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A B S T R A C T

Semantic segmentation is one of the most fundamental problems in computer vision with significant impact on
a wide variety of applications. Adversarial learning is shown to be an effective approach for improving semantic
segmentation quality by enforcing higher-level pixel correlations and structural information. However, state-
of-the-art semantic segmentation models cannot be easily plugged into an adversarial setting because they are
not designed to accommodate convergence and stability issues in adversarial networks. We bridge this gap
by building a conditional adversarial network with a state-of-the-art segmentation model (DeepLabv3+) at
its core. To battle the stability issues, we introduce a novel lookahead adversarial learning (LoAd) approach
with an embedded label map aggregation module. We focus on semantic segmentation models that run fast
at inference for near real-time field applications. Through extensive experimentation, we demonstrate that the
proposed solution can alleviate divergence issues in an adversarial semantic segmentation setting and results
in considerable performance improvements (+5% in some classes) on the baseline for three standard datasets.
. Introduction and related work

Semantic segmentation is a challenging task in computer vision.
t is a pivotal step towards content-based image analysis and scene
nderstanding as it empowers machines to distinguish between dif-
erent regions of an image based on its semantic context. To this
im, semantic segmentation models are trained to assign semantic
abels to each and every pixel of an image as well as to cluster
hem into groups. Semantic segmentation has received an upsurge of
ttention recently owing to its wide variety of applications in medical
maging (Ronneberger et al., 2015; Rezaei et al., 2017), autonomous
riving (Menze and Geiger, 2015; Cordts et al., 2016), satellite im-
ge processing (Volpi and Ferrari, 2015; Henry et al., 2018), and
obotics (Geiger et al., 2013; Shvets et al., 2018), to name a few.
arly segmentation methodologies are mostly developed with clus-
ering algorithms at their core and somehow trying to incorporate
ontour, edge, and structural information. Examples of such algorithms
re active contours (Kass et al., 1988), region-growing (Nock and
ielsen, 2004), conditional random fields (CRFs) (Plath et al., 2009),
nd sparse reconstruction based methods (Minaee and Wang, 2019).
ecent advances in deep learning and convolutional neural networks
CNNs) revolutionized this field resulting in state-of-the-art image seg-
entation algorithms such as FCN (Long et al., 2015), U-Net (Ron-
eberger et al., 2015), PSPNet (Zhao et al., 2017), EncNet (Zhang
t al., 2018a), Exfuse (Zhang et al., 2018b), DeepLabv3+ (Chen et al.,

∗ Corresponding author at: Shell Technology Center Amsterdam (STCA), Grasweg 31, 1031HW Amsterdam, The Netherlands.
E-mail address: hadi.jamali-rad@shell.com (H. Jamali-Rad).

2018), PS and Panoptic DeepLab (Kirillov et al., 2019; Cheng et al.,
2020), HRNet (Wang et al., 2020) and many other elegant architectures
that considerably outperformed the traditional signal processing based
methods addressing the same challenge.

Majority of these deep learning based methods formulate semantic
segmentation as a classification problem where cross entropy (CE) with
pixel independence assumption is employed as the optimization loss
function. However, in practice, adjacent pixels of an image are highly
correlated. These methods implicitly assume that correlation among
pixels would be learned as receptive field of CNNs increases going
deeper with convolutions. Recent studies challenge this assumption and
argue that overlooking pixel correlations explicitly can lead to per-
formance degradation especially with regards to capturing structural
information embedded in target classes. These studies have proposed
different approaches to capture pixel inter-dependencies. For instance,
CRFs can be used to model pixel relationships and enforce label con-
sistency between pixels (Liu et al., 2017; Chen et al., 2017; Shen
et al., 2017; Liu et al., 2017). However, CRFs are known to be time-
consuming at inference and sensitive to variations in visual appearance.
An alternative approach is extracting pixel affinity information from
images and fusing them back to predicted label maps (Ke et al.,
2018); this comes at the cost of extra model branches and larger
memory requirements. More recent studies have proposed changing the
perspective and using different loss functions that encode the mutual
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information or structural similarity among nearby pixels in a regional
fashion (Zhao et al., 2019a; Kervadec et al., 2021; Zhao et al., 2019b)
and have shown improvements. However, these losses can be derived in
a sub-optimal manner by making major simplifying assumptions and by
considering a small patch of pixels. To enforce preserving topology, Hu
et al. (2019) proposes a new loss that enforces the ground truth and
predicted label maps to have a similar topology. Inspired by perceptual
losses in Johnson et al. (2016), Chen et al. (2020) proposes an edge-
aware loss enabled by a proxy edge-detection network to enhance
semantic segmentation precision. Along the same lines, Mosinska et al.
(2018) propose a hybrid loss that is capable of capturing higher-order
topological features of linear structures and helps boost the delineation
of curvilinear structures.

