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Uncovering taste heterogeneity and non-linearity for
urban mode choice using SHAP

Thaddäus Christoph Weißhaar

Abstract—European cities are implementing diverse strategies
to curtail car usage. Understanding the impact of these policies
necessitates insights into mode choice behaviour. However, for
conventional discrete choice models, utility specifications must
be defined upfront, potentially leading to misleading policy
recommendations. This problem is solved by Supervised machine
learning (ML) models. However, they are challenging to interpret,
which is crucial for evaluating transportation policies.

We employ Shapley additive explanations (SHAP), a model-
agnostic explainable artificial intelligence (XAI) tool to address
this gap. The main advantages of SHAP are its foundation in
game theory, the ability to highlight individual taste heterogeneity
and non-linear effects. This paper aims to shed light on the
potential of SHAP to improve current transportation mode choice
models. Using a random forest (RF) model with the TreeSHAP
estimation method, we compare SHAP insights with those derived
from a traditional multinomial logit (MNL) model.

The results indicate that SHAP can detect the absolute
importance of features. Substantial preference heterogeneity for
car choice is perceived for features reducing car usage, as opposed
to features increasing car usage. Non-linear effects, such as
reciprocal functions and clustered patterns, are observed for
certain features. MNL and RF models disagree on the importance
and heterogeneity of features, and the MNL model fails to model
highly nonlinear effects.

For policymakers, insights suggest that increasing parking fees
and promoting car sharing may be feasible options. However, the
efficiency of these measures may vary due to preference hetero-
geneity. The results underscore the need for further investigation
into the reasons behind the different model results and different
behaviour notions of SHAP, MNL and RF.

Index Terms—machine learning, random forest, Shapley val-
ues, SHAP, urban transportation, choice modelling, mode choice

I. INTRODUCTION

European cities are adopting strategies to reduce car us-
age in their centres, including congestion pricing, pedestrian
zones, and cycling infrastructure. They are also expanding
public transport, introducing low-emission zones, promoting
car-sharing and raising parking fees. These measures aim to
improve sustainability, reduce congestion, and enhance urban
living conditions. To assess the impact of such policy measures
on citizens, insights into the factors determining mode choice
are necessary. Previous studies (see Cornago, Dimitropoulos,
and Oueslati [33], Hasan et al. [35] and Fan et al. [34])
highlighted the importance of various factors for choosing
transportation modes in an urban setting, such as price, time,
comfort, safety, socio-demographics and contextual factors
like weather.

All of these studies used discrete choice models, which
have the crucial limitation that the researcher has to define

the utility specification upfront. Model specification is tedious
since various theories must be tested to derive the best-fitting
model. If some interactions between factors are neglected in
the research, the models do not adequately represent reality,
and conclusions might be misleading.

ML models like a RF can solve the interaction problem and
fit data efficiently. They learn patterns to classify or regress
the data. Supervised ML models can use flexible models
with many parameters to model complex relations between
input and output. Upfront, interactions between all factors
are assumed. Further advantages include a higher predictive
accuracy compared to discrete choice models [36] and the
possibility of having non-textual data to increase the realism
of choice experiments [17].

However, many ML algorithms, especially complex ones
like RF, are so-called ”black-box” models and are challenging
to interpret. Understanding why a model makes a particular
prediction is crucial in applications like transportation policies,
where decisions have significant consequences [36], and public
representatives are held responsible for their decisions. The
missing ability of parameters to be interpreted on individual
and aggregated levels is the main reason why ML models have
not been implemented widely in the transportation domain
[29].

Recently, XAI methods have been proposed to interpret ML
models better, mainly in other sectors like finance, healthcare
and tech [32] [38]. Currently, there are at least 133 XAI
methods available, however, just eight studies cover different
XAI methods in the transportation domain (see Liu et al.
[26], Deng [23], Parmar, Das, and Dave [27], [25], Saiyad,
Srivastava, and Rathwa [31], [5], Alwosheel, Cranenburgh, and
Chorus [21] and Huber et al. [24]).

SHAP by Lundberg and Lee [13] can visualise the complex
relation between input and output variables for various models.
It has become a famous XAI method in the machine learning
community because of its theoretical foundation. SHAP esti-
mates Shapley values, which have their origin in game theory
and guarantee a fair distribution of importance among the
factors for individual prediction contributions [39]. A SHAP
value can be conceptualised in a mode choice setting as a
percentage-point contribution of one feature to a probability
difference. This difference is between the individual probabil-
ity of choosing a mode and the average probability of this
mode.

One key benefit of SHAP is highlighting individual taste
heterogeneity via SHAP values. They can be computed for all
factors disaggregated regarding factor levels and alternatives.



With current ML and random utility maximisation (RUM)
models, it is not possible to account for it, despite various
efforts (see Train [4], Keane and Wasi [8] and Dong and
Koppelman [9]). Furthermore, SHAP can account for non-
linear and adverse effects [30]. If included in models, potential
non-intuitive demand reactions can be captured, leading to a
higher effectiveness of policy measures.

This paper aims to shed light on the potential of SHAP
methods to improve current transportation mode choice models
regarding modelling preference heterogeneity and non-linear
and interaction effects of features. Through this, transportation
policies in the urban setting could be more targeted towards
specific groups of individuals and more effective through
the widespread incorporation of feature interaction effects.
Furthermore, RF and RUM models will be compared to
determine which model is superior to the underlying prediction
model when using SHAP. First, the case study and the data
set will be presented in section II. Then, in section III, the
data analysis methods will be introduced theoretically with
the used model specification for the case study. In section IV,
the potential of SHAP with RF to model feature importance,
feature signs, preference heterogeneity, non-linear effects and
interactions will be highlighted and validated through SHAP
in combination with a MNL model. Section V rounds off the
paper with a discussion.

II. CASE STUDY AND DATA SET

To answer to which extent the SHAP method is suitable for
highlighting heterogeneity, non-linearity and discovering inter-
actions in urban mode choice modelling, a data set from Hillel,
Elshafie, and Jin [14] is used. It investigates the mode choices
of respondents on the multi-model transportation network of
London, which includes the modes of walking, cycling, public
transportation and driving by car. The data was collected
between April 2012 and March 2015 and comprises 81,086
trips. 31,954 individuals made these in 17,616 households. For
each trip, 32 variables were documented. A summary of all
variables being used, their coded names, an explanation and
their usage is provided in Table I.

