MSc. Geomatics Graduation Thesis

Seabed classification using

Sub-bottom profiler

Mohamed Saleh

]
TUDelft

Delft University of Technology

Acoustic Remote Sensing

Faculity of Aerospace Engineering,
Delft University of Technology
The Netherlands

Graduation Professor: prof. dr. D.G. Simons
Delft Supervisor: dr. ir. M.Snellen
Innomar Supervisor: dr.ir.J.Wunderlich

Co-reader: prof. dr. M.Menenti



Abstract

Sub bottom profilers are commonly used as mappoay for the seafloor and sub-bottom
structure in the upper few meters of the seaflddreir recent enhanced performance in terms of
resolution adds the potential to classify the seditayers as well. In this research, the seabddcs
and sub layers classification are investigatedgusindel based techniques.

The remote sediment classification technique ofsémbed surface is achieved by matching the
back scatter measurements to the predicted batdsaatensity of the model. The model simulates the
returned signals of a monostatic sub bottom pno6ijgerating at 100 kHz. The back scattering stitengt
the angle domain is estimated using the APL-UW beattering model. The matching procedure was
applied on averaged echo envelopes performed teHitransform. The averaging process is essential
reduce the stochastic variability of the acquirathd

The sub layers data was obtained by operating émrcjas of (5, 10 and 15 kHz). The layer
classification was achieved by estimating the geostic parameters such as reflectivity and impeelanc
contrast. Two techniques were investigated based oaflectivity model. The first technique is an
extension work of D.Simons [11] which aims to estienthe reflection coefficients via the received an
transmitted energy ratio. The second technique isnglementation of a similar approach but appifes
attenuation on the received frequency componentgldoe of the nominal components. Both models
accounted for energy propagation and its correspgrgeometrical and sediment attenuation losses.

The classification techniques were carried out mataset that was acquired in the Baltic Sea
near Rostock in 2004. The acquired dataset is cteaized by various bottom types such as mud, sand
and coarse sediments. The general descriptiomecftquired areas was used as a reference fandie f
results.

Due to the lack of core samples, the classificatias evaluated by comparing the results of the
backscatter to the energy model. The results wensistent with the general description of the dgtas
However, the matching process of the backscattedemis a cumbersome and very sensible to the
envelope averaging technique. Averaging the reftbsignals from the soft sediments has to ensure to
preserve the surficial and volume back scatterinfdion. On the other hand, at rough surfaceslatiee
arrivals are likely to be irregular reflectionsrmise that has to be averaged to avoid ambigucudtse

The initial results of sub layers reflection modelsre consistent with the data description.
However, due to the high resolution of the subdiotprofile, the computation procedure can easily fa
by missing sub layers. In order to reduce the gridiha of missing layers, an overlapping window
concept was implemented, where the reflection @deffts are estimated at shorter intervals. The
methods investigated here leaves room for furtiptimozation through model adjustment such as signal
interference, backscatters and error propagation.
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Chapter 1

Introduction

11 Motivation

The increased human marine activities in the oceamvironment, such as building
offshore wind farms, dredging operations, oil aag gxploration and the studies of marine geology,
morphology and oceanography have led to an imperdi&mand for accurate seafloor maps. These
applications require knowledge of the seafloor tppphy and detailed information about the
seafloor composition, both at the sediment suréawkin deeper layers. The conventional approach
of obtaining information about the seafloor comgionsiis to take physical sediment samples. This
procedure is extremely expensive and time consunmnmuch more attractive technique, which
provides high spatial coverage at limited cost$iwishort time, is acoustic remote sensing. Remote
sensing is defined as thmeasurement of a property or a phenomenon by unstntation that is

situated at a distance and not in direct physicaitact with the object of studj29]

Acoustic remote sensing techniques are still bdineloped and refined, trying to balance
between robustness and accuracy. One of the mostiging techniques for acoustic classification
of sediments is a physics-based model. This approskes use of a model to predict the received
signal or part of it. The unknown sediment paramsedee input into this model. The received signal
is then estimated by minimizing the mismatch betweeasured and modeled signals. This method

has been successfully used with single beam antibmain echo sounders [8, 9].

The emphasis of this project is to obtain informatiabout the sub layer sediment
composition by employing a physics based approa@tis project was cooperation between the
German Innomar Sub-Bottom Profiler Manufacture Camyp which provided the data sets and the

acoustic remote sensing group of TUDelft.



1.2 Background
The ease of acoustic wave propagation in waterdistovered a long time ago, but real

practical realization came into light at the begignof the 28' century after significant world
events such as the sinking of the Titanic and Wa&Madr I. Since then the area of underwater
acoustics has been studied in great detail, whahled to the development of echolocation, and
underwater communication. With some degree of sfioalion, acoustic remote sensing today has
the same importance in underwater exploration @satlar and radio waves have in the exploration
of space. The use of sound for underwater sensingrmmonly termed sonar, which is an acronym

for SOund NAvigation and Ranging.

Seafloor mapping is almost entirely performed usingustic systems. Optical systems are
limited by the fact that electromagnetic waves @b propagate underwater further than 10-50
meters due to water absorption [30]. On the copti@roustic waves are more practical, as they are
based on the mechanical vibration of their progagatedium. Since the boridlastic modulus’
between water molecules are stiffer than thoseraflaich in turn makes the water more difficult to
compress than gasses, acoustic waves in waterdedter transmission characteristics than in air.
Their propagation speed in water is four to fiveds higher than in air and even higher in solids
(e.g. sediments), the sound undergoes less attenuasulting to travel longer distances. For
example under the same signal conditifires equal frequency and powespund propagation in air
hardly reaches few kilometers air, while the sopr@pagation in ocean can exceed up to thousands

of kilometers.

Typical frequencies associated with underwater sticaiare between 10 Hz and 10 MHz.
The propagation of sound in the ocean at frequenlceer than 10 Hz is usually not possible
without penetrating deep into the seabed, whemeagi€éncies range for underwater applications is

rarely higher than 1MHz due to the rapid absorptighin the water column.

Most systems used today for seabed mapping makefussingle acoustic frequency [31,
32] because different frequencies interact with sie@abed or objects in different ways, which
requires more sophisticated sensor to capturedhiged! information. For example, high frequency
sonar can measure accurately the water seabedsdeptiereas sub-bottom layers are better
observed by lower frequencies. This is due to teRerehsing sediment sound absorption with

decreasing frequency.



Classical Sub-bottom profilers SBPs are single desgy sonars that aim to explore the
first layers of sediments below the seafloor ovehiakness commonly reaching several tens of
meters. It has been for many years a fundamembéifor oceanography and offshore engineering
due to the ability of this system to determine ptsisproperties of the seafloor and to identify
geological layers below the seafloor [33]. Sedinmsnicture is directly observed by measuring the
elapsed time of the received reflections of theuatio energy when it encounters boundaries

between layers of different properties.

Many studies [8, 11, 12, and 17] have been puldigtomcerning classification techniques
of seabed surfaces using single beam, multibeathsiae scan sonars, while few paid attention to
classify sub-bottom layers using a sub bottom faofiFor the latter, the challenge was to develop
algorithms that automatically characterize the laglesediment types as a contribution step towards

“what lies where in 3D?”"

1.3 Research objectives and methodology

Underwater acoustic system have for many years baefundamental tool for
oceanography and marine geology [32]. Their deaigh configurations can be set to cover various
applications. From the geological perspective,emwadter acoustics can explore three distinctive
zones; surficial, near-surficial and deep sedintgritayers. Figure (1) shows a seabed cross section
that represents the relation between the threeszane their exploration ranges or so called

penetration depths.

Seabed surface <1 —

Hear surface 1-100m —_—

Deeps > 100m —_—

Figure 1: Observation zones

Acquiring information of the illustrated zones régs diversification of the instrumental design
to emit an acoustical signal with a specific phgkiparameter such as output power, signal
frequency and length. For example single beam echmders (SBES) are designed to acquire

surficial data to provide accurate water depth.idaipfrequencies range from 10 to 200 kHz.



To allow greater penetration into the substrate, fiiequency signal with high energy
to be used. Low frequency systems give great satespenetition due to low attenuation rat
whereas higlirequency i attenuated faster in propagation medium. The tritesirenergy depenc
mainly on the signal amplitude (i.e. power) andnaigduration. Since the transmitted powe
limited, the transmitted ergy can be increased by distributing the power @avéwnger timei.e.
pulse width). Such signal characteristics (i.e. foeguency, power and pulse duration) are bey

the SBES capabilities and alternative instrumeat&ho be used instead such afrine seismic.

Marine seismic systems expl thedeep structure of the seafloor using seismic wasgéea
landbased geophysics [34] by using large energy. Thexea number of different mae seismic
systems which opere at various frequencies such sggarkers that oper: between 50Hz to 1000

Hz and boomers which operate between 500 Hz to% |

ClassicalSBP works with one lowfrequency only which is sufficient to map the seah
layers to certain depth. Nowadays most SBP use cande (higher) frequency to add t
functionality of SBESs (i.e. accurate water deptld possiblyseabed material) such SES-2000
system which has ke used in this project. The system is based ommteresting hybrid conce|
betweensonar (e.g. SBESand marine seismic systenThe system emits two or more signals v
different frequencies depending on the applicadod environmental conditionsor the simplest
case the instrument transmits a high frequencyasit®0 kHz t(provide accurate water dejand a
low frequency signato provide information about the substrates opegatit frequencies betwe
(1-20 kHz). SBPshat operate within lowHz range are useful for high resolution assessiuiethte
top 100 m of sedimentary material below the searflé-igure (2) illustrates thoperational
frequencyband of various underwater acoustic instrument$ whieir corresponding penetrati

depth andrertical resolution (R[35].

200 —

¢ 7% Alrguns,
! Swaterguns,
+ s Sleeveguns

!

1500 —

1000 —

Uepth of Fenetratian (m)

Sparker
Chirper

—Boomer
i Pinger

500 —

0 10 100 10000

Transmit Frequency (Hz)

Figure2: Pingers and Chirpers are considered SBP sys
Remaining sensors are considered Marine seismiersy
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This project is characterized by an interdisciplinapproach. Developing a method for sub
layer classification requires combined knowledgenfrvarious fields like oceanography, signal
processing, physics and remote sensing. It is ples& subdivide the entire work into three major
steps. First of all, signal processing and datpgmagion was applied to the entire dataset in di@er
reduce the noise and measurement artifacts. Settuménhanced high frequency dataset was used
to infer the sediment characteristics at the wasabed surface. In the third step, the subsurface

composites were inferred from the low frequencyaig

Signal processing:The data used in this project was acquired bydmar’ in January
2007 in the Baltic Sea near Rostock. An SES-2080dstrd SBP system was used for acquiring the
data with filters set to a maximum bandwidth. Thieif settings were experimental to ensure that
the received signal was almost unchanged whichemprently caused high noise level. Therefore a
filtering procedure was necessary to remove thsguree of noise to increase the level of confidence
within the analysis procedure. Other techniqueshsas alignments and averaging were also

necessary to treat the stochastic behavior of¢heieed dataset.

Surficial Characterization: For surficial characterization, the high frequerdata was
used as input for a theoretical (model based) algor This model was initially developed by the
TUDelft acoustic remote sensing group for the psso® of the SBES signals. The model was
modified to simulate the SBP transmitted signalomer to predict echo envelopes that can be
compared to the observed ones. The basic workimgipte of the model is based on producing

echo envelopes for a range of seabed types thatctrebe correlated to the actual measured signal

Sub-bottom Characterization: The received echo envelopes near the surficial area
product of complex physical interactions within thteatigraphic layers. These interactions can no
longer be predicted by the SBES model. Fortunatelgse complex behaviors are dominated by
reflections at layering boundaries which simplifiee task of sediment identification. Consequently
this task required alternative models to assesshheacteristics of the sediment layers, by refatin
the mean grain sizes of the sediments to the dcoinspedance. This is achieved by precisely

determining the reflection coefficient at each seatit layer.

The aim of this project is to investigate the fbdisy of the proposed classification methods in

order to discern between seabed types at suréinidinear surficial areas.



14 Outline

The first section of Chapter 2 describes the tedirdspects of the used SBP by comparing
it to common used SBES systems. The second seghti@s a short introduction to some of the
physical processes that are encountered duringrwatlr acoustic propagation. The last section
gives a comprehensive introduction to the fieldediment classification methods. A more detailed
acoustic background and modeling aspects are disdus chapter 3. The discussion is entirely
devoted to the acoustics theory and the numenopleémentation of the model for predicting the
received echoes. Chapter 4 focuses on the sigmalegsing of the high frequency data, the
algorithm for matching the acquired data to theljmtéon of the model and the classification results
Chapter 5 is devoted to the sub layer classificafiavo physics based models were implemented to
infer and compare the predicted mean grain sizthefsub bottom layers. The chapter ends by
comparing the results of both methods. Chapterrdpbetes the thesis by a number of conclusions

and recommendations for future work.



Chapter 2

Classification and sensor aspects

Introduction

The first section of this chapter describes thekingy principle of the sub bottom profiler.
Major differences between SBP and SBES will besitated in order to give to the reader insight in
the advantages and limitations of the used SBResysthe second section illustrates the basics of
seafloor interactions undergone by a transmitte® SBjnal. The third section of this chapter is
devoted to a comparison between the two known (@imenological, and physics based)

underwater classification approaches.

2.1 Sub-bottom profiler
The function of a sediment profiler is to recordhees from interfaces between

sedimentary layers that correspond to differencesadoustic impedance. The movement of the
support platform will allow reconstruction of a tieal cross-section of the sedimentary
environment obtained as an image of boundariesdmtvayers such as show in figure (1). Good
horizontal resolution requires a directivity pattevith a very narrow opening angle. The directivity
pattern is the transducer directional sensitivitytransmission and/or receiving as illustrated in
figure (3). The directivity pattern of an antenrepdnds on the transducer geometry, and frequency.
For the same transducer geometry, higher frequengiee narrow opening angles and lower

frequencies gives wider opening angles.
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Figure3: Schematic image of transducer beam patteaied in
dB reproduced from Johannesson and Mitson (1983).

The transducer dimension design is based on thieedebeam pattern. The beam pattern is
a dimensionless and a relative parameter of thesdrecer. It is a function of the operational
frequency, aperture angle, and size and shape atbdstics of the vibrating surface. The
mathematical expressiorsinc function’ for the normalized directivity pattern that givélse
transducer sensitivity of the plane circular pist@msducer is [7]:

2
2J(kasing)
kasing } (1)

D) {
Whereld is the Bessel function of first ordésthe wave numbera is the radius of the transducer,
and®@ is the aperture angle. The variation of the sifitsitwidth with look direction is illustrated in

figure (4) where y-axis represents the directivégponse and x-axiskasing.

Bearmwidth of a circular piston

kasind =16

Figure 4: Beam width variation of a circular transer



The half power beam width D = 0.5 (-3dB) is a walbwn criteria that is commonly used
between manufactures so that transducers can bgatedhquantitatively. Thus, the relation

between the transducer radius and frequency isneutdy [36, 10]:

_ 1.6
T B

Where

k=1

c

c Propagation speed,
f Transmitted frequency

To compare between the required transducer dimerfsioa low and a high frequency,
consider two linear systems. The first system @uired to emit a signal of f = 100 kHz and the
second is required to emit a signal of f =5 kHzttBsystems have a half power beam opening angle
g of 3.6°. Such frequencies would require a transdd@meter approximately 2.5m for the first

system and 30cm for the second system as shoviguire f(5).

Diarneter [m)

Frequney [Hz] it

Figure 5: Required radius dimension of linear tcamer
and the corresponding frequency. Red dots shows
transducer diameter for opening angle of f = 10@,kH

f =5 kHz, ¢ =1500m/s.