Another avenue that has been explored to enforce structure in
segmentation is employing adversarial learning (Luc et al., 2016; Souly
et al., 2017; Xue et al., 2018; Hung et al., 2018). In this setup, a
segmentor-discriminator pair compete to outperform each other in
creating realistic label maps and distinguishing them from ground
truth ones. We think a conditional adversarial approach similar to Luc
et al. (2016), Souly et al. (2017) has the capacity to capture these
pixel inter-dependencies and correlations in a more general (and not
only local) fashion when compared to methodologies proposed in Zhao
et al. (2019a,b). This is in part owing to the generic nature of the
discriminator that can be trained to learn very complex structural
information. Besides generality, another important aspect that makes
adversarial approaches appealing for our near real-time performance
criterion is the fact that the complexity of such an approach would be
more tailored towards training time. As a result, our proposed solution
would not impact the inference run-time performance. On the other
hand, adversarial approaches are typically more difficult to analyze in
behavior and are prone to stability issues, where addressing the latter
is a key motivation behind the proposed work.

In medical imaging, there are studies proposing (generative) adver-
sarial networks for image segmentation (Terzopoulos et al., 2021; Chen
et al., 2018a); however, their aim is tackling domain shift in semi-
supervised settings and they mostly employ U-Net type segmentors
given their solid performance in this context. On the other hand,
plugging state-of-the-art semantic segmentation models in an adversar-
ial setting is prone to the well-known divergence and mode collapse
issues (Arjovsky et al., 2017; Ian Goodfellow and Szegedy, 2015).
Specific architecture designs for generator and discriminator networks
can help to stabilize the setup, but at the cost of limiting the application
domain of adversarial networks. When it comes to semantic segmen-
tation, we are bound to architectures specifically designed to excel
in doing so. When we tried to establish an adversarial network with
DeepLabv3+ (Chen et al., 2018) as segmentor, we could not manage
to stabilize the network regardless of remedies we pulled in. Bridging
the gap between employing the state-of-the-art semantic segmentation
models in adversarial settings and helping to stabilize them is the core
idea of the proposed lookahead adversarial learning (LoAd) approach.
Notably, we focus on models that run fast at inference time for near
real-time field applications. That is why we opt for DeepLabv3+ base
models that offer speed (no multi-scaling (MS), no CRFs) and perfor-
mance at the same time. Nonetheless, in our ablation studies, we also
demonstrate the impact of applying time-consuming post-processing
steps such as MS on the performance of proposed solution.

The proposed solution (LoAd) takes inspiration from the ‘‘lookahead
optimizer’’ (Zhang et al., 2019) and allows the semantic segmentation
adversarial network to go ahead and actually diverge to some extent,
then inspired by DAGGER in imitation learning (Ross et al., 2011)
aggregates the degraded label maps, and steps backward to use these
new sets of information and avoid further divergence. Notably, our
label map aggregation strategy is different from collecting adversar-
ial examples to retrain and stabilize generative adversarial networks
(GANs) (Ian Goodfellow and Szegedy, 2015; Liu and Hsieh, 2019). We
demonstrate that LoAd can alleviate divergence issues of adversarial
2

training in a semantic segmentation setting leading to improvement in
mean-intersection-over-union (mIoU) over the baseline DeepLabv3+ on
Pascal VOC 2012, Cityscapes and Stanford Background datasets. We
also show that in some classes +5% improvement in IoU beyond the
baseline is achieved which is quite significant. We then qualitatively
demonstrate that our solution is boosting the baseline in overall seg-
mentation performance in tackling class swap/confusion, as well as in
better understanding of structure and continuity of the target classes.

The main contributions of this paper can be summarized as fol-
lows: (a) we propose a lookahead adversarial learning method (LoAd)
for semantic segmentation that helps alleviate stability issues in such
settings, (b) LoAd runs as fast as the baselines methods upon which
it is applied, i.e., no extra delay at inference time, making it a great
choice for near real-time field applications, (c) besides avoiding class
confusion, LoAd improves the performance of the baseline in creating
structurally more consistent label maps with significant performance
boost in some classes. Enhancing state-of-the-art segmentation models
that can be trained on commodity GPUs and run fast at inference time
(no CRFs, no multi-scaling) is the motive of this work.

