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Abstract The purpose of this paper is to demonstrate
the effect of geophysical background model errors that
affects temporal gravity solutions provided by the
Gravity Recovery And Climate Experiment (GRACE).
Initial performance estimates by Dickey et al. (1997)
suggested a formal geoid RMS error better than 0.1 mm
up to spherical harmonic degree 5. Now that the
GRACE gravity models and data are available, it is evi-
dent that these original expectations were too optimis-
tic. Our hypothesis is that this is partially explained by
errors in geophysical background models that need to
be applied in the GRACE data reduction, and that this
effect was not considered by Dickey et al. (1997). We
discuss the results of a closed-loop simulation, where
satellite trajectory prediction software is used for the
generation of GRACE range-rate data and GRACE
orbit solutions with the help of the Global Positioning
System (GPS). During the recovery step in our closed-
loop simulation, we show that simulated nuisance sig-
nals (based on tide and air pressure model differences)
map to a 0.7 mm geoid effect for periods longer than
3 months and to less than 0.4 mm for periods shorter
than 3 months. The long-period geoid hydrology signal
is at a level of 4.5 mm, while the short-period hydrol-
ogy is at 0.25 mm. The long-period ocean bottom pres-
sure (OBP) signal maps at 0.8 mm and for short periods
it is 0.4 mm. We conclude that short-period effects are
difficult to observe by GRACE and that long-period
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effects, like hydrology, are easier to recover than OBP
variations.
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1 Introduction

The Gravity Recovery And Climate Experiment
(GRACE) mission, launched on 17 March 2002, consists
of two satellites that fly in tandem, where inter-satellite
distances are observed. The measurements are used to
solve for separate potential coefficient sets on a monthly
interval, where the eventual scientific interest goes to the
recovery of mass variations at the surface of the Earth;
see also Tapley et al. (2005). In Tapley et al. (2004b), it
is demonstrated that the GRACE system saw a 10 cm
annual variation in the equivalent water height over the
Amazon river basin.

In order to reduce geoid errors and to focus on specific
regional signals, Swenson and Wahr (2002) suggested a
post-processing procedure that applies to the monthly
geoid solutions currently provided by the Center of
Space Research (CSR) at the University of Texas in Aus-
tin, USA, and the Geo-Forschungs Zentrum (GFZ) in
Potsdam, Germany. The method discussed by Swenson
and Wahr (2002) suggests a spatial averaging operator
over a region of interest. Their method combines local
information over a sufficiently large region in an attempt
to reduce the GRACE geoid errors. Furthermore, the
tendency in Tapley et al. (2004b) is to focus on annual
signals in the resulting geoid maps, which is another way
of suppressing the inherent noise in monthly geoid maps.



68 E. J. O. Schrama, P. N. A. M. Visser

The motivation for writing this paper is to quantify
the GRACE monthly geoid errors that seem to partially
appear as a North–South striping phenomenon in all
solutions provided by CSR and GFZ. Our approach is
an extension of the closed-loop simulation introduced
by Visser and Schrama (2004), where the method now
includes a post-processing residual analysis method that
is described in this paper.

In Sect. 2, we start with a description of methods that
were used in this paper. The closed-loop method enables
us to simulate both geoid signals and errors and this
enables us to quantify the capability of a GRACE sys-
tem to retrieve a known signal in the presence of both
measurement and background correction model noise;
see also Velicogna et al. (2001) and Han et al. (2004).

The closed-loop simulation is a two-step procedure.
In its first stage, a simulation data set is generated with
the help of GEODYN orbit determination and param-
eter estimation software (Pavlis et al. 1999). GEODYN
adjusts initial state vector differences of a computed
orbit based upon simulated Global Positioning System
(GPS) and GRACE low–low satellite-to-satellite (SST)
tracking observations (referred to as the GRACE K/Ka-
band ranging system (KBR) observations).

New in this paper is a post-processing analysis method
of GPS and KBR measurement residuals from which
we recover monthly GRACE geoids. In Sect. 3, we dis-
cuss the observability of hydrology and ocean bottom
pressure (OBP), which are considered to be signals of
scientific interest. Background model errors are simu-
lated as ocean tide and atmosphere pressure differences.
Conclusions of our closed-loop experiment and post-
processing method are discussed in Sect. 4.

2 Method

A primary observable of the GRACE system is the inter-
satellite range variation between two spacecraft sep-
arated by approximately 220 km and flying at 430 km
altitude at the beginning of its mission. Both satellites
carry a GPS receiver and we assume that there are sep-
arate methods, such as those described by Švehla (2005)
and Švehla and Rothacher (2005), that allow one to ob-
tain a trajectory with an accuracy of about 3 cm RMS rel-
ative to the International Terrestrial Reference Frame
(ITRF). Furthermore, there are accelerometers on both
spacecraft, which measure the skin acceleration on the
spacecraft as a result of non-conservative forcing. This
technique has been implemented on both Challenging
Minisatellite Payload [CHAMP; launched on 15 July
2000 (Reigber et al. 2005b)] and GRACE (Tapley et al.
2004a).

The closed-loop experiment concept was introduced
in Visser and Schrama (2004), where the orbits of both
GRACE satellites are dynamically modeled with pre-
cision orbit determination (POD) software developed
and maintained by the Space Geodesy Branch at the
Goddard Space Flight Center in Greenbelt, MD, USA,
(Pavlis et al. 1999). For the scope of this paper, we con-
centrate only on the modeling of conservative accel-
erations as a result of gravity, ocean tides, hydrology
or OBP acting on the satellites, which is an assumption
that avoids us from investigating the colored-noise char-
acteristics of space-borne accelerometers.

Our hypothesis is that gravity field information should
come from the differences between the GPS-derived
positions of the spacecraft’s centers of mass and a
dynamical orbit computed with the help of POD soft-
ware. The same is true for range-residuals between both
GRACE satellites, which follow from the dynamical or-
bits and the observed inter-satellite ranges.

