation of a circular transducer 
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The half power beam width D = 0.5 (-3dB) is a well known criteria that is commonly used 

between manufactures so that transducers can be compared quantitatively. Thus, the relation 

between the transducer radius and frequency is obtained by [36, 10]: 

 

    
3

1.6
sin( )dB

a
k θ=          (2) 

Where 

            � =  	

 , 

�      Propagation speed, 

       Transmitted frequency 

 
To compare between the required transducer dimension for a low and a high frequency, 

consider two linear systems. The first system is required to emit a signal of f = 100 kHz and the 

second is required to emit a signal of f =5 kHz. Both systems have a half power beam opening angle

θ of 3.6º. Such frequencies would require a transducer diameter approximately 2.5m for the first 

system and 30cm for the second system as shown in figure (5).  

 
Figure 5: Required radius dimension of linear transducer 
and the corresponding frequency. Red dots shows 
transducer diameter for opening angle of f = 100 kHz,  
f =5 kHz, c =1500m/s. 

 

The previous calculations are based on the linear concept where only a single signal is 

emitted. With this concept, a large transducer is needed to emit a low frequency with such narrow 

opening angle which is not practical. To eliminate the need for large transducers, parameter sensors 

have been developed. This type of sensors are based on the non-linear concept where two or more 

signals are emitted and synchronized in time  
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Linear and Non-Linear concept 

If two transmitters emit two signals with the same frequency, where the crest of two waves 

are in step, the linear process of the secondary wave is a result of the superposition of the two 

signals known as ‘spatial interference’ which  is a function of the distance between the two 

transmitters. In this case, two types of waves will be produced as a result of ‘constructive’ and 

‘destructive’ interaction as shown in figure (6). Constructive interaction means combining two or 

more waves to get a new ‘third wave’ that has the same wavelength and frequency but higher 

amplitude ‘more intensity’. Destructive interaction means that waves are subtracted and cancelled 

out. The peak in one wave is cancelled by the troughs in the other.  

 

 

                 Figure 6: principle of spatial interference 

 
In a more complex case, such as with nonlinear SBP’s, the echo sounder transmit two 

signals of slightly different high frequencies (primary frequencies f1 and f2) at high sound pressure 

simultaneously. Due to the high pressure, the sound propagation will be non-linear; water sound 

velocity is a function of water pressure, temperature, salinity, and density. At very high pressures, 

the density of water changes. Thus, the sound velocity changes non-linearly [41].The higher sound 

amplitudes will move faster than lower sound amplitudes. As a consequence, a number of secondary 

frequencies are produced such as harmonics, sums of the primaries, and the desired primary 

difference F = |f1-f2|. Figure (7) gives a schematic view of the signals and the corresponding 

spectrum. 
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Figure 7: Principle of nonlinear acoustics [25] 

 

Interestingly, the secondary low frequency has now the same narrow directivity as the 

primary frequencies. Thus, the directivity pattern of the low frequency does not depend on 

transducers dimension, but depends on the non-linear phenomena occurring in the medium. 

 

The difference between the linear and nonlinear directivity pattern is illustrated in figure 

(8). The left plot shows the directivity of a linear system computed by the traditional sinc function. 

The right plot shows the measured directivity obtained using a hydrophone in front of a real 

parametric transducer. By comparison, the directivity pattern of parametric transducer has no side 

lobes, which are typical for linear transducer. The reason for this is that the energy of primary waves 

is transferred to the secondary wave only in high intensity in the nominal direction. While In the 

other directions it is too low to cause nonlinear effects.  

 

The figure also shows the beam width of the main lobes. By comparison the beam pattern 

of the parametric transducer (all frequencies) have the same narrow beam width, while for the linear 

system, the beam width is inversely related to the transmitted frequency. 

 

 
Figure 8: Directivity pattern for linear (left) computed and parametric transducer (right) 

observed [25]. 
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Resolution 

The main objective from a SBP is to obtain the deepest penetration depth with highest 

vertical resolution also known as range resolution. Vertical resolution is the ability of sonar system 

to distinguish between two or more objects on same bearing but at different ranges [2]. In principle, 

vertical resolution depends mainly on the transmitted pulse duration of the CW. The range 

resolution can easily be estimated by: 

 

2
ctr∆ =  (3) 

Where: 

c = sound velocity, 

t = pulse duration 

 

This means that in order to obtain high range resolution (i.e. short r∆ ) very short pulses are 

needed. However, in order to obtain deeper penetration, the transmitted signal has to have enough 

energy to such that the pulse can be detected from the noise. Since the power is limited due to 

cavitations, the only option is emit a long pulse. For this reasons many sub bottom profilers uses 

chirp signals to obtain high resolution. A chirp is a frequency modulated signal, where the pulse is 

emitted with a modulated frequency. The frequency modulation is processed at the receiver to focus 

the pulse to a much shorter value and hence obtain the desired resolution [36].  

 

However, these signals will have advantages in deep water while in shallow such as this 

experiment the long sound pulses i.e. high energy will cause more signal to be reflected back off the 

seafloor leading to multiple reflections and high reverberation without any advantage compared to 

short CW-pulses. Reverberation is the persistence of sound in an enclosure or partially enclosed 

space after the source of sound has stopped; the persistence is a result of repeated reflection and/or 

scattering [40]. Therefore in this experiment the sensor was adapted to emit short ‘CW’, and the 

resolution issue is improved by tapering the amplitude (Gaussian shape for instance) to give better 

spectral properties that lead to less ambiguities in range. More details about the properties of 

Gaussian shaped signal will be given in chapter (3).  

 

In summary, low frequency can now be transmitted by a sensor with a reasonable 

dimension. The beam width of the low frequency is the same as the primary frequencies without 

side lobes that has high horizontal and vertical resolution [5, 6]. The data has a high signal to noise 

ratio due to the small footprint and low reverberation level.  
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2.2 Seafloor Interaction 

The acoustic wave interaction with the seabed depends partly on the impedance contrast 

between two layers. Impedance is a medium characteristic equal to the product of the density and 

propagating sound speed. Large impedance contrast between water and rocky seabed with a 

considerable smooth surface means that the seabed surface behaves as an almost perfect reflector. 

On the other hand, at softer sediments, the acoustic impedance mismatch is much less which means 

that larger energy will be able to penetrate this boundary. Each time the signal encounters a different 

material, a portion of the energy is reflected and recorded by the system. The percentage of the 

acoustic energy reflected at each layer surface is a function of the relative densities, sound speeds 

and angle of incidence at the two layers. 

 

Reflection of seabed surface 

Consider the case of a plane acoustic wave incident upon a water-sediment interface. If the 

water-seabed interface is completely flat the sound can be reflected in a manner similar to a light 

beam striking a mirror. This phenomenon can be described using the classical optical reflection 

expression known as Snell’s law which is illustrated in figure (9). 

 

Snell's Law describes the relationship between the angles and the velocities of waves in 

two different mediums (ε1, ε2). In the first medium ε1 the angle of the incoming ray iα  is equal to the 

reflected ray anglerα . The law also equates the ratio of material velocities 1C  and 2C to the ratio of 

the sines of incident iα and refracted rα angles. 

 

 
Figure 9: Reflection process 
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The amplitude of the reflected wave is a function of the reflection coefficient R expressed 

by equation (4), where 1 1( , )cρ  and 2 2( , )cρ  are the density and sound velocity respectively of the 

two media. Therefore the reflected amplitude is a function of the sediment type: 

 

2 2 1 1 1 2
2 2 1 1 1 2

sin( ) sin( )
sin( ) sin( )

( ) c c
c c

R ρ α ρ α
ρ α ρ αθ −

+=        (4) 

 

Reflection of a layered medium 

As mentioned earlier, the reflection coefficient depends on the impedance contrast between 

two mediums. For the high frequency signal, a portion of the signal energy will be reflected at the 

first layer. The remaining energy will be highly absorbed, and the wave transmitted into the layer 

progressively becomes unable to reach the substratum. On the contrary, the low frequency signal is 

subjected to lower sediment attenuations and the remaining energy can easily penetrate into deeper 

layers until it is totally absorbed, or meets other sediment layer with high impedance contrast such 

as clay-rock interface. The percentage of acoustic energy reflected at each interface surface is a 

function of the relative density and sound speed of the two layers known by the impedance contrast. 

An equation for the acoustic reflectivity of an underwater surface is given in Figure (10). This 

equation is valid only for the simplified case in which the change in material composition from one 

layer to another occurs in a short vertical length compared to the wavelength of the incident signal. 

A more rigorous analysis would require that the density gradient from one layer to the other be 

known. Such analysis is beyond the scope of this thesis. 

 

Figure 10: Acoustic impedance changes in different sediment densities; Z is the acoustic 
impedance where1 1 1 2 2 2 3 3 3 4 4 4( , ), ( , ), ( , ), ( , )Z Z Z Zc c c cρ ρ ρ ρ= = = =  [23] 

 



 

Backscatter 

In the reflection section it was mentioned that the returned echoes are reflected from a 

plane water-sediment interface that is completely flat. In reality such interface is far from an ideal 

plane which makes the acoustic process much more complex than described earlier in the reflection 

section. Figure (11) illustrates the phenomenon o

and its influence on the received echo.

 

 

In order to model such phenomena, the water

plane with microscale roughness. Part of the incident wave will be reflected with no deformation 

other than amplitude loss in the specular direction (coherent part). The reminder of the energy is 

scattered in the entire space, including backwards 

details in figure (12). 

 

 

 

 

 

 

 

The effect of the relief on the incident acoustic wave depends on the frequency, the angle of 

incidence and the sediment type. Sediment roughness values can have a wide scale of amplitudes 

ranging between millimeters to few meters and spatial wavelength. It is also possible that several 

roughness scales exist on the same surface. For example, a sandy seafloor with 

roughness, can be superimposed on its existing topography

 

The relative importance of specular and scattered components depends on the surface 

roughness in terms of acoustic wavelength. For short wavelengths a particular seafloor may s

rough, while for longer wavelengths the same seafloor seems smooth.
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In the reflection section it was mentioned that the returned echoes are reflected from a 

sediment interface that is completely flat. In reality such interface is far from an ideal 

plane which makes the acoustic process much more complex than described earlier in the reflection 

section. Figure (11) illustrates the phenomenon of scattering caused by an irregular seabed surface 

and its influence on the received echo. 

Figure 11: Reflection versus general surface scatter

In order to model such phenomena, the water-sediment interface can be considered as

plane with microscale roughness. Part of the incident wave will be reflected with no deformation 

other than amplitude loss in the specular direction (coherent part). The reminder of the energy is 

scattered in the entire space, including backwards to the source. This process is depicted with more 

 

The effect of the relief on the incident acoustic wave depends on the frequency, the angle of 

sediment type. Sediment roughness values can have a wide scale of amplitudes 

ranging between millimeters to few meters and spatial wavelength. It is also possible that several 

roughness scales exist on the same surface. For example, a sandy seafloor with 

roughness, can be superimposed on its existing topography 

The relative importance of specular and scattered components depends on the surface 

roughness in terms of acoustic wavelength. For short wavelengths a particular seafloor may s

rough, while for longer wavelengths the same seafloor seems smooth. 

Figure 12: scattering phenomena 

In the reflection section it was mentioned that the returned echoes are reflected from a local 

sediment interface that is completely flat. In reality such interface is far from an ideal 

plane which makes the acoustic process much more complex than described earlier in the reflection 

f scattering caused by an irregular seabed surface 

 

: Reflection versus general surface scatter 

sediment interface can be considered as a local 

plane with microscale roughness. Part of the incident wave will be reflected with no deformation 

other than amplitude loss in the specular direction (coherent part). The reminder of the energy is 

This process is depicted with more 

The effect of the relief on the incident acoustic wave depends on the frequency, the angle of 

sediment type. Sediment roughness values can have a wide scale of amplitudes 

ranging between millimeters to few meters and spatial wavelength. It is also possible that several 

roughness scales exist on the same surface. For example, a sandy seafloor with a centimeter – scale 

The relative importance of specular and scattered components depends on the surface 

roughness in terms of acoustic wavelength. For short wavelengths a particular seafloor may seem 

 



16 
 

A measure for scattering is the scattering strength, which is defined as the intensity ratio of 

sound scattered at a unit area at a distance 1m from this unit to the impinging plane wave intensity. 

Equation (5) expresses the scattering strength in dB as follows: 

 

1010log s

i

I

I
S=   (5) 

 Two types of targets exist; targets with dimensions small enough to be completely ionisfied 

by the sonar beam and signal (e.g., a fish, or small object) and targets too large to be ionisfied 

completely at once by the same beam. The first type of targets  behave as ‘points’: their strength is 

an intrinsic strength, independent of the distance to the sonar or its characteristics, whereas for the 

second type targets  (e.g., large fish school, seabed or sea surface) target strengths are no longer a 

point value, but an ionisfied space (surface or volume) is used. The expression now is the amount of 

energy scattered by a ‘unit scattering element’. It is therefore expressed in dB re 2m  or dB re 3m . 

Consequently, the spatial distribution of the scattered energy can now be described using the 

scattering function that depends on the incident and scattered angle �(�� , ��). 

 

 Acoustic scatter is very important because the scattered part of the signal shows very 

different orders of magnitude that depend on the target characteristics. Exploiting this behavior 

makes the backscatter field a very attractive phenomenon that can be used in many sonar 

applications. However, [23] showed that the scatter mechanism is very complicated and not only is 

limited by surface roughness, but also by the inhomogeneities within the sediment volume, and 

other mechanisms that can be coupled. 

 

 Various models have been developed that range from relative simple to complex. The 

simplest model is the Lamberts rule expressed in equation (6) which is a function of frequency and 

sediment type described by the parameterµ  and the incidence angle of the transmitted signal. 

 

�(��) = 10������ + 10�����(������)         (6) 
 

 Despite the simplicity of the model, Lambert’s law is a good first approximation and shows 

an acceptable agreement with the physical observations. For backscattering by soft sediments its 

approximation is restricted for grazing angles between 5 and 40 degrees. Grazing angles >40 

degrees are too low near specular direction. On very rough surface like rocks it may be employed 

over the entire angular domain. In [23] a number of solutions were proposed to remedy these 

limitations. 
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 Mackenzie [24], showed that a value of 1010log 27dBµ = −  is a good start for all bottom 

types. Several later studies have determined µ  for different sediment types, see e.g. Garlan [3], 

from which table (1) is obtained. If the incidence acoustic energy is fully scattered into the upper 

medium without sediment inner transmission, it can be shown that max 101/ ,10log 5dBµ π= = −  as 

illustrated figure (13). 

 

Table 1: µ value for different sediment types 

Sediment type ( )dBµ  

Rock -18 

Sand -31 

silt -37 

 

 
Figure 13: Backscatter of various sediment types 

following Lambert rule 

 

Since SBPs have a limited beam width, Lambert’s law is not capable to capture the process 

accurately, especially at near specular direction. Therefore a more sophisticated backscatter model is 

needed.  
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2.3 Classification methods 

Classification methods are numerous but can fall under two general categories: 

phenomenological and model based approaches. Phenomenological approaches are based on 

grouping echo like features together and labeling each group using ground truth. The selection of 

grouping can be based on the similarity of amplitudes, skewness, energies, etc.  In other words, 

high-quality phenomenological classes are derived from features, of the echo. The model based 

approach models physic processes in order to calculate the received echo and its features. The 

classification result is based on tuning the geoacoustic parameters that influence the modeled signal 

in order to achieve the maximum match between the modeled and the real received echoes. 