2. Conditional adversarial training for semantic segmentation

Let D𝑡 = {(𝐗,𝐘)1,… , (𝐗,𝐘)𝑀} be the training dataset containing 𝑀
samples with X𝑡 = {𝐗|(𝐗,𝐘) ∈ D𝑡} and Y𝑡 = {𝐘|(𝐗,𝐘) ∈ D𝑡} respectively
denoting the set of images and their corresponding label maps.1 Here,
𝐗 is of size 𝐻 × 𝑊 × 3 for RGB images with a total of 𝐻 × 𝑊 = 𝑁
pixels. The corresponding label map 𝐘 is of size 𝐻 ×𝑊 with elements
in K = {1,… , 𝐾} where 𝐾 is the number of classes in the segmentation
task. An adaptation of conditional generative adversarial networks
(CGANs) (Goodfellow et al., 2014; Mirza and Osindero, 2014; Isola
et al., 2017) for semantic segmentation would not require stochastic
behavior in generating semantic label maps but aims at creating the
most probable map 𝐘 per input image 𝐗. So, we solve a two-player
min–max game to estimate 𝑃 (𝐘|𝐗)

min
𝐺

max
𝐷

L(𝐺,𝐷) = E𝐘∼𝑃D𝑡 (𝐘)
[

log (𝐷(𝐘|𝐗))
]

+

E𝐘∼𝑃𝑔 (𝐘)
[

log (1 −𝐷(𝐘|𝐗))
]

, (1)

where L(.) denotes the loss function, 𝐺 denotes the generator (more
specifically a segmentor) parameterized with 𝜽𝑔 , and 𝐷 stands for the
discriminator parameterized with 𝜽𝑑 . Typically, both 𝐺 and 𝐷 are
CNN’s. This can be further simplified within a binary classification
setting where the discriminator is to decide whether a sample label map
is ground truth (𝐘 ∼ 𝑃D𝑡 ) or generated (𝐘 ∼ 𝑃𝑔) by the segmentor.
Considering binary cross entropy (CE), we arrive at the following
adversarial loss

L𝑎(𝜽𝑔 ,𝜽𝑑 ) =
𝑀
∑

𝑚=1

[

log
(

𝐷(𝐘𝑚|𝐗𝑚)
)

+

log
(

1 −𝐷(𝐘̂𝑚|𝐗𝑚)
)]

, (2)

where 𝐘̂ denotes the generated map. L𝑎 should be minimized w.r.t. 𝜽𝑔
and maximized w.r.t 𝜽𝑑 . Several interesting studies such as (Luc et al.,
2016; Souly et al., 2017) suggest applying a hybrid loss combining the
conditional adversarial loss in (2) with a regularization or CE pixel-
wise term, sometimes in a slightly different context such as weakly
supervised GAN settings (Souly et al., 2017). The closest approach to
our line of thought is the pioneering work in Luc et al. (2016) where
the following hybrid loss Lℎ = L𝑝 + 𝜆L𝑎 is proposed

Lℎ =
𝑀
∑

𝑚=1
CE(𝐘𝑚, 𝐘̂𝑚) + 𝜆

𝑀
∑

𝑚=1
log

(

𝐷(𝐘𝑚|𝐗𝑚)
)

+

𝜆
𝑀
∑

𝑚=1
log

(

1 −𝐷(𝐘̂𝑚|𝐗𝑚)
)

, (3)

1 From now on, we use ‘‘map’’ and ‘‘label map’’ interchangeably.
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where the pixel-wise loss L𝑝 is computed using a multi-class CE between
the 1-hot encoded versions of the original label map 𝐘 and the inferred
one 𝐘̂ using −

∑𝑁
𝑖=1

∑𝐾
𝑐=1 𝑦𝑖,𝑐 log(𝑦̂𝑖,𝑐 ), with 𝑦𝑖 denoting the 𝑖th element

of 𝐘. Obviously, only the second and the third terms in (3) are relevant
when training the discriminator. When training the generator, Luc
et al. (2016) proposes to keep the first and the third terms. Next, a
standard gradient decent ascent (GDA) (Lin et al., 2020) is applied to
the two-player min–max game.

We decided to take a different approach for two reasons. First, inter-
esting findings are recently reported in Nouiehed et al. (2019), Ostro-
vskii et al. (2020) regarding the optimization of min𝑥∈𝐗 max𝑦∈𝐘 𝐹 (𝑥, 𝑦)
problems where 𝐹 (𝑥, 𝑦) is concave in 𝑦 and non-convex in 𝑥, which
relates to our problem in that the loss is concave in 𝜽𝑑 and non-
convex in 𝜽𝒈 in typical high dimensional settings with CNNs. Therefore,
following the propositions in Nouiehed et al. (2019), Ostrovskii et al.
(2020), and (to our understanding) in contrast to Luc et al. (2016),
we avoid an alternating GDA in optimizing the generator and discrimi-
nator networks. Instead, in every ‘‘cycle’’ of the proposed adversarial
approach (Algorithm 2), we keep training the discriminator with a
dynamically updated dataset according to the proposed label map
aggregation module (Algorithm 1) to reach sufficient accuracy before
switching back to training the generator.

