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1
INTRODUCTION

1.1. OUTLINE
Estuaries are water bodies that connect the marine and riverine environments (for a pre-
cise definition, see section 1.2); they are ubiquitous features along the world’s coastlines.
Examples are the Ems estuary along the border of the Netherlands and Germany and the
Scheldt estuary at the Dutch-Belgian border.

Estuarine regions have to fulfil many, often conflicting, functions. On the one hand,
they are usually economically important regions, containing large harbours and allow-
ing for extensive sand extraction. On the other hand, they also play an important role
in our ecosystem: they act as a habitat for thousands of species by providing food, rest-
ing and nesting places. Both the economical and ecological functions of the estuaries
are strongly affected by anthropogenic changes and climate change. For example, to
facilitate economic growth, shipping channels are often deepened. This deepening of
navigation channels strongly affects the water motion, which in turn influences the sed-
iment dynamics and trapping of sediments. This can strongly affect the ecological value
of the system, and even result in economic adverse effects because of enhanced dredging
requirements.

To assess the effects of anthropogenic changes and climate change on sediment dy-
namics, a clear understanding of the mechanisms resulting in the trapping of sediments
is important. Recent literature reveals that these trapping mechanisms show a strong
three dimensional character, with a dynamic interplay between longitudinal and lateral
processes. Therefore, the aim of this thesis is to develop a three-dimensional idealized
model for water motion and sediment dynamics that allows for a systematic analysis
of trapping of suspended sediments in tidally dominated estuaries. The trapping of sus-
pended sediments results in an elevated concentration compared to concentrations sea-
ward and landward of this region. Such a local maximum in the sediment concentration
is called an Estuarine Turbidity Maximum (ETM).

The structure of this chapter is as follows. The definition and key properties of estu-
aries are presented in section 1.2, with a special focus on the Ems estuary. In section 1.3,
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the definition of the estuarine turbidity maximum (ETM) and the motivation to study
the three-dimensional profile of ETMs are explained. This section also presents a brief
summary concerning the modeling of ETMs. Section 1.4 gives an outline of the thesis,
first by posing the research questions to be answered and then describing the research
approach being adopted.

1.2. ESTUARIES

1.2.1. INTRODUCTION AND CLASSIFICATION
The word estuary comes from the Greek word aetus that means “of the tide” (Jackson [1]),
emphasizing that tides play an important role in estuaries. One of the earliest definitions
of an estuary was given by Pritchard [2] as: “a semi-enclosed coastal body of water having
a free connection with the open sea and containing a measurable quantity of sea water”.
This definition was not generally accepted and resulted in quite some debate. In 1964
(Potter et al. [3]), the American Society of the Advancement of Science came up with a
more generally accepted definition (Pritchard [4]): “An estuary is a semi-enclosed coastal
body of water which has a free connection with the open sea and within which sea water
is measurably diluted with fresh water derived from land drainage (river discharge)”.

As already indicated in the definition, an estuary is a place where the saline water
from the ocean mixes with the fresh water from the river. The main sources of mixing
are tides, waves and winds. The amount of saline water transported into the estuary
and fresh water discharged into it varies per estuary. This results in different salinity
structures that allow for a classification. Note that there are many other classifications of
estuaries, see for example Valle-Levinson [5] for an overview concerning possible clas-
sifications. Here we classify the estuaries with respect to their salinity structure. Four
classes of estuaries are usually identified: salt-wedge, strongly stratified, weakly strati-
fied or partially-mixed, and well-mixed (Fig. 1.1).

Figure 1.1: Classification of estuaries on the basis of the vertical structure of the salinity, reprinted from Valle-
Levinson [5].
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Salt-wedge estuary: In this type of estuaries, there is a strong river discharge and small
tidal forcing (Fig. 1.1, top left). The strong river discharge pushes the fresh water
seaward over the saline seawater, creating a strong pycnocline between the saline
water at the bottom and the fresh water at the top. The shape and location of the
salt wedge depend on local conditions. Examples of salt-wedge estuaries are the
Mississippi (US), Rio de la Plata (Argentina), Vellar (India), and Ebro (Spain).

Strongly stratified estuary: This type of estuaries have moderate to large river dis-
charge and weak to moderate tidal forcing (Fig. 1.1, bottom left). The stratification
profile of these estuaries looks similar to that of salt-wedge type estuaries. Exam-
ples of strongly stratified estuaries are fjords such as those of British Columbia,
Alaska, Chile, New Zealand, and Norway.

Weakly-stratified or partially-mixed estuary: These estuaries are formed by a moder-
ate to strong tidal forcing and weak to moderate river discharge (Fig. 1.1, top right).
Some examples of weakly stratified estuaries are the Ems estuary, Chesapeake Bay,
and the James River.

Well-mixed or vertically-mixed estuary: The water motion in this type of estuaries is
forced by a strong tidal forcing and weak river discharge (Fig. 1.1, bottom right).
In these estuaries, the vertical mixing is so strong that the salinity is uniformly
distributed in the vertical direction. Examples of such estuaries are the Western
Scheldt, the Ems estuary and the Delaware Bay.

In this thesis, we will focus on partially-mixed to well-mixed estuaries. With the help
of observational data, it will be shown in section 1.2.2 that the Ems estuary falls in the
category of both partially-mixed and well-mixed estuaries.

1.2.2. AN EXAMPLE - THE EMS ESTUARY
The Ems estuary, extensively used as an example in this thesis, is situated on the border
of the Netherlands and Germany (see Fig. 1.2). It was formed by the rising sea level af-
ter the last ice age that ended 10,000 years ago (Talke and De Swart [6] and references
therein). The seaward boundary of the Ems estuary is near the island of Borkum in the
North Sea and the landward boundary at the weir in Herbrum. The total length of the
estuary is approximately 100 km. The width of the estuary is approximately 30 km at
the seaward side (Borkum) and approximately 100 m at the landward side. In this the-
sis, we focus on the upper part of the Ems estuary, the Ems river, starting from Knock.
The length of the Ems river from Knock to the weir at Herbrum is approximately 64 km
(Fig. 1.2). The Ems river, the main source (approximately 90%) of the freshwater dis-
charge, drains into the Ems estuary at Herbrum. During the period June - October, the
river discharge is approximately 30 m3 s−1, while during the period November - April, it
is approximately 150 m3 s−1(De Jonge et al. [8]).

The Ems estuary is a well-mixed to partially-mixed estuary with tidal range varying
between 2 m and 4 m (Dyer et al. [10], Talke et al. [11]). Figure 1.3 shows the vertical
profile of the measured salinity along the axis of the estuary during ebb and flood con-
ditions. During the ebb phase, the salinity is well-mixed throughout the estuary except
for the part between 64 km and 70 km where salinity at the bottom is lower than at the
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Figure 1.2: Map of the Ems estuary, reprinted from Chernetsky et al. [7]. The red dotted line shows the upper
part of the Ems estuary considered in this thesis. The block dots show the distance from Knock of few locations
in the estuary.

(a) Ebb phase

(b) Flood phase

Figure 1.3: Longitudinal distribution of salinity along the axis of the Ems estuary conducted during ebb (upper
panel, a) and flood (lower panel, b) phases, reprinted from Talke et al. [9].

surface. During the flood phase of the tide, the salinity is well-mixed throughout the es-
tuary. These data suggest that in the region of interest, the Ems estuary is well-mixed to
partially-mixed.

The thalweg depth of the Ems river is shown in Fig. 1.4 for the years 1980 and 2005.
This figure demonstrates that the maximum depth of the Ems estuary has increased in
this period (1980 - 2005), mainly due to anthropogenic effects.
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Figure 1.4: Thalweg depth of the Ems estuary for years 1980 (red line) and 2005 (blue line), Chernetsky et al.
[7].

Anthropogenic changes are mainly triggered by the need to develop and maintain
the shipping channels but also gas extraction, sand mining and power plant construc-
tion have contributed to it (Talke and De Swart [6]). As shown in Fig. 1.6, there were large
channel deepening activities in the Ems river, resulting in a peak of total dredging vol-
umes in the 1970’s and 1980’s (Van Maren et al. [12]). Due to dredging, the morphology
of the system changed, which in turn influenced the water motion, sediment transport
and concentration (Chernetsky et al. [7], Van Maren et al. [12], De Jonge [13]).

Figure 1.5: Amount of dredging for different years in the Ems estuary, reprinted from Van Maren et al. [12].

Apart from anthropogenic changes, there have also been natural changes to the es-
tuarine system due to sea level rise and climate change. The global sea level in the last
100 years has risen by approximately 18 cm (IPCC, 2001). However, in the Ems estuary,
the mean sea level rise has remained constant at 10-12 cm/100 years (Jensen et al. [15]).
Jensen et al. [15] suggest a relation between the sea level rise due to climate changes
and the increase in the tidal range but this still needs to be validated. There are several
other natural factors such as wind, increased temperature, increased river discharge, and



1

6 1. INTRODUCTION

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

5

10

15

20

25

time [years]

m
as

s 
[1

06  m
3 /y

ea
r]

 

 

sediment extraction Ems Estuary

sediment extraction Ems River

sediment dispersal

sand mining

Figure 1.6: Amount of dredging for different years in the Ems estuary, reprinted from Van Maren et al. [14].

changes in the wave heights during the last century (Talke and De Swart [6]).
The tidal range in the Ems estuary has increased continuously (Fig. 1.7). For example,

in 1980, the tidal range near Knock and Papenburg was 3.1 and 2.3 m, respectively. In
2005, these values increased to 3.2 m and 3.8 m (Chernetsky et al. [7]). This increase in
the tidal range has resulted in an increased risk of flooding.

Figure 1.7: Tidal range in the Ems estuary for different years, reprinted from Talke and Jay [16]. Note that 0 km
on the x-axis indicates the weir at Herbrum.

De Jonge et al. [8] compared the measurements of suspended particle matter (SPM)
concentration in the Ems estuary at different locations for different years. The measure-
ments were taken at the surface along the main axis of the channel. Figure 1.8 shows that
in the lower part of the estuary (Borkum to Emden), the SPM concentration has doubled
since 1954. Between Leer and Emden, there has been a strong increase in the concen-
tration of SPM. Considering the whole estuary, the magnitude of SPM concentration has
increased by a factor of ten since 1954 and factor of five since 1970. Furthermore, the
location of maximum SPM concentration has consistently moved landward. In sum-
mary, in the Ems estuary, the SPM concentration has increased and the location of the
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Figure 1.8: Suspended particle matter (SPM) concentration in the Ems estuary for different years, reprinted
from De Jonge et al. [8].

maximum SPM concentration has moved landward since 1954.

1.3. ESTUARINE TURBIDITY MAXIMA

1.3.1. DEFINITION AND IMPORTANCE

Following Jay et al. [17], estuarine turbidity maxima (ETMs) are defined as locations in
the estuary where the concentration of suspended sediment is higher than seaward or
landward of that location. ETMs are observed in almost all estuaries in the world. Ex-
amples of estuaries with ETMs are Chesapeake Bay, Ems estuary (De Jonge et al. [8]),
Tamar estuary (Uncles and Stephens [18]), San Francisco Bay (Schoellhamer [19]), Hum-
ber estuary (Uncles et al. [20]), and Gironde estuary (Jalón-Rojas et al. [21]). Importantly,
the notion of high concentration in the ETM region is estuary specific. For example, the
concentration of suspended particle matter (SPM) in the ETM region is of the order 0.1
g l−1 in the Kennebec estuary (Uncles et al. [20]), 0.15−1 g l−1 in the Columbia River es-
tuary (Jay and Musiak [22]), 1−100 g l−1 in the Ems estuary (Talke et al. [9]) and 200 g l−1

in the Severn estuary (Uncles et al. [20]). Furthermore, an estuarine system can exhibit
more than one ETMs. For example, both the Ems estuary (Chernetsky et al. [7]) and the
Columbia river estuary (Jay et al. [17]) have two ETMs.

As already touched upon in the introduction of this chapter, ETMs can impact both
economical and ecological values of estuaries. An ETM located close to a navigation
channel makes enhanced dredging of the channel necessary. Changes to the navigation
channel, e.g., deepening and/or channelizing, may in return cause the development or
result in significant changes in the ETM by changing the physical properties of the sys-
tem, see for example the decadal development in the Ems estuary (De Jonge et al. [8]).

An ETM also plays a crucial role from an ecological point of view. In turbidity max-
imum zones, light plays a limiting role in the growth of phytoplankton (Lancelot and
Muylaert [23] and references therein). Peterson and Festa [24] showed that phytoplank-
ton biomass and productivity is highly influenced by the suspended particle matter
(SPM) concentration. Peterson and Festa [24] also suggested that phytoplankton pro-
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ductivity reduces drastically as SPM concentration increases from 10 to 100 mg l−1. In
some cases, an increased phytoplankton population has been found in the region of tur-
bidity maxima (e.g., in San Francisco Bay, Cloern et al. [25]). Lancelot and Muylaert [23]
suggested that this is most likely caused by the convergence of phytoplankton and is not
caused by physiological growth.

1.3.2. PHYSICAL MECHANISMS
The convergence of SPM transport leads to ETM formation (Jay and Musiak [22]). In an
estuary, sediment transport can be divided into two categories: bed load transport and
suspended load transport. In case of bed load transport, the sediment remains in contact
with the bed and movement occurs by virtue of rolling, sliding, hopping or saltating. Bed
load transport occurs if sediment is coarse and/or the bed shear stress is low. In case of
suspended load transport, the sediment is suspended in the water column where it is
transported by advective and diffusive processes. Unlike bed load transport, suspended
load transport occurs if the sediment is fine and/or the bed shear stress is high. This is
the most common method of sediment transport in estuaries. In this thesis, we focus
on transport of fine sediments as suspended load. More information about transport
processes is given in Van Rijn [26] and Fredsøe and Deigaard [27].

When considering suspended load transport, the sediment is eroded from the bed by
the shear stresses exerted by the water motion on the sediments at the bed. In the water
column, turbulent diffusive processes result in an upward transport of the suspended
sediments, while gravitational forces transport the sediments towards the bed. This re-
sults in specific profiles of suspended sediment concentrations, such as the Rouse profile
when assuming parabolic eddy viscosity and diffusivity (see for example Winterwerp and
Wang [28]). Once the sediment is in the water column, the sediments are transported in
the horizontal direction by diffusive and advective processes. The locations where the
suspended load transport converges are often the zones with locally elevated suspended
load concentrations, and hence correspond to estuarine turbidity maxima.

The mechanisms resulting in the net sediment transport cover almost the entire
spectrum of the hydrodynamic process (Burchard et al. [29]). Below a few mechanisms
are highlighted:

• An important mechanism that results in a net sediment transport is the tidal ve-
locity asymmetry. Tidal velocity asymmetry refers to the phenomenon that the
maximum horizontal velocity during the ebb differs from the maximum horizon-
tal velocity during the flood. If the maximum flood velocity is higher than the
maximum ebb velocity, net residual transport will be in the flood direction and
vice-versa (Bolle et al. [30]). This results in an imbalance between the import of
sediments during flood and export of sediments during ebb and ultimately in a
net sediment transport. Allen et al. [31] showed that in some macrotidal estuaries
such as the Gironde and the Aulne estuaries, the tidal velocity asymmetry alone
can be responsible for creating a sediment convergence zone. Chernetsky et al.
[7] studied the influence of tidal asymmetry on the sediment trapping in the Ems
estuary.

• One of the components of estuarine circulation is related to the density gradients
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and is referred to as gravitational circulation. Postma and Kalle [32] and Postma
[33] showed that this residual circulation could result in sediment trapping at the
salt intrusion limit. Using a two-dimensional numerical model, Festa and Hansen
[34] verified this hypothesis by producing a convergence zone of sediment from
the balance between gravitational circulation and freshwater discharge. Recently,
Talke et al. [9] extended the model of Festa and Hansen [34] by including the im-
pact of large sediment concentrations on the trapping of sediments.

• Tidal mixing asymmetry refers to the asymmetry in the vertical mixing caused by
the difference in the magnitude of the ebb and flood velocities (Jay and Musiak
[35], Scully and Friedrichs [36]). Winterwerp [37] inferred that in the Ems river, the
up-river transport is mainly due to the asymmetry in the vertical mixing. Burchard
and Baumert [38] studied the contributions of residual gravitational circulation,
tidal velocity asymmetry and tidal mixing asymmetry in the formation of ETM in
macrotidal estuaries.

• Settling lag is another mechanism that leads to the net sediment transport. Set-
tling lag effects are of two types: temporal (Chernetsky et al. [7], Groen [39]) and
spatial (Burchard et al. [29], Groen [39]). Settling lag is related to the fact that finite
time is needed for the suspended particle to settle down (De Swart and Zimmer-
man [40]).

Apart from the above mentioned mechanisms, other factors such as wind (North
et al. [41], Weir and McManus [42]), sediment availability (Dickhudt et al. [43]), and
asymmetry in the size of sediments (Winterwerp [44], Scully and Friedrichs [45], Talke
et al. [46]) may also impact the location of sediment trapping. The geometrical features
of the estuary such as convergence (Talke et al. [46], Friedrichs et al. [47], Chernetsky
[48]) and bathymetric features (Ganju and Schoellhamer [49], Ralston et al. [50]) may
also play an important role in the strength and the location of the ETM.

1.3.3. FACTORS AFFECTING ETM
Due to its importance from both economical and ecological point of view, the under-
standing of formation and dynamics of ETM becomes essential. The location of max-
imum turbidity is strongly influenced by river discharge and tidal range. Uncles and
Stephens [18] showed that in the Tamar estuary, the location of freshwater-saltwater in-
terface can be captured by a power law relation, depending on the freshwater run-off.
Often, for well-mixed and partially-mixed estuary, the location of freshwater-saltwater
interface is associated with the location of a turbidity maximum (Uncles and Stephens
[18]), implying that the location of turbidity maxima can be related to a power law re-
lation depending on the freshwater run-off. Schoellhamer [19] discussed the influence
of salinity, bottom topography and tides on the location of the ETM in San Francisco
Bay, USA. In the Gironde estuary, France, the long-term decrease of the river flow re-
sulting from the deepening of the Garonne River has been demonstrated to result in the
intensification of the turbidity maximum zone (Jalón-Rojas et al. [51]). For Devonshire
Avon estuary, UK, Uncles et al. [52] showed the influence on water motion and sediment
transport due to the construction of an up-stream dam and reservoir. The changes in the
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water motion were shown to be small but the results indicated an increased transport in
the upper part of the estuary and convergence of sediments in the central and upper
parts of the estuary. The distribution of suspended particle matter is also influenced by
the long term weather, climate and climate change (Fettweis et al. [53]). Systematic sea-
sonal variations can also lead to the formation of ETMs. Kessarkar et al. [54] showed that
in the Mandovi estuary (India), the ETM occurs at the entrance (seaward side) during
the two windiest period of the year, showing that wind alone can be responsible for the
formation of ETMs.

It has been hypothesized by Winterwerp and Wang [28] and Winterwerp et al. [55]
that anthropogenic changes in estuaries can result in significant changes to ETM char-
acteristics: by continuous deepening to allow bigger ships to enter the harbors, normal
European estuaries can evolve into a hyper turbid state. The authors suggest that the
Ems estuary, discussed in section 2.2, has undergone such a ’regime shift’, as it has seen
a tenfold increase in SPM concentration since 1954. Using observations from different
years, De Jonge et al. [8] suggested that this increase may have been caused by the deep-
ening of dredged channels in the Ems estuary. Van Maren et al. [12] using a numerical
model for the Ems estuary concluded that the increase in the suspended sediment con-
centration in the Ems estuary can be attributed to the deepening of tidal channels and
discontinuing of the large-scale sediment extraction near the port of Emden may have
contributed to the increased suspended sediment concentration. Contrary to the Ems
estuary, Yang et al. [56] found that for the Yangtze River estuary, anthropogenic changes
had little impact on the water motion resulting in a decrease in sediment volume and
concentration.

1.3.4. MODELLING
Transverse distribution of water motion and sediment concentration significantly affects
the longitudinal momentum balance and transport of material in many estuaries (Geyer
et al. [57], Kim and Voulgaris [58]). Therefore, to understand the physical mechanisms
resulting in trapping of sediment, it is not enough to study either the longitudinal or
lateral processes, but the interaction between these processes has to be studied.

To study the three dimensional formation of ETMs in complex geometries, state-of-
the-art complex models such as DELFT3D1, ROMS2, and MIKE3, have been developed.
These models solve the complete set of governing equations including all known pro-
cesses and state-of-the-art parameterizations, allowing for a qualitative comparison be-
tween model results and observations. However, because of their complexity, the com-
putation time of these models is often very high which makes this type of models not
well-suited for sensitivity studies. Furthermore, it is difficult to assess the relative impor-
tance of individual processes on the ETM formation.

Another type of models, the so-called idealized models focuses on the physical pro-
cesses that are essential to model the phenomenon under investigation, in this case the
formation of ETMs. These models do not include all known processes or the most com-
plex parameterizations, resulting in a system of equations that can often be solved by a

1 https://oss.deltares.nl/web/delft3d
2https://www.myroms.org/
3https://www.mikepoweredbydhi.com/
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combinations of analytical and numerical techniques. Therefore, idealized models are
fast to run and thus allow for extensive parameter sensitivity analyses, e.g., influence of
channel deepening and sea level rise. Winant [59, 60] developed a three-dimensional
model for tidal motion (semi-diurnal and residual) by solving the shallow water equa-
tions. In this model, a narrow rectangular estuary with laterally parabolic and axially
uniform bed profile was considered. Using scaling and perturbation analysis, an ordered
system of linear equations were obtained that could be solved analytically. Ensing et al.
[61] extended the model of Winant [59] to an exponentially converging domain resulting
in a system of equations that could still be solved analytically.

From the above discussion, it follows that three dimensional idealized models de-
veloped so far have assumed simplified geometric (rectangular or funnel shaped) and
bathymetric (one dimensional in either longitudinal or lateral directions) profiles. Fur-
thermore, these models have only focused on the water motion. Three dimensional ide-
alized modeling of suspended sediment transport and trapping of sediments are com-
pletely missing. Hence, the goal of this thesis is to develop a three-dimensional idealized
model for trapping of fine sediments in an estuary with arbitrary geometric and bathy-
metric profiles.

1.4. THIS THESIS

1.4.1. AIM

From the previous section, it follows that the knowledge about formation of ETM in a
three-dimensional geometry is still limited. Therefore, the main aim of this thesis is to
develop a three dimensional idealized model for ETM dynamics for a partially-mixed
to well-mixed estuary with arbitrary bathymetric and geometric profiles, that allows for
a systematic analysis of the physical processes resulting in sediment trapping, and the
sensitivity of these processes to parameters.

1.4.2. RESEARCH QUESTIONS

The specific research questions addressed in this thesis are:

• How can the three-dimensional water motion in an estuary with complex shape
and bathymetry be decomposed in contributions resulting from different forcing
mechanisms?

• How can such a model be extended to include the three-dimensional sediment dy-
namics and sediment trapping, resulting in the formation of ETM?

• What is the sensitivity of the trapping location to anthropogenic (e.g., channel deep-
ening) and natural changes (e.g., sea level rise) in a funnel shaped estuary?

1.4.3. RESEARCH APPROACH

To answer the questions posed above, a three-dimensional idealized model is devel-
oped for an estuary with arbitrary geometric and bathymetric profiles. Such a three-
dimensional model includes both longitudinal and lateral processes.
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Furthermore, the idealized modeling approach allows for a decomposition of water
motion and sediment dynamics into contributions from different forcing mechanisms
and can be used to perform quick and extensive parameter sensitivity analyses.

In the development of this model, the following ingredients are used:

• The water motion is governed by the three-dimensional shallow water equations.

• The suspended sediment concentration follows from a three-dimensional
advection-diffusion equation.

• It is assumed that averaged over a tidal time scale, there is no evolution of the
bed. In other words, the tidally averaged erosion and deposition processes balance
each other. This condition is also referred to as the condition of morphodynamic
equilibrium (Friedrichs et al. [47]).

Using typical scales of the physical quantities, we begin by making the governing
equations dimensionless. This leads to the identification of a small parameter εwhich is
the ratio of the mean water depth (H) and the mean surface elevation (A) at the entrance,
i.e., ε= A/H . All dimensionless numbers appearing in the dimensionless equations are
related to this parameter ε. Next, all unknown physical variables such as the water level
and the velocity vector are asymptotically expanded in ε. After substituting these asymp-
totic expansions in the system of dimensionless equations, systems of equations at dif-
ferent order of ε for both water motion and the suspended sediment concentration are
obtained. To get the morphodynamic equilibrium solution, the fine sediment has to
be spatially distributed in the estuary such that there are no net convergences or diver-
gences of the suspended sediment transport. This requires a specific spatial variability
of the sediment availability. The condition of morphodynamic equilibrium leads to an
equation for this specific sediment availability.

To answer the first Research Question, we first focus on the leading-order (linearized)
system of equations for the water motion (M2 tidal constituent) in Chapter 2. Intro-
ducing rotating flow variables, the vertical profile of the velocity can be solved analyti-
cally while its amplitude depends on the horizontal gradients of the surface elevation.
The surface elevation itself follows from a two-dimensional elliptic partial differential
equation obtained after integrating the continuity equation over the water column. This
equation is solved numerically using the finite element method (Gockenbach [62]). Var-
ious methods are discussed to compute the partial derivatives of the numerical solu-
tion. A detailed analysis is performed to analyse the convergence of surface elevation
and its partial derivatives which are necessary to explicitly obtain the velocity. Finally,
the model is applied to the Ems estuary by comparing the model results with observa-
tions and model results of a complex state-of-the-art model. The influence of channel
convergence on the water motion is briefly discussed.

In Chapter 3, parts of the first and second Research Questions are answered by devel-
oping an idealized model that allows for a systematic investigation of sediment trapping.
As in chapter 2, rotating flow variables are used to express the velocity in terms of the
gradients of the surface elevation of the M0 and M4 tidal constituents. The vertical pro-
files of the leading- and first-order suspended sediment concentrations are expressed
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in terms of the leading- and first-order horizontal velocities. The condition of morpho-
dynamic equilibrium is used to obtain the availability of easily erodible sediments in
the estuary. The first-order surface elevation and sediment availability follow from two-
dimensional elliptic differential equations which are solved numerically using the finite
element method. Finally, the model is applied to the Ems estuary using parameters rep-
resentative of the years 1980 and 2005 and the influence of lateral bathymetry on the
location of the ETM is studied.

To answer the third Research Question, the model developed in Chapter 2 and 3 is
applied to a funnel shaped estuary in Chapter 4. The longitudinal bed profile is obtained
by fitting the bathymetric data of the Ems estuary for the year 2005 with a polynomial
of degree 4. For the lateral bed profile, we start with a laterally symmetric Gaussian bed
profile. Next, the profile in the lateral direction is made asymmetric and the influence of
this asymmetric behaviour on the location and strength of ETM is studied. In the next
experiment, to understand the influence of shallowing or deepening of the channel, the
maximum depth of the channel is decreased or increased. The depths on the lateral sides
are kept unchanged. Next, to understand the influence of sea level rise, the overall depth
of the channel is increased (including the lateral depths).

Chapter 5 concludes the thesis by summarizing the main results and discussing pos-
sible future work.
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2
THREE-DIMENSIONAL

SEMI-IDEALIZED MODEL FOR TIDAL

MOTION IN TIDAL ESTUARIES: AN

APPLICATION TO THE EMS ESTUARY

This chapter focuses on solving the systems of equations for the leading-order water mo-
tion. The vertical profiles of the velocities are obtained analytically in terms of the first-
order and the second-order partial derivatives of surface elevation, which itself follows
from an elliptic partial differential equation. The surface elevation is computed numeri-
cally using the finite element method and its partial derivatives are obtained using various
methods. The newly developed semi-idealized model allows for a systematic investigation
of the influence of geometry and bathymetry on the tidal motion which was not possible
in previously developed idealized models. The new model also retains the flexibility and
computational efficiency of previous idealized models, essential for sensitivity analysis.

As a first step, the accuracy of the semi-idealized model is investigated. To this end, an
extensive comparison is made between the model results of the semi-idealized model and
two other idealized models: a width-averaged model and a three-dimensional idealized
model. Finally, the semi-idealized model is used to understand the influence of local geo-
metrical effects on the tidal motion in the Ems estuary. The model shows that local conver-
gence and meandering effects can have a significant influence on the tidal motion. Finally,
the model is applied to the Ems estuary. The model results agree well with observations
and results from a complex numerical model.

This paper has been published as: M. Kumar, H. M. Schuttelaars, P. C. Roos, and M. Möller, Three-dimensional
semi-idealized model for tidal motion in tidal estuaries: An application to the Ems estuary,Ocean Dynamics
66, 99 (2016).
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2.1. INTRODUCTION
Estuaries are regions of large economical (navigation channels, sand and gas mining,
recreation, etc.) and ecological importance. Recently, various contributions (e.g., Cher-
netsky et al. [1], De Jonge et al. [2], Winterwerp et al. [3], Winterwerp and Wang [4]) have
indicated that tidal characteristics can change significantly due to anthropogenic mea-
sures. These changes can endanger safety, i.e., changes in the surface elevation may
cause flooding in the surrounding area, and transport (related to the changes in the
three-dimensional velocity field) or accumulation of sediments and pollutants which
leads to poor quality of water. It is therefore essential to accurately describe and un-
derstand the tidal water motion including its response to natural changes and anthro-
pogenic disturbances.

Different types of process-based models can be used to gain understanding of tidal
motion (Murray [5], De Vriend [6], De Vriend [7]). These models can be broadly divided
into two categories: complex simulation models and idealized models. A complex sim-
ulation model aims at resolving all known physical processes, using state-of-the-art pa-
rameterizations of unresolved processes. Concerning complex model simulations of the
Ems estuary, one can find the studies by Van de Kreeke and Robaczewska [8], Pein et al.
[9] and Van Maren et al. [10]. An idealized model on the other hand considers only those
physical processes which are dominant for the phenomenon under investigation. Ideal-
ized models use simplified geometric and bathymetric profiles. The schematizations of
idealized models allow for quick solution techniques, often analytic, which makes these
type of models suitable for extensive parameter sensitivity analysis.

Idealized models, used to study the tidal motion in estuaries, can be further divided
into different categories. Averaging the governing equations over the cross-section re-
sults in one-dimensional models, see Lanzoni and Seminara [11] and Valle-Levinson [12]
for an overview. Ianniello [13] and Chernetsky et al. [1] developed width-averaged (2DV)
models to gain insight in the vertical flow structure in the longitudinal direction. The
geometry was assumed to be exponentially converging, while the depth was assumed
constant in Ianniello [13] and varying in the longitudinal direction in Chernetsky et al.
[1]. Assuming along-estuary uniform conditions, Huijts et al. [14] developed an idealized
model to study the water motion in an estuarine cross-section, allowing for an arbitrary
bathymetry in the lateral direction. To study the interaction of lateral and longitudinal
flows, Li and Valle-Levinson [15] used a depth-averaged (2DH) model that allowed for
an arbitrary bathymetric and geometric profile, but ignored Coriolis effects. Winant [16]
developed a three-dimensional idealized model for tidal motion on a rotating (Coriolis
effects included) elongated (width is much smaller than the length) rectangular domain
with a parabolic bathymetric profile in the lateral direction together with constant phys-
ical parameters and constant density. Winant’s three-dimensional idealized model is
limited to an estuary with elongated rectangular domain and constant physical param-
eters.

In light of the above, it is clear that currently there is no idealized model that allows
for a systematic investigation of the influence of arbitrary geometry and bathymetry on
three-dimensional water motion. Therefore, the aim of this paper is to develop a three-
dimensional idealized model for tidal water motion in an estuary with arbitrary geom-
etry and bathymetry. The physical parameters are allowed to vary in the horizontal di-
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rection as well. The surface elevation is obtained from a two-dimensional elliptic partial
differential equation, which is solved numerically using the finite element method. The
vertical profile of the three-dimensional velocity can be explicitly calculated in terms
of the first and second-order partial derivatives of the surface elevation, i.e., the three-
dimensional velocity profile is analytic in the vertical direction.

This model is a first step in bridging the gap between idealized models and complex
models: the model can still be systematically analyzed to gain understanding of impor-
tant physical mechanisms, but allows for more complex geometries and bathymetries.