In Sect. 2.1, we repeat the main steps in the POD pro-
cedure as it is implemented in GEODYN; in Sects. 2.2
and 2.3, we discuss a residual post-processing analysis to
yield improvements in either accelerations or the geo-
potential along the GRACE flight-path.

2.1 Orbit prediction and parameter estimation

Orbit prediction concerns all steps required to predict
inertial positions and velocities of a satellite starting
from an initial state vector and a priori dynamical mod-
els that are part of the equations of motion. In this con-
text, parameter estimation is concerned with an estima-
tion procedure to yield small improvements in either
the initial state vector or components of the dynamical
models that were used. There are several textbooks that
describe both procedures (e.g. Seeber 1993), where it is
explained that the motion of the satellite follows from:

ẍ(t) = ∇U(x(t)) +
∑

i

f i(x(t), t), (1)

where x(t) is a position vector in an inertial reference
frame at time t, while U is the geopotential function
and f i are acceleration models for modeling atmospheric
drag, the gradient of the tide-generating potential, solid
Earth tides, ocean tides, solar radiation pressure, rela-
tivistic corrections to the equations of motion, etc. De-
tails of the numerical procedure to compute orbit are
described in Seeber (1993) and Montenbruck and Gill
(2000).

GEODYN is capable of predicting state vectors of
both GRACE satellites and derived information ahead
of time. A desired property is that changes in this pre-
dicted configuration can be related to variations in either
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the dynamical models [either in U or in f i in Eq. (1)] or
the initial state vector (either y(t0) or briefly y0).

There are several possibilities to implement such pro-
cedures. A generic method recommended by Press et al.
(1989) is the shooting method for ordinary differential
equations. This avoids one from implementing addi-
tional software and allows focus on the prediction prob-
lem. A drawback of this generic procedure is the
efficiency of the method. For the sake of efficiency, most
POD software, therefore, also contains separate differ-
ential equations, where small variations in the state vec-
tor at an epoch t can be related to variations in either the
initial state vector or variations in parameters contained
within the dynamical models used.

The variational equations for an arbitrary dynami-
cal parameter βk (index k is used to identify one single
dynamical parameter within a larger set) are:

∂ ẍ(t)
∂βk

= ∂∇U(x(t))
∂βk

+
∑

i

∂f i(x(t), t)
∂βk

. (2)

The conclusion is that a total of 6 × K additional var-
iational equations must be solved ∀k ∈ [1, K]. Modern
POD software, like GEODYN, comes with all neces-
sary options to compute variational equations for well-
known parameters within dynamical models and the
variational equations that apply to the initial state vec-
tor problem. A special condition is the initial integration
condition of Eq. (2), which depends on the type of βk.

The application of Eq. (2) usually depends on the type
of problem that is treated. In most cases, this system is
evaluated for initial state vector variations, Cd param-
eters within an atmospheric density model, Cr param-
eters in solar radiation pressure models, and empirical
dynamical accelerations in the across-track, along-track
and radial directions, which model constant or once-
per-revolution orbital dynamics that are inadequately
represented with a priori dynamical models in Eq. (1).

After numerical integration of the variational equa-
tions, we get partial derivatives of the “orbit dynamics”,
which are not yet suited for observation types that we
employ for POD. For this purpose, partial derivatives
obtained from Eq. (2) are transformed into equivalent
derivatives that apply to such observation types. (This
step involves the generation of partial derivatives from
the observations at a provided epoch to the relevant
state vector partials that relate to the βk parameters
defined for the problem.)

Once the observation equations are formed, a cost
function is minimized in the least-squares sense. The
least-squares estimation procedure considers all param-
eters that need to be estimated. Typically, these are the
dynamical parameters βk, as discussed above, but also

station coordinate improvements, time bias estimates,
tropospheric biases, etc. For details, see Pavlis et al.
(1999).

The efficiency of the GEODYN POD method be-
comes one of the concerns for processing GRACE data.
With K dynamical parameters, the integrator must treat
6 × (K + 1) equations, whereas the evaluation of Eq. (1)
contains the term ∇U that is normally computed with
a spherical harmonic expansion up to degree and order
Nmax; for details, see Heiskanen and Moritz (1967).

In Tapley et al. (2004a), we find Nmax = 160, which
means that the evaluation of Eqs. (1) and (2) requires
operations of the order of α × N × (6 + β + N2

max),
where α depends on the implementation of the numer-
ical integration procedure, β depends on the number
of modeled satellite-specific parameters, in which it is
assumed that only the geopotential coefficients within
U are considered as dynamical parameters, and N the
number of steps at which the variational equations are
computed. The conclusion is that the GEODYN POD
procedure becomes computationally intensive when it is
desired to form the full observation equations of a new
gravity model.

To solve the resulting system of normal equations,
a least-squares method minimizes the misfits between
the observation data and the dynamical orbit solution,
where we remark that standard Cholesky decomposi-
tion requires of the order of P3 operations, where P
is the number of parameters involved. Another costly
step is the assembly step of the normal equations; about
P2 × N operations are required to compute the normal
matrix, and roughly P × N operations are required for
the right-hand side of the system of normal equations
that follows from the least-squares method.

The GEODYN POD method was used by Visser and
Schrama (2004) in a closed-loop simulation of 1 year
of GRACE data. In principle, their simulated GRACE
data set consists of 366 daily arcs for both GRACE sat-
ellites, where the GPS input is simulated through pre-
dicted inertial coordinates and the KBR input as an
inter-satellite range observation. Adjusted in their sim-
ulation are initial state vectors of both GRACE satellites
and normal equations are formed on a daily interval.