Second, another angle that distinguishes us from (Luc et al., 2016)
is in how and when to incorporate the pixel-wise CE loss. We approach
the problem in two stages as follows. Stage 1: if not pre-trained on D𝑡,
we first train the segmentation network using only CE pixel-wise loss
up to a reasonable performance (without hard constraints). Stage 2: we
then activate the adversarial loss on top the CE loss and run (LoAd) as
described in Algorithm 2 to boost the performance. At this stage, when
training discriminator both the second and the third terms of (3) will
be active, and when training the segmentation network the first and the
third terms will be used where we follow the suggestion of Luc et al.
(2016), Goodfellow et al. (2014) and replace +𝜆

∑𝑀
𝑚=1 log(1−𝐷(𝐘̂𝑚|𝐗𝑚))

with −𝜆
∑𝑀
𝑚=1 log(𝐷(𝐘̂𝑚|𝐗𝑚)) to maximize the probability of 𝐘̂𝑚 being

the true segmentation label map of 𝐗𝑚.

3. Lookahead Adversarial Learning (LoAd)

The idea. Robustness and divergence issues of GANs are not se-
cret to anyone (Arjovsky et al., 2017; Ian Goodfellow and Szegedy,
2015; Liu and Hsieh, 2019; Roth et al., 2017; Salimans et al., 2016).
Generally speaking, adversarial networks manifest the same difficulties
and we had to tackle them in our semantic segmentation setup. Here
is the idea behind lookahead adversarial learning (LoAd) for semantic
segmentation in a nutshell. We take inspiration from ‘‘lookahead op-
timizer’’ (Zhang et al., 2019) and allow the adversarial network to go
ahead and actually diverge (to some extent) helping us to gain new
insights and construct new datasets of label maps from these divergent
(or degraded) models. Inspired by the idea of DAGGER (Ross et al.,
2011), we aggregate these new datasets and use them for retraining
the discriminator at the end of every cycle of LoAd. Next, we go back
to where the divergence started (similar to ‘‘1 step back’’ in lookahead
optimizer) to improve our next predictions and avoid further diver-
gence. These new datasets are not designed or generated adversarial
examples but sequentially degraded label maps. Note the importance
of label maps in this context. When we descend towards divergence
not only our performance metric goes down (mIoU, a single score) but
also destructive impacts on the generated maps provides us with new
sets of information that we exploit.

The mechanics. Algorithm 1 describes the map aggregation module
of LoAd and Algorithm 2 provides a pseudo code level description
of LoAd itself. Let us assume a starting model 𝑔𝑠 = 𝑔0 (e.g., the
ending model after Stage 1 training as explained in Section 2). First,
we evaluate the model on a subset of validation data (a hold-out set)
to understand our current mIoU (denoted as 𝜇 in Algorithm 2). This

𝑠 ∗
serves as both starting and current best mIoU (𝜇 and 𝜇 , respectively). o

3

We can already train our discriminator for the first time using D𝑡∪𝑔0(X𝑡),
a set composed of full training data (images and maps) plus a set of
generated (fake) maps. With this, we have initialized our label map
aggregation buffer with B = B[0] = 𝑔0(X𝑡) in Algorithm 1. Back to
Algorithm 2, we then continue training adversarial until one of the
following two criteria is met: (a) patience iteration counter 𝛾 reaches
its maximum 𝛤 , alerting us that it is enough looking ahead, (b) we
diverge (in mIoU sense) reaching a pre-defined lower-bound (𝜇𝑠 − 𝛽𝑙)
w.r.t. to the starting mIoU 𝜇𝑠. If any of the two criteria are met, the
cycle is finished, and we pick the last model of the cycle denoted by
𝑔𝑒. Throughout each cycle we also seek for an updated model offering
a mIoU better than the staring one, and if such a new peak model 𝑔∗
(above an upper-bound 𝜇𝑠 + 𝛽𝑢) is found, the cycle would be returning
two models, the best model of the cycle 𝑔∗ besides its ending model 𝑔𝑒.

Per cycle one or both of these models {𝑔∗, 𝑔𝑒} would be passed
to our map aggregation algorithm to generate new ‘‘fake’’ label maps
which will be aggregated in B. This dynamically updated dataset in
B concatenated with D𝑡 will then be used to retrain the discriminator
before the next cycle starts. Owing to this label map aggregation and
following retraining of the discriminator, we continually improve our
adversarial model to avoid further divergences. At the end of each
cycle, we go back and restart training adversarial from the newly found
peak 𝑔∗ or the old starting point 𝑔𝑠. Lastly, if we do more than 𝛹 cycles
from a starting model 𝑔𝑠 and a new peak is not found to replace it,
the algorithm fully stops and returns the overall best model. Notably,
the divergence patience counter 𝛾 is in practice updated in a dynamic
manner (together with an auxiliary ‘‘peak finder’’ counter) to avoid an
upward trend being stopped prematurely. Interested reader is referred
to more details to the Appendix B.