 

Phenomenological approach 

Phenomenological methods are the most used approach. The aim is to extract some 

properties from the measured seabed echo that will allow the bottom to be classified into relatively 

homogeneous categories. Classifying the data in this way allows areas with similar seabed 

properties to be grouped together.   

 

The number of features or signal properties can start from the simple case where only two 

attributes are available and segmented in the 2d space to large number of features. The large number 

of features can then be simplified by principal component analysis PCA to summarize the 

information into a few orthogonal components [37], each explaining a decreasing proportion of the 

dataset total variance. The number of principal components (PC) to keep for the classification is 

open to debate, but altogether they must represent the major part of the variance observed in the 

signal features [38].  A short list of the features that have been extracted from seabed echoes is 

given in Table 2. 

 

The next step is to link the classified groups to in situ data.  Recording the exact location 

from which the ground-truth data is collected allows it to be linked to the acoustic data from the 

same geographical location. In this way, the two datasets can be linked, providing the required 

verification and the in situ classes can be extrapolated to all the regions that fall within the same 

acoustic class. 
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The general phenomenological processing procedures can be summarized as follow: 

 

1 – Compensate the echoes for depth effect. 

2 - Extract features from the corrected echoes. 

3 - PCA (combination of all extracted features). 

4 - Clustering the sets of principle components corresponds to number of sediments types.  

 

 

 

 

 

 

 

Table 2: Classification features list 

Signature feature 
 

Author 
 

  
Square root of the ratio of the total 

significant energy of the second bottom echo 
to that of the first bottom echo, averaged 

over a number of pings 
 

SBES 
Orlowski, 1984 

Sum of the energy from the tail of the first 
bottom echo (E1), used as an index 
representing the seabed roughness 

 
SBES 

Chivers et al., 1990; 
Heald and Pace, 1996; 
Siwabessy et al., 2000 

 

Normalized cumulative function of the echo 
envelope 

 
SBES 

Lurton and Pouliquen, 
1994 

 
Mean, standard deviation, and higher order 

moments, amplitude quintiles and 
histogram, power spectral ratio 

features, grey-level co-occurrence features, 
fractal dimension 

 

 
MBES, SSS 

Preston et al. 2004 

 
Seabed backscatter strength shape as 

function of the incident angle, described by 
a set of parameters 

 
MBES, SSS 

Hughes-Clarke et al., 1997 
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Physics Based approach 

In the physics based approach, use is made of a mathematical model. We seek quantitative 

estimates of parameters of the model by comparing measured data with modeled data. Knowledge 

of transmitted pulse shape, duration, and power is needed. The unknown seafloor geo-acoustic 

parameters are input into this model and estimated by minimizing the mismatch between the 

measured and modeled acoustic signals. The advantage of this approach is that, in principle no 

independent measurements ‘ground-truth’ of the actual seabed is required. However, the ground 

truth can still be very helpful to assess the classification results. 

 

This approach is more complicated than the phenomenological approach since it requires 

full understanding of the physical process that the signal encounters. In addition some optimization 

is needed to find those unknown parameters that provide an optimal match between model 

predictions and measurements. 

 

In this research the physics based approach is used. For the high frequency signals, a 

physics based model that was implemented for SBES by TUDelft acoustic remote sensing group 

was modified in order to be used for the SBP sensor. For the low frequency two methods were 

implemented based on the energy interaction with stratified layers.  

  

During the survey core samples were taken which indicated the general sediment 

classification within the surveyed area. However the detailed sediment characterization was not 

available for the author. Therefore it was decided to implement different models and compare 

additional features in order to strengthen the classification results. Moreover calibration parameters 

were not available which is essential in the model based approach. To overcome this problem the 

subset of the dataset were chosen and assumed to be linked with the general description of the 

surveying area. 

 

The main stages of the model based approach can be described as follows: 

1 – Remove noise from measured signals 

2 – For each ping, a signal is modeled 

3 – Input parameters (signal characteristics, environmental parameters) 

4 – Search for the sediment geoacoustic parameters that maximize the match between modeled and 

observed echo. 
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Chapter 3 
 

Implementation the high frequency model 
 

Introduction  

This chapter introduces the building blocks of the SBES physics based model. The SBES 

model is a time domain simulation that predicts the received echo envelope as received by the 

transducer. The SBES model exploits a sophisticated back scatter model that was published by the 

Applied Physics Laboratory of the University of Washington (APL-UW) [4]. The model accounts 

for the signal propagation in the water column, the signal geometrical interaction, and the 

corresponding backscatter process at water-sediment interface. As mentioned earlier in chapter 2, an 

emitted signal with high frequency has different seabed interaction than a low frequency signal in 

the aspect of sediment penetration and absorptions. Thus, this simulation is only valid for the high 

frequency signal [100 kHz]. The remaining low frequencies (5.10, and 15 kHz) will have to be 

modeled by a different approach in chapter 5.  

 

3.1 SONAR equation 

Transducers provide data on: 1) the time delay between transmission and reception of the 

echo, which corresponds to the water depth, and 2) the echo signal intensity of the returning echo 

(echo level).  To calculate the echo level, consider an acoustic system with transmitting sensitivity 

( )b θ and receiving sensitivity'( )b θ . The sensor emits a short pulse with pulse duration (τ ) and 

average source intensitysI . The pulse propagates through an unbounded medium spherically. At a 

range R, the pulse strikes the seabed and insonifies an area A of random homogeneous distribution. 

A part of the signal is backscattered towards the source with backscatter intensity ��(�) . The time-

dependent intensity measured at the transducer interface is modeled as sum of a sediment interface 

and volume backscatter by following the work of Jackson et al [5]. The received signal intensity 

� (�) is estimated via the sum of elemental areas by the following equation:     
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3.1.1 Sounder considerations 

The first parameter sI in equation (7) is devoted to the source level. Source level is one of 

the signal characteristics that are controlled by the SBP acoustic system. Configurations of the 

acoustic pulse characteristics such as frequency, duration, shape, and level influence the information 

that is carried from the seabed. Practically, their values are tuned to optimize the desired accuracy 

and resolution within the survey project. The tuning values are a function of the environmental 

parameters such as water depth, temperature, salinity, seabed type, etc. In this section the signal 

considerations will be investigated to demonstrate their influence on the model prediction. 

 

Source level 

The source level for a non-directional source is defined as the intensity (in dB) of the 

radiated sound at 1m distance of the source relative to the intensity of a plane wave with 1 Paµ rms 

pressure. Choosing an appropriate power setting to maximize the capabilities of the sounder and the 

acoustic classification system requires advance planning and considerations of the surveying area.  

The signal strength has to be strong enough to prevent the loss due to water depth ranges, and soft 

substrate attenuations. On the contrary, too high power over shallow and rough substrates returns 

high reflections that are limited by signal clipping. 

 

To reach the optimal source level, the raw returning signal needs to be monitored so the 

gain can be set. This can be set using oscilloscope or a raw waveform viewer. Most echo sounders 

have an Automatic Gain Control (AGC) mode which controls the signal power while transmitting 

and/or receiving the signal. However, technically it is much easier to apply it in the receiver, while 

transmitter AGC has some restrictions. 
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Frequency 

The absorption rate of a specific frequency depends strongly on the propagation medium. 

For sea water, the absorption comes from viscosity of pure water and relaxation process expressed 

by (Francis–Garrison) equation [6], illustrated Figure (14, a). The second plot Figure (14, b) shows 

the water absorption influence on the predicted signals by the SBES model at the same water depth 

and without the effect of seabed interaction. From the plot, one can observe that the absorption rate 

of the high frequency is larger than the low frequency. 

 
Figure 14: (A) Francis and Garrison attenuation coefficient at (depth10m, salinity 35 p.s.u, and 

temperature20 Co . (B) Influence of water absorption coefficient on the predicted signals with: 
Source level 250 dB, signal duration 200us, depth = 10m, Mz = 7phi.  
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Pulse Shape 

The used SBP ‘SES-2000' System transmits a CW pulse with a relatively short duration of 

200 sµ . The main interest of CW pulses is their simplicity of transmission and processing. The 

simplest CW pulse would be a rectangular signal with constant source level. However, such signal 

has some performance defects due to its characteristics. The major defect is their poor spectral 

content which requires transmission with high instantaneous level to increase the SNR. 

 

Fortunately, the CW pulse characteristics can be enhanced using a Gaussian-shaped pulse 

also known as ‘bell-shaped’. Figure (15) shows the rectangular and bell shaped pulse and their 

corresponding power spectrum. The rectangular shape has a poor spectral content. On the contrary 

the bell-shaped pulse will give a more compact frequency spectrum with fewer side lobes for the 

same transmission duration. It is generally desirable to minimize the side lobe level, as it is easier to 

be detected at low signal to noise ratio. 

 

 
Figure 15: effect of a bell shaped amplitude modulation (bottom) on a CW 
pulse (top): for a given duration (at -3dB in the second case), the frequency 
spectrum is improved, with a strong decrease in the level of side lobes. 
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The bell shaped pulse enhances also another important defect caused by rectangular pulse, 

which is the range resolution. Range resolution is the ability of the transducer to distinguish two 

targets along the same radial but at different ranges. This means that the range resolution is a 

function of the transmitted pulse. To illustrate this, consider two targets separated by the time 

resolution of the signal T. The delay of the two way propagation at distances H1 and H2 will be 

separated in time by: 

 

2 1
2 1

2( ) 2H H H
c c

t t t δδ −− = ==   (8) 

 

The receiver can separate them only ift Tδ > . This would be the case for a rectangular 

shaped pulse. While with the bell-shaped pulse, it is admitted that on average signals are separable if 

the time difference between the signals equals the duration of -3dB (i.e. half maximum energy). 

Figure (16) illustrates the discussed scenario for a transducer (S) emitting a rectangular and bell 

shaped pulse. In the left, the time resolution is sufficient t Tδ >  for both cases. In the right plot, 

when the distance is too close between the two objects, the time resolution is too low for the 

rectangular–shaped pulse. While, the time resolution is still separable for the bell-shaped pulse. 

 
Figure 16: Time resolution and the echoes form two targets C1 and C2 (left) the time 
resolution of transmitted signal (in black) is sufficient to detect and separate the two 
targets (grey).  (Right) The time resolution is too low to separate the rectangle signal, and 
separable for the bell shaped signal. Source [6] 
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To account for a Gaussian-shaped pulse in the SBES model, the source level SL is no more 

constant with time. Basically, one has to account for the corresponding magnitude that influences 

the ionisfied area. This can be applied by distributing the signal in the time domain model. Figures 

(17 and 18) show a modeled echo using a rectangular-shaped pulse (left), and Gaussian shaped pulse 

(right).  

 

 

Directivity index (DI) 

 

The transmitting ( )b ϕ and receiving sensitivity '( )b ϕ  in equation (7) presents the 

directivity index of the transducer. It is described as the sound level difference between a directional 

and omni directional (same source power radiated equally in all directions) sound intensity as shown 

in equation (9): 

1010log ( )directional

non directional

I
DI

I −
=  (9) 

 

Another expression for the directivity of a circular piston transducer and widely used 

between different manufactures is the ratio of the wavelength to the radiated surface diameter. 

Where, the aperture angle at -3dB beam width is equal to 65λ/d [36]. The larger the diameter of the 

transducer as compared with a wavelength sound, the narrower the sound beam can be obtained. 

 

 

 

 

 
Figure 18: received echo shape from a 

transmitted rectangular pulse SL = 250 dB, 
Mz = 7 phi, Depth = 10m, f=100m 

 

Figure 17: received echo shape from a 
transmitted bell shaped pulse SL = 250 dB, 

Mz = 7 phi, Depth = 10m, f =100 kHz 
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With SBP it is desirable to have a relatively narrow beam width to avoid unwanted 

reflections. Figure (19) shows the SBP beam pattern obtained from the sinc function for a primary 

frequency 100 kHz and transducer diameter of d=25cm plotted in solid red. Using the approximate 

ratio equation it gives an aperture angle of 3.9 ° which is very close to the operational SBP opening 

angle≈ 3.6°, plotted in dashed blue. For the secondary frequencies the beam pattern will be similar 

and without side lobes [25]. 

 

 
Figure 19: Transducer's beam pattern 

 

 

3.1.2 Transmission loss 

The factors that influence transmission loss can be grouped into two major categories: 

spreading and absorption losses. Spreading losses occur due to the distribution of the fixed amount 

of transmitted energy over a larger surface area as the signal propagates away from the source. At 

relatively short ranges, the increasing surface area is represented by the surface of a sphere so signal 

energy decay due to spreading loss  at a rate of 1/'(,where R is the slant range from the source, 

figure (27). 

 

The second mechanism of signal loss results from the propagation signal energy into heat. 

The two mechanisms are combined and referred to absorption loss described through: 

 

4 re α−   (10) 

Where 

α is the attenuation coefficient, presented in [6], 

r is the slant range, equal to R in figure (27). 
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In order to compare between the discussed transmissions losses, Figure (20) shows the 

absorption losses at 4 frequencies (100, 15, 10, and 5kHz) that span the acoustic frequency bands 

typically used for this project. From the figure it can be observed that at short ranges the spherical 

spreading loss dominates the absorption loss for all the frequency bands. While at longer ranges the 

absorption loss has greater influence on the high frequency band. 

 
Figure 20: Acoustic signal attenuation as a function of 
range in sea water expressed in dB relative to the 
attenuation at a distance of 1 meter from the source.  

 

 

In many phenomenological classification approaches, transmission loss has to be 

compensated and echo forms have to be normalized. Since we are using a physics-based approach 

such compensation is not needed. Instead we incorporate the transmission loss in the model as 

illustrated in figure (21). 

 
Figure 21: Effect of attenuation on amplitude echo level at 

depths (8, 10 and 12 m), for 100 kHz signal, Mz =8φ . 
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3.1.3  Backscatter 

In this section the variation of the scattered energy ��(�) in equation (7) is described by the 

APL model [4]. Few decades ago when there was no general agreement on the physics of the 

scattering process, a lot of models existed based on several different hypothetical scattering 

mechanisms. For example Clay and Medwin based their model on sediment surface scatter, while 

Ivakin and Lysanov modeled it as volume scatter. By applying these models to several sites, it 

showed that both backscatter processes are important. The APL model by Jackson et al considered 

those two factors by modeling them independently, and then summed to estimate the overall 

intensity. The bottom back scattering strength in dB unit, can be written as: 

 

10( ) 10log [ ( ) ( )]b r vS θ σ θ σ θ= +       (11) 

Where 

( )rσ θ = dimensionless backscattering cross section per unit 

 solid angle per unit area due to surface roughness. 

 

 ( )vσ θ = dimensionless backscattering cross section per unit 

solid angle per unit area due to volume scattering 

from below the sediment surface. 