2.2 GPS residual analysis

In this section, we present a post-processing approach
for the direct estimation of an empirical acceleration
model of a satellite tracked by GPS. This method as-
sumes that the orbit is determined in advance by means
of kinematic or reduced dynamic orbit determination
technique, and that the resulting state vectors are pro-
vided as in Švehla (2005), Švehla and Rothacher (2005)
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and van den IJssel and Visser (2003). The problem is
now that the kinematic GPS satellite flight-path is not
perfectly described by a priori dynamical models during
orbit prediction.

In the following, we will derive the complete spectrum
of perturbing accelerations by an alternative method
that directly acts on the residuals obtained in the first
step. If we label our “computed” orbit with subscript
“c” then:

ẍc(t) = ∇U(xc(t)) +
∑

i

f i(xc(t), t), (3)

and if there is an “observed” orbit, which is the GPS-
observed path flown by the satellite that we label with
subscript “o”:

ẍo(t) = ∇(U + T)(xo(t))

+
∑

i

(
f i(xo(t), t) + �f i(xo(t), t)

)
(4)

(with T representing the disturbing geopotential) and
if we assume that �x(t) = xo(t) − xc(t) is observed by
GPS, and that non-conservative accelerations f i do not
depend too heavily on displacements contained in �x(t),
then:

�ẍ(t)−�(xc(t))�x(t)=∇T(xc(t))+
∑

i

�f i(xc(t), t), (5)

where �() contains the second-order derivatives of the
reference geopotential at xc(t). Equation (4) closely
resembles the Hill equations as discussed in, e.g.,
Schrama (1992), and it offers a direct alternative for
the computation of variational equations to estimate
the missing accelerations in a dynamical model.

To estimate the missing accelerations F(t) along a
computed orbit, we should evaluate:

�ẍ(t) − �(xc(t))�x(t) = F(t). (6)

The right-hand side of Eq. (6) contains the sum of all
accelerations that were missing in the a priori dynam-
ics used to predict the orbit. In the next section, we
will introduce a delta model improvement (DMI) pro-
cedure, where we estimate the right-hand side of Eq. (5)
from input contained in �x(t).

2.2.1 CHAMP GPS residual analysis

To demonstrate the capabilities of the DMI procedure,
we compute and validate an empirical acceleration
model. We start with GPS kinematic and GPS reduced
dynamic orbits for CHAMP, which were provided,
respectively, by D. Švehla (personal communication)
and J. van den IJssel (personal communication). De-
tails of both procedures can be found in Švehla (2005),

Švehla and Rothacher (2005) and van den IJssel and
Visser (2003).

Kinematic orbits as provided D. Švehla (personal
communication) rely on the assumption that there is
no dynamic behavior of the CHAMP satellite; CHAMP
is treated as a roving receiver. Reduced dynamic or-
bits as provided by J. van den IJssel (personal commu-
nication) do assume “some” dynamics in the form of
piecewise 900 s empirical accelerations. In both cases,
the provided state vectors are corrected to the center of
mass of CHAMP with the help of quaternion informa-
tion provided by the CHAMP team at the GFZ.

Our goal is not to solve for a new gravity model from
CHAMP GPS data; this is discussed by, e.g., Gerlach
et al. (2003) and Ditmar et al. (2006). Instead, we want to
quantify the accelerations required to correct our a pri-
ori model to fit the provided CHAMP orbits by a series
of acceleration corrections derived from Eq. (6). In this
case, our starting point is the GGM01S model developed
at CSR (Tapley et al. 2004a). For the remaining terms, we
follow the IERS standards (McCarthy and Petit 2003)
to formulate third-body gravitational effects, solid Earth
tides, relativistic perturbations and an ocean tide model.

Our initial dynamical model does not contain any
assumption with regard to the modeling of atmospheric
drag or solar radiation pressure. Instead, we compute
daily arcs where a constant and once-per-revolution
acceleration model and an initial state vector correction
are estimated. A generalized inverse technique based
upon singular value decomposition is used to locate the
minimum of the least-squares norm (Press et al. 1989).

Furthermore, the dynamic orbit is corrected by a
time-series of acceleration corrections that is derived
from Eq. (6). In the first iteration, we do not allow such
corrections. In the second iteration, residual accelera-
tions �ẍ(t) are computed with the help of a fast Fourier
transformation (FFT) and a low-pass filter up to four
cycles per orbital period (cpr), with a linear damping
up to 8 cpr. (CHAMP state vectors were provided every
30 s.)

Equation (6) yields a direct estimate of the residual
accelerations, and the obtained acceleration improve-
ments are then used in the next iteration, where we fit
our corrected dynamic orbit to the originally provided
input orbits. This procedure is repeated twice. Radial
orbit difference seen after iterations 2 and 3 are shown
in Fig. 1. The length of the acceleration vector computed
after the iterations 1 and 2 are shown in Fig. 2.

The conclusion from Figs. 1 and 2 is that the DMI
procedure allows one to find purely dynamic orbit solu-
tions that reproduce the GPS tracking data to be within
1–2 cm in all components. It should be remarked that
along-track differences are systematically larger than
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Fig. 1 Radial orbit differences during the DMI procedure. We
show the radial perturbations after the second and third itera-
tions, which are smaller than 5 cm. Input to this procedure are the
reduced dynamic state vector files provided by van den IJssel and
Visser (2003) for CHAMP. The horizontal axis shows the time
in hours relative to 1 January 2004 21:01:53 UTC. The vertical
axis shows the perturbation effect (in cm) of the computed orbit
relative to the provided input state vector file
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Fig. 2 The length of the acceleration vector by epoch estimated by
the DMI procedure after the first and second iterations. Input are
the differences between the provided input orbit and our dynamic
orbits. The horizontal axis shows the time in hours relative to 1
January 2004 21:01:53 UTC. The vertical axis shows the accelera-
tion effect (in nm/s2) applied as a correction in the orbit determi-
nation software

radial or cross-track differences, which is expected from
unmodeled accelerations affecting the orbit prediction
problem; also see Seeber (1993) and Montenbruck and
Gill (2000).