Algorithm 1: Map Aggregation Buffer
Require: peak/ending models, image set (𝑔𝑝, 𝑔𝑒,X )
if 𝑔𝑝 ≠ 0 (a peak is found) then

Flush(B)
B[0] ← 𝑔𝑝(X )
B[1] ← 𝑔𝑒(X )

lse
if Size(B) = max buffer size (𝐵𝑚𝑎𝑥) then

Delete(B[1])
end
B[end] ← 𝑔𝑒(X )

nd
eturn: B

The recap. To make this crystal clear, we use a hypothetical con-
ergence graph in Fig. 1 (a) and corresponding dynamically updated
ap aggregation buffer depicted in Fig. 1 (b) to walk you through
hat LoAd does in action. As can be seen, starting from 𝑔0, the first

adversarial cycle immediately descends towards divergence ending
with 𝑔𝑒0,0. We denote the 𝑗th cycle spawned from the 𝑖th peak with 𝑔𝑖,𝑗 .
Note that 𝑔𝑒0,0 does not descend by 𝛽𝑙, and thus, we are assuming that
the cycle is ended due to reaching patience limit of 𝛤 propagations (or
iterations) as described in Algorithm 2. This cycle also did not introduce
a new peak better than 𝑔0. Thus, only 𝑔𝑒0,0(X ) will be added as a new
set to the buffer B. This is where we go back and restart adversarial
training from 𝑔0, but this time with a retrained discriminator. As in the
figure, this helps to ascend towards 𝑔1 after which we diverge again
in the second cycle. So, the second cycle returns a new peak 𝑔∗ = 𝑔1
as well as the ending model 𝑔𝑒 = 𝑔𝑒0,1 for map aggregation. Since a
ew peak is found (better than 𝑔0), we Flush the buffer filling it with
= [𝑔1(X ) ∣ 𝑔𝑒0,1(X )] as shown in Fig. 1 (b). Per pseudo code in Algorithm

, any cycle that only returns an ending model (an no new peak) would
esult in creating a new label map set added to the end of the buffer
nless the buffer is full; i.e., it already contains 𝐵𝑚𝑎𝑥 label map sets.
n that case, we first Delete the label map set corresponding to the
ldest ending model and then the new label map set is added to the
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Algorithm 2: LoAd for Semantic Segmentation
Initialize: 𝜓 = 0, 𝑔𝑠 = 𝑔0, B = 𝑔𝑠(X𝑡)
Input: maximum nr. of cycles:𝛹 , maximum patience:𝛤 , 𝛽𝑙, 𝛽𝑢
𝜇𝑠, 𝜇∗, 𝜇 ← evaluate mIoU
Train Discriminator(D𝑡 ∪ B)
while 𝜓 < 𝛹 do

start a divergence patience counter: 𝛾 ← 0
while 𝜇𝑠 − 𝛽𝑙 < 𝜇 and 𝛾 < 𝛤 do

update model: 𝑔 ← Train Adversarial
𝜇 ← evaluate mIoU
𝜇∗ ← best 𝜇 > 𝜇𝑠 + 𝛽𝑢
update best model: 𝑔∗ ← 𝑔
𝛾 ← 𝛾 + 1

end
𝑔𝑒 ← keep the last model of the cycle
if best model better than start then

set best model as start model: 𝑔𝑠 ← 𝑔∗

reset cycle counter 𝜓 ← 0
B ← MapAggregation(𝑔∗, 𝑔𝑒,X )

else
B ← MapAggregation(0, 𝑔𝑒,X )
start a new cycle 𝜓 ← 𝜓 + 1

end
Train Discriminator(D𝑡 ∪ B)

end

end of B as described in Algorithm 1. An example of this scenario in
ur hypothetical setup is where the set corresponding to 𝑔𝑒1,1 is deleted

in favor of the newcomer set corresponding to 𝑔𝑒2,1.

4. Experimental setup

Network architecture. Our experimental network architecture is
hown in Fig. 2. As can be seen, we opted for DeepLabv3+ with
ifferent backbones (modified Xception-65 (Chollet, 2017) and Mo-
ileNetv2 (Chen et al., 2018)), bearing in mind that DeepLabv3+ might
ot be the easiest model to simply plug into an adversarial settings.
e chose Mobilenet-224 (Howard et al., 2017) as our discriminator.

he figure shows our discriminator training policy being conditional
n the input image split into different classes (using ground truth
nd generated label maps) and stacked into the input channels of
he discriminator. We also considered a few other possibilities such
s feeding the discriminator with split label maps themselves, which
ed to performance degradation. Our trainings are run separately on
tandard Nvidia P100 T nodes offered on Microsoft Azure each with
6GB of memory. We focus on models that can be trained and run on
tandard and commodity GPU nodes, as many researchers do not have
ccess to high-end TPUs. On the same note, and to re-emphasize, we
 a

4

Fig. 2. Adversarial network architecture.

are particularly interested in models that run fast at inference time for
near real-time field applications. That is why we selected DeepLabv3+
base models that offer speed (no MS, no CRFs) and performance at the
same time.