 

 

One of the main advantages of the APL model is that it is related to the sediment 

geoacoustic parameters. ‘Mourad and Jackson’ [5] Stated that there are six parameters shown in 

table (3) that control backscatter from the water–sediment interface and from volume 

inhomogeneities.  These parameters are used as input data for the model. However, these parameters 

are often not all available. A useful sediment descriptor is then grain size zM , which is more often 

available, measured in logarithmic units: 

 

10
0

3.23log g
Z

d
M

d
=  (12) 

 

where dg is the mean grain size or ”diameter” in millimeter (mm), d0 is the reference length (1mm) 

and the units of Mz are denoted by φ. Empirical parameterizations of the geoacoustic parameters are 

available in terms of the bulk grain size Mz  [8]. 
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Table 3: Model input (Bottom parameters) 
 

Symbol Definition Short name 

ρ  

 
Ratio of sediment mass density to water mass 

density 
 

Density ratio 

υ  

 
Ratio of sediment sound speed to water sound 

speed 
 

Sound speed ratio 

δ  

 
Ratio of imaginary wave number to real wave 

number for the sediment 
 

Loss tangent 

2σ  

 
Ratio of sediment volume scattering cross 
section to sediment attenuation coefficient 

 

Volume parameter 

γ  
 

Exponent of bottom relief spectrum 
 

spectral exponent 

2w  

 

Strength of bottom relief spectrum 
4cm at 

wave number 
12 / 1cmπ λ −=  

 

Spectral strength 

 

Roughness scattering cross section ( )rσ θ : 

. Three different approximations are used for the roughness scattering cross section in the 

APL model. For smooth and moderately rough surfaces (e.g. clay, silt and sand) the Kirchhoff 

approximation is used for grazing angles near 90o  and composite roughness approximation for all 

other angles. Finally, for rough bottoms such as gravel and rocks, an empirical expression is used. 

The final surface scatter is an interpolation expression that shifts from one approximation to another. 

In this part we just describe the general concept of the APL model, for full details and intermediate 

equations the reader is referred to the documentation of applied physics laboratory [4]. 

 

Figure (22) shows the modeled surface backscatter energy distribution for fine clay and 

sandy gravel in the angular domain with the default parameter values of the Applied Physics 

Laboratory (1994) for incidence angle(0 80 )ο ο− . The colored solid lines illustrate the margins of 

three approximations (Total surface backscatter, ( )krσ θ Kirchhoff, ( )crσ θ Composite roughness, 

and ( )lrσ θ large roughness). As one can see, the three approximations contribute differently to the 

total backscatter value depending on the sediment type and the corresponding coherency zone. 
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Figure 22: scatter approximations (Total surface backscatter ( )rσ θ , Kirchoff approximation ( )krσ θ , 

Composite roughness approximation( )crσ θ , large roughness approximation( )lrσ θ ). 

 

 By comparing both figures, the backscatter value of the silty clay sediment is more peaked 

near the 0ο  than the backscatter values of the sandy gravel. Also, the backscatter value of the sandy 

gravel is less dependent on incidence angle.  This is a consequence of the surface roughness since 

the surface roughness generally increases with the sediment grain size. The roughness indicator can 

also be observed by the approximation model that dominates the total surficial backscatter value. 

For example for silty clay, the surface backscatter near 0ο  is best described by Kirchhoff 

approximation, while at greater angles, it is best described by composite roughness. On the other 

hand, the backscatter value of sandy gravel at the entire incidence angles is best described by large 

roughness approximation. 

 

Volume backscatter ( )vσ θ :  

 In many cases the scattering by sub seafloor structure contributes significantly, and may 

even dominate the backscattering depending on the sediment type and incidence angle. The second 

term in equation (11) is devoted to the volume backscatter. It accounts for refraction and 

transmission loss at the sediment-water interface published by Stockhausen (1963) [42] in equation 

(13). The expression is generalized to allow for the effect of absorption on the transmission 

coefficient of sediment-water interface and incorporates shadowing and slope correction in analogy 

with composite roughness expression. 
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Figure 23: Illustration of volume backscatter [8] 

2 2 2
2

2

5 |1 ( ) | sin ( )
( )

ln10 | ( ) | { ( )}
pv

R

P P

δσ θ θσ θ
µ θ θ

−
=

ℑ
  (13) 

 
 
Where

 1
( )

1

y
R

y
θ −=

+
 is the complex reflection coefficient, with

sin
( )Py ρ θ
θ= , 

 

2 2( ) cosP θ κ θ= + , with
 

1
(1 )iκ δ

µ
= + .           

 

The relationship depends on the grazing angle (θ ), the loss parameter (δ ), density ratio (ρ ), sound 

speed ratio (µ ), and volume parameter (2σ ) can be obtained from the empirical parameterization 

in [4]. 

 

Figures 24 and 25 show the different backscatter curves for silty clay and sandy gravel 

sediments at 100 and 15 kHz respectively. The blue line shows the sum surface and volume 

backscatter versus the incidence angle. The red and green line shows the surface and volume back 

scatter respectively. 
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From the silty clay figure(24,25), it is clear that surface scattering dominates at incidence 

angles less than 20°, but volume scattering dominates for incidence angles greater than 20°. One can 

conclude that for clay, the volume scatter approximation is perfectly adequate for modeling the 

surface scattering but, except near 0°, surface scattering is the dominant contributor. On the other 

hand, the sandy gravel figure shows that the influence of volume scatter is negligible. The whole 

model in this case is best presented by the surface back scatter. 

 

 

 

Figure 24: backscatter model approximation from left to right (silty clay Mz =8 and sandy gravel 
Mz = 0) at 100 kHz. 
 
 

 
Figure 25: Backscatter model approximation from left to right (silty clay Mz = 8, sandy gravel Mz = 
0) at 15 kHz. 
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3.2 Echo shape implementation in time domain 

In order to model the signal in the time frame, we need to study the signal impact evolution 

with the seabed surface. The acoustic signal incident on the seafloor intercepts an active area that 

changes with time. The evolution of this area with time can be described by assuming that the 

seabed is flat, the sounder beam has a conical directivity pattern, and the seabed is the only source of 

reflection (i.e. multiples are ignored). The seabed ionisfied area is evolved in three distinct phases as 

shown in figure (26), where: 

 

• Phase 1 - Attack – at initial instant 0 2 /t H c=  the impact point increases linearly till it becomes a 

disc with radius ( )S t Hcπ τ=  where 0t tτ = − . 

  

• Phase 2 - Decay - from the end of the attack phase, the ionisfied area is at maximum where t>T until 

the signal footprint becomes a conical pyramid of internal and external radius equal to the active 

area  = HcTπ  

  

• Phase 3 - Release - lasting until the time when the pulse completely enters the bottom and the area 

decreases with time in 2 2( )H HcTπ θ − . 

  

Figure 26: evolution of ionisfied area 

 
This scenario occurs when the beam aperture is sufficiently wide for the footprint of the 

time signal to reach its full extend known by (short pulse or pulse limited). If the pulse is long 

enough beam limited the internal radius starts to grow only after the external radius reaches its 

maximum value, i.e. the whole beam footprint maybe then simultaneously insonified. The maximum 

backscatter area becomes )*� where H water depth, ψ the equivalent solid angle of directivity 

pattern [36, 6]. 
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3.3 Numerical implementation   

So far equation (7) computes the received echoes as a function of incidence angle. In order 

to model the echo shape in time domain as seen by the transducer, we need to compute the angular 

dependent interaction within an elementary time at intervals of fractional pulse durationpτ and the 

corresponding intensity time dependent( )pI τ . This interaction is referred as the evolution of the 

signal footprint or insonified area.   

 

The discrete computation of equation (7) can be numerically computed at the discrete time 

intervals of (τ ) indexed by (n ) as integer in such that the intensity is computed atn τ× . For 

simplicity, the source is assumed to be a point source as shown in figure (27) at a certain height 

above the seabed. The source emits a spherical wave, the intersection of this wave with the bottom 

initially take a shape of a disk changing to that of an annulus, as illustrated in section (3.2). The 

discrete time interval represent the evolution of the disk and annulus as series of concentric annuli, 

with indices [j] i.e. the integral step can be computed by partitioning the angle[��,] or the horizontal 

distance[.�,] into equal increments.  The area of A[j] of each annulus as illustrated in figure (27 and 

28) with internal and external radii calculated by: 

2 2

2 1
[ ] ( [ ] [ ])A j r j r jπ= −    (14) 

 

The area is then partitioned into equal increment of the ring radius to provide finer angular 

resolution close to normal incidence. Equation (15) is the discrete representation of equation (7) in 

the time domain. The transmitted waveform is Gaussian shape as described earlier in section (3.1.1). 

As consequence the ionisfied area at sample sequence �(�/)  is influenced by inconstant pressure 

level, therefore it is important to determine the correct intensity level at sample ( [(2 [ ] / )])
w

I n R j cτ −  

by interpolating the constructive nyquist sample rate to the desired sample rate.  

 

��[�] = ∑ �1 2�/ − �4[,]

5

6 78[,]9[,]
:;;[,] <=[>],?[@]

,A,B[@]  (15) 

  
 

Where: 

 �CC[>] Transmission loss in water column, through 
4

4

r

tt

e
a

r

α−

= , 

  ��[>] Backscatter coefficient, 

  ' [>]    Range between source and perimeter of ionisfied area, 

  DE  Water sound speed, 

  <=[>]  Directivity function. 
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Figure 28: Elementary dimension 

 

 
Figure 27: Imaginary sketch of transducer and seabed 

geometry 
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Chapter 4 

 
Analysis of the High frequency echoes 

This chapter is devoted to employ the model based approach ‘SBES model’ to the seafloor 

classification using the high frequency dataset. The model relies on various input parameters starting 

from the sensor settings to the seabed specific parameters. Some preprocessing and signal analyses 

are also included to optimize the matching procedure. 

 

4.1. Data description and sensor settings 

The data consists of four sets of measurements that cover four areas; each area is acquired 

by four frequencies, the primary high frequency (+/-100 kHz) is stated as ‘HF’, and three secondary 

low frequencies +/-(5, 10, 15 kHz) stated as LF. Figure (29) illustrates the echo prints of the four 

areas observed by the low and the high frequency signals. The data was acquired in the Baltic Sea 

near Rostock realized in 2007.  

 

 

Figure 29: Echo print of sample profiler. The blue layers indicate the positions of the dataset. 

 



 

Figure (30) shows a typical high and low frequency trace and their corresponding

plot. The high frequency signal is 

(30-left). From the figure one can observe that 

reflected at the seabed interface and the reminding are highly attenuated in the sediment medium. 

On the other hand, the low frequency signal encounters less 

component will have the ability to penetrate into the sediment layers. 

Figure 

 
The high frequency dataset

first and second dataset, known as area1 and area2 h

respectively with an average water depth of 20.5m. The third survey line ‘area’3 is approximately 

118m, with a starting water depth of 14m that gradually increases t

acquired over a survey length of 105.5m and average water depth of 13m. The acoustic survey for 

each site was carried out at 

 

A number of grab samples were taken, and i

fine grain sizes ‘e.g. mud or clay’, area3 by coarse sediments ‘e.g. sand’ and area 4 as pebble or 

rock. The analysis of this research will exploit the prior knowledge of sediment description as a 

guiding reference for the consistency of the classification results.
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Figure (30) shows a typical high and low frequency trace and their corresponding

frequency signal is useful to determine the accurate water depth

From the figure one can observe that a large component of the transmitted energy is 

reflected at the seabed interface and the reminding are highly attenuated in the sediment medium. 

On the other hand, the low frequency signal encounters less attenuation

the ability to penetrate into the sediment layers.  

Figure 30: Data example of area 1 at 100 kHz (left), and 5 kHz (right).

he high frequency dataset of the four areas are separated and illustrated

first and second dataset, known as area1 and area2 have a survey length of 112m and 128.5m 

respectively with an average water depth of 20.5m. The third survey line ‘area’3 is approximately 

118m, with a starting water depth of 14m that gradually increases to 15.5m. Finally, area4 was 

acquired over a survey length of 105.5m and average water depth of 13m. The acoustic survey for 

each site was carried out at approximate speed of 10 km/h with ping rate of 6 pings/sec.

A number of grab samples were taken, and indicated that area 1 and 2 are dominated by 

fine grain sizes ‘e.g. mud or clay’, area3 by coarse sediments ‘e.g. sand’ and area 4 as pebble or 

analysis of this research will exploit the prior knowledge of sediment description as a 

ce for the consistency of the classification results. 

Figure (30) shows a typical high and low frequency trace and their corresponding raster 

depth as shown in figure 

a large component of the transmitted energy is 

reflected at the seabed interface and the reminding are highly attenuated in the sediment medium. 

attenuation. Thus, a larger energy 

 
: Data example of area 1 at 100 kHz (left), and 5 kHz (right). 

illustrated in figure (31). The 

a survey length of 112m and 128.5m 

respectively with an average water depth of 20.5m. The third survey line ‘area’3 is approximately 

o 15.5m. Finally, area4 was 

acquired over a survey length of 105.5m and average water depth of 13m. The acoustic survey for 

10 km/h with ping rate of 6 pings/sec. 

ndicated that area 1 and 2 are dominated by 

fine grain sizes ‘e.g. mud or clay’, area3 by coarse sediments ‘e.g. sand’ and area 4 as pebble or 

analysis of this research will exploit the prior knowledge of sediment description as a 



 

 

The data of area

late arrivals that migh

arrivals are much shorter with an average penetration depth penetration

absorption. The raster plot of area 4 shows high energy and topographical fluctuati

be due to flora, fauna or even the pebble itself. The early returns evident in the four plots are most 

likely caused by fish individuals near the bottom. Therefore, this data set requires scrutiny to 

identify artifacts that can unfairly bi

will have mismatch or ambiguous sediment characterization consequences. 

 

Further, the transducer characteristic during the acquisition process of the four areas was

follow: 

The transmitted p

for the high and low frequency respectively with a 200

normally oriented with a transmitted half power beam width 

and receiving (+/-1.8, +/

was corrected for heave and gain. The sample frequency is 96 kHz for LF data. For the high 

frequency, the data was shifted down from 100 kHz to 

of the sample rate.  
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Figure 31: Raster plot of four areas, acquired at 100 kHz

area 1 and 2 shows a penetration depth of approximately (1.5

late arrivals that might be the product of volume backscatter. On the contrary, area 3 and 4 the late 

arrivals are much shorter with an average penetration depth penetration of (0.75

The raster plot of area 4 shows high energy and topographical fluctuati

be due to flora, fauna or even the pebble itself. The early returns evident in the four plots are most 

likely caused by fish individuals near the bottom. Therefore, this data set requires scrutiny to 

identify artifacts that can unfairly bias the shapes and amplitudes of the backscattered echoes that 

will have mismatch or ambiguous sediment characterization consequences. 

transducer characteristic during the acquisition process of the four areas was

The transmitted pulse is a bell shaped CW.  The source level is about 240dB, and 200dB 

for the high and low frequency respectively with a 200 sµ  transmission length. The transducer is 

normally oriented with a transmitted half power beam width 1.8± degrees for the high frequency, 

1.8, +/-38, +/-18, +/-12.5) degrees for (100, 5, 10, 15 kHz) respectively. The data 

was corrected for heave and gain. The sample frequency is 96 kHz for LF data. For the high 

he data was shifted down from 100 kHz to below 20 kHz to fit within the nyquist range 

 

: Raster plot of four areas, acquired at 100 kHz 

shows a penetration depth of approximately (1.5-2 m) which are 

On the contrary, area 3 and 4 the late 

of (0.75-1m) due to large 

The raster plot of area 4 shows high energy and topographical fluctuations, which could 

be due to flora, fauna or even the pebble itself. The early returns evident in the four plots are most 

likely caused by fish individuals near the bottom. Therefore, this data set requires scrutiny to 

as the shapes and amplitudes of the backscattered echoes that 

will have mismatch or ambiguous sediment characterization consequences.  

transducer characteristic during the acquisition process of the four areas was as 

ulse is a bell shaped CW.  The source level is about 240dB, and 200dB 

transmission length. The transducer is 

degrees for the high frequency, 

12.5) degrees for (100, 5, 10, 15 kHz) respectively. The data 

was corrected for heave and gain. The sample frequency is 96 kHz for LF data. For the high 

to fit within the nyquist range 
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4.2. Filtering noise 

 

Model based characterization is based on simulating the main physical processes that 

influence the transmitted signal. In order to improve the matching process between the modeled and 

the measured signal we have to eliminate or filter the presence of noise of the measured signal. 