Our three-dimensional semi-idealized model is first tested by comparing its results
with the results of the width-averaged model of Chernetsky et al. [1] and the three-
dimensional idealized model of Winant [16]. Extensive error and convergence analyses
are performed to evaluate the finite element method and various methods to compute
its partial derivatives. Next, the model is applied to the complex geometry of the Ems
estuary and the influence of local geometrical effects on the tidal motion is investigated.

The structure of the paper is as follows. The governing equations of the three-
dimensional semi-idealized model are described in section 2.2. These equations
are solved in section 2.3. The comparison of the three-dimensional semi-idealized
model with the width-averaged model is presented in section 2.4 and with the three-
dimensional idealized model in section 2.5. Using this novel three-dimensional semi-
idealized model, the influence of local geometrical effects on the tidal motion of the Ems
estuary are investigated in section 2.6. Finally, conclusions are presented in section 2.7.

2.2. MODEL FORMULATION
We consider a tidal estuary of arbitrary shape and bathymetry (Fig. 3.2), with x and
y denoting the horizontal coordinates and z the vertical coordinate pointing upwards.
The two-dimensional surface of the estuary is denoted by Ω. Note that, since the shape
of the estuary is arbitrary, x (y) need not represent the along-channel (cross-channel)
coordinate. The bathymetric profile is denoted by h(x, y), with the mean depth at the
seaward side given by H .

The water motion is governed by the three-dimensional shallow water equations, in-
cluding the Coriolis effect. The estuary is assumed to be partially-mixed or well-mixed.
Following Winant [16], the equations are scaled and the physical variables are asymptot-
ically expanded in powers of a small parameter ε= Ã/H , where Ã is the mean amplitude
of the semi-diurnal lunar (M2) tidal wave at the seaward side. In leading order, i.e., at
O (ε0), the dimensional system of equations is given by

ux + vy +wz = 0, (2.1a)

ut − f v =−gηx + (Avuz )z , (2.1b)

vt + f u =−gηy + (Avvz )z , (2.1c)

where f = 2Ω∗ sinθ is the Coriolis parameter, Ω∗ = 7.292 × 10−5 rad s−1, the angular
frequency of the Earth’s rotation, θ latitude, g is the gravitational acceleration and Av

(m2 s−1) is the eddy viscosity. At the seaward side (denoted by ∂DΩ), the system is forced
with a prescribed M2 tide,

η= A(x, y)cosωt , ∀ (x, y) ∈ ∂DΩ, (2.2a)
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Figure 2.1: Three-dimensional sketch of an estuary with arbitrary geometric and bathymetric profiles. The
bathymetric profile is shown on a grayscale. The seaward side (denoted by ∂DΩ) is shown in magenta color
( ) and the river side (denoted by ∂RΩ) is shown in cyan color ( ). The other boundaries (de-
noted by ∂NΩ) are assumed to be closed walls. The surface of the estuary is discretized using linear triangles in
order to compute the surface elevation with the finite element method. The constrained nodes (nodes where
the surface elevation is known) are indicated by blue diamonds (�) and unconstrained nodes (nodes where the
surface elevation has to be computed) by red diamonds (�). All the interior nodes are by default unconstrained.
At each node in the triangularization of the surface, the vertical profile of the velocity field can be computed
analytically using partial derivatives of the surface elevation as shown by yellow dashed lines ( ). The
velocity at the surface is depicted by green arrows ( ) and, in the rest of the water column, by yellow arrows
( ).

where A(x, y) is the spatially varying elevation amplitude along this boundary and
ω = 2π/T is the tidal frequency of the M2 tide with tidal period T =12.42 hrs. Also
“∀(x, y) ∈ ∂DΩ” means for all points (x, y) on the seaward boundary (∂DΩ). At the other
boundaries either a no-flux condition (for boundaries denoted by ∂NΩ) or a river dis-
charge (for boundaries denoted by ∂RΩ) is prescribed. Assuming that the river outflow
gives a minor contribution (only occurring at first order rather than zeroth order in ε),
the normal component of the volume transport is required to vanish at the remaining
boundaries,

 0∫
−h

(u, v) dz

 · n̂ = 0, ∀ (x, y) ∈ ∂NΩ∪∂RΩ, (2.2b)

where n̂ is the local unit normal pointing outwards. As dynamic boundary conditions, a
no-stress condition at the surface z = 0 and a partial slip condition at the bottom z =−h
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are prescribed, i.e.,

Av(uz , vz ) = (0,0), at z = 0, (2.2c)

Av(uz , vz ) = s(u, v), at z =−h, (2.2d)

where s (m s−1) is the stress parameter which follows from the linearization of the
quadratic friction law (for details, see Schramkowski et al. [17] and Zimmerman [18]).
In the present model, the eddy viscosity Av and the stress parameter s are assumed to
be constant in the vertical direction and in time. As kinematic boundary conditions, the
linearized boundary condition is applied at z = 0, and the impermeability of the bottom
is imposed at z =−h, i.e.,

w = ηt , at z = 0, (2.2e)

w =−uhx − vhy , at z =−h. (2.2f)

2.3. SOLUTION METHOD
The system of equations (2.1), together with the boundary conditions (2.2), constitute a
closed set of equations that can be solved for the surface elevation η and velocity com-
ponents (u, v, w). Usually, this problem is solved numerically by spatial and temporal
discretization. In the approach presented below, the tidal motion is solved in terms of
tidal constituents, i.e., without discretizing in time. Furthermore, the vertical structure
of the velocity components is obtained analytically resulting in a two-dimensional ellip-
tic partial differential equation (section 2.3.1) for the surface elevation that, in general,
has to be solved numerically (section 2.3.2).

2.3.1. ANALYTICAL PART OF THE SOLUTION METHOD
Since the water motion is forced by an oscillating water level (Eq. 2.2a) and the system
of equations is linear, solutions of the system of equations are of the form

(η,u, v, w) =ℜ{(N ,U ,V ,W )e iωt }, (2.3)

where ℜ stands for the real part of a complex variable, and i =p−1 is the unit imaginary
number. Furthermore, N (x, y), U (x, y, z), V (x, y, z) and W (x, y, z) are the complex am-
plitudes of the surface elevation and the three velocity components, respectively. Sub-
stituting Eq. (2.3) into Eq. (2.1) gives

Ux +Vy +Wz = 0, (2.4a)

iωU − f V =−g Nx + AvUzz , (2.4b)

iωV + f U =−g Ny + AvVzz . (2.4c)

To solve this coupled set of equations, we introduce rotating flow variables R1 and R2

with

R1 =U + iV and R2 =U − iV , (2.5)
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such that

U = R1 +R2

2
and V = R1 −R2

2i
. (2.6)

We add Eq. (2.4c) multiplied by i to Eq. (2.4b) and Eq. (2.4c) multiplied by -i to Eq.
(2.4b). These give differential equations for the rotating flow variables:

R j ,zz −α2
j R j = g

Av
L j N , j = 1,2, (2.7a)

with differential operators L1 = ∂x + i∂y , L2 = ∂x − i∂y , and coefficients α1 =
√

i ω+ f
Av

,

and α2 =
√

i ω− f
Av

. Following the same procedure for the boundary conditions, we get,

AvR j ,z = 0, at z = 0, (2.7b)

AvR j ,z = sR j , at z =−h, (2.7c)

Here ∂x and ∂y are the first-order partial derivatives with respect to x and y , respec-
tively. For each j = 1,2, Eq. (2.7a) is a linear, second-order ordinary differential equation
in the vertical coordinate z, which can be solved analytically in terms of the unknown
pressure gradients Nx and Ny . The resulting rotating flow variables read

R j = cα j (z)L j N , j = 1,2, (2.8)

with vertical structure cα j given by

cα j (z) = g

α2
j Av

[
s cosh(α j z)

α j Av sinh(α j h)+ s cosh(α j h)
−1

]
.

Note that through the (x, y) dependency of the depth h, the stress parameter s and the
eddy viscosity Av, the function cα j also depends on the horizontal coordinates x and
y . Integrating the continuity equation (2.4a) from z = −h to z = 0, using the kinematic
boundary conditions Eqs. (2.2e) and (2.2f), we find that

∂x

0∫
−h

U dz +∂y

0∫
−h

V dz + iωN = 0. (2.9)

To express the depth-integrated horizontal velocity in terms of the surface elevation, de-
fine Cα j (z) as

Cα j (z) =
z∫

−h

cα j (z ′) dz ′

= g

α3
j Av

[
s(sinh(α j z)+ sinh(α j h))

α j Av sinh(α j h)+ s cosh(α j h)
−α j (z +h)

]
.
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Integrating Eq. (2.8) over the water column from z ′ =−h to z ′ = z, results in

z∫
−h

R j dz ′ =Cα j (z)L j N , j = 1,2. (2.10)

Combining Eqs. (2.6), (2.8) and (2.10), the depth-integrated horizontal velocities can be
expressed as

z∫
−h

U dz ′ =
z∫

−h

R1 +R2

2
dz ′

= Cα1 (z)+Cα2 (z)

2︸ ︷︷ ︸
C1(z)

Nx + i
Cα1 (z)−Cα2 (z)

2︸ ︷︷ ︸
C2(z)

Ny

=C1(z)Nx +C2(z)Ny , (2.11a)

and,

z∫
−h

V dz ′ =
z∫

−h

R1 −R2

2i
dz ′

=− i
Cα1 (z)−Cα2 (z)

2︸ ︷︷ ︸
C2(z)

Nx +
Cα1 (z)+Cα2 (z)

2︸ ︷︷ ︸
C1(z)

Ny

=−C2(z)Nx +C1(z)Ny . (2.11b)

Substituting Eqs. (2.11a) and (2.11b) in Eq. (2.9), results in an equation for the surface
elevation:

∇· [D(0)∇N ]+ iωN = 0, (2.12a)

with ∇= (∂x ,∂y )T, where the superscript T denotes the transpose operator, and

D(z) =
[

C1(z) C2(z)
−C2(z) C1(z)

]
. (2.12b)

The corresponding boundary conditions read

N = A, on ∂DΩ, (2.12c)

[D(0)∇N ] · n̂ = 0, on ∂NΩ∪∂RΩ. (2.12d)

Equation (2.12a) is a two-dimensional linear elliptic partial differential equation with
complex coefficient matrix D(0). This matrix depends on the bathymetric profile h, the
eddy viscosity Av, the stress parameter s, and Coriolis parameter f , all of which can be
arbitrary functions of the horizontal coordinates x and y . Therefore, an analytic solution
of Eq. (2.12) can not be obtained in general, and a numerical approach will be pursued.
In section 2.3.2, the numerical solution procedure will be discussed in detail.
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Once the surface elevation N (x, y) is known, we have to calculate its gradients Nx

and Ny to obtain the vertical profiles of the horizontal flow components. The vertical
velocity W is obtained by integrating the continuity equation (2.4a) from z ′ =−h to z ′ =
z, together with the aid of Leibniz integral rule and the kinematic boundary conditions
(Eqs. (2.2e) and (2.2f)), resulting in

W =−∂x

z∫
−h

U (x, y, z ′) dz ′−∂y

z∫
−h

V (x, y, z ′) dz ′

=−∇· [D(z)∇N ], (2.13)

with D(z) given by Eq. (2.12b). This completes the derivation of the three-dimensional
flow profile expressed in terms of the first-order partial derivatives (for horizontal veloc-
ities) and the second-order partial derivatives (for vertical velocity) of the surface eleva-
tion.

2.3.2. NUMERICAL PART OF THE SOLUTION METHOD
In general, for an arbitrary domain, bathymetry and spatially varying parameters, Eq.
(2.12) cannot be solved analytically. Therefore, a numerical approach, the finite element
method (Gockenbach [19]), is adopted. As a first step, Eq. (2.12) is written in its weak
form,

−
Ï
Ω

[D(0)∇Ñ ] ·∇φ dΩ+ iω
Ï
Ω

Ñφ dΩ

=
Ï
Ω

[D(0)∇ND ] ·∇φ dΩ− iω
Ï
Ω

NDφ dΩ ∀ φ ∈Σ, (2.14)

where N = Ñ + ND , ND = A on ∂DΩ and φ is a test function belonging to the space of
test functions Σ. Equation (2.14) implies that since ND is known, the problem of finding
N now reduces to finding Ñ . Details concerning the derivation of the weak form can be
found in Appendix B.2.

Next, the software package Triangle (Shewchuk [20]) is used to discretize the do-
main Ω using triangles (Fig. 3.2). The discretized domain is denoted by Ωh̃ , where h̃ is
the mean step size (defined as the mean of the length of all the edges in the discretization
of the domain). The total number of nodes equals n +m with the first n nodes located
in the interior or on the no-flux boundary (unconstrained or free nodes, denoted by red
diamonds in Fig. 3.2 together with all the interior nodes) and the last m nodes located
on the seaward boundary (constrained nodes, denoted by blue diamonds in Fig. 3.2).
Next, the unknown complex surface elevation amplitude Ñ is approximated by

Ñh̃(x, y) =
n∑

l=1
Nlφl (x, y), (2.15)

where φl ’s are so-called Lagrange basis functions that equal one at node l and zero at all
other nodes. The coefficients Nl , l = 1, . . . ,n are unknown complex amplitudes. In this
study, we will consider linear and quadratic polynomials as basis functions.
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Next, we substitute the finite element approximation of Ñh̃ (Eq. 2.15) in the weak
form (Eq. 2.14) and choose test functions φ equal to basis functions φk , k = 1, . . . ,n. This
results in a linear system of equations for the unknown Nl ’s that can be solved numer-
ically (see Appendix B.2 for a detailed explanation). Once Ñh̃ is known, we can write
down the finite element approximation Nh̃ of N over the whole domain as,

Nh̃(x, y) = Ñh̃(x, y)+ND (x, y)

=
n∑

l=1
Nlφl (x, y)+

n+m∑
l=n+1

A(xl , yl )φl (x, y). (2.16)

Once we have computed the numerical solution Nh̃ , its accuracy is assessed by per-
forming error and convergence analyses. Denoting the exact solution of Eq. (2.12a) by
N , the error function Eh̃ is defined as

Eh̃ = N −N4x .

The numerical solution N4x converges to the exact solution N if

||Eh̃ ||2 → 0 as h̃ → 0,

where ||·||2 is the L2 norm defined in Appendix B.2. To make our error measure indepen-
dent of the size of the domain and the range of the solution, we define the relative error
as

r (h̃) = ||Eh̃ ||2
||N ||2

. (2.17)

The order of convergence p is the rate at which the numerical solution N4x converges
to the exact solution N , given by

p =
log(||Eh̃1

||
2

/||Eh̃2
||

2
)

log(h̃1/h̃2)
. (2.18)

In general, if polynomial basis functions of order q are used, the numerical solution N4x

converges to the exact solution N with rate q +1, provided numerical integrals are com-
puted accurately enough (Gockenbach [19]). For linear (quadratic) basis functions, we
thus expect second (third) order convergence of the numerical solution.

To compute the three-dimensional flow components, the first-order and the second-
order partial derivatives of N have to be computed. Since the surface elevation itself is
obtained numerically using the finite element method, its partial derivatives have to be
obtained numerically as well. It is therefore essential to determine these derivatives as
accurately as possible to get accurate velocity fields.

The most straightforward way to compute the partial derivatives is the direct deriva-
tive method (from now on denoted by DD-method) in which the numerical approxima-
tion given by Eq. (2.16) is differentiated directly, i.e.,

∂a+b Nh̃

∂xa∂yb
=

n∑
l=1

Nl
∂a+bφl

∂xa∂yb
+

n+m∑
l=n+1

A(xl , yl )
∂a+bφl

∂xa∂yb
,
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where a and b are the order of differentiation in the x and y directions, respectively.
When linear basis functions are used, it is only possible to calculate the first-order partial
derivatives. Hence, the vertical velocity W can not be reconstructed. For this reason, we
use quadratic basis functions. The quadratic basis functions allow both the first-order
and the second-order partial derivatives to be computed at minimum computational
cost. Hence, the three components of the velocity can be computed.

A main drawback of the DD-method is that for each order of differentiation, the order
of convergence of the resulting derivative decreases by one. For quadratic basis func-
tions, the numerical solution for N is expected to converge with rate three. The first-
order and the second-order partial derivatives calculated using the DD-method are then
expected to converge with rates two and one, respectively.

In the literature, various methods (Carey [21], Zienkiewicz and Zhu [22], Zienkiewicz
and Zhu [23], Ilinca and Pelletier [24]) are proposed to recover partial derivatives more
accurately than with the DD-method. For the problem under consideration, the method
proposed by Carey [21] only resulted in superconverging (converging faster than ex-
pected) partial derivatives on a structured grid. For unstructured grids, the method
failed to converge. The method proposed by Ilinca and Pelletier [24] did not produce
superconverging results even for a structured grid.

The method proposed by Zienkiewicz and Zhu [22] (from now on denoted by ZZ-
method) was shown to produce superconverging results for the first-order partial deriva-
tives of a numerical solution calculated using linear basis functions. Here, we will apply
the ZZ-method twice to compute the first-order and the second-order partial derivatives
of a numerical solution calculated using quadratic basis functions. In the literature, no
proof exists that using the ZZ-method recursively gives accurate results.

Apart from the two approaches discussed above, the DD-method and the ZZ-
method, we combine these two methods to compute the second-order partial deriva-
tives of the numerical solution obtained using quadratic basis functions. This new
method works as follows. First, the DD-method is used to calculate the first-order partial
derivatives. The ZZ-method is then used on these first-order partial derivatives to obtain
the second-order partial derivatives. By doing so, the recursive use of the ZZ-method is
avoided. We refer to this method as the mixed-method.

In summary, the surface elevation in our model is computed using either linear or
quadratic basis functions. When linear basis functions are used, it is only possible to
compute the first-order partial derivatives either by the DD-method or the ZZ-method.
For quadratic basis functions, it is possible to compute both the first-order and the
second-order partial derivatives. The first-order partial derivatives can be computed
either by the DD-method or the ZZ-method. For the second-order partial derivatives,
either of the DD-method, the ZZ-method or the mixed-method can be used. The or-
der of convergence of the surface elevation and its partial derivatives calculated using
various methods will be assessed in section 2.4.

2.4. COMPARISON WITH A WIDTH-AVERAGED MODEL

2.4.1. INTRODUCTION AND GEOMETRY

Chernetsky et al. [1] developed a width-averaged (2DV) model for an exponentially con-
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verging estuary (Fig. 2.2). The width is given by B(x) = B0e−x/Lb , with 2B0 the width at
the entrance and Lb the e-folding length scale. The along-channel coordinate x varies
from x = 0 at the seaward side to x = L at the landward side, with L being the length of
the estuary. The lateral boundaries are located at y =−B(x) and y = B(x). If Lb →∞, the
exponentially converging domain becomes a rectangular domain with a constant width
of 2B0. The governing equations for the 2DV model are obtained by averaging the three-

River side

Seaward side

H x
o

H H y
o

z

x

y

y = B(x)

y =−B(x)

Figure 2.2: Sketch of the idealized geometry used by Chernetsky et al. [1]. The width B varies exponentially
as B(x) = B0e−x/Lb , where 2B0 the total width at the entrance and Lb the e-folding length (blue solid line,

). If Lb →∞, the exponential domain becomes a rectangular domain (blue dashed line, ).
The bed profile varies parabolically in the transverse direction (maintaining a constant lateral depths of H

y
o at

y =±B) and linearly in the longitudinal direction, with a depth of H at the entrance (x = 0, y = 0) and H x
o at the

end (x = L, y = 0).

dimensional continuity and momentum equations (given by Eq. 2.1) over the width,
using the appropriate boundary conditions. Similar to the approach in section 2.3.1, the
vertical profile of the velocities is calculated analytically. The velocities themselves are
proportional to the first and second order derivatives of the surface elevation.

If the bed profile h and physical parameters are allowed to vary in the along-channel
direction, the surface elevation has to be obtained numerically (which is done using
standard numerical techniques). For a uniform bed profile and spatially uniform physi-
cal parameters, an analytical solution of the 2DV model can be obtained.

To reproduce the results of a 2DV model by our 3D semi-idealized model, the Coriolis
parameter f in our model is set to zero. In addition to that, the bathymetry and physical
parameters are only allowed to vary in the along-channel direction. The results of the 3D
semi-idealized model are averaged over the width for a fixed longitudinal coordinate to
allow for a comparison of the results obtained with the 2DV model. The one-dimensional
width-averaged surface elevation is calculated from the two-dimensional surface eleva-
tion N (x, y) obtained from the 3D semi-idealized model as

N̄ (x) = 1

2B(x)

B(x)∫
−B(x)

N (x, y) dy, (2.19)

with N̄ the one-dimensional width-averaged surface elevation.
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2.4.2. VALIDATION AND CONVERGENCE ANALYSIS
In this section, the results of the 2DV and 3D semi-idealized models are compared. The
convergence properties of the numerical scheme are also investigated. A channel of uni-
form width (Lb →∞ limit of exponentially converging domain) of length L = 50 km and
total width 2B = 1000 m, together with a uniform bed profile of constant depth of 10 m,
is considered. The eddy viscosity Av is set to 0.01 m2 s−1.

SURFACE ELEVATION

In Fig. 2.3, the surface elevation is compared for different values of the stress param-
eter s ranging from a no-slip condition (s À 1), to a moderate value (s = 0.01 m s−1),
to a free-slip condition (s = 0 m s−1). The domain is discretized using right-angled tri-
angles with 24 nodal points in the along-channel direction and 20 nodal points in the
cross-channel direction. For all three values of the stress parameter, the results obtained
with the 3D semi-idealized model for both the amplitude and the phase of the surface
elevation agree well with those obtained with the 2DV model.
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Figure 2.3: Comparison of 3D semi-idealized and 2DV model results for the amplitude (left panel) and the
phase (right panel) of the surface elevation for different values of the stress parameter. The 3D semi-idealized
model result is shown using black asterisks (*) and the 2DV model result is denoted by the solid black line (-).

To investigate the convergence properties of the numerical solution, we systemati-
cally increase the number of nodes using an unstructured grid, i.e., the triangles need not
be right-angled. Results are compared for s = 0.01 m s−1. With both linear and quadratic
basis functions, the relative error defined in Eq. (2.17) decreases for an increasing num-
ber of nodes (Fig. 2.4(a)). For approximately 104.2 nodes, using quadratic basis functions,
the relative error approaches computer accuracy and decreases only slowly afterwards.
Note that for the same number of nodes, the relative error using quadratic basis func-
tions is at least 100 times smaller than the relative error found with linear basis func-
tions. The order of convergence for linear basis functions converges to 2 (Fig. 2.4(b),
red line), and for quadratic basis functions, the order of convergence converges to 3 (Fig.
2.4(b), blue line). For the number of nodes larger than 104.2, the order of convergence for
quadratic basis functions decreases due to the slow decrease in the relative error related
to computer accuracy. To conclude, the numerical solution for the surface elevation
converges with the expected order of convergence for both linear and quadratic basis
functions.



2.4. COMPARISON WITH A WIDTH-AVERAGED MODEL

2

31

Number of nodes

10
2

10
3

10
4

10
5

R
e

la
ti
v
e

 e
r
r
o

r
 (

r
)

10
-10

10
-8

10
-6

P1 elements
P2 elements

(a) Relative error

Number of nodes
10

3
10

4
10

5

O
r
d

e
r
 o

f 
c
o

n
v
e

r
g

e
n

c
e

 (
p

)

1

1.5

2

2.5

3

3.5

p=2

p=3

P1 elements
P2 elements

(b) Order of convergence

Figure 2.4: Relative error (left panel) and order of convergence (right panel) for the surface elevation of the
3D semi-idealized model. The red line shows the results for linear basis functions (P1 elements) and blue line
for quadratic basis functions (P2 elements). The golden line over the blue line for P2 elements depicts the
behavior of relative error and order of convergence after the solution has reached the computer accuracy. The
values p = 2 and p = 3 (right panel) indicate the order of convergence of the finite element method for linear
and quadratic basis functions, respectively.

FLOW FIELD

In Fig. 2.5, the absolute values of the horizontal and vertical velocities from the 2DV and
3D semi-idealized models are plotted. The domain is discretized using right-angled tri-
angles with 2000 nodes in the along-channel direction and 40 nodes in the cross-channel
direction. Quadratic basis functions together with the mixed-method are used to calcu-
late the surface elevation and its first-order and second-order partial derivatives. Figure
2.5 shows that the 3D semi-idealized model is able to reproduce the amplitudes of the
horizontal and vertical velocities of the 2DV model.

To assess the accuracy of these velocities, the convergence properties of the first-
order and the second-order partial derivatives will be examined. As explained in sec-
tion 2.3.2, only the first-order partial derivatives of the surface elevation can be obtained
when linear basis functions are used. With quadratic basis functions, both the first-order
and the second-order partial derivatives can be computed.

We first consider linear basis functions to compute the surface elevation. Both the
DD-method and the ZZ-method are used to compute the first-order partial derivative
of the surface elevation in the along-channel direction. Figure 2.6(a) shows that the rel-
ative error for the first-order partial derivative of the surface elevation decreases with
increasing number of nodes for both the DD-method and the ZZ-method. The relative
error for the ZZ-method is approximately 10 times smaller than that of the DD-method.
Concerning the order of convergence, the ZZ-method converges at a faster rate than the
DD-method. Increasing the number of nodes shows that the order of convergence for
both methods approaches 1 (Fig. 2.6(b)). There is a loss of one order of accuracy com-
pared to the second order convergence of the surface elevation for linear basis functions.
Clearly, the ZZ-method is more accurate than the DD-method both in terms of the rela-
tive error and the order of convergence of the first-order partial derivatives of the surface
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(a) |U | (2DV model) (b) |W | (2DV model)

(c) |U | (3D semi-idealized model) (d) |W | (3D semi-idealized model)

Figure 2.5: Amplitudes of the horizontal (left panel) and vertical velocities (right panel) computed using 3D
semi-idealized (lower panel) and 2DV (upper panel) models. The units for the colorbars are m s−1.

elevation.

Considering the quadratic basis functions, the convergence of both the first-order
and the second-order partial derivatives can be assessed. The ZZ-method and DD-
method are applied to compute the relative error for the first-order partial derivatives
of the surface elevation. Figure 2.7(a) shows that the relative error for the DD-method
decreases with an increasing number of nodes. However, when using the ZZ-method,
the relative error decreases up to approximately 104.2 nodes and then starts to increase.
Ignoring the last two entries of the ZZ-method, both methods converge with order 2 (Fig.
2.7(b)). Unlike linear basis functions (Fig. 2.6), there is only a small gain in using the
ZZ-method over the DD-method for calculating the first-order partial derivatives with
quadratic basis functions.

As discussed in section 2.3.2, the second-order partial derivatives can be computed
in three ways: 1) DD-method, 2) ZZ-method and 3) mixed-method. Figure 2.7(c) shows
that the relative error for the DD-method and the mixed-method decrease monotoni-
cally with increasing number of nodes. The relative error for the mixed-method is ap-
proximately a factor 10 smaller than the relative error found with the DD-method. Fur-
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Figure 2.7: Relative error (left panel) and order of convergence (right panel) for the first-order (upper panel)
and the second-order (lower panel) partial derivatives of the surface elevation in the along-channel direction
for quadratic basis functions. The red line shows the results for the DD-method, blue line for the ZZ-method
and green line for the mixed-method (only for second-order partial derivatives).
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thermore, the mixed-method converges faster than the DD-method. Up to 104.2 nodes,
i.e., as long as the relative error of the ZZ-method decreases, the ZZ-method gives the
most accurate results both in terms of the relative error and the order of convergence.
However, the relative error of the ZZ-method starts to increase when further increasing
the number of nodes, which makes it unreliable for use. All three methods ultimately
appear to converge with order 1.

At this point, it is important to mention that for quadratic basis functions, the un-
reliable behavior of the ZZ-method for computing the first-order and the second-order
partial derivatives with sufficiently large number of nodes is independent of the choice
of the bed profile. Similar convergence tests for the ZZ-method were carried out using
non-uniform bathymetric profiles with quadratic basis functions, resulting in a similar
behavior of the ZZ-method.

To conclude, when using the linear basis functions, the ZZ-method is recommended
to compute the first-order partial derivatives. For quadratic basis functions, the DD-
method for the first-order partial derivatives and the mixed-method for the second-
order partial derivatives are recommended.

2.4.3. PARAMETER SENSITIVITY
To investigate the influence of the geometry, the width at the entrance B0 will be varied
in section 2.4.3, keeping the e-folding length Lb constant. The influence of the variations
in the bathymetry will be studied in section 2.4.3. To compute the numerical solution of
the 3D semi-idealized model, the domain under consideration is discretized using an
unstructured triangular mesh with approximately 400,000 nodal points. Choosing such
a fine mesh minimizes the numerical error in the 3D semi-idealized model. The eddy
viscosity Av and stress parameter s are set to 0.01 m2 s−1 and 0.01 m s−1, respectively.

INFLUENCE OF WIDTH AT THE ENTRANCE

To study the influence of the width at the entrance B0 on the surface elevation in iso-
lation, an exponential domain of length L = 50 km and an e-folding length Lb = 10 km
together with a flat bed profile of 10 m depth is considered. The width at the entrance
B0 is varied and the width-averaged surface elevations obtained with the 2DV and 3D
semi-idealized models are compared.

In Fig. 2.8(a), the width-averaged surface elevation (given by Eq. 2.19) is shown for
different values of the width B0 at the entrance. For B0 = 2.5 km, both the 2DV and 3D
semi-idealized models produce similar results for the amplitude of the surface elevation.
It is important to note that the one dimensional surface elevation from the 2DV model is
independent of the width at the entrance (B0). Because of this, the amplitude of the sur-
face elevation for any value of B0 will be the same for a 2DV model. As B0 increases, the
width-averaged amplitude of the surface elevation obtained with the 3D semi-idealized
model starts to deviate from the results obtained from the 2DV model. This deviation in-
creases with increasing value of B0. For a width B0 = 40 km, a deviation of approximately
10% is observed.

To understand the cause of this deviation, the amplitude of the surface elevation ob-
tained with the 3D semi-idealized model is plotted in the horizontal space for different
values of B0. It is clear from Figs. 2.8(b), 2.8(c), and 2.8(d) that the solution is radially
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colorbar is m.

constant away from the entrance. At the entrance, a constant surface elevation has been
prescribed, which as it breaches the radial symmetry, results in the non-uniformity close
to the entrance.

INFLUENCE OF VARYING BATHYMETRY

A rectangular channel of length L = 50 km and width 2B0 = 1000 m is considered. A
parabolic bed profile is adopted,

h = H y
o + (H −H y

o )(1− y2/B 2), (2.20)

where H y
o is the constant depth at the lateral sides (y = ±B) and H is the maximum

depth which is attained at the center line (y = 0) of the channel. To use the 2DV model,
this bathymetric profile is averaged over the width, resulting in

h̄ = 1

2B

B∫
−B

h dy = 1

3

[
H y

o +2H
]

. (2.21)

In Fig. 2.9, the water depth at the sides is varied from 1 m to 10 m (which is a channel
with uniform bed again), and the difference between the amplitude of the width aver-
aged surface elevation obtained with the 2DV and 3D semi-idealized models is shown.
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Figure 2.9: Difference in the amplitude of the surface elevation between the 3D semi-idealized and 2DV mod-
els. The unit in the colorbar is m.

For H y
o = 1 m, a difference of approximately 8 cm in amplitude of the surface elevation

towards the landward side is found. For each value of H y
o , the difference in the amplitude

increases along the channel. As H y
o increases, the difference in the amplitude decreases.

The positive value for the difference of amplitudes shows that the amplitude of the sur-
face elevation from the 3D semi-idealized model is always larger than that of the 2DV
model.

2.5. COMPARISON WITH THREE-DIMENSIONAL ASYMPTOTIC

MODEL

2.5.1. INTRODUCTION AND GEOMETRY
Winant [16] developed a three-dimensional idealized model for an elongated rectangular
basin of length L and width 2B . The along-channel coordinate x varies from x = 0 at
the seaward side to x = L at the landward side. The cross-channel coordinate y varies
from y =−B at the lower boundary to y = B at the upper boundary. The term elongated
implies that the horizontal aspect ratio α = B/L has to be small. A no-slip condition is
imposed at the bottom z = −h. This limit is found by taking s → ∞ in our 3D semi-
idealized model. The eddy viscosity Av is assumed to be spatially uniform. The bed
profile given by Eq. (2.20) is used (see Fig. 2.2).