For this research, two adjustments to the original data set
were made. Firstly, trips with a travel distance shorter than
150m were eliminated. For these distances, mode choices are
generally irrelevant since walking is the predominant mode.
Secondly, fuel costs and congestion charges were summarised
to car travel costs. This was done because respondents’ sen-
sitivity towards congestion charges and fuel costs is expected
to be equal. Lastly, the access time for PT, the rail travel time,
the bus travel time, and the transfer time were aggregated into
PT travel time. This simplifies and homogenises the duration
of PT, also leading to fewer factors.

After this adjustment, the data set contains 81,005 entries,
the final choice of each respondent, and 12 factors. For the
MNL model, the factors are divided into eight attributes and
four covariates. To prevent overfitting of the RF model, the
data has been split into training and test data, with 80% of
the data set comprising the training data. Samples for the

computation of SHAP values were drawn from the test data
set.

III. METHODS

As the introduction states, various XAI methods can explain
black-box machine learning models. These can be divided into
groups along two categories: global vs. local and surrogate vs.
explanation generation methods. Whereas global methods try
to explain the average outcome, local models explain specific
data points [22]. Having the goal of improving the modelling
of heterogeneity in mind, local models are more suitable
because of their ability to assign the importance of various
factors disaggregated towards individuals and modes.

Surrogate methods fit an inherently explainable model
closely to the black box model. Explanation generation meth-
ods, on the other hand, use the output of the black-box ML
model as input for the explanation function. It was not chosen
for local explanation generation methods like ICE [7], counter-
factual explanations [18], and LRP [10] because of the lower
flexibility of these models regarding interpretations. Often,
only one plot is generated to show the relation between factors.
Secondly, their implementation in packages of programming
languages like Python is less convenient than local surrogate
models.

Regarding the two most popular local surrogate models,
LIME by Ribeiro, Singh, and Guestrin [12], and SHAP by
Lundberg and Lee [13], SHAP is preferred because of its
theoretical foundation in game theory and with this a fair
importance distribution of features. The second reason is the
extensive Python package for SHAP, which covers insightful
and visually appealing graphs. Two main SHAP estimation
methods exist: the model-agnostic KernelSHAP and tree-
based TreeSHAP. As shown later in this chapter, TreeSHAP
is preferred because of its fast implementation. Therefore,
it is possible to calculate exact Shapley values instead of
estimations, and interaction values can also be computed. As
a tree-based ML model, a RF [2] is used for model estimation
II instead of XGBoost [11] because of its theoretical simplic-
ity, its robustness towards overfitting [37] and computational
speed.

Firstly, the feature importance table is introduced to provide
an overall overview of the importance of features. Secondly,
a summary and dependence plot will analyse feature signs,
preference heterogeneity and non-linear effects. Lastly, a
SHAP interaction table highlights interactions between fea-
tures. To validate the overall feature importance, feature signs,
heterogeneity and non-linear effects, it was chosen to use
the inherently interpretable and widely used MNL model in
combination with KernelSHAP. In the following, the theory
and model specifications of the RF, MNL and SHAP methods
will be shown. Particular focus is laid on SHAP plots for the
visualisation of SHAP values.

A. Random Forest

1) Theory: A RF classifier is suitable for predicting mode
choice, assigning each response to one of the four modes.
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Variable Coding Description Usage Values
CHOICE travel mode chosen travel mode choice cycling

driving
public transportation
walking

Pedestrian travel time dur walking walking time attribute in hours
Cycling travel time dur cycling cycling time attribute in hours
PT travel time dur pt total in-vehicle, access, egress attribute in hours

and interchange time
Number of interchanges for PT pt n interchanges number of interchanges attribute #
PT travel cost cost transit cost of public transport attribute in GBP
Car travel time dur driving duration of car drive attribute in hours
Car travel cost cost driving total fuel and congestion charge cost attribute in GBP
Traffic variability driving traffic percent congestion on driving route attribute in % of usual travel time
Gender female gender of the respondent covariate 1 if female, 0 otherwise
Age age age of respondent covariate in years
Car ownership car ownership number of cars in a household covariate 0: no cars

1: less than one car per adult in household
2: one or more cars per adult in household

Driving license driving license whether the respondent covariate 1 if the driver possesses a driving licence
possesses a driving licence 0 otherwise

TABLE I: Used variables

Generally, the RF algorithm consists of five phases. First,
data is sampled by randomly selecting subsets of the training
data (with replacement) through bootstrapping. This creates
diverse training sets for each tree. Then, for each decision
tree in the forest, a random subset of features (in choice
modelling attributes and covariates) is considered at each split,
making the trees less correlated and increasing diversity. Each
decision tree is constructed independently. The trees are built
by recursively splitting data into subsets based on the selected
features, aiming to maximise predictive accuracy. These splits
continue until a stopping criterion, such as a maximum depth,
is reached. When making predictions, each tree in the forest
provides an output. For classifying transportation modes, the
most frequent mode of the individual tree predictions is taken
as the final prediction for one individual. This approach
reduces overfitting [37]. The RF has been implemented using
the scikit-learn library of Pedregosa et al. [6]. Several hyper-
parameters have been optimised to estimate the RF.

2) Hyperparameter settings: Several hyperparameters can
be tuned to improve the model fit of the initial model.
It was chosen to optimise regarding four hyperparam-
eters, n estimators, max features, max depth and
min samples split since these are the most critical hyper-
parameters for simple optimisation [40]. min samples leaf
has not been chosen because of its similarity with
min samples split.

The first chosen hyperparameter is the number of trees in the
ensemble, which is controlled by the n estimators parameter.
The max features parameter in scikit-learn manages the
number of features considered at each node. The max depth
parameter sets the maximum depth of each decision tree.
Restricting the depth can help prevent overfitting but may
also lead to underfitting. The min samples split parameter
determines the minimum number of samples to split an internal
node. An increasing value can help prevent overfitting, mainly
when dealing with smaller data sets.