The previous calculations are based on the lineacept where only a single signal is
emitted. With this concept, a large transducereisded to emit a low frequency with such narrow
opening angle which is not practical. To elimintte need for large transducers, parameter sensors
have been developed. This type of sensors are lmas#te non-linear concept where two or more

signals are emitted and synchronized in time



Linear and Non-Linear concept

If two transmitters emit two signals with the safregjuency, where the crest of two waves
are in step, the linear process of the secondamevig a result of the superposition of the two
signals known as ‘spatial interference’ which isfumction of the distance between the two
transmitters. In this case, two types of waves W@l produced as a result of ‘constructive’ and
‘destructive’ interaction as shown in figure (6)ortructive interaction means combining two or
more waves to get a new ‘third wave’ that has tame wavelength and frequency but higher
amplitude ‘more intensity’. Destructive interactiomeans that waves are subtracted and cancelled

out. The peak in one wave is cancelled by the tisuig the other.
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Figure 6: principle of spatialérfierence

§
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In a more complex case, such as with nonlinear §BtRe echo sounder transmit two
signals of slightly different high frequencies (pédry frequencies f1 and f2) at high sound pressure
simultaneously. Due to the high pressure, the squogagation will be non-linear; water sound
velocity is a function of water pressure, tempagtsalinity, and density. At very high pressures,
the density of water changes. Thus, the sound iglobanges non-linearly [41]. The higher sound
amplitudes will move faster than lower sound amplis. As a consequence, a number of secondary
frequencies are produced such as harmonics, suntheoprimaries, and the desired primary
difference F = |f1-f2|. Figure (7) gives a schematiew of the signals and the corresponding

spectrum.
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Figure 7: Principle of nonlinear acoustics [25]

Interestingly, the secondary low frequency has ribes same narrow directivity as the
primary frequencies. Thus, the directivity pattesh the low frequency does not depend on

transducers dimension, but depends on the nonrlpteenomena occurring in the medium.

The difference between the linear and nonlineaedtivity pattern is illustrated in figure
(8). The left plot shows the directivity of a limesystem computed by the traditional sinc function.
The right plot shows the measured directivity aiedi using a hydrophone in front of a real
parametric transducer. By comparison, the dirdgtipattern of parametric transducer has no side
lobes, which are typical for linear transducer. Téason for this is that the energy of primary veave
is transferred to the secondary wave only in higlerisity in the nominal direction. While In the

other directions it is too low to cause nonlineffeds.

The figure also shows the beam width of the malre$o By comparison the beam pattern
of the parametric transducer (all frequencies) Hheesame narrow beam width, while for the linear

system, the beam width is inversely related tattesmitted frequency.
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Figure 8: Directivity pattern for linear (leftomputedand parametric transducer (right)
observed25].

11



Resolution

The main objective from a SBP is to obtain the @sgpenetration depth with highest
vertical resolution also known as range resolutiertical resolution is the ability of sonar system
to distinguish between two or more objects on she®ing but at different ranges [2]. In principle,
vertical resolution depends mainly on the transditpulse duration of the CW. The range

resolution can easily be estimated by:

Ar =%t ®)

Where:
C = sound velocity,

t = pulse duration

This means that in order to obtain high range te&wi (i.e. shorar ) very short pulses are
needed. However, in order to obtain deeper peimtrahe transmitted signal has to have enough
energy to such that the pulse can be detected fr@moise. Since the power is limited due to
cavitations, the only option is emit a long pulBer this reasons many sub bottom profilers uses
chirp signals to obtain high resolution. A chirpaigrequency modulated signal, where the pulse is
emitted with a modulated frequency. The frequenogutation is processed at the receiver to focus

the pulse to a much shorter value and hence otttaidesired resolution [36].

However, these signals will have advantages in deser while in shallow such as this
experiment the long sound pulses i.e. high eneijycause more signal to be reflected back off the
seafloor leading to multiple reflections and higlvarberation without any advantage compared to
short CW-pulses. Reverberation is the persistericeoond in an enclosure or partially enclosed
space after the source of sound has stopped; thestesce is a result of repeated reflection and/or
scattering [40] Therefore in this experiment the sensor was adaoteznit short ‘CW’, and the
resolution issue is improved by tapering the amgét (Gaussian shape for instance) to give better
spectral properties that lead to less ambiguitiesange. More details about the properties of

Gaussian shaped signal will be given in chapter (3)

In summary, low frequency can now be transmitted abysensor with a reasonable
dimension. The beam width of the low frequencyhis same as the primary frequencies without
side lobes that has high horizontal and verticabligion [5, 6]. The data has a high signal to @ois

ratio due to the small footprint and low reverbieratevel.

12



2.2 Seafloor Interaction

The acoustic wave interaction with the seabed dép@artly on the impedance contrast
between two layers. Impedance is a medium charstiteequal to the product of the density and
propagating sound speed. Large impedance contetstebn water and rocky seabed with a
considerable smooth surface means that the seaifettes behaves as an almost perfect reflector.
On the other hand, at softer sediments, the aoinstiedance mismatch is much less which means
that larger energy will be able to penetrate tloigriwlary. Each time the signal encounters a differen
material, a portion of the energy is reflected aedorded by the system. The percentage of the
acoustic energy reflected at each layer surfagefismction of the relative densities, sound speeds

and angle of incidence at the two layers.

Reflection of seabed surface

Consider the case of a plane acoustic wave incigdeon a water-sediment interface. If the
water-seabed interface is completely flat the socemd be reflected in a manner similar to a light
beam striking a mirror. This phenomenon can be ritest using the classical optical reflection

expression known as Snell’s law which is illustdbite figure (9).

Snell's Law describes the relationship betweenatigles and the velocities of waves in

two different mediumse(, ¢,). In the first mediuna; the angle of the incoming ray is equal to the
reflected ray angle. . The law also equates the ratio of material véilexiC, and C, to the ratio of

the sines of incident; and refractedsy angles.

o = O,
Reflected
Ray

£y

1

\
£, -‘_\j sin(y; G

\ Refracted SR C,

GH\ Ray

I"l

Figure 9: Reflection process
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The amplitude of the reflected wave is a functiénhe reflection coefficient R expressed
by equation (4), wheréo;,¢;) and (2,cy) are the density and sound velocity respectivelhef

two media. Therefore the reflected amplitude igrecfion of the sediment type:

— P2CosiN(@y)~ PL1SING o)
R(B) PoCosin(aq)+ pcising o) “)

Reflection of a layered medium

As mentioned earlier, the reflection coefficienpdeds on the impedance contrast between
two mediums. For the high frequency signal, a partf the signal energy will be reflected at the
first layer. The remaining energy will be highlysaibbed, and the wave transmitted into the layer
progressively becomes unable to reach the substradm the contrary, the low frequency signal is
subjected to lower sediment attenuations and thiréng energy can easily penetrate into deeper
layers until it is totally absorbed, or meets othediment layer with high impedance contrast such
as clay-rock interface. The percentage of acowstiergy reflected at each interface surface is a
function of the relative density and sound speetheftwo layers known by the impedance contrast.
An equation for the acoustic reflectivity of an emdater surface is given in Figure (10). This
equation is valid only for the simplified case ihiah the change in material composition from one
layer to another occurs in a short vertical lengtmpared to the wavelength of the incident signal.
A more rigorous analysis would require that thesitgngradient from one layer to the other be

known. Such analysis is beyond the scope of tkesish
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DEPTH SOUNDER TRANSDUCER A_i ; ™

— { TII'IU1E AT WHICH ACOUSTIC
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Figure 10: Acoustic impedance changes in diffeseliment densities; Z is the acoustic
impedance wherg =(01,C1),Z2=(02C2),Z5= (03C9,Z & (0 4C 4 [23]
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Backscatter

In the reflection section it was mentioned thatrteirned echoes are reflected frollocal
plane watessediment interface that is completely flat. In itgasuch interface is far from an ide
plane which makes the acoustic process much monplea than described earlier in the reflect
section. Figure (11) illustrates the phenomenf scattering caused by an irregular seabed su

and its influence on the received e«

Specular Diffuse Reflection
Reflection (Scattering)
I
One Direction Multiple Directions
Low Amplitude

received echo received echo

Figure 11 Reflection versus general surface sc

In order to model such phenomena, the v-sediment interface can be considere a local
plane with microscale roughness. Part of the imtideave will be reflected with no deformati
other than amplitude loss in the specular direc{mrherent part). The reminder of the energ
scattered in the entire space, including backwto the sourceThis process is depicted with mc

details in figure (12).

Incident wawe

I

Backscattering

Scattering

Coherent

Figure 12: scattering phenomena

The effect of the relief on the incident acoustaver depends on the frequency, the angl
incidence and theediment type. Sediment roughness values can haideascale of amplitude
ranging between millimeters to few meters and spatavelength. It is also possible that sev
roughness scales exist on the same surface. Fompéxaa sandy seafloor wia centimeter — scale

roughness, can be superimposed on its existingytapby

The relative importance of specular and scattereshponents depends on the surf
roughness in terms of acoustic wavelength. Fortshavelengths a particular seafloor meem

rough, while for longer wavelengths the same seafteems smoot
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A measure for scattering is the scattering strengttich is defined as the intensity ratio of
sound scattered at a unit area at a distance Imtfris unit to the impinging plane wave intensity.

Equation (5) expresses the scattering strengtB iagdifollows:

S=1OIogo'|—_s (5)

Two types of targets exist; targets with dimensismall enough to be completely ionisfied
by the sonar beam and signal (e.g., a fish, orlsaoigéct) and targets too large to be ionisfied
completely at once by the same beam. The first tfgargets behave as ‘points’: their strength is
an intrinsic strength, independent of the distalocthe sonar or its characteristics, whereas fer th
second type targets (e.g., large fish school,exstal sea surface) target strengths are no longer a

point value, but an ionisfied space (surface ound) is used. The expression now is the amount of

energy scattered by a ‘unit scattering element's therefore expressed in dB e or dB rem’.
Consequently, the spatial distribution of the soetl energy can now be described using the

scattering function that depends on the incidedtsattered angl&(6;, 6)

Acoustic scatter is very important because thdteyeaml part of the signal shows very
different orders of magnitude that depend on thigetacharacteristics. Exploiting this behavior
makes the backscatter field a very attractive phesmmn that can be used in many sonar
applications. However, [23] showed that the scattechanism is very complicated and not only is
limited by surface roughness, but also by the inbgemeities within the sediment volume, and

other mechanisms that can be coupled.

Various models have been developed that range fedaiive simple to complex. The
simplest model is the Lamberts rule expressed uaton (6) which is a function of frequency and

sediment type described by the paramgta@nd the incidence angle of the transmitted signal.

S(8,) = 10log;ou + 10logy,(sin?6;) (6)

Despite the simplicity of the model, Lambert’s I@aa good first approximation and shows
an acceptable agreement with the physical obsenatiFor backscattering by soft sediments its
approximation is restricted for grazing angles lestv 5 and 40 degrees. Grazing angles >40
degrees are too low near specular direction. Oy rargh surface like rocks it may be employed
over the entire angular domain. In [23] a numbersolutions were proposed to remedy these

limitations.
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Mackenzie [24], showed that a valuefilog, 1/ =—-2%B is a good start for all bottom
types. Several later studies have determipedor different sediment types, see e.g. Garlan [3],
from which table (1) is obtained. If the incidermeoustic energy is fully scattered into the upper

medium without sediment inner transmission, it banshown thaft,., =1/77,10log,,=—%IB as

illustrated figure (13).

Table 1: 4 value for different sediment types

Sediment type 1(dB)
Rock -18
Sand -31

silt -37

Lamber scattering vs. Grazing angle

Baxlscatter strength [dB]

i i ; i i i
10 20 30 40 50 0 70 80 a0
Grazing angle [deg]

70 i i
0

Figure 13: Backscatter of various sediment types
following Lambert rule

Since SBPs have a limited beam width, Lambert’sikamnot capable to capture the process

accurately, especially at near specular direcfidrerefore a more sophisticated backscatter model is
needed.
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2.3 Classification methods

Classification methods are numerous but can faldeuntwo general categories:
phenomenologicaland model basedapproaches. Phenomenological approaches are lmased
grouping echo like features together and labeliaghegroup using ground truth. The selection of
grouping can be based on the similarity of ampégjdskewness, energies, etc. In other words,
high-quality phenomenological classes are derivethffeatures, of the echo. Tmeodel based
approach models physic processes in order to edcuhe received echo and its features. The
classification result is based on tuning the geostio parameters that influence the modeled signal

in order to achieve the maximum match between theéeted and the real received echoes.

Phenomenological approach

Phenomenological methods are the most used approaehaim is to extract some
properties from the measured seabed echo thaalalW the bottom to be classified into relatively
homogeneous categories. Classifying the data $rnvihy allows areas with similar seabed

properties to be grouped together.

The number of features or signal properties car Btan the simple case where only two
attributes are available and segmented in the @desf large number of features. The large number
of features can then be simplified by principal poment analysis PCA to summarize the
information into a few orthogonal components [34ch explaining a decreasing proportion of the
dataset total variance. The number of principal ponents (PC) to keep for the classification is
open to debate, but altogether they must reprabeninajor part of the variance observed in the
signal features [38]. A short list of the featuthat have been extracted from seabed echoes is

given in Table 2.

The next step is to link the classified groupsnaitu data. Recording the exact location
from which the ground-truth data is collected aloivto be linked to the acoustic data from the
same geographical location. In this way, the twtaskts can be linked, providing the required
verification and the in situ classes can be exiaipd to all the regions that fall within the same

acoustic class.
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Table 2: Classification features list

Square root of the ratio of the total

significant energy of the second bottom echo SBES
to that of the first bottom echo, averaged Orlowski, 1984
over a number of pings

. . SBES
Sum of the energy from the tail of the first .
bottom echo g(]I)Ell) used as an index Chivers et al., 1990;
’ Heald and Pace, 1996;

representing the seabed roughness Siwabessy et al., 2000

Normalized cumulative function of the echo SBES
envelope Lurton and Pouliquen,
1994

Mean, standard deviation, and higher order
moments, amplitude quintiles and

histogram, power spectral ratio MBES, SSS
features, grey-level co-occurrence features, Preston et al. 2004
fractal dimension

Seabed backscatter strength shape ag MBES, SSS
function of the incident angle, described by Hughes-Clarke et al., 1997
a set of parameters

The general phenomenological processing procedarede summarized as follow:

1 — Compensate the echoes for depth effect.

2 - Extract features from the corrected echoes.

3 - PCA (combination of all extracted features).

4 - Clustering the sets of principle componentsesponds to number of sediments types.
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Physics Based approach

In the physics based approach, use is made of lzematical model. We seek quantitative
estimates of parameters of the model by compariegsered data with modeled data. Knowledge
of transmitted pulse shape, duration, and poweneisded. The unknown seafloor geo-acoustic
parameters are input into this model and estimdgdminimizing the mismatch between the
measured and modeled acoustic signals. The adwamtfathis approach is that, in principle no
independent measurements ‘ground-truth’ of the acseabed is required. However, the ground

truth can still be very helpful to assess the diasgion results.

This approach is more complicated than the phenotogital approach since it requires
full understanding of the physical process thatdigaal encounters. In addition some optimization
is needed to find those unknown parameters thavigegoan optimal match between model

predictions and measurements.

In this research the physics based approach is. smdthe high frequency signals, a
physics based model that was implemented for SBESWDelft acoustic remote sensing group
was modified in order to be used for the SBP senBor the low frequency two methods were

implemented based on the energy interaction wititiBed layers.