The surface elevation N follows from Eq. (2.12), but Winant [16] uses a different so-
lution method. Assuming that α¿ 1, an asymptotic expansion of N in α is made;

N = N0 +αN1 +O (α2), (2.22)

and substituted in Eq. (2.12). This results in a system of equations for various orders of
α, such that the leading order (N0) and the first order (N1) solutions can be calculated
analytically. The surface elevation is approximated by

N ≈ N0 +αN1 = NWinant. (2.23)
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It is important to realize that the solution NWinant given in Eq. (2.23) is not an exact
solution of system (2.12) as O (α2) and higher order terms are ignored. Therefore, in this
paper, we refer to this model as the 3D asymptotic model.

Parameter Value
L 50 km
B 100 m
H 10 m

H y
o 2 m

f Ω∗/2
Av 10−3 m2 s−1

Table 2.1: Default parameter values used for the comparison of the 3D asymptotic model and 3D semi-
idealized model. A no slip condition (s →∞) is imposed at the bottom.

2.5.2. VALIDATION
In this section, the 3D asymptotic and 3D semi-idealized model results for the surface el-
evation (section 2.5.2) and the velocity (section 2.5.2) are compared. An elongated rect-
angular basin of length L = 50 km and total width 2B = 200 m such that α (= 0.002) ¿ 1,
is considered. The default parameter values from table 2.1 are used.

SURFACE ELEVATION

First the surface elevations for different values of the eddy viscosities are compared,
Av=10−3, 10−2 and 10−1 m2 s−1. The rectangular basin is discretized using right-angled
triangles with 24 nodes in the along-channel direction and 20 nodes in the cross-channel
direction. Figure 2.10 shows that the amplitudes of the width-averaged surface eleva-
tions obtained from the 3D asymptotic model and 3D semi-idealized model appear to
agree well.

Note that for the parameter settings considered here, the Coriolis effects only in-
fluence the amplitude of the surface elevation marginally. This is because the width
of the channel 2B = 200 m is much smaller than the Rossby radius of deformation
R∗ = √

g H/ f ≈ 71 km, which is the length scale of the cross-channel variations for the
surface elevation.

FLOW FIELD

The rectangular domain is discretized using right-angled triangles with 200 nodes each
in both the along-channel and cross-channel directions. This relatively large number of
nodes is used to avoid numerical inaccuracies in the computation of the velocity compo-
nents. Quadratic basis functions together with the mixed-method are used to compute
the surface elevation and its first-order and second-order partial derivatives. Three ve-
locity components are compared in the cross-channel direction at a distance x = 25 km
from the entrance. It is evident from Fig. 2.11 that our 3D semi-idealized model is able
to reproduce all three velocity profiles of the 3D asymptotic model, even small details in
the vertical velocity W have been reproduced accurately. It is important to mention that
the comparison of the velocity field at other locations is as good as at x = 25 km.
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Figure 2.11: Comparison of the amplitude of three flow components (in m s−1). The velocities have been
plotted in the cross-section at a distance 25 km from the entrance. The upper panel shows the velocities from
the 3D asymptotic model and the lower panel from the 3D semi-idealized model. Left, central and right panels
show the along-channel, cross-channel and vertical velocities, respectively.

2.5.3. PARAMETER SENSITIVITY

In section 2.5.2, the results for the surface elevation and three flow components from
3D asymptotic and 3D semi-idealized models were compared for a rectangular channel
whose horizontal aspect ratio α was small (2.0×10−3). In this section, α will be system-
atically increased and the difference between the two models will be discussed. From
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equations (2.22) and (2.23), it follows that

|N −NWinant| =O (α2).

Assuming that the solution of the 3D semi-idealized model Nh̃ converges to the exact
solution N , it follows that

|Nh̃ −NWinant| ≈O (α2), (2.24)

which implies that for a channel geometry with horizontal aspect ratio α, an error of
O (α2) is expected provided the 3D semi-idealized solution has been calculated with high
enough accuracy.

To verify Eq. (2.24), a rectangular channel of length L = 50 km with different widths
at the entrance is considered, B = [250,500,1000,2000,4000,8000,16000], all in meters.
For each value of B , the rectangular domain is discretized by refining a coarse grid with
approximately 102 nodes to the finest grid with approximately 106 nodes. Linear basis
functions are used to compute the finite element approximation of the surface elevation.
For each value of B (hence α), the relative error of the surface elevation between the 3D
asymptotic and 3D semi-idealized models is computed for different numbers of nodes.
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Figure 2.12: Relative error for the surface elevation as a function of the number of nodes for different values of
the horizontal aspect ratio α plotted on log-log scale.

Figure 2.12 shows the influence of α on the accuracy of the 3D asymptotic model.
For each α, the relative error becomes constant after a large enough number of nodes.
This constant relative error is proportional to O (α2), thus suggesting that Eq. (2.24) is
indeed correct. As α increases, the relative error between the 3D semi-idealized and
3D asymptotic models increases. For the largest number of nodal points used in the
experiments, the relative error for different values of α appear to be equispaced. More
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precisely, there is approximately a difference of a factor 4 between the error for each α,
coinciding with the fact that the size of the domain is doubled each time. This clearly
demonstrates the sensitivity of the 3D asymptotic model to the horizontal aspect ratio.

2.6. APPLICATION TO THE EMS ESTUARY

Our 3D semi-idealized model allows us to study the tidal motion in an estuary with ar-
bitrary shape and bathymetry. As an example, we apply this model to the Ems estuary,
situated on the border of the Netherlands and Germany (Fig. 2.13). In section 2.6.1, the
surface elevation of the M2 tide obtained with the 3D semi-idealized model will be cal-
ibrated for the Ems estuary. The results for the amplitude and the phase of the surface
elevation are compared with the results of a complex numerical model (Delft3D) setup
by Van Maren et al. [10]. Next, the influence of the local width convergence on the tidal
motion will be investigated in section 2.6.2.

Figure 2.13: Map of the Ems estuary (from Chernetsky et al. [1])

2.6.1. CALIBRATION

The observational data for the water level in the Ems estuary for the year 2005 are used
from six locations in the estuary, namely Emden, Pogum, Terborg, Leerort, Weener, and
Papenburg (shown in magenta color in Fig. 2.14). The objective is to find the parameter
values for the 3D semi-idealized model such that the model results fit the observations
for the water level at these locations best. To this end, the geometric and bathymetric
profiles of the year 2005 of the Ems estuary is used in the 3D semi-idealized model (Fig.
2.14). The Coriolis parameter f is assumed to be constant throughout the estuary i.e.,
f = 1.166×10−4 rad s−1 (latitude = 53.32 degree). The physical parameters such as the
eddy viscosity Av and the stress parameter s are also assumed to be constant in space.
The 3D semi-idealized model is forced with a semi-diurnal (M2) tide of constant am-
plitude at the seaward side (North sea side, see Fig. 2.14). The domain is discretized
with approximately 200,000 nodes using an unstructured grid. The amplitude and the
phase of the surface elevation obtained with the 3D semi-idealized model is then scaled
in such a way that they match the observations at Emden. Next, the optimal values of
Av and s are found such that the mean squared error between the model results and the
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Figure 2.14: The geometry and bathymetry of the Ems estuary for the year 2005 (left panel). The data for
the surface elevation of the M2 tide is available at six locations (shown in the magenta color). The right panel
describes how the realistic domain is transformed into a symmetric domain. Red asterisks (∗) show the bound-
ary points of the transects. The green dashed line ( ) passes through the mid points of these transects
shown by green squares (ä). The width B of each transect is divided into −B/2 and B/2 with respect to the
middle green line as shown by blue lines ( ).

observations is minimum, i.e.,

min
Av,s

{
1

2

∑
i

{
(No,i −Nm,i )2 +2No,i Nm,i

[1−cos(φo,i −φm,i )]
}}

,

where No,i and φo,i are the amplitude and the phase of the surface elevation observed
at location i , whereas Nm,i and φm,i are the amplitude and the phase of the surface el-
evation obtained with the 3D semi-idealized model. The optimal values of Av and s are
0.0036 m2 s−1 and 0.0588 m s−1, respectively.

Van Maren et al. [10] set up a Delft3D model to understand the role of deepening of
the channel on the sediment concentration in the Ems estuary. The authors calibrated
their model using the same data as used in this paper. Figure 2.15 shows the observa-
tions, results from the 3D semi-idealized model and results from the Delft3D model of
van Maren. It is evident from Fig. 2.15 that the 3D semi-idealized model is able to re-
produce the amplitude and the phase of the surface elevation at six different locations
fairly well. It is interesting to see that for the amplitude of the surface elevation, the 3D
semi-idealized model fits the observations at least as accurately as the Delft3D model at
all locations except Pogum. For the phase of the surface elevation, both the 3D semi-
idealized and the Delft3D models fit the observations equally well.

2.6.2. INFLUENCE OF LOCAL CONVERGENCE
We focus on the upper part of the Ems estuary, starting from Knock up to the weir at Her-
brum. This part of the estuary consists of a narrow, meandering channel with decreasing
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Figure 2.15: Amplitude (left panel) and phase (right panel) of the surface elevation from observations, 3D
semi-idealized model and Delft3D model. The observations are shown in black asterisks (∗), results from 3D
semi-idealized model in red squares (ä) and results from Delft3D model in blue circles (◦).

width towards the landward side. In this section, the effects of channel convergence and
meandering are investigated.

To study the influence of the local convergence on the water motion, the chan-
nel from Knock to Herbrum is transformed into a symmetric domain bounded by y =
−B(x)/2 at the lower boundary to y = B(x)/2 at the upper boundary. For this, the widths
B along many transects in the channel (red asterisks, Fig. 2.14, right panel) are mapped
to a new domain bounded by y =−B/2 to y = B/2 (blue lines, Fig. 2.14, right panel), with
the central line y = 0 passing through the middle of the channel (green dashed line, Fig.
2.14, right panel). The resulting data set is shown in Fig. 2.16 (red asterisks). We call this
domain the scattered domain. It is important to note that the scattered domain is similar
to the realistic domain except that the meandering effects in the scattered domain have
been ignored.

First, this data set is fit with an exponential function given by

B = B0 exp(−x/Lb),

where B0 is the total width at the entrance and Lb is the e-folding length.
The optimal values of B0 and Lb fitting the data are calculated using the least square

method and are given as B0 = 543.9 m, Lb = 24.5 km. The corresponding domain is
shown in Fig. 2.16. It is also possible to fit the data with a polynomial function. From
Fig. 2.16, it is evident that a 9th degree polynomial function fits the width data more
accurately than the exponential function.

The values of the eddy viscosity Av and the stress parameter s, found during the cal-
ibration process in the previous section, are used. To understand the influence of geo-
metrical effects in isolation, a uniform bed profile is considered. Water depth of 15 m is
chosen such that the amplitude of the surface elevation exhibits a similar trend as shown
in Fig. 2.15(a). The system is forced with a semi-diurnal (M2) tide with an amplitude of
1.42 m at Knock. The domain is discretized using an unstructured grid with approxi-
mately 200,000 nodes. Linear basis functions together with the ZZ-method are used to
compute the surface elevation and the horizontal velocities.
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Figure 2.16: Approximation of the geometry of the Ems estuary. See Fig. 2.14 (right panel) for meaning of
various colors.

Figure 2.17(a) shows the amplitude of the surface elevation along the middle line
(shown in green color in Figs. 2.16 and 2.14) for different schematizations of the do-
main. It is evident that with the exponential domain, the amplitude of the surface ele-
vation throughout the domain is underestimated. Using the polynomial function of 9th
degree to approximate the width compares well in the first 30 km, further upstream, the
amplitude is slightly underestimated. The results with the scattered domain shows the
same behavior. This deviation between the realistic and scattered domains is probably
due to the meandering effects. Similar behavior is observed for the phase of the surface
elevation.
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Figure 2.17: Left panel shows the amplitude of the surface elevation and right panel the depth-averaged hori-
zontal velocity along the middle of the channel for different types of channel domains.

Next we look at the amplitude of the depth-averaged horizontal velocity which is de-

fined as
√

¯|U |2 + ¯|V |2, where Ū and V̄ are the depth-averaged along-channel and cross-
channel velocities, respectively and | · | denotes the absolute value. Figure 2.17(b) shows
that the results for the depth-averaged horizontal velocity with exponential domain de-
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Figure 2.18: Absolute value of the horizontal velocity along the middle of the channel for different types of
channel domains. The axes are same in all the plots. The units in the colorbars are m s−1.

viates significantly from the results with the realistic domain. The domain constructed
with a 9th degree polynomial captures the overall behavior of the depth-averaged hor-
izontal velocity profile throughout the domain. It is interesting to see the agreement
between the results obtained with the scattered domain and the realistic domain. The
scattered domain is able to accurately reproduce the depth-averaged horizontal velocity
at the entrance and the end of the channel.

To understand the influence of different channel domains on the vertical structure of
the flow, the absolute value of the horizontal velocity, which is defined as

√
|U |2 +|V |2,

where U and V are the along-channel and cross-channel velocities, respectively, is plot-
ted along the middle of the channel. Figure 2.18 shows that the scattered and polyno-
mial domains are able to reproduce the overall behavior of the horizontal velocity of the
realistic domain. It is interesting to see that smoothing the scattered domain with a poly-
nomial function also smoothes the contour lines of the velocity in the vertical direction,
capturing the main features. The exponential domain on the other hand, clearly seems
to miss the information throughout the domain, especially at the entrance. This is also
observed in Fig. 2.17(b).

2.7. CONCLUSIONS

A three-dimensional semi-idealized model for the tidal motion in an estuary with arbi-
trary geometric and bathymetric profiles has been developed. This model is intended
to bridge the gap between idealized and complex simulation models by retaining the
advantages of the idealized models (developed to obtain insight in physical mecha-
nisms, well suited to perform quick sensitivity analysis), but removing one of its weak
points (namely the requirement of idealized geometry and bathymetry). In this model,
the three-dimensional velocity field is expressed in terms of the first and second-order
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partial derivatives of the surface elevation. The surface elevation itself follows from a
two-dimensional linear elliptic partial differential equation which is solved numerically
using the finite element method. Linear and quadratic polynomials are considered as
basis functions for the finite element approximation of the surface elevation. Concern-
ing the accuracy and convergence properties of the newly developed model, we found
a second order convergence with linear basis functions and a third order convergence
with quadratic basis functions. With linear basis functions, ZZ-method proposed by
Zienkiewicz and Zhu [22] gives the most accurate results for the first-order partial deriva-
tives of the surface elevation. With quadratic basis functions, direct differentiation (DD-
method) of the finite element approximation of the surface elevation is recommended
for the first-order partial derivatives. For the second-order partial derivatives, a new
method known as the mixed-method, which is a combination of DD-method and ZZ-
method, is shown to work the best.

To investigate the influence of geometry and bathymetry on the tidal characteristics,
the results obtained with the three-dimensional semi-idealized model are compared to
those obtained with a width-averaged model developed by Chernetsky et al. [1]. For an
exponentially converging estuary with a flat bed, the deviation for the surface elevation
between the width-averaged model and the three-dimensional semi-idealized model
increases with increasing width at the entrance. For an estuary with constant width
and parabolic bed profile in the lateral direction, the width-averaged model underes-
timates the amplitude of the surface elevation for all values of the lateral water depths.
The comparison between the three-dimensional semi-idealized model and the three-
dimensional asymptotic model developed by Winant [16] for an elongated rectangular
channel shows that the absolute difference in the surface elevation obtained with these
two models increases for increasing horizontal aspect ratio, and is proportional to the
square of the horizontal aspect ratio.

To assess the influence of a more complex geometry on tidal propagation, the Ems
estuary is considered. First, the three-dimensional semi-idealized model is calibrated
using the observed geometry and bathymetry of the Ems estuary for the year 2005. Con-
cerning the amplitude and the phase of the surface elevation of the M2 tide, a good
agreement is found between the observations, the model results of three-dimensional
semi-idealized model and the model results of a complex numerical model (Delft3D)
setup by Van Maren et al. [10]. The model suggests that approximating the geometry of
the Ems estuary with an exponential function gives unsatisfactory results for the surface
elevation and the horizontal velocity compared to the results with the realistic geometric
profile. When approximated with a function that captures the local convergence effects
(in this case, a 9th degree polynomial) of the Ems estuary, a good agreement with the
results obtained with realistic geometry was found. It is therefore recommended to con-
sider local geometrical effects when using simplified geometry to model tidal motion.
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3
THREE-DIMENSIONAL

SEMI-IDEALIZED MODEL FOR

ESTUARINE TURBIDITY MAXIMA IN

TIDALLY DOMINATED ESTUARIES

We develop a three-dimensional idealized model that is specifically aimed at gaining in-
sight in the physical mechanisms resulting in the formation of estuarine turbidity max-
ima in tidally dominated estuaries. First, the three-dimensional equations for water mo-
tion and suspended sediment concentration together with the so-called morphodynamic
equilibrium condition, are scaled. Next, surface elevation, velocity and sediment concen-
tration are expanded in a small parameter ε= ĀM2 /H, where ĀM2 is the mean amplitude
of the M2 tide and H is the mean water depth at the seaward side. This results in a system
of equations at each order in this small parameter. This ordering allows solving for the
vertical structure of the velocity and suspended sediment concentration, independently of
the horizontal dimension. After obtaining these vertical structures, the horizontal depen-
dencies of the physical variables follow from solving a two-dimensional elliptic partial
differential equation for the surface elevation. The availability of fine sediments in the es-
tuary follows from a two-dimensional elliptic partial differential equation which results
from requiring the system to be in morphodynamic equilibrium, and prescribing the to-
tal amount of easily erodible sediments available in the estuary. These elliptic equations
for the surface elevation and sediment availability are solved numerically using the fi-
nite element method with cubic polynomials as basis functions. As a first application, the
model is applied to the Ems estuary using a simplified geometry and bathymetric profiles
characteristic for the years 1980 and 2005. The availability of fine sediments and loca-
tion of maximum concentration are investigated for different lateral depth profiles. In the
first experiment, a uniform lateral depth is considered. In this case, both the sediment
availability and suspended sediment concentration are, as expected, uniform in the lat-
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eral direction. In 1980, the sediment is mainly trapped near the entrance, while in 2005,
the sediment is mostly trapped in the freshwater zone. In the next experiment, the lat-
eral bathymetry is varied parabolically while keeping the mean depth unchanged. In this
case, the fine sediment is mainly found at the shallow sides, but the maximum sediment
concentration is found in the deeper channel where the bed shear stress is much larger
than on the shoals. As a final experiment, a more realistic (but smoothed) geometry and
bathymetry for the Ems estuary are considered, showing the possibilities of applying the
newly developed model to complex geometries and bathymetries.

In most estuaries, regions are observed with elevated suspended sediment concen-
tration compared with the adjacent landward and seaward regions. These regions are
called estuarine turbidity maxima (ETM). A good understanding of the ETM dynamics
is important for many reasons (for a detailed discussion, see Jay et al. [1] and Burchard
et al. [2]). First, the presence of an ETM can have a strong influence on the ecological
functioning of an estuary, as it can result in limited light conditions or anoxia (Talke et al.
[3]). Furthermore, at the location of the ETM, there is often a considerable deposition of
fine sediments, which results in enhanced dredging efforts to keep the estuary accessible
and the navigation lanes at their regular depths. Finally, ETM dynamics is shown to be
sensitive to changes in bathymetry, geometry and external forcing conditions (De Jonge
et al. [4]), which (if not well understood) can result in a deterioration of the system as a
whole.

To better understand and assess the effects of natural or anthropogenic changes on
ETM dynamics, different types of models are being applied (Murray [5]). For example,
state-of-the-art three dimensional process-based models are applied to simulate ETM
dynamics (Weilbeer [6], Van Maren et al. [7]) and changes in ETM dynamics due to
human interventions. However, these models are computationally expensive and the
mechanisms resulting in the observed dynamics are difficult to analyze (Schuttelaars
et al. [8]).

Alternatively, process-based idealized models are specifically designed to and aimed
towards studying the mechanisms resulting in the formation of ETMs and assessing their
sensitivity to parameters. Since these models focus on a specific phenomenon, some
processes are not or only parametrically taken into account. Furthermore, geometry and
bathymetry are often simplified. Huijts et al. [9] used an idealized modeling approach to
study the trapping of fine sediments in the lateral direction. Talke et al. [10] and Cher-
netsky et al. [11] focused on the sediment transport in the longitudinal direction, using
a width-averaged model. However, Geyer et al. [12] and Kim and Voulgaris [13] pointed
out that the lateral water motion and suspended sediment dynamics affect the processes
in the longitudinal direction and vice-versa. Therefore, to understand the ETM dynam-
ics and the underlying dominant trapping mechanisms (see for example Jay et al. [1] for
an overview of possible mechanisms), it is necessary to study both the lateral and longi-
tudinal processes simultaneously. Clearly, this requires a three-dimensional modelling
approach.

This paper has been published as: M. Kumar, H. M. Schuttelaars, and P. C. Roos, Three-dimensional semi-
idealized model for estuarine turbidity maxima in tidally dominated estuaries, Ocean Modelling 113, pp 1-21,
2017.
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For the water motion, three-dimensional idealized models have been developed and
analyzed in detail (Winant [14], Winant [15], Ensing et al. [16] and Kumar et al. [17] ),
but for the sediment transport and trapping of fine sediments, three-dimensional ide-
alized models are still missing. Therefore, the aim of this paper is to develop a three-
dimensional idealized model for water motion and sediment dynamics in an estuary
of arbitrary shape and bathymetry, including the Coriolis effect. This allows for a sys-
tematic study of the sediment trapping mechanisms in tidally-dominated estuaries. The
physical parameters are allowed to vary in the horizontal plane. The three-dimensional
model is solved using an asymptotic expansion technique. This results in analytical so-
lutions of the vertical profiles of the velocity and suspended sediment concentration.
These solutions still depend on the (gradients of the) surface elevation. The surface ele-
vation itself follows from a two-dimensional elliptic partial differential equation which is
solved numerically using the finite element method. The condition of morphodynamic
equilibrium is prescribed to govern the availability of fine sediments in the estuary.

As a first example, the new model is applied to the Ems estuary using simplified
geometric and bathymetric profiles characteristic for 1980 and 2005. The location of
maximum trapping of sediments for both years is investigated. The influence of lateral
bathymetry is investigated by first keeping the depth in the lateral direction uniform.
Next, the lateral bathymetric profile is varied parabolically while keeping the width-
averaged depth unchanged. The results are qualitatively compared with observations
and the influence of lateral depth variations is discussed. As a final example, we use the
(smoothed) observed bathymetry and geometry of the Ems in 2005 to obtain the trap-
ping location of the fine sediments.

The structure of the paper is as follows. The philosophy of idealized modeling and
step by step overview of model development are presented in section 3.1. The model
equations of water motion and suspended sediment concentration and the condition
of morphodynamic equilibrium are presented in section 3.2. This section also presents
the scaling and perturbation analyses which results in a system of equations at each or-
der for the water motion and the suspended sediment concentration. The leading-order
system for the water motion is solved in section 3.3, the first-order system in section
3.4. Similarly, the leading-order and first-order systems for suspended sediment con-
centrations are solved in sections 3.5 and 3.6, respectively. The equation for sediment
availability governing the distribution of fine sediments in the estuary is solved in sec-
tion 3.7. Section 3.8 gives a short description of the numerical solution procedure for
the two-dimensional elliptic partial differential equations obtained for both the surface
elevation and sediment availability with a special discussion on the accuracy of the re-
sulting solutions. Next, this model is applied to the Ems estuary in section 3.9. Finally,
conclusions are presented in section 3.10.

3.1. IDEALIZED MODEL - MODEL PHILOSOPHY
The main research question will be answered by developing a so-called idealized,
process-based model. Idealized models focus on specific phenomena (here ETM forma-
tion), neglecting or simplifying processes that are not essential for the phenomenon un-
der study. In this chapter, we focus on developing such a model for a tidally dominated,
well-mixed estuary. It is assumed that the suspended sediment concentrations do not
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influence the water motion significantly, and that the water motion is mainly driven by
a prescribed M2 tide at the seaward side.

In constructing this idealized model, ten steps can be identified. These steps are
visualized in Fig. (3.1); the precise sections where the individual steps are discussed in
detail, are indicated in this figure as well. Below, the main steps are summarized:

1. Derive the model equations, and define the geometry and bathymetry of interest.

2. Make the physical variables (such as surface elevation, water depth, etc.) dimen-
sionless by introducing typical scales; subsequently use these to make the govern-
ing equations dimensionless. Since all dimensionless physical variables are order
one, the relative importance of each term in any of the equations is measured by
the magnitude of the dimensionless number, multiplying the dimensionless group
of physical variables. These magnitudes can be calculated explicitly after choosing
scales that are representative for the estuary/class of estuaries under considera-
tion.

3. Verify that one of the dimensionless numbers is the ratio of the M2 surface eleva-
tion averaged over the entrance (AM2 ) and the mean water depth H at the seaward
boundary. This ratio, denoted by ε, is much smaller than one. Next, all other di-
mensionless numbers are related to ε.

4. Expand the physical variables in the small parameter ε. These asymptotic expan-
sions are introduced in the dimensionless equations, and terms of equal order in
ε are collected. Since only terms of equal order in ε can balance, this results in a
system of equations at each order in ε.

5. Construct the solutions for the leading-order water motion, i.e., at order ε0. Since
the leading-order water motion is only driven by the M2 tidal signal at the seaward
boundary, it only consists of an M2 constituent.

6. Derive the first-order water motion using the leading-order water motion, i.e., ε1.
It is found that the temporal variations of the first order water motion consist of a
residual and an M4 contribution.

7. Calculate the leading-order concentration using the leading-order water motion.
Concerning its temporal behaviour, a residual contribution and contributions
with multiples of the M4 tidal frequency are obtained.

8. The first-order suspended sediment concentration is obtained using information
of both the leading- and first-order velocity fields, and the leading-order concen-
tration. The temporal variations of the first-order concentration consist of a resid-
ual contribution and contributions with multiples of the M2 tidal frequency.

9. Calculate the leading-order, tidally averaged suspended sediment transport. It
consists of three contributions:
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· 3D shallow water equations                                  
· 3D suspended sediment concentration
· Morphodynamic equilibrium condition

· Identify small parameter ε 
· Relate  dimensionless numbers  to ε 
· Expand all physical variables in ε 

· Substitute expansion of physical variables in dimensionless equations
· Construct system of equations at each order in ε 

First-order sediment concentration

· Get typical scales for the physical quantities
· Make the equations dimensionless 

Leading-order water motion 

Leading-order sediment concentration

First-order water motion

Residual sediment transport

Sediment availability
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Figure 3.1: Flow chart showing the steps involved in the development of the idealized model.

• advective transport due to correlations between the leading-order velocity
and first-order concentration. Only the correlation between the leading-
order velocity and the M2 component of the first-order concentration results
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in a net transport.

• advective transport due to correlations between the first-order velocity and
leading-order concentration. Both the residual concentration, advected by
the residual velocity, and the correlation between the first-order M4 veloc-
ity and the M4 component of the leading-order concentration result in a net
transport.

• diffusive transport due to spatial gradients in the residual concentration field.

10. Impose the condition of morphodynamic equilibrium to obtain the spatial distri-
bution of easily erodible sediments.

In the following sections (see Fig. 3.1), these steps will be executed to develop a
model for sediment trapping in a tidally-dominated estuary.

3.2. MODEL FORMULATION

3.2.1. MODEL DOMAIN
An estuary of arbitrary shape (geometry) and depth profile (bathymetry) is considered
(Fig. 3.2). A Cartesian coordinate system is used, with x, y denoting the horizontal co-
ordinates, and z the vertical coordinate, pointing in the upward direction. Importantly,
x or y need not represent the along-channel or cross-channel coordinate. The undis-
turbed water level is denoted by z = 0 and the surface elevation by z = η(x, y, t ), where t
is time. The undisturbed bed level denoted by z =−h(x, y), is assumed to be prescribed
and independent of time on the time scale under consideration. Boundaries where the
surface elevation is prescribed are called seaward boundaries (denoted by ∂SΩ), if river
discharge is prescribed, they are called river boundaries (denoted by ∂RΩ). The closed
boundaries are denoted by ∂CΩ.

3.2.2. WATER MOTION
The water motion is governed by the three-dimensional shallow water equations, in-
cluding the Coriolis effect. Conservation of mass and momentum (using the Boussinesq
approximation and hydrostatic balance) is expressed as (Cushman-Roisin and Beckers
[18] and Vreugdenhil [19])

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (3.1a)

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
− f v =−g

∂η

∂x
− g

ρ0

∫ η

z

∂ρ

∂x
dz ′+ ∂

∂z
(Av

∂u

∂z
), (3.1b)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
+ f u =−g

∂η

∂y
− g

ρ0

∫ η

z

∂ρ

∂y
dz ′+ ∂

∂z
(Av

∂v

∂z
). (3.1c)

The unknown variable u = (u, v, w) denotes the components of the velocity field in x, y
and z directions, respectively. The mean density is denoted by ρ0 and the dynamic den-
sity by ρ(x, y) which is assumed to be a prescribed function of the horizontal coordinates
x and y only, i.e., the estuary is assumed to be well-mixed. Furthermore, time variations
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y

Seaward side (∂SΩ)

River side (∂RΩ)

Figure 3.2: Three-dimensional sketch of an estuary with arbitrary geometric and bathymetric profiles. The
bathymetric profile is shown on a grayscale. The seaward side (denoted by ∂SΩ) is shown in magenta color
( ) and the river boundary (denoted by ∂RΩ) in cyan color ( ). The other boundaries (denoted
by ∂CΩ) are assumed to be closed walls. The surface of the estuary is discretized using linear triangles in order
to compute the surface elevation with the finite element method. The nodes on the seaward boundary (where
elevation amplitude is prescribed) are indicated by blue diamonds (�) and on rest of the boundaries (nodes
where the surface elevation has to be computed) by red diamonds (�). At each node in the triangulization of
the surface, the vertical profile of the velocity field can be computed analytically using partial derivatives of the
surface elevation as shown by yellow dashed lines ( ). The velocity at the surface is depicted by green
arrows ( ) and, in the rest of the water column, by yellow arrows ( ). This figure has been taken
from Kumar et al. [17].

in ρ are neglected. The vertical eddy viscosity coefficient is denoted by Av(x, y) and is as-
sumed to be a prescribed function of x and y only, thus uniform in z and time-invariant.
Note that horizontal viscous effects are neglected in Eq. (3.1), see Winant [14] for a de-
tailed discussion. The parameter f is the Coriolis parameter, given by f = 2Ω̃sinθ, where
Ω̃= 7.292×10−5 rad s−1 is the angular frequency of the Earth’s rotation, and θ the latitude
which is assumed to be uniform over the domain ( f -plane approximation).