For this multidimensional optimisation, a 2 stage process

Hyperparameter Default value Tested values
n estimators 100 30, 100, 300
max features

√
natt 1,

√
natt, 7

max depth None 10, 30, None
min samples split 2 2, 10, 30

TABLE II: Initial hyperparameter search

was applied. First, the general parameter region is delimited
through a grid search. Parameters are chosen to multiply
mostly by a factor of 3, as some practitioners do. Default
model values are added, and realistic max features values
have been used [20].

The max depth range selected is similar to the number of
features in the data set. An overview of the used hyperparam-
eters is given in Table II. Each RF model is validated through
k-fold cross-validation. The MNL model was estimated on the
whole data set. It was decided to divide the training data set
into three parts [15] without randomisation. Two-thirds of the
training data set is used to train the data, and the third part
is used for evaluation. This procedure is repeated three times
for each hyperparameter specification. The cross-entropy loss
was chosen as the decisive criterion since the negative cross-
entropy loss (logistic loss or log loss) can be conceptualised as
the log-likelihood value. Furthermore, the cross-entropy loss
was averaged across the size of the different data sets (folds
or test data set).

After determining the best-fitting model, a second grid
search is conducted in the region with the preliminary best
fit to find a local maximum. The test settings are displayed
in Table III. Ultimately, both estimated RF models will be
compared regarding their model fit on the test data, and the
model that fits the data better will be chosen.

3) Model evaluation: The RF model is evaluated twofold.
Firstly, the average cross-entropy loss is compared across the
default, the intermediate and the final RF for all three folds and
the test data. As described above, the average cross-entropy
loss aligns closely with the log-likelihood, which is often used
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Hyperparameter 1st Tested 2nd
n estimators 300 250, 300, 350 300
max features

√
natt 2,

√
natt, 4

√
natt

max depth None 25, 30, None None
min samples split 10 8, 10, 12 8

TABLE III: Search for final parameters

for evaluating model performances of discrete choice models.
Secondly, a confusion matrix is used, a common tool to

assess the model performance of ML models. Row and column
totals have been added, with the column totals denoting the
true values in the data set. The row totals depict the overall
predictions for the various modes. Lastly, the percentage of
true predictions row- and column-wise have been added. Row-
wise prediction performance can be interpreted as the share
of true positive predictions relative to false positive values.
Out of all projections for a specific mode, this determines
the share of true predictions. Column-wise prediction perfor-
mance, however, depicts the share of true positives relative
to false negatives. Out of all individuals who used a specific
mode, this determines the share of accurate predictions.

B. MNL

As described earlier, to derive SHAP values from Ker-
nelSHAP, the MNL model will be used. As indicated in
section II, the features in the data set have diverging usages.
Some features will make up ”attributes”, and features labelled
as ”covariates” will comprise the alternative specific constants.
They have been defined for each of the four modes except
walking. The covariates gender, age, car ownership and driving
licence possession are added.

The utilities for each alternative consist of the alternative-
specific constants, attributes and interactions. To derive an
optimal model, all covariates are assumed to influence the
alternative specific constants. The attribute travel time is
expected to affect all modes; costs are expected to impact PT
and driving. Lastly, the number of interchanges is assumed to
influence PT, and congestion is considered to affect car usage.

Certain interactions are defined to validate the RF based
SHAP interaction values. Firstly, age might correlate with
travel costs for PT and cars. This might be the case because of
a hidden interaction of age with income, which is not provided
in the data set. Furthermore, age might interact with owning
a car and possessing a driving license. Lastly, car ownership
and holding a driving license might correlate since driving is
only allowed with a valid driving license.

Firstly, a model without interactions is estimated via the
biogeme package from Bierlaire [3]. The least significant
parameters are afterwards removed, and via the Likelihood
ratio test, it is checked if models with fewer parameters are
data-generating processes. In the second step, interactions are
added to the model and the procedure of removing parameters
and evaluating the model performance via the Likelihood ratio
test is repeated.

The alternative specific constant specification and utility
functions of the final MNL model can be found below.

asc cycling value = asc cycling

+ asc cycling shift female · female

+ asc cycling shift co · car ownership

+ asc cycling shift dl · driving license

asc pt value = asc pt

+ asc pt shift age · age
+ asc pt shift co · car ownership

+ asc pt shift dl · driving license

asc car value = asc car

+ asc car shift age · age
+ asc car shift co · car ownership

V Walking = dur walking ·Beta TT

V Cycling = asc cycling value

+ dur cycling ·Beta TT

V PT = asc pt value+ dur pt total ·Beta TT

+ cost transit ·Beta TC

+ pt n interchanges ·Beta INTER

+Beta AGE TC · age · cost transit

V Car = asc car value+ dur driving ·Beta TT

+ cost driving total ·Beta TC

+ driving traffic percent ·Beta TRAF

+Beta AGE TC · age · cost driving total

+Beta AGE CO · age · car ownership

+Beta AGE DL · age · drivinglicense
+Beta CO DL · car ownership · driving license

To evaluate the model performance, the same tools like for
the RF model are used. Assessing MNL model performance
via the average cross-entropy loss and confusion matrix en-
ables comparability with the RF model. Despite the MNL
model was estimated on the whole training data set, average
cross-entropy losses have also been calculated for the various
folds for comparability.

C. Shapley values

Shapley values by Shapley [1] originate from game theory
and describe how a payout or win is distributed among players
cooperating. To determine the ”fair” share of one player,
first, a payout is calculated for all possible sets of players
(coalitions) collaborating, excluding the one player. Second,
the average payout of these collaborations is subtracted from
the average payout, including the player of interest. The result
is the Shapley value for one specific player and one specific
outcome.

In mode choice modelling, players can be conceptualised
as features and the payout as the prediction of a probability
of using a specific mode. In a mode choice setting, a Shapley
value can thus be conceptualised as the contribution of one
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variable towards the difference in probability between the
individual and average predictions of all individuals.

Mathematically, the Shapley values ϕj(v) are calculated
through Equation 1. v stands for the ”value”, ”payout”, or
”prediction” the ”players” or features (attributes/covariates) p
are distributing. S denotes the number of features currently
in a subset, excluding the feature of interest j. The formula
states that the feature contributions towards the prediction
are weighted and summed over all feature combinations [39].
The contribution of one feature can be considered ”fair” if
it satisfies the properties efficiency, symmetry, dummy and
additivity [39].