 

Since signals can be represented with a sum of sinusoids, we can view a signal in terms of 

the frequencies that compose it using the Fourier analysis. Fourier analysis gives insight on the 

frequencies that build up the received echo signal and consequently one can define the threshold 

limits of the filter in frequency domain in order to omit the presence of undesired frequencies.  

 

Band pass filters are filters that allow frequencies within a certain band (or range) pass 

through the filter, while frequencies outside that range are attenuated.  For bandpass filter we 

basically have two parameters that influence the emitted signal: the filter length (number of taps) 

and the pass band limits. The number of taps controls the width of so-called transition zone (gain 

and attenuation ripples). The band width of the bandpass filter is chosen by approximating the 

spectrum intersection limits of the original signal (signal + noise) and the noise.  

 

Figure (32) shows the normalized spectrum of the original signal and the noise in decibel 

units.  Their intersection limits is about 18 kHz and 5 kHz for the upper and lower cutoff bandwidth 

respectively. The center frequency is about 11.300 kHz. In this case, the cutoff band width is 

approximated to 13 kHz. The influence of the filtering process can be seen in figure (33-34), by 

enhancing the error to signal ratio E/S from -69 dB to -72 dB for area1, and from -69dB to -85dB 

for area4. This shows that the influence of the filtering process was not very significant for area1 but 

important for area4. 
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Figure 32: Normalized spectrum of original signal and noise component 

 
 

 
     Figure 33: Error to signal ratio for area1        Figure 34: Error to signal ratio for area4 

 
 

The final product of the filtered dataset of area1 is presented in figure (35) and their 

corresponding power spectrums along with their averaged values in figure (36).  The average power 

spectrum of the raw data set shows a large spread of frequency components among the central 

frequency 11.300 kHz. By comparing the averaged power spectrum showed in figure (36) before 

(left) and after filtering (right) it can be observed that the power spectrum is now more focused 

around the central frequency 11.300 kHz accompanied with reduced side lobes; the difference 

between the main and the first side lobe is more than 50dB.  
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Figure 35: Raw data set (left), filtered dataset (right) 

 

 
Figure 36: Spectrum of raw dataset at area1 f =100 kHz (first plot from left), spectrum of 
filtered dataset band pass filtered with center frequency 11300Hz with a filter bandwidth  of 
10 kHz (third plot from left). The 2nd and 4th plot illustrate the average power spectrum of the 
entire dataset. 
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4.3 Alignment and stacking 

The waterfall plots of figure (37) show 256 traces of area1 before and after filtering. As one 

can see, the data still remains varying in amplitude and shape during the acquisition process. 

Although the data was heave compensated according to the values recorded online from the heave 

sensor, there is still some heave visible over consecutive pings, see figures (39-42 [a, b] ). This 

variability influences the temporal model matching estimations, thus it has to be treated by 

averaging a number of signal envelopes. For the comparison process, an ensemble of M contiguous 

returns is selected and characterized by average echo sequence and mean depth to represent the 

transducer-bottom distance. With notice that prior to the averaging process, the echoes have to be 

aligned first. 

  

 
Figure 37: Waterfall envelopes 
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To isolate the effects of seabed type, one has to remove the effect of depth variation by 

envelope-stacking processes that are aligned in time. In order to compare the effectiveness of the 

alignment two alignment values was tested: (1) the peak amplitude, and (2) the minimum threshold.  

 

The echo-envelope can be described by an initial rise, maximum amplitude and ending 

with a slow decay. Peak alignment is based on tracking and indexing the maximum amplitude value 

of the signal, while the minimum threshold alignment tracks and indexes the initial rise. A number 

of echoes within a chosen ensemble size are then shifted in time to line up with averaged ensemble 

peak or rising time. 

 

 A comparison between peak and minimum threshold alignment value is shown in figure 

(38). The figure shows a modeled signal of Mz = 8 phi in blue, and an average of 15 samples that 

are aligned with the two threshold values. Figure (38-left) shows threshold alignment at 10% of the 

maximum peak. The main property of minimum alignment is that it preserves the integrity of the 

echo’s rising edge, which is more suitable for bottom echoes that have low stochastic variability and 

is less suitable for noisy signals or bottom echoes from rough sediments. 

 

On the other hand, peak alignment is more suitable for bottom echoes that have high 

stochastic variability such as high noise or echoes from rough sediments. Peak alignment yields 

more symmetric distribution of signal energy about the alignment index as shown in figure (38-

right)  

 

 

 

 
Figure 38: Minimum and maximum alignment results 
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The numerical implementation of the alignment process starts by selecting a temporal 

feature, in our case threshold of (10 %, 50% and 100%) was chosen. Once the selected feature index 

is determined the echoes are shifted in time to line up with the averaged signals feature.   

    

For each return signal the alignment index is determined through: 

( ,1)
ti Tj j p p= ≥ , 

 Where 1 is the first index, and1 i I≤ ≤ , the mean alignment index can be then calculated by: 

1

1 I

m i
i

j j
I =

= ∑  

Where I is the number of pings used, which leads to a delay of FG = >� − >G for each individual i  

pings. Finally the averaged echo signal of ensemble n is computed as follows: 

1

1
[ ] [ , ( )]....... 1, 2,...

M

a m
m

p n p m n d n N
M =

= − =∑    (16) 

 

The outcome of this procedure results in a reduced data set that is smoothed and has less 

stochastic variability. The averaged [ ]ap n signals represent the approximated seabed type for a 

small area, which then can be compared to the modeled signals. 

 

A number of analyses were applied on the modified dataset illustrated in figures (39-42). 

Each figure contains four plots, (a) are the raw dataset which could not be used due to their 

stochastic behavior and their irregular shaped envelopes. Plots (b) are the filtered dataset which had 

a smooth shaped envelopes but their variability was not stable which consequently resulted in 

various classification results. Plots (c) are the aligned raw dataset with a stack size of 15 signals, 

which had a low ping-to-ping variance, but their envelopes had irregular shapes which was not 

practical for the model-matching process. Plots (d) are the aligned filtered envelopes, which were 

more practical for the comparison process. 



46 
 

   

             
Figure 39: Raw dataset (a), filtered data (b), stacked raw data (c), stacked filtered data (d) for area1. 
 

            

           
Figure 40: Raw dataset (a), filtered data (b), stacked raw data (c), stacked filtered data (d) for area2. 
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Figure 41: Raw dataset (a), filtered data (b), stacked raw data (c), stacked filtered data (d) for area3.   
 

.    

   
Figure 42: Raw dataset (a), filtered data (b), stacked raw data (c), stacked filtered data (d) for area4 
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4.4. Ensemble size 

For proper averaging, an adequate ensemble size has to be chosen. The size selection is 

based on the tradeoff between spatial resolution and ensemble variance. Suppressing ping-to-ping 

variability by stacking more consecutive echoes together allows the sediment information in the 

echo shape and spectral nature to express itself in spite of noise-like variability. This tends from that 

the clusters are better separated from their neighbors by distributing the residuals which reduces the 

ping-to-ping variability. However, one should account that averaging over a large number of signals 

will change the actual echo signals which will lead to ambiguous classification 

 

The cluster size can be governed by two factors, the geometrical artifacts such as apparent 

periodical patterns in figures (39-42, a) and the degree of similarity between echo shapes. Nonlinear 

parametric sources provide a very narrow directivity which is essential for sub bottom horizontal 

resolution requirements. With the relatively small water-sediment foot print size (approximately 

1.5m at 20m depth) and vessel speed of (10-15km/h) the footprint will have overlap percentage of 

(15%-30%) depending on the ping rate. 

 

In order to check the degree of similarity between the filtered received echoes, a correlation 

coefficient matrix was computed. The � × � correlation matrix of figure (43) shows some 

interesting features per area that can be used as guidance for the stacking size.  

 

For example, area1 and area2 signals are highly correlated on large spatial scale, which 

indicates that both areas are dominated by single sediment type. Area1 shows also some tiled 

patterns which indicate the influence of the periodical pattern as observed earlier in figure (39, a). 

However, this pattern is not of great influence since the correlation coefficients remains high. Thus, 

any stack size can safely be used in these two areas without influencing the signal properties. 

 

Contrary to the first two areas, area3 and area4 in general showed less correlation which 

indicates higher presence of ping-to-ping fluctuation. Moreover, the highest correlations were also 

observed diagonally over shorter spatial scale ’15-20 pixels’, which is likely due to the seabed 

geometrical inclination at area3, and the first 100 traces in area4. Consequently, a stack size of 15 

signals was chosen to be aligned and averaged for the entire dataset. This means that the dataset per 

area will be described by 17 ensembles with an approximate spatial resolution of 6-7 meters.  
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Figure 43: Data correlation coefficient matrix for echo envelopes of the four areas at 100 kHz. 
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4.5. Data comparison 

4.5.1 Comparison process 

Within the matching process we match the stacked measured envelopes with envelopes of 

the model. The measured bottom echoes consist of a pulsed CW signal, whose envelope yields a 

pressure sequence, expressed in Pascal (Pa), whereas, the model yields intensity. Intensity is the 

power passing perpendicularly through a unit area of 1m2. The comparison process is based on rms 

pressure because the intensity introduced complications in the matching procedure. Therefore, 

equation (17) is applied so that the intensity can be written in terms of rms pressure alone. 

^ ^

[ ] [ ]ap n I nρν=                  (17) 

Where �I[�] is the computed discrete intensity and J and K correspond to the seawater density and 

sound speed. To measure the degree of fit between the modeled and measured data, we use a signal 

to error S/E function equation (18)  or E/S  which is just the inverse;  a high value of S/E signifies a 

‘good match’.  This function is easy to implement since it is independent from scale and signal 

length. However, with the presence of noise, comparison of the whole trace is not convenient. Since 

the model models the signal at the signal receiving time, we need to truncate the measured signal 

beneath a given minimum threshold value to remove the remained noise. The rising index of the 

truncated signal is used as an estimate for the water depth for which the model is run. The signal tail 

‘i.e. last index’ is used as ending time of signal computation.  
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One problem remains before the matching process which is that the scale of the stacked 

envelope and the model is different. This tend from that no information about the true power of the 

source is available. In principle the source should be calibrated first to know the exact emitted 

power in the medium to have a direct match between the modeled and measured envelopes. 

However, with the absence of such calibration, the initial modeled-measured echo shapes 

comparison still did show an agreement on the signal shape but somehow biased by a scale factor.  

Intuitively, since the same instrument was used at the four areas, this bias should be constant or 

nearly constant in all surveyed areas. In order to isolate the scale factor, a linear regression model 

was applied using equation: 

y Ax=  (19) 

Where y is the measurement vector, Ais the modeled vector and x is the scale factor. 
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4.5.2 Estimating geoacoustic parameters 

The measured echo envelope characteristics i.e. (echo duration, rising slope peak value, 

decreasing slope, decreasing time, etc) are directly associated with the backscatter values from a 

specific sediment type. In the physics based model, the sediment type is described by six 

geoacoustic parameters ( 2 2, , , , ,v wρ δ σ γ ) as illustrated earlier in chapter 3 table (3). These 

parameters are input in the model to generate a theoretical echo envelope. Within the inversion 

process, we aim to search for the best set of input parameters that gives the maximum fit between 

the modeled and the measured ones. 

 

If the six input parameters are unconstrained, the parameter search space will be six-

dimensional which yields a complication of large number of good fits that does not necessarily 

represent the correct solutions [13]. Therefore, instead of searching in all dimensions, we start by 1D 

search over Mz to establish the general sediment (fines, sand, and rocks). Hamilton and Bachman 

[31] described a relationship between the density ratio and sound speed ratio and relate both to the 

mean grain size of the seafloor sediment. 

 

  Mean grain size diameter is the most useful descriptor for sediment type characterization 

which can range from clay (diameter ~ 0.00039mm) to boulders (diameter~ 256mm or greater). A 

phi value φ  scale conveniently represents the mean grain size according to L = −���� F F�⁄   where 

d is the mean grain diameter in mm and F� is the reference diameter equal to 1mm. The sediment 

naming conventions are given in table (4) from the classification schemes of Wentworth scale [30]. 

These values will be used as threshold for the classification results. 

 

Table 4: Boundaries of sediment types 

Phi Value φ  

Mean grain size 

diameter 

(mm) 

Sediment type 

( 1)φ ≤ −  2 φ≤  Gravel/rock 

1.0 5φ< ≤  0.06 2.0φ< ≤  Sand 

5 φ≤  0.004φ <  Clay 
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Theoretically, modeled echo returns have different behaviors with respect to sediment type. 

For example, signals classified as mud are dominated by volume backscatter as it contributes to the 

total signal energy by a moderate peak rising rate and a long tail due to volume scatter. Sand echoes 

are characterized by a dominant surface backscatter and low volume scatter elongation, coarse sand 

and rocky sediments are completely dominated by surface scatter and an absence of volume scatter.  

 

 Technically any sensor will have a fraction of noise due to reverberations, boat noise, 

water surface, etc. These noises were filtered in the observation and the post processing process. For 

the matching procedure, proper truncation threshold is essential to eliminate the remained noises and 

to track the rising index of the measured envelope and its echo duration. Low truncation biases the 

rising index. While, high truncation might cut off important signal features and yields improper 

classification results.  

 

Bottom echoes from substrates whose relief is small compared to the acoustic wave length 

exhibit consistent temporal energy distributions, particularly at near normal incidence. In these 

situations stacking and averaging via minimum threshold preserves the integrity of the echoes rising 

edge and echo shape. The minimum threshold appears to be ineffectual in high-noise environments 

where signal shapes are highly variable such as coarse sand and pebble sediments which are 

extremely rough relative to the acoustic wave length. Under these conditions higher threshold value 

might be more efficient and may yield average echoes which are more consistent with the 

theoretical and local classifications. 

  

Figure (44) shows the classification result for the four dataset using the default APL model 

parameters, with alignment threshold set to the minimum (alignment 10%, truncation 5%). The 

classifications started by areas where substrates relief is small compared to the acoustic wave length. 

The matching process showed good E/S and moderate classification consistency for area1 and area2. 

The dominant mean grain size was classified as fines5 9Mz≤ ≤ , with presence of some outliers 

classified as coarse sediments. The sandy area had even better E/S than the muddy area, and 

acceptable classification consistency that varied within the sandy zone1 5Mz≤ ≤ . For the pebble 

area the classification consistency was very poor as the classification results were highly fluctuating 

between mud and pebble mean grain sizes.  
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Figure 44: Minimum threshold alignment 10%, 5% cut-off and the 
corresponding classification result. Predicted mean grain size for the four 
areas (Bold blue: area1, green: area2, red: area3, cyan: area4). The pink 
doted lines present the sediments regions fines, moderate, and coarse 
sediments. 

 

Figures (45) shows the classification results, by applying a threshold alignment 50% of 

maximum amplitude and truncation limit 5% of observed signal. As one can see now we do observe 

better consistency for the classification for area 3 and 4 and low consistency for area1 and 2.  

 

 

Figure 45: Threshold alignment 50%, 5% cut-off and the corresponding 
classification result. Predicted mean grain size for the four areas (Bold 
blue: area1, green: area2, red: area3, cyan: area4). The pink doted lines 
present the sediments regions fines, moderate, and coarse sediments. 