To obtain a well-posed problem for the water motion, appropriate boundary condi-
tions have to be prescribed. At the seaward boundary (∂SΩ), the system is forced with a
combination of a prescribed semi-diurnal lunar (M2) tide and its first overtide (M4),

η= AM2 cos(ωt −φM2 )+ AM4 (2ωt −φM4 ), for all (x, y) in ∂SΩ, (3.2a)

where AM2 (x, y) and AM4 (x, y) are the (possibly) spatially varying amplitudes of the sur-
face elevation of the M2 and M4 tidal constituents at the seaward boundary. The phases
of the M2 and M4 tides at the seaward side are denoted by φM2 (x, y) and φM4 (x, y), re-
spectively. The M2 tidal constituent is assumed to be the dominant one, i.e., AM4 < AM2 .
The parameter ω = 2π/T denotes the angular frequency of the M2 tide with period T =



3

56
3. THREE-DIMENSIONAL SEMI-IDEALIZED MODEL FOR ESTUARINE TURBIDITY MAXIMA

IN TIDALLY DOMINATED ESTUARIES

12.42 hrs. At the river boundary (∂RΩ), a time-independent river discharge Q (m3 s−1) is
prescribed, ∫

∂RΩ

(∫ η

−h
uh · n̂ dz

)
ds =−Q, (3.2b)

where uh = (u, v) denotes the horizontal velocity and n̂, the horizontal unit normal vec-
tor pointing outwards. The outer integral in Eq. (3.2b) denotes the line integral over the
river boundary. Importantly, −Q is the total inflow of fresh water over one river bound-
ary. If there is more than one river inlet (shown in cyan color in Fig. 3.2), ap-
propriate river discharges Q are assigned to each one. Since we are focussing on tidally
dominated systems, the river discharge is assumed to be small compared with the tidal
discharge (see section 3.2.5). At the closed boundaries (∂CΩ), a no-transport condition
is imposed, ∫ η

−h
uh · n̂ dz = 0, for all (x, y) in ∂CΩ. (3.2c)

It is not possible to require the flux to vanish at each point in the vertical at the boundary.
This is a consequence of neglecting the horizontal viscous effects, by which the horizon-
tal viscous boundary layer is not resolved. Following Winant [14], this is acceptable since
the thickness of this boundary layer is negligible compared with the horizontal length
scale we are focusing on (length scale of the order of the length of the estuary).

At the free surface z = η, kinematic and dynamic boundary conditions are imposed,

w = ∂η

∂t
+u

∂η

∂x
+ v

∂η

∂y
, at z = η, (3.2d)

Av
∂uh

∂z
= 0h, at z = η, (3.2e)

where 0h = (0,0) is the two-dimensional horizontal null vector. At the bottom z = −h,
the non-permeability condition (kinematic) and the dynamic boundary condition are
prescribed,

w =−u
∂h

∂x
− v

∂h

∂y
, at z =−h, (3.2f)

Av
∂uh

∂z
= τb

ρ0
= suh, at z =−h, (3.2g)

where s(x, y) is the so-called stress parameter which follows from the linearization of
the bed shear stress (see Zimmerman [20]). If s → 0, this formulation reduces to the
free-slip condition, for s →∞ to the no-slip condition. It is important to point out that
by adopting this simplification, the constant stress layer near the bed where the viscosity
goes to zero, is neglected, see Schramkowski et al. [21] for details. Here, we have assumed
that both the bottom slopes and the surface elevation slopes are much smaller than 1,
i.e., |∇h|, |∇η|¿ 1 .
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3.2.3. SUSPENDED SEDIMENT CONCENTRATION
The suspended sediment concentration is modeled by a three-dimensional advection-
diffusion equation

∂c

∂t
+∇·F = 0, (3.3)

with F = Fa +Fs +Fd , the sediment flux that consists of three different contributions: the
advective flux Fa , the settling flux Fs and the diffusive flux Fd . These fluxes are given by

Fa = cu,

Fs =−(0,0,cws),

Fd =−(Kh
∂c

∂x
,Kh

∂c

∂y
,Kv

∂c

∂z
),

where ws denotes the settling velocity, and Kh(x, y) and Kv(x, y) the horizontal and ver-
tical diffusivities, respectively. The vertical diffusivity Kv is assumed to be equal to the
vertical eddy viscosity Av. Using these expressions, Eq. (3.3) becomes

∂c

∂t
+ ∂

∂x

(
cu −Kh

∂c

∂x

)
+ ∂

∂y

(
cv −Kh

∂c

∂y

)
+ ∂

∂z

(
c(w −ws)−Kv

∂c

∂z

)
= 0. (3.4)

At the free surface z = η and the bottom z =−h, the outward normal component of the
sum of the settling and diffusive fluxes is required to be equal to a specified erosion-
deposition flux of volume concentration S∗, i.e.,

−(Fs +Fd ) · n̂ = S∗, (3.5)

where n̂ is the unit normal vector pointing outwards.
At the free surface, using |∇η|¿ 1, n̂ = (−ηx ,−ηy ,1), and S∗ = 0 results in

−Khcxηx −Khcyηy +wsc +Kvcz = 0 at z = η. (3.6a)

At the bottom, using |∇h|¿ 1, n̂ = (−hx ,−hy ,−1), and S∗ = E −D , where E = wscref is
the erosion and D = wsc0, the deposition. Here cref is a reference concentration and c0 is
the actual concentration at the bottom, i.e., c0 = c|z=−h . The bottom boundary condition
thus becomes

−Khcx hx −Khcy hy −Kvcz = wscref, at z =−h, (3.6b)

with the reference concentration cref given as

cref =
ρs a|τb |
ρ0g ′ds

. (3.6c)

Here |τb | denotes the absolute value of the bed shear stress and a(x, y) represents the
availability of fine sediments at location (x, y). Note that a(x, y) is a spatially varying
coefficient parameterizing the ease with which fine sediments can be eroded and the
amount of easily erodible fine sediments available at location (x, y) (Friedrichs et al. [22],
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Chernetsky et al. [11] and Huijts et al. [9]). The sediment density is denoted by ρs, g ′ =
g (ρs −ρ)/ρ0 is the reduced gravity, and ds(x, y) is the grain size of the sediments.

It should be noted that in Eq. (3.4) the horizontal diffusivities are retained. How-
ever, to be consistent with the solution procedure for the hydrodynamic equations, the
boundary layers for the suspended sediments will also not be resolved and the horizon-
tal diffusivities will only play a role in the morphodynamic equilibrium condition (see
section 3.2.4) . Hence Eq. (3.4), together with the boundary conditions given by Eq. (3.6)
complete the system of equations governing the suspended sediment concentration in
the estuary for given availability a(x, y).

3.2.4. CONDITION OF MORPHODYNAMIC EQUILIBRIUM
We consider a state of the system in which tidally averaged erosion and deposition bal-
ance each other:

〈D −E〉 = 0, (3.7)

where 〈·〉 denotes a tidally-averaged quantity (see Van Rijn [23] for more details). This
condition is termed as the morphodynamic equilibrium condition (Chernetsky et al.
[11], Huijts et al. [9] and Friedrichs et al. [22]).

Integrating the sediment concentration equation over the water column (from z =
−h to z = η) and using the boundary conditions for water motion and suspended sedi-
ment concentration at the free surface and at the bottom results in

∂

∂t

∫ η

−h
c dz + ∂

∂x

∫ η

−h

(
cu −Kh

∂c

∂x

)
dz + ∂

∂y

∫ η

−h

(
cv −Kh

∂c

∂y

)
dz +D −E = 0.

Averaging the above equation over the tidal period, using Eq. (3.7), we find that the con-
dition of morphodynamic equilibrium requires that

〈 ∂
∂x

∫ η

−h

(
cu −Kh

∂c

∂x

)
dz + ∂

∂y

∫ η

−h

(
cv −Kh

∂c

∂y

)
dz〉 = 0. (3.8)

This condition together with the requirement that there is no tidally averaged sediment
transport through the boundaries, can only be satisfied if the easily erodible fine sedi-
ment has a specific spatial distribution, i.e., Eq. (3.8) is effectively a condition for a(x, y).

3.2.5. SCALING AND PERTURBATION ANALYSES
Next, the equations for the water motion, suspended sediment concentration and mor-
phodynamic equilibrium are scaled by introducing dimensionless variables. This results
in the identification of a small parameter ε defined as

ε= ĀM2 /H ¿ 1.

Here, ĀM2 is the mean elevation amplitude of the M2 tide at the seaward boundary and
H the mean depth at the seaward boundary. The order of magnitude of all other dimen-
sionless numbers is related to this parameter ε, thus indicating the relative importance
of each contribution. Next, the unknown physical variables are expanded in this small
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parameter (see Nayfeh [24] for details about perturbation methods). These asymptotic
expansions are inserted in the dimensionless system of equations and terms of equal or-
der in ε are collected. This results in systems of equations at each order in ε (see A for a
detailed description of the scaling and perturbation analyses).

In the following sections, we present the systems of equations in their dimensional
form and the solution procedure used to solve the leading-order (ε0) and first-order (ε1)
system of equations for the water motion (sections 3.3 and 3.4) and the suspended sed-
iment concentration (sections 3.5 and 3.6). Finally, the sediment availability a(x, y) is
obtained by solving the condition of morphodynamic equilibrium which is encountered
only at second order (ε2).

For clarification, let us now introduce the notation convention. In φmn , where φ is
any of the unknown physical variables, i.e., φ = {η,u,c}, the first superscript m denotes
the order in ε of that contribution and the second superscript n its tidal frequency. For
example, η02 denotes the leading-order (ε0) M2 surface elevation and u14 denotes the
first-order (ε1) M4 velocity vector.

3.3. LEADING-ORDER WATER MOTION
The leading-order system of equations for the water motion reads

u0
x + v0

y +w0
z = 0, (3.9a)

u0
t − f v0 =−gη0

x + (Avu0
z )z , (3.9b)

v0
t + f u0 =−gη0

y + (Avv0
z )z , (3.9c)

with boundary conditions at the free surface

ρ0 Av(u0
h)z = 0h, and w0 = η0

t , at z = 0.

Note that, as a result of the scaling procedure, this boundary condition is prescribed at
z = 0 (see A for details). At the bottom z =−h, we require that

Av(u0
h)z = su0

h, and w0 =−u0hx − v0hy , at z =−h.

The water motion at leading-order is only forced by the M2 tidal constituent at the sea-
ward boundary,

η0 = AM2 cos(ωt −φM2 ) for all (x, y) in ∂SΩ,

while the transport through the other boundaries vanishes∫ 0

−h
u0

h · n̂ dz = 0, for all (x, y) in ∂RΩ or ∂CΩ.

As already pointed out in section 3.2.2, it is assumed that the river inflow gives a contri-
bution only at O (ε) and hence does not appear in the leading order system of equations.
The solution of this system of equations describes the propagation of a tidal wave in
a homogeneous fluid (no density effects) in an estuary with an arbitrary geometry and
bathymetry. Here, only a brief outline of the solution method is presented.
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To solve the leading-order water motion (see Kumar et al. [17] for details), we write

(η0,u0) =ℜ{(N 02,U 02)e iωt }, (3.10)

where ℜ stands for the real part of a complex variable, and N 02 and U 02 = (U 02,V 02,W 02)
are spatially varying complex amplitudes of the surface elevation and the velocity field,
respectively. The vertical structure of the leading-order velocity field can be obtained
analytically using Eqs. (3.9b) and (3.9c); it is proportional to the first- and second-order
partial derivatives of the leading-order surface elevation.

The surface elevation N 02 and its partial derivatives are obtained by integrating the
leading-order continuity equation (Eq. 3.9a) over the water column. Using the appro-
priate boundary conditions, a two-dimensional elliptic partial differential equation for
the leading-order surface elevation N 02 is obtained. This equation is solved numerically
using the finite element method (see section 3.8 for details).

3.4. FIRST-ORDER WATER MOTION
The first-order system of equations for the water motion reads

u1
x + v1

y +w1
z = 0, (3.11a)

u1
t +F x

AC − f v1 =−gη1
x +F x

GC + (Avu1
z )z , (3.11b)

v1
t +F y

AC + f u1 =−gη1
y +F y

GC + (Avv1
z )z , (3.11c)

where {F x
AC ,F y

AC } denote the advective terms and {F x
GC ,F y

GC }, the forcing due to density
gradients. The different forcing terms are defined in Table 3.1. At the seaward boundary,
an external M4 tide (FEF ) is prescribed

η1 = FEF , for all (x, y) in ∂SΩ. (3.11d)

At the river boundary, a river discharge density Q ′ is prescribed, FRD =−Q ′,∫ 0

−h
u1

h · n̂ dz +F ∂Ω
T RF = FRD , for all (x, y) in ∂RΩ. (3.11e)

The total river discharge Q is distributed over the river boundary by requiring that∫
∂RΩ

Q ′ ds =Q. (3.11f)

The contribution F ∂Ω
T RF is the transport through the boundary due to the correlation be-

tween the leading-order surface elevation and the velocity. At the closed boundary ∂CΩ,
the total transport must vanish which implies that the first-order transport must balance
the transport due to the correlation between the leading-order surface elevation and the
velocity, ∫ 0

−h
u1

h · n̂ dz +F ∂Ω
T RF = 0, for all (x, y) in ∂CΩ. (3.11g)
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At the free surface, the first-order stress must balance the stress due to the leading-order
solution, denoted by FN S , evaluated at z = 0.

ρ0 Av(u1
h)z =−FN S , at z = 0. (3.11h)

The forcing in the interior due to the correlation between the leading-order surface ele-
vation and velocity, denoted by FΩT RF , appears in the kinematic boundary condition as

w1 = η1
t +FΩT RF , at z = 0. (3.11i)

For the boundary conditions at the bottom, no new forcing terms are obtained, i.e.,

Av(u1
h)z = su1

h, and w1 =−u1hx − v1hy , at z =−h. (3.11j)

Since the leading-order flow is known, the system of equations for the first-order water

Name Mathematical expression Abbreviation n

Externally prescribed

Gravitational circulation g
ρ0

z(ρx ,ρy ) (F x
GC ,F y

GC ) 0

External M4 AM4 cos(2ωt −φM4 ) FEF 4
River discharge −Q ′ FRD 0

Internally generated

Advection u02(u02
h )x + v02(u02

h )y +w02(u02
h )z (F x

AC ,F y
AC ) 0,4

No-stress ρ0 Avη
02u02

zz |z=0 FN S 0,4

Tidal return flow
∇· (η0u02

h )|z=0 FΩT RF 0,4
(η02u02

h ) · n̂|∂RΩ∪∂CΩ F ∂Ω
T RF

Table 3.1: Various forcing terms appearing in the first-order system of equations for the water motion (Eq.
3.11). The value of n denotes the frequency Mn of the forcing terms.

motion and its boundary conditions are linear in the unknown surface elevation η1 and
velocity field u1 = (u1, v1, w1). As a result, this equation can be solved for each forcing
term F individually.

The forcing terms F can be divided into two categories: externally prescribed and
internally generated. Table 3.1 gives a full list of all forcing terms for the first-order water
motion. The externally prescribed forcing terms are those prescribed explicitly, e.g., the
external M4 tide, time-independent river discharge and density gradients. The internally
generated forcing terms are generated by the non-linear interaction of the leading-order
flow variables (advection, no-stress and tidal return flow). It is important to note that
the forcing terms due to the non-linear interactions of leading-order water motion are
either time-independent or are forcing terms with an M4 periodicity. Therefore, both
externally prescribed and internally generated forcing terms can be written as

F =ℜ{F 1ne
niωt

2 }, (3.12)
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where n = 0 or 4 depending on the forcing term (see Table 3.1 for values of n). This allows
us to write the solution of the first-order water motion as

(η1n ,u1n) =ℜ{(N 1n ,U 1n)e
niωt

2 },

where the terms with the superscript 10 (n = 0) denote first-order M0 components and
those with a superscript 14 (n = 4), first-order M4 components. Here N 1n and U 1n =
(U 1n ,V 1n ,W 1n) are the spatially varying complex amplitudes of the first-order surface
elevation and velocity field, respectively. The first-order system for n-th tidal frequency
thus becomes

U 1n
x +V 1n

y +W 1n
z = 0, (3.13a)

niω

2
U 1n +F x,1n

AC − f V 1n =−g N 1n
x +F x,10

GC + (AvU 1n
z )z , (3.13b)

niω

2
V 1n +F y,1n

AC + f U 1n =−g N 1n
y +F y,10

GC + (AvV 1n
z )z . (3.13c)

In a similar way, the boundary conditions can be expressed in terms of the complex am-
plitudes. This introduces new terms FΩ,1n

T RF and F ∂Ω,1n
T RF which denote the n-th frequency

component of FΩT RF and F ∂Ω
T RF , respectively.

To solve for the complex amplitudes N 1n and U 1n , rotating flow variables are intro-
duced:

r 1n
1 =U 1n + iV 1n , and r 1n

2 =U 1n − iV 1n . (3.14)

Combining Eqs. (3.13b) and (3.13c), the equations for the rotating flow variables r 1n
1 and

r 2n
2 are obtained:

r 1n
j ,zz − (αn

j )2r 1n
j = g

Av
L j N 1n +F 1n

AC , j +F 10
GC , j , for j = 1,2, (3.15a)

together with the boundary conditions

ρ0 Avr 1n
j ,z = F 1n

N S, j , at z = 0, (3.15b)

ρ0 Avr 1n
j ,z = ρ0sr 1n

j , at z =−h. (3.15c)

In Eq. (3.15a), the operators L j are defined by L1 = ∂x + i∂y , and L2 = ∂x − i∂y , and
αn

j by

αn
1 =

√
i

nω+2 f

2Av
, and αn

2 =
√

i
nω−2 f

2Av
, n = 0,4.

For n = 4, αn
1 and αn

2 are related to the cyclonic and anticyclonic boundary layer thick-

ness δ± =
√

2Av
nω/2± f associated with the M4 tidal constituent (Soulsby [25], Souza [26]).

Similarly, for n = 0, the parameters are related to the time-independent boundary layer
thickness. The forcing terms in the equations for rotating variables are linear combina-
tions of the forcing terms in the original equations; see Table 3.2.
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Notation Definition

(F 10
GC ,1,F 10

GC ,2) − 1
Av

(F x,10
GC ± i F y,10

GC )

(F 1n
AC ,1,F 1n

AC ,2) 1
Av

(F x,1n
AC ± i F y,1n

AC )

(F 1n
N S,1,F 1n

N S,2) F x,1n
N S ± i F y,1n

N S

Table 3.2: Forcing terms appearing in the equations for rotating variables.

The equations for the rotating flow variables allow for analytical solutions,

r 1n
j (x, y, z) = cαn

j
(x, y, z)L j N 1n + fαn

j
(x, y, z), j = 1,2,

with

cαn
j
(x, y, z) = g

(αn
j )2 Av

[
s cosh(αn

j z)

αn
j Av sinh(αn

j h)+ s cosh(αn
j h)

−1

]
.

Expressions for fαn
j

depend on the forcing term under consideration. Integrating these

expressions over the depth gives∫ 0

−h
r n

j (x, y, z ′) dz ′ =Cαn
j
(x, y)L j N 1n +Fαn

j
(x, y), j = 1,2,

where

Cαn
j
(x, y) = g

(αn
j )3 Av

[
s sinh(αn

j h)

αn
j Av sinh(αn

j h)+ s cosh(αn
j h)

−αn
j h

]
.

Using Eq. (3.14), the depth-dependent and depth-integrated horizontal velocities are
obtained in terms of the gradients of the surface elevation and known forcing terms as

(U 1n ,V 1n) = (d1,−d2)N 1n
x + (d2,d1)N 1n

y + ( f 1n
1 , f 1n

2 ), (3.16)∫ 0

−h
(U 1n ,V 1n) dz = (D1,−D2)N 1n

x + (D2,D1)N 1n
y + (F 1n

1 ,F 1n
2 ), (3.17)

where

(d 1n
1 , f 1n

1 ,D1n
1 ,F 1n

1 ) = 1

2

[
(cαn

1
, fαn

1
,Cαn

1
,Fαn

1
)+ (cαn

2
, fαn

2
,Cαn

2
,Fαn

2
)
]

,

(d 1n
2 , f 1n

2 ,D1n
2 ,F 1n

2 ) = i

2

[
(cαn

1
,− fαn

1
,Cαn

1
,−Fαn

1
)− (cαn

2
,− fαn

2
,Cαn

2
,−Fαn

2
)
]

.

To obtain the surface elevation, the first-order continuity equation is integrated over
the water column (from z = −h to z = 0). Together with the boundary conditions at
z =−h and z = 0, this gives

∂

∂x

∫ 0

−h
U 1n dz + ∂

∂y

∫ 0

−h
V 1n dz + niω

2
N 1n +FΩ,1n

T RF = 0.
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Inserting the expressions for depth-integrated horizontal velocity given by Eq. (3.16)
in the above equation gives a second-order elliptic partial differential equation for the
surface elevation N 1n

∇· (D1n∇N 1n +F1n)+ niω

2
N 1n +FΩ,1n

T RF = 0, (3.18a)

where

D1n =
(

D1n
1 D1n

2
−D1n

2 D1n
1

)
, and F1n =

(
F 1n

1
F 1n

2

)
.

The associated horizontal boundary conditions read:

N 1n = F 14
EF , for all (x, y) in ∂SΩ, (3.18b)

(D1n∇N 1n +F1n) · n̂+F ∂Ω,1n
T RF = F 10

RD , for all (x, y) in ∂RΩ, (3.18c)

(D1n∇N 1n +F1n) · n̂+F ∂Ω,1n
T RF = 0, for all (x, y) in ∂CΩ. (3.18d)

Since this equation for the surface elevation is linear, it can be solved for each forcing
term separately (i.e., each forcing term is studied individually by putting all other forcing
terms to zero), thus resulting in explicit expressions for the first-order velocity due to
each forcing term separately. The elliptic equation for N 1n has to be solved numerically,
for details see section 3.8.

The first-order horizontal velocity u1
h consists of a sum of M0 and M4 tidal con-

stituents,

u1
h = u10

h +u14
h , (3.19a)

which can be further expressed as a sum of various constituents of the first-order water
motion, i.e.,

u10
h = u10

h,GC +u10
h,RD +u10

h,AC +u10
h,N S +u10

h,T RF , (3.19b)

u14
h = u14

h,EF +u14
h,AC +u14

h,N S +u14
h,T RF . (3.19c)

Table 3.1 presents an explanation of abbreviations used in Eq. (3.19). The first-order ver-
tical velocity W 1n are obtained by integrating the first-order continuity equation in the
vertical direction from z ′ =−h to z ′ = z (see Kumar et al. [17] for a detailed explanation).

3.5. LEADING-ORDER SUSPENDED SEDIMENT CONCENTRA-
TION

The leading-order equation for the suspended sediment concentration is given by

c0
t − (Kvc0

z )z − (wsc0)z = 0. (3.20a)

The boundary condition at the free surface reads

Kvc0
z +wsc0 = 0, at z = 0, (3.20b)
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and at the bottom

Kvc0
z +a

wsρs

ρ0g ′ds
|τb |0 = 0, at z =−h. (3.20c)

Here |τb |0 denotes the leading-order component of the absolute value of the bed shear
stress. From Eq. (3.20), it follows that the leading-order suspended sediment concen-
tration is solely driven by |τb |0. Since the bed shear stress is written as the sum of a
residual component and components with frequencies that are even multiples of the
M2 frequency, the leading-order suspended sediment concentration is also written as

c0 = c00 + c04 + . . .

Even though Eq. (3.20) can be solved for any tidal constituent, only c00 and c04 are re-
quired to compute the leading-order residual transport (see Appendix C). To stress that
the suspended sediment concentrations are linear in the unknown sediment availability
a(x, y), we can write

c0 = ac̃0a = ac̃00a +ac̃04a + . . . (3.21)

Here, c̃00a , c̃04a and c̃0a are the M0, M4 and total leading-order suspended sediment con-
centrations obtained with a = 1. The superscript a indicates that these concentrations
are proportional to a.

3.6. FIRST-ORDER SUSPENDED SEDIMENT CONCENTRATION
The equation for the first-order suspended sediment concentration c1 is given by

c1
t +F c

AC − (Kvc1
z )z − (wsc1)z = 0, (3.22a)

where F c
AC = u0c0

x + v0c0
y +w0c0

z expresses advection of the leading-order concentration
by the leading-order velocity. At the surface, the first-order boundary condition reads

wsc1 +Kvc1
z = F c

S , at z = 0, (3.22b)

where F c
S = −η0

[
wsc0

z +Kvc0
zz

]
is the first-order correction to the balance between the

leading-order settling and deposition fluxes (due to the fact that this flux is calculated
at z = 0, instead of z = η, see also Appendix A). At the bottom, the boundary condition
reads

Kvc1
z +a

wsρs

ρ0g ′ds
|τb |1 = 0, at z =−h. (3.22c)

Here |τb |1 denotes the first-order component of the absolute value of the bed shear
stress.

The first-order suspended sediment concentration is the result of three different
forcing terms, the advection of the leading-order concentration by the leading-order
velocity (F c

AC ), the surface contribution (F c
S ) and the first-order bed shear stress (F c

BS ).
Since the equation is linear, the resulting first-order concentration is solved for each
forcing individually.
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At this point, it is important to remember that our aim is to get the main contribu-
tions to the first-order residual sediment transport (see section 3.1). The only first-order
residual sediment transport that depends on the first-order suspended sediment con-
centration c1, is due to the tidally-averaged advection of c1 by the leading-order veloci-
ties u0. Since the leading-order velocity only consists of an M2 tidal constituent, only the
M2 constituent of the first-order suspended sediment concentration c1 has to be calcu-
lated to get the residual suspended sediment transport due to the first-order suspended
sediment concentrations. (see sections 3.1 and 3.7). Therefore, in the following only the
construction of the M2 first order concentration will be discussed in detail.

3.6.1. CONTRIBUTION DUE TO ADVECTION
The equation governing the first-order suspended sediment concentration, resulting
from the interaction of leading-order velocity and concentration, is given by

c1
AC ,t +F c

AC − (Kvc1
AC ,z )z − (wsc1

AC )z = 0, (3.23a)

with homogeneous boundary conditions

wsc1
AC +Kvc1

AC ,z = 0, at z = 0, (3.23b)

Kvc1
AC ,z = 0, at z =−h. (3.23c)

Since F c
AC contains the gradients of the leading-order suspended sediment concentra-

tion, using Eq. (3.21), F c
AC can be written as a sum of contributions proportional to a, ax

and ay , i.e.,

F c
AC = aF a

AC +ax F ax
AC +ay F

ay

AC , (3.24)

where F a
AC = c̃0a

x u0 + c̃0a
y v0 + c̃0a

z w0, F ax
AC = c̃0au0, and F

ay

AC = c̃0a v0. Since the leading-
order flow consists only of an M2 tidal constituent, we only need the M0 and M4 tidal
constituents of the leading-order concentration c0 to get the M2 tidal component of F c

AC .
Denoting the M2 solution of c1

AC as c12
AC , we find that (see Appendix C for details)

c12
AC = ac̃12a

AC +ax c̃12ax
AC +ay c̃

12ay

AC , (3.25)

where c̃12a
AC , c̃12ax

AC , and c̃
12ay

AC are the solutions proportional to a, ax and ay , respectively.

3.6.2. CONTRIBUTION DUE TO FIRST-ORDER BED SHEAR STRESS
Analogous to the case of leading-order suspended sediment concentration, the first-
order component of the absolute value of the bed sear stress |τb |1 is decomposed in a
Fourier series using frequencies that are multiples of the M2 tidal frequency. To get the
dominant residual transport component, we are only interested in the M2 component
|τb |12 of the first-order component of the absolute value of the bed shear stress |τb |1.

The resulting suspended sediment concentration c12
BS follows from the equation,

c12
BS,t − (Kvc12

BS,z )z − (wsc12
BS )z = 0,
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with the boundary conditions,

wsc12
BS +Kvc12

BS,z = 0, at z = 0,

Kvc12
BS,z +a

wsρs

ρ0g ′ds
|τb |12 = 0, at z =−h,

where |τb |12 denotes the M2 component of |τb |1. Similar to the leading-order suspended
sediment concentration, we can define

c12
BS = ac̃12a

BS .

Note that |τb |12 depends on the first-order velocity which itself is a sum of various con-
tributions, for each of which we can compute the resulting suspended sediment concen-
tration c12

BS . In Table 3.3, a list of all these components is given.

u1
h u1

h components c12
BS components

u10
h

u10
h,GC c12

BS,GC
u10

h,RD c12
BS,RD

u10
h,AC c12

BS,AC 10
u10

h,NS c12
BS,N S10

u10
h,TRF c12

BS,T RF 10

u14
h

u10
h,EF c12

BS,EF
u14

h,AC c12
BS,AC 14

u14
h,NS c12

BS,N S14
u14

h,TRF c12
BS,T RF 14

Table 3.3: Various components of the first-order velocity (first column) and (corresponding) first-order con-
centration due to the bed shear stress (second column).

3.6.3. CONTRIBUTION DUE TO FORCING AT THE SURFACE

The last contribution is the result of the inhomogeneous contribution in the boundary
condition at the surface (Eq. 3.22b). Using the leading-order concentration equation, we
can rewrite this surface boundary condition as

F c
S =−η0 [

wsc0
z +Kvc0

zz

]=−η0c0
t ,

=−η02c04
t ,

=−aη02c̃04a
t .

This inhomogeneous term η0c04 results in both M2 and M6 contributions. The resulting
solution for the M2 component of the first-order suspended sediment concentration due
to the surface forcing is written as,

c12
S = ac̃12a

S .
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3.6.4. SUMMARY OF THE FIRST-ORDER CONCENTRATION
The M2 constituent of the first-order suspended sediment concentration is a sum of
three components,

c12 = c12
AC + c12

BS + c12
S

= a (c̃12a
AC + c̃12a

BS + c̃12a
S )︸ ︷︷ ︸

c̃12a

+ax c̃12ax
AC︸ ︷︷ ︸

c̃12ax

+ay c̃
12ay

AC︸ ︷︷ ︸
c̃12ay

= ac̃12a +ax c̃12ax +ay c̃12ay .

It means that the first-order suspended sediment concentration consists of parts pro-
portional to a, ax and ay . It is important to note that proportionality of the suspended
sediment concentration to ax and ay is solely due to the advective component.

3.7. CONDITION OF MORPHODYNAMIC EQUILIBRIUM
The leading-order morphodynamic equilibrium follows from inserting the asymptotic
expansions of the horizontal velocities and concentrations in Eq. (3.8) and reads

∇· (Da∇a +aT) = 0, (3.26a)

where

Da =
(

DKh +T xax
M2

T
xay

M2

T y ax
M2

DKh +T
y ay

M2

)
, and T =

(
T xa

T y a

)
.

Here, DKh is the contribution due to the horizontal diffusivity and the terms T xax
M2

, T
xay

M2
,

T y ax
M2

, and T
y ay

M2
are generated by the interaction of M2 velocity and M2 advective con-

centration.
The terms T xa and T y a denote the leading-order tidally-averaged sediment trans-

port in the x and y directions, respectively. The transport T xa is a sum of various terms
(see D for detailed expressions)

T xa = T xa
M0

+T xa
M2

+T xa
M4

+T xa
surface +T xa

diff, (3.26b)

where T xa
M0

denotes the transport due to the interaction of the M0 velocity and M0 con-
centration. Remember that the M0 velocity itself consists of various contributions (Table
3.3), for each of which we can compute T xa

M0
(see Table 3.4 for a full list of all subcompo-

nents). T xa
M2

is the transport due to the correlation between the M2 velocity and M2 con-
centration. Again, the M2 concentration consists of various contributions (Table 3.3),
implying that T xa

M2
can be computed for each contribution. Similarly, T xa

M4
is generated

by the interaction of M4 velocity and M4 concentration. Once again, the M4 velocity is
a sum of various components as listed in Table 3.4 which allows us to decompose it into
further subcomponents. Table 3.4 lists all the subcomponents of T xa

M0
, T xa

M2
, and T xa

M4
.

The component T xa
surface is the transport due to the interaction of M2 surface elevation,

M2 velocity and the leading-order concentration at the surface and T xa
diff is the diffusive

transport (see D for expressions). A similar decomposition can be made for the transport
in the y-direction T y a .
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Velocity Concentration Transport

T xa
M0

u10

u10
GC

c̃00

T xa
M0,GC

u10
RD T xa

M0,RD
u10

AC T xa
M0,AC

u10
N S T xa

M0,N S
u10

T RF T xa
M0,T RF

T xa
M2

u02

c̃12
AC T xa

M2,AC
c̃12

S T xa
M2,S

c̃12
BS

c̃12
BS,GC T xa

M2,BS,GC
c̃12

BS,RD T xa
M2,BS,RD

c̃12
BS,AC 10 T xa

M2,BS,AC 10
c̃12

BS,N S10 T xa
M2,BS,N S10

c̃12
BS,T RF 10 T xa

M2,BS,T RF 10
c̃12

BS,EF T xa
M2,BS,EF

c̃12
BS,AC 14 T xa

M2,BS,AC 14
c̃12

BS,N S14 T xa
M2,BS,N S14

c̃12
BS,T RF 14 T xa

M2,BS,T RF 14

T xa
M4

u14

u14
EF

c̃04

T xa
M4,EF

u14
AC T xa

M4,AC
u14

N S T xa
M4,N S

u14
T RF T xa

M4,T RF

Table 3.4: Decomposition of various transport terms T xa
M0

, T xa
M2

, and T xa
M4

into subcomponents. A similar de-

composition can be made for the transport terms in the lateral direction.