ϕj(v) =
∑

S⊆{1,...,p}\{j}

| S |!(p− | S | −1)!

p!
(v(S∪{j})−v(S))

(1)

D. SHAP

1) SHAP: Since Shapley values are cumbersome to com-
pute through Equation 1, various estimation methods have
been developed to speed up computation times. One estimation
family is SHAP by Lundberg and Lee [13], which computes
Shapley values in multiple ways. KernelSHAP is a model-
agnostic estimator, whereas TreeSHAP can only be used with
tree-based ML models.

The general idea of SHAP is to utilise the concept of a
coalition vector z′ ∈ {0, 1}p, which describes which features
are present in a coalition. The prediction values for each
coalition can then be determined by a linear formula, with g
being the explanation model and ϕj the SHAP values. SHAP
values are defined as estimated Shapley values through Ker-
nelSHAP or TreeSHAP. ϕ0 represents the average prediction
of the model that is to be explained. Lundberg and Lee [13]
describe the SHAP properties of local accuracy, missingness
and consistency, which also satisfy the Shapley properties
efficiency, symmetry, dummy and additivity as shown in the
appendix of Lundberg and Lee [13] [39].

g(z′) = ϕ0 +

p∑
j=1

ϕjz
′
j (2)

2) KernelSHAP: Since it is computationally demanding to
compute predictions for all possible features across all data
points and output variables, these feature sets or coalitions are
sampled for KernelSHAP. Features that are not members of a
sampled coalition are randomised. However, some coalitions
contain more information than others, and intuitively, the
information density is the highest if features are analysed in
isolation [39]. Therefore, these coalitions are the first to be
added to the sampling ”budget” K (see Lundberg and Lee
[13]). In the second step, predictions for these coalitions are
retrieved from the data, and thirdly, weights for the various
coalitions are assigned according to their information density
Lundberg and Lee [13]. Lastly, the weighted linear model of
coalitions is fitted to the model, which is to be explained

through KernelSHAP. This is done through the loss function
in Equation 3, where the sum of squared errors is minimised.

L(f̂ , g, πx) =
∑
z′∈K

[f̂(hx(z
′))− g(z′)]2πx(z

′) (3)

f̂(hx(z
′)) denotes the model prediction of the black box

model for the instance x, g(z′) the SHAP model from
Equation 2 and πx(z

′) the coalition weight highlighted in
Equation 4 [39].

πx(z
′) =

M − 1

(
M
|z′| )|z′|(M − |z′|)

(4)

3) TreeSHAP: TreeSHAP is developed explicitly for tree-
based models to estimate Shapley values. From the root node,
TreeSHAP keeps track of the number of coalitions following
specific paths. All coalitions for one data point follow the trees
at the same time, which reduces computation times.

At each leaf node, for each coalition, a conditional expec-
tation EXj |X−j

(f̂(x)|xj is computed, where xj denotes the
features included in the coalition and x−j [39] indicates the
features not included in the coalition of the instance x. The
conditional expectation will be subtracted from the average
prediction for this instance. This difference will then be split
into marginal contributions of the various features.

This is done via backpropagation of all coalitions simultane-
ously for one instance. The marginal contribution mar contri
of the feature representing a node is the percentage of coali-
tions passing the node on the right side r count

tot count minus the
percentage of coalitions passing the node on the left side
l count

tot count , as seen in Equation 5. The contributions are aver-
aged through all the trees to derive SHAP values. Furthermore,
the various subsets are weighted according to size, influencing
SHAP values. The algorithm is in detail explained in [19].

mar contri =
r count

tot count
− l count

tot count
(5)

4) SHAP interaction values: Through the fast computa-
tional implementation of TreeSHAP, the exact computation of
SHAP interaction values is also possible. The importance of
a feature is split into main and interaction effects. Considered
are only pair-wise correlations. For this, Shapley interaction
indexes are used [19]. They are calculated through Equation 6,
where the fraction is a weight and ▽ij(S) the raw interaction
value for a specific coalition S, an instance x and the features
i, j. These features have to be different (i ̸= j). Equation 7
computes the raw interaction value as the prediction value,
including both features subtracted by the prediction values
of coalitions, including only i or j, added by a coalition
containing none of the features.

ϕi,j =
∑

S⊆{1,...,p}\{i,j}

|S|!(p− |S| − 2)!

2(p− 1)!
▽ij (S), (6)
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▽ij(S) = fx(S∪{i, j})−fx(S∪{i})−fx(S∪{j})+fx(S)
(7)

SHAP interaction values are split equally, i.e. ϕi,j = ϕj,i,
the total interaction effect is thus the summation of both
values. The main effect is visualised in Equation 8.

ϕi,i = ϕi −
∑
j ̸=i

ϕi,j (8)

SHAP interaction values can be interpreted as the difference
between the SHAP value for feature i when feature j is present
and the SHAP value for feature i when feature j is absent.

5) Comparison TreeSHAP and KernelSHAP: In this paper,
TreeSHAP was chosen instead of KernelSHAP for multiple
reasons. Firstly, the computation of SHAP values is sig-
nificantly faster compared to KernelSHAP. TreeSHAP can
substantially reduce the computational effort from O(TL2M )
to O(TLND). T denotes the number of trees, L is the
maximum number of leaves in any tree, D is the maximal
depth of any tree, and M is the number of features. N is the
number of background samples used, usually 200. Secondly,
the significantly faster computation time allows SHAP values
to represent Shapley values accurately. Therefore, no sampling
is needed, and no measurement error prevails [19]. Lastly,
KernelSHAP ignores correlations among features. It replaces
feature values with random values and thus ignores possible
correlations between these feature values. If this is the case,
too much weight is put onto unlikely data points, which leads
to inexact Shapley values [39]. TreeSHAP overcomes this
problem by modelling conditionally expected predictions [16].

E. Visualisation of SHAP values

In this paper, it was decided to sample SHAP values because
of their computationally demanding nature. A sample size of
250 was chosen to maximise insights while having adequate
computation times. These 250 SHAP values generated from
TreeSHAP with an RF model or KernelSHAP with an MNL
model can be visualised through plots. Because of higher
computational speed, the computation of exact values, and
the possibility of computing interaction values, it was chosen
to use TreeSHAP based on an RF model. The results will
be validated through SHAP values derived from KernelSHAP
based on the MNL model.