 
A third iteration was applied with threshold set to (alignment 100%, truncation 5%) 

illustrated figure (46). The figure shows large variation of sediment type which does not agree with 

the general description of the four areas. 
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Figure 46: Threshold alignment 100%, 5% cut-off and the corresponding 
classification result. Predicted mean grain size for the four areas (Bold blue: 
area1, green: area2, red: area3, cyan: area4). The pink doted lines present 
the sediments regions fines, moderate, and coarse sediment. 

 
 

Figure (47) shows the E/S ratio that represents the degree of match of the observed echoes to 

the modeled echoes for the four areas. Alignment at 10% gave low E/S ratio which means high 

degree of fit for area1, 2, and 3 while area 4 had low degree of fit.  On the contrary, alignment at 

50%, the matching degree had good results for area3 and area4. Finally the peak alignment at 100% 

of the signal had high E/S for all areas.  

 
Figure 47: Error to signal ratio (E/S) for area1 (blue), area2 (green), 
area3 (red), and area4 (cyan). 
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Conclusion 

 

Contrary to SBES sensors, SBP has a very narrow beam width which makes it very 

difficult to capture the full backscatter process, and might not be the most effective sensor for 

surface classification. Based on the SBP limitations, and the previous results, alignment and 

truncation techniques are of great importance to distinguish the slight difference of backscatter 

behavior of different sediment types.  

  

 By comparing the alignment thresholds, the minimum threshold was more suitable for 

relatively smooth surfaces such as area1, area2, and area3. For areas with high fluctuations such as 

area4, alignment with higher threshold (50%) is more suitable since it yields a more symmetrical 

distribution of signal energy about the alignment index.  

 

Interestingly, this issue was also discussed in [8]. It was concluded that group delay 

alignment ‘basically a method that aligns the echoes based on their energy’ of highly fluctuated 

echoes due to reflections from rough surface, yields average echoes that are more consistent with 

their theoretical predications. The following plots in figure (48) show three randomly selected 

matching results from the four areas. The y-axis is placed at the start of the received signal ‘i.e. the 

seabed depth’ so the signal features from different areas can be easily compared such as elongation, 

peaks, and shape. 
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Figure 48: The first three rows show the observed and modeled signal for area1, area2, and area3 with 
minimum threshold (10%) and cut off (10%). The fourth row shows the observed-modeled matching for area4 
with alignment of 50% and 10% cut off. 
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The following table summarizes the classification conclusions. From the table, it can be 

seen that the E/S ratio is not enough to conclude the final classification, since matching process is 

sensitive to the alignment threshold values, and scaling technique. Therefore the best way is actually 

to find the best process that gives the same result as the ground truth values. Therefore in this 

research the conclusion is based on general description of the area together with the minimum E/S 

ratio. 

Table 5: classification result 

   Alignment 

10% 50% 100% 

Area1 

Good E/S, 
classification were 

within fine sediment 
margins 

Low E/S , 
classification were 

not consistent 

Low E/S , 
classification were 

not consistent 

Area2 

Good E/S, 
classification are 
consistent within 
the fine sediments 

Low E/S ratio 
Low E/S , 

classification were 
not consistent 

Area3 

Good E/S, 
classification are 
distributed within 

sand margins 

Good E/S 
Classification are 

shifted more to fine 
sand 

Low E/S , 
classification were 

not consistent 

Area4 
Low E/S ratio, with 
inconsistent results 

Good E/S ratio 
Stable Mz 

classification within 
the coarse 
sand/rocky 
boundaries 

Low E/S , 
classification were 

not consistent 
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The geoacoustic parameter estimation process can be achieved by the following procedure: 

 

1- Obtain the acquired data set with feasible sampling frequency to capture the proper echo envelope; 

sampling frequency has to be at least twice as nyquist sampling rate to prevent sample aliasing. The 

Nyquist theorem states that a signal must be sampled at least twice as fast as the bandwidth of the 

signal to accurately reconstruct the waveform [10]. 

2- Apply filtering techniques to reduce unwished frequency components that might affect the Hilbert 

transform. 

3- Signal incoherency, heave effects, and seabed depth deviation of the mean have to be stacked and 

aligned. We start by minimum threshold alignment with the objective of finding areas that are 

dominated by fines. 

4- The averaged ensemble envelope time stamps are used to generate the equivalent modeled signal. 

5- The model-data matching degree is quantified by error to signal ratio, and the low value of E/S 

signifies ‘good’ match. 

6- With the goal of deriving unambiguous matches between the temporal model and data, 1D search 

technique is used by iterating over all sediment mean grain sizes where the six geoacoustic sediment 

parameters are related to Mz. 

7- The successive Mz are then checked by the classification consistency function. If classification 

presents high fluctuation within the chosen Mz per trace or area, the alignment technique has to be 

changed by increasing the threshold value. 

8- The solution produced with the 1D search defines a seed vector ( 2 2, ,Mz w σ ) appropriate for  

second stage (3D) optimization over roughness spectral strength, volume scatter, and the mean grain 

size associated with impedance contrast and sediment attenuation coefficient.  
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The following flow chart illustrates the used classification paradigm for sediment classification 

using the high frequency dataset. 
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4.5.3. Sensitivity of geoacoustic parameters 

The results of 1D search using Mz showed a feasible model-data fit. This fit can be enhanced 

by searching into a second layer ‘set of new variables’ ( vρ , 2w , 2σ ). These three parameters were 

stated as the three geoacoustic parameters that affect the backscatter value at near normal incidence 

[9, 4] and express: 

 

 1) The ratio of sediment to water acoustic impedance by vρ  

 2) The size of surface roughness, specified by2w , and 

 3) The volume backscatter by
2

σ . 

 

a) Impedance contrast 

  Reference [31] showed that the grain size is correlated to the water-sediment impedance 

contrast and the sediment attenuation coefficient through linear regression equations. As a general 

rule, an increase in grain size parameter Mz is inversely correlated to the impedance contrast and 

attenuation coefficient, which lower the overall level of backscatter and elongates the receiving time 

due to volume scatters. On the other hand, coarse sediments and rocks cause higher peaks that are 

distributed over shorter time.  

 

b) Surface roughness and scatter 

Topographical roughness can be described through statistical parameters such as the root 

mean square (RMS) of the elevation distribution [10]. This is simply the standard deviation of the 

relative height measurements and it has applicability to scattering models [14]. However, the rms 

does not provide any information on the size and spacing of seafloor roughness features that can be 

superimposed with ripples or dunes. Therefore, the APL model represents the surface roughness as 

isotropic two dimensional relief spectrums and by a power law for wave numbers comparable to the 

acoustic wave number: 

 

2 2( )W k w k γ−=  (20) 

 

In the used APL model, we account for seafloor macro roughness by convolving the 

smooth surface with a roughness response. From Applied Physics Laboratory (1994)[4], the surface 

roughness power spectrum 2w  is related to the rms rough height (h) over 1 m long track by 

2

2
0.00207w h=  in 2cm . The lab experiment of APL-UW showed that there is a considerable spread 

in the observed scattering strength for given sediment. Most of this spread was ascribed to the 2w

and
2

σ , therefore these two parameters are allowed to vary. The roughness parameter controls the 
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width and rise time of the signal peak. The limit, which is recommended was suggested by a 

combination of numerical and physics consideration. One should pay attention that the extreme 

values are unlikely to be encountered in practice and may yield suspecting results. The limit is as 

follows: 

 

20.0 1.0w≤ ≤  

 

According to [12], the spectral exponent (γ ) values signify the topographic correlation parameter 

within the same overall variance, whereas the spectral strength ( 2w ) parameter quantifies 

amplitude.  

 

c) Volume scatters 

Volume scatter is very important for fine sediments; its influence can clearly be seen in the 

time domain signal as it affects the energy levels in the tail of the signal. In general, the grain size 

parameter controls the simulated echo’s peak amplitude, whereas the volume parameter controls the 

energy in signals tail. For fine sediments, it dominates the overall energy, while its contribution 

decreases with coarser sediments. The recommended limit for the volume backscatter by [4] is: 

 

20.0 1.0σ≤ ≤  
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Chapter 5 
 

Analysis of the low frequency echoes 
 

Introduction  

In the previous chapter, the time dependent backscatter model was used to simulate a 

vertically oriented, uncalibrated echo-sounder operating at 100 kHz.  With such signal, the received 

echo energy can be successfully predicted.  This is not the case with a transmitted signal operating at 

lower frequencies.  Seeding the SBES model with a low frequency as an input can predict only the 

first part of the received echo ‘water sediment interface’ as shown in figure (49). 

 
Figure 49: Comparison between modeled and 
measured echo envelope received from a transmitted 
pulse of 15 kHz. 
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Therefore, in this section, an attempt is made to investigate the feasibility of two alternative 

physics based models that account for further sub layer interactions. The models predict the 

reflection coefficients at each layer and inverted afterwards to the corresponding mean grain size.  

 

 The building blocks of the first model are based on the recent work of D.Simons [11]. This 

method basically infers the mean grain size of the water sediment interface, by inverting the SBES 

echo energies via empirical relationships between sediment properties and the acoustic reflection 

coefficient. To predict the sub layers mean grain sizes, the model had to be extended to account for 

layer absorptions, reflections and transmissions coefficients to compute the received energy as seen 

by the sensor. By computing the amount of energy received from a time window, the reflection 

coefficient can be estimated and correlated with Hamilton and Bachman’s (1972) sediment 

reflection coefficients. Since the reflection coefficient is a function of sediment impedance, the 

results can then be inverted to the corresponding mean grain size.  

 

The second model is based on the same concept, where the mean grain size is inferred from 

the reflection coefficient at each layer. The major difference between the two methods is how the 

reflection coefficient is computed. In the first method the reflection coefficient is expressed as the 

ratio of the received energy to the attenuated transmitted energy. In this case the energy losses are 

applied on a calibrated transmitted energy, and the attenuation process is theoretically applied on the 

nominal transmitted frequency. In the second model, the reflection coefficient is reversely 

computed. Theoretically, this can be achieved by expressing the reflection coefficient as the ratio of 

the compensated received energy for losses to the transmitted energy. In this case the transmitted 

energy is assumed to be equal to the total compensated received energy. In order to compensate the 

received energy for losses, the transmission losses are applied on the spectrum of the received 

energy which means that the transmission loss is a function of frequency at each layer. 
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Data description 

The low frequency measurements were illustrated earlier in figure (29) chapter 4. The SBP 

reading shows very low penetration at ‘area3 and area4’ which indicates the presence of hard seabed 

surface. At greater depths ‘area 1 and 2’ the penetration depth reaches approximately 8 meters 

below the water-sediment interface, where high reflections are observed at 4m depth. This implies 

that the signal penetrated soft sediment first and suddenly encountered hard sediment causing high 

reflections due to the presence of high impedance contrast.  

 

5.1 Signal processing 

For, the low frequency signals, the receiving half power beam width was much wider than 

during transmission. This configuration was adjusted specially for this project in order to receive the 

complete transmitted energy, which consequently picked up more noise (i.e. low SNR). 

 

 SNR is a measure used to quantify how much a signal has been corrupted by noise. This 

can be achieved by comparing the amount of signal with the amount of background noise in a 

particular signal, such that a higher SNR indicates the background noise is less noticeable. This can 

roughly be estimated by getting the ratio of (signal + noise) ‘e.g. mean signal energy around the 

strongest reflector’ to the mean signal energy of the water column as noise which usually gives a 

fairly good estimation of SNR. 

 

The SNR depends on the received noise energy and the received signal energy. The 

received signal energy mainly depends on the transmitted signal energy, reflection and attenuation 

process at the seafloor. Noise may come from different sources and contributes in different ways to 

the total SNR. Generally the noise is frequency dependent; low frequency signals are subjected to 

high noise components. This can be seen at the bottom plots of figures (50, 51), which compare the 

SNR of area1 and area4 at 15 and 5 kHz before and after filtering. The different SNR results from 

the frequency dependent noise level: the lower the center frequency, the lower the source level but 

the higher the noise level.  In figure (51), although the SNR of the unfiltered dataset at 5 kHz was 

higher than the 15 KHz, the band pass filter increased the 15 kHz SNR more than the 5 kHz. 
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    (a)        (b) 
Figure 50: The top plots in figures (a,b) show the observed data of area1 at 15 and 5 kHz 
respectively. The bottom plots show their corresponding SNR before filtering (red) and after 
filtering. At the 15 kHz figure(a) the mean SNR was improved from 19.0406dB to 28.3975 dB, 
while at the 5 kHz figure(b) the mean SNR was improved from 16.9577to 24.1038dB. 
 
 
 

 
   (a)        (b) 
Figure 51: The top plots in figures (a, b) show the observed data of area4 at 15 and 5 kHz 
respectively. The bottom plots show their corresponding SNR before filtering (red) and after 
filtering. At the 15 kHz ‘figure-a’ the mean SNR was improved from 11.6786dB to 25.74 dB, while 
at the 5 kHz ‘figure-b’ the mean SNR was improved from 15.84 to 19.10dB. 
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 In order to remove undesired noises from the received signal, a band pass filter was used 

with specific bandwidth in order to increase the SNR. This was achieved by employing a similar 

approach as was used in chapter4, through computing the intersection threshold between the signal 

and signal noise spectral components. The resulted bandwidth was about 6 kHz, which didn’t differ 

much from the theoretical one. With a known pulse length200 sµ , the corresponding bandwidth is 

about 5 kHz (bandwidth =1/pulse length) 

 

 Noise filtering was excited on the entire dataset. The observed maximum power spectrum 

was chosen as centre frequency of the design band pass filter. Alternatively, nominal centre 

frequency was chosen if the observed maximum power spectrum had a large offset from the design 

centre frequency. Figure (56) shows the filtered dataset and their corresponding power spectra are 

shown in figure (57). As the figure shows, the frequency band of the filtered data is now more 

focused around the desired centre frequency, and the large difference between main and next side 

lobe is obtained.  
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Figure 52: From left to right area (1, 2, 3 and 4), 15 kHz, unfiltered data 

 

Figure 53: The power spectrum of the four areas (left) and their average (right) of 15 kHz, unfiltered data. 
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Figure 54: From left to right, frequencies (15, 10, and 5 kHz) unfiltered data of area 1 

 

Figure 55: From left to right, frequencies (15, 10 and 5 kHz), power spectrum of unfiltered data of area 1 
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Figure 56: Filtered dataset of area 1, from left to right (15, 10, and 5 kHz) 

 

      
Figure 57:Power spectrum of the filtered dataset 
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5.2 Seabed surface classification using the energy model 

 

As the transmitted acoustic signal travels downwards through the water column with a 

relative large beam width such as in the case of SBES, the received energy will be a composite of 

reflections and backscatters from the seabed surface. On the contrary, SBP operates with narrow 

beam width, where the received echo from a sub bottom profiler is dominated by reflections at 

sediment layers. 

 

The observed signal amplitudes are a function of impedance contrast rather than interface 

micro roughness. This stems from the geometric measurement configuration; ’SBP sees only 

echoes that comes perpendicular from the sea bed with very narrow beam width’ [6], and also 

from the used low frequency band: ‘the seabed amplitudes are much smaller than the transmitted 

wavelength’ [6]. As a result the backscatter is negligible compared to the coherent echo, since the 

microscale topography amplitude is much smaller compared to the signal wave length. 