Adversarial training. Per cycle in Algorithm 2, we train MobileNet
discriminator) until sufficient performance is reached based on an
arly-stopping criterion evaluated on a hold-out set explained in the
ollowing. For training the discriminator, we used a batch size of 16,
nd set 𝛼 = 1 with a dropout rate of 0.01 (Howard et al., 2017). We
sed Adagrad as optimizer with a learning rate 𝑙𝑟𝑑 = 0.01. Because
f the label map aggregation, the loss function of the discriminator
binary CE) is weighted to account for the variable number of generated
abel maps in the map aggregation buffer. For adversarial training of
he generator, we used a batch size of 5 due to the memory limitation
f the GPU nodes. The adversarial learning rate was set to 𝑙𝑟𝑎 =
𝑒−6, and we trained using a momentum of 0.95. Adversarial training
s conducted according to LoAd (in Algorithm 2) with the following
efault hyperparameters: 𝛽𝑢 = 0.001 and 𝛽𝑙 = 0.05 corresponding
o 0.1% improvement and 5% drop in mIoU in a cycle, respectively;
atience counter maximum is set to 𝛤 = 50, and maximum number of
ycles allowed is set to 𝛹 = 50; maximum buffer set size is 𝐵𝑚𝑎𝑥 = 3.
PASCAL VOC 2012 dataset. PASCAL VOC 2012 dataset (Evering-

am et al., 2015) is one of the most popular datasets for semantic
egmentation with 20 foreground object classes and 1 background
lass. It contains 1464 train, 1449 validation, and 1456 test pixel-level
nnotated images. For the experiments on this dataset, we started
rom DeepLabv3+ checkpoints pre-trained on PASCAL VOC 2012 with
utput stride of 16 achieving mIoU = 82.2% (Xception-65 backbone)

nd mIoU = 75.32% (MobileNetv2 backbone) on the validation set; see,
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Table 5 in Chen et al. (2018) and their model zoo on Github.2 We then
applied LoAd for adversarial training. The images have a shape of at
most 512 × 512 pixels, so we used a crop size of 513 × 513 following
he recommendations in Chen et al. (2018).
Cityscapes dataset. Cityscapes is one of the most commonly used

arge-scale datasets for semantic segmentation (Cordts et al., 2016)
ith 19 main target classes used for evaluation. It contains 2975 train,

500 validation, and 1525 test high quality pixel-level annotated images
a total of 5000 ‘‘fine annotation’’ images) used in our experimentation.
or the experiments on this dataset, we started from DeepLabv3+
heckpoint pre-trained on Cityscapes with output stride of 16 achieving
IoU = 70.71% on the validation set with MobileNetv2 backbone; see

heir model zoo on Github referred earlier. Notably, due to considerably
arger input image size (1024 × 2048), using Xception backbones
ould enforce a very small batch size for typical GPU nodes, rendering

raining meaningless. We applied LoAd for adversarial training with a
rop size of 513 × 513.
Stanford Background dataset. The Stanford Background dataset

(Gould et al., 2009) contains 8 classes of scene elements. It has 715
pixel-level annotated images which we have split into 400 for training,
172 for validation and 143 for testing. We chose this dataset to explore
what the impact on smaller datasets (from sample size perspective)
would be. For this dataset, there was no pre-trained DeepLabv3+ model
available and we followed our two stage approach as explained in
Section 2. We used DeepLabv3+ checkpoint from Cityscapes achieving
mIoU of 78.79% (see Table 7 in Chen et al. (2018)) and trained it
on Stanford Background using only pixel-wise CE loss. We set batch
size to 7 and trained the model with a weighted CE loss for 4 epochs
hen switched to the original CE loss (all weights set to 1) and trained
or another 8 epochs reaching mIoU = 74.33%. Weighted CE loss is
alculated by multiplying the loss by the average number of pixels per
lass computed over the entire training dataset and dividing it by the
umber of pixel per class in the image. This model is then used as
he starting point for applying and evaluating LoAd. The learning rate
or the pixel-wise training was set to 𝑙𝑟𝑝 = 1𝑒 − 4 and kept constant
hroughout the training following (Chen et al., 2018). We did not
se multi-scale training policies for DeepLabv3+ as explained earlier,
nd followed the recommendations of Chen et al. (2018) to upscale
he logits to input image size for evaluation. Pictures in the Stanford
ackground dataset have a maximum pixel size of 320 × 320 for which
e used 321 × 321 as crop size as suggested in Chen et al. (2018).
Augmentation, inference, and evaluation. We augmented the