Firstly, this paper provides the overall importance of features
through mean absolute SHAP values. They are visualised in
the SHAP importance table, using a heatmap of the package
seaborn [28]. Whereas the importance of features will be
reported for all modes, more extended analysis steps are only
conducted for car mode choice. The signs of the features will
be analysed through a summary plot using the SHAP package
[13], leading to insights into reasonable feature attributions.
Taste heterogeneity, thus if feature values have the same or
different effects across respondents, can also be visualised
through a summary plot [30]. Through visualising SHAP
distributions, policymakers gain insight into the effectiveness

of measures directed at specific target groups. For example,
insights are possible on how many respondents will shift mode
if the price scheme is changed.

Furthermore, SHAP can detect non-linearity and adverse
effects. Potential non-linear features are initially seen via the
summary plot [30]. Then, all features assumed to affect car
mode choice directly were confirmed regarding their non-
linearity via dependence plots using seaborn. I.e. the attributes
of car travel time, travel costs and traffic variability, as well as
the covariates of car ownership, age and gender, are checked
on non-linearity. SHAP values, however, do assume indepen-
dence regarding other SHAP values. In the last analysis step,
interactions will be tested through a seaborn heatmap with
mean absolute SHAP interaction values for the mode car.

As a model-agnostic method, SHAP allows the values es-
timated through TreeSHAP to be validated with KernelSHAP
and MNL. Using SHAP in combination with an MNL model
would have the advantage of not missing inherent explainabil-
ity while still getting more profound insight into heterogeneity.
In this paper, all analysis steps besides SHAP interactions will
be conducted for KernelSHAP with an RF model. Compar-
isons between the MNL and RF models regarding features’
absolute importance, signs, heterogeneity, and non-linearity
are thus possible. Lastly, comparisons of captured interactions
in the MNL and RF model are also possible via comparing the
SHAP interaction table with the magnitude and significance of
interaction parameters derived from the MNL model.

In the following, the used plots, the SHAP importance
table, the summary plot, the dependence plot and the SHAP
interaction table will be explained in more detail regarding
their interpretation.

1) SHAP Importance table: Despite being designed to
highlight the individual importance of features, SHAP values
can also provide insight into the overall importance of fea-
tures. The most trivial to interpret is the SHAP Importance
table, displaying SHAP importances for each mode separately
and averaged. A SHAP importance for a specific mode and
feature is calculated by taking absolute SHAP values for each
individual and then averaging them overall. SHAP importances
can be described as the average effect of a specific feature on
the probability of choosing a particular mode. For example, in
Figure 2a, car ownership significantly changes the probability
of selecting the mode car for urban trips, namely by 15.12%
on average. Gender, nonetheless, might only change the prob-
ability of choosing the mode car by 0.43%. SHAP values and
SHAP importances tend to be scale-dependent, which means
that if the probability of selecting a particular mode is lower
in the data set, SHAP values and SHAP importances will also
be lower.

2) Summary plot: In the summary plot, the importance
distribution of one feature is visualised for one mode through
SHAP values. For each feature, SHAP values for all individ-
uals are plotted horizontally in a scatter plot. If some SHAP
values are more frequent, they are stacked vertically above
each other. Additionally, they are colour-coded depending on
their respective feature values, where high feature values are
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pink and low feature values are displayed in blue. A wide
scattering of SHAP values suggests the importance of this
feature for choosing modes varies significantly, and there is
considerable taste heterogeneity. For example, in Figure 3a,
extensive taste heterogeneity emerges for not owning a car.
Low car ownership influences the probability of choosing the
mode car differently. A concentrated plot, on the other hand,
indicates homogeneity in tastes among individuals, like for
owning a driving license in Figure 3a.

Additionally, non-linear effects can be detected by analysing
the distribution of the SHAP value colouring of the plot [30].
If multiple colours are present in a cluster, it indicates that
various feature values have the same effect. Clusters and
preference heterogeneity can lead to non-linearity, which can
be analysed in more detail in the dependence plot.

3) Dependence plot: A dependence plot is helpful to gain
insight into the non-linear effects of the mode choice proba-
bility for specific features. On the x-axis, the feature values,
and on the y-axis, SHAP values are drawn. SHAP values
derived from an RF model are visualised in blue, whereas
values derived from the MNL model are drawn in red. The
relation between importance and attribute levels is linear in
RUM-based models, whereas in ML models, the relation can
be highly non-linear. For example, in Figure 4d, the RF model
detects a significant rise in the probability of choosing the
mode car for 0 to 10-year-olds due to their parents driving
them. For individuals aged 10 to 20, however, the probability
is significantly lower, which might be because parents do not
want to drive their children anymore. For respondents aged
20 years old and older, age has almost no influence on the
probability of choosing the mode car. The MNL model detects
only a slightly higher probability of choosing the mode car for
younger respondents.

4) SHAP interaction table: For evaluating interactions be-
tween features, SHAP interaction values [16] are adequate
because of their theoretical background highlighted in III-D4.
Each SHAP value is split into main and interaction effects.
From 12 SHAP values per respondent, 88 interactions are
computed (12 main and 66 interaction effects). Because of
its high computational demand, it was chosen to sample
50 respondents from the already sampled 250 respondents.
The main effects are on the main diagonal, and the rest of
the matrix comprises the interaction effects, with the same
interaction values above and below the main diagonal. This
matrix is calculated over all respondents, which makes the
calculation time-intensive. SHAP interaction values can be
visualised on an individual level as well as on an aggregated
level. For an individual, the summation of all SHAP interaction
values and the mean prediction delivers the personal prediction
for a respondent.