 

This distinct behavior is essential when modeling and interpreting data from the sub 

bottom profiler. With this concept the physics based model should pay attention to the energy 

transfer, losses, and reflections within sediment layers. The aim here is to infer the sediment type 

from its reflection coefficient by comparing it to the modeled reflection coefficient. The reflection 

coefficient of measurements starts by extracting the signals from recordings. Then their envelopes 

are squared and integrated to yield echo energies. The received echo energyRXE  at a given 

direction ‘receiver interface’ and pulse duration is related to the transmitted pulse TXE  through:  

 

( 4 )
2

24

H
RX TX

e
R E

H
E

α−
=   (21) 

   

where H denotes the distance between the echo sounder and the seafloor determined from the echo 

return time and the sound speed, and R is the reflection coefficient of the smooth surface. To 

discriminate between the energy loss due to transmission into the medium and attenuation 

associated with the traveled distance 2H, the energies are corrected for the spherical spreading 

factor 21/ 4H and the water absorption4 He α− .Water absorption 4 He α−  is the exponential form that 

computes the absorption rate proportional to water depth, where N is the water absorption 

coefficient estimated from Francois and Garrison formulas and converted to 1/m. From equation 

(21) the expression can now be inverted and the corresponding reflection coefficient of 

measurements can easily be estimated. 
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The next step is to estimate the modeled reflection coefficients that correspond to the 

assumed sediment types (1φ−  till 9φ ). The modeled reflection coefficient can be described via the 

classic Rayleigh reflection law which is a function of the impedance ratio between two mediums 

through equation 4. 

 

Acoustic impedance Z is defined as the product of the sound speed and the density of a 

material. It basically represents the influence of a medium’s characteristics on reflected and 

transmitted waves. Many geotechnical properties such as porosity, density, mean grain size, etc., 

exhibit excellent correlation with the impedance. Therefore, it is possible to predict the mean grain 

size from normal reflectivity data through the calculations of the sediment acoustic impedance. 

 

Water impedance 1( )w wZ cρ  can be roughly estimated by guessing the water sound 

velocity and density of water which might have different values from the true water column 

values. In the proposed model the sediment impedance is inferred from assumed sediment type 

‘i.e. impedance is a function mean grain size2( )zZ M ’. The mean grain size can be substituted by 

its geoacoustic properties described via Bachman’s and Hamilton regression equations that relate 

the sediment velocity and density to the mean grain size through: 

 

21952 86.3 4.14s z zC M M= − +  (22) 

22380 172.5 6.89s z zM Mρ = − +  (23) 

 

By combing equation (22) and (23), sediment impedance 2( )s sZ cρ can easily be estimated.  

One should note that although sediment impedance is uniquely identified as a function of the mean 

grain size, mean grain size as function of impedance ( )Mz Z  gives various solutions.  
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Figure 58: Echo energies observed and modeled 

Prior to the reflection estimation, energy plots were compared first. The three plots of 

figure (58) represent the energy of the received echoes at four locations, with their corresponding 

depths estimated by its mean water columns (colored lines). The first plot illustrates the numerical 

integrated values of the echo envelopes at 100 kHz using the SBES time domain model. At the 

four areas, the energy curves increases gradually at -1<Mz<1 ‘rough sediments’. At 1<Mz<5 

‘sandy sediments’ the energy decreases almost with the same rate, while at Mz > 5 ‘fines 

sediments’ the decrement rate becomes much less. The decrement rate of fine sediments appears 

constant due to scale of the plot. The low energy decrement indicates that the modeled envelopes 

of the fine sediments have very similar characteristics. As a result, the plot is capable to 

distinguish between the predicted energies that correspond to the distinct sediment types ‘rough, 

medium and fine sediments’. 

 

 This distinct energy trend tends from the fact that reflections from rough sediments are 

dominated by surface reflections and very low contribution from the volume scatter. Reflection 

from coarse sediment i.e. 1<Mz<5, is a composite of both surficial and volume scatter.  For fine 

sediments, the most dominating factor is volume scatter. 

 

The second plot shows the energy of the recorded measurements at 100 kHz that belongs 

to the envelope of surface reflection ‘approximately two times the transmitted signal’. The plot 

shows a stable energy trend at the first three areas ‘area1, area2 and area3’ and less stability at 

‘area4’. The fluctuating energy profile of ‘area4’ could be caused by surface inhomogeneities, or 

random roughness profile such as pebble and rocks. The third plot represents the predicted energy 

using equation (21).  
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By comparing plot (1) to plot (3), the distinct energy trend of plot (1) does not tend only 

from the different reflection process, but also from the transducer characteristics. Generally, if the 

receiving aperture angle was set to maximum, the transducer would be capable to record most of 

reflected energies (i.e. reflections backscattered energies) at larger grazing angles, and less 

information would be lost. Consequently, the energy profile of plot (1) would be closer to the 

energy profile of plot (3).  

 

The energy of plot (3) drops monotonically from rough to fine sediments with much less 

energy values. This tends from that the equation (21) accounts only for surficial reflections 

without roughness or volume scattering consideration. 

 

By comparing the colored lines of the  second plot ‘measurements’ with the first plot 

‘SBES model’, the four areas shows a clear correlation between the mean grain size and their 

corresponding energies. The comparison between the second plot and third plot ‘predicted energy’ 

shows a feasible correlation for the fines and sandy areas, whereas less correlation is observed for 

the pebble area. The low correlation is likely to occur due to the absence of the surface roughness 

parameter in equation (21) which might contribute greatly in echoes from rough sediments. 

 

The comparison also shows that the vertical axes are different in scale due to realization 

of absolute values of the reflected energies. Thus, values of the reflection coefficient should be 

derived with the help of a few selected bottom grabs that serve to calibrate the energies for the 

entire data set. Since the true source levels are not available, the theoretical source level TXE  has 

to be scaled by an arbitrary value in order to estimate the absolute reflection coefficient. 

 

Scale factor  

Practically, determining the scale factor depends on prior knowledge of the sediment type 

using grab samples and a calibrated transducer where the exact transmitted energy in the water is 

well known. Since this information was not available, the scale factor determination will be 

derived from general description of the survey area which was moderately confirmed by the 

results of chapter 4. Stacking and trace alignment in chapter 4 resulted in 17 ensembles. A 

reasonable number of sub-ensembles were chosen from each area; basically 5 random ensembles 

per area resulting in four different calibration factors for each area. Each calibration factor will be 

used to the corresponding dataset to ensure proper reflection coefficients.  
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The numerical computation of the scale factor starts by assuming that the transmitted 

energy is subjected to an arbitrary scale factor C. Therefore, equation (21) can be rewritten as 

follows: 

 

( 2 )
2

RXH
CHR E

e α−=  (24) 

Where
 

1
TX

C
E

=  . 

 

With the prior knowledge of the general description of each area, the corresponding 

Rayleigh reflection coefficient at water-sediment surface can be determined using Hamilton and 

Bachman’s equations (22 and 23). The N calibration samples are associated with averaged Mz that 

corresponds to its zones typically Mz = 9phi for fines (area 1), Mz = 8phi for (area 2), Mz = 3 phi 

for coarse (area3), and Mz = -0.5 phi for very coarse (area4).  

 

The number of calibration factors Ci per area can now be computed by matching the 

acoustic reflection coefficient of equation (24) to the expected Rayleigh reflection coefficient 

equation (4). By taking the root mean square of the Ci of each area we end up with four calibration 

factors. The calibration factors of area1, 2 and 3 were very similar and slightly different at area4 

which could be due the high stochastic behavior of rough surface. Nevertheless, the four 

calibration factor were averaged and used for the entire dataset. 

 

Classification result 

By exploiting the calibration factor, the reflection coefficients for the rest of the dataset 

can now easily be estimated as shown in figure (59). The figure shows the estimated reflection 

coefficient ‘solid lines’ overlapped with the theoretical reflection coefficient from Hamilton and 

Bachman’s table. The reflection coefficient is deduced from the theoretical relationship between 

sediment impedances and soil interpretation ‘i.e. clay, silts, sand, etc’ description. The black dots 

show the random calibration samples that were chosen during the estimation process. In general, 

there is good consistency but not for area4, which might be due to the fact that the roughness is too 

high to be neglected and due to the averaged scale factor that has been used. In [41], high 

resolution seismic reflection the reflection coefficient can be affected significantly by scattering 

due to boundary surface roughness and proposed solution on how to account for surface 

backscatter.  

 

 

 



 

Figure 59: Reflection coefficient results using the 100 kHz dataset at the four areas. 
Horizontal dashed lines are the theoretical limits of the reflection coefficient which 
correspond to -1<Mz<9 phi. 

 

Figure (60) depicts

overlaid with the classification results of chapter four ‘

in a sequential order for clearance. From the figure, both methods show similar results, with lower 

variations in the reflection based approach. However, to judge the quality of the results, larger 

dataset is needed to apply sufficient statistical evaluations. 

 

Figure 60: The high frequency 
The classification results of
sediment boundary limits between fine, coarse and rough sediments ‘magenta dashed’. 
The four areas are presented in a sequential order
stack (1-17), area2 = stack (18
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Reflection coefficient results using the 100 kHz dataset at the four areas. 
Horizontal dashed lines are the theoretical limits of the reflection coefficient which 

1<Mz<9 phi.  

depicts the equivalent sediment classification result ‘Mz’ in

overlaid with the classification results of chapter four ‘solid cyan’. The figure shows the four areas 

in a sequential order for clearance. From the figure, both methods show similar results, with lower 

variations in the reflection based approach. However, to judge the quality of the results, larger 

o apply sufficient statistical evaluations.  
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Reflection coefficient results using the 100 kHz dataset at the four areas. 

Horizontal dashed lines are the theoretical limits of the reflection coefficient which 

Mz’ in black solid lines 

cyan’. The figure shows the four areas 

in a sequential order for clearance. From the figure, both methods show similar results, with lower 

variations in the reflection based approach. However, to judge the quality of the results, larger 

 
results are displayed in black solid lines. 

are displayed in cyan solid lines. The 
boundary limits between fine, coarse and rough sediments ‘magenta dashed’. 

from left to right, where area1 = 
53), area1 = stack (54-72). 



 

5.3. Sub bottom classification using energy model

In this section the low frequency echoes will be analyzed to infer the description of the 

sub bottom layers.  Equation (2

received energy flux density 

the received energies are reflected from the layered sediments giving more information about 

sediment layers structure and type. To model the received energy for such condition, expressi

(21) has to be extended to account for the additional physics processes by including layering 

absorptions, transmissions and reflections. 

 

 

Consider a transmitted low frequ

dissipative sedimentary layer of thickness 

Each layer l is characterized by its sound speed 

thickness dl. The signal encounters an initial reflection at water

influenced by losses due to spherical spread and absorption in the water column. The remaining 

energy will penetrate inside the sediment layer with a transmission coefficient of

transmitted sound will be subjected to a secondary spherical loss limited to the layer thickness d

and its corresponding sediment absorption.

inferred from table (6)

equivalent sediment type in table 

absorption coefficient 
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classification using energy model 

In this section the low frequency echoes will be analyzed to infer the description of the 

sub bottom layers.  Equation (21) does not account for layering interaction and describes only the 

received energy flux density as a result from seafloor surface reflection. With the low frequency, 

the received energies are reflected from the layered sediments giving more information about 

sediment layers structure and type. To model the received energy for such condition, expressi

) has to be extended to account for the additional physics processes by including layering 

absorptions, transmissions and reflections.  

 
Figure 61: Theoretical sediment layer structure [28]

Consider a transmitted low frequency pulse emitted perpendicular towards a fluid 

dissipative sedimentary layer of thickness h and split into n elementary layers as in figure (

is characterized by its sound speed lc  , density lρ  , attenuation coefficient 

The signal encounters an initial reflection at water-sediment interface that is 

es due to spherical spread and absorption in the water column. The remaining 

energy will penetrate inside the sediment layer with a transmission coefficient of

transmitted sound will be subjected to a secondary spherical loss limited to the layer thickness d

and its corresponding sediment absorption. The absorption coefficient of the 

); the estimated reflection coefficient of the first step is used to search for the 

equivalent sediment type in table (6). Now as the sediment type is know

absorption coefficient can be used for the computation of the next layer. 

In this section the low frequency echoes will be analyzed to infer the description of the 

) does not account for layering interaction and describes only the 

as a result from seafloor surface reflection. With the low frequency, 

the received energies are reflected from the layered sediments giving more information about 

sediment layers structure and type. To model the received energy for such condition, expression 

) has to be extended to account for the additional physics processes by including layering 

Theoretical sediment layer structure [28] 

ency pulse emitted perpendicular towards a fluid 

elementary layers as in figure (61). 

, attenuation coefficient lα  , and 

sediment interface that is 

es due to spherical spread and absorption in the water column. The remaining 

energy will penetrate inside the sediment layer with a transmission coefficient of
1wsT . The 

transmitted sound will be subjected to a secondary spherical loss limited to the layer thickness d1 

the upper layer can be 

step is used to search for the 

. Now as the sediment type is known, its corresponding 
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The absorption coefficient sound wave in marine sediments in table (6) is described 

through: 

nkfα =  (25) 

Where: 

 k = constant that depends on sediment type 

 f = transmitted frequency 

 n = exponent of frequency dependence 

 

Most authors support linear frequency dependent attenuation which is also followed in 

this literature by using Hamilton and Bachman’s absorption values shown in table (6). There is a 

variety of sediment absorption units that are commonly used in the underwater acoustics and 

marine seismology communities. Most common is the decibel per unit meter, or decibel per wave 

length depending on the used propagation model. In table (6) the acoustic attenuation lα  is 

expressed in decibel per wavelength so it can be used with any frequency. In the used model, the 

attenuation coefficient was converted to dB/m to agree with the units of the extended equation. 

Table 6: Sediment absorption coefficients after Hamilton & Bachman et al [6]. 

Sediment type 
Mz

( )φ  
ρ 3( / )kg m  c ( / )m s  α ( / )dB λ  

Clay 

Silty clay 

Clayey silt 

Sand-silt-clay 

Sand-silt 

Silty sand 

Very fine sand 

Fine sand 

Coarse sand 

9 

8 

7 

6 

5 

4 

3 

2 

1 

1.200 

1.300 

1.500 

1.600 

1.700 

1.800 

1.900 

1.950 

2.000 

1.470 

1.485 

1.515 

1.560 

1.605 

1.650 

1.680 

1.725 

1.800 

0.08 

0.10 

0.15 

0.20 

1.00 

1.10 

1.00 

0.80 

0.90 

 

The mentioned attenuation process will continue until the signal encounters the second 

layer, where high impedance contrast exists. On the traveling way back to the receiver, the 

reflected energy is subjected to the same attenuation process during the transmission mechanism. 

The penetrated energy into the second layer will encounter the same physical processes until the 

energy vanish or is completely reflected by a rocky layer. The mathematical description of the 

mentioned process for one layer (i.e. second medium interface) is described through: 
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O4P = OQP 2R(ST∝5V)

(W? 6 XE��
� 2R(ST∝YBZB)

([B? 6 '����
� X�E�

�  (26) 

 

Where 
1sα the acoustic attenuation due to sediment absorption at the first is layer, 1d is the 

thickness of the first layer, and 1 11ws wsT R= +  is the transmitted energy coefficient from the water-

sediment interface. The reflection coefficient at the boundary of the first and second layer is 

denoted by  1 2s sR  , and 1 1s w wsT T=  is the transmitted energy coefficient at sediment-water interface. 

The number of required parameters in the general expression depends on the number of layers (N). 