For the reduced dynamic orbit, we found for the
result shown in Fig. 1 a cross/radial/along-track RMS
of 0.0649 m/0.4383 m/4.4843 m before the DMI proce-
dure was applied, and after the second iteration we
obtained 0.0048 m/0.0102 m/0.0128 m, where the first and
last hours were omitted from the statistics due to edge
effects. (Edge effects are characteristic for POD
(Montenbruck and Gill 2000) and not necessarily related
to the use of FFTs.) Similar results were obtained with
the kinematic orbits provided by D. Švehla, although it
should be mentioned that kinematic orbits are noisier,
and that this is responsible for spikes in the residual
acceleration spectrum.

We will not provide any further interpretation on
the solved-for acceleration vector time-series, except
to mention that the DMI procedure allows one to sig-
nificantly improve orbit dynamics for satellites that are
continuously tracked with GPS. The combination of con-
stant and once-per-revolution accelerations and a spec-
trum of residual accelerations up to 4 cpr with a linear
damping up to 8 cpr is, according to Fig. 1, sufficient for
describing the CHAMP center of mass to be within the
GPS-derived orbit accuracy, which is claimed to be at
the 3 cm level for CHAMP (van den IJssel and Visser
2003).

In Fig. 2, the solved-for accelerations are usually less
than 500 nm/s2, which includes a variety of unmodeled
effects that originate from radiation pressure and atmo-
spheric drag-induced accelerations on CHAMP. In the
second iteration of the DMI procedure, we find accelera-
tions on the level of 10 nm/s2 that correspond, according
to Eq. (6), to a maximal displacement of 3.3 mm.

A preliminary conclusion is that the obtained DMI
spectra are probably hard to apply to temporal gravity
research, essentially because the obtained accelerations
are relatively noisy compared to the magnitude of the
accelerations introduced by the hydrology signal. More
details on this issue will be presented in Sect. 2.2.2.

Our initial set-up was such that we only incorpo-
rate gravitational forcing (in this case the GGM01S
model) and third-body accelerations and a solid Earth
and ocean tide model; also see McCarthy and Petit
(2003). To separate non-conservative and conservative
accelerations from the obtained DMI spectra, one could
either attempt to incorporate non-conservative models
as in the GEODYN POD approach; see Pavlis et al.
(1999). An alternative could be to employ the accel-
erometer of CHAMP, several examples are shown in
Reigber et al. (2005a).

As far as efficiency is concerned, the DMI procedure
is easier to implement than the GEODYN
approach because the POD software only requires “for-
ward” dynamics including a few variational equations
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for initial state vector and a generalized 1 cpr and con-
stant accelerations. (A day of CHAMP data as shown
in the previous example requires no more than 120 s of
computer time.) The main benefit is that the DMI pro-
cedure does not require any further assumptions on the
parameterization of the missing dynamics.

A potential drawback is that the DMI procedure does
not help in specifying the origin of the missing acceler-
ations. Furthermore, it does not help to specify whether
residual spacecraft GPS antenna eccentricities are to
blame for a part of the solved-for acceleration signal.
Finally, any other GPS-specific error such as a coordi-
nate frame discrepancy between the frame used for the
input orbit and the frame assumed in the orbit software
is absorbed in the DMI acceleration spectrum.

2.2.2 Hydrology signal in acceleration spectrum

Figure 3 shows the hydrology signal represented as a
radial acceleration at satellite altitude as seen in the first
30 days by GRACE-1 in the simulation data set that was
used by Visser and Schrama (2004). In this case, we show
a map of the radial accelerations obtained by application
of the DMI procedure discussed in Sect. 2.2. To project
the accelerations, we used utilities available from the
generic mapping tools (GMT) (Wessel and Smith 1996);
that is, minimum curvature smoothing and unweighted
averaging in 1 × 1 degree cells.

The only purpose is to show that the accelerations
introduced by the hydrology signal at satellite altitude
are on the level of 10 nm/s2, which is in our opinion very
challenging compared to the noise level of the GRACE
GPS orbits themselves, which are on the order of 30 mm
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Fig. 3 Radial accelerations at satellite altitude as recovered from
the first month in the GRACE simulation data set. The acceler-
ation units are represented in nm/s2, and they follow from the
hydrology model used in the GRACE simulation

RMS. Effectively 10 nm/s2 radially translates to a ver-
tical displacement of 3.3 mm, see also Eq. 6 where � is
multiplied by the �x(t). The conclusion is that the GPS
system in its current form is about a factor 10, too noisy
to allow it to see the hydrology signal as it was described
by, e.g., Tapley et al. (2004a).

2.3 Inter-satellite range residual analysis

Results that we obtained from the closed-loop imple-
mentation that rely on GEODYN were explained in
Visser and Schrama (2004), where initial state vector
and geopotential coefficients up to degree and order 20
were solved for. Here, we assume that the KBR data
becomes available as a velocity residual, and that this
residual is the result of fitting an orbit solution to the
observed GPS and KBR observation data.

In our case, we assume during the post-processing
of the KBR residuals that the sum of the total residual
energy is conserved for a satellite that is moving through
a conservative force field, so that v�v = �U. If we fol-
low the “KBR dot approach” in Jekeli (1999), Ray et al.
(2003) and Rowlands et al. (2005) then:

v0(�v2 − �v1) = �U2 − �U1 (7)

where v0 is the reference velocity of the GRACE inter-
satellite baseline, �v1 and �v2 are variations in the
velocity in the sense that they are observed by the KBR
relative to computed values that follow from the POD
software. The same is true for the variations in the poten-
tial �U1 and �U2 that hold for GRACE-1 and GRACE-
2; these are values in the sense of “observed minus
computed”.