To solve Eq. (3.26a) for the sediment availability, we require that the transport van-
ishes at the boundary,

(Da∇a +aT) · n̂ = 0, on ∂SΩ∪∂RΩ∪∂CΩ. (3.26c)

The equation for sediment availability a together with the no-transport condition (Neu-
mann type boundary condition) above does not give a unique solution for the sediment
availability a. Therefore, an extra condition is imposed, namely the total amount of sed-



3

70
3. THREE-DIMENSIONAL SEMI-IDEALIZED MODEL FOR ESTUARINE TURBIDITY MAXIMA

IN TIDALLY DOMINATED ESTUARIES

iment available for erosion atotal in the estuary is prescribed,Ï
Ω

a dΩ= atotal. (3.26d)

Equation (4.11) has to be solved numerically for general domains. Here, we use the finite
element method which is described in the next section.

3.8. NUMERICAL SOLUTION
In sections 3.3 and 3.4, it was shown that the leading-order and first-order water motion
could be expressed in terms of the gradients of the surface elevation. The surface ele-
vation itself follows from a two-dimensional elliptic partial differential equation. Sim-
ilarly, the sediment availability (section 3.7) follows from an elliptic differential equa-
tion (Eq. 3.26a). Since the geometry and the bathymetry of the estuary are arbitrary and
the parameters can be arbitrary functions of the horizontal coordinates, these equations
have to be solved numerically. Here, we discuss the solution method used, the finite
element method (FEM) approach, and the accuracy of the numerical solution.

To solve the equations using the FEM approach, the domain Ω is discretized using
linear triangles. The discretized domain is denoted asΩh̃ , with h̃ the mean of the length
of all the element edges in the discretized domain. The solution N is approximated as

N (x, y) ≈ Nh̃(x, y) =
n∑

j=1
N jφ j (x, y), (3.27)

where Nh̃ is the finite element approximation of N . The total number of grid points
(also called nodal points) is denoted by n, N j are the amplitudes at nodal points j , and
φ j are the basis functions such that φ j is zero at all nodal points except node j . Here,
polynomials functions are chosen as basis functions. Inserting the approximation of
N given by Eq. (3.27) in the weak formulation of the partial differential equation for the
surface elevation gives a linear system of equations which can be solved for the unknown
amplitudes N j (see Kumar et al. [17] for details).

In Kumar et al. [17], three methods namely; DD-method, ZZ-method and mixed-
method, were discussed to compute the first- and second-order partial derivatives of the
surface elevation. It was shown that for the leading-order flow, the mixed-method which
is a hybrid of DD-method and ZZ-method, works the best. However, partial derivatives
of the leading-order flow are needed to compute the first-order water motion and the
sediment availability, which is not possible with the mixed method. Therefore, we adopt
the DD-method throughout the model to compute the partial derivatives of any order.
Using the DD-method, the partial derivatives of N can be approximated by directly dif-
ferentiating Nh̃ as

∂a+b N

∂xa∂yb
≈ ∂a+b Nh̃

∂xa∂yb
=

n∑
j=1

N j
∂a+bφ j

∂xa∂yb
,

where a and b are the orders of differentiation in the x and y directions, respectively.
The accuracy of the finite element approximation Nh̃ and its partial derivatives de-

pends on the degree of basis polynomials. In general, if polynomials of degree q are
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Component Accuracy
η0 q +1

u0 u0
h q

w0 q −1
η1 q −1
u1

h q −2
c0 q
c1 q −2
a q −2

Table 3.5: The accuracy of the various components of the model when polynomials of degree q for the leading-
order water motion and polynomials of degree at least q − 1 for the first-order water motion and sediment
availability, are used as basis functions.

used, the numerical solution converges with rate q +1, the first-order partial derivatives
with rate q and the second order partial derivatives with rate q−1 (see Gockenbach [27]).
Indeed, for the leading-order water motion, Kumar et al. [17] has shown that using ba-
sis functions of order q0, the surface elevation converges with rate q0 +1, the first-order
partial derivatives with q0 and second-order partial derivatives with rate q0 −1. Hence,
the leading-order horizontal velocity (proportional to the first-order partial derivatives
of the leading-order water motion) and vertical velocity (proportional to the second-
order partial derivatives of the leading-order surface elevation) converge with rate q0

and q0 −1, respectively.

In sections 3.4, 3.5 and 3.6, it was shown that to compute the first-order water motion
and suspended sediment concentration, not only the leading-order flow components
but also their partial derivatives are required. This is because these partial derivatives
appear in the forcing terms for the first-order flow and first-order sediment concentra-
tion. For the first-order horizontal water motion to be q1 accurate, the forcing terms
must at least be q1 accurate as well. Hence, it follows that q0 must be at least equal to
or larger than q1 +1, i.e., the degree of basis polynomials used to solve the leading-order
water motion must be at least one higher than those used in the first-order water motion.

Table 3.5 lists the accuracy of different components of the model if polynomials of
degree q are used as basis functions for the leading-order water motion and polynomi-
als of degree q −1 are used as basis functions for the other components (i.e., first-order
water surface elevation and sediment availability). If we take q = 3, i.e., third degree
polynomials as basis functions for the leading-order water motion and quadratic poly-
nomials as basis functions for rest of the components, it follows from Table 3.5 that the
sediment availability converges with rate 1.

3.9. APPLICATION TO THE EMS ESTUARY
In this section, the new three-dimensional semi-idealized model is applied to investigate
the spatial distribution of concentration and sediment availability in the Ems estuary
under the condition of morphodynamic equilibrium. The Ems estuary is situated on the
border of the Netherlands and Germany and has gone through various anthropogenic
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changes in the last few decades. Due to these interventions, the water motion and the
sediment dynamics have changed significantly (De Jonge et al. [4]).

The Ems estuary is located between the island of Borkum in the North Sea and the
weir at Herbrum and has a total length of approximately 100 km. In this chapter, we only
focus on the upper part of the Ems estuary, starting from Knock (Fig. 3.3). The length L
of the estuary from Knock to Herbrum is approximately 63.7 km. Following Chernetsky

Figure 3.3: The map of the Ems estuary (Chernetsky et al. [11]).

et al. [11], the geometry of the Ems estuary can be approximated as funnel-shaped with
x and y denoting the along-channel and cross-channel coordinates, respectively. The
along-channel coordinate varies from x = 0 at the seaward side to x = L at the river side.
The lateral coordinate y varies between y =−B(x) and y = B(x), with B(x) given by

B(x) = B0e−x/Lb .

Here, 2B0 is the total width at the seaward side and Lb is the e-folding length scale. The
estuary is assumed to be well-mixed and the dynamic density ρ is assumed to vary as

ρ = ρ0
[
1+β s̃(x)

]
,

where s̃(x) is the prescribed tidally- and depth-averaged salinity distribution obtained
from Talke et al. [3] andβ= 7.6×10−4 psu−1 is a coefficient that relates salinity to density.

In this chapter, two years (1980 and 2005) are studied. Following De Jonge et al. [4],
the bathymetric profiles for the years 1980 and 2005 are fitted with a fourth degree poly-
nomial in the along-channel direction using observational data. Following Friedrichs
and Hamrick [28] and Schramkowski et al. [21], the coefficient of vertical mixing Av and
the stress parameter s are parameterized as

(s, Av) = (s0, Av0)
h

H
.

Here Av0 and s0 are the reference eddy viscosity and stress parameter, and H is the mean
depth at the seaward side. The system is forced with a combination of M2 and M4 tides
at the seaward side (x = 0),

η= AM2 cos(ωt )+ AM4 cos(2ωt −φ),
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where AM2 and AM4 are the elevation amplitudes defined in section 3.2.2 and φ=φM4 −
2φM2 is the relative phase between the M2 and M4 tidal constituents. In 1980, the mean
tidal range at Knock was approximately 3.1 m with a relative phase of -171.9 degree. The
tidal range in 2005 was 3.2 m with a relative phase of -174.6 degree (see Chernetsky et al.
[11] for details). A constant river discharge of Q = 80 m3 s−1 is prescribed at the river
boundary (x = L). A river discharge density Q ′ satisfying Eq. (3.11f) is defined as

Q ′ = Q

2B |x=L
.

Table 3.6 gives a list of all parameters used for the years 1980 and 2005 such that the
observed M2 water motion is well-reproduced by the model (see Kumar et al. [17] for a
discussion). Using these parameters, Table 3.7 lists the order of magnitude of various
dimensionless parameters for the Ems estuary. Table 3.7 shows that the Ems estuary is
tidally-dominated and river discharge gives a first-order contribution.

Parameter 1980-value 2005-value
L 63.7 km

Lb 30 km
B0 335 m
H 10 m
g 9.8 m s−2

f 1.34×10−4 s−1

ω 1.4×10−4 s−1

ρ0 1020 kg m−3

ρs 2650 kg m−3

β 7.6×10−4 psu−1

AM2 1.43 m 1.35 m
AM4 0.25 m 0.19 m
φ -170.9◦ -174.6◦

Av0 0.0184 m2 s−1 0.0135 m2 s−1

s0 0.1421 m s−1 0.0108 m s−1

Q 80 m3 s−1

ws 1.0 ×10−3 m s−1

Kh 100 m2 s−1

atotal 582 m2 2710.8 m2

Table 3.6: Parameters for the years 1980 and 2005 for the Ems estuary (De Jonge et al. [4]).

3.9.1. LATERALLY UNIFORM BATHYMETRY
The width-averaged bed profile of the Ems estuary for the years 1980 and 2005, used in
De Jonge et al. [4], are extended uniformly in the lateral direction (Fig. 3.4) to be used
in the 3D semi-idealized model. The domain is discretized using approximately 100,000
nodes. A realistic value of the Coriolis parameter f = 1.34×10−4 s−1, corresponding to
the Ems estuary, is used. The total amount of easily erodible sediment in the estuary
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Dimensionless parameter 1980 2005 Order
ĀM2 /H = ε 0.14 0.13 O (ε)

U /ωL 0.1 O (ε)
ĀM4 /ĀM2 0.17 0.14 O (ε)
g H/ω2L2 1.22 O (1)

Ud /U 0.1 O (ε)
Av0/ωH 2 1.31 0.96 O (1)

Q/Q̄ 0.1 O (ε)
ws/ωH 0.71 O (1)

Table 3.7: Order of magnitude of dimensionless parameters for the Ems estuary.

atotal is chosen in such a way that the maximum concentration at the surface for 1980
and 2005 matches the observations, i.e., 400 mg L−1 for 1980 and 1000 mg L−1 for 2005
(from De Jonge et al. [4]).

(a) (b)

Figure 3.4: Bathymetry of the Ems estuary for the years 1980 and 2005 assuming laterally uniform conditions.
The units in the colorbar are m.

In Fig. (3.5), top panel, the distribution of easily erodible sediment in the Ems estuary
is shown for the years 1980 and 2005. Since the bed profile is laterally uniform, the sed-
iment availability is also uniform in the lateral direction. The easily erodible sediment
is concentrated close to the seaward side, approximately 6 km into the estuary, for the
year 1980. For the year 2005, the easily erodible sediment is concentrated approximately
41 km away from the entrance and is more widely spread (in along-channel direction) in
the estuary than for 1980.

Next, we look at the tidally-averaged suspended sediment concentration at the sur-
face. From Fig.(3.5), lower panel, it follows that for 1980, the maximum sediment con-
centration is found closer to the seaward side, approximately 7 km from the entrance
and for 2005, at approximately 38 km from the entrance. The locations of maximum
concentration are consistent with those found in Chernetsky et al. [11], i.e., the ETM is
found close to the seaward side for 1980 and more landward for 2005. Note that, because
of the Coriolis parameter, the maximum availability of fine sediments and the maximum
sediment concentration at the surface for both the years, shown by grey dots in Fig. (3.5),
are found on the northern sides than in the middle of the channel.
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(a) (b)

(c) (d)

Figure 3.5: Sediment availability (dimensionless) in the channel for the years 1980 (top left) and 2005 (top
right). The tidally-averaged suspended sediment concentration at the surface for the years 1980 (bottom left)
and 2005 (bottom right). The units in the colorbar are mg l−1. The grey dots show the location of the maxima
of the quantity being plotted. Note that the total amount of easily erodible sediment atotal is chosen in such a
way that the maximum concentration at the surface for 1980 is 400 mg l−1 and for 2005 is 1000 mg l−1.

3.9.2. LATERALLY VARYING BATHYMETRY
In this experiment, the bathymetric profile in the lateral direction is varied parabolically
requiring that the width-averaged depth remains the same as in the first experiment (Fig.
3.6). This preserves the mean depth of the channel in both the experiments. For both
years, atotal used in the previous experiment is used.

(a) (b)

Figure 3.6: The bathymetry of the Ems estuary for the years 1980 and 2005 varying parabolically in the lateral
direction. The units in the colorbar are m.

From Figs. 3.7(a) and 3.8(a), it follows that the easily erodible sediments are not dis-
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tributed uniformly in the lateral direction: the availability is much higher on the shallow
sides than in the deeper channel for both years. However, the along-channel location
of maximum availability is approximately the same as in the experiment with laterally
uniform bathymetry. The maximum availability of fine sediments is higher for a laterally
varying bed profile than for a laterally uniform bed profile.

(a) (b)

(c) (d)

Figure 3.7: Sediment availability and sediment concentration for 1980 with laterally varying bed profile. The
top left panel shows the sediment availability (dimensionless) and top right panel, the sediment concentration
(mg l−1) at the surface. The black and chocolate lines pass through the location of maximum concentration at
the surface in the x and y directions, respectively. The grey dot indicates the location of the maximum of the
quantity being plotted. The bottom left panel shows the cross-sectional profile of the sediment concentration
along the black line and the bottom right panel, along the chocolate line.

For the year 1980, the maximum sediment concentration at the surface is found at
approximately 8 km from the entrance (Fig. 3.7(b)) compared with 38 km for the year
2005 (Fig. 3.8(b)). The locations of maximum concentration move slightly landward for
1980 compared with the case with laterally uniform bed profile. The maximum sediment
concentrations are found in the middle of the channel even though the sediment avail-
ability is lower in the middle than on the shoals. Note that, unlike the case with laterally
uniform bed profile, the Coriolis parameter does not significantly influence the location
of the maximum concentration in the lateral direction. This is because the influence of
laterally varying bathymetric profile on the longitudinal processes is stronger than those
induced by the Coriolis force.

To illustrate the strength of the 3D model, the vertical profile of the sediment concen-
tration is plotted in the along-channel and cross-channel directions passing through the
location of maximum concentration at the surface. These locations are shown by black
and chocolate lines in Fig. 3.7(b) for 1980 and Fig. 3.8(b) for 2005. The along-channel
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(a) (b)

(c) (d)

Figure 3.8: Sediment availability and sediment concentration for 2005 with laterally varying bed profile. The
top left panel shows the sediment availability (dimensionless) and top right panel, the sediment concentration
(mg l−1) at the surface. The black and chocolate lines pass through the location of maximum concentration at
the surface in the x and y directions, respectively. The grey dot indicates the location of the maximum of the
quantity being plotted. The bottom left panel shows the cross-sectional profile of the sediment concentration
along the black line and the bottom right panel, along the chocolate line.

profile of the sediment concentration (Figs. 3.7(c) and 3.8(c)) shows that the region of
high concentration is much wider at the bottom than at the surface. Moreover, the ETM
in the along-channel direction is stronger and wider for 2005 than for 1980. The vertical
profile of the sediment concentration in the cross-channel direction for 1980 and 2005
(Figs. 3.7(d) and 3.8(d)) depicts similar structure. Also, for both years, the maximum
concentrations are found in the deepest parts of the channel, with maximum concen-
tration at the bottom being almost two times the maximum concentration at the surface
(Figs. 3.7(d) and 3.8(d)).

Using a realistic (but smoothed) bathymetry and geometry for the Ems estuary in
2005, the trapping of fine sediments is still mainly observed at the landward side of the
estuary (see Fig. 3.9(a), and Fig. 3.9(b) in which only the (scaled) surface suspended sed-
iment concentrations is shown), which qualitatively agrees with observations (De Jonge
et al. [4]). In Fig. (3.9(c)), the sediment availability in morphodynamic equilibrium is
shown. Note that high sediment availability is not only found at locations where the sus-
pended sediment concentrations are high, but also where tidal velocities are small (such
as in the tributary).
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(a)

(b) (c)

Figure 3.9: The scaled three–dimensional suspended sediment concentration (a), surface concentration (b)
and sediment availability (c) for the Ems estuary.

3.10. CONCLUSIONS

A three-dimensional process-based semi-idealized model for estuarine turbidity max-
ima (ETM) in an estuary with arbitrary geometry and bathymetry has been developed.
The water motion is driven by prescribed tidal forcing at the seaward side, and a river
discharge at the river boundary. Furthermore, the horizontally varying, time- and depth-
independent density field is prescribed (using, for example, observational data). The
vertical eddy viscosity and diffusivity are assumed to be vertically constant and time-
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independent. Horizontal viscous effects are neglected. The resulting three-dimensional
equations for water motion and suspended sediment concentration are scaled using typ-
ical scales, appropriate for the system under consideration. The physical variables are
expanded in the small parameter ε which is the ratio of the mean amplitude of the M2

surface elevation and the mean water depth at the seaward boundary. This leads to a
system of equations at each order of ε for the water motion and the suspended sediment
concentration. Using rotating variables, the vertical profile of the velocity and the sus-
pended sediment concentration can be obtained analytically in terms of the gradients of
the surface elevation. To obtain the surface elevation at each order in ε, the continuity
equation is integrated over the water column. This results in a two-dimensional elliptic
partial differential equation for the surface elevation at that order. Using the concen-
trations and horizontal velocities, the horizontal sediment transport is calculated. The
sediment still depends on the unknown sediment availability. By requiring the condition
of morphodynamic equilibrium, an elliptic equation for the unknown sediment avail-
ability is obtained. These elliptic equations for the sediment availability and the surface
elevation are solved numerically using the finite element method. In choosing the order
of elements used for each order, special care is taken that the convergence rate of the
numerical scheme used to calculate the sediment availability is at least of order one.

To test the model, we applied it to the Ems estuary with parameter values represen-
tative for years 1980 and 2005. The width is assumed to be exponentially convergent.
The bathymetry in the longitudinal direction is taken from measurements and is ap-
proximated with a polynomial of degree four. In the first experiment, the bathymery
is assumed to be uniform in the lateral direction. Focusing on the year 1980, the estu-
arine turbidity maximum (ETM) is found close to the seaward side. For the year 2005,
the ETM is found far into the freshwater zone, approximately 38 km away from the en-
trance. This behaviour has been observed as well, indicating that the three-dimensional
model is able to qualitatively reproduce the observed ETM behavior in the Ems estu-
ary. As a first indication of the importance of the lateral variations, the bed profile in
the lateral direction is varied parabolically. For both 1980 and 2005 cases, the location
of ETM remains approximately the same. However, the highest concentration is found
in the middle of the channel even though most of the easily erodible sediment is found
at the sides. This clearly demonstrates the importance of using a 3D model to compare
the influence of lateral dynamics on the longitudinal processes. In this chapter, we have
mainly focused on the mathematical method used in the development of the model. In
a forthcoming paper, the influence of bathymetric changes on each transport compo-
nent will be discussed in detail, extending the sensitivity study of Schuttelaars et al. [8]
by including lateral depth variations. The idealized model developed in this chapter is
specifically aimed at studying estuaries in morphodynamic equilibrium, i.e., estuaries
in which there are no convergences or divergences of sediment transport. To accommo-
date for the possibility of either a tidally-averaged import or export of sediment (due to,
for example, the spring-neap cycle or human interventions), the condition of morpho-
dynamic equilibrium has to be relaxed by allowing the sediment availability to vary on
the long time scale, a model extension that is currently under investigation.
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4
INFLUENCE OF BATHYMETRIC

CHANGES ON DYNAMICS OF

ESTUARINE TURBIDITY MAXIMA

4.1. INTRODUCTION
An estuarine turbidity maximum (ETM) is a location in an estuary where the sediment
concentration is higher than the concentrations on both the landward and seaward sides
(Festa and Hansen [1]). ETMs have been observed in many estuaries around the world,
e.g., Columbia River (USA), Kennebec (USA), Severn (UK), Tamar (UK), Ems (Nether-
lands), Gironde (France) and Mandovi (India). An estuary may have more than one ETM,
examples of such estuaries are Columbia River (Jay and Musiak [2]), and Ems (De Jonge
et al. [3]).

The occurrence of ETMs can have important consequences from both a commercial
and ecological point of view (Ganju and Schoellhamer [4]). In these regions, the local
deposition of sediments is often increased. If this turbidity zone is located near a nav-
igation channel, extensive dredging is often required to keep the navigation channel at
depth. Concerning ecological consequences, Peterson and Festa [5] showed that phy-
toplankton biomass and productivity are highly influenced by the suspended particle
matter (SPM) concentration. Peterson and Festa [5] also suggested that phytoplankton
productivity reduces drastically as SPM concentration increases from 10 to 100 mg l−1.

Various process-based models have been developed to understand the influence of
anthropogenic interventions on ETM dynamics, either in the longitudinal or in the lat-
eral direction. Focusing on the class of idealized models (see Chapter 1), Chernetsky
et al. [6] developed a two-dimensional width-averaged model for the water motion and
sediment dynamics together with the use of the condition of morphodynamic equilib-
rium, focusing on the trapping mechanisms in the longitudinal direction. It was found
that changes in the geometrical properties and/or external forcing conditions influence
the location of the ETM (De Jonge et al. [3], Schuttelaars et al. [7]). Huijts et al. [8] focused
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on the trapping mechanisms of the fine sediments in the lateral direction. The authors
studied the impact of tidal forcing and water depth on the lateral patterns of the fine
sediments. It was found that the residual lateral velocities resulting from cross-channel
density gradients were strongly affecting the location of trapping of fine sediments in the
cross section. The work of Huijts et al. [8] on lateral trapping of fine sediments has been
extended by Chen and Sanford [9], Chen et al. [10], Schramkowski et al. [11], Huijts et al.
[12] and Yang et al. [13].

Geyer et al. [14] and Kim and Voulgaris [15] showed that the lateral structure of these
velocities and the lateral velocities themselves, together with the lateral variations of sus-
pended sediment concentrations can significantly impact the processes in the longitu-
dinal direction. This suggests that it is not enough to study the longitudinal and lateral
processes in isolation, thus requiring the use of a three-dimensional model for the water
motion and sediment dynamics. The development of such a model has been presented
in Chapters 2 and 3.

The goal of this chapter is to understand the influence of anthropogenic and natu-
ral changes on the dynamics of estuarine turbidity maxima using the three-dimensional
model developed in this thesis. In this chapter, both anthropogenic and natural changes
are mimicked by the changes in the bathymetric profile for a prescribed density profile.
To systematically investigate these influences, we first study the physical mechanisms
and the trapping location for an estuary that has a longitudinally varying and laterally
symmetrical bathymetric profile. Next, the sensitivity of the trapping location to asym-
metries in the lateral bathymetry is systematically investigated. The effects of channel
deepening and infilling on the ETM dynamics are studied by increasing or decreasing
the maximum depth of the channel. To inspect the effects of sea level rise on the trap-
ping mechanisms and locations, the overall depth of the estuarine system is increased.

The structure of this chapter is as follows: A brief introduction about the set up of
the model including the details concerning governing equations is presented in section
4.2. In section 4.3, details about the experiments being performed in this chapter are dis-
cussed. The results of each of these experiments are discussed and compared in section
4.4. Finally, the conclusions are presented in section 4.6.

4.2. MODEL DESCRIPTION

4.2.1. GEOMETRY

A funnel shaped estuary with length L and width 2B0 at the entrance is considered (Fig.
4.1). The along-channel coordinate x varies from x = 0 at the seaward side to x = L at
the river side. The lateral coordinate y varies from y = −B(x) at the lower boundary to
y = B(x) at the upper boundary with half-width of the estuary B(x) given by

B(x) = B0e−x/Lb . (4.1)

Here Lb is the e-folding length scale, i.e., after moving over a distance of Lb in the land-
ward direction, the width of the estuary is reduced by a factor e. The estuarine domain
is denoted byΩ and the depth profile by h(x, y).
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Figure 4.1: Sketch of funnel-shaped estuary used in this chapter. The half-width B (blue solid line) varies
exponentially as B(x) = B0e−x/Lb , with 2B0 the total width at the entrance (seaward side) and Lb the e-folding
length. The green line denotes the longitudinal bed profile at y = 0 and the brown line, the lateral bed profile.
A constant lateral depth H0 (red line) is maintained at the sides (y =±B). Triangles at the surface visualize the
triangulization of the surface which is used to compute the numerical solution.

4.2.2. GOVERNING EQUATIONS
In order to study the ETM dynamics, the equations for the water motion and suspended
sediment concentration need to be solved. In Chapters 2 and 3, the details about the
governing equations and the model development are explained. In these chapters, the
details about the scaling analysis, perturbation analysis, decomposition of the physical
variable in a residual component and various tidal constituents are also explained. In
this section, only a brief overview is presented.

The water motion follows from the three-dimensional shallow water equations after
using the Boussinesq approximation and the hydrostatic balance:
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+ ∂v

∂y
+ ∂w

∂z
= 0,

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
− f v =−g

∂η

∂x
− g

ρ0

∫ η

z

∂ρ

∂x
dz ′+ ∂

∂z
(Av

∂u

∂z
),

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
+ f u =−g

∂η

∂y
− g

ρ0

∫ η

z

∂ρ

∂y
dz ′+ ∂

∂z
(Av

∂v

∂z
).

A Cartesian coordinate system is used, with x, y denoting the horizontal coordinates, and
z the vertical coordinate, pointing in the upward direction. Here, u(x, y, z, t ), v(x, y, z, t ),
and w(x, y, z, t ) denote the velocities in x, y and z directions, respectively, and η(x, y, t )
the free surface elevation. The dynamic density is denoted by ρ and the reference density
by ρ0. The eddy viscosity Av, and the Coriolis parameter f , are assumed to be functions
of horizontal coordinates x and y only.

At the seaward side, the system is forced by a prescribed surface elevation that con-
sists of a combination of M2 and M4 tidal constituents,

η= AM2 cos(ωt −φM2 )+ AM4 cos(2ωt −φM4 ), for all (x, y) in ∂SΩ, (4.3)
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where AM2 (x, y) and AM4 (x, y) are the (possibly) spatially varying amplitudes of the
surface elevation of the M2 and M4 tidal constituents at the seaward boundary ∂SΩ.
The phases of the M2 and M4 tides at the seaward side are denoted by φM2 (x, y) and
φM4 (x, y), respectively and may depend on the horizontal coordinates as well. The pa-
rameter ω = 2π/T denotes the angular frequency of the M2 tide with period T = 12.42
hrs.

At the free surface z = η, kinematic and dynamic boundary conditions are imposed,

w = ∂η

∂t
+u

∂η

∂x
+ v

∂η

∂y
, at z = η, (4.4)

Av
∂uh

∂z
= 0h, at z = η, (4.5)

where uh = (u, v) denotes the horizontal velocity and 0h = (0,0), the two-dimensional
horizontal null vector. At the bottom z = −h, the non-permeability condition (kine-
matic) and the dynamic boundary condition are prescribed,

w =−u
∂h

∂x
− v

∂h

∂y
, at z =−h, (4.6)

Av
∂uh

∂z
= τb

ρ0
= suh, at z =−h, (4.7)

where s(x, y) is the so-called stress parameter which follows from the linearization of the
bed shear stress (τb) (see Zimmerman [16]). Following Chernetsky et al. [6], the physical
parameters such as the vertical eddy viscosity Av and the stress parameter s are assumed
to vary with the local depth as

(Av, s) = (Av0, s0)
h

H
. (4.8)

Here Av0 and s0 are the reference eddy viscosity and bottom stress, respectively, and H
is the mean depth at the seaward side. At the river side (x = L), a constant river discharge
Q is prescribed.

The suspended sediment concentration, denoted by c, follows from a three-
dimensional advection-diffusion equation,
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)
= 0, (4.9)

where Kh(x, y) and Kv(x, y) are the horizontal and vertical eddy diffusivities, and ws is the
settling velocity. At the surface, settling and diffusive fluxes balance each other. At the
bottom, the sum of the settling and diffusive fluxes equals a specified erosion-deposition
flux of volume concentration.

We consider the system to be in morphodynamic equilibrium, i.e.,

〈D −E〉 = 0, (4.10)

where D denotes the sediment deposition, E , the erosion flux from the bed and 〈·〉, a
tidally-averaged quantity. A morphodynamic equilibrium can only be found by requiring
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a specific spatial distribution of easily erodible sediment in the estuary. This sediment
availability is denoted by a(x, y), a dimensionless quantity.

Using scaling and perturbation analyses, the equations for the water motion and sus-
pended sediment concentration can be approximated by linear systems of equations in
various orders of a small parameter ε which is the ratio of the mean M2 surface eleva-
tion and the mean depth at the seaward side. The leading-order (ε0) and first-order (ε1)
system of equations for the water motion and suspended sediment concentration have
to be solved to obtain the leading order condition of morphodynamic equilibrium. This
results in the following condition for the sediment availability a(x, y):

∇· (Da∇a +aT) = 0, (4.11a)

with

Da =
(

DKh +T xax
M2

T
xay

M2

T y ax
M2

DKh +T
y ay

M2

)
, and T =

(
T xa

T y a

)
.

Here, DKh is the transport contribution due to the horizontal diffusivity and the contri-

butions T xax
M2

, T
xay

M2
, T y ax

M2
, and T

y ay

M2
in Da are transports generated by the covariance of

the M2 velocity and M2 concentration due to advective processes. Note that these trans-
port terms are proportional to ax and ay .

The terms T xa and T y a denote the leading-order tidally averaged sediment transport
contributions in the x and y directions, respectively, that are proportional to a. These
transport contributions can be further decomposed in sub-contributions, resulting from
different physical processes. The transport T xa can be decomposed as (see previous
chapter for details)

T xa = T xa
M0

+T xa
M2

+T xa
M4

+T xa
surface +T xa

diff. (4.11b)

Here, T xa
M0

denotes the transport due to the interaction of the M0 velocity and M0 con-
centration. In turn, the M0 velocity itself consists of various contributions and therefore
each of these contributions to T xa

M0
can be computed separately (see Table 4.1 for a com-

plete list of all subcomponents). Similarly, T xa
M2

is the transport due to the correlation
between the M2 velocity and M2 concentration. The M2 concentration consists of vari-
ous contributions and each of these contributions to T xa

M2
can be computed separately.

Similarly, T xa
M4

is generated by the interaction of M4 velocity and M4 concentration. The
M4 velocity is a sum of various components as listed in Table 4.1 which allows us to de-
compose it into further subcomponents. The component T xa

surface is the transport due to
the interaction of M2 surface elevation, M2 velocity and the leading-order concentration
at the surface and T xa

diff is the diffusive transport contribution. A similar decomposition
can be made for the transport T y a in the y-direction.