This paper focuses on an aggregated plot. Similar to the
attribute importance plot, firstly, all SHAP interaction values
are converted to absolute values, and then the mean of these
absolute values is computed. Interaction effects are present
above and below the main diagonal. SHAP interactions in
Figure 5 can be interpreted like the following: On average,

Estimated parameters Value Rob. std.err. Rob. p-value
Beta AGE CO -0,0136 0,0009 0,0000
Beta AGE DL 0,0160 0,0009 0,0000
Beta AGE TC -0,0009 0,0003 0,0075
Beta CO DL 0,2459 0,0319 0,0000
Beta INTER 0,8218 0,0226 0,0000
Beta TC -0,0941 0,0143 0,0001
Beta TRAF -2,6522 0,0671 0,0000
Beta TT -6,0300 0,0652 0,0000
asc car -2,7172 0,0576 0,0000
asc car shift age 0,0097 0,0013 0,0000
asc car shift co 1,4864 0,0381 0,0000
asc cycling -3,8490 0,0578 0,0000
asc cycling shift co -0,1326 0,0422 0,0017
asc cycling shift dl 0,6232 0,0580 0,0000
asc cycling shift female -1,0289 0,0529 0,0000
asc pt -0,8188 0,0310 0,0000
asc pt shift age 0,0088 0,0006 0,0000
asc pt shift co -0,2864 0,0202 0,0000
asc pt shift dl -0,4760 0,0271 0,0000

TABLE IV: Estimated Parameters of the MNL model

Model Fold 1 Fold 2 Fold 3 Test data
MNL Model 0.7480 0.7550 0.7631 0.7503
Default RF 0.7220 0.7327 0.7147 0.6642
Intermediate RF 0.6364 0.6344 0.6297 0.6098
Final RF 0.6342 0.6294 0.6261 0.6063

TABLE V: Average cross-entropy loss

for choosing the mode car, the joint effect of pedestrian travel
time and cycling travel time is 1.92%, and the main effects are
5.71% (pedestrian travel time) and 2.67% (cycling travel time).
SHAP interaction values are implemented in the TreeSHAP
algorithm and not in KernelSHAP. Therefore, they are just
available for tree-based ML methods.

IV. RESULTS

A. RF and MNL model validation

1) MNL model estimation: An overview of the estimated
MNL parameters is provided in Table IV. The robust p-value
shows that all variables are significant on a 5% level. Most
parameters have expected signs like Beta TT and Beta TC.
However, Beta INTER leads to a higher preference for PT
if there are more interchanges, which is opposite to general
intuition.

2) RF and MNL model evaluation: Apparent Table V is
the significant difference between the MNL and the final RF
model regarding the average cross-entropy value. The final RF
model was chosen for further analyses because of its superior
prediction performance for the test data set and all folds.
As seen in Figure 1, both models have difficulties predicting
the underrepresented mode cycling, with 0% of all cyclists
expected to be cyclists. However, The other modes are reliably
predicted; for example, 85% of all car users have been detected
in the RF model and 81% in the MNL model. Most prediction
errors occur in both models between car and PT. Generally,
it can be concluded that both models predict the data set
similarly well, with a better performance of the RF model.
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(a) Confusion Matrix for RF model (b) Confusion Matrix for MNL model

Fig. 1: Confusion Matrix comparison

(a) Feature importance in % for the RF model (b) Feature importance in % for the MNL model

Fig. 2: Comparison of the importance of features

8



B. Feature importance

Figure 2a visualises mean absolute SHAP values as a proxy
for the overall importance of features. Car ownership, pedes-
trian travel time and traffic variability are the most important
determinants on average, with mean average SHAP values
of 7.57%, 4.88% and 3.25%, respectively. For each mode,
different variables are important. For pedestrians, for example,
the walking and cycling times are the most important factor,
indicating strong substitution effects between the two modes.
The most critical determinant for all modes besides walking
is car ownership, implying that these modes compete more
intensely with each other. Driving by car and using PT are
closely intertwined, with car-related attributes, car ownership,
owning a driving license, and traffic variability being the most
important features for both modes.

Apparent is that modes’ travel times influence not only the
probability of their own mode but also of competing modes.
This is intuitive since, for example, short pedestrian travel
times might deter people from using the mode car. On average,
pedestrian travel times influence the probability of using the
car by 4.42%.

To summarise, travel times are the most relevant features
for active modes. However, socio-demographics like car own-
ership and a driving licence are the most decisive for choosing
the modes PT and car. This starkly contrasts travel costs being
relatively unimportant for urban travellers in London. In the
following subsections, reasons for selecting the mode car will
be analysed in more detail. Firstly, the feature signs will be
investigated. In a second step, light is shed on preference
heterogeneity. Then, non-linearity is analysed and finally,
feature interactions.

C. Feature signs

Most variable signs in Figure 3a are aligned with expec-
tations according to the estimated MNL model. Car own-
ership emerges as a crucial factor, with low car ownership
significantly associated with a lower probability of car choice.
Further factors where the expected feature signs emerged are,
among others, traffic variability, possessing a driving licence
and high car travel costs. Notably, gender does not influence
the probability of choosing a car.

However, some surprising results emerge. Only low pedes-
trian travel times negatively impact the probability of choosing
the car. In contrast, higher pedestrian travel times have only
a marginal effect. However, this effect is also present for the
cycling travel time to a smaller extent. One explanation might
be that both modes are only competitive with the mode car on
short distances. High PT travel costs, which are anticipated to
influence car probability positively, display no effect. Initially
expected to have a minimal positive influence, age deviates
from the linear pattern in the MNL model. High age almost
does not influence the probability of car choice, while low age
either significantly increases or reduces the probability.

Condensed, most features influence car choice as expected.
However, some surprising outcomes can be observed, like only

short pedestrian travel times affecting car choice or young
individuals either preferring the mode car or not.

D. Preference heterogeneity

Preference heterogeneity manifests in various ways, high-
lighted in Figure 3a. High heterogeneity is observed in factors
that consistently reduce the probability of choosing the car.
Individuals experiencing low pedestrian and car travel times,
high car travel costs and high traffic variability exhibit diverse
preferences. The same goes for individuals not possessing a
car or a driving license.

Age is highly heterogeneous, with some young individuals
choosing the mode car often and others less. Furthermore, high
heterogeneity is associated with high public transportation
(PT) travel times, increasing the probability of opting for
the mode car. Conversely, low heterogeneity mainly displays
either positive effects or no effects on the probability of
choosing the car. High car ownership, low congestion levels,
and possessing a driver’s license consistently affect car mode
choice. In contrast, factors like gender, PT interchanges, and
PT travel costs do not influence choosing the mode car.

The results suggest that features increasing car mode choice
have mainly a homogeneous impact, whereas features reducing
the probability of choosing the car are perceived heteroge-
neously. The only exception is age, with highly non-linear
behaviour.