Our experience is that the differences in the poten-
tial must be corrected for additional model effects. An
example of this effect is shown in Fig. 4, which follows
from the right-hand side of Eq. (7). In Fig. 4, the po-
tential difference is plotted as a function of time along
1 day in the simulated GRACE data set. In this case,
the potential differences in this function do represent
the effect of an unmodeled hydrology signal, i.e., the
observed minus computed signal in the simulation set-
up refers to a situation where the “reference” GRACE
orbits do not contain a hydrology effect, whereas the
“truth” GRACE orbits do follow a hydrology effect.

A change in the potential on the right-hand side of
Eq. (7) may also be the result of a geometric displace-
ment effect that should be taken into account and that
is unrelated to the presence of hydrology. This geomet-
ric correction was not mentioned by Jekeli (1999), Ray
et al. (2003) or Rowlands et al. (2005), and we decided
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Fig. 4 Evolution of the right-hand side of Eq. (7) with and with-
out the correction terms [C1, C2 and D in Eq. (8)]. The horizontal
axis is in hours relative to 1 January 2004 in the GRACE hydrology
simulation set. The upper line (displaced by +0.005 m2/s2) is the
left-hand side in Eq. (8), the center line is the geometric correction
term C1 − C2, and the lower line (displaced by −0.005 m2/s2) is
the evolution of the �U2 − �U1 corrected for geometric effects

to implement it in Eq. (7) as:

v0(�v2 − �v1) = �U2 − �U1 + C2 − C1 + D + e (8)

C1 = (g1, �y1) (9)

C2 = (g2, �y2) (10)

with g1 and g2 being the gravitational acceleration eval-
uated at GRACE-1 and GRACE-2, and where �y1 and
�y2 are orbit perturbations.

In a real-world situation, the presence of C1 and C2
is significant and effort must go into an accurate relative
orbit determination of the KBR baseline vector. With
σKBR = 10−6 m/s s1/2 and v0 ≈ 7, 500 m/s, we find from
Eq. (8) σ�U = 10−2 m2/s2 s1/2, which is equivalent to a
relative orbit error of about 1 mm as is claimed by Kroes
et al. (2005).

Another term in Eq. (8) is:

D = a1 cos(γ1) + a2 cos(γ2) (11)

where γ1 and γ2 denote small misalignment angles be-
tween the KBR baseline and both GRACE velocity vec-
tors (γ1 and γ2 are about 0.1◦ and depend on argument
of latitude). The variables a1 and a2 are estimated on
a daily basis with a separate least-squares filter applied
during a pre-processing step and this is outside the scope
of the least-squares adjustment that takes care of deter-
mining potential coefficients on a monthly basis.

After the pre-processing step (a detrending method),
we see that the residual orbit effect is reduced as is
shown in Fig. (4). Our experience is that the detrending

procedure as described above reduces the “trackiness”
in the temporal geoid maps, which is a benefit of our
procedure. So far the method discussed here results in a
residual geopotential (�U2 −�U1) that is corrected for
unwanted geometric effects.

After the detrending procedure, we obtain estimates
for �U2 − �U1 along the trajectories of both GRACE
satellites, which is a measurement of the difference be-
tween the observed and the computed disturbance po-
tential between GRACE-1 and GRACE-2. Our next
goal is to obtain maps of the geoid which requires a
least-squares procedure to invert this type of data. The
observation equations are easily derived with the help
of Heiskanen and Moritz (1967):

�U2 − �U1 =
Nmax∑

n=2

n∑

m=0

1∑

a=0

× g−1Cnma

(
ae

r2

)n+1

Ynma(φ2, λ2)

− g−1Cnma

(
ae

r1

)n+1

Ynma(φ1, λ1), (12)

where Cnma are fully normalized potential coefficients,
fully normalized spherical harmonics are indicated by
Ynma, g is the gravity acceleration at the Earth’s sur-
face with mean equatorial radius ae and r1, φ1, λ1 and
r2, φ2, λ2 are the spherical polar coordinates of both
GRACE satellites.

Within the closed-loop simulation and for runs that
involve hydrology, air pressure or OBP variations, we
determined the potential coefficients of the disturbing
potential Cnma in Eq. (12) to degree Nmax = 40 with
the help of a standard least-squares estimation proce-
dure. We have selected Nmax at twice the value used for
the generation of the input fields which are based on a
degree-20 spherical harmonic expansion. For our simu-
lation involving ocean tides, we decided to raise Nmax to
50 in Eq. (12), while the input fields were also generated
at the same Nmax.

The preferred method for this problem is a straight-
forward set-up of the normal equations that follow. We
did not invest time in setting up fast or efficient least-
squares methods since the amount of work can be
handled within a day or two with a modern personal
computer (PC) or workstation. Suitable a priori vari-
ance models are a latitude-weighted scheme, where the
observation variance σ 2

o and parameter variance σ 2
p are

chosen as:

σ 2
o = a2

a0 cos φ + a1
(13)

σ 2
p = a3

n2 . (14)
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Separate tests have shown that a0 = 1, a1 = 10−3,
a2 = 10−3 and a3 = 10−3 result in a tractable inversion
scheme. The least-squares inversion is conducted over a
period of 30 days, it involves ≈126, 000 observations and
about 1,681 or 2,601 parameters depending on whether
we take Nmax = 40 or Nmax = 50. The construction and
inversion of the resulting normal matrices take about
72 min and 140 min, respectively, on a modern PC for
the discussed cases for monthly observation batches.
Our post-processing method is systematically applied
in Sect. 3 to compute changes in the geoid based on sim-
ulated geophysical signals in the GRACE closed-loop
computation.