During the survey core samples were taken whichicatdd the general sediment
classification within the surveyed area. Howeves tletailed sediment characterization was not
available for the author. Therefore it was decidedmplement different models and compare
additional features in order to strengthen thestii@ation results. Moreover calibration parameters
were not available which is essential in the mdsided approach. To overcome this problem the
subset of the dataset were chosen and assumed liokbé with the general description of the

surveying area.

The main stages of the model based approach cdedoeibed as follows:

1 — Remove noise from measured signals

2 — For each ping, a signal is modeled

3 — Input parameters (signal characteristics, envirental parameters)

4 — Search for the sediment geoacoustic paramistatrsnaximize the match between modeled and

observed echo.
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Chapter 3

Implementation the high frequency model

Introduction

This chapter introduces the building blocks of 8#ES physics based model. The SBES
model is a time domain simulation that predicts theeived echo envelope as received by the
transducer. The SBES model exploits a sophistichtat scatter model that was published by the
Applied Physics Laboratory of the University of Magton (APL-UW) [4]. The model accounts
for the signal propagation in the water column, tfignal geometrical interaction, and the
corresponding backscatter process at water-sedimentace. As mentioned earlier in chapter 2, an
emitted signal with high frequency has differeratsed interaction than a low frequency signal in
the aspect of sediment penetration and absorptinss, this simulation is only valid for the high
frequency signal [100 kHz]. The remaining low frequies (5.10, and 15 kHz) will have to be
modeled by a different approach in chapter 5.

3.1 SONAR equation
Transducers provide data on: 1) the time delay éetwtransmission and reception of the
echo, which corresponds to the water depth, artie2cho signal intensity of the returning echo

(echo level). To calculate the echo level, consateacoustic system with transmitting sensitivity
b(6) and receiving sensitivitlgi(H). The sensor emits a short pulse with pulse duratio) and

average source intensity. The pulse propagates through an unbounded mesun@rically. At a

range R, the pulse strikes the seabed and inspmifiearea A of random homogeneous distribution.
A part of the signal is backscattered towards thece with backscatter intensy(6) . The time-
dependent intensity measured at the transducefadoeeis modeled as sum of a sediment interface
and volume backscatter by following the work ofkimn et al [5]. The received signal intensity

I.(0) is estimated via the sum of elemental areas bjoll@ving equation:
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3.1.1 Sounder considerations
The first parametetin equation (7) is devoted to the source level.réelevel is one of

the signal characteristics that are controlled ly $BP acoustic system. Configurations of the
acoustic pulse characteristics such as frequenggtidn, shape, and level influence the information
that is carried from the seabed. Practically, thalues are tuned to optimize the desired accuracy
and resolution within the survey project. The tgnwalues are a function of the environmental
parameters such as water depth, temperature,tgatgiabed type, etc. In this section the signal

considerations will be investigated to demonsttia¢ér influence on the model prediction.

Source level
The source level for a non-directional source ifinge as the intensity (in dB) of the

radiated sound at 1m distance of the source relabivthe intensity of a plane wave witiyParms

pressure. Choosing an appropriate power settimgatximize the capabilities of the sounder and the
acoustic classification system requires advancenitg and considerations of the surveying area.
The signal strength has to be strong enough toeptethe loss due to water depth ranges, and soft
substrate attenuations. On the contrary, too highiep over shallow and rough substrates returns

high reflections that are limited by signal clipgin

To reach the optimal source level, the raw retgrsignal needs to be monitored so the
gain can be set. This can be set using oscillosooperaw waveform viewer. Most echo sounders
have an Automatic Gain Control (AGC) mode whichteols the signal power while transmitting
and/or receiving the signal. However, technicdllisimuch easier to apply it in the receiver, while

transmitter AGC has some restrictions.
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Frequency

The absorption rate of a specific frequency depestidmgly on the propagation medium.
For sea water, the absorption comes from viscadityure water and relaxation process expressed
by (Francis—Garrison) equation [6], illustrated dig (14, a). The second plot Figure (14, b) shows
the water absorption influence on the predictedagby the SBES model at the same water depth
and without the effect of seabed interaction. Fthemplot, one can observe that the absorption rate

of the high frequency is larger than the low fregue
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Figure 14: (A) Francis and Garrison attenuationffadent at (depth10m, salinity 35 p.s.u, and

temperatur@0C. (B) Influence of water absorption coefficient ¢time predicted signals with:
Source level 250 dB, signal duration 200us, deptldm, Mz = 7phi.
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Pulse Shape
The used SBP ‘SES-2000' System transmits a CW puithea relatively short duration of

200us. The main interest of CW pulses is their simpjiaif transmission and processing. The

simplest CW pulse would be a rectangular signah winstant source level. However, such signal
has some performance defects due to its chardaoteriThe major defect is their poor spectral

content which requires transmission with high instaeous level to increase the SNR.

Fortunately, the CW pulse characteristics can beeced using a Gaussian-shaped pulse
also known as ‘bell-shaped’. Figure (15) shows mdetangular and bell shaped pulse and their
corresponding power spectrum. The rectangular shapea poor spectral content. On the contrary
the bell-shaped pulse will give a more compactdesgy spectrum with fewer side lobes for the
same transmission duration. It is generally detgradminimize the side lobe level, as it is eatier

be detected at low signal to noise ratio.
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Figure 15: effect of a bell shaped amplitude matituta(bottom) on a CW
pulse (top): for a given duration (at -3dB in teeend case), the frequency
spectrum is improved, with a strong decrease inabe of side lobes.

24



The bell shaped pulse enhances also another inmpahtfect caused by rectangular pulse,
which is the range resolution. Range resolutiothés ability of the transducer to distinguish two
targets along the same radial but at different @andhis means that the range resolution is a
function of the transmitted pulse. To illustratésthconsider two targets separated by the time
resolution of the signal T. The delay of the twoywaopagation at distances; ldnd H will be

separated in time by:

2(Hy—H
St=t,-t,=2M2 "M 200

The receiver can separate them onlgtib T . This would be the case for a rectangular
shaped pulse. While with the bell-shaped pulgs,admitted that on average signals are separfble i
the time difference between the signals equalsdtiration of -3dB (i.e. half maximum energy).
Figure (16) illustrates the discussed scenarioafdaransducer (S) emitting a rectangular and bell
shaped pulse. In the left, the time resolutionuficient ot >T for both cases. In the right plot,
when the distance is too close between the twocthjehe time resolution is too low for the

rectangular—shaped pulse. While, the time resalusitill separable for the bell-shaped pulse.

S- :} c',' -E: . ::; L I
] RL R.! _:- I .‘
ﬂll"_ I f:. IP r

Figure 16: Time resolution and the echoes form targets C1 and C2 (left) the time
resolution of transmitted signal (in black) is sciffnt to detect and separate the two
targets (grey). (Right) The time resolution is tow to separate the rectangle signal, and
separable for the bell shaped signal. Source [6]
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To account for a Gaussian-shaped pulse in the SB&I, the source level SL is no more
constant with time. Basically, one has to accownttfie corresponding magnitude that influences
the ionisfied area. This can be applied by distiiguthe signal in the time domain model. Figures

(17 and 18) show a modeled echo using a rectanghbgred pulse (left), and Gaussian shaped pulse
(right).

echo shape from rectangular transmitted signal echo return from a gaussian transmitted signal
80 T T T T T T T T 70

Amplitude [Pa]
Amplitude [Pa]

| | | | | | | | | 0 i i i i i i i i i
Yo 701 10z 103 104 05 06 107 108 08 M 0101 02 103 104 105 106 107 108 108 1
depth[m] depthm]

Figure 18: received echo shape from a Figure 17: received echo shape from a
transmitted rectangular pulse SL = 250 dB, transmitted bell shaped pulse SL = 250 dB,
Mz = 7 phi, Depth = 10m, f=100m Mz = 7 phi, Depth = 10m, f =100 kHz

Directivity index (DI)

The transmitting b(¢) and receiving sensitivityb (#) in equation (7) presents the
directivity index of the transducer. It is descdles the sound level difference between a direation
and omni directional (same source power radiateglBgin all directions) sound intensity as shown
in equation (9):

DI =10|0910( Idirec'(ional ) ©)

non- directional

Another expression for the directivity of a ciraulpiston transducer and widely used
between different manufactures is the ratio of Wevelength to the radiated surface diameter.
Where, the aperture angle at -3dB beam width islegu65./d [36]. The larger the diameter of the

transducer as compared with a wavelength soundhatrewer the sound beam can be obtained.
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With SBP it is desirable to have a relatively narroeam width to avoid unwanted
reflections. Figure (19) shows the SBP beam pattbtained from the sinc function for a primary
frequency 100 kHz and transducer diameter of d=2plutted in solid red. Using the approximate
ratio equation it gives an aperture anglg6f° which is very close to the operational SBP opening
anglex 3.6°, plotted in dashed blue. For the secondary fregjesrthe beam pattern will be similar

and without side lobes [25].

ERESRE &3 0o

directivity [dB]

- ! : ; 1 : J
angle [deg]
Figure 19: Transducer's beam pattern

3.1.2  Transmission loss

The factors that influence transmission loss cargtmiped into two major categories:
spreading and absorption losses. Spreading losses due to the distribution of the fixed amount
of transmitted energy over a larger surface areth@signal propagates away from the source. At
relatively short ranges, the increasing surfaca areepresented by the surface of a sphere salsign
energy decay due to spreading loss at a rat/®f,whereR is the slant range from the source,
figure (27).

The second mechanism of signal loss results frarptbpagation signal energy into heat.

The two mechanisms are combined and referred wrjatien loss described through:

e—4ar (10)

Where
a is the attenuation coefficient, presented in [6],

r is the slant range, equal to R in figure (27).
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In order to compare between the discussed tranemss$osses, Figure (20) shows the
absorption losses at 4 frequenc{@80, 15, 10, and 5khizhat span the acoustic frequency bands
typically used for this project. From the figurecin be observed that at short ranges the spherical
spreading loss dominates the absorption loss fahalfrequency bands. While at longer ranges the
absorption loss has greater influence on the higgpency band.

B0
50.......;..

40

— Spherical loss
H ' — — = absorption loss 100kHz
20 SR, 1§ ; : —— = absorption loss 15kHz
f : : i —— —absarption loss 10kHz |

absorption loss SkHz

Signal attenuation [dB]

ke esb
U0 20 4m 500 600 1000 1200 1400 1600 1800 2000
depth [m]
Figure 20: Acoustic signal attenuation as a fumctd
range in sea water expressed in dB relative to the
attenuation at a distance of 1 meter from the sourc

In many phenomenological classification approacheansmission loss has to be
compensated and echo forms have to be normalizede #/e are using a physics-based approach

such compensation is not needed. Instead we incpdhe transmission loss in the model as
illustrated in figure (21).
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Figure 21: Effect of attenuation on amplitude etthel at
depths (8, 10 and 12 m), for 100 kHz signal, Mzp=8
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3.1.3 Backscatter

In this section the variation of the scattered gnéy, (6) in equation (7) is described by the
APL model [4]. Few decades ago when there was mergé agreement on the physics of the
scattering process, a lot of models existed basedseveral different hypothetical scattering
mechanisms. For example Clay and Medwin based theitel on sediment surface scatter, while
Ivakin and Lysanov modeled it as volume scatter.applying these models to several sites, it
showed that both backscatter processes are imporaa APL model by Jackson et al considered
those two factors by modeling them independenttyd ¢hen summed to estimate the overall

intensity. The bottom back scattering strengthBrudit, can be written as:

$(6)=10log, [0, @)+o, @) (11)
Where
o, (6) = dimensionless backscattering cross section gér un

solid angle per unit area due to surface roughness

o,(6) = dimensionless backscattering cross section géer un

solid angle per unit area due to volume scattering

from below the sediment surface.

One of the main advantages of the APL model is thas related to the sediment
geoacoustic parameters. ‘Mourad and Jackson’ [&le8tthat there are six parameters shown in
table (3) that control backscatter from the watediwment interface and from volume
inhomogeneities. These parameters are used asdafaufor the model. However, these parameters

are often not all available. A useful sediment desor is then grain size,, which is more often

available, measured in logarithmic units:

d
M, =3.23log,— (12)
dO

whered, is the mean grain size or "diameter” in millimetarm), d; is the reference length (1mm)

and the units oMz are denoted by. Empirical parameterizations of the geoacoustrapaters are

available in terms of the bulk grain silekz [8].
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Table 3: Model input (Bottom parameters)

Symbol Definition Short name
P Ratio of sediment mass density to water mass Density ratio
density
U Ratio of sediment sound speed to water solind Sound speed ratio
speed
5 Ratio of imaginary wave number to real waye Loss tangent
number for the sediment 9
o Ratio of sediment volume scattering crosg Volume parameter
2 section to sediment attenuation coefficien P
y Exponent of bottom relief spectrum spectral exponent
Strength of bottom relief spectrucm4at
W, 1 Spectral strength
wave number277/ A =Icm

Roughness scattering cross sectian (6):

. Three different approximations are used for thgghness scattering cross section in the

APL model. For smooth and moderately rough surfgeeg. clay, silt and sand) the Kirchhoff

approximation is used for grazirapgles nea®0 and composite roughness approximation for all
other angles. Finally, for rough bottoms such as/girand rocks, an empirical expression is used.
The final surface scatter is an interpolation eggi@n that shifts from one approximation to anather
In this part we just describe the general concéphe APL model, for full details and intermediate

equations the reader is referred to the documentafi applied physics laboratory [4].

Figure (22) shows the modeled surface backscattergg distribution for fine clay and

sandy gravel in the angular domain with the def@atameter values of the Applied Physics
Laboratory (1994) for incidence ang@ —80° ). The colored solid lines illustrate the margins of
three approximations (Total surface backscattgy,(6) Kirchhoff, o, () Composite roughness,

and o;, (6) large roughness). As one can see, the three appatgns contribute differently to the

total backscatter value depending on the sedinypetand the corresponding coherency zone.
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Surface backscatter approximations for Mz = 8 (Silty Clay), f = 100kHz Surface backscatter approximations for Mz = 0 (Sandy gravel), f= 100kHz
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o kr
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Figure 22: scatter approximations (Total surfacekbeatter;, (8), Kirchoff approximatioro, (6),
Composite roughness approximatmn(d) , large roughness approximatiap (6) ).

By comparing both figures, the backscatter valuthe silty clay sediment is more peaked

near the0° than the backscatter values of the sandy gravst, Ahe backscatter value of the sandy
gravel is less dependent on incidence angle. iEhisconsequence of the surface roughness since
the surface roughness generally increases witkdatenent grain size. The roughness indicator can

also be observed by the approximation model thatioates the total surficial backscatter value.

For example for silty clay, the surface backscatiear 0° is best described by Kirchhoff
approximation, while at greater angles, it is stcribed by composite roughness. On the other
hand, the backscatter value of sandy gravel aettiee incidence angles is best described by large

roughness approximation.

Volume backscatterg, (6) :

In many cases the scattering by sub seafloor streicontributes significantly, and may
even dominate the backscattering depending ondtiienent type and incidence angle. The second
term in equation (11) is devoted to the volume baaker. It accounts for refraction and
transmission loss at the sediment-water interfad#ighed by Stockhausen (1963) [42] in equation
(13). The expression is generalized to allow foe #ffect of absorption on the transmission
coefficient of sediment-water interface and incogbes shadowing and slope correction in analogy
with composite roughness expression.
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Figure 23: lllustration of volume backscatter [8]

500, |1-R* @) F sirf @)

o,,(0) = 13
O 0P @)t D@ )
Where
R(O) :y_—l is the complex reflection coefficient, with= psing
y+1 ' P()

P(6) =\ k% +cos 8, with K=%(l+i5).

The relationship depends on the grazing angle (he loss parametes(), density ratio ), sound

speed ratio [/ ), and volume parameteoy} ) can be obtained from the empirical parameteomati

in [4].