4.2.3. NUMERICAL SOLUTION
To ensure the accuracy of the model, the funnel shaped domain is discretized using ap-
proximately 100,000 grid points at the surface (see sketch in Fig. 4.1) . Since the model
is analytical in the vertical direction, no discretization in the vertical direction is needed.
Cubic polynomial functions are used as basis functions for the leading-order water mo-
tion. The so-called DD-method is used to compute both the first- and second-order par-
tial derivatives of the leading-order surface elevation. In this DD-method (see chapter 2),
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Velocity Concentration Transport

T xa
M0

u10

u10
GC

c̃00

T xa
M0,GC

u10
RD T xa

M0,RD
u10

AC T xa
M0,AC

u10
N S T xa

M0,N S
u10

T RF T xa
M0,T RF

T xa
M2

u02

c̃12
AC T xa

M2,AC
c̃12

S T xa
M2,S

c̃12
BS

c̃12
BS,GC T xa

M2,BS,GC
c̃12

BS,RD T xa
M2,BS,RD

c̃12
BS,AC 10 T xa

M2,BS,AC 10
c̃12

BS,N S10 T xa
M2,BS,N S10

c̃12
BS,T RF 10 T xa

M2,BS,T RF 10
c̃12

BS,EF T xa
M2,BS,EF

c̃12
BS,AC 14 T xa

M2,BS,AC 14
c̃12

BS,N S14 T xa
M2,BS,N S14

c̃12
BS,T RF 14 T xa

M2,BS,T RF 14

T xa
M4

u14

u14
EF

c̃04

T xa
M4,EF

u14
AC T xa

M4,AC
u14

N S T xa
M4,N S

u14
T RF T xa

M4,T RF

Table 4.1: Decomposition of various transport terms T xa
M0

, T xa
M2

, and T xa
M4

into subcomponents. A similar de-

composition can be made for the transport terms in the lateral direction.

the partial derivatives are obtained by taking the partial derivatives of the numerical ap-
proximation (see chapter 2 for more details). Quadratic polynomial functions are used to
solve for the first-order water motion and the sediment availability. This ensures that all
the physical variables, i.e., water motion, suspended sediment concentration and sedi-
ment availability give converging results. For detailed information, see Chapters 2 and
3.
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4.3. NUMERICAL EXPERIMENTS

4.3.1. GENERAL INFORMATION
For all the experiments in this chapter, physical parameters characteristic for the Ems
estuary in 2005 are used (Table 4.2). A realistic value of the Coriolis parameter f =
1.34×10−4 s−1, corresponding to the Ems estuary, is taken. To determine the reference

Parameter Value
L 63.7 km

Lb 30 km
B0 335 m
g 9.8 m s−2

ω 1.4×10−4 s−1

f 1.34×10−4 s−1

ρ0 1020 kg m−3

ρs 2650 kg m−3

β 7.6×10−4 psu−1

AM2 1.35 m
AM4 0.19 m
φ -174.6◦

Av 0.0135 m2 s−1

s 0.0108 m s−1

Q 80 m3 s−1

ws 1.0 ×10−3 m s−1

Kh 100 m2 s−1

Table 4.2: Parameters corresponding to the 2005 case of the Ems estuary.

stress parameter (s0) and the eddy viscosity (Av0) in Eq. (4.8), the model is calibrated us-
ing observed amplitude and phase of the M2 tide for the Ems estuary. For calibration, the
symmetric bed profile, defined in the next section, is used. To be consistent with the ob-
servations of the suspended sediment concentrations in the Ems estuary, the sediment
availability a is scaled in such a way that the maximum concentration at the surface
becomes 1000 mg l−1 for the reference experiment (see section 4.4). For the remaining
cases in this chapter, the same scaling factor is used. This means that the maximum
sediment concentration at the surface in the remaining cases need not be 1000 mg l−1.
However, the total amount of easily erodible sediment in the estuary remains unchanged
in all cases considered in this chapter.

4.3.2. BATHYMETRY
Following Chernetsky et al. [6], the longitudinal bed profile Hmax(x) is obtained by ap-
proximating the along-channel bed profile of the Ems estuary with a fourth degree poly-
nomial. The lateral variations in the bed profile are prescribed by a Gaussian profile
(Ensing et al. [17]), given by

h = Hmax(x)exp(−C Y 2), (4.12)
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where C (x) = log(Hmax(x)/H0) is the steepness parameter and Hmax(x) is the along chan-
nel bed profile discussed above. H0 is a fixed depth, prescribed at the lateral sides y =±B
(Fig. 4.1) and Y (x, y) is defined as

Y (x, y) = 1−
√

1+ψ2 −2ψy/B(x)

ψ
, (4.13)

with ψ, the skewness parameter that varies between -1 and 1.
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Figure 4.2: Bed profile in the lateral direction at the entrance (seaward side) when viewed from the river side to
the seaward side. The left panel (Fig. a) shows the influence ofψ on symmetricity of the bed profile with δh = 0
and δHmax = 0. For ψ= 0, the bed profile is symmetric around the middle axis y = 0, for ψ=−0.5, skewed to
the left and for ψ= 0.5, skewed to the right of the middle axis. The right panel (Fig. b) shows symmetric lateral
bed profiles with ψ = 0 at the entrance when the maximum depth Hmax of the channel is increased by one
meter (δHmax = 1) and when the overall depth h is increased by one meter (δh = 1). The filled colored circles
indicate the location of maximum depth.

Varying the skewness parameter ψ changes the skewness of the lateral bed profile.
For ψ = 0, a perfectly symmetric bed profile in the lateral direction is obtained (Fig.
4.2(a)). For ψ < 0, when viewed from the river side to the seaward side, the lateral bed
profile is skewed to the left relative to the middle axis y = 0, and for ψ> 0, skewed to the
right (Fig. 4.2(a)). Figure 4.2(a) shows that changing the value of ψ does not alter the
magnitude of maximum depth, only the location changes.

Furthermore, adding a small perturbation δh to the depth h changes the overall
depth of the estuary, whereas adding a small perturbation δHmax to the maximum depth
Hmax only changes the maximum depth without influencing the lateral depths at y =±B .
Figure 4.2(b) shows the lateral bed profile for symmetric case (ψ = 0) when the maxi-
mum depth Hmax, attained at the middle of the channel, is increased by one meter, i.e.,
δHmax = 1, while keeping the lateral depths H0 unchanged and when the overall depth h
is increased by one meter, i.e., δh = 1. The filled circles in Fig. 4.2(b) show that changing
the maximum depth or overall depth of the channel does not affect the location of the
maximum depth, only the magnitude changes. Note that, unless stated otherwise, the
default value of parameters ψ, δh and δHmax are zero.
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4.4. RESULTS
In this section, results regarding the dynamics of the estuarine turbidity maximum for
different lateral depth profiles are presented. In the first experiment, a laterally symmet-
ric bed profile is considered. We will refer to this case as the reference case. In section
4.4.2, the influence of laterally asymmetric bed profiles, which are obtained by varying
the values of ψ (see Fig. 4.2(a)), on the ETM dynamics is systematically investigated. In
section 4.4.3, the influence of channel shallowing (deepening) on the ETM characteris-
tics is studied. This is modelled by decreasing (increasing) the maximum depth Hmax of
the channel (see Fig. 4.2(b)). Finally, we look at the influence of sea level rise and fall on
the sediment dynamics in section 4.4.4. To model this phenomenon, the overall depth
of the estuarine system h is increased and decreased (see Fig. 4.2(b)).

4.4.1. LATERALLY SYMMETRIC BED PROFILE
In the reference experiment, we consider a laterally symmetric bed profile using the de-
fault parameters as given in Table 4.2. The symmetric bed profile is obtained by taking

Figure 4.3: The bathymetric profile for the reference case. The dashed line passes through the middle of the
channel. The solid lines on the sides indicate the boundaries of the estuary. For each transect in the y-
direction, the maximum depth is attained at the middle of the channel. A constant minimum depth of 3 m
is maintained at the shallow sides.

ψ = 0 in Eq. (4.12). The minimum water depth at the shoals, denoted by H0, is taken to
be 3 m. For the symmetric bed profile, the maximum depth along any transect in the
y-direction is found in the middle of the channel, i.e., along y = 0. The maximum depth
Hmax of approximately 10 m is attained at the middle of the channel entrance.

Figure 4.4 shows the distribution of fine sediments at the bottom (left panel) and sus-
pended sediment concentration at the surface (right panel) for the reference case. From
Fig. 4.4(a), it follows that the maximum amount of fine sediments is found towards the
end (approximately 46 km from the entrance) of the estuary. The amount of fine sedi-
ments is higher at the shallow sides than in the middle of the channel. The distribution of
fine sediments at the bottom is not symmetric about the middle axis (y = 0) of the chan-
nel due to the Coriolis effect. Furthermore, the availability of fine sediments becomes
almost negligible near the landward end of the channel.
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(a) Sed. availability (b) SSC at surface (mg l−1)

Figure 4.4: Sediment availability (left-panel) and suspended sediment concentration at the surface (right-
panel) for the reference case. Note that sediment availability a is scaled in such a way that the maximum
suspended sediment concentration at the surface for the reference case becomes 1000 mg l−1. The white cir-
cle denotes the location of maximum quantity being plotted. The units for suspended sediment concentration
is mg l−1. The sediment availability is a dimensionless quantity and therefore no units are associated with the
left colorbar.

The suspended sediment concentration at the surface is shown in Fig. 4.4(b). The
location of maximum suspended sediment concentration at the surface is found ap-
proximately 42 km from the entrance with a maximum concentration at the surface of
1000 mg l−1. Contrary to sediment availability, the maximum suspended sediment con-
centration at the surface is found almost in the middle of the channel. The maximum
suspended sediment concentration at the surface is found more seaward than the loca-
tion of maximum sediment availability. The suspended sediment concentration at the
surface also becomes almost negligible towards the landward end of the channel.

Figure 4.5 shows the transport components T xa
M0

, T xa
M2

, T xa
M4

and T xa
surface that are pro-

portional to sediment availability a (see Eq. (4.11b)). Note that a positive sign of a trans-
port component indicates transport in the landward direction and a negative sign, trans-
port in the seaward direction. Figure 4.5 shows that the M0 transport (top left panel) is
seaward (negative) in most of the estuary. Also, the magnitude of positive M0 transport in
the estuary is smaller than the negative M0 transport. The M2 transport (top right panel)
on the other hand is positive in most of the estuary, resulting in import of fine sediments.
The M4 transport is negative at the seaward side and positive at the landward side. The
negative M4 transport intrudes up to 36 km from the entrance. The magnitude of the M4

transport component is smaller than the magnitude of the M0 and M2 transport com-
ponents. The surface transport (T xa

surface) as shown in the bottom right panel is positive
throughout the estuary. Its magnitude is much smaller, compared to the magnitude of
the other components. The longitudinal diffusive transport T xa

diff is much weaker than
the other components and hence not shown here.

Concerning the lateral transport T y a , all components are negligible compared to the
diffusive transport T y a

diff. The magnitude of the lateral diffusive transport, shown in Fig.
4.6, suggests that the lateral diffusive transport is stronger than the longitudinal trans-
port components (Fig. 4.5). The lateral diffusive transport is towards the left (looking
seaward) in the lateral direction in the lower part and towards the right in the lateral
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Figure 4.5: Longitudinal suspended sediment transport terms proportional to sediment availability a. Top left
panel shows the M0 transport, top right panel the M2 transport, bottom left panel the M4 transport and bottom
right panel the surface transport. The black dashed line in the middle indicates the middle of the channel
(y = 0) and the solid black lines at the sides the domain boundaries. The white dashed line indicates the zero
contour of the transport component being plotted. No white dashed line for surface transport (bottom right)
indicates a positive surface transport throughout the channel.

Figure 4.6: Lateral diffusive transport T
y a
diff. The black stars in the middle indicates the middle of the channel

(y = 0) and the black solid lines at the sides, the domain boundaries. The white dashed line in the middle
indicates the zero contour of the lateral diffusive transport. The white dashed line for the zero contour overlaps
with the black stars in the middle indicating a clear partition between the negative transport in the lower part
(below y = 0) and positive transport in the upper part (above y = 0) of the channel.

direction in the upper part of the estuary.
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4.4.2. ASYMMETRIC BED PROFILE
In this section, the influence of a laterally asymmetric bed profile on the ETM dynamics
is systematically investigated. The laterally asymmetric bed profile is obtained by taking
non-zero values of ψ in Eq. (4.12). In this chapter, we will mainly focus on two values of
ψ=−0.5 and ψ= 0.5. As mentioned in section 4.3.2, for ψ=−0.5, a laterally asymmetric

(a) (b)

Figure 4.7: Laterally asymmetric bed profiles profiles for ψ = −0.5 (left panel) and ψ = 0.5 (right panel). For
ψ = −0.5, the bed profile is skewed to the left when viewed from the river side to the seaward side and for
ψ= 0.5, skewed to the right. The units in the colorbar are m.

bed profile skewed to the left (when viewed from the river side to the seaward side) is
obtained (Fig. 4.7(a)). We refer to this profile as a negatively skewed bed profile. For
ψ= 0.5, a similar bed profile but skewed to the right is obtained (Fig. 4.7(b)). This profile
is referred to as positively skewed.

Figure 4.8 shows the availability of fine sediments (dimensionless) at the bottom for
both asymmetric bed profiles. For the positively skewed bed profile (Fig. 4.8(b)), the

(a) Sed. availability for ψ=−0.5 (b) Sed. availability for ψ= 0.5

Figure 4.8: Sediment availability for positively skewed bed profile with ψ = −0.5 (left panel, a) and negatively
skewed bed profile with ψ = 0.5 (right panel, b). The white circle denotes the location of maximum sediment
availability. The white line denotes the x-location of the maximum sediment availability for the reference case
with ψ= 0.

maximum sediment availability is found below the middle line through the estuary (y=0)
and for negatively skewed profile (Fig. 4.8(a)) above the middle line.
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Compared to the reference case, the distance of the maximum sediment availability
to the seaward side is larger for the negative skewed bed profile and smaller for the pos-
itively skewed bed profile. Furthermore, the maximum sediment availability is higher
for negatively skewed bed profile (approx. 5× 10−4) and smaller for positively skewed
bed profile (approx. 4×10−4) compared to the reference case (approx. 4.5×10−4). Note
that for both asymmetric bed profiles, the contour lines for sediment availability are also
skewed, following the contour lines of the bathymetric profiles with maximum sediment
availability found at the shallow sides.

Figure 4.9 shows the suspended sediment concentration at the surface for both bed
profiles. Concerning the x-location, the ETM is less landward for the positively skewed

(a) SSC at surface for ψ=−0.5 (b) SSC at surface for ψ= 0.5

Figure 4.9: Suspended sediment concentration for negatively skewed bed profile with ψ = −0.5 (left panel, a)
and positively skewed bed profile with ψ = 0.5 (right panel, b). The white circle denotes the location of max-
imum suspended sediment concentration at the surface. The white square shows the same for the reference
case with ψ= 0. The units in the colorbar are mg l−1.

bed profile (approx. 39 km from the entrance) and more landward for the negatively
skewed bed profile (approx. 44 km from the entrance) compared to the reference case
(approx. 42 km from the entrance). For the y-location, the ETM is skewed to the right
of the middle axis for the positively skewed bed profile and skewed to the left for the
negatively skewed bed profile when viewing from the river side to the seaward side. The
ETM for the positively skewed bed profile has a maximum concentration of approx. 900
mg l−1 and is thus weaker than the ETM for the reference case (1000 mg l−1). On the other
hand, the ETM for the negatively skewed bed profile with a maximum concentration of
1100 mg l−1 is stronger than the ETM for the reference case (1000 mg l−1).

Next, the smooth transition of the bed profile from negatively skewed (ψ = −0.5) to
positively skewed (ψ= 0.5) is simulated by running the model for intermediate values of
ψ. For each value ofψ, the location and the strength of the ETM is plotted. Figure 4.10(a)
shows the distance of the ETM from the entrance for different values of the parameterψ.
Figure 4.10(a) suggests that the ETM consistently moves seaward for increasing values of
ψ.

Concerning the y-location of the ETM, Fig.4.10(b) shows that increasing ψ, the ETM
moves from the left to the right of the middle line y = 0 when looking into the seaward
direction. The maximum concentration of the ETM, as shown in Fig. 4.10(c), becomes
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Figure 4.10: Location and strength of ETM for laterally asymmetric bed profiles for different values of ψ. The
top left panel (a) shows the x-location or the distance of the ETM from the seaward side and the top right
panel (b) the y-location of the ETM. The bottom panel (c) shows the strength of the ETM in terms of maximum
suspended sediment concentration at the surface. In all the panels, solid black squares indicate the model
results and the black circle indicates the data for the reference case.

lower for increasing values of ψ. In summary, when going from negatively skewed bed
profiles to positively skewed ones, the ETM consistently moves seaward and from the
left to right in lateral direction with decreasing maximum concentrations.

Next, we focus on the transport components for negatively and positively skewed bed
profiles. Figure 4.11 shows individual longitudinal transport components as given by Eq.
(4.11b) for both negatively and positively skewed bed profiles. For the sake of compari-
son, the scale of the colorbars in Figs. 4.11(a) and 4.11(b) are kept the same. Figure 4.11
suggests that the overall magnitude of the longitudinal sediment transport is higher in
case of negatively skewed bed profile (Fig. 4.11(a)) and lower in case of positively skewed
bed profile (Fig. 4.11(b)) when compared to the reference case (Fig. 4.5).

The following observations can be made from Fig.4.11:

M0: Comparing the top left panels of Figs.4.11(b) and 4.11(a) shows that when moving
from a positively skewed bed profile to a negatively skewed one, the intrusion of
negative M0 transport towards the landward side increases, and the location of
maximum negative M0 transport also moves towards the middle of the channel.

M2: The top right panels of Figs. 4.11(b) and 4.11(a) show that the M2 transport re-
mains dominantly positive with increasing magnitude when going from positively
skewed to negatively skewed bed profile. The location of the maximum M2 trans-
port also moves from the upper lateral boundary to the middle of the channel.

M4: Concerning the M4 transport, shown in the bottom left panels of Figs.4.11(b) and
4.11(a), the intrusion of negative M4 transport increases with decreasing magni-
tude of the positive transport when going from positively skewed to negatively
skewed bed profile.

Surface: The surface transport remains positive throughout the estuary for both cases but
the magnitude decreases when going from a positively skewed to a negatively
skewed bed profile.
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(a) Negatively skewed bed profile (ψ = -0.5)

(b) Positively skewed bed profile (ψ = 0.5)

Figure 4.11: Longitudinal suspended sediment transport terms for negatively (top figure) and positively skewed
(bottom figure) bed profiles. In each of these figures (top and bottom), top right subpanel shows the M0 trans-
port, top right subpanel the M2 transport, bottom left subpanel the M4 transport and bottom right subpanel the
surface transport. The black dashed line indicates the middle of the channel and the black solid lines on the
sides, the domain boundaries. The white dashed line indicates the zero contour of the transport component
being plotted.

4.4.3. SHALLOWING AND DEEPENING OF CHANNEL

In this section, we systematically investigate the influence of shallowing (infilling) or
deepening (dredging) of the estuarine channel on the sediment dynamics. It is assumed
that the shallowing or deepening of the channel does not alter the symmetry of the bed
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profile in the lateral direction. The lateral depths H0 are kept unchanged as in the refer-
ence case, i.e., H0 = 3 m.

(a) Channel shallowing by 1 m (b) Channel deepening by 1 m

Figure 4.12: Bathymetric profiles for shallowing (left panel) and deepening (right panel) of the estuarine chan-
nel with ψ= 0. For channel shallowing, δHmax =−1 is used and for channel deepening, δHmax = 1. The units
in the colorbar are m.

Changing the maximum depth Hmax(x) in Eq. (4.12) by a small overall perturbation
δHmax, i.e., Hmax(x) → Hmax(x) + δHmax, mimics the shallowing or deepening of the
channel mainly occurring in the middle of the channel. A negative value of δHmax re-
sults in channel shallowing and a positive value in channel deepening. Here, we mainly
focus on shallowing and deepening by 1 meter, i.e., δHmax =−1 m and 1 m as shown in
Fig.4.12.

Figure 4.13 shows the availability of fine sediments (dimensionless) at the bottom
for the shallowed and deepened channels. For the shallowed channel (Fig. 4.13(a)), the
location of maximum sediment availability moves towards the seaward side.

(a) Sed. availability for δHmax =−1 (b) Sed. availability for δHmax = 1

Figure 4.13: Availability of fine sediments at the bottom for shallowed (left panel) and deepened (right panel)
channels. The white circle denotes the location of maximum sediment availability. The white solid line indi-
cates the x-location of the sediment availability for the reference case. The sediment availability is a dimen-
sionless quantity and hence no units are associated with the colorbar.

A large part of fine sediments is now available at the seaward side with reduced mag-
nitude (approx. 3×10−4) compared to the reference case (approx. 4.5×10−4). For the
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deepened channel (Fig. 4.13(b)), the location of maximum sediment availability remains
close to that of the reference case. For this case, the sediment availability is also almost
negligible up to 20 km from the seaward side and towards the landward side. Since the
total amount of the fine sediments available for erosion is unchanged, this leads to a
larger maximum of the sediment availability (approx. 6×10−4) for the deepened chan-
nel compared to the reference case.

Figure4.14 shows the suspended sediment concentration at the surface for both the
shallowed and deepened channels. For the shallowed channel (Fig. 4.14(a)), the ETM

(a) SSC at surface for δHmax =−1 (b) SSC at surface for δHmax = 1

Figure 4.14: Suspended sediment concentration at the surface for shallowed (left panel, a) and deepened (right
panel, b) channels. The white circle denotes the location of maximum suspended sediment concentration at
the surface. The units in the colorbar are mg l−1.

is found at the mouth of the channel below the middle line (y = 0) with a maximum
concentration of approx. 850 mg l−1 compared to 1000 mg l−1 for the reference case. The
suspended sediment concentration at the surface decreases in the landward direction.
For the deepened channel (Fig.4.14(b)), the location of the ETM remains unchanged but
the strength of the ETM increases with a maximum concentration of approx.1250 mg l−1.
The suspended sediment concentration at the surface in this case is small at the seaward
side, increases up to the location of ETM and then decreases to the landward side.

Next, the influence of δHmax on the location and strength of ETM is systematically
investigated. For this purpose, the model is run for various values of δHmax ranging
between -1 m and 1 m. Figure 4.15(a) shows that with increasing values of δHmax, i.e.,
from shallowing to deepening, the ETM moves landward. It is interesting to see that
the ETM remains close to the seaward side for values of δHmax up to -0.8 m and then
suddenly moves towards the landward end. Note that for all values of δHmax, the ETM
is either found at a fixed location close to the seaward side (for δHmax ≤ −0.8 m) or at a
fixed location close to the landward side (for δHmax ≥ −0.6 m). A similar trend is seen
for the lateral location of the ETM (Fig. 4.15(b)). The y-location of the ETM remains
unchanged for δHmax ≤−0.8 and δHmax ≥−0.6. All the y-locations of the ETM are very
close to the middle axis y = 0 of the channel. The strength of the ETM as shown in Fig.
4.15(c) first decreases linearly up to δHmax =−0.6 and then increases linearly.

Figure 4.16 shows the main transport components for the critical values of δHmax,
−0.8 and −0.6. The top left panel of Figs. 4.16(a) and 4.16(b) shows that negative M0
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Figure 4.15: Influence of shallowing and deepening on the location and strength of ETM. The top left panel
shows the x-location or the distance from the entrance of the ETM and the top right panel the y-location of
the ETM. The bottom panel shows the strength of the ETM in terms of maximum suspended sediment concen-
tration at the surface. In all the panels, solid black squares indicate the model results and black circle indicates
the data for the reference case.

transport becomes much stronger when δHmax changes from −0.8 to −0.6. The other
transport components (M2, M4 and surface) show minor changes for δHmax = −0.8 to
δHmax = −0.6. These changes, however, are much smaller compared to ones for M0

transport. This shows that the strong change in the M0 transport is responsible for the
change in the location of ETM when when increasing δHmax from -0.8 to -0.6.

4.4.4. RISE OR FALL OF THE SEA LEVEL

The influence of rise and fall in the sea level on the ETM dynamics is investigated by
changing the overall depth h of the channel by a small amount δh, i.e., h → h +δh. A
positive value of δh mimics the rise in the sea level and a negative value, a fall in the sea
level. In this chapter, we will mainly focus on the fall and rise in sea level by 1 m, i.e., δh
= -1 and 1. As shown in Fig.4.17, in both cases, the bed profile remains unchanged but
the range of depth changes; 2 m to 9 m for fall in the sea level (Fig. 4.17(b) ) and from 4
m to 11 m for rise in the sea level (Fig. 4.17(b)).

Figure 4.18 shows the availability of fine sediments due to fall and rise of the sea level.
Concerning the fall of the sea level, Fig. 4.18(a), the maximum sediment availability is
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(a) Shallowed channel (δHmax = -0.8)

(b) Deepened channel (δHmax = -0.6)

Figure 4.16: Longitudinal suspended sediment transport terms for shallowed (top figure) and deepened (bot-
tom figure) channels. In each of these figures (top and bottom), top right subpanel shows the M0 transport, top
right subpanel the M2 transport, bottom left subpanel the M4 transport and bottom right subpanel the surface
transport. The black dashed line indicates the middle of the channel and the black solid lines on the sides,
the domain boundaries. The white dashed line indicates the zero contour of the transport component being
plotted.

found at the seaward side with a magnitude (approx. 4×10−4) smaller than in the refer-
ence case (approx. 4.5×10−4). Furthermore, the sediment availability decreases along
the length of the estuary with maximum availability at the seaward side and minimum
availability at the landward side. For the case with rise in the sea level, the location of
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(a) Fall in the sea level by 1 m (b) Rise in the sea level by 1 m

Figure 4.17: Bathymetric profiles due to fall (left panel) and rise (right panel) in the sea level. For fall in the sea
level, δh =−1 is used and for rise in the sea level δh = 1. The units in the colorbar are m.

(a) Sed. availability for δh =−1 (b) Sed. availability for δh = 1

Figure 4.18: Availability of fine sediments at the bottom for fall (left panel) and rise (right panel) of the sea
level. The white circle denotes the location of maximum sediment availability for the current case and white
line, the x-location of maximum availability for the reference case. The sediment availability is a dimensionless
quantity and hence no units are associated with the colorbar.

maximum availability remains the same as for the reference case. However, the maxi-
mum sediment availability becomes twice (approx. 7×10−4) the reference case (approx.
4×10−4). The sediment availability for rise in the sea level becomes almost negligible at
the seaward and landward sides.

Next we look at the suspended sediment concentration at the surface for both these
cases. Figure 4.19(a) shows that for the fall in the sea level, the ETM is found close to the
seaward side with an enhanced strength (approx.1100 mg l−1) compared to the reference
case (1000 mg l−1). The suspended sediment concentration decreases from the seaward
side to the landward side. For rise in the sea level (Fig. 4.19(b)), the ETM is found close
to the location for the reference case but with an enhanced strength (approx. 1400 mg
l−1). The suspended sediment concentration at the surface is almost negligible at the
seaward and landward sides. Furthermore, the ETM for this case is confined to a smaller
region than in the reference case.

Next, we systematically change the values of δh and investigate the influence on the
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(a) SSC at surface for δh =−1 (b) SSC at surface for δh = 1

Figure 4.19: Suspended sediment concentration at the surface for fall (left panel) and rise (right panel) in the
sea level. The white circle indicates the location of ETM for the current case and white square, for the reference
case. The units in the colorbar are mg l−1.

location and strength of the ETM. Figure 4.20(a) shows that the location of ETM remains
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Figure 4.20: Influence of changes in the sea level (δh) on the location and strength of ETM. The top left panel
shows the x-location or the distance of the ETM from the seaward side and the top right panel, the y-location of
the ETM. The bottom panel shows the strength of the ETM in terms of maximum suspended sediment concen-
tration at the surface. In all the panels, solid black squares indicate the model results and black circle indicates
the reference case.



4

104
4. INFLUENCE OF BATHYMETRIC CHANGES ON DYNAMICS OF ESTUARINE TURBIDITY

MAXIMA

close to the seaward side for δh ≤−0.6 m. For δh ≥−0.4 m, the ETM is located towards
the landward side (approx. 40 km from the entrance). Figure 4.20(b) suggests that the
ETM remains located around the middle of the channel for all values of changes in the
sea level. The strength of the ETM first decreases linearly up to δh = −0.4 m and then
increases almost linearly.

We now focus on the main transport components for δh =−0.6 m and δh =−0.4 m.
Like in the case of channel shallowing, the top left panels of Figs. 4.21(a) and 4.21(b)
show that the M0 transport change between δh = −0.6 m and δh = −0.4 m. The other
transport components show little change between δh = −0.6 m and δh = −0.4 m, indi-
cating that changes in the M0 transport are the main cause for the shift of the ETM from
the seaward side to the landward side.

4.5. DISCUSSION

4.5.1. ASYMMETRIC BED PROFILE

For asymmetric bed profiles, parameter ψ =−0.5 gives a negatively skewed bed profile,
ψ = 0.5, a positively skewed bed profile and ψ = 0, a symmetric (nominal) bed profile.
Figure 4.22(a) shows the major width-averaged subcomponents of the M0 transport, i.e.,
TM0,RD , TM0,GC and TM0,T RF (see chapter 3 for the meaning of various symbols). Figure
4.22(a) shows that major change to M0 transport is due to the contribution related to
river discharge (TM0,RD ). The strength of TM0,RD transport component decreases when
going from negatively skewed bed profile (ψ = −0.5, dashed line) to positively skewed
bed profile (ψ = 0.5, dotted line) with location of maximum transport moving seaward.
A minor change is seen for the other M0 transport subcomponents such as TM0,GC and
TM0,T RF .

For the M2 transport, the major contributions are TM2,RD , TM2,GC , TM2,EF , TM2,T RF 14,
and TM2,N S14. Figure 4.22(b) shows that contrary to the M0 transport, the M2 transport
due to river discharge TM2,RD increases when going from negatively skewed bed profile
(ψ=−0.5) to positively skewed bed profile (ψ= 0.5). The M2 transport due to externally
prescribed M4 tidal forcing TM2,EF increases with increasing value of ψ. The maximum
of TM2,EF moves landward with increasing value of ψ pushing the sediment more into
the estuary. The M2 transport due to tidal return flow TM2,T RF 14 also increases with
increasing value of ψ. Note that the peaks of TM2,RD , TM2,EF , and TM2,T RF 14 transport
subcomponents are found in the same proximity. The M2 transport due to gravitational
circulation TM2,GC and no-stress TM2,N S14 shows small changes in their magnitude.

4.5.2. SHALLOWING AND DEEPENING OF CHANNEL

Figure 4.23 shows the major subcomponents of the transport components TM0 and
TM2 for the shallowing and deepening of the channel by 1 m, i.e., δHmax = −1 m and
δHmax = 1 m, respectively. Note that unlike the previous case for asymmetric bed profile,
the transport subcomponent TM0,T RF also changes significantly together with TM0,RD

when going from shallowing by 1 m to deepening by 1 m. The changes in the transport
component TM0,GC are small. When going from shallowing to deepening by 1 m, the
strength of the transport subcomponent TM0,RD decreases at the landward side (approx.
48 km from the entrance) and increases at the seaward side. The transport subcompo-
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(a) Change in the sea level by δh = -0.6 m

(b) Change in the sea level by δh = -0.4 m

Figure 4.21: Longitudinal suspended sediment transport terms for fall (top figure) and rise (bottom figure)
of the sea level. In each of these figures (top and bottom), top right subpanel shows the M0 transport, top
right subpanel the M2 transport, bottom left subpanel the M4 transport and bottom right subpanel the surface
transport. The black dashed line indicates the middle of the channel and the black solid lines on the sides,
the domain boundaries. The white dashed line indicates the zero contour of the transport component being
plotted.

nent TM0,T RF becomes stronger at the seaward side with increasing δHmax.

Concerning the M2 transport component, the major subcomponents are shown in
Fig. 4.23(b). Similar to the case with a asymmetric bed profile, the M2 transport due to
river discharge TM2,RD increases with increasing δHmax. The M2 transport due to exter-
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(a) Dominant subcomponents of M0 transport (b) Dominant subcomponents of M2 transport

Figure 4.22: Dominant width-averaged subcomponents of the M0 (left panel) and M2 (right panel) transport
components for bed profiles with ψ=−0.5 (dashed line), ψ= 0 (solid line) and ψ= 0.5 (dotted line).

(a) Dominant subcomponents of M0 transport (b) Dominant subcomponents of M2 transport

Figure 4.23: Dominant subcomponents of the M0 (left panel) and M2 (right panel) transport components for
shallowing by 1 m (δHmax = −1 m, dashed line) and deepening (δHmax = 1 m, dotted line). The solid lines
denote the nominal case i..e, δHmax = 0 m.

nally prescribed M4 tidal forcing TM2,EF is the most dominating subcomponent and it
increases with increasing value of δHmax. The magnitude of the maximum TM2,EF trans-
port for δHmax = −1 m is almost twice that of δHmax = 1. The M2 transport due to tidal
return flow TM2,T RF 14 also increases with increasing value of δHmax. Again, the peaks of
TM2,RD , TM2,EF , and TM2,T RF 14 transport subcomponents are found in the same proxim-
ity. Rest of the subcomponents such as TM2,GC and TM2,N S14 shows small or no changes.