Table (7) shows the required number of parameters in order to compute the reflection coefficient 

at the corresponding layer. 

Table 7: Required variables to be estimated for nth layer 

Parameter Number of required parameters 

ETX 1 

Attenuation N+1 

Transmission coefficient 2N 

 

 

Although, the incident wave can potentially excite both pressure and shear waves. The 

shear wave is neglected because we have almost vertical incidence and no solids. No solids mean 

that the seabed is modeled as fluid which means that it supports only compression waves. Shear 

waves should be taken into account when a reasonably solid bottom exists such as in ocean 

basement or situation where no soft sediments overlie the basement. When the reflecting medium 

is solid, the seabed should be treated as an elastic medium that provides a restoring force to 

recover from shearing.  In this case, the incident wave will potentially be decomposed into 

pressure and shear waves.  

 

Another external process that was neglected in this model is signal interference. Signal 

interference is the process in which two or more coherent waves combine to form a resultant wave 

in which the displacement at any point is the vector sum of the displacements of the individual 

waves. This might occur when a reflected signal is trapped between two layers ‘i.e. delayed’ and 

added to reflections that are encountered from deeper layers ‘i.e. synchronized in time’. In this 

process, the received echo will be a component of amplitudes ‘i.e. destructive and constructive’ 

which will not represent the true sediment layer and consequently will degrade the reflection 

coefficient results. 
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Scale factor  

In section (5.2), the scale factor was determined from the high frequency dataset. In 

theory, the source level of the high and low frequencies should be the same. This means that the 

estimated scale factor can be applied for the low frequency dataset. Practically, the source level of 

the low frequencies was not the same as the source level of the high frequency. Therefore, new 

calibration factor had to be estimated. The determination method is basically the same as 

introduced earlier in section (5.2). Contrary to the high frequency signals, the low frequency signal 

is much longer and contain reflections from sediment layers which means that the single trace is 

described by various sediments ‘i.e. different grain size’. Therefore, the first received reflection 

encountered from the water-sediment interface was only used to determine the scale factor. This 

can be defined by selecting the envelope length equal to twice the transmitted pulse length starting 

from the water depth as shown in figure (62).  

 
 
 

 
Figure 62: Envelope equal to twice transmitted pulse 

(red), selected to determine the scale factor 

 
Figure (63) shows a comparison between the scale factor values and their corresponding 

distributions for each area. Five samples were selected located at the same position of the high 

frequency analysis that was shown earlier in figure (59). The figure shows that the scale factor of 

the first three areas are very similar, consistent and does not contain major errors such as observed 

with the scale factor of area4. The scale factor of area 4 implies that the selected five samples are 

highly variable due to non homogeneous pebble surface, or due to the additional backscatter area 

caused by the high surface roughness.  
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With the goal to find one scaling factor that works for the complete range of mean grain 

sizes and depths, one can basically use an average scale factor for the four areas. However, the 

averaged scale factor degraded the analysis results. Therefore, the first three scale factors were 

averaged resulting with a single scale factor used for the analysis of the first three areas. The scale 

factor of area4 was excluded and used only for its own area. 

 

 

 

Figure 63: Contrary to the scale factors of the first three 
areas, significant variation can be seen in the scale factors 
of area 4. The upper and lower edge of the blue boxes 
shows the upper and lower quartile respectively. The red 
line is the mean. 

 

 

Reflection calculation versus time 

Figure (64) illustrates typical wave forms from a shallow sub-bottom record. With water 

depth travel time wt  and sampling window dt to calculate the acoustic reflection versus travel 

time are shown. The size of the sampling window is very crucial for the estimation of the local 

reflection coefficient. Basically too short sample window will not capture the correct energy that 

represent the desired local layer, while too large sample window will overestimate the reflection 

coefficient as it will overlap with the energy of the next layer. The principle of choosing the 

correct sample window will be investigated in the next section. For now, the size of the sample 

window is chosen to be once or twice the transmitted pulse length, which also agrees with the 

selection of the size in the following sections. 
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Figure 64: Physical reflection model [27] 

 

As in deep seismic, all calculations can be done with respect to travel time. After 

sediment layers are defined and their corresponding velocities are known, the predictions can be 

corrected to reflections versus depth. Referring all procedures to travel time where the bottom 

echo starts after duration of\E, the sequential data are derived into N subsections, 

S(dt1),S(dt2),….S(dtn). The signal integration to each subsection of the sequential data can be 

calculated through: 

 

( )
2

1

.2( ( ))n idt

t

t t

E S tt
=

=∑            (27) 

 

Where: 

1

1
1

n

w n
i

t t dt
−

=
= +∑  

2 1 nt t dt= +  

wt  = water depth travel time. 

ndt = sample window of nth subsection. 
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Sample window size 

 

Calculating reflections coefficient versus depth is only valid when secondary reflections 

of the transmitted pulses are not located within the sampling window of the first arrival pulse. In 

order to evaluate this, a spectrum analysis method was applied on two sequential sample windows. 

The method is basically inferred from the broadly used approach ‘spectral ratio method’ to 

estimate sediment absorption coefficients within homogeneous layer [26], which is based on the 

analysis of the frequency content of propagated acoustic waves.  

 

For a particular trace the spectra is calculated over a default window size of 200sµ , 

which corresponds to a 5 kHz bandwidth. A number of spectrum analyses have been performed on 

N times the sample size. The performed analysis is shown in figures (65, 66). The figures show the 

power spectrum of two sequential sample windows with different sizes 1, 2, and 4 times the pulse 

width. The hypothesis here is that if the spectrum of the second sample window is the same or less 

than the power spectrum of the first sample window then we are at the same sediment layer. In 

fact, the low power resulting from the second window is the sediment absorption influence on the 

transmitted signal within a homogeneous layer. On the other hand if the power spectrum of the 

second sample window is greater than the first one, this means that secondary reflection is 

encountered, which implies a presence of a secondary layer. 

 

To avoid the presence of secondary reflections in the first sample window, one can 

choose a very short time window ‘one time the pulse width’. However, a very short sample 

window in the time domain reduces the spectral resolution, and comparison becomes very difficult 

as shown in figure (66-A).  

 

 In the second plot figure (66-B) the sample window was set to two times the pulse width, 

which increased the spectral resolution and individual reflections were still separated. The 

difference between the maximum power spectrums is also larger which shows the influence of the 

absorption within the sediment layer. 

 

Figure (66-C) shows the power spectrum of a sample window four times the pulse width. 

The figure shows that the individual sediment layer can no more be captured with the presence of 

secondary reflection within the single sample window. The power spectrum of the second sample 

window has larger amplitude over the entire frequency band, and no clear separation or difference 

can be observed at the maximum power spectrum as shown earlier in figure (66-b). 
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From the previous analysis, the best size of the sample window would be twice the pulse 

width and at least one time the pulse width for the minimum sample size as shown in figure (66-

A). The figure shows a slight difference between the maximum power spectrums which is obvious 

as no major difference between the signal amplitude was yet encountered. 

 

The influence of the sample size selection on the reflection coefficients versus depth is 

illustrated in figure (65). In figure (65-a), for a sample size equal to one time the band width, the 

reflection coefficients are consistent with the trend of the received signal. This behavior cannot be 

captured when the sample window was set to 4 times the band width as shown in figure (65-b). 
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Figure 66: From top to bottom, sample size = 1 pulse width, 2 pulse width, and 4 
times the pulse width. The blue and red lines correspond to the first and second 
sample.  

 

 
(a) 

 
(b) 

Figure 65: Comparison between sample size 
influences on the reflection coefficient estimates. 
(a) Sample window equal to one time the pulse 
width.(b) equal to 4 times the pulse width. The 
Left plot is the received signal (area1-15kHz). 
Right plot is the estimated reflection coefficient. 
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Classification result 

 

The classification results started by a proper prediction of the sediment grain size at water-

sediment interface that also agreed with the high frequency classification. However, the reflection 

results was acceptable for the first three or four iterations, but at deeper layers the predictions 

degraded drastically and unrealistic reflections were observed ‘e.g. reflections >1’ which cannot 

occur in the real physical process. This implies that there is an error that propagates and increases by 

increasing the number of iterations. 

 

 Theoretically, the reflection coefficient of sample window (n) depends on the geoacoustic 

properties of the sample window (n-1). If the reflection coefficient of (n-1) is wrongly estimated, the 

corresponding attenuations will be under or over estimated which will unbalance the energy ratios of 

(n). In our scenario, this can occur if the sample window covers several layers, in this case the 

reflection coefficient will be a rough estimate for the selected layers. In order to reduce the 

propagation error, the reflection coefficient has to be estimated at each layer boundary, by insuring 

that the layer boundary will fully fall into one sample window. 

  

Figure (67) shows the echo envelope of a15 kHz signal. The envelope trace has various peaks 

and widths that correspond to the impedance contrast between two subsequent layers. Section (5.3) 

showed that sample window equal to twice the bandwidth is a feasible size to isolate the reflections 

between two subsequent layers. This can also be seen in the time domain of figure (67) where the 

first sample window sufficiently overlaps the first reflection from at water-sediment interface. On 

the other hand, sample windows 2, 3, 6 and 7 are poorly located, and do not represent a distinctive 

sediment layer. Consequently, the estimated reflections will not be accurate and misplaced.  

 

For example, the reflection coefficient at the first sample window ‘i.e. first layer’ is well 

estimated and its corresponding absorption coefficient as well. In the following sample window, the 

window is too large and misses to estimate the reflection coefficient of a thin layer at point (c). In 

this case, the energy level is over estimated, and consequently the sediment attenuation as well. This 

will lead to unbalance the model and the corresponding reflection coefficient will be inaccurate. 

Consequently, the misclassification error will propagate within the model leading to unstable 

reflection profile. This will lead to decrease the size of the sample window to capture the missing 

thin layer, but unfortunately, this is not a practical solution for larger envelopes. 
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In order to compromise between the two requirements, the reflection coefficient will be 

estimated using the same sample window ‘twice the transmitted pulse width’ but with shorter 

intervals ‘e.g. overlap 75%’ to minimize the chance of missing intermediate layers. The red striped 

rectangles in figure (67) show the concept of overlapping windows. 

 

The algorithm starts by a sample window width equal to twice the transmitted pulse 

duration. In figure (67), the first sample window intersects with the envelope at point (a). In the 

second iteration, the sample windows will shift 25% of the sample window and intersects with the 

signal envelope at point (b). The algorithm continues with the same shifting mechanism for N 

iterations, where the third, fourth and fifth iteration intersects with the signal envelope at point (c), 

(d) and (e) respectively. 

 

 

 

Figure 67: A descriptive plot that shows the sampling window techniques ‘0% & 75% overlap’ 
plotted in red solid and dashed lines respectively. The blue solid presents the received echo envelope 
from a 15 kHz signal at area1. 
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Visually, one can observe that the first sample window covers a complete reflection 

envelope which was reflected from the water-sediment interface. Consequently, the estimated 

coefficient at point (a) is estimated with high confidence. In the second iteration, the sample window 

is shifted till point (b) which covers a large part of the envelope that was reflected from the water 

sediment interface and a part of the second envelope. In this step, the estimated reflection coefficient 

is estimated with less accuracy as the sample window does not fully cover the second envelope. This 

artifact might degrade the reflection estimates at point (b). The difference between the estimated 

reflection coefficient at point (b) and the true reflection coefficient is an error factor that will 

propagate within the model. However since we are using short intervals, the error magnitude is 

relatively small comparing to errors encountered by the algorithm with 0% overlap. 

 

 In the third step, the sample window covers the full reflection envelope at point (c), this is 

a major advantage as the algorithm ensures to cover intermediate layers which will be missed with 

the traditional 0% overlap window.  

 

To illustrate the influence of the overlapping technique, a number of analyses were 

performed on different overlapping values 0%, 50% and 75% as shown in figure (68).  The red lines 

presents 0% overlap ‘i.e. illogic results’, blue line represents 50% overlap, magenta (75% overlap) 

with significant improvement. One should note that too short intervals will degrade the results again 

by underestimating the reflection coefficients; sample window will not capture the full envelope of 

the second layer.  
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Figure 68: The estimated reflection coefficient trend with respect to travel time converted into depth. The left 
plot shows the received signal envelope from stacked dataset. The right plot shows the corresponding 
estimated reflection coefficients. The blue vertical lines represents from left to right, the theoretical reflection 
coefficients of mean grain sizes from 9φ  till (-1 φ ).  
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5.4 Sub-bottom classification using Energy model (frequency domain) 

 

In this method, the identification of the sub-layer bottom is achieved by following the work 

of [27]. The approach can be considered as a reverse algorithm of the previous method. In particular, 

the model compensates for the propagation and absorption losses in each layer as function of 

frequency. The total transmitted energy can then be estimated via the total sum of the compensated 

received energy. The reflection coefficients estimates at each sample window are consequently 

inferred by removing the losses in the layers above the desired one, so that the desired layer can be 

analyzed as if it were a surficial reflector. This concept is applied to each subsequent layer until 

recorded energy vanishes.  

 

Reflection calculations versus depth 

 

With the aim to compare the reflection coefficient estimates of the two methods, the 

sampling window was set the same as with the first method, which equal to the transmitted pulse 

width. The sampling windows are referred to the travel time where the bottom echo starts tw as 

illustrated earlier in figure (64). Fourier transform is then applied on each sample window of the 

sequential data as shown in equation (28): 
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F t S t e ωω −

=
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Where: 

1
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n
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−

=
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2 1 nt t dt= +  

�(\)  = The sequential pressure envelope within sample window t 

]G   = The mth spectrum component 

\E    = Water depth travel time 

F\@   = Sample window of nth subsection 
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This operation will yield a sequential spectrum for each subsection presented in a matrix, 

which represents the spectrum components at each sample window. The energy matrix is then 

obtained numerically by integrating the squared spectrum components shown in equation (29). 

 

2( , ) [ ( , )]m n m nE dt F dtω ω= ∫                (29) 

The two dimensional Energy matrix is described through: 
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=       (30) 

 

Yielding energy versus travel time dtn and ωn  is nth spectrum components. 

 

Losses 

The compensation process for various losses is basically described by the same parameters 

as with the first approach, only the fact is that the losses are added in place of subtracted. The losses 

elements are summarized by: 

 
- Geometrical spread to the desired layer 
 

( ) ( )+20 Log 20Log Dspcorr nN H=             (31) 

Where: 
 H = water depth 

nD  = range from seabed surface to layer of interest 

 
- Water attenuation 
 

 ( 4 )wHe α−    (32) 
Where: 

 wα = water absorption coefficient 

 
- Sediment attenuation 

 

    
.m

nD
BCe

ρω
   (33) 

Where: 
C = Average Sound speed in sediment layer 
J  = Average density 
B = 161.8 Dimensional constant viscosity. 
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The compensation procedure is computed in two steps. First the model accounts for the 

geometrical losses spcorrN  on the entire matrix elements as shown in the following equation: 

 

( , ) ,10log( ( ))m n m n specorrdt dtspcorrE E Nω ω= +          (34) 

 

After the geometrical loss correction, the absorption correction for water and sediment has 

to be applied for each frequency in the energy matrix as shown in equation (35): 

. .( 4 ) .
( , ) w

m
nH D

BCcor m n spcorrE dt eeE α
ρω

ω −=       (35) 

 

After the corrections have been applied per frequency, the total energy per sample window 

( )nE dt can be described by the summation of the total number of frequency samples as shown in 

equation (36): 

1

( , )( )
M

n m n
m

dt E dtE ω
=

=∑                (36) 

Finally, the transmitted incident energy on the seabed is equal to the summation of energies 

at each layer plus energy losses which are energies that were attenuated, or penetrated and never 

returned back to the transducer. This can be described mathematically through equation (37): 

1

( )total

N

n
n

E dtE k
=

= ∑  (37) 

where the incident energy is the sum of the reflected energies times a constant k which represents the 

energy lost by reflection downward into the earth. k was numerically estimated earlier in the first 

method denoted by C in equation (24). As now the energy per layer and total energy incident is 

known, the reflection coefficient of the first layer is the ratio of the reflected energy 1st ‘sample 

window’ divided by the total energy of the signal trace: 

1
1

( )

total

E dt
R

E
=              (38) 

 

Reflection coefficients for deeper layers will be equal to the ratio of the energy from that layer 

divided by the total energy, minus the energy reflected from the previous layers: 
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Classification result 

 

Using the proposed method, figure (69) shows the estimated energy profile and the 

corresponding reflections for a particular trace. Contrary to the initial results of the first method 

'energy model', the initial results 'i.e. 0% overlaps' of the second method 'energy model frequency 

domain' showed acceptable results. This is because the second method is not based on an iterative 

loop which is an advantage. For the sake of comparison, the overlap concept was applied. 