Figures 24 and 25 show the different backscattevesufor silty clay and sandy gravel
sediments at 100 and 15 kHz respectively. The Hihee shows the sum surface and volume
backscatter versus the incidence angle. The redyeseh line shows the surface and volume back

scatter respectively.
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From the silty clay figure(24,25), it is clear thatrface scattering dominates at incidence
les less than 20°, but volume scattering dominfatr incidence angles greater than 20°. One can

clude that for clay, the volume scatter appratiom is perfectly adequate for modeling the

surface scattering but, except near 0°, surfactesitey is the dominant contributor. On the other

hand, the sandy gravel figure shows that the infleeof volume scatter is negligible. The whole

mo

Surface and wolume backscatter approximations for Mz = 8 (Silty Clay), f= 100kHz

[d8]

del in this case is best presented by the subfack scatter.

Surface and volume backscatter approximations for Mz =0 (Muddy Sandy Gravel), f= 100kHz
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Figure 24: backscatter model approximation frorhtiefight (silty clay Mz =8 and sandy gravel
Mz = 0) at 100 kHz.

Surface and volume backscatter approximations for Mz = 0 (Muddy Sandy Gravel), f= 15kHz

Surface and volume backscatter approximations for Mz = 8 (Silty Clay), f= 15kHz
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Figure 25: Backscatter model approximation fromtefright (silty clay Mz = 8, sandy gravel Mz =
0) at 15 kHz.
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3.2 Echo shape implementation in time domain

In order to model the signal in the time frame,veed to study the signal impact evolution
with the seabed surface. The acoustic signal intida the seafloor intercepts an active area that
changes with time. The evolution of this area withe can be described by assuming that the
seabed is flat, the sounder beam has a conicatiditg pattern, and the seabed is the only soofce
reflection (i.e. multiples are ignored). The sealmaisfied area is evolved in three distinct phaaes

shown in figure (26), where:

Phase 1 - Attack — at initial instatyf = 2H /c the impact point increases linearly till it becarse

disc with radiusS(9) = rHa wherer =t -t .

Phase 2 - Decay - from the end of the attack phiséonisfied area is at maximum where t>T until
the signal footprint becomes a conical pyramidmérnal and external radius equal to the active

area FrHcT

Phase 3 - Release - lasting until the time wherptlige completely enters the bottom and the area

decreases with time im(6°H 2 - HcT)..

— Phase B Phase 2

0T 1

Figure 26: evolution of ionisfied area

This scenario occurs when the beam aperture isciuffly wide for the footprint of the
time signal to reach its full extend known by (ghpulse or pulse limited). If the pulse is long
enoughbeam limitedthe internal radius starts to grow only after theernal radius reaches its
maximum value, i.e. the whole beam footprint matjytsn simultaneously insonified. The maximum

backscatter area becomg#/? whereH water depth,y the equivalent solid angle of directivity

pattern [36, 6].
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3.3 Numerical implementation
So far equation (7) computes the received echoasf@sction of incidence angle. In order
to model the echo shape in time domain as seehebtransducer, we need to compute the angular

dependent interaction within an elementary timentrvals of fractional pulse duratiopand the
corresponding intensity time dependgnt). This interaction is referred as the evolutiontioé

signal footprint or insonified area.

The discrete computation of equation (7) can beerigally computed at the discrete time
intervals of (r) indexed by @) as integer in such that the intensity is computéaxr . For
simplicity, the source is assumed to be a point@mas shown in figure (27) at a certain height
above the seabed. The source emits a spherical, Weav@tersection of this wave with the bottom
initially take a shape of a disk changing to thko annulus, as illustrated in section (3.2). The
discrete time interval represent the evolutionhef tisk and annulus as series of concentric annuli,
with indices [j] i.e. the integral step can be cartegl by partitioning the andl@;] or the horizontal
distancér;;] into equal increments. The area of A[j] of eartnulus as illustrated in figure (27 and

28) with internal and external radii calculated by:

ALjl=n(rTil -r1i) a9

The area is then partitioned into equal increménhe ring radius to provide finer angular
resolution close to normal incidence. Equation ([($3he discrete representation of equation (7) in
the time domain. The transmitted waveform is Gausshape as described earlier in section (3.1.1).

As consequence the ionisfied area at sample seguiénc) is influenced by inconstant pressure
level, therefore it is important to determine tloerect intensity level at samplgnzr —[(2R] j]/ ¢ )])

by interpolating the constructive nyquist sample ta the desired sample rate.

j 2R[j1\ S;[j1A[j .
iln) = 2P0 1 (e - E) X p [ g

Cw ate[jl

Where:

—4qr

ar[j] Transmission loss in water column, through) = ——,
r

S;[j] Backscatter coefficient,

R [j1 Range between source and perimeter of ionisfied,

Cyw Water sound speed,

Dy[j] Directivity function.
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Figure 27: Imaginary sketch of transducer and sgabe
geometry

Figure 28: Elementary dimension
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Chapter 4

Analysis of the High frequency echoes

This chapter is devoted to employ the model bappdoach ‘SBES model’ to the seafloor
classification using the high frequency dataset irtodel relies on various input parameters starting
from the sensor settings to the seabed specifanpeters. Some preprocessing and signal analyses

are also included to optimize the matching procedur

4.1. Data description and sensor settings

The data consists of four sets of measurementstivatr four areas; each area is acquired
by four frequencies, the primary high frequency100 kHz) is stated as ‘HF’, and three secondary
low frequencies +/-(5, 10, 15 kHz) stated as Lukre (29) illustrates the echo prints of the four
areas observed by the low and the high frequergnats. The data was acquired in the Baltic Sea

near Rostock realized in 2007.

Figure 29: Echo print of sample profiler. The blagers indicate the positions of the dataset.
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Figure (30) shows a typical high and low frequetrace and their correspond raster
plot. The highfrequency signal iuseful to determine the accurate wateptt as shown in figure
(30-left). From the figure one can observe tla large component of the transmitted energ
reflected at the seabed interface and the reminaiiechighly attenuated in the sediment medi
On the other hand, the low frequency signal enasnlessattenuatio. Thus, a larger energy

component will havéhe ability to penetrate into the sediment lay

Amplitude

y 1 Q Areal -pressure, dB, LFOS (SkHZ) hooon Q
. 8
H
— o}
2 E ]
H =
3 E :
8 g
50 100 150 200 250 — 0 100 150 200 250

i la]
FIng nUmoer ping number

Figure30: Data example of area 1 at 100 kHz (left), andHz kright)

The high frequency data: of the four areas are separated #indtratecin figure (31). The
first and second dataset, known as areal and dave a survey length of 112m and 128..
respectively with an average water depth of 20.5he third survey line ‘area’3 is approximatt
118m, with a starting water depth of 14m that gediguincreaseso 15.5m. Finally, aread wi
acquired over a survey length of 105.5m and avevagjer depth of 13m. The acoustic survey

each site was carried outapproximate speed &0 km/h with ping rate of 6 pings/s

A number of grab samples were taken, éndicated that area 1 and 2 are dominate:
fine grain sizes ‘e.g. mud or clay’, area3 by ceassdiments ‘e.g. sand’ and area 4 as pebt
rock. Theanalysis of this research will exploit the priorokviedge of sediment description a

guiding referene for the consistency of the classification res
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Figure 31 Raster plot of four areas, acquired at 100

The data ofare: 1 and 2shows a penetration depth of approximately-2 m) which are
late arrivals that mict be the product of volume backscat®n the contrary, area 3 and 4 the
arrivals are much shorter with an average penetradepth penetratic of (0.75-1m) due to large
absorptionThe raster plot of area 4 shows high energy andgigphical fluctuaons, which could
be due to flora, fauna or even the pebble itsdie €arly returns evident in the four plots are r
likely caused by fish individuals near the bottofherefore, this data set requires scrutiny
identify artifacts that can unfairly as the shapes and amplitudes of the backscattehet® tha

will have mismatch or ambiguous sediment characa@dn consequence

Further, theransducer characteristic during the acquisitiarcess of the four areas v as
follow:
The transmitted ulse is a bell shaped CW. The source level is 8B40dB, and 200d|

for the high and low frequency respectively witl2@C s transmission length. The transduce

normally oriented with a transmitted half power ewidth +1.8degrees for the high frequent
and receiving (+£.8, +-38, +/-18, +/12.5) degrees for (100, 5, 10, 15 kHz) respectivEhe date
was corrected for heave and gain. The sample freyues 96 kHz for LF data. For the hi
frequency, lhe data was shifted down from 100 kHzbelow 20 kHzto fit within the nyquist rang
of the sample rate.
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4.2. Filtering noise

Model based characterization is based on simulativeg main physical processes that
influence the transmitted signal. In order to imgrehe matching process between the modeled and

the measured signal we have to eliminate or fiierpresence of noise of the measured signal.

Since signals can be represented with a sum ofaids, we can view a signal in terms of
the frequencies that compose it using the Founeyais. Fourier analysis gives insight on the
frequencies that build up the received echo sigmal consequently one can define the threshold

limits of the filter in frequency domain in order dmit the presence of undesired frequencies.

Band pass filters are filters that allow frequescithin a certain band (or range) pass
through the filter, while frequencies outside thahge are attenuated. For bandpass filter we
basically have two parameters that influence thétednsignal: the filter length (number of taps)
and the pass band limits. The number of taps clsnthe width of so-called transition zone (gain
and attenuation ripples). The band width of thedpass filter is chosen by approximating the

spectrum intersection limits of the original sigfsignal + noise) and the noise.

Figure (32) shows the normalized spectrum of thgiral signal and the noise in decibel
units. Their intersection limits is about 18 kHmeb kHz for the upper and lower cutoff bandwidth
respectively. The center frequency is about 11.BA@. In this case, the cutoff band width is
approximated to 13 kHz. The influence of the filigr process can be seen in figure (33-34), by
enhancing the error to signal ratio E/S from -69tdB72 dB for areal, and from -69dB to -85dB
for area4. This shows that the influence of thtefihg process was not very significant for areatl b

important for area4.
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Spectrum comparison of ariginal signal and the noise component
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Figure 32: Normalized spectrum of original signadi aoise component
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Figure 33: Error to signal ratio for areal Figure 34: Error to signal ratio for area4

The final product of the filtered dataset of ar@alpresented in figure (35) and their
corresponding power spectrums along with their ayed values in figure (36). The average power
spectrum of the raw data set shows a large sprédequency components among the central
frequency 11.300 kHz. By comparing the averagedgoapectrum showed in figure (36) before
(left) and after filtering (right) it can be obsedsthat the power spectrum is now more focused
around the central frequency 11.300 kHz accompaniik reduced side lobes; the difference
between the main and the first side lobe is moae #0dB.
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Figure 35: Raw data set (left), filtered datasigth)
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Figure 36: Spectrum of raw dataset at areal f D (first plot from left), spectrum of
filtered dataset band pass filtered with centegqdiency 11300Hz with a filter bandwidth of
10 kHz (third plot from left). The™ and 4" plot illustrate the average power spectrum of the

entire dataset.
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4.3 Alignment and stacking
The waterfall plots of figure (37) show 256 tracésreal before and after filtering. As one

can see, the data still remains varying in ampéitahd shape during the acquisition process.
Although the data was heave compensated accordititetvalues recorded online from the heave
sensor, there is still some heave visible over eomsve pings, see figures (39-42 [a, b] ). This
variability influences the temporal model matchiegtimations, thus it has to be treated by
averaging a number of signal envelopes. For thepewison process, an ensembldvbtontiguous
returns is selected and characterized by averalge gequence and mean depth to represent the

transducer-bottom distance. With notice that ptiothe averaging process, the echoes have to be

aligned first.
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Figure 37: Waterfall envelopes

43



To isolate the effects of seabed type, one haenwve the effect of depth variation by
envelope-stacking processes that are aligned ie.timorder to compare the effectiveness of the

alignment two alignment values was tested: (1)pek amplitude, and (2) the minimum threshold.

The echo-envelope can be described by an inits&, nmaximum amplitude and ending
with a slow decay. Peak alignment is based on imgcknd indexing the maximum amplitude value
of the signal, while the minimum threshold alignmtacks and indexes the initial rise. A number
of echoes within a chosen ensemble size are thiedsin time to line up with averaged ensemble

peak or rising time.

A comparison between peak and minimum threshaoghmlent value is shown in figure
(38). The figure shows a modeled signal of Mz =h8ip blue, and an average of 15 samples that
are aligned with the two threshold values. Fig@®&left) shows threshold alignment at 10% of the
maximum peak. The main property of minimum aligntisnthat it preserves the integrity of the
echo’s rising edge, which is more suitable for dottechoes that have low stochastic variability and

is less suitable for noisy signals or bottom ecHom®s rough sediments.

On the other hand, peak alignment is more suit&mebottom echoes that have high
stochastic variability such as high noise or echfpes rough sediments. Peak alignment yields
more symmetric distribution of signal energy abthé alignment index as shown in figure (38-
right)
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Figure 38: Minimum and maximum alignment results
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The numerical implementation of the alignment psscstarts by selecting a temporal
feature, in our case threshold of (10 %, 50% ar@¥d0was chosen. Once the selected feature index

is determined the echoes are shifted in time ®ip with the averaged signals feature.

For each return signal the alignment index is deiteed through:
i=i(pzp.0).

Where 1 is the first index, al&< | <1 , the mean alignment index can be then calculaged b
. 1.
=721
i=1

Wherel is the number of pings used, which leads to a delai,, = j; — j,, for each individuali

pings. Finally the averaged echo signal of ensemiiecomputed as follows:

PN ZMii gm( = Ql....... n=1,2,...N (16)

The outcome of this procedure results in a redudegd set that is smoothed and has less

stochastic variability. The averagesl[ n signals represent the approximated seabed typee for

small area, which then can be compared to the raddggnals.

A number of analyses were applied on the modifiathskt illustrated in figures (39-42).
Each figure contains four plots, (a) are the ravaskt which could not be used due to their
stochastic behavior and their irregular shapedlepes. Plots (b) are the filtered dataset which had
a smooth shaped envelopes but their variability was stable which consequently resulted in
various classification results. Plots (c) are thgnad raw dataset with a stack size of 15 signals,
which had a low ping-to-ping variance, but theivelopes had irregular shapes which was not
practical for the model-matching process. Plotsaid) the aligned filtered envelopes, which were

more practical for the comparison process.
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Figure 40: Raw dataset (a), filtered data (b),lstdaaw data (c), stacked filtered data (d) fomare
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4.4, Ensemble size

For proper averaging, an adequate ensemble sizéohaes chosen. The size selection is
based on the tradeoff between spatial resolutiahearsemble variance. Suppressing ping-to-ping
variability by stacking more consecutive echoestbgr allows the sediment information in the
echo shape and spectral nature to express itsgffite of noise-like variability. This tends froimat
the clusters are better separated from their neighby distributing the residuals which reduces the
ping-to-ping variability. However, one should acnbthat averaging over a large number of signals

will change the actual echo signals which will l#a@mbiguous classification

The cluster size can be governed by two factoesgdometrical artifacts such as apparent
periodical patterns in figures (39-42, a) and thgrde of similarity between echo shapes. Nonlinear
parametric sources provide a very narrow diregtiwhich is essential for sub bottom horizontal
resolution requirements. With the relatively smahter-sediment foot print size (approximately
1.5m at 20m depth) and vessel speed of (10-15kthéjootprint will have overlap percentage of
(15%-30%) depending on the ping rate.

In order to check the degree of similarity betw#enfiltered received echoes, a correlation
coefficient matrix was computed. Thex n correlation matrix of figure (43) shows some

interesting features per area that can be usedidarge for the stacking size.