3 Results

In Sect. 2.1, we explained how existing POD techniques,
like those implemented in the GEODYN software
(Pavlis et al. 1999) can be used to process the GRACE
data. For the closed-loop simulation results discussed
here, two observation types were defined: one concerns
the GPS orbit residuals of GRACE-1 and GRACE-2,
and the second the inter-satellite range-rate residuals
measured by the KBR on GRACE.

The simulated GRACE data set mentioned in Visser
and Schrama (2004) has a length of 1 year, and consists
of two satellites with a baseline orbit as for the GRACE
configuration. For simplicity, we considered only conser-
vative forces due to the Earth’s gravity field, third-body
accelerations and ocean tides. In total, we computed
366 daily arcs. The reference configuration starts on 1
January 2004 at a mean orbit altitude of 429 km relative
to a sphere with a radius 6, 378, 137 m.

During the data reduction runs, GEODYN is used to
adjust the initial state vector. This program solves the
variational problem that follows from Eq. (2) for the
above-discussed configuration of satellites and observ-
ables. The low–low SST observations are 30 s integrated
Doppler with an observation sigma of 1 µm s1/2. The
space-borne GPS observations are simulated at 2 min
intervals as a coordinate observation type with an a pri-
ori sigma of 1 cm. (The value of 1 cm is required to stabi-
lize the normal equations, which become singular when
low–low SST-only observations are used.)

The simulated observations themselves are assumed
to be free of observation noise, and the abovementioned
sigma’s are only relevant for weighing their relative var-
iance in the least-squares adjustment. (This procedure
is in essence a regularization method). For the closed-
loop simulation, a “computed” configuration is identi-
cal to a case where a reference model is used during
orbit prediction while an “observed” configuration is

identical to the application of a “truth” model. Here,
the GEODYN data reduction runs attempt to minimize
observation residuals by tuning initial state vectors. This
procedure results in daily files where the output con-
sists of: (1) observed minus computed orbit residuals
for both GRACE satellites and (2) and observed minus
computed values for the velocity residual �v along the
KBR baseline.

New in this paper is that the geoid maps are computed
from the simulated orbit residuals and KBR velocity
residuals, which are input to a post-processing technique
that is based upon the theory explained in Sect. 2.3. With
the help of a least-squares estimator, we then compute
a best-fitting potential �U that is downward-continued
to a sphere with radius ae. A separate issue during the
computation of the monthly geoid maps is that we incor-
porate a 5◦ block averaging parameter to further reduce
striping effects. This spatial filter is separate from the
least-squares estimator, and it applies when the spheri-
cal harmonic coefficients are converted into 1×1 degree
geoid grids.

In total, we acquire 12 monthly maps that, in turn,
are input to a separate signal analysis procedure where
each grid node is processed separately into a short- and
a long-periodic part. Based upon the length of the sim-
ulation data set and the fact that monthly geoids were
computed, we define the threshold to be 3 months. The
rationale is that any temporal geoid signal at a period
shorter than 3 months resembles the short-periodic fluc-
tuations of the geoid signal; also see Thompson et al.
(2004). The long-periodic fluctuations indicates how
geoid signals map to periods greater or equal to 3 months.

The above-described procedure is applied to four sep-
arate simulations discussed in the following sub-sections.

3.1 Hydrology

In Fig. 5, we show the recovered long-period geoid RMS
as a result of continental model hydrology. In this case,
the truth model is based upon the hydrology model
developed by Fan and van den Dool (2005) (relative
to the year 2000), while the reference data set does not
contain a hydrologic signal. The residual geoid effects
are modeled up to Nmax = 40, which is twice the value
used for the input hydrology data set that was developed
in spherical harmonics up to Nmax = 20.

The conclusion from this calculation is that we are
able to detect the main structures from the continen-
tal hydrologic signal by comparing it to the used model
hydrology (not shown here). We conclude that all known
dipoles are present in the recovered long periodic geoid
RMS. The remaining signal RMS that maps to shorter
periods is smaller than 0.5 mm RMS and it is shown in
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Fig. 5 Recovered long-periodic geoid RMS based upon the input
hydrology from Fan and van den Dool (2005); scale mm
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Fig. 6 Recovered short-periodic geoid RMS based upon the in-
put hydrology from Fan and van den Dool (2005); scale mm

Fig. 6. Here, we conclude that the short periodic hydrol-
ogy signal is substantially smaller.

Our current results are mostly free of striping effects,
which is only possible with a suitable choice of the a pri-
ori observation and parameter variance σ 2

o and σ 2
p as in

Eqs. (13) and (14) and the use of an exact solver for the
normal equations. The natural sensitivity of the GRACE
system is in the North–South direction. Our experience
is that over-weighting σo relative to σp results in the
striping pattern characteristic for the monthly GRACE
geoid maps. Another cause for stripes in monthly geoids
is the use of a block-diagonal solver that we initially used
in which case the correlations between different orders
m are ignored in the problem.

3.2 Air pressure

Our post-processing method applied to the closed-loop
simulation data set also offers the possibility to assess the

consequences of error structures typical for geophysical
background models. The rationale is that the GRACE
data processing groups apply such background models
to remove known gravitational effects caused by, for
instance, air pressure and ocean tide variations (Tapley
et al. 2004b).

For the air pressure part, we simulated this type of
error as the difference between the European Center
for Medium-Range Weather Forecasts (ECMWF) sur-
face pressure reanalysis model and the National Cen-
ters for Environmental Prediction (NCEP) reanalysis
surface pressure model. The former is provided with a
spatial resolution of 0.5◦ on 6 hourly grids, whereas the
latter is provided on daily grids with 2.5◦ spatial res-
olution. The assumption is that meteorological errors
are represented by differences between two well-known
models. In the closed-loop simulation, this means that
the ECMWF model is used as a reference model while
the NCEP reanalysis model is used as the truth.