ictures with random flips for both pixel-wise and adversarial training
tages. No special inference strategy is applied (no MS, etc.) and the
valuation metric is the mIoU score. In Section 6, we briefly reflect
n and illustrate the impact of applying MS. For early stopping of the
iscriminator and for mIoU evaluation during adversarial training we
sed 30% of the validation set of each dataset as the hold-out set.
Baseline and performance comparison. We compare our perfor-

ance with the non-adversarial DeepLabv3+ as our main baseline and
o accentuate on the impact of the proposed conditional adversarial
raining (LoAd), also with the adversarial approach proposed in Luc
t al. (2016). Note that Luc et al. (2016) does not employ DeepLabv3+
but older architectures) and we had to reproduce their results by using
eepLabv3+ as segmentor. The work presented in Hung et al. (2018)
ould be another option; however, it is focused on semi-supervised
dversarial segmentation and due to its different scope could not be
mmediately used for comparison purposes.

2 https://github.com/tensorflow/models/blob/master/research/deeplab/
3doc/model_zoo.md.
 h

5

5. Evaluation results

In this section, we evaluate LoAd on the mentioned three datasets.
For PASCAL VOC and Cityscpaes, we present performance evaluation
results on their validation as well as test sets, where the latter is assessed
by submitting the results to the corresponding online test server. For
Stanford Background, the full dataset is available and we only present
the results of the test set. Besides the baseline DeepLabv3+, we also
compare the quantitative performance with the adversarial approach
of Luc et al. (2016). Remark: for viewing the online test results, please
note that PASCAL VOC server can be slow sometimes and might require
patience or refreshing the page a few times.

Fig. 3 shows three examples of the adversarial training mIoU evalu-
ated on the hold-out set of PASCAL VOC 2012, Cityscapes and Stanford
Background datasets. Note the behavioral similarity to the sketch pre-
sented in Fig. 1 (a). As can be seen for PASCAL VOC, starting from the
baseline DeepLabv3+ with mIoU= 82.2% (denoted by 𝑔0), we initially
diverge towards 𝑔0,0 and 𝑔0,1 in the first two cycles, each time going
back to 𝑔0 and applying map aggregation as discussed in Section 3.
This clearly helped to stabilize the model in the third cycle to ascend
from 𝑔0 towards 𝑔1, which is the new peak found. Starting from 𝑔1
again the network tends to descend towards divergence (ending with
𝑔1,0) after which applying the map aggregation helped to ascend and
find the next peak 𝑔2. This process continues following the mechanics
f LoAd as described in Section 3 alleviating the unstable behavior of
he adversarial network helping it to sequentially improve in all three
ubfigures.

.1. Results on PASCAL VOC 2012

Table 1 summarizes the performance comparison between the base-
ine (DeepLabv3+, also denoted as DLv3+ for brevity), the adversarial
pproach of Luc et al. (2016), and the proposed boosted model after
pplying LoAd (DeepLabv3+ & LoAd) on the validation set. For the last
wo models, we also present the standard deviation (std.) of the runs.
he results are interesting in that even though the overall mIoU has

ncreased by about 0.9% (0.7% above (Luc et al., 2016)), we observe
onsiderable improvement in several classes. Note that an increase of
.9% averaged over 21 classes is not insignificant by itself. In some of
he highlighted classes such as ‘‘aeroplane’’, ‘‘sofa’’, ‘‘diningtable’’, and
‘boat’’ the improvement in IoU ranges from +2% to +6% which is quite
ignificant in this regime of performance. Obviously, we degrade in
ome other classes but only by a fraction of a percent.

To substantiate our understanding, we evaluated the same three
odels as in Table 1 on the test set of PASCAL VOC on its online server.
ote that the online servers allow only a few trials, and thus, we do not
ave enough runs to report standard deviations here. The outcome in
able 2 once again corroborates our claim. The overall mIoU improves
y 0.7% above both DeepLabv3+ and Luc et al. (2016) with even a
arger number of classes outperforming the baseline DeepLabv3+, when
ompared to the validation set. However, less extreme performance
umps can be seen with a maximum of +3.6% boost for ‘‘sofa’’, and
1% to +2% improvement for ‘‘boat’’, ‘‘dining table’’, and so on. In
ome classes, we also degrade in performance, but this remains to
e a fraction of a percent akin to the case of the validation set in
able 1. Another interesting observation is that on the test set the
dversarial approach of Luc et al. (2016) outperforms LoAd in a couple
f target classes, most notably on ‘‘car’’. Check out the results for the
aseline DeepLabv3+,3 the adversarial approach of Luc et al. (2016),4
nd the proposed method (DeepLabv3+ & LoAd)5 on PASCAL VOC’s
nline server.