For example, areal and area2 signals are highhglaeted on large spatial scale, which
indicates that both areas are dominated by singtiment type. Areal shows also some tiled
patterns which indicate the influence of the padaldpattern as observed earlier in figure (39, a).
However, this pattern is not of great influencecsithe correlation coefficients remains high. Thus,

any stack size can safely be used in these twa aiglaout influencing the signal properties.

Contrary to the first two areas, area3 and areageireral showed less correlation which
indicates higher presence of ping-to-ping fluctatiMoreover, the highest correlations were also
observed diagonally over shorter spatial scale2@5pixels’, which is likely due to the seabed
geometrical inclination at area3, and the first 1@@es in area4. Consequently, a stack size of 15
signals was chosen to be aligned and averagetidcertire dataset. This means that the dataset per

area will be described by 17 ensembles with anamate spatial resolution of 6-7 meters.
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4.5. Data comparison
4.5.1 Comparison process

Within the matching process we match the stackeasomed envelopes with envelopes of
the model. The measured bottom echoes consistpolsed CW signal, whose envelope yields a
pressure sequence, expressed in Pascal (Pa), whéreanodel yields intensity. Intensity is the
power passing perpendicularly through a unit afeln@. The comparison process is based on rms
pressure because the intensity introduced comigitatin the matching procedure. Therefore,

equation (17) is applied so that the intensity lbanvritten in terms of rms pressure alone.

|Aoa[n] =\ pv AI[ g (17)

Wherel[n] is the computed discrete intensity amend v correspond to the seawater density and
sound speed. To measure the degree of fit betimemodeled and measured data, we use a signal
to error S/E function equation (18) or E/S whiglust the inversea high value of S/E signifies a
‘good match! This function is easy to implement since it isépdndent from scale and signal
length. However, with the presence of noise, comsparof the whole trace is not convenient. Since
the model models the signal at the signal receitimg, we need to truncate the measured signal
beneath a given minimum threshold value to rem&reeremained noise. The rising index of the
truncated signal is used as an estimate for therwdaipth for which the model is run. The signdl tai
‘i.e. last index’ is used as ending time of sigoainputation.

n2
> pn
S/ E= n=nt (18)

n2

> (pdri- pI )’

One problem remains before the matching processhniki that the scale of the stacked
envelope and the model is different. This tend ftbat no information about the true power of the
source is available. In principle the source shdwdcalibrated first to know the exact emitted
power in the medium to have a direct match betwten modeled and measured envelopes.
However, with the absence of such calibration, thitial modeled-measured echo shapes
comparison still did show an agreement on the sighape but somehow biased by a scale factor.
Intuitively, since the same instrument was usethatfour areas, this bias should be constant or
nearly constant in all surveyed areas. In ordésatate the scale factor, a linear regression model
was applied using equation:

y=AX (19)

Where Yis the measurement vectofis the modeled vector andis the scale factor.
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4.5.2 Estimating geoacoustic parameters
The measured echo envelope characteristics i.bo(daration, rising slope peak value,
decreasing slope, decreasing time, etc) are direstsociated with the backscatter values from a

specific sediment type. In the physics based motla, sediment type is described by six

geoacoustic parameterso,v,d,w,,0,,)) as illustrated earlier in chapter 3 table (3). déhe

parameters are input in the model to generate ardtieal echo envelope. Within the inversion
process, we aim to search for the best set of ipptameters that gives the maximum fit between

the modeled and the measured ones.

If the six input parameters are unconstrained, ghemeter search space will be six-
dimensional which yields a complication of largenther of good fits that does not necessarily
represent the correct solutions [13]. Thereforstead of searching in all dimensions, we startby 1
search over Mz to establish the general sedimérgs(f sand, and rocks). Hamilton and Bachman
[31] described a relationship between the densitip rand sound speed ratio and relate both to the

mean grain size of the seafloor sediment.

Mean grain size diameter is the most useful deteerfor sediment type characterization

which can range from clay (diameter ~ 0.00039mmbdalders (diameter~ 256mm or greater). A
phi value @ scale conveniently represents the mean grairesizerding tap = —log, d/d, where

d is the mean grain diameter in mm afidis the reference diameter equal to 1mm. The sedime
naming conventions are given in table (4) fromdlassification schemes of Wentworth scale [30].

These values will be used as threshold for thesifiaation results.

Table 4: Boundaries of sediment types

Mean grain size
Phi Value @ diameter Sediment type
(mm)
@< (-1 2<¢@ Gravel/rock
1.0<@p<5 0.06< @< 2.C Sand
5<¢ ¢<0.004 Clay
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Theoretically, modeled echo returns have diffetsitaviors with respect to sediment type.
For example, signals classified as mud are dordnlayevolume backscatter as it contributes to the
total signal energy by a moderate peak rising aatta long tail due to volume scatter. Sand echoes
are characterized by a dominant surface backsaaitbfow volume scatter elongation, coarse sand

and rocky sediments are completely dominated bfaserscatter and an absence of volume scatter.

Technically any sensor will have a fraction of sidue to reverberations, boat noise,
water surface, etc. These noises were filteretlérobservation and the post processing process. For
the matching procedure, proper truncation threshoédsential to eliminate the remained noises and
to track the rising index of the measured envelape its echo duration. Low truncation biases the
rising index. While, high truncation might cut dffiportant signal features and yields improper
classification results.

Bottom echoes from substrates whose relief is sowetipared to the acoustic wave length
exhibit consistent temporal energy distributionartigularly at near normal incidence. In these
situations stacking and averaging via minimum thoés preserves the integrity of the echoes rising
edge and echo shape. The minimum threshold apfebssineffectual in high-noise environments
where signal shapes are highly variable such asseosand and pebble sediments which are
extremely rough relative to the acoustic wave lenginder these conditions higher threshold value
might be more efficient and may yield average eshwdich are more consistent with the

theoretical and local classifications.

Figure (44) shows the classification result for finer dataset using the default APL model
parameters, with alignment threshold set to theimim (alignment 10%, truncation 5%). The
classifications started by areas where substratef is small compared to the acoustic wave length
The matching process showed good E/S and moddeatsfication consistency for areal and area?2.
The dominant mean grain size was classified asfireviz < 9, with presence of some outliers
classified as coarse sediments. The sandy areaeVew better E/S than the muddy area, and
acceptable classification consistency that varidthinvthe sandy zorne< mz < 5. For the pebble
area the classification consistency was very pedha classification results were highly fluctugtin

between mud and pebble mean grain sizes.
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Wiz classification, Alignment = EL}%

stack number

Figure 44: Minimum threshold alignment 10%, 5% offt-and the
corresponding classification result. Predicted mgain size for the four
areas (Bold blue: areal, green: area2, red: aoyaB; aread). The pink
doted lines present the sediments regions finesjenate, and coarse
sediments.

Figures (45) shows the classification results, pglgng a threshold alignment 50% of

maximum amplitude and truncation limit 5% of obsshsignal. As one can see now we do observe

better consistency for the classification for eé8esnd 4 and low consistency for areal and 2.

Mz classification, Allignment = Sl}%

R
i I i I i
30 40 50 B0 70

stack number

Figure 45: Threshold alignment 50%, 5% cut-off #m&l corresponding
classification result. Predicted mean grain sizetlie four areas (Bold
blue: areal, green: area2, red: area3, cyan: aréad)pink doted lines
present the sediments regions fines, moderatec@arde sediments.

A third iteration was applied with threshold set (@ignment 100%, truncation 5%)
illustrated figure (46). The figure shows largeigtion of sediment type which does not agree with

the general description of the four areas.
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Wiz classification, Allignment = 100%
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Figure 46: Threshold alignment 100%, 5% cut-off ane corresponding

classification result. Predicted mean grain sizdtie four areas (Bold blue:

areal, green: area2, red: area3, cyan: aread)pinkedoted lines present

the sediments regions fines, moderate, and coadseent.

H

1

1
20

Figure (47) shows the E/S ratio that representsidiggee of match of the observed echoes to
the modeled echoes for the four areas. Alignmerit0& gave low E/S ratio which means high
degree of fit for areal, 2, and 3 while area 4 loaddegree of fit. On the contrary, alignment at
50%, the matching degree had good results for aapd3aread. Finally the peak alignment at 100%
of the signal had high E/S for all areas.

(1) Alignmard = 10%

Figure 47: Error to signal ratio (E/S) for arealud), area2 (green),
area3 (red), and area4 (cyan).

54



Conclusion

Contrary to SBES sensors, SBP has a very narrown beglth which makes it very
difficult to capture the full backscatter proceasd might not be the most effective sensor for
surface classification. Based on the SBP limitatjoand the previous results, alignment and
truncation techniques are of great importance stirdjuish the slight difference of backscatter

behavior of different sediment types.

By comparing the alignment thresholds, the minimimmeshold was more suitable for
relatively smooth surfaces such as areal, arealam@a3. For areas with high fluctuations such as
aread, alignment with higher threshold (50%) is ensuitable since it yields a more symmetrical

distribution of signal energy about the alignmertex.

Interestingly, this issue was also discussed in [Bwas concluded that group delay
alignment ‘basically a method that aligns the eshbased on their energy’ of highly fluctuated
echoes due to reflections from rough surface, gi@lderage echoes that are more consistent with
their theoretical predications. The following plats figure (48) show three randomly selected
matching results from the four areas. The y-axiglaged at the start of the received signal ‘he. t
seabed depth’ so the signal features from diffeaeeds can be easily compared such as elongation,

peaks, and shape.
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Figure 48: The first three rows show the observed modeled signal for areal, area2, and area3 with
minimum threshold (10%) and cut off (10%). The fburow shows the observed-modeled matching fordarea

with alignment of 50% and 10% cut off.
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The following table summarizes the classificatimnausions. From the table, it can be
seen that the E/S ratio is not enough to conclbdefihal classification, since matching process is
sensitive to the alignment threshold values, aatireg technique. Therefore the best way is actually
to find the best process that gives the same resuthe ground truth values. Therefore in this
research the conclusion is based on general d@earipf the area together with the minimum E/S

ratio.

Table 5: classification result

Alignment
10% 50% 100%
Areal
Area2
Area3
Aread
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The geoacoustic parameter estimation process canheved by the following procedure:

Obtain the acquired data set with feasible samgdlieguency to capture the proper echo envelope;
sampling frequency has to be at least twice asiaygampling rate to prevent sample aliasing. The
Nyquist theorem states that a signal must be sahgiléeast twice as fast as the bandwidth of the
signal to accurately reconstruct the waveform [10].

Apply filtering techniques to reduce unwished freqay components that might affect the Hilbert
transform.

Signal incoherency, heave effects, and seabed diepfiation of the mean have to be stacked and
aligned. We start by minimum threshold alignmenthwihe objective of finding areas that are
dominated by fines.

The averaged ensemble envelope time stamps areaugederate the equivalent modeled signal.
The model-data matching degree is quantified bgretw signal ratio, and the low value of E/S
signifies ‘good’ match.

With the goal of deriving unambiguous matches betwthe temporal model and data, 1D search
technique is used by iterating over all sedimerdimngrain sizes where the six geoacoustic sediment
parameters are related to Mz.

The successive Mz are then checked by the claaific consistency function. If classification
presents high fluctuation within the chosen Mz tpace or area, the alignment technique has to be

changed by increasing the threshold value.
The solution produced with the 1D search defineseed vector iz, w,,0,) appropriate for

second stage (3D) optimization over roughness sglesttength, volume scatter, and the mean grain

size associated with impedance contrast and setlettenuation coefficient.
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The following flow chart illustrates the used cléisation paradigm for sediment classification

using the high frequency dataset.
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4.5.3. Sensitivity of geoacoustic parameters

The results of 1D search using Mz showed a feasilddel-data fit. This fit can be enhanced
by searching into a second layer ‘set of new véesl{ OV, W, ,0,). These three parameters were

stated as the three geoacoustic parameters tleat #ie backscatter value at near normal incidence

[9, 4] and express:

1) The ratio of sediment to water acoustic impeeany OV
2) The size of surface roughness, specifiewpyand

3) The volume backscatter by.

a) Impedance contrast

Reference [31] showed that the grain size isetated to the water-sediment impedance
contrast and the sediment attenuation coefficierdugh linear regression equations. As a general
rule, an increase in grain size parameter Mz igreely correlated to the impedance contrast and
attenuation coefficient, which lower the overalldéof backscatter and elongates the receiving time
due to volume scatters. On the other hand, coadiensnts and rocks cause higher peaks that are

distributed over shorter time.

b) Surface roughness and scatter

Topographical roughness can be described througfistital parameters such as the root
mean square (RMS) of the elevation distribution].[Tis is simply the standard deviation of the
relative height measurements and it has applitphdi scattering models [14However, the rms
does not provide any information on the size aratisyy of seafloor roughness features that can be
superimposed with ripples or dun@herefore, the APL model represents the surfacgmoess as
isotropic two dimensional relief spectrums and tpoaver law for wave numbers comparable to the

acoustic wave number:
Wo(K) = V\Qk‘y (20)

In the used APL model, we account for seafloor mamughness by convolving the

smooth surface with a roughness response. Fromiegpphysics Laboratory (1994)[4], the surface

roughness power spectrunwy, is related to the rms rough height (h) over 1 mgldrack by
w, = 0.00207%’ in cn?’ . The lab experiment of APL-UW showed that thera ionsiderable spread
in the observed scattering strength for given sedimMost of this spread was ascribed to g

ando, , therefore these two parameters are allowed tp. Vidre roughness parameter controls the

60



width and rise time of the signal peak. The limithich is recommended was suggested by a
combination of numerical and physics consideratiOne should pay attention that the extreme
values are unlikely to be encountered in practiog @may yield suspecting results. The limit is as

follows:

0.0sw,<1.C

2

According to [12], the spectral exponent)(values signify the topographic correlation partane

within the same overall variance, whereas the spledtrength (v,) parameter quantifies

amplitude.

¢) Volume scatters

Volume scatter is very important for fine sedimeitssinfluence can clearly be seen in the
time domain signal as it affects the energy leuelthe tail of the signal. In general, the graipesi
parameter controls the simulated echo’s peak anagjtwhereas the volume parameter controls the
energy in signals tail. For fine sediments, it doatés the overall energy, while its contribution

decreases with coarser sediments. The recommeindaieébr the volume backscatter by [4] is:

0.0<0,<1.C

2
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Chapter 5

Analysis of the low frequency echoes

Introduction

In the previous chapter, the time dependent batiescmodel was used to simulate a
vertically oriented, uncalibrated echo-sounder afieg at 100 kHz. With such signal, the received
echo energy can be successfully predicted. Thistitshe case with a transmitted signal operating a
lower frequencies. Seeding the SBES model witbtmafrequency as an input can predict only the

first part of the received echo ‘water sedimengifstice’ as shown in figure (49).

250 ! ! ! T
! ! ! recorded signal
modeled sighal

200 - een oo e R - . T —

________________________________

amplitude [Fa]

________________________________

i} 1
ooz 0.025 0.03 0.035 0.04 0.045
time [s]

Figure 49: Comparison between modeled and
measured echo envelope received from a transmitted
pulse of 15 kHz.
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Therefore, in this section, an attempt is madetestigate the feasibility of two alternative
physics based models that account for further sylerlinteractions. The models predict the

reflection coefficients at each layer and invedéiérwards to the corresponding mean grain size.

The building blocks of the first model are basedtte recent work of D.Simons [11]. This
method basically infers the mean grain size ofwthager sediment interface, by inverting the SBES
echo energies via empirical relationships betwestingent properties and the acoustic reflection
coefficient. To predict the sub layers mean gréess the model had to be extended to account for
layer absorptions, reflections and transmissiorgfiments to compute the received energy as seen
by the sensor. By computing the amount of energgived from a time window, the reflection
coefficient can be estimated and correlated withmitan and Bachman’'s (1972) sediment
reflection coefficients. Since the reflection cagéint is a function of sediment impedance, the

results can then be inverted to the correspondiegmgrain size.