Consequently, the quality of reflection profile was improved by increasing the computation 

resolution ‘i.e. 75% overlapped sample window’. 

 

 

Figure 69: Comparison between overlapping concept using the second model. The left plot shows 
the stacked raw signal, middle plot illustrates the estimated energy for various overlapping interval, 
right plot illustrates the corresponding reflections. 
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5.5 Preliminary discussion of both methods 

 

Figures (70-73) represent three arbitrary traces for each area. For each trace, three plots are 

presented; staking, energy and reflection comparison between the proposed methods.  In general, the 

results of both methods agree with the general description of the four areas. Their reflection profiles 

are similar to a certain degree this basically depends on the model variables, errors, and propagation 

of error.  

 

Since both methods infer the reflection coefficients via the energy ratios, their results are 

based on the corresponding energy profile. The energy profile depends mainly on the numerical 

integration of the stacked envelopes.  Since each method had different procedure in estimating the 

required envelope, their energy profiles were slightly different. In this section we discuss the issues 

that concern the energy results and the corresponding reflectivity profiles: 

 

- Energy profile 

In the first method the energy profile is estimated numerically by integrating the 

stacked envelopes of the raw signals in the time domain. Energies of the second method are 

estimated from the frequency domain where the staking process had to be applied on the 

raw signals rather than their envelopes. The stacking result of both methods is shown in the 

signal plots (70-73). 

 

Based on the principle of energy conservation, Parseval's Theorem states that the 

total energy computed in the time domain must equal the total energy computed in the 

frequency domain. This was not completely achievable due to errors in the stacking process 

of the second method. In order to achieve similar energies, the summation of the raw 

signals has to take the phases into account. This drawback shows that the energies 

estimated from the first method are more accurate since its stacking process is simpler and 

more robust. Additionally, difference in the energy computation can also be observed if the 

power spectrum has low resolution. In this case the numerical integration will give 

approximated values. 
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- Reflectivity profile 

 

By investigating the reflection coefficient plots in figures (70-73), the blue lines 

‘reflection of second method’ is slightly overestimated at the sediment surface and under 

estimated at deeper layer’.  This trend implies as if it is an average estimate of the black line 

‘reflections from first method’. This behavior was theoretically expected since the 

attenuation in the second method is estimated via averaged sediment density and celerity, 

while in the first method the absorption is estimated sequentially for each sample window. 

 

The raster plots of figure (74-77) shows a closer image of the raw reflected 

energies of the four areas which were shown earlier in figure (29).  The reflection results of 

the two discussed approaches are plotted beside the raw measurements to compare the 

reflection contrast. The result of the first method shows the distinctive layers with better 

reflection contrast than those of the second method. This is because as mentioned earlier, 

that the reflection coefficient of the second method is an average estimate at the distinctive 

layers.  
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Figure 71: Estimated reflection coefficient for three arbitrary traces at area1, 15 
kHz. Red lines are estimated reflection coefficient and energy using first method. 
Blue lines present the results from the second method 

 

Figure 70: Estimated reflection coefficient for three arbitrary traces at area2, 15 kHz. 
Red lines are estimated reflection coefficient and energy using first method. Blue 
lines present the results from the second method 



 97

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 72: Estimated reflection coefficient for three arbitrary traces at area4, 15 
kHz. Red lines are estimated reflection coefficient and energy using first method. 
Blue lines present the results from the second method. 

 

 

 
Figure 73: Estimated reflection coefficient for three arbitrary traces at area3,  
15 kHz. Red lines are estimated reflection coefficient and energy using first method. 
Blue lines present the results from the second method. 
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Figure (74): Raster plot of the predicted reflection coefficients of area 1 at 15 kHz 

 

  

Figure (75): Raster plot of the predicted reflection coefficients of area 2 at 15 kHz 
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Figure (76): Raster plot of the predicted reflection coefficients of area 3 at 15 kHz 

 

 
 

Figure (77): Raster plot of the predicted reflection coefficients of area 4 at 15 kHz
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5.6 Preliminary discussion on the impact of biases on the reflection estimates 

 

As mentioned earlier, one drawback of the first method is that the reflection is computed 

sequentially and the model parameters increase for every iteration. This means that the penetrated 

signal is subjected to higher component of attenuations. Figure (78) shows the model predictions of the 

received energies Erx for various sediment types using Hamilton absorption coefficients. From the 

figure one can observe that water sediment layer the predicted energies have large thresholds, while at 

deeper layers the threshold becomes very narrow and becomes difficult to distinguish between the 

sediment types.  

 

Another drawback was also the error component of over or underestimating the reflection 

coefficient or other phenomena such as 'interference and backscatters'. Although the error was greatly 

improved by the overlapping window technique some still remained. This error component is 

acceptable at layers near the surface and not at deeper layers and will have large influence on the 

prediction stability. 

 

 

Figure 78: The figure shows the model predictions of the received energies 
Erx for various sediment types using Hamilton absorption coefficients. For 
the rough and coarse sediments 1<Mz<5 the energies that are reflected from  
water sediment interface has larger magnitude than softer sediments. This is 
because the reflection coeffcient of coarse sediments are larger than soft 
sediments.  At deeper layers , the received energies of the coearse sediments 
decrease drastically due to the high atenuation coeffcients. 
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Absorption coefficients 

 

The initial absorption coefficient values of table (6) were no applicable at deep layers. 

Therefore, a temporary modification was applied on the absorption coefficients of the coarse sediments 

by values shown in figure (79). This solution increases the threshold limits between the different 

sediment types, and decreases the influence of errors on the reflection prediction. This solution was 

acceptable for area1 where the fine sediments overlaid coarse sediments. For area4 the water-sediment 

interface is composed of coarse sediments, which means that the modified absorption coefficients had 

to be rest back to their initial values. 

 

  

 

 

Figure 79: Modified absorption coefficients. 

 

 

Interference 

The SES-2000 parametric system has the capability of mapping the intrabed layers with high 

resolution. However, if the intrabed is composed of large number layers, the corresponding intrabed 

reflectors may generate interferences in the signal [43] causing attenuation losses [44] and may 

degrade the absorption coefficient estimates in both methods. Thus, to decrease the error component, 

signal interference must be utilized in the algorithm to evaluate the effect of intrabed reflections on the 

absorption estimates. 

 
 
 
 
 
 



 102

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 103

 

 

 

 

 

 

Chapter 6 
 

Conclusions and future work 

 
In this thesis, methods were presented for sediment classification using a high resolution sub 

bottom profiler. The classification was devoted to surficial and sub layers classification using high and 

low frequency dataset. This chapter gives the final conclusion and recommendations concerning the 

presented work. 

 

6.1 Summary and Conclusions 

A number of physics based models were implemented and tested to find out the capability of 

sediment classification using a parametric sub bottom profiler. 

 

- High frequency observations 

For the high frequency dataset, two physics based models were tested based on the signal shape 

‘SBES time domain model’ and signal strength ’Reflectivity model’. The time dependent SBES model 

was basically implemented for an SBES transducer and modified to operate with signals from a 

parametric SBP ‘SES-2000’ system. Although, SBPs are technically designed for mapping sub layers 

structures, where the received echo contains little information about the sediment backscatter 

characteristics, the model classification results showed acceptable agreement with the general 

description of the surveyed area. However, these results are difficult to achieve and need human 

supervision as the raw data requires a considerable amount of signal processing before the 

classification procedure. Two signal processing aspects are crucial to achieve these results: 
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• The raw signal contains information about sediment characteristics but masked by noises such 

as reverberations, and ambient noise, etc. To alleviate the noise effect, the raw data has to 

pass through a band pass filter. To eliminate the noise effects as much as possible without 

changing the received echo shape, the band pass threshold can theoretically be set to the 

transmitted signal characteristics or analytically by determining the noise spectral cutoff 

limits. 

 

• For a particular survey line, the received echoes vary in shape and amplitude. Their stochastic 

variation is relative to the sediment type ‘e.g. soft sediments have low variation, and hard 

sediments have high variation’. Therefore, stacking and alignment techniques are essential to 

eliminate these variations. The analysis of chapter 4 showed that  minimum threshold 

alignments  are more practical with echoes that have low variations ‘i.e. soft sediments’, and 

peak or half peak thresholds are more practical with echoes that have a high degree of 

variation ‘i.e. hard sediments’. Due to the system narrow beam width, the analysis of chapter 

4, and supported by conclusion of [8], showed that deviation from these threshold values may 

drastically degrade the classification results.  

 

The second model infers the sediment types by predicting the reflection coefficients of the 

received echoes. Reflectivity models are based on signal strength in place of shapes. The results 

showed good agreement without the complications of alignment techniques of the first model. 

However, the results of area 4 ‘rough surface’ didn’t have the same consistency and contained major 

fluctuations, which implies that 100Hz will not fulfill the assumption to neglect backscatter. In high 

resolution seismic reflection the reflection coefficient can be affected significantly by scattering due to 

boundary surface roughness [41]. One important aspect has to be considered to achieve these results: 

 

• Since the source level is not known, a scale factor is needed to carry out the information of the 

received echo. The scaling was successfully done once for the first three areas. The forth scale 

factor ‘i.e. area4’ was excluded due its high variation. 
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- Low frequency observations 

The low frequency signal ‘15, 10 and 5 kHz’ is much more complicated than the 100 kHz 

signal and cannot be predicted by the SBES model.  The received echo can be described by a series of 

reflections at sub layer interfaces. Two energy based model was implemented that accounts for sound 

propagation into sediment layers. The first model infers the reflection coefficients sequentially from 

the time domain. The second model infers the reflection coefficients as if they were surficial sediments 

by compensating for absorption and other losses in each layer as function of frequency. In general, 

although no core samples were available to evaluate the results, the predicted reflections of the first 

model shows the distinctive layer boundaries similar to the original plots of the original dataset. The 

second model didn’t show distinct improvement which is likely due to the narrow bandwidth of the 

transmitted signal. The quality of the first model stems from the fact that the reflection coefficients are 

computed sequentially after estimating the geoacoustic parameters of the previous layer, while in the 

second method, the reflection coefficients are estimated from one assumed input; average geoacoustic 

parameters expected at the classification area.  

 

 The conclusions that can be drawn from the low frequency analysis are: 

 

• The algorithm of the first reflection model is very sensitive to the presence of errors. 

The errors might appear from absorption factors that are deviated from the true 

value, or even misclassified layers. These errors are acceptable at the first couple of 

layers, and increases drastically by increasing the layer index. This issue is not a 

problem in the second model since reflection computations are not executed in a 

sequential order.  

 

• Resolution is a crucial issue for the first model. If low resolution is used ‘i.e. large 

sample window’, the reflection predictions will be inaccurate, by missing 

intermediate layers. This inaccuracy will behave as an error which will propagate 

within the second iteration and will influence the reflection predictions of the 

following sample windows. Therefore, a proper sample window has to be chosen to 

capture the full reflected energy from the desired layer and without overlapping with 

secondary reflections. 
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• Overlapping sample window is an attractive approach to compromise between the 

required window size and desired resolution. The technique effectively enhanced the 

reflection results and the rate of the propagated errors.  

 

•  Theoretically, the first model cannot be used for deep layers, due to its attenuation 

extremes that increase by increasing the number of iterations. Basically, the amount 

of energy reflected from different sediment types at deep layers becomes very small, 

and cannot be distinguished. 

 

• The assumption of [27] that the total energy ‘i.e. received energy’ equals the 

received energy is not correct. This is because some of the energy will penetrate and 

never return back to the transducer. Therefore the scale factor is important for the 

implemented method as well. 
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6.2 Recommendations 

 

SBES model (High frequency) 

 

 It can be concluded that energy models (i.e. models that estimates the sediment type via 

energy ratios) using high frequency signals are simpler than SBES models (i.e. models that estimates 

the sediment type via matching the modeled and measured envelopes). The difficulties of using the 

SBES model, tends from transducer narrow opening angle, which means that a large part of 

information (i.e. reflections and backscatters) are lost. Consequently, the envelope shapes that 

correspond to the various sediment types will not be distinctive enough to distinguish between their 

types.  

 

However the SBES model can be improved in three ways: 

 

• The modeled signal assumes that the transmitted signal is a Gaussian shape which is 

considered a rough estimate of the true nonlinear pulse shape. The true pulse shape in this 

case is the nonlinear pulse that interacts at water sediment interface. Implementing the true 

signal shape will influence the energy distribution of the received echo, and better matches 

can be achieved.  

 

• Second, the true source level can be included in the model to eliminate the need of scale 

factor. This can be achieved by calibrating the transducer in order to gain information about 

the true source level for each frequency during the survey operation. This aspect is also 

important for the energy model as well. 

 

• In cases where the shape matching is difficult, one could test to match signal features in place 

of signal shapes such as signal amplitudes, signal duration, etc. These parameters will be less 

affected by the external noises and might be more efficient in the matching procedure. 
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Energy model (High frequency) 

 

The energy model showed acceptable results for surficial classification except for area 4.  

Theoretically, the reflected energies from the seabed are a composite of reflections and scattering 

processes. Their influence contributes to the total received energy and cannot be separated practically.  

The energy models that were implemented in chapter 5 did not account for the backscatter process, 

which means, that their prediction will be sufficient only at areas where sediment types are dominated 

by reflections (e.g. mud, clay, sand) rather than backscatters such as with area 1,2 and 3. In order to 

achieve better results at area 4, it is recommended to include the influence of the backscatter process, 

so the received energies can be correctly compensated. 

 

Energy model (Low frequency)  

 

The result of the low frequency analysis leads to the awareness that the used models are not perfect. 

From the theoretical and practical investigations of this project, the sub-bottom reflectivity model can 

be significantly improved in the following areas: 

 

• Reflectivity model: the results in chapter 5 showed that the iterative algorithm was highly 

influenced by the appearance of errors and their propagation. These errors can be described by 

the transducer accuracy and physical processes that were not accounted within the model. 

Therefore, the implemented model needs to be completed in the area of errors in practical 

situations and additional physical processes such as signal interferences and backscatters. 

 

• Reflectivity algorithms: In order to eliminate the error propagation of the first model, the 

algorithm has to insure to limit its iteration to a specific error ratio. 

 
• Conversions to mean grain size have to be done iteratively because both methods give the 

reflection coefficient between two subsequent sediment layers. 
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