E. Non-linear effects

The examination of summary plots in Figure 3a also reveals
insights into non-linear effects within variables, highlighting
pedestrian travel times and age as potentially non-linear. In the
following, features that influence the probability of choosing
the mode car directly - as specified in the MNL model - will
be analysed in more detail. As seen in Figure 4, car travel
time and traffic variability exhibit linearity for the RF model,
with potential deviations at high congestion levels. Conversely,
reciprocal functions could be fitted to the importance of car
ownership and driving license. These covariates exhibit in the
RF model heterogeneity of importance for low feature values
while demonstrating higher homogeneity values for higher
feature levels.

Two clusters emerge for car travel costs in Figure 4b
for the RF model. In the first cluster, an inverted quadratic
function suggests a global maximum of importance for car
travel costs. At this point, the mode car is most competitive
with other modes. The second cluster is dominated by high
travel costs, where heterogeneity is observed. An adverse
structure explained by other covariates is observed in the case
of age. While age does not influence car mode choice for
most age groups, being below ten years notably increases
the probability of using the mode car in the RF model. One
plausible explanation is that parents often drive young children
to kindergarten or other destinations. The mode car is chosen
significantly less for individuals between 10 and 20 years old.
This shift aligns with the assumption that their parents drive
them less. More often, they now have to reach their destination
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(a) Summary plot for the RF model (b) Summary plot for the MNL model

Fig. 3: Comparison of Summary plots for the mode car

using other modes of transportation since they are not eligible
for a driving licence yet.

In summary, significant non-linearity exists for the mode
choice preferences of individuals in London. Age is highly
non-linear for young ages. For car travel costs, clusters can be
detected and owning a car and driving license can be described
through reciprocal functions.

F. Interaction effects

Features do not influence car mode choice in isolation but
interact with others. In SHAP, the main and interaction effects
are intertwined. SHAP interaction values disentangle these
effects and are highlighted in Figure 5 for the mode car. As
mentioned in III, the results distilled from this analysis will be
validated through interaction parameters in the MNL model.

As indicated by the SHAP feature importance table, the
most influential variables were car ownership, traffic variabil-
ity, and possession of a driving license. This can be confirmed
by Figure 5, which indicates that most SHAP values provide
a robust and accurate data representation. Generally, only
limited interactions exist, with two exceptions. Specifically,
interactions exist between owning a driving license and age
and between owning a car and a driving license. For instance,
owning a driving license changes the probability of choosing
the mode car on average by 7.34%. If age had not been
measured in the analysis, the importance of possessing a
driving license changed by 2.64% points, and vice versa.
Similarly, in the absence of car ownership, the importance
of a driving license changes by 2.08% points.

Furthermore, the highest relative interaction can be observed
between cycling travel time and the travel times of other
modes. On average, it changes the probability of choosing
the mode car by 2.67%. When pedestrian travel time was
not considered, the importance of cycling travel time changed
by 1.92% points. Similarly, the absence of consideration for

public transportation travel time resulted in a 1.24% change
in the importance of cycling travel time.

G. SHAP validation

1) Feature Importance: The importance of features has
turned out to be significantly different in the MNL model and
a RF model, as it can be seen in Figure 2. Features diverge
in their importance for overall values and particular modes.
Across all modes, the RF model highlights car ownership and
traffic variability as influential factors. In contrast, the MNL
model places greater emphasis on pedestrian travel time, PT
travel time, and car travel time. Travel times are the most
important determinant for mode choice in the MNL model,
whereas in the RF this is only valid for active modes. For
example, PT travel times change the probability of using this
mode by 16.01% in the MNL model compared to 2.51% in
the RF model. Both models only agree on the unimportance
of travel costs.

This underscores the importance of the underlying model
for determining feature importance. Whereas the RF model
predicts car ownership and traffic variability to be important,
the MNL model puts more emphasis on travel times.

2) Feature signs: The MNL and RF models mostly agree
on feature signs. Both models coincide with the effect of
pedestrian travel time, car ownership and possessing a driving
license as seen in Figure 3. Furthermore, they indicate that
gender does not affect the probability of choosing the car
mode. However, distinctions emerge for certain variables.
Firstly, cycling travel time exhibits mixed effects in the RF
model, while the MNL model indicates that longer cycling
times lead to a higher probability of choosing the car mode.
The MNL model sees thus greater competition between the
mode cycling and car. Furthermore, the MNL model attaches
a slight positive effect of age for lower age groups, whereas
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(a) Dependence plot for car travel time (b) Dependence plot for car travel cost

(c) Dependence plot for traffic variability (d) Dependence plot for age

(c) Summary plot for car ownership (d) Summary plot for driving license

Fig. 4: Dependence plots for the mode car
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Fig. 5: Interaction plot for the mode car in %

the RF model detects positive and negative effects for young
individuals.

While both models share common ground in predicting
feature signs for most features, the MNL model-based SHAP
values do not detect adverse effects like those observed for
young people in the RF model. Secondly, the MNL model
aligns more with the expectation of mode competition between
biking and driving by car.

3) Preference heterogeneity: In line with the different im-
portance attribution of features, preference heterogeneity is
significantly different for underlining RF and MNL models.
The general observation from the RF model does not hold.
It states that feature values reducing car choice are hetero-
geneously distributed, and those raising the probability are
homogeneously distributed. Pedestrian travel time is the only
similar feature regarding preference heterogeneity in Figure 3.
Other factors have either higher or lower preference hetero-

geneity. Firstly, the MNL model reveals higher preference
heterogeneity associated with longer travel times for the mode
car and PT. This might relate to the fact that travel times are
generally more critical for the MNL model.

Conversely, the MNL model portrays lower heterogeneity
for owning a car and high congestion levels. This might be
related to these features being considered less important in
the MNL model. These differences underscore the importance
of the assumed underlying model when using SHAP for
highlighting preference heterogeneity.

4) Non-linear effects: The RF and MNL models also do not
coincide regarding their notion of non-linearity for car mode
choice. In the MNL model, only linear utilities have been
defined. The MNL based SHAP values are thus predominantly
linear, with some deviations at the tails in Figure 3, being in
contrast with the RF based SHAP values.