The behavior of transport components for rise and fall of the sea level is similar to
the behavior of transport components for shallowing and deepening of the channel and
hence not shown here.
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4.6. CONCLUSIONS
The influence of bathymetric changes on the location and the strength of the ETM has
been investigated by using a three-dimensional semi-idealized model for water mo-
tion and sediment dynamics. The water motion is governed by the three-dimensional
shallow water equations and the sediment concentration by the three-dimensional
advection-diffusion equation. To obtain the spatial distribution of the sediment avail-
ability, the condition of morphodynamic equilibrium is imposed (see Kumar et al. [18],
and Kumar et al. [19] for more details regarding the development of the model).

A funnel shaped estuary is considered for the experiments. The 2005 bathymetric
data of the Ems estuary is used to model the along-channel profile of the estuary using
a 4th degree polynomial. In the lateral direction, a possibly asymmetric Gaussian pro-
file is prescribed. For a laterally symmetric profile, the maximum sediment availability
is found approximately 46 km from the seaward side and the maximum suspended sed-
iment concentration at the surface, approximately 42 km from the seaward side. The
maximum sediment availability is found at the sides of the channel and the maximum
sediment concentration, approximately in the middle of the channel.

When considering a negatively skewed bed profile, the location of maximum sedi-
ment availability is more landward and towards the upper lateral boundary compared to
the symmetric case; with a higher magnitude of the maximum sediment availability in
the ETM. The location of maximum suspended sediment concentration at the surface is
more landward with a higher sediment concentration compared to the symmetric case.
For a positively skewed bed profile, the location of maximum sediment availability is
more seaward and towards the lower lateral boundary compared to the symmetric case.
Furthermore, a lower magnitude of maximum sediment availability is observed in the
ETM compared to the symmetric case. The location of maximum suspended sediment
concentration at the surface is more seaward with a lower concentration compared to
the symmetric case. Systematically varying the asymmetricity of the lateral bed profile
shows that the location of maximum suspended sediment concentration at the surface
consistently moves seaward and from left to right in the lateral direction with decreasing
maximum concentrations.

The influence of shallowing or deepening of the channel is modeled by varying the
maximum depth of the channel attained at the middle of the channel. The results show
that when shallowing the channel by 1 m, the location of the maximum sediment avail-
ability moves completely to the seaward side. For deepening of the channel by 1 m, the
location of the maximum sediment availability remains unchanged but its magnitude
increases. For the shallowed channel, the maximum suspended sediment concentra-
tion at the surface is found at the seaward side with lower concentration compared to the
symmetric case. For the deepened channel, the maximum suspended sediment concen-
tration is found at the same location as for the laterally symmetric bed profile but with
a higher concentration. Running the model for several values of shallowing and deep-
ening shows that the location of maximum suspended sediment concentration at the
surface moves landward and from left to right in the lateral direction when systemati-
cally moving from shallowing to the deepening of the channel.

Finally, the overall depth is varied to mimic the fall and rise of the sea level. For the
fall of the sea level by 1 m, the location of the maximum sediment availability moves
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completely to the seaward side. On the other hand, for rise of the sea level by 1 m, the
location of the maximum sediment availability remains unchanged. For the fall of the
sea level, the location of maximum suspended concentration at the surface moves to the
seaward side with a higher concentration compared to the symmetric case. For the rise
of the sea level by 1 m, the location of maximum suspended sediment concentration at
the surface moves more landward with a much higher concentration compared to the
symmetric case. The results show that the location of maximum suspended sediment
concentration at the surface moves landward and from left to right in the lateral direction
when systematically moving from fall to the rise of the sea level.
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5
CONCLUSIONS

5.1. RETROSPECTION
The following research questions were posed in the introduction chapter of this thesis:

1 How can the three-dimensional water motion in an estuary with complex shape
and bathymetry be decomposed in contributions resulting from different forcing
mechanisms?

2 How can such a model be extended to include the three-dimensional sediment dy-
namics and sediment trapping, resulting in the formation of ETM?

3 What is the sensitivity of the trapping location to anthropogenic (e.g., channel deep-
ening) and natural changes (e.g., sea level rise) in a funnel shaped estuary?

These questions have systematically been answered in this thesis by developing a three
dimensional idealized model for tidal motion and sediment dynamics and by perform-
ing bathymetric sensitivity analyses. In the next section (5.2), we present the main con-
clusions together with the answers to above questions.

5.2. MAIN CONCLUSIONS
The goal of this thesis was to develop an idealized model that is specifically geared to-
wards increasing our understanding of the dynamics of the estuarine turbidity maxi-
mum in estuaries of arbitrary shape (geometry and bathymetry), including Coriolis ef-
fects. Due to the arbitrary shape of the estuary and inclusion of Coriolis effects, there
is a strong correlation between the longitudinal and lateral processes. Hence, a three-
dimensional model is needed. For this purpose, the water-motion is described by three-
dimensional shallow water equations and the suspended sediment concentration fol-
lows from a three-dimensional advection-diffusion equation with sources and sinks.
Furthermore, the estuary is required to be in morphodynamic equilibrium which means
that there is no evolution of the bed averaged over the tidal scale. This condition can
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only be achieved if the fine sediments have a specific spatial distribution on the bottom
of the estuary. While developing the model, the following assumptions were made;

• The horizontal viscous and diffusivity effects are ignored compared to the vertical
viscous effects. It means that the horizontal boundary layer is ignored compared
to the vertical boundary layer.

• The estuary is assumed to be partially- to well-mixed.

• The eddy viscosity and stress parameter are assumed to be functions of horizontal
coordinates only.

• The M2 tidal constituent is assumed to be the dominant one compared to the M4

tidal constituent and river discharge.

• The total amount of easily erodible sediments in the estuary is prescribed.

The model developed to describe the M2 water motion is presented in chapter 2.
This answers Research Question 1 posed in section 5.1 with respect to the M2 water mo-
tion. The striking feature of the model lies in the fact that the vertical profile of the M2 ve-
locity is known completely analytically in terms of the surface elevation gradients. Inte-
grating the continuity equation for M2 water motion in the vertical direction over the wa-
ter column and using the appropriate boundary conditions, results in a two-dimensional
elliptic partial differential equation for the M2 surface elevation. Since the shape (geom-
etry and bathymetry) of the estuary is assumed to be arbitrary and physical parameters
are assumed to be arbitrary functions of the horizontal coordinates, the elliptic equa-
tion for the M2 surface elevation can, in general, not be solved analytically. The finite
element method is adopted to solve this equation. Linear and quadratic polynomial
functions are chosen as basis functions for the finite element method. The first-order
partial derivatives are computed using so-called direct derivative (DD) method and ZZ-
method. For the second-order partial derivatives, a new method called mixed-method,
which is a hybrid of DD-method and ZZ-method, is introduced. To check the accuracy
of the model, the model results are first compared with the model results of a width-
averaged (2DV) idealized model developed by Chernetsky et al. [1] for an exponentially
converging domain. The results for the surface elevation and the partial derivatives con-
verge with the expected rate of convergence. Next, the model results are compared with
the model results of a three-dimensional idealized model developed by Winant [2] for a
narrow (width is much smaller than the length) rectangular channel. The results for the
surface elevation and horizontal and vertical velocities agree well. These two compar-
isons ensure the accuracy of the model. The model is then applied to the Ems estuary
using a realistic geometry and bathymetry for the year 2005. A good agreement is found
for the M2 water level and phase among the observations, model results of the newly
developed semi-idealized model and the models results of a complex numerical model
(Van Maren et al. [3]). To understand the influence of the width-profile only (mean-
dering effects neglected), the width-profile of the Ems estuary is approximated using an
exponential function and a polynomial function. The model results suggest that, for sur-
face elevation and the absolute value of the depth-averaged horizontal velocity, approx-
imating the width-profile with a polynomial function gives better results than approx-
imating with an exponential function. This indicates that a more accurate description
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of the geometry of the Ems estuary must be taken into account. To summarize I find:
the three-dimensional idealized model of Winant [2] for the M2 water motion developed
for a narrow channel with simplified bed profile is extended to an estuary with arbitrary
geometry and bathymetry with horizontally varying physical parameters. The extensive
convergence analyses show that the model converges with expected rate of convergence.
When applied to the Ems estuary using a realistic geometric and bathymetric data of the
year 2005, the model produces satisfactory results for the amplitude and the phase of the
M2 water motion.

Chapter 3 focuses on the development of the model for the trapping of fine sedi-
ments in tidally-dominated estuaries. To this end, residual and M4 water motion and
suspended sediment concentration have to be solved as well. This answers the remain-
ing part of the first Research Question and complete second Research Question posted
in section 5.1. As in chapter 2, the vertical profile of the residual and M4 velocities
can be expressed in terms of the gradients of the residual and M4 water level, respec-
tively. Integrating the continuity equation in the vertical over the water column gives
a two-dimensional elliptic partial differential equation for the surface elevation. The
three-dimensional profile of the suspended sediment concentration (residual, M2 and
M4 constituents) is completely known in terms of the horizontal velocity (residual, M2

and M4 constituents) at the bottom (bed shear stress) and can be computed analytically.
However, the suspended sediment concentration also depends on an unknown coeffi-
cient called the sediment availability. Assuming morphodynamic equilibrium, the spa-
tial profile of the easily erodible fine sediment follows from a two-dimensional partial
differential equation for the sediment availability. As in chapter 2, the elliptic equations
for the residual and M4 water level and the sediment availability are solved numerically
using the finite element method. We find that when the polynomials of degree q for
the M2 water motion and polynomials of degree at least q − 1 for the residual and M4

water motion and sediment availability are used as basis functions in the finite element
method, the overall model converges with rate q − 1. For this reason, the third-degree
polynomials for the M2 water motion and second-degree polynomials for the rest of the
component are used as basis functions. Next, this model is applied to the Ems estuary
for parameters representative for years 1980 and 2005. The width is assumed to be ex-
ponentially convergent. The bathymetry in the longitudinal direction is taken from the
measurements and is approximated with a smooth function (polynomial of degree four).
In the first experiment, the bathymery is assumed to be uniform in the lateral direction.
Focusing on the year 1980, the estuarine turbidity maximum (ETM) is found close to the
seaward side. For the year 2005, the ETM moves far landward, approximately 38 km away
from the entrance, indicating that the three-dimensional model is able to qualitatively
reproduce the observed ETM behavior in the Ems estuary. Next, the bed profile in the
lateral direction is changed to a parabolic profile. For both the 1980 and 2005 cases, it
is found that the location of the ETM remains approximately the same compared to the
case with laterally uniform bed profile. However, the highest concentration is found in
the middle of the channel even though most of the easily erodible sediment is found at
the sides. To summarize I find: the semi-idealized model developed in chapter 2 for the
M2 water motion is extended to the trapping of the fine sediments by solving for the resid-
ual and M4 water motion and suspended sediment concentration together with the con-
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dition of morphodynamic equilibrium. The overall accuracy of the model is guaranteed
by choosing a proper combination of cubic and quadratic polynomials as basis functions.
As a first application, the model is applied to the Ems estuary with simplified geometry
and bathymetry and the model is able to qualitatively reproduce the locations of the ETM
for both 1980 and 2005.

In chapter 4, the influence of bathymetric changes on the location and strength of the
estuarine turbidity maximum is investigated. The anthropogenic and natural changes
are limited to changes in the bathymetric profile and therefore this chapter answers the
third Research Question from section 5.1. An exponential domain with laterally symmet-
ric bathymetric profile acts as a reference case. Systematically varying the asymmetricity
of the lateral bed profile, i.e., the maximum depth in the lateral direction is no more at-
tained in the middle, from negatively skewed to positively skewed bed profile shows that
the location of maximum suspended sediment concentration at the surface consistently
moves seaward and from left to right in the lateral direction with decreasing maximum
concentration. To understand the impact of shallowing or deepening of the channel, the
maximum depth, which is attained at the middle of the channel, is varied. When moving
from shallowing of the channel to the deepening of the channel, the location of maxi-
mum suspended sediment concentration at the surface moves landward and from left
to right in the lateral direction. Finally, to mimic the fall and rise of the sea level, the over-
all depth of the channel is varied. The model suggests that when going from fall of the
sea level to the rise of the sea level, the location of maximum suspended sediment con-
centration at the surface moves landward and from left to right in the lateral direction.
To summarize: these numerical experiments demonstrate that the three-dimensional ide-
alized model developed in this thesis can be used to gain physical insight of the system
related to the dynamics of the estuarine turbidity maximum. The quick simulation time
allows to perform sensitivity analyses of various parameters as done for the bathymetric
profile in this chapter. This opens the door of the use of this model for other applications.

5.3. RECOMMENDATIONS
This thesis has mainly focussed on the development of a three-dimensional idealized
model that is able to capture the dynamics of the estuarine turbidity maximum. Both
concerning the physical description and the solution method, specific choices and
parametrizations were made. We list specific aspects which can be improved and few
suggested applications of this model:

Depth-dependent eddy viscosity: In this model, the eddy viscosity is assumed to be
uniform in the vertical direction and time. This can be extended by using a more realistic
profile of the eddy viscosity varying in the vertical direction and also with time. Doing
this for an arbitrary profile of depth-dependent eddy viscosity may no longer allow to
solve the vertical profile of the velocity analytically.

More accurate numerical solution: The surface elevation and the sediment availabil-
ity follow from a two-dimensional elliptic partial differential equation. The velocity and
the suspended sediment concentration depend on the partial derivatives of the surface
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elevation. In this paper, the DD-method was used to compute the partial derivatives.
The accuracy of the numerical solution decreases by one each time the DD-method is
used to compute the partial derivatives. This has a direct impact on the overall accuracy
of the model. This problem can be overcome by solving the surface elevation and its par-
tial derivatives simultaneously. In this case, instead of having one differential equation
for the surface elevation, one will have to solve a system of differential equations which
will contain surface elevation and its partial derivatives as unknowns.

Time dependent availability: The availability of fine sediments is computed when the
system has reached morphodynamic equilibrium. However, the behaviour of fine sedi-
ments while reaching that process is also of great importance. This can be achieved by
taking the sediment availability to be varying in time as well. This will help us to un-
derstand the behaviour of sediment availability during the tidal cycle till it reaches the
morphodynamic equilibrium.

Retention basin: The influence of retention basins on the water motion has been stud-
ied extensively (Roos and Schuttelaars [4], Alebregtse and De Swart [5], Alebregtse et al.
[6]). However, no idealized modelling approach has been used to understand the impact
of a retention basin on the sediment transport and the location of the estuarine turbidity
maximum. This model can be easily used to study this case.

Application to other estuaries: In this thesis, the model has been applied to the Ems
estuary. However, this model is an excellent tool to systematically understand the in-
fluence of shape of the estuary and the various physical parameters on the sediment
transport in any tidally dominated estuary. Hence, this model can be applied to any
tidally-dominated and partially-mixed estuary satisfying the underlying assumptions.
The Pearl River Estuary in China is an excellent example of such an estuary. Like the
Ems estuary, this estuary has also gone through anthropogenic changes and the water
motion and sediment dynamics has also changed. This model then can be applied to
identify the most dominating factor causing the changes.
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SUMMARY

Estuaries have played a crucial role in the development of human civilization. In the
course of time, estuaries have gone through several adverse changes in terms of increase
in the water level and sediment concentration. This has lead to changes in the location
and strength of sediment trapping locations, also known as estuarine turbidity maxima.
The main objective of this thesis is to develop a three-dimensional model to understand
the dynamics of estuarine turbidity maxima in tidally dominated estuaries with arbitrary
geometry and bathymetry. A major part of this thesis is dedicated to the development of
this model.

To develop such a model, three dimensional equations governing the water motion
and sediment dynamics are needed. Three-dimensional shallow water equations for
water motion and three-dimensional advection-diffusion equation for sediment con-
centration are solved. An extra condition of morphodynamic equilibrium is imposed
to govern the availability of fine sediments in the estuary. This condition together with
the proper boundary conditions complete the mathematical model. Using scaling and
perturbation analyses results in a small parameter ε which is the ratio of the mean am-
plitude of the M2 surface elevation and the mean water depth at the seaward bound-
ary. This leads to a system of equations at each order of ε for the water motion and
the suspended sediment concentration. A striking feature of the model is that for both
leading-order and first-order water motion, the vertical structure of the velocity can be
analytically expressed in terms of the gradients of the water level. As a first step towards
the development of the model, we focus on the leading-order water motion. A combi-
nation of analytical and numerical (finite element method) techniques are used to solve
these equations for leading-order water motion. The model is verified by comparing the
model results with results of other idealized models. The model for leading-order wa-
ter motion shows that approximating the geometry of the Ems estuary with 9th degree
polynomial gives better results for the amplitude and phase of the M2 tide than approxi-
mating it with an exponential function. Furthermore, the leading-order model captures
the amplitude and phase of the M2 tide of the Ems estuary quite well when compared to
the field observations and results from a state-of-the-art complex model.

Next, the first-order system of equations for water motion and leading- and first-
order systems of equations for the suspended sediment concentration are solved. The
first-order water motion consists of M0 (residual) and M4 (overtide) constituents which
themselves can be decomposed into several contributions due to externally prescribed
and internally generated forcing terms. For each of these contributions, a system of
equations similar to the leading-order water motion is solved. The strength of the model
lies in the fact that each contribution can be investigated independently. Regarding
the sediment concentration, both leading-order and first-order system of equations are
solved analytically in terms of the leading-order and first-order horizontal velocities
and can be decomposed into various subcomponents. The condition of morphody-
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namic equilibrium yields a two-dimensional elliptic differential equation for the sedi-
ment availability which is solved numerically. With the choice of proper basis functions
in the numerical solution, the convergence of the whole model is ensured. When ap-
plied to the Ems estuary with parameter values representative of year 2005, the model
wonderfully mimics the location of the estuarine turbidity maximum.

To understand the influence of anthropogenic and natural changes on the location
and strength of estuarine turbidity maximum, the three-dimensional model is applied
to an estuary with an exponentially converging domain and a laterally symmetric bathy-
metric profile. The model shows that the distance from the seaward side and the strength
of the estuarine turbidity maximum changes with varying asymmetry of the bathymetry.
In all cases, the maximum availability of fine sediments is found at the lateral sides and
the maximum suspended sediment concentration, close to the middle of the channel. As
expected, the presence of the Coriolis force distorts the symmetry of the various trans-
port subcomponents. The model also suggests that shallowing or deepening of the chan-
nel can completely shift the estuarine turbidity maximum from seaward side to the land-
ward side. A similar trend is seen when investigating the influence of long term changes
in the sea level on estuarine turbidity maximum. These numerical experiments demon-
strate the strength of the model and its use in several applications.
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Estuaria hebben een cruciale rol gespeeld in de ontwikkeling van de menselijke bescha-
ving. In de loop van de tijd zijn estuaria veranderd door ontwikkelingen zoals een toe-
name van het water niveau en de sedimentconcentratie. Dit heeft geleid tot verande-
ringen in de positie en sterkte van locaties waar sediment wordt ingevangen, bekend als
estuariene turbiditeitsmaxima. The doel van dit proefschrift is het ontwikkelen van een
drie-dimensioneel model om de dynamica van estuariene turbiditeitsmaxima in getij-
gedomineerde estuaria met arbitraire geometrie en bathymetrie te begrijpen. Een groot
deel van dit proefschrift is gewijd aan de ontwikkeling van dit model.

Voor de ontwikkeling van het model worden de drie-dimensionele ondiep-
watervergelijkingen voor de waterbeweging en een drie-dimensionele advectie-
diffusievergelijking voor de sedimentconcentratie gebruikt en opgelost. Daarnaast
wordt de morfodynamisch-evenwichtsvoorwaarde voorgeschreven om de beschikbaar-
heid van fijn sediment in het estuarium te bepalen. Deze vergelijkingen vormen, samen
met de randvoorwaarden, het totale model. Door gebruik te maken van schalings- en
storingsanalyse, wordt een kleine parameter ε afgeleid, welke de verhouding tussen de
gemiddelde M2 getijamplitude en de gemiddelde waterdiepte aan de zeewaartse rand
voorstelt. De analyse leidt vervolgens tot een stelsel vergelijkingen op iedere orde van ε

voor de water beweging en de sedimentconcentratie. Een opvallende eigenschap van het
model is dat, voor zowel de leidende- als eerste-orde water beweging, het verticale snel-
heidsprofiel analytisch kan worden uitgedrukt in termen van de waterniveaugradiënt.
Als eerste stap in de modelontwikkeling richten we ons op de leidende-orde waterbewe-
ging. De vergelijkingen hiervoor worden opgelost met een combinatie van analytische
en numerieke (eindige elementen methode) technieken. Het model is geverifieerd door
de resultaten te vergelijken met resultaten van andere geïdealiseerde modellen. Het mo-
del voor de leidende-orde waterbeweging laat zien dat betere resultaten voor de M2 ge-
tijamplitude en –fase worden verkregen als de geometrie van het Eems estuarium wordt
benaderd met een negende-orde polynoom dan wanneer dit wordt benaderd met een
exponentiele functie. Daarnaast is het model in staat de amplitude en fase van het M2

getij in het Eems estuarium goed te beschrijven in vergelijking met veldmetingen en re-
sultaten van een ‘state-of-the-art’ complex model.

Hierna zijn de eerste-orde vergelijkingen voor de waterbeweging en leidende- en
eerste-orde vergelijkingen voor de sedimentconcentratie opgelost. De eerste-orde wa-
terbeweging bestaat uit een M0 (residuele) en M4 (overtij) component, welke elk weer
verder opgedeeld kunnen worden in verscheidene bijdragen door extern voorgeschre-
ven en intern gegenereerde forceringen. Voor ieder van deze bijdragen wordt een sys-
teem van vergelijkingen opgelost dat lijkt op het systeem voor de leidende-orde waterbe-
weging. De kracht van het model is dat iedere bijdrage afzonderlijk bestudeerd kan wor-
den. De vergelijkingen voor de sedimentconcentratie worden, voor zowel de leidende-
als eerste-orde, analytisch opgelost in termen van de leidende- en eerste-orde horizon-
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tale snelheden. Ook de sedimentconcentratie kan worden opgedeeld in verscheidene
bijdragen. De morfodynamish-evenwichtsvoorwaarde leidt tot een twee-dimensionele
elliptische differentiaalvergelijking voor de sedimentbeschikbaarheid, welke numeriek
wordt opgelost. Door gebruik te maken van geschikte basisfuncties in de numerieke op-
lossing, wordt de convergentie van het gehele model gegarandeerd. Toegepast op het
Eems estuarium met parameterwaarden die representatief zijn voor 2005 geeft het mo-
del een wonderbaarlijk goede representatie van de locatie van het estuarien turbiditeits-
maximum.

Om het effect van menselijke en natuurlijke veranderingen op de dynamica van het
turbiditeitsmaximum te bestuderen, wordt het drie-dimensionele model toegepast op
een estuarium met exponentieel convergerende geometrie en lateraal symmetrisch bo-
demprofiel. Het model laat zien dat de locatie en de sterkte van het turbiditeitsmaxi-
mum veranderen bij veranderende asymmetrie van het bodemprofiel. In alle gevallen
wordt de grootste beschikbaarheid van fijn sediment gevonden op de laterale randen en
worden de maximale gesuspendeerde sedimentconcentraties gevonden rond het mid-
den van de hoofdgeul in de laterale richting. Zoals verwacht verstoort de Corioliskracht
de symmetrie van de fysische grootheden. Het model suggereert ook dat het dieper of
ondieper maken van de hoofdgeul kan leiden tot een verschuiving van het turbiditeits-
maximum van de zeewaartse naar de landwaartse kant van het estuarium. Een zelfde
trend wordt waargenomen als het effect van daling of stijging van de zeespiegel op het
turbiditeitsmaximum wordt bestudeerd. Deze numerieke experimenten demonstreren
de kracht van het model en het gebruik ervan in verscheidene toepassingen.
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A
SCALING AND PERTURBATION

ANALYSES

A.1. SCALING ANALYSES
To make the equations dimensionless, typical scales of the various quantities have to
be introduced. The time t is made dimensionless using the frequency ω of the M2 tidal
constituent. In this paper, we focus on phenomena that vary on the estuarine length
scale. Thus, as a length scale, the length L of the estuary is used. As a vertical length
scale, the mean water depth H at the seaward side is used, defined as

H = 1

Len(∂SΩ)

∫
∂SΩ

h ds, (A.1)

where Len(∂SΩ) denotes the length of the seaward boundary. The local water depth h
is also scaled with this parameter H . The typical scales for the surface elevation η, the
vertical eddy viscosity Av and the vertical diffusivity Kv by Ā, Āv and K̄v, respectively,
defined as

(Ā, Āv, K̄v) = 1

Len(∂SΩ)

∫
∂SΩ

(AM2 , Av,Kv) ds. (A.2)

The horizontal diffusivity Kh is assumed to be spatially uniform and constant in time.
The cross-sectionally averaged continuity equation is used to obtain a typical scale

for the horizontal velocity U = ĀωL
H . The typical scale W for the vertical velocity w follows

from the assumption that all the terms in the three-dimensional continuity equation are
of the same order of magnitude, i.e., U /L =V /L =W /H , implying that W = HU /L. Note
that U is the dominant scale of the horizontal velocity in the tidally dominated estuaries.
The typical magnitude for the density gradients ρx and ρy is denoted by ρH . The river
discharge Q is made dimensionless by comparing it with the typical tidal discharge Q̄,
defined as

Q̄ =U Len(∂RΩ) H , (A.3)
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Physical quantity
(Symbol)

Typical scale Symbol Dimensionless quantity

Domain

Time (t ) M2 frequency ω t∗ =ωt
Horizontal coordi-
nates (x, y)

Estuarine length L (x∗, y∗) = (x, y)/L

Domain (Ω) Estuarine length L Ω∗ =Ω/L
Vertical coordinate
(z)

Mean depth H z∗ = z/H

Water depth (h) Mean depth H h∗ = h/H

Water Motion

Coriolis ( f ) M2 frequency ω f ∗ = f /ω
Surface elevation (η) Eq. (A.2) Ā η∗ = η/Ā

Horizontal velocity
(U ,V )

Follows from cross-
sectionally averaged
continuity equation

U = ĀωL
H (u∗, v∗) = (u, v)/U

Vertical velocity (W ) Follows from three-
dimensional conti-
nuity equation

W = H
L U w∗ = w/W

Eddy viscosity (Av) Eq. (A.2) Āv A∗
v = Av/Āv

External forcing
(AM2 , AM4 )

Eq. (A.2) Ā (A∗
M2

, A∗
M4

) = (AM2 , AM4 )/Ā

River discharge (Q) Eq. (A.3) Q̄ Q∗ =Q/Q̄
Density gradients
(ρx ,ρy )

Typical magnitude ρH (ρ∗
x ,ρ∗

y ) = (ρx ,ρy )/ρH

Sediment Concentration

Sediment availabil-
ity (a)

Eq. (A.4) ā a∗ = a/ā

Sediment concen-
tration (c)

Eq. (A.5) C c∗ = c/C

Vertical diffusivity
(Kv)

Eq. (A.2) K̄v K ∗
v = Kv/K̄v

Settling velocity (ws) Typical scale w̄s w∗
s = ws/w̄s

Table A.1: Non-dimensionalization of various physical quantities.

where Len(∂RΩ) denotes the length of the river boundary.

Finally, the variables used for the concentration equation and the condition for mor-
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phodynamic equilibrium are scaled. First, the sediment availability is scaled by the
mean amount of sediment available in the estuary for erosion:

ā = 1

Ar(Ω)

Ï
Ω

a dΩ, (A.4)

where Ar(Ω) denotes the total surface area of the estuary. Using this scale, and requiring
that there is an approximate balance between erosion and deposition, it follows that a
typical scale for the sediment concentration is given by

C = ρs sāU

g ′ds
. (A.5)

The settling velocity ws is scaled with w̄s = ωH , i.e., the dimensionless settling velocity
w∗

s is the ratio of the tidal time scale and the deposition time scale. We define the pa-
rameter ε as the ratio of the mean elevation amplitude and the mean water depth at the
seaward side, i.e.,

ε= Ā/H . (A.6)

Using the dimensionless variables listed in Table A.1, the shallow water equations in
the dimensionless form read,

u∗
x∗ + v∗

y∗ +w∗
z∗ = 0,

u∗
t∗ +ε(u∗u∗

x∗ + v∗u∗
y∗ +w∗u∗

z∗ )− f ∗v∗ =−
(

Lg

L

)2

η∗x∗ − Ud

U
(εη∗− z∗)ρ∗

x

+ 1

2
S2

v(A∗
v u∗

z∗ )z∗ ,

v∗
t∗ +ε(u∗v∗

x∗ + v∗v∗
y∗ +w∗v∗

z∗ )+ f ∗u∗ =−
(

Lg

L

)2

η∗y∗ − Ud

U
(εη∗− z∗)ρ∗

y

+ 1

2
S2

v(A∗
v v∗

z∗ )z∗ .

Here Lg is, apart from a factor 2π, the wavelength of the frictionless tidal wave, the ver-

tical Stokes number Sv =
√

2Āv/ωH 2 is the ratio of the frictional depth and the wave-
length, and Ud = g HρH

ρ0ω
is the scale for density driven residual circulation.

The boundary condition at the seaward side (Eq. 4.3) becomes

η∗ = A∗
M2

cos(t∗−φM2 )+ A∗
M4

cos(2t∗−φM4 ), for all (x∗, y∗) in ∂SΩ
∗, (A.7a)

where Ω∗ denotes the domain in the dimensionless coordinates and A∗
M2

and A∗
M4

are
defined in Table A.1. At the riverine boundary, we find∫

∂RΩ

(∫ εη∗

−h∗
u∗

h · n̂ dz∗
)

ds∗ =Q∗, (A.7b)

where Q∗ is defined in Eq. (A.4). At the lateral walls, we have∫ εη∗

−h∗
u∗

h · n̂ dz∗ = 0, for all (x∗, y∗) in ∂LΩ
∗, (A.7c)
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At the free surface z∗ = εη∗, the boundary conditions become,

w∗ = η∗t∗ +ε(u∗η∗x∗ + v∗η∗y∗ ), and A∗
v (u∗

h)z∗ = 0h, (A.7d)

and at the bottom z∗ =−h∗, they read

w∗ =−u∗h∗
x∗ − v∗h∗

y∗ and A∗
v (u∗

h)z∗ = sH

Āv
u∗

h. (A.7e)

The three-dimensional advection-diffusion equation governing the suspended sedi-
ment concentration in dimensionless form reads,

c∗t∗ +ε
[
(c∗u∗)x∗ + (c∗v∗)y∗ + (c∗w∗)z∗

]− Kh

ωL2

[
c∗x∗x∗ + c∗y∗y∗

]
− K̄v

ωH 2 (K ∗
v c∗z∗ )z∗ −w∗

s c∗z∗ = 0. (A.8)

Since we assume that Kv = Av, it follows that K̄v/ωH 2 = 1
2 S2

v. The boundary condition for
suspended sediment concentration at the free surface reads

−ε Kh

ωL2

[
c∗x∗η∗x∗ + c∗y∗η∗y∗

]
+w∗

s c∗+ K̄v

ωH 2 K ∗
v c∗z∗ = 0, at z∗ = εη∗, (A.9a)

and at the bottom

− Kh

ωL2 (c∗x∗h∗
x∗ + c∗y∗h∗

y∗ )− K̄v

ωH 2 K ∗
v c∗z∗ = w∗

s a∗√
u∗2 + v∗2, at z∗ =−h∗. (A.9b)

The condition of morphodynamic equilibrium in the dimensionless form becomes,

〈 ∂

∂x∗

εη∗∫
−h∗

(
εc∗u∗− Kh

ωL2 c∗x∗

)
dz∗+ ∂

∂y∗

εη∗∫
−h∗

(
εc∗v∗− Kh

ωL2 c∗y∗

)
dz∗〉 = 0. (A.10)

A.2. PERTURBATION ANALYSES
For the estuaries under consideration, the typical elevation amplitude is much smaller
than the typical water depth,

ε= Ā

H
¿ 1. (A.11)

Using this information, we can asymptotically expand the vector of unknown physical
variablesψ∗ = (η∗,u∗, v∗, w∗,c∗) as

ψ∗ =ψ0∗+εψ1∗+ε2ψ2∗+ . . . . (A.12)

Next, the asymptotic expansion is substituted in the scaled equations and the dimen-
sionless coefficients appearing in these scaled equations are related to different orders
in ε. A full list of these dimensionless coefficients is given in Table A.2. In the following,
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Dimensionless variables Order
f ∗ O (1)

U /ωL = ε O (ε)
L/Lg O (1)

Ud /U O (ε)
A∗

M2
O (1)

A∗
M4

O (ε)
Q∗ O (ε)
Sv O (1)

sH/Āv O (1)
w∗

s O (1)
Kh/ωL2 O (ε2)

Table A.2: Order of various dimensionless parameters appearing in the dimensionless equations for water
motion, suspended sediment concentration and the condition of morphodynamic equilibrium. Refer to Table
A.1 for definition of these parameters.

we are going to derive the differential problems for the water motion and suspended
sediment concentration, at subsequent orders in ε.