The second model is based on the same concepte Wiemean grain size is inferred from
the reflection coefficient at each layer. The majdference between the two methods is how the
reflection coefficient is computed. In the first thhed the reflection coefficient is expressed as the
ratio of the received energy to the attenuatedstrétted energy. In this case the energy losses are
applied on a calibrated transmitted energy, andttemuation process is theoretically applied @n th
nominal transmitted frequency. In the second modet reflection coefficient is reversely
computed. Theoretically, this can be achieved lpressing the reflection coefficient as the ratio of
the compensated received energy for losses tordinsrhitted energy. In this case the transmitted
energy is assumed to be equal to the total compehseceived energy. In order to compensate the
received energy for losses, the transmission loasesapplied on the spectrum of the received

energy which means that the transmission losgusction of frequency at each layer.
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Data description

The low frequency measurements were illustratelieean figure (29) chapter 4. The SBP
reading shows very low penetration at ‘area3 ard4irwhich indicates the presence of hard seabed
surface. At greater depths ‘area 1 and 2’ the patiet depth reaches approximately 8 meters
below the water-sediment interface, where highentibns are observed at 4m depth. This implies
that the signal penetrated soft sediment first sudblenly encountered hard sediment causing high

reflections due to the presence of high impedanograst.

5.1 Signal processing
For, the low frequency signals, the receiving lpaifver beam width was much wider than
during transmission. This configuration was adjdstpecially for this project in order to receive th

complete transmitted energy, which consequentlygalaip more noise (i.e. low SNR).

SNR is a measure used to quantify how much a klggebeen corrupted by noise. This
can be achieved by comparing the amount of signtl the amount of background noise in a
particular signal, such that a higher SNR indicaélbesbackground noise is less noticeable. This can
roughly be estimated by getting the ratio of (slghanoise) ‘e.g. mean signal energy around the
strongest reflector’ to the mean signal energyhef water column as noise which usually gives a

fairly good estimation of SNR.

The SNR depends on the received noise energy amdeiteived signal energy. The
received signal energy mainly depends on the trdtesirsignal energy, reflection and attenuation
process at the seafloor. Noise may come from diffesources and contributes in different ways to
the total SNR. Generally the noise is frequencyedéent; low frequency signals are subjected to
high noise components. This can be seen at therbgitots of figures (50, 51), which compare the
SNR of areal and area4 at 15 and 5 kHz before fiadfitering. The different SNR results from
the frequency dependent noise level: the lowercdrger frequency, the lower the source level but
the higher the noise level. In figure (51), althbithe SNR of the unfiltered dataset at 5 kHz was
higher than the 15 KHz, the band pass filter ineeelathe 15 kHz SNR more than the 5 kHz.
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Figure 50: The top plots in figures (a,b) show tieserved data of areal at 15 and 5 kHz
respectively. The bottom plots show their corresiiop SNR before filtering (red) and after

filtering. At the 15 kHz figure(a) the mean SNR wagproved from 19.0406dB to 28.3975 dB,

while at the 5 kHz figure(b) the mean SNR was imprbfrom 16.9577to 24.1038dB.
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Figure 51: The top plots in figures (a, b) show tieserved data of area4 at 15 and 5 kHz
respectively. The bottom plots show their corresiiogp SNR before filtering (red) and after

filtering. At the 15 kHz ‘figure-a’ the mean SNR svamproved from 11.6786dB to 25.74 dB, while
at the 5 kHz “figure-b’ the mean SNR was improveshf 15.84 to 19.10dB.
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In order to remove undesired noises from the vecksignal, a band pass filter was used
with specific bandwidth in order to increase theRSN'his was achieved by employing a similar
approach as was used in chapter4, through comptitenntersection threshold between the signal
and signal noise spectral components. The resbiadwidth was about 6 kHz, which didn't differ
much from the theoretical one. With a known pulksegth200us, the corresponding bandwidth is
about 5 kHz (bandwidth =1/pulse length)

Noise filtering was excited on the entire datagée observed maximum power spectrum
was chosen as centre frequency of the design basd filter. Alternatively, nominal centre
frequency was chosen if the observed maximum pewectrum had a large offset from the design
centre frequency. Figure (56) shows the filterethsket and their corresponding power spectra are
shown in figure (57). As the figure shows, the fregcy band of the filtered data is now more
focused around the desired centre frequency, amdatige difference between main and next side
lobe is obtained.
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5.2 Seabed surface classification using the energydel

As the transmitted acoustic signal travels downwahdough the water column with a
relative large beam width such as in the case &Bhe received energy will be a composite of
reflections and backscatters from the seabed surfan the contrary, SBP operates with narrow
beam width, where the received echo from a sulobofrofiler is dominated by reflections at

sediment layers.

The observed signal amplitudes are a function geidance contrast rather than interface
micro roughness. This stems from the geometric oreasent configuration;SBP sees only
echoes that comes perpendicular from the sea b#dwery narrow beam width6], and also
from the used low frequency banthe seabed amplitudes are much smaller than thestrétted
wavelength[6]. As a result the backscatter is negligible compaoetthe coherent echo, since the

microscale topography amplitude is much smallerganad to the signal wave length.

This distinct behavior is essential when modelimgl anterpreting data from the sub
bottom profiler. With this concept the physics lhseodel should pay attention to the energy
transfer, losses, and reflections within sedimagéis. The aim here is to infer the sediment type
from its reflection coefficient by comparing it toe modeled reflection coefficient. The reflection
coefficient of measurements starts by extractirgdilgnals from recordings. Then their envelopes

are squared and integrated to yield echo energies. received echo energyy at a given

direction ‘receiver interface’ and pulse duratiemélated to the transmitted pulsg through:

e(-4aH)

Erx = R2E 21
RX == 07 ™ (21)

whereH denotes the distance between the echo soundehaseafloor determined from the echo
return time and the sound speed, ands Rhe reflection coefficient of the smooth surfate
discriminate between the energy loss due to tressom into the medium and attenuation
associated with the traveled distandg¢, 2he energies are corrected for the sphericalasimg
factor 1/4H?and the water absorptieff®" .Water absorptiors™®" is the exponential form that
computes the absorption rate proportional to walkepth, wherea is the water absorption
coefficient estimated from Francois and Garrisammidlas and converted to 1/m. From equation
(21) the expression can now be inverted and theesponding reflection coefficient of

measurements can easily be estimated.
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The next step is to estimate the modeled reflectioefficients that correspond to the
assumed sediment typesi till 9p). The modeled reflection coefficient can be ddsativia the

classic Rayleigh reflection law which is a functiohthe impedance ratio between two mediums
through equation 4.

Acoustic impedance Z is defined as the produchefdound speed and the density of a
material. It basically represents the influenceaomedium’s characteristics on reflected and
transmitted waves. Many geotechnical propertie siscporosity, density, mean grain size, etc.,
exhibit excellent correlation with the impedancheiiefore, it is possible to predict the mean grain

size from normal reflectivity data through the cddttions of the sediment acoustic impedance.

Water impedancez;(p,c,) can be roughly estimated by guessing the watendsou

velocity and density of water which might have eli#int values from the true water column
values. In the proposed model the sediment impedaninferred from assumed sediment type

‘i.e. impedance is a function mean grain giz@,)’. The mean grain size can be substituted by

its geoacoustic properties described via Bachman&Hamilton regression equations that relate
the sediment velocity and density to the mean gi&ia through:

Cs=1952- 86.31,+ 4.1M2 (22)

0s =2380- 172.8 ,+ 6.8912 (23)

By combing equation (22) and (23), sediment impedaf(oscy can easily be estimated.
One should note that although sediment impedangeidgiely identified as a function of the mean

grain size, mean grain size as function of impedamngz) gives various solutions.
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Figure 58: Echo energies observed and modeled

Prior to the reflection estimation, energy plotsreveompared first. The three plots of
figure (58) represent the energy of the receivdwes at four locations, with their corresponding
depths estimated by its mean water columns (collimed). The first plot illustrates the numerical
integrated values of the echo envelopes at 100 Uditzg the SBES time domain model. At the
four areas, the energy curves increases gradualy<dMz<1 ‘rough sediments’. At 1<Mz<5
‘sandy sediments’ the energy decreases almost thithsame rate, while at Mz > 5 ‘fines
sediments’ the decrement rate becomes much legsdd@trement rate of fine sediments appears
constant due to scale of the plot. The low enelgyrement indicates that the modeled envelopes
of the fine sediments have very similar charadiess As a result, the plot is capable to
distinguish between the predicted energies thatespond to the distinct sediment types ‘rough,

medium and fine sediments’.

This distinct energy trend tends from the fact tteflections from rough sediments are
dominated by surface reflections and very low dbaotion from the volume scatter. Reflection
from coarse sediment i.e. 1<Mz<5, is a compositbath surficial and volume scatter. For fine

sediments, the most dominating factor is volumétsca

The second plot shows the energy of the recordeabanements at 100 kHz that belongs
to the envelope of surface reflection ‘approximatslo times the transmitted signal’. The plot
shows a stable energy trend at the first threesasraal, area2 and area3’ and less stability at
‘aread’. The fluctuating energy profile of ‘areabuld be caused by surface inhomogeneities, or
random roughness profile such as pebble and rddlesthird plot represents the predicted energy

using equation (21).
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By comparing plot (1) to plot (3), the distinct egg trend of plot (1) does not tend only
from the different reflection process, but alsarirthe transducer characteristics. Generally, if the
receiving aperture angle was set to maximum, thaesttucer would be capable to record most of
reflected energies (i.e. reflections backscattezedrgies) at larger grazing angles, and less
information would be lost. Consequently, the enepggfile of plot (1) would be closer to the

energy profile of plot (3).

The energy of plot (3) drops monotonically from gbuo fine sediments with much less
energy values. This tends from that the equatidl) @ccounts only for surficial reflections

without roughness or volume scattering considenatio

By comparing the colored lines of the second plwdasurements’ with the first plot
‘SBES model’, the four areas shows a clear cotimiabetween the mean grain size and their
corresponding energies. The comparison betweesettend plot and third plot ‘predicted energy’
shows a feasible correlation for the fines and gadas, whereas less correlation is observed for
the pebble area. The low correlation is likely twur due to the absence of the surface roughness

parameter in equation (21) which might contributeagly in echoes from rough sediments.

The comparison also shows that the vertical axesldierent in scale due to realization
of absolute values of the reflected energies. Thakies of the reflection coefficient should be
derived with the help of a few selected bottom griat serve to calibrate the energies for the

entire data set. Since the true source levels @ravailable, the theoretical source lewg) has

to be scaled by an arbitrary value in order tonesté the absolute reflection coefficient.

Scale factor

Practically, determining the scale factor depemtdprior knowledge of the sediment type
using grab samples and a calibrated transducerewtherexact transmitted energy in the water is
well known. Since this information was not availsbthe scale factor determination will be
derived from general description of the survey andach was moderately confirmed by the
results of chapter 4. Stacking and trace alignmenthapter 4 resulted in 17 ensembles. A
reasonable number of sub-ensembles were chosenefilomarea; basically 5 random ensembles
per area resulting in four different calibratiortfars for each area. Each calibration factor wéll b

used to the corresponding dataset to ensure prefiection coefficients.
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The numerical computation of the scale factor stast assuming that the transmitted
energy is subjected to an arbitrary scale factoillerefore, equation (21) can be rewritten as

follows:

R= e(g(zzaHH ) = (24)

Where

C= .
VErx

With the prior knowledge of the general descriptimheach area, the corresponding
Rayleigh reflection coefficient at water-sedimentface can be determined using Hamilton and
Bachman'’s equations (22 and 23). The N calibratemmples are associated with averaged Mz that
corresponds to its zones typically Mz = 9phi forel (area 1), Mz = 8phi for (area 2), Mz = 3 phi

for coarse (area3), and Mz = -0.5 phi for very sedarea4).

The number of calibration factors @er area can now be computed by matching the
acoustic reflection coefficient of equation (24) tte expectedrayleigh reflection coefficient
equation (4). By taking the root mean square ofGlaf each area we end up with four calibration
factors. The calibration factors of areal, 2 ansleBe very similar and slightly different at area4
which could be due the high stochastic behaviorraafgh surface. Nevertheless, the four

calibration factor were averaged and used for thigeedataset.

Classification result

By exploiting the calibration factor, the refledti@oefficients for the rest of the dataset
can now easily be estimated as shown in figure. (bBg figure shows the estimated reflection
coefficient ‘solid lines’ overlapped with the thetical reflection coefficient from Hamilton and
Bachman'’s table. The reflection coefficient is destli from the theoretical relationship between
sediment impedances and soil interpretation ‘il&y,csilts, sand, etc’ description. The black dots
show the random calibration samples that were chdseing the estimation process. In general,
there is good consistency but not for area4, whight be due to the fact that the roughness is too
high to be neglected and due to the averaged d$aater that has been used. In [41], high
resolution seismic reflection the reflection coaffint can be affected significantly by scattering
due to boundary surface roughness and proposediosolon how to account for surface

backscatter.
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Figure 59: Reflection coefficient results using the 100 kHzadat at the four aree
Horizontal dashed lines are the theoretical linotsthe reflection coefficient whic
correspond tol<Mz<9 phi.

Figure (60)depict: the equivalent sediment classification reshiz” in black solid lines
overlaid with the classification results of chagfur ‘solid cyan’. The figure shows the four are
in a sequential order for clearance. From the &gboth methods show similar results, with lo'
variations in the reflection based approach. Howete judge the quality of the results, lar

dataset is needed apply sufficient statistical evaluatior
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Figure 60: The high frequencclassificationresults are displayed in black solid lin
The dassification results (the SBES modehre displayed in cyan solid lir. The
sedimentboundary limits between fine, coarse and roughmsedis ‘magenta dashe:
The four areas are presented in a sequential from left to right, whereareal =
stack (117), area2 = stack (-35), areal = stack (3B3), areal = stack (-72).
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5.3. Sub bottomclassification using energy modt

In this section the low frequency echoes will balgred to infer the description of t
sub bottom layers. Equationl) does not account for layering interaction andcdbes only the
received energy flux densias a result from seafloor surface reflection. Wiite low frequency
the received energies are reflected from the lalyeeximents giving more information ab:
sediment layers structure and type. To model tkeived energy for such condition, expron
(21) has to be extended to account for the additigigisics processes by including layer

absorptions, transmissions and reflectic

8. water
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Figure 61: Theoretical sediment layer structure |

Consider a transmitted low freency pulse emitted perpendicular towards a 1
dissipative sedimentary layer of thickneh and split inton elementary layers as in figur61).

Each layer is characterized by its sound speq , densityg , attenuation coefficiera; , and

thicknessd,. The signal encounters an initial reflection at w-sediment interface that
influenced by losss due to spherical spread and absorption in thervwalumn. The remainin

energy will penetrate inside the sediment layerhwat transmission coefficient T, . The

transmitted sound will be subjected to a secondpherical loss limited to the layer thickney
and its corresponding sediment absorp The absorption coefficient dhe upper layer can be
inferred from table (B the estimated reflection coefficient of the fistép is used to search for !
equivalent sediment type in tab(6). Now as the sediment type is krn, its corresponding

absorption coefficiercan be used for the computation of the next layer.
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The absorption coefficient sound wave in marineirsedts in table (6) is described

through:
a =kfn (25)
Where:
k = constant that depends on sediment type

f = transmitted frequency

n = exponent of frequency dependence

Most authors support linear frequency dependeenattion which is also followed in
this literature by using Hamilton and Bachman’scaipson values shown in table (6). There is a
variety of sediment absorption units that are cominaised in the underwater acoustics and
marine seismology communities. Most common is thealgkl per unit meter, or decibel per wave
length depending on the used propagation modetalte (6) the acoustic attenuatian is
expressed in decibel per wavelength so it can bd usth any frequency. In the used model, the

attenuation coefficient was converted to dB/m teeagvith the units of the extended equation.