Firstly, the MNL model cannot capture the reciprocal re-
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lationship observed in the RF model for owning a car and a
driving license. Furthermore, the inverted quadratic function
for low car travel costs, followed by a clustering pattern for
high costs, is inadequately represented in the MNL model. The
relation is simplified to a linear relationship for low costs and
a cluster for high fees. Regarding age, the RF model reveals
strong positive and negative effects for specific age groups. In
distinction, the MNL model only detects positive effects for
very low ages and misses the negative probability for choosing
the mode car for people aged between 10 and 20 years.

In conclusion, the MNL model’s assumption of linearity
restricts its ability to discern non-linear relationships in the
data.

5) Interactions: Interactions detected in the RF model
and visualised in Figure 5 are difficult to verify because of
the different notion of RF based SHAP interaction values
and interaction parameters in a MNL model. In the SHAP
formulation, interaction values are described as the probability
change of the importance of one feature when another is not
present. In MNL however, interaction parameter describe the
importance of correlation between two factors.

For covariates like owning a car, a driving license or age,
interaction parameters in the MNL model can indicate if
the found SHAP are correct. Adding interactions between
attributes of different alternatives contradicts the assumption
of MNL. It states that alternatives are independent of each
other and that attributes contribute to the utility of only one
alternative. One possible way to test the interaction between
pedestrian and cyclist travel time would be to leave out one
factor in the utility specification and measure the difference
between the parameter values.

Despite the different notions of interactions, the interactions
between socio-demographics can be confirmed by the MNL
model. Interactions between attributes of various alternatives
are not possible to confirm, and in the MNL model, an addi-
tional interaction turned out to be significant - the one between
age and travel costs. The results suggest that interactions
coincide between models, even though not all interactions
could be tested, and some minor discrepancies exist.

V. DISCUSSION

A. Main findings

The analysis of transportation mode choice using SHAP
values from an RF model unveils that travel times are the most
relevant for active modes. In contrast, socio-demographics
like owning a car or a driving license are most decisive for
choosing PT and driving by car. The signs of features mainly
align with expectations, and surprising outcomes emerge, such
as only short pedestrian travel times influencing car choice.
The results suggest that features increasing car mode choice
have mainly a homogeneous impact, whereas features reducing
the probability of choosing to drive by car are perceived
heterogeneously. Nonlinear effects, including reciprocal func-
tions and clustered patterns, can be perceived for certain
features. Limited overall attribute interactions are perceived,

with notable exceptions for the relation between owning a car,
a driving license and age.

Attempts to validate findings through MNL-based SHAP
values have highlighted significant disparities, exempting sim-
ilar feature signs and interactions for both models. The
absolute importance of features varies significantly between
both modes; for example, the MNL model assigns a higher
importance to travel times across all modes. Furthermore, high
heterogeneity is also observed in the MNL based SHAP values
that increase the probability of car choice, as opposed to the
RF model. The MNL model’s general linearity aligns with
features but misses highly nonlinear effects observed in the
RF model, particularly regarding age. The results highlight
the importance of the underlying prediction model when using
SHAP.

B. Implications for researchers and policymakers

The main implication for researchers refers to the interpre-
tation of the different outcomes. SHAP values derived from
RF and MNL reveal significant differences regarding overall
feature importance, preference heterogeneity and non-linearity.
Therefore, researchers must decide which model describes the
data-generating process. The advantage of the RF model is that
relations are learned from the data. Therefore, the RF model
does not influence feature relations.

Furthermore, a better prediction performance suggests that
the RF model is better suited to describe the data. If the RF
model is assumed to represent the underlying data process bet-
ter, additional insights into non-linearity and feature interac-
tions are possible. However, the MNL model has the advantage
of being widely used in choice modelling. Furthermore, utility
maximisation is defined as a theory of behaviour, and lastly,
the estimated parameters can be used for economic appraisal.
SHAP then adds them to an MNL model with importance
values and highlights preference heterogeneity.

The following implications emerge for policymakers assum-
ing that RF-based SHAP values are used. Since car ownership,
pedestrian travel time and traffic variability turned out to be
the most significant factors for car mode choice, increasing
parking fees and promoting car sharing might be the most
feasible options to reduce car usage. A further conceivable
measure might be facilitating mixed neighbourhoods, such as
lowering distances between inhabitants and their destinations.
However, both measures targeted reduced car ownership -
increased parking fees and promoting car sharing - might not
be as efficient as suggested through the absolute importance
values.

Since there is significant heterogeneity regarding low car
ownership values, measures might lead to only groups reduc-
ing car usage as aimed for and others to a lesser extent. The
reciprocal relationship of car ownership’s importance infers
that incentives for lower car ownership will lead to many
households switching from one or more cars per adult to one
or fewer vehicles per adult, not leading to significant impacts.
Furthermore, the highly nonlinear relationship for age should

13



not be underestimated, especially policies for families with
children, which might make sense to reduce car usage.

C. Limitations and research recommendations

The study is subject to several limitations. The findings
apply to London, and generalising them to other cities may
prove challenging. Moreover, the computational constraints of
KernelSHAP dictated the sample size of 250 individuals. The
same sample size was used for TreeSHAP to derive compa-
rable outcomes, raising concerns about the results’ robustness
and generalisability. Additionally, a significant sampling lim-
itation arises in calculating interaction values, where only 50
samples were used.

The absolute importance, heterogeneity and non-linearity of
features, expressed through SHAP values, differs depending on
the underlying prediction model. Therefore, conclusions and
policy decisions based on SHAP also depend on the underlying
model. Further insights are needed on how robust SHAP values
are relying on other prediction models of the choice modelling
domain (mixed logit, random regret) as well as the machine
learning domain (gradient boosted trees, neural networks).
Answering this question would help to determine, firstly,
which underlying models can highlight specific structures in
the data, like heterogeneity or non-linearity. Secondly, it would
be possible to answer for which underlying models SHAP are
delivering additional insight.

The last limitation is more of a theoretical nature. Un-
derlying prediction models assume certain relations between
input and output data. For example, a MNL model assumes
rational decision makers that compare utilities of the different
alternatives. The alternative with the highest utility is chosen.
SHAP also assumes a relation between input and output data,
assuming all features collaborate in distributing the output or
prediction probability. If SHAP is used with MNL, it might
be the case that according to the MNL model, one feature is
an attribute of an alternative, whereas in the SHAP model,
this feature is a player. The implications of different notions
of behaviour of features in both models remain yet to be
uncovered.
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