3 DLv3+: http://host.robots.ox.ac.uk:8080/anonymous/SPNVZZ.html.
4 Luc et al. (2016): http://host.robots.ox.ac.uk:8080/anonymous/C2GEVB.

tml.
5 DLv3+&LoAd: http://host.robots.ox.ac.uk:8080/anonymous/CNGCEP.

tml.

https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
http://host.robots.ox.ac.uk:8080/anonymous/SPNVZZ.html
http://host.robots.ox.ac.uk:8080/anonymous/C2GEVB.html
http://host.robots.ox.ac.uk:8080/anonymous/C2GEVB.html
http://host.robots.ox.ac.uk:8080/anonymous/CNGCEP.html
http://host.robots.ox.ac.uk:8080/anonymous/CNGCEP.html
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Fig. 3. Convergence graph of different datasets.
Table 1
Performance comparison (mIoU ± std.) on PASCAL VOC 2012 validation set.
Method Backg. Aero. Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

DLv3+ 95.55 90.33 44.23 89.56 72.15 81.11 96.76 91.37 94.33 51.87 96.08
Luc et al. (2016) 95.57±0.06 91.94±0.19 44.27±0.49 89.99±0.21 72.83±0.10 81.48±0.27 96.70±0.07 91.21±0.17 94.27±0.11 51.92±0.38 95.75±0.10

DLv3+ &LoAd 95.71±0.06 93.31±0.17 44.14±0.49 90.49±0.20 74.48±0.10 81.37±0.28 96.36±0.08 91.34±0.17 93.73±0.11 53.22±0.38 95.59±0.10

Contd. d.table Dog Horse m.bike Person p.plant Sheep Sofa Train Tv mIoU

DLv3+ 60.14 92.63 93.33 89.23 90.18 67.19 93.75 61.26 94.81 80.27 82.20
Luc et al. (2016) 60.32±0.25 92.65±0.13 93.31±0.14 89.36±0.17 90.19±0.17 67.35±0.39 93.90±0.13 61.30±0.24 94.79±0.10 80.36±0.26 82.35±0.09

DLv3+ &LoAd 65.86±0.24 92.35±0.13 93.34±0.14 89.22±0.17 90.20±0.17 67.42±0.39 93.41±0.13 67.20±0.23 94.91±0.10 80.81±0.25 83.08±0.09
Table 2
Performance comparison on PASCAL VOC 2012 test set (online server).

Method Backg. Aero. Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

DLv3+ 93.52 84.27 39.70 86.22 66.67 79.68 92.12 81.89 85.84 42.40 82.91
Luc et al. (2016) 93.69 85.10 39.81 86.39 68.04 80.42 92.08 84.21 85.34 43.33 80.41
DLv3+ &LoAd 93.68 84.91 39.76 86.48 68.02 80.32 91.98 82.70 88.18 42.64 82.74

Contd. d.table Dog Horse m.bike Person p.plant Sheep Sofa Train Tv mIoU

DLv3+ 75.20 84.10 83.64 86.17 82.68 62.54 81.69 63.39 81.60 76.70 76.81
Luc et al. (2016) 76.96 81.09 81.78 85.72 82.37 61.62 79.07 67.24 83.37 74.95 76.81
DLv3+ &LoAd 77.65 86.02 83.16 85.80 82.87 62.56 81.33 67.03 83.18 76.67 77.51
Table 3
Performance comparison (mIoU ± std.) on Cityscapes validation set.
Method Road Sidewalk Building Wall Fence Pole t.light t.sign vegetation Terrain

DLv3+ 97.56 81.08 90.20 38.34 53.23 50.27 60.96 70.71 90.91 59.00
Luc et al. (2016) 97.54±0.02 81.02±0.12 90.23±0.05 39.26±0.27 52.77±0.25 50.82±0.30 61.17±0.62 70.94±0.40 90.96±0.05 59.25±0.28

DLv3+ &LoAd 97.59±0.02 81.21±0.12 90.53±0.05 47.20±0.27 54.38±0.25 51.81±0.30 61.54±0.62 71.11±0.40 90.92±0.05 60.66±0.27

Contd. Sky Person Rider Car Truck Bus Train m.cycle Bicycle mIoU

DLv3+ 92.95 76.21 52.79 93.36 68.83 76.39 63.43 53.70 72.73 70.67
Luc et al. (2016) 92.99±0.10 76.13±0.25 52.65±0.57 93.38±0.07 69.85±0.25 77.30±0.19 62.72±0.22 54.45±0.56 72.76±0.32 70.85±0.03

DLv3+ &