With the assumption that ε¿ 1, the boundary conditions and integrals evaluated at
z∗ = εη∗ can be simplified. For boundary conditions at river boundary and lateral walls,
the integrals from z∗ =−h∗ to z∗ = εη∗ can be split into two integrals with limits ranging
from z∗ =−h∗ to z∗ = 0 and from z∗ = 0 to z∗ = εη∗. By using the Taylor expansion of u∗
and v∗ around z∗ = 0 in the latter integral, the boundary conditions at the river side and
lateral boundaries reduce to∫

∂RΩ∗

[∫ 0

−h∗
u∗

h · n̂ dz∗+εη∗u∗
h|z∗=0 · n̂

]
ds∗+O (ε2) =−Q∗. (A.13)∫ 0

−h∗
u∗

h · n̂ dz∗+εη∗u∗
h|z∗=0 · n̂+O (ε2) = 0, for all (x∗, y∗) in ∂CΩ

∗, (A.14)

where O (ε2) denotes all the terms of the order two or more. Using the same approach, the
dimensionless dynamic and kinematic boundary conditions at the free surface z∗ = εη∗
can be rewritten as

w∗+εη∗w∗
z∗ +O (ε2) = η∗t∗ +ε(u∗η∗x + v∗η∗y )+O (ε2), at z∗ = 0, (A.15)

A∗
v (u∗

h)z∗ +εA∗
vη

∗(u∗
h)z∗z∗ +O (ε2) = 0h, at z∗ = 0. (A.16)

The boundary condition for the suspended sediment concentration at the free surface
becomes,

−ε Kh

ωL2 [c∗+εη∗c∗z∗ +O (ε2)]x∗η∗x∗ −ε Kh

ωL2 [c∗+εη∗c∗z∗ +O (ε2)]y∗η∗y∗

+w∗
s [c∗+εη∗c∗z∗ +O (ε2)]+ K̄v

ωH 2 K ∗
v [c∗z∗ +εη∗c∗z∗z∗ +O (ε2)], at z∗ = 0. (A.17)
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Next, the asymptotic expansion of unknown physical variables given by Eq. (A.12)
is substituted into the governing equations for water motion, suspended sediment con-
centration and the condition of morphodynamic equilibrium. Using Table A.2, dimen-
sionless systems of equations are found at different orders of ε by collecting terms of
equal order.

Leading-order water motion The leading-order (ε0) system of equations for water
motion in the dimensionless form is given by

u0∗
x∗ + v0∗

y∗ +w0∗
z∗ = 0,

u0∗
t∗ − f ∗v0∗ =−

(
Lg

L

)2

η0∗
x∗ + 1

2
S2

v(Āvu0∗
z∗ )z∗ ,

v0∗
t∗ + f ∗u0∗ =−

(
Lg

L

)2

η0∗
y∗ + 1

2
S2

v(Āvv0∗
z∗ )z∗ ,

together with boundary conditions

A∗
v (u0∗

h )z∗ = 0h, and w0∗ = η0∗
t , at z∗ = 0,

A∗
v (u0∗

h )z∗ = H s

Āv
u0∗

h , and w0∗ =−u0∗h∗
x∗ − v0∗h∗

y∗ , at z∗ =−h∗,

η0∗ = A∗
M2

cos(t∗) for all (x∗, y∗) in ∂SΩ
∗,∫

∂RΩ∗

(∫ 0

−h∗
u0∗

h · n̂ dz∗
)

ds∗ = 0,∫ 0

−h∗
u0∗

h · n̂ dz∗ = 0, for all (x∗, y∗) in ∂CΩ
∗.

First-order water motion The first-order (ε1) system of equations for the water motion
is given by

u1∗
x∗ + v1∗

y∗ +w1∗
z∗ = 0,

u1∗
t∗ +u0∗u0∗

x∗ + v0∗u0∗
y∗ +w0∗u0∗

z∗ − f ∗v1∗ =−
(

Lg

L

)2

η1∗
x∗ + Ud

U
z∗ρ∗

x

+1

2
S2

v(Āvu1∗
z∗ )z∗ ,

v1∗
t∗ +u0∗v0∗

x∗ + v0∗v0∗
y∗ +w0∗v0∗

z∗ + f ∗u1∗ =−
(

Lg

L

)2

η1∗
y∗ + Ud

U
z∗ρ∗

y

+1

2
S2

v(Āvu1∗
z∗ )z∗ ,
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with boundary conditions

(u1∗
h )z∗ =−η0∗(u0∗

h )z∗z∗ ,

w1∗ = η1∗
t − (η0∗w0∗

z∗ −u0∗η0∗
x∗ − v0∗η0∗

y∗ ) at z∗ = 0,

A∗
v (u1∗

h )z∗ = H s

Āv
u1∗

h , and w1∗ =−u1∗h∗
x∗ − v1∗h∗

y∗ at z∗ =−h∗,

η1∗ = A∗
M4

cos(2t∗−φ) for all (x∗, y∗) in ∂SΩ
∗,∫

∂RΩ∗

[∫ 0

−h∗
u1∗

h · n̂ dz∗+η0∗u0∗
h |z∗=0 · n̂

]
ds∗ =−Q∗,∫ 0

−h∗
u1∗

h · n̂ dz∗+η∗0 u0∗
h |z∗=0 · n̂ = 0, for all (x∗, y∗) in ∂CΩ

∗.

Leading-order suspended sediment concentration The leading-order (ε0) system of
equations for the suspended sediment concentration is given by

c0∗
t∗ − K̄v

ωH 2

(
K ∗

v c0∗
z∗

)
z∗ − (w∗

s c0∗)z∗ = 0,

with boundary conditions

− K̄v

ωH 2 K ∗
v c0∗

z∗ = w∗
s c0∗, at z∗ = 0,

− K̄v

ωH 2 K ∗
v c0∗

z∗ = w∗
s a∗|u0∗

h |, at z∗ =−h∗.

The above equation shows that the leading-order suspended sediment concentration is
solely governed by the absolute value of the leading-order horizontal velocity.

First-order suspended sediment concentration The first-order (ε1) system of equa-
tions for the suspended sediment concentration is given by

c1∗
t∗ +u0∗c0∗

x∗ + v0∗c0∗
y∗ +w0∗c0∗z∗− K̄v

ωH 2

(
K ∗

v c1∗
z∗

)
z∗ − (w∗

s c1∗)z∗ = 0,

with boundary conditions

K̄v

ωH 2 K ∗
v

[
c1∗

z∗ +η∗0 c0∗
z∗z∗

]+w∗
s

[
c1∗+η0∗c0∗

z∗
]= 0 at z = 0,

K̄v

ωH 2 K ∗
v c1∗

z∗ +w∗
s a∗ u0∗

h ·u1∗
h

|u0∗
h | = 0, at z∗ =−h∗.

Note that the boundary condition at the bottom z∗ =−h∗ contains the first-order hori-
zontal velocity u1∗

h , which as we have seen in the main text (Eq. 3.19), can be written as a
sum of various components. It means that the first-order suspended sediment concen-
tration due to the bed shear stress can also be written as sum of various components,
one corresponding to each component of the first-order horizontal velocity.





B
LEADING ORDER SCALING

ANALYSIS AND WEAK

FORMULATION

B.1. SCALING ANALYSIS
The water motion is described by the three-dimensional shallow water equations. Using
the Boussinesq approximation and hydrostatic balance, the system of equations can be
written as,

ux + vy +wz = 0, (B.1a)

ut +uux + vuy +wuz − f v =−gηx − g

ρo
(η− z)ρx

+ (Ahux )x + (Ahuy )y + (Avuz )z , (B.1b)

vt +uvx + v vy +w vz + f u =−gηy − g

ρo
(η− z)ρy

+ (Ahvx )x + (Ahvy )y + (Avvz )z . (B.1c)

It is assumed that the estuary is partially to well mixed such that the density can be ap-
proximated as ρ := ρ(x, y, t ). Ah is the coefficient of horizontal mixing. To scale the equa-
tions, the following dimensionless variables are introduced;

t∗ =ωt , f ∗ = f /ω, (x∗, y∗) = (x, y)/L,

(z∗,h∗) = (z,h)/H , u∗ = u/U , v∗ = v/V , w∗ = w/W,

η∗ = η/A, ρ∗
x = ρx /|ρx |, ρ∗

y = ρy /|ρy |,
where asterisk (∗) denotes the dimensionless variables and ε=A/H ¿ 1, where A is the
amplitude of the surface elevation and H is the mean depth at the seaward side, L is the
typical length scale, U =V = εωL, and W = εωH are the typical scales of tidal velocities.
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In the above scaling, gradients of the density are scaled instead of the density itself. This
is because it is the variation in density that drives density driven currents. The primitive
equations in dimensionless form reduce to:

u∗
x∗ + v∗

y∗ +w∗
z∗ = 0,

u∗
t∗ +ε(u∗u∗

x∗ + v∗u∗
y∗ +w∗u∗

z∗ )− f ∗v∗

=− g H

ω2L2 η
∗
x∗ − g H |ρx |

ρoUω
(εη∗− z∗)ρ∗

x

+ 1

ωL2

[
(Ahu∗

x∗ )x∗ + (Ahu∗
y∗ )y∗

]
+ 1

ωH 2 (Avu∗
z∗ )z∗ ,

v∗
t∗ +ε(u∗v∗

x∗ + v∗v∗
y∗ +w∗v∗

z∗ )+ f ∗u∗

=− g H

ω2L2 η
∗
y∗ −

g H |ρy |
ρoVω

(εη∗− z∗)ρ∗
y

+ 1

ωL2

[
(Ahv∗

x∗ )x∗ + (Ahv∗
y∗ )y∗

]
+ 1

ωH 2 (Avv∗
z∗ )z∗ .

We also assume that the horizontal mixing is much smaller compared to the vertical
mixing ([1]), i.e., AhH 2/AvL2 ¿ 1. With this assumption, x and y momentum equations
further reduce to,

u∗
t∗ +ε(u∗u∗

x∗ + v∗u∗
y∗ +w∗u∗

z∗ )− f ∗v∗

=− g H

ω2L2 η
∗
x∗ − g H |ρx |

ρoUω
(εη∗− z∗)ρ∗

x

+ 1

ωH 2 (Avu∗
z∗ )z∗ ,

v∗
t∗ +ε(u∗v∗

x∗ + v∗v∗
y∗ +w∗v∗

z∗ )+ f ∗u∗

=− g H

ω2L2 η
∗
y∗ −

g H |ρy |
ρoVω

(εη∗− z∗)ρ∗
y

+ 1

ωH 2 (Avv∗
z∗ )z∗ .

Using typical scales for the density gradients in partially to well mixed estuaries, we find

that g H
ρ0Uω∇ρ is of order ε. Next, we expand the unknown variables. u∗, v∗, w∗, and η∗ in

the small parameter ε,

u∗ = u∗
0 +ε1u∗

1 +O (ε2),

v∗ = v∗
0 +ε1v∗

1 +O (ε2),

w∗ = w∗
0 +ε1w∗

1 +O (ε2),

η∗ = η∗0 +εη∗1 +O (ε2).
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Substituting the asymptotic expansions in the dimensionless equations results in the
following leading-order system of equations,

u∗
0,x∗ + v∗

0,y∗ +w∗
0,z∗ = 0,

u∗
0,t∗ − f ∗v∗

0 =− g H

ω2L2 η
∗
0,x∗ + 1

ωH 2 (Avu∗
0,z∗ )z∗ ,

v∗
0,t∗ + f ∗u∗

0 =− g H

ω2L2 η
∗
0,y∗ + 1

ωH 2 (Avv∗
0,z∗ )z∗ .

In the dimensional form, the system reads

u0,x + v0,y +w0,z = 0,

u0,t − f v0 =−gη0,x + (Avu0,z )z ,

v0,t + f u0 =−gη0,y + (Avv0,z )z .

For the sake of simplicity we remove the subscript 0 from the variables, i.e.,
(η0,u0, v0, w0) = (η,u, v, w). Similar treatment can be given to the boundary conditions.

B.2. WEAK FORMULATION

To solve the system (2.12) to obtain the surface elevation, the finite element method is
adopted ([2]). As a first step towards the finite element method, a weak form of system
(2.12) has to be derived. To this end, define L2(Ω) and H 1(Ω) function spaces as

L2(Ω) = {φ such that ||φ||2 =
(Ï
Ω

|φ|2
)1/2 <∞},

H 1(Ω) = {φ ∈ L2(Ω) such that φx ,φy ∈ L2(Ω)}.

Assume that there exists a function ND in H 1(Ω) such that ND = A on ∂DΩ. Then the
function Ñ = N −ND vanishes over ∂DΩ and N = Ñ +ND . Define a function space Σ for
test functions as

Σ= {φ ∈ H 1(Ω) such that φ= 0 on ∂DΩ}.
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Multiplying Eq. (2.12a) by φ ∈ Σ and integrating over the domainΩ gives,Ï
Ω

{∇· [D(0)∇N ]+ iωN } φ dΩ= 0,

⇒
∫

∂DΩ

[D(0)∇N ] · n̂ φ︸︷︷︸
=0

dΩ+
∫

∂NΩ∪∂RΩ

[D(0)∇N ] · n̂︸ ︷︷ ︸
=0

φ dΩ

−
Ï
Ω

[D(0)∇N ] ·∇φ dΩ+ iω
Ï
Ω

Nφ dΩ= 0,

⇒ −
Ï
Ω

[D(0)∇N ] ·∇φ dΩ+ iω
Ï
Ω

Nφ dΩ= 0,

⇒ −
Ï
Ω

[D(0)∇(Ñ +ND )] ·∇φ dΩ+ iω
Ï
Ω

(Ñ +ND )φ dΩ= 0,

⇒ −
Ï
Ω

[D(0)∇Ñ ] ·∇φ dΩ+ iω
Ï
Ω

Ñφ dΩ

=
Ï
Ω

[D(0)∇ND ] ·∇φ dΩ− iω
Ï
Ω

NDφ dΩ. (B.3)

Eq. (B.3) is the weak formulation of system (2.12). The solution N = Ñ + ND obtained
after solving the Eq. (B.3) is called the weak solution of system (2.12). This equation is
solved numerically.

Let Ñh̃ denote the finite element approximation of Ñ defined on the discretized do-
mainΩh̃ (see main text) as

Ñ ≈ Ñh̃ =
n∑

l=1
Nlφl , (B.4)

where Nl
′s are unknown complex coefficients, φl

′s are so-called Lagrange basis func-
tions. Now, substituting Eq. (B.4) in Eq. (B.3) and choosing φ=φk , k = 1, . . . ,n gives

n∑
l=1

Nl

Ï
Ω

[−D(0)∇φl ] ·∇φk

︸ ︷︷ ︸
[S]k,l

+
n∑

l=1
Nl iω

Ï
Ω

φl φk

︸ ︷︷ ︸
[M]k,l

=
Ï
Ω

[D(0)∇ND ] ·∇φk − iω
Ï
Ω

ND φk

︸ ︷︷ ︸
[F]k

, ∀k = 1, . . . ,n.

which can be compactly written as

(S+M)N = F,

where S, M ∈ Cn×n are called the stiffness and mass matrices, respectively. F ∈ Cn×1 is
the forcing vector and N = {N1, N2, . . . , Nn}T ∈ Cn×1 is the unknown vector consisting of
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complex surface elevation amplitudes at unconstrained nodes. Once N is known, we can
write the numerical approximation of N over the whole domain as

N (x, y) ≈ Nh̃(x, y) =
n∑

l=1
Nlφl (x, y)+

n+m∑
l=n+1

A(xl , yl )φl (x, y).
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C
SUSPENDED SEDIMENT

CONCENTRATION

C.1. LEADING-ORDER SUSPENDED SEDIMENT CONCENTRA-
TION

The equation governing the leading-order suspended sediment concentration is given
by

c0n
t − (wsc0n)z − (Kvc0n

z )z = 0, n = 4m, where, m = 0,1,2, . . .

such that,

Kvc0n
z +wsc0n = 0 at z = 0,

Kvc0n
z +a

wsρs

ρ0g ′ds
ℜ{τ̃b

0ne
niωt

2 } = 0 at z =−h,

where ℜ{τ̃b
0ne

niωt
2 } is the n-th order harmonics of the absolute value of the leading-

order bed shear stress |τb |0. Assuming c0n =ℜ{C 0ne
niωt

2 }, the above equation becomes

(KvC 0n
z )z +wsC 0n

z − niω

2
C 0n = 0.

Since Kv := Kv(x, y) and Kh is constant, and using that the above equation is a linear
second-order ordinary differential equation in the vertical coordinate z, it can be solved
analytically in the vertical for C 0n :

C 0n(x, y, z) = A0n(x, y)ern,1z +B 0n(x, y)ern,2z ,
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where rn,1 and rn,2 are the roots of the quadratic polynomial equation: Kvr 2
n + wsrn −

niω
2 = 0, and A0n(x, y) and B 0n(x, y) are given by

A0n =−B 0n ws +Kvrn,2

ws +Kvrn,1
,

B 0n = a
wsρsτ̃b

0n

ρ0g ′dsKv

[
ws +Kvrn,1

rn,1e−rn,1h(ws +Kvrn,2)− rn,2e−rn,2h(ws +Kvrn,1)

]
.

We can rewrite c0 as

c0 = ac̃0,

where c̃0 is the solution of the leading-order suspended sediment concentration with
a = 1.

C.2. FIRST-ORDER SUSPENDED SEDIMENT CONCENTRATION
The equation governing the first-order suspended sediment concentration c1 is given by

c1
t +F c

AC − (Kvc1
z )z − (wsc1)z = 0, (C.1a)

where F c
AC = u0c0

x + v0c0
y +w0c0

z . At the surface, the boundary condition reads

wsc1 +Kvc1
z = F c

S , at z = 0, (C.1b)

where F c
S =−η0

[
wsc0

z +Kvc0
zz

]
. At the bottom, the boundary condition reads

Kvc1
z +a

wsρs

ρ0g ′ds
|τb |1 = 0, at z =−h. (C.1c)

Here |τb |1 denotes the first-order component of the absolute value of the bed shear
stress. Next, the first-order suspended sediment concentration is solved each forcing
term individually.

C.2.1. CONTRIBUTION DUE TO ADVECTION
The forcing term F c

AC appearing in Eq. (C.1) is generated by the interaction of leading-
order velocity and the leading-order suspended sediment concentration can be ex-
pressed as

F c
AC = aF a

AC +ax F ax
AC +ay F

ay

AC ,

where F a
AC = c̃0a

x u0 + c̃0a
y v0 + c̃0a

z w0, F ax
AC = c̃0au0, and F

ay

AC = c̃0a v0 are the components
proportional to a, ax , and ay , respectively. Since we are interested in the M2 constituent
of the first-order concentration, we can write

(F a
AC ,F ax

AC ,F
ay

AC ,c12
AC ) =ℜ{( f a

AC , f ax
AC , f

ay

AC ,C 12
AC )e iωt }.
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Now, the governing equation becomes,

(KvC 12
AC ,z )z +wsC 12

AC ,z − iωC 12
AC = a f c +ax f ax

AC +ay f
ay

AC , (C.2)

with boundary conditions

Kvc12
AC ,z +wsC 12

AC = 0, at z = 0,

Kvc12
AC ,z = 0 at z =−h.

This equation can be solved analytically for C 12
AC for each forcing f̃ on the right hand side

separately using the method of variation of parameters, resulting in

C 12
AC (x, y, z) = Aer1z +Ber2z + 1

r2 − r1

z∫
−h

[er2(z−z ′) −er1(z−z ′)] f̃ (z ′) dz ′,

where r1, r2 are the roots of the quadratic polynomial

Kvr 2 +wsr − iω= 0,

and coefficients A and B are given as

A =− r2e−r2h

r2 − r1

0∫
−h

[
(Kvr2 +ws)e−r2z − (Kvr1 +ws)e−r1z

r2(Kvr1 +ws)e−r2h − r1(Kvr2 +ws)e−r1h

]
f̃ (z) dz,

B =−A
r1

r2
e(r2−r1)h .

The complete solution can be written as

C 12
AC = aC̃ 12,a

AC +axC̃ 12,ax
AC +ayC̃

12,ay

AC ,

where C̃ 12,a
AC , C̃ 12,ax

AC and C̃
12,ay

AC are the solutions of the above equation for a = 1, ax = 1
and ay = 1, respectively. Note that when computing the solution for a = 1, ax and ay are
set to zero. The similar strategy holds when computing the solution for ax = 1 (a = 0 and
ay = 0) and ay = 1 (a = 0 and ax = 0). The M2 concentration c12

AC can thus be expressed
as

c12
AC = ac̃12,a

AC +ax c̃12,ax
AC +ay c̃

12,ay

AC ,

where,

(c̃12,a
AC , c̃12,ax

AC , c̃
12,ay

AC ) =ℜ{(C̃ 12,a
AC ,C̃ 12,ax

AC ,C̃
12,ay

AC )e iωt }.

C.2.2. CONTRIBUTION DUE TO FIRST-ORDER BED-SHEAR STRESS
See the main text.
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C.2.3. CONTRIBUTION DUE TO FORCING AT THE SURFACE

The M2 component of the surface boundary contribution F c
S = −η0

[
wsc0

z +Kvc0
zz

]
can

be expressed at ℜ{a f c
S e iωt }. Writing c12

S = ℜ{C 12
S e iωt }, the equation governing the first-

order sediment concentration due to forcing at the surface reads

(wsC 12
S )z + (KvC 12

S,z )z − iωC 12
S = 0,

together with the boundary conditions,

KvC 12
S,z +wsC 12

S = a f c
S , at z = 0,

KvC 12
S,z = 0, at z =−h.

This equation can be solved analytically in the vertical as

C 12
S = Aer1z +Ber2z ,

where r1,r2 are the roots of the polynomial Kvr 2 + wsr − iω = 0 and the coefficients A
and B are given by

A = a

[
r2r r1h

r2(ws +Kvr1)er1h − r1(ws +Kvr2)er2h

]
f c

S ,

B =−A
r1

r2
e(r2−r1)h .



D
CONDITION OF MORPHODYNAMIC

EQUILIBRIUM

The condition of morphodynamic equilibrium reads

〈 ∂
∂x

∫ η

−h

(
cu −Kh

∂c

∂x

)
dz + ∂

∂y

∫ η

−h

(
cv −Kh

∂c

∂y

)
dz〉 = 0. (D.1)

Using the dimensionless variables introduced in Eq. (A.1) of A, the above equation be-
comes

〈 ∂

∂x∗

∫ εη∗

−h∗

(
εc∗u∗− Kh

ωL2 c∗x∗

)
dz∗+ ∂

∂y∗

∫ εη∗

−h∗

(
εc∗v∗− Kh

ωL2 c∗y∗

)
dz∗〉 = 0. (D.2)

First, we will consider the first term in Eq. (D.2). The integral from z∗ =−h∗ to z∗ = εη∗
can be split into two integrals; one from z∗ = −h∗ to z∗ = 0 and one from z∗ = 0 to
z∗ = εη∗ as,

∫ εη∗

−h∗
c∗u∗ dz∗ =

∫ 0

−h∗
c∗u∗ dz∗+

∫ εη∗

0
c∗u∗ dz∗.

The asymptotic expansions of c∗ and u∗ can be used directly in the first integral,

∫ 0

−h∗
c∗u∗ dz∗ =

∫ 0

−h∗

[
c0∗u0∗+ε(c0∗u1∗+ c1∗u0∗)+O (ε2)

]
dz∗,
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while for the second integral, c∗ and u∗ are first expanded around z∗ = 0 using the Taylor
series expansion and then asymptotic expansions of c∗ and u∗ are used,∫ εη∗

0
c∗u∗ dz∗ =

∫ εη∗

0

[
(c∗u∗)|z∗=0 + z∗(c∗u∗)z∗ |z∗=0 + . . .

]
dz∗,

= ε
[
η∗(c∗u∗)|z∗=0 +εη

∗2

2
(c∗u∗)z∗ |z∗=0 +O (ε2)

]
,

= εη0∗c0∗u0∗|z∗=0 +ε2
[
η0∗c0∗u1∗|z∗=0 +η0∗c1∗u0∗|z∗=0

+η1∗c0∗u0∗|z∗=0 + (η0∗)2

2
(c0∗u0∗)z∗ |z∗=0

]
+O (ε3).

Hence, we have

〈
∫ εη∗

−h∗
c∗u∗ dz∗〉 =

∫ 0

−h∗
〈c0∗u0∗〉dz∗+ε

[∫ 0

−h∗
〈c0∗u1∗+ c1∗u0∗〉 dz∗+〈η0∗c0∗u0∗|z∗=0〉

]
+O (ε2).

Since the leading order concentration itself consists of M0 and M4 contributions i.e.,
c0∗ = c00∗+ c04∗, and the leading-order water motion is semi-diurnal (M2), the leading-
order contribution is c0∗u0∗ = c00∗u02∗+ c04∗u02∗. The first term c00∗u02∗ gives an M2

signal and the second term c04∗u02∗ both an M2 and M6 signal. When averaged over the
tidal period, these contributions vanish i.e., 〈c00∗u02∗〉 = 〈c04∗u02∗〉 = 0, implying that
〈c0∗u0∗〉 = 0.

The first-order velocity u1∗ consists of an M0 and M4 contributions, resulting in

c0∗u1∗ = (c00∗+ c04∗)(u10∗+u14∗) = c00∗u10∗+ c00∗u14∗+ c04∗u10∗+ c04∗u14∗.

In the above expression, on the extreme right, the first term gives an M0 contribution,
the second and third terms both give M4 contributions, and the fourth term gives an M0

and M4 contribution. When averaged over a tidal period, all contributions vanish except
the residual (M0) ones, i.e., 〈c0∗u1∗〉 = c00∗u10∗+〈c04∗u14∗〉.

The first-order suspended sediment concentration contains an M2 contribution
i.e.,c1∗ = c12∗, resulting in 〈c1∗u0∗〉 = 〈c12∗u02∗〉. Using this information, it follows that

〈
∫ εη∗

−h∗
c∗u∗ dz∗〉 = ε

[∫ 0

−h∗
c00∗u10∗+〈c04∗u14∗+ c12∗u02∗〉 dz∗+〈η0∗c0∗u0∗|z∗=0〉

]
+O (ε2).

Next, we will derive the leading-order contribution to the second term in Eq. (D.2).
Again, we split the integral in two parts:∫ εη∗

−h∗
c∗x∗dz∗ =

∫ 0

−h∗
c∗x∗dz∗+

∫ εη∗

0
c∗x∗dz∗.

Using the same approach as above, we find that

〈
∫ εη∗

−h∗
c∗x∗dz∗〉 =

∫ 0

−h∗
〈c0∗

x∗ 〉dz∗+ε
[∫ 0

−h∗
〈c1∗

x∗ 〉dz∗+〈η0∗(c0∗|z∗=0)x∗〉
]
+O (ε2).
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In a similar way as above, we find that

c0∗ = c00∗+ c04∗ ⇒〈c0∗
x∗ 〉 = c00∗

x∗ ,

c1∗ = c12∗ ⇒〈c1∗
x∗ 〉 = 0,

η0∗c0∗ = η02∗(c00∗+ c04∗) = η02∗c00∗︸ ︷︷ ︸
M2

+η02∗c04∗︸ ︷︷ ︸
M2+M6

⇒〈η0∗c0∗〉 = 0.

Hence the second term in Eq. (D.2) after averaging over a tidal period becomes,

〈
∫ εη∗

−h∗
c∗x∗dz∗〉 =

∫ 0

−h∗
c00∗

x∗ dz∗+O (ε2).

Hence we obtain,

〈∂x∗
∫ εη∗

−h∗

(
εc∗u∗− Kh

ωL2 c∗x∗

)
dz∗〉 =ε2∂x∗

[∫ 0

−h∗
c00∗u10∗+〈c04∗u14∗+ c12∗u02∗〉 dz∗

+〈η0∗c0∗u0∗|z∗=0〉
]
− Kh

ωL2 ∂x∗
∫ 0

−h∗
c00∗

x∗ dz∗+O (ε3).

(D.3)

Repeating the same procedure for the third and fourth terms of Eq. (D.2) gives,

〈∂y∗
∫ εη∗

−h∗

(
εc∗v∗− Kh

ωL2 c∗y∗

)
dz∗〉 =ε2∂y∗

[∫ 0

−h∗
c00∗v10∗+〈c04∗v14∗+ c12∗v02∗〉 dz∗+〈η0∗c0∗v0∗|z∗=0〉

]
− Kh

ωL2 ∂y∗
∫ 0

−h∗
c00∗

y∗ dz∗+O (ε3). (D.4)

Using Eqs. (D.3) and (D.4) in Eq. (D.2), collecting leading-order terms and transforming
back in to dimensional form gives,

∂x

(∫ 0

−h

[
u10c00 +〈u14c04 +u02c12〉]dz +〈η02u02c0|z=0〉−Kh

∫ 0

−h
c00

x dz

)
+∂y

(∫ 0

−h

[
v10c00 +〈v14c04 + v02c12〉]dz +〈η02v02c0|z=0〉−Kh

∫ 0

−h
c00

y dz

)
= 0. (D.5)

Next, using the relations,

(c0,c00,c04) = a(c̃0a , c̃00a , c̃04a), and c12 = ac̃12a +ax c̃12ax +ay c̃12ay ,

and defining the following components:

(T xa
M0

,T y a
M0

) =
∫ 0

−h
u10

h c̃00a dz, (T xa
M2

,T y a
M2

) =
∫ 0

−h
〈u02

h c̃12a〉 dz,

(T xax
M2

,T y ax
M2

) =
∫ 0

−h
〈u02

h c̃12ax 〉 dz, , (T
xay

M2
,T

y ay

M2
) =

∫ 0

−h
〈u02

h c̃12ay 〉 dz

(T xa
M4

,T y a
M4

) =
∫ 0

−h
〈u14

h c̃04a〉 dz, (T xa
surface,T y a

surface) = 〈η02u02
h c̃0a |z=0〉 ,

(T xa
diff,T y a

diff) =−Kh

∫ 0

−h
(c̃00a

x , c̃00a
y ) dz, DKh =−Kh

∫ 0

−h
c̃00a dz,
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we can write the total horizontal sediment transport vector T = (T xa ,T y a) as

(T xa ,T y a) = (T xa
M0

,T y a
M0

)+ (T xa
M2

,T y a
M2

)+ (T xa
M4

,T y a
M4

)+ (T xa
surface,T y a

surface)

+ (T xa
diff,T y a

diff). (D.6)

Collecting terms that result from horizontal diffusivity explicitly, together with advective
contributions that exhibit diffusive behaviour, we can define a diffusivity matrix Da for
the sediment availability a(x, y) as

Da =
(

DKh +T xax
M2

T
xay

M2

T y ax
M2

DKh +T
y ay

M2

)
.

Using these results, the condition of morphodynamic equilibrium becomes an ellip-
tic equation for the sediment availability a(x, y) as

∇· (Da∇a +aT) = 0.
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