Table 6: Sediment absorption coefficients after Htam & Bachman et al [6].

Sediment type I(\/;)z P (kg ) C(m/9 a (dB/A)
Clay 9 1.200 1.470 0.08
Silty clay 8 1.300 1.485 0.10
Clayey silt 7 1.500 1.515 0.15
Sand-silt-clay 6 1.600 1.560 0.20
Sand-silt 5 1.700 1.605 1.00
Silty sand 4 1.800 1.650 1.10
Very fine sand 3 1.900 1.680 1.00
Fine sand 2 1.950 1.725 0.80
Coarse sand 1 2.000 1.800 0.90

The mentioned attenuation process will continuél timé¢ signal encounters the second
layer, where high impedance contrast exists. Onttaeeling way back to the receiver, the
reflected energy is subjected to the same attesnugtiocess during the transmission mechanism.
The penetrated energy into the second layer widbanter the same physical processes until the
energy vanish or is completely reflected by a roldkyer. The mathematical description of the

mentioned process for one layer (i.e. second mediternface) is described through:
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e(_4'°<WH) 2 e(—4—0<51d1) 2 2
Erx = Erx (—4H2 )Twsl (—4d12 )RslsZTswl (26)

Where ag the acoustic attenuation due to sediment absorptothe first is layer,dyis the

thickness of the first layer, ant}y =1+ R,4 is the transmitted energy coefficient from the evat

sediment interface. The reflection coefficient la¢ thooundary of the first and second layer is
denoted by Ry , andig,,=Tuq IS the transmitted energy coefficient at sedimeater interface.
The number of required parameters in the genegakssion depends on the number of layers (N).

Table (7) shows the required number of parametemsder to compute the reflection coefficient

at the corresponding layer.

Table 7: Required variables to be estimated folaghr

Parameter Number of required parameters
Erx 1

Attenuation N+1

Transmission coefficient 2N

Although, the incident wave can potentially exdi&h pressure and shear waves. The
shear wave is neglected because we have almostaténcidence and no solids. No solids mean
that the seabed is modeled as fluid which meatrtsittisapports only compression waves. Shear
waves should be taken into account when a reasprsbid bottom exists such as in ocean
basement or situation where no soft sediments ieviiré basement. When the reflecting medium
is solid, the seabed should be treated as an clamttium that provides a restoring force to
recover from shearing. In this case, the incideave will potentially be decomposed into

pressure and shear waves.

Another external process that was neglected inrttadel is signal interference. Signal
interference is the process in which two or moreetent waves combine to form a resultant wave
in which the displacement at any point is the vestam of the displacements of the individual
waves. This might occur when a reflected signatdpped between two layers ‘i.e. delayed’ and
added to reflections that are encountered from etelgyers ‘i.e. synchronized in time’. In this
process, the received echo will be a componennyflitudes ‘i.e. destructive and constructive’
which will not represent the true sediment layed aonsequently will degrade the reflection
coefficient results.
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Scale factor
In section (5.2), the scale factor was determineanfthe high frequency dataset. In

theory, the source level of the high and low fretpies should be the same. This means that the
estimated scale factor can be applied for the laguency dataset. Practically, the source level of
the low frequencies was not the same as the séevek of the high frequency. Therefore, new
calibration factor had to be estimated. The deteation method is basically the same as
introduced earlier in section (5.2). Contrary te ttigh frequency signals, the low frequency signal
is much longer and contain reflections from seditmayers which means that the single trace is
described by various sediments ‘i.e. different grsize’. Therefore, the first received reflection
encountered from the water-sediment interface weg wsed to determine the scale factor. This
can be defined by selecting the envelope lengtlalequwice the transmitted pulse length starting

from the water depth as shown in figure (62).

Stacked envelope of 15kHz signal at area’l
250 T T T T T I T I
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Figure 62: Envelope equal to twice transmitted @uls
(red), selected to determine the scale factor

Figure (63) shows a comparison between the scaterfaalues and their corresponding
distributions for each area. Five samples werectsdelocated at the same position of the high
frequency analysis that was shown earlier in fig®@®. The figure shows that the scale factor of
the first three areas are very similar, consiséent does not contain major errors such as observed
with the scale factor of area4. The scale factaaref 4 implies that the selected five samples are
highly variable due to non homogeneous pebble seyfar due to the additional backscatter area

caused by the high surface roughness.
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With the goal to find one scaling factor that wofks the complete range of mean grain
sizes and depths, one can basically use an avecade factor for the four areas. However, the
averaged scale factor degraded the analysis reJuilezefore, the first three scale factors were
averaged resulting with a single scale factor deethe analysis of the first three areas. Theescal

factor of aread was excluded and used only fanits area.

107 estimated scale factor
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Figure 63: Contrary to the scale factors of thetfthree
areas, significant variation can be seen in thiedeators
of area 4. The upper and lower edge of the blueebox
shows the upper and lower quartile respectivelye Téd
line is the mean.

Reflection calculation versus time
Figure (64) illustrates typical wave forms fromhabow sub-bottom record. With water

depth travel timety, and sampling windowdt to calculate the acoustic reflection versus travel

time are shown. The size of the sampling windoweisy crucial for the estimation of the local
reflection coefficient. Basically too short samplandow will not capture the correct energy that
represent the desired local layer, while too lagmple window will overestimate the reflection
coefficient as it will overlap with the energy diet next layer. The principle of choosing the
correct sample window will be investigated in thexisection. For now, the size of the sample
window is chosen to be once or twice the transuhifielse length, which also agrees with the

selection of the size in the following sections.
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Figure 64: Physical reflection model [27]

As in deep seismic, all calculations can be donth wespect to travel time. After
sediment layers are defined and their correspondéhgcities are known, the predictions can be
corrected to reflections versus depth. Referringpedcedures to travel time where the bottom
echo starts after duration tQf the sequential data are derived into N subsestion

S(dt),S(db),....S(dt). The signal integration to each subsection of thquential data can be
calculated through:

b
E(tn)=;1(8(o)2.dti (27)

Where:

n-1
ty =ty + Zdtn
Eil

t2 =t1+ dtn
tw = water depth travel time.

dt, = sample window of nth subsection.
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Sample window size

Calculating reflections coefficient versus deptloidy valid when secondary reflections
of the transmitted pulses are not located withim shmpling window of the first arrival pulse. In
order to evaluate this, a spectrum analysis mettasdapplied on two sequential sample windows.
The method is basically inferred from the broadbed approach ‘spectral ratio method’ to
estimate sediment absorption coefficients withimbgeneous layer [26], which is based on the

analysis of the frequency content of propagatedistemwaves.

For a particular trace the spectra is calculateer @ default window size of 2Q@,

which corresponds to a 5 kHz bandwidth. A numbespafctrum analyses have been performed on
N times the sample size. The performed analysikasvn in figures (65, 66). The figures show the
power spectrum of two sequential sample windows different sizes 1, 2, and 4 times the pulse
width. The hypothesis here is that if the spectairthe second sample window is the same or less
than the power spectrum of the first sample windben we are at the same sediment layer. In
fact, the low power resulting from the second wiwds the sediment absorption influence on the
transmitted signal within a homogeneous layer. B dther hand if the power spectrum of the
second sample window is greater than the first dhis, means that secondary reflection is

encountered, which implies a presence of a secyghalger.

To avoid the presence of secondary reflectionshin first sample window, one can
choose a very short time window ‘one time the pulsdth’. However, a very short sample
window in the time domain reduces the spectralleti®m, and comparison becomes very difficult

as shown in figure (66-A).

In the second plot figure (66-B) the sample windeas set to two times the pulse width,
which increased the spectral resolution and indizidreflections were still separated. The
difference between the maximum power spectrumisgslarger which shows the influence of the

absorption within the sediment layer.

Figure (66-C) shows the power spectrum of a sampidow four times the pulse width.
The figure shows that the individual sediment lag@n no more be captured with the presence of
secondary reflection within the single sample wind@he power spectrum of the second sample
window has larger amplitude over the entire freqydrand, and no clear separation or difference

can be observed at the maximum power spectrumaaensarlier in figure (66-b).
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From the previous analysis, the best size of theptawindow would be twice the pulse
width and at least one time the pulse width fortieimum sample size as shown in figure (66-
A). The figure shows a slight difference betwees ieximum power spectrums which is obvious
as no major difference between the signal amplituae yet encountered.

The influence of the sample size selection on #flkection coefficients versus depth is
illustrated in figure (65). In figure (65-a), forsample size equal to one time the band width, the
reflection coefficients are consistent with thenttef the received signal. This behavior cannot be

captured when the sample window was set to 4 ttheeband width as shown in figure (65-b).
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Classification result

The classification results started by a proper iptiggh of the sediment grain size at water-
sediment interface that also agreed with the highufency classification. However, the reflection
results was acceptable for the first three or fiberations, but at deeper layers the predictions
degraded drastically and unrealistic reflectiongenebserved ‘e.g. reflections >1' which cannot
occur in the real physical process. This implied there is an error that propagates and incrdpses

increasing the number of iterations.

Theoretically, the reflection coefficient of samplindow (n) depends on the geoacoustic
properties of the sample window (n-1). If the refien coefficient of (n-1) is wrongly estimatedeth
corresponding attenuations will be under or ovéineged which will unbalance the energy ratios of
(n). In our scenario, this can occur if the sampladow covers several layers, in this case the
reflection coefficient will be a rough estimate ftire selected layers. In order to reduce the
propagation error, the reflection coefficient hase estimated at each layer boundary, by insuring

that the layer boundary will fully fall into onersale window.

Figure (67) shows the echo envelope of al5 kHzasigrne envelope trace has various peaks
and widths that correspond to the impedance cdrbetsveen two subsequent layers. Section (5.3)
showed that sample window equal to twice the badthnis a feasible size to isolate the reflections
between two subsequent layers. This can also beisebe time domain of figure (67) where the
first sample window sufficiently overlaps the firgflection from at water-sediment interface. On
the other hand, sample windows 2, 3, 6 and 7 aoelyptocated, and do not represent a distinctive

sediment layer. Consequently, the estimated réflestwill not be accurate and misplaced.

For example, the reflection coefficient at thetfissmple window ‘i.e. first layer’ is well
estimated and its corresponding absorption coefficas well. In the following sample window, the
window is too large and misses to estimate theecgfin coefficient of a thin layer at point (c). In
this case, the energy level is over estimated,candequently the sediment attenuation as well. This
will lead to unbalance the model and the correspandeflection coefficient will be inaccurate.
Consequently, the misclassification error will pagate within the model leading to unstable
reflection profile. This will lead to decrease thige of the sample window to capture the missing

thin layer, but unfortunately, this is not a preatisolution for larger envelopes.
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Amplitude [Pa)

In order to compromise between the two requiremehts reflection coefficient will be
estimated using the same sample window ‘twice thesmitted pulse width’ but with shorter
intervals ‘e.g. overlap 75%’ to minimize the chaméamissing intermediate layers. The red striped

rectangles in figure (67) show the concept of amping windows.

The algorithm starts by a sample window width egimltwice the transmitted pulse
duration. In figure (67), the first sample windomtérsects with the envelope at point (a). In the
second iteration, the sample windows will shift 26%the sample window and intersects with the
signal envelope at point (b). The algorithm corgimuwvith the same shifting mechanism for N
iterations, where the third, fourth and fifth iteoa intersects with the signal envelope at pod)t (

(d) and (e) respectively.

Trace envelope, areal, 15kHz
I I

]

1B e mmsesmmnes s ;

L P Lod-ep

R R ERRTEREORN

i : : '
0.032 0.034 0.036 0.038
Time [sec]

I
0.026

Figure 67: A descriptive plot that shows the samplivindow techniques ‘0% & 75% overlap’
plotted in red solid and dashed lines respectivethe blue solid presents the received echo envelope
from a 15 kHz signal at areal.
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Visually, one can observe that the first sampledeim covers a complete reflection
envelope which was reflected from the water-sediniaterface. Consequently, the estimated
coefficient at point (a) is estimated with high fidence. In the second iteration, the sample window
is shifted till point (b) which covers a large paftthe envelope that was reflected from the water
sediment interface and a part of the second engelaghis step, the estimated reflection coeffitie
is estimated with less accuracy as the sample wirdtes not fully cover the second envelope. This
artifact might degrade the reflection estimatepant (b). The difference between the estimated
reflection coefficient at point (b) and the trudleetion coefficient is an error factor that will
propagate within the model. However since we aiagushort intervals, the error magnitude is

relatively small comparing to errors encounteredHgyalgorithm with 0% overlap.

In the third step, the sample window covers tHer&iflection envelope at point (c), this is
a major advantage as the algorithm ensures to éotermediate layers which will be missed with

the traditional 0% overlap window.

To illustrate the influence of the overlapping teicjue, a number of analyses were
performed on different overlapping values 0%, 509 @5% as shown in figure (68). The red lines
presents 0% overlap ‘i.e. illogic results’, bluedirepresents 50% overlap, magenta (75% overlap)
with significant improvement. One should note ttwat short intervals will degrade the results again
by underestimating the reflection coefficients; perwindow will not capture the full envelope of

the second layer.
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plot shows the received signal envelope from sthoflataset. The right plot shows the corresponding
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5.4 Sub-bottom classification usindgenergy model (frequency domain)

In this method, the identification of the sub-lapettom is achieved by following the work
of [27]. The approach can be considered as a reagsrithm of the previous method. In particular,
the model compensates for the propagation and ptisorlosses in each layer as function of
frequency. The total transmitted energy can theedtienated via the total sum of the compensated
received energy. The reflection coefficients estemaat each sample window are consequently
inferred by removing the losses in the layers alitbeedesired one, so that the desired layer can be
analyzed as if it were a surficial reflector. Thisncept is applied to each subsequent layer until

recorded energy vanishes.
Reflection calculations versus depth

With the aim to compare the reflection coefficieegtimates of the two methods, the
sampling window was set the same as with the firsthod, which equal to the transmitted pulse
width. The sampling windows are referred to theveétaime where the bottom echo starisas
illustrated earlier in figure (64). Fourier transfois then applied on each sample window of the

sequential data as shown in equation (28):
t, ]
F(c«mtn)=z;s(t) glart  (28)

Where:

n-1
tl = tW + Z dtn
=1

ty =t +dty

S(t) = The sequential pressure envelope within sampidow t
wn = The nf' spectrum component

t, = Water depth travel time

dt, = Sample window of nth subsection
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This operation will yield a sequential spectrum éarch subsection presented in a matrix,
which represents the spectrum components at eauoplesavindow. The energy matrix is then

obtained numerically by integrating the squaredspen components shown in equation (29).

E(cn, dtn) = [ [Fleom dt)? (29)

The two dimensional Energy matrix is described tigro

E(w,dt) Ew,dt) ... gy db )
£=| E@dy) f (30)

Yielding energy versus travel tint, andwp, is nth spectrum components.

Losses
The compensation process for various losses isddsdescribed by the same parameters
as with the first approach, only the fact is the bbosses are added in place of subtracted. Thedos

elements are summarized by:

- Geometrical spread to the desired layer

Nspcorr =20 Log(H)+20Lod D) (31)
Where:
H = water depth
D, = range from seabed surface to layer of interest

- Water attenuation

el-4awH) (32)
Where:
a,,= water absorption coefficient

- Sediment attenuation

Pldn
eBC DN (33)
Where:
C = Average Sound speed in sediment layer
p = Average density
B = 161.8 Dimensional constant viscosity.
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The compensation procedure is computed in two stejpst the model accounts for the

geometrical lossesis,cor ON the entire matrix elements as shown in thevdlhg equation:

ESpCOI’r((“an dty) =1010g(E (@ dtp))+ N specor (34)

After the geometrical loss correction, the absorptorrection for water and sediment has

to be applied for each frequency in the energyimas shown in equation (35):

Pl b
Ecor(wm,dtn)=E spcorre(_MWH ).eBC (35)

After the corrections have been applied per frequethe total energy per sample window
E(dt,) can be described by the summation of the total munalb frequency samples as shown in

equation (36):
M
E(dt)) =" E(em dt) (36)
m=1

Finally, the transmitted incident energy on thebsehis equal to the summation of energies
at each layer plus energy losses which are enetigigswere attenuated, or penetrated and never

returned back to the transducer. This can be destrnathematically through equation (37):
N
Eoa =K> E(dn)  (37)
n=1

where the incident energy is the sum of the redléenergies times a constant k which represents the
energy lost by reflection downward into the eakthwas numerically estimated earlier in the first
method denoted by C in equation (24). As now therg@nper layer and total energy incident is
known, the reflection coefficient of the first layis the ratio of the reflected energ§ sample

window’ divided by the total energy of the signade:
— [E(d
R= ey 38)
Eiotal

Reflection coefficients for deeper layers will bgual to the ratio of the energy from that layer

divided by the total energy, minus the energy ctéld from the previous layers:

(39)
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Classification result

Using the proposed method, figure (69) shows th@émeased energy profile and the
corresponding reflections for a particular tracenttary to the initial results of the first method
‘energy model', the initial results 'i.e. 0% ovpsaof the second method 'energy model frequency
domain' showed acceptable results. This is becthesesecond method is not based on an iterative
loop which is an advantage. For the sake of coraparithe overlap concept was applied.
Consequently, the quality of reflection profile wasproved by increasing the computation
resolution ‘i.e. 75% overlapped sample window’.

Signal Computed Energy Computed reflection coeffcient
20 20 T T T 20 T T

Stacked raw signal

0% overlap

50% overlap
— 75% overlap
5 3

T
0% overlap
E0% overlap
—— 758% overlap

depth [m]

phig | 76 5432

% i i 25 i i i i 25
200 -100 [i 100 200 0 0.8 1 15 2 25 0 0.1 0.2 0.3 0.4 [iX3
Amplitude [Pa] Energy flux [Jm°) reflection coeffcient

Figure 69: Comparison between overlapping concsptguthe second model. The left plot shows
the stacked raw signal, middle plot illustrates ¢sémated energy for various overlapping interval,
right plot illustrates the corresponding reflecgon
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5.5 Preliminary discussion of both methods

Figures (70-73) represent three arbitrary traceg#égh area. For each trace, three plots are
presented; staking, energy and reflection compaiistween the proposed methods. In general, the
results of both methods agree with the generalrigitign of the four areas. Their reflection profile
are similar to a certain degree this basically depeon the model variables, errors, and propagation
of error.

Since both methods infer the reflection coeffickenia the energy ratios, their results are
based on the corresponding energy profile. Theggnprofile depends mainly on the numerical
integration of the stacked envelopes. Since eagthad had different procedure in estimating the
required envelope, their energy profiles were shgdifferent. In this section we discuss the issue

that concern the energy results and the correspgndilectivity profiles:

- Energy profile

In the first method the energy profile is estimateanerically by integrating the
stacked envelopes of the raw signals in the timeaio. Energies of the second method are
estimated from the frequency domain where the stakrocess had to be applied on the
raw signals rather than their envelopes. The stgclésult of both methods is shown in the
signal plots (70-73).

Based on the principle of energy conservation, &als Theorem states that the
total energy computed in the time domain must ediu@ltotal energy computed in the
frequency domain. This was not completely achievalie to errors in the stacking process
of the second method. In order to achieve similaergies, the summation of the raw
signals has to take the phases into account. Ttawbdck shows that the energies
estimated from the first method are more accuraieests stacking process is simpler and
more robust. Additionally, difference in the enemmputation can also be observed if the
power spectrum has low resolution. In this case nbenerical integration will give

approximated values.
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- Reflectivity profile

By investigating the reflection coefficient plots figures (70-73), the blue lines
‘reflection of second method’ is slightly overestited at the sediment surface and under
estimated at deeper layer’. This trend implied #ss an average estimate of the black line
‘reflections from first method’. This behavior wabeoretically expected since the
attenuation in the second method is estimated wesaged sediment density and celerity,

while in the first method the absorption is estiatesequentially for each sample window.

The raster plots of figure (74-77) shows a closeage of the raw reflected
energies of the four areas which were shown eanliégure (29). The reflection results of
the two discussed approaches are plotted besideathemeasurements to compare the
reflection contrast. The result of the first mettaltbws the distinctive layers with better
reflection contrast than those of the second metfbds is because as mentioned earlier,
that the reflection coefficient of the second melti®man average estimate at the distinctive

layers.
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Figure 70: Estimated reflection coefficient forehrarbitrary traces at area2, 15 kHz.
Red lines are estimated reflection coefficient andrgy using first method. Blue
lines present the results from the second method
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Figure (74): Raster plot of the predicted reflextamefficients of area 1 at 15 kHz
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Figure (75): Raster plot of the predicted reflectamefficients of area 2 at 15 kHz
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Figure (77): Raster plot of the predicted reflectomefficients of area 4 at 15 kHz
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5.6 Preliminary discussion on the impact of biasemn the reflection estimates

As mentioned earlier, one drawback of the first modtis that the reflection is computed
sequentially and the model parameters increasevery iteration. This means that the penetrated
signal is subjected to higher component of atteanat Figure (78) shows the model predictions ef th
received energies Efor various sediment types using Hamilton absorpttoefficients. From the
figure one can observe that water sediment layeptkdicted energies have large thresholds, while a
deeper layers the threshold becomes very narrowbacdmes difficult to distinguish between the

sediment types.

Another drawback was also the error component @ @r underestimating the reflection
coefficient or other phenomena such as 'interfeream backscatters'. Although the error was greatly
improved by the overlapping window technique sonti#é semained. This error component is
acceptable at layers near the surface and notegeddayers and will have large influence on the

prediction stability.

Model prediction of the receieved energy for various sediment types, 15 kHz signal

, / e "
205 l / e ==

I

2051

/ — Mz=
2 — Mz=
— Mz=
J—
— Mz=
Mz =
J——
25 i
il

b5} L

0

1 2 3 [ 5 6 7 B 3
Energy Jim? x10°

depth [m]

Figure 78: The figure shows the model predictions of the nem@ienergies
E,« for various sediment types using Hamilton absomptoefficients. For
the rough and coarse sediments 1<Mz<5 the enetwesare reflected from
water sediment interface has larger magnitude softer sediments. This is
because the reflection coeffcient of coarse sedisnare larger than soft
sediments. At deeper layers , the received eregjithe coearse sediments
decrease drastically due to the high atenuatioffaiests.
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Absorption coefficients

The initial absorption coefficient values of tall@) were no applicable at deep layers.
Therefore, a temporary modification was appliedr@nabsorption coefficients of the coarse sediments
by values shown in figure (79). This solution ireses the threshold limits between the different
sediment types, and decreases the influence ofseoro the reflection prediction. This solution was
acceptable for areal where the fine sediments aidecbarse sediments. For area4 the water-sediment
interface is composed of coarse sediments, whidnm#hat the modified absorption coefficients had

to be rest back to their initial values.
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Figure 79: Modified absorption coefficients.

Interference

The SES-2000 parametric system has the capabilityapping the intrabed layers with high
resolution. However, if the intrabed is composedanfie number layers, the corresponding intrabed
reflectors may generate interferences in the sig#d] causing attenuation losses [44] and may
degrade the absorption coefficient estimates ih lbo¢thods. Thus, to decrease the error component,
signal interference must be utilized in the aldoritto evaluate the effect of intrabed reflectiongiue

absorption estimates.
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Chapter 6
Conclusions and future work

In this thesis, methods were presented for sedirlassification using a high resolution sub
bottom profiler. The classification was devotedtuoficial and sub layers classification using hégid
low frequency dataset. This chapter gives the fomiclusion and recommendations concerning the

presented work.

6.1 Summary and Conclusions
A number of physics based models were implementeldiested to find out the capability of

sediment classification using a parametric subobotprofiler.

- High frequency observations

For the high frequency dataset, two physics basedets were tested based on the signal shape
‘SBES time domain model’ and signal strength 'Retfléty model’. The time dependent SBES model
was basically implemented for an SBES transducer raondified to operate with signals from a
parametric SBP ‘SES-2000" system. Although, SBRstechnically designed for mapping sub layers
structures, where the received echo contains littlermation about the sediment backscatter
characteristics, the model classification result®wed acceptable agreement with the general
description of the surveyed area. However, thesealte are difficult to achieve and need human
supervision as the raw data requires a considerableunt of signal processing before the

classification procedure. Two signal processingeaipare crucial to achieve these results:
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The raw signal contains information about sedinoiratracteristics but masked by noises such
as reverberations, and ambient noise, etc. Toiateethe noise effect, the raw data has to
pass through a band pass filter. To eliminate hieeneffects as much as possible without
changing the received echo shape, the band passhtiid can theoretically be set to the
transmitted signal characteristics or analyticdlly determining the noise spectral cutoff

limits.

For a particular survey line, the received echagy in shape and amplitude. Their stochastic
variation is relative to the sediment type ‘e.gft s2diments have low variation, and hard
sediments have high variation’. Therefore, stacking alignment techniques are essential to
eliminate these variations. The analysis of chagteshowed that minimum threshold
alignments are more practical with echoes thaeHaw variations ‘i.e. soft sediments’, and
peak or half peak thresholds are more practicah withoes that have a high degree of
variation ‘i.e. hard sediments’. Due to the systeamrow beam width, the analysis of chapter
4, and supported by conclusion of [8], showed tieatiation from these threshold values may

drastically degrade the classification results.

The second model infers the sediment types by gtiadi the reflection coefficients of the

received echoes. Reflectivity models are basedigmak strength in place of shapes. The results

showed good agreement without the complicationsal@jnment technigues of the first model.

However, the results of area 4 ‘rough surface’ Wilave the same consistency and contained major

fluctuations, which implies that 100Hz will not filll the assumption to neglect backscatter. In high

resolution seismic reflection the reflection cogffnt can be affected significantly by scattering do

boundary surface roughness [40he important aspect has to be considered to azhi@se results:

Since the source level is not known, a scale fastneeded to carry out the information of the
received echo. The scaling was successfully done @or the first three areas. The forth scale

factor ‘i.e. aread’ was excluded due its high véoia
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- Low frequency observations

The low frequency signal ‘15, 10 and 5 kHz’ is munbre complicated than the 100 kHz
signal and cannot be predicted by the SBES motleé received echo can be described by a series of
reflections at sub layer interfaces. Two energyetasodel was implemented that accounts for sound
propagation into sediment layers. The first modébris the reflection coefficients sequentially from
the time domain. The second model infers the rafiecoefficients as if they were surficial sedingen
by compensating for absorption and other lossesath layer as function of frequency. In general,
although no core samples were available to evalileesults, the predicted reflections of thet firs
model shows the distinctive layer boundaries sintitathe original plots of the original dataset.eTh
second model didn’t show distinct improvement whigHikely due to the narrow bandwidth of the
transmitted signal. The quality of the first mode#tms from the fact that the reflection coefficgeate
computed sequentially after estimating the geodimpsrameters of the previous layer, while in the
second method, the reflection coefficients arevestied from one assumed input; average geoacoustic

parameters expected at the classification area.

The conclusions that can be drawn from the loguemcy analysis are:

» The algorithm of the first reflection model is vesgnsitive to the presence of errors.
The errors might appear from absorption factors Hra deviated from the true
value, or even misclassified layers. These errrrsaaceptable at the first couple of
layers, and increases drastically by increasingldlyer index. This issue is not a
problem in the second model since reflection comparts are not executed in a

sequential order.

» Resolution is a crucial issue for the first modelow resolution is used ‘i.e. large
sample window’, the reflection predictions will bmaccurate, by missing
intermediate layers. This inaccuracy will behaveaaserror which will propagate
within the second iteration and will influence theflection predictions of the
following sample windows. Therefore, a proper sampindow has to be chosen to
capture the full reflected energy from the desles@r and without overlapping with

secondary reflections.
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Overlapping sample window is an attractive appro@cicompromise between the
required window size and desired resolution. Ticanaue effectively enhanced the

reflection results and the rate of the propagateat®

Theoretically, the first model cannot be useddeep layers, due to its attenuation
extremes that increase by increasing the numbgermations. Basically, the amount
of energy reflected from different sediment typedeep layers becomes very small,

and cannot be distinguished.

The assumption of [27] that the total energy ‘ireceived energy’ equals the
received energy is not correct. This is becauseesafinthe energy will penetrate and
never return back to the transducer. Thereforestiae factor is important for the

implemented method as well.
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6.2 Recommendations

SBES model (High frequency)

It can be concluded that energy models (i.e. nodeht estimates the sediment type via
energy ratios) using high frequency signals arepkmthan SBES models (i.e. models that estimates
the sediment type via matching the modeled and medsenvelopes). The difficulties of using the
SBES model, tends from transducer narrow openinglearwhich means that a large part of
information (i.e. reflections and backscatters) &wst. Consequently, the envelope shapes that
correspond to the various sediment types will rotdistinctive enough to distinguish between their

types.

However the SBES model can be improved in threesway

« The modeled signal assumes that the transmittedalsic a Gaussian shape which is
considered a rough estimate of the true nonlinedsepshape. The true pulse shape in this
case is the nonlinear pulse that interacts at wsgdiment interface. Implementing the true
signal shape will influence the energy distributiointhe received echo, and better matches
can be achieved.

* Second, the true source level can be included énntiodel to eliminate the need of scale
factor. This can be achieved by calibrating thegdaicer in order to gain information about
the true source level for each frequency during shevey operation. This aspect is also

important for the energy model as well.
* In cases where the shape matching is difficult, améd test to match signal features in place

of signal shapes such as signal amplitudes, siprattion, etc. These parameters will be less

affected by the external noises and might be mffi@ent in the matching procedure.
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Energy model (High frequency)

The energy model showed acceptable results foicglrtlassification except for area 4.
Theoretically, the reflected energies from the sdahre a composite of reflections and scattering
processes. Their influence contributes to the t@tedived energy and cannot be separated pragticall
The energy models that were implemented in chdpteid not account for the backscatter process,
which means, that their prediction will be suffitienly at areas where sediment types are dominated
by reflections (e.g. mud, clay, sand) rather thackbcatters such as with area 1,2 and 3. In oader t
achieve better results at area 4, it is recommetéuclude the influence of the backscatter preces

so the received energies can be correctly compehsat

Energy model (Low frequency)

The result of the low frequency analysis leadshi awareness that the used models are not perfect.
From the theoretical and practical investigatiohshis project, the sub-bottom reflectivity modelnc

be significantly improved in the following areas:

» Reflectivity model: the results in chapter 5 showkdt the iterative algorithm was highly
influenced by the appearance of errors and thepagation. These errors can be described by
the transducer accuracy and physical processesméra not accounted within the model.
Therefore, the implemented model needs to be cdewli@ the area of errors in practical

situations and additional physical processes ssdigmal interferences and backscatters.

» Reflectivity algorithms: In order to eliminate tlegror propagation of the first model, the

algorithm has to insure to limit its iteration t@pecific error ratio.

» Conversions to mean grain size have to be donatiitely because both methods give the

reflection coefficient between two subsequent sedinfayers.
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