The RMS of the recovered long-periodic geoid differ-
ence is shown in Fig. 7, while the short-periodic RMS is
shown in Fig. 8. The conclusion from this computation is
that the simulated surface air pressure errors do trans-
late into a geoid RMS of 0.5 mm at latitudes less than
70◦N or 70◦S, while larger variations (1.5 mm RMS) are
observed over the poles.

The short-periodic air pressure difference geoid RMS
is shown in Fig. 8. An unrealisticly large feature appears
over the South Pole and a smaller one over Greenland.
Apparently the ECMWF and the NCEP models differ
in these regions, which is probably due to the shortage of
polar meteorological observations and the data assimi-
lation strategy followed by the different analysis centers.
A possible remedy is to gather additional information,
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Fig. 7 Recovered long-periodic geoid RMS (in mm) based upon
difference between the NCEP reanalysis model and the ECMWF
air pressure model
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Fig. 8 Recovered short-periodic geoid RMS (in mm) based upon
difference between the NCEP reanalysis model and the ECMWF
model

for instance from GPS occultation profiles that yield
unique information about the vertical structure of the
refractive index, which offers the possibility to estimate
air pressure variations in the analyzed column.

3.3 Ocean tides

It was suggested by Schrama (2003) that ocean tide mod-
els may contain errors that affect geoid maps provided
by the GRACE system. Ocean tides are nowadays well
mapped by TOPEX/Poseidon (T/P) and Jason-1 satellite
altimetry. The accuracy of tides in the deep ocean is
usually better than 3 cm when all constituents are con-
sidered; for constituent M2 we find an RMS of about
1.5 cm, while other significant constituents such as K1,
S2 and O1 come with RMSs smaller than 1.0 cm in the
deep ocean areas. The mentioned RMS of fit of ocean
tide models is only warranted for latitudes within the
inclination range of the T/P altimeter system.

Tidal model errors increase in shallow seas because
the spatial structure of the tidal wave shortens while
the inter-track spacing of the satellite altimeter remains
the same. Also, the quality of satellite altimetry data is
affected by various factors in coastal and polar
regions such as spurious radar backscatter from land and
ice, and our inability to improve the altimeter sea-state
bias beyond a certain level. Furthermore, tide model
errors increase in polar regions because of the quality
of polar hydrodynamic models that rely on few in situ
observations, i.e., there is no T/P altimeter data (and
ERS-1/2 data is less accurate for observing ocean tides).
Compared to the open ocean, a tide model in polar
regions becomes more and more dependent on adequate
dynamical models that must include realistic spatial dis-
tributions of tidal drag. Alternatively, we are faced with
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Fig. 9 Recovered long-period geoid RMS (in mm) based upon
the difference between the FES99 and the GOT99.2 ocean tide
models

dedicated tide models that handle motions under ice
shelves.

For the closed-loop calculations, we investigate the
differences between the FES99 model (Lefèvre et al.
2002) and the GOT99.2 model (Ray 1999). The main
reason for selecting these models is that they are docu-
mented and that they rely on different processing strat-
egies. We selected the GOT99.2 ocean tide model in the
reference run, while the FES99 finite element model is
used as the truth in a GEODYN data reduction run.

One result from this simulation is the long-periodic
map of geoid differences due to ocean tide model errors
whose RMS is shown in Fig. 9, while the short-periodic
equivalent is shown in Fig. 10. From these computa-
tions, we conclude that the long-periodic geoid RMS is
approximately 0.5 mm, and that the short-periodic geoid
RMS is smaller than 0.2 mm, which makes it one of
the significant contributions to background tide model
errors.

The natural question arises whether it would be pos-
sible to estimate the ocean tide from the GRACE data.
One important issue would be the sampling of the tide
signal by the GRACE tandem mission, which was dis-
cussed in Ray et al. (2003). The main conclusion is that
GRACE was never optimized for being able to observe
this type of signal as it was done for the T/P mission for
tides. Nevertheless, there are advances in this area, such
as in Han et al. (2005), who have claimed to be able
to see an unmodeled ice shelf ocean tide effect in the
GRACE data.

3.4 Ocean bottom pressure

The last effect that we consider in this paper is the OBP
variation as predicted by the Estimating the Circulation
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Fig. 10 Recovered short-period geoid RMS (in mm) based upon
the difference between the FES99 and the GOT99.2 ocean tide
models

and Climate of the Ocean (ECCO) model. The ECCO
model is maintained by a consortium of the Jet Propul-
sion Laboratory (JPL), Massachusetts Institute of Tech-
nology (MIT) and Scripps Institution of Oceanography
(SIO); see Stammer et al. (1999). We have used the
OBP predicted by the ECCO model, which is mainly
the result of wind and atmospheric pressure forcing on
the model. In the simulation, the reference run does not
contain the effect, and in the GEODYN data reduction
run, the ECCO model is used as the truth.

Figures 11 and 12 display how the simulated OBP sig-
nal maps into long- and short-period geoid RMS. Both
maps appear to reflect extremes in the inverse barome-
ter (IB) response (Mathers and Woodworth 2001), which
occur at 100◦E/55◦S and 90◦W/55◦S. Furthermore, there
are several local excursions in coastal zones that seem
to be reasonable for a wind-driven ocean model.
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Fig. 11 Recovered long-period geoid RMS (in mm) based upon
the ECCO model ocean bottom pressure signal
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Fig. 12 Recovered short-period geoid RMS (in mm) based upon
the ECCO model ocean bottom pressure signal

Altogether, it must be concluded that the OBP signal
is about a factor 4 smaller than the hydrologic signal,
and that it is much harder to retrieve from the GRACE
data because of the presence of tide and atmospheric
pressure errors. The long-periodic features of the OBP
signal stand out, and this can help its recovery from the
GRACE data.

4 Conclusions and discussion

This paper discusses an assessment of the temporal geoid
accuracy that is obtained from the GRACE satellite mis-
sion. For the assessment, we constructed a GRACE sim-
ulation data set where the contribution to the long- and
short-periodic geoid RMS caused by air pressure errors,
ocean tide errors, continental hydrology and ocean bot-
tom pressure variations is simulated by models.

This paper is essentially a follow-up to the closed-loop
procedure introduced by Visser and Schrama (2004).
New in this paper is that we have chosen a combined
approach where GEODYN is used to generate a 1-
year GRACE simulation data set. New compared to the
approach of Visser and Schrama (2004) is that separate
“residual orbit” and KBR post-processing techniques
are used to estimate monthly geoids up to spherical har-
monic degree and order 40 or 50, depending on the
simulation case.

Input to the DMI procedure, introduced in Sect. 2.2,
are observed GPS positions relative to an a priori
dynamic orbit. We demonstrated a linear correction
model that relies on FFTs and spectral tapering tech-
niques to compute a perturbating acceleration series for
frequencies up to 4 cpr with a linear damping to 0 at 8 cpr.
This perturbation spectrum is computed offline from the
POD procedure. In subsequent iterations, we inserted
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DMI spectra in the POD procedure and we were able
to demonstrate that we can find dynamically consistent
trajectories that fit to within 1–2 cm to externally pro-
vided GPS kinematic and reduced dynamic solutions of
CHAMP. In the last iteration of the DMI procedure,
we find, typically, corrections on the level of 10 nm/s2,
which match orbit displacements of 3.3 mm radially. The
conclusion is that we can always find dynamic orbits that
fit to be within the GPS noise level of the input orbit.

Although we are able to recover a hydrology sig-
nal from the radial accelerations as observed from orbit
residuals in the simulation set, it must be concluded that
the obtained DMI acceleration spectra are too noisy
for temporal gravity research since the largest science
signal (hydrology) does cause radial accelerations at
the 10 nm/s2 level, which corresponds to 3.3 mm radi-
ally. For comparison, similar research on a 2-year long
CHAMP data set with the “acceleration approach”
(Ditmar et al. 2006) yields geoid commission errors of
about 10 mm at degree and order 20 when their solution
is compared to the more accurate EIGEN-GRACE01S
solution (Reigber et al. 2002).

In order to assess the monthly geoid accuracy for
GRACE, we used observation equations based upon the
conservation of total residual energy approach that was
introduced by Ray et al. (2003). New in our approach
is a detrending correction of the perturbation potential
and the projection of the velocity vector at both GRACE
satellites, which involves information from the GPS
residual analysis. This correction is efficient in remov-
ing a significant part of the striping effect in the monthly
geoid maps and the annual amplitude and residual RMS
geoid maps that are obtained by post-processing.

The main conclusion from the closed-loop simulation
is that the annual hydrology can be recovered from the
simulated GRACE data set and that this signal clearly
stands out above the other simulated error sources; all
known hydrologic dipoles are present in the recovered
annual geoid. Striping patterns in the residual geoid
maps are significantly reduced by (1) the use of an
exact solver, (2) a priori weighting by suitable observa-
tion and parameter sigmas, and (3) the implementation
of a detrending procedure prior to the estimation of the
monthly geoid solutions.

Another simulation run is concerned with the recov-
ery of OBP variations for which we have used the ECCO
ocean model. In contrast to the simulation of tide and
atmospheric pressure signals, OBP is generally consid-
ered to be a signal of scientific interest, i.e., a signal
that we want to be able to retrieve from the GRACE
data. The simulated annual OBP effect turns out to be
on the 1 mm level locally. However, we want to men-
tion that Chambers et al. (2004) were able to recover a

global ocean mass variation effect that comes with an
amplitude of about 8 mm for equivalent water height.
From this, we conclude that a locally averaged OBP sig-
nal is affected too much by noise in the monthly GRACE
geoid solutions, but the OBP signal itself is large enough
to be recovered by global integration.

The simulation case based upon the ECMWF minus
NCEP model differences shows that surface air pres-
sure errors do map into a geoid effect with an RMS up
to 1.5 mm. Another remarkable, but perhaps unrealis-
tic, feature are the larger geographic anomalies over
the Antarctic. Apparently both meteorological mod-
els differ significantly in these regions. We suggest that
spaceborne GPS atmospheric occultation profiling may
yield unique information on the vertical structure of the
refractive index and therefore the air pressure signal
over the polar regions.

GRACE is not designed to sample ocean tides so that
there are few possibilities to remove this type of error
from the data (Ray et al. 2003). The conclusion from
the FES99 minus GOT99.2 ocean tide model difference
in the closed-loop simulation is that this type of error
results (compared to other error sources) in patterns
with an annual amplitudes of 0.5 mm maximally. A sig-
nificant part of the non-annual tidal error is concen-
trated at the mid and higher latitudes. The long- and
short-periodic distribution of the investigated effects
displayed in the figures of Sect.3 is summarized in
Table 1.

We conclude from the long-periodic geoid RMS that
continental hydrology is a large effect, and that it stands
out above OBP, air pressure and tidal effects. In general,
it will be difficult to separate local OBP effects from sim-
ulated air pressure and tide errors because of the relative
difference in size shown in Table 1. For periods shorter
than 3 months, we find that OBP variations are larger
than hydrology and simulated air pressure errors, and
that tidal effects are smaller.

Table 1 The contribution of different cases in our GRACE
closed-loop simulation

Modeled effect LP (mm) SP (mm) L/S

Hydrology 4.5 0.25 10
Ocean bottom pressure 0.8 0.4 2
Delta air pressure 0.5 0.3 1.5
Delta tide model 0.5 0.1 5

Column LP contains the geoid RMS (in mm) for periods longer
than 3 months, column SP is for periods shorter than 3 months, and
column L/S indicates the ratio of both effects. High L/S ratios sug-
gest that the modeled effect is mostly long periodic, while smaller
ratios indicate the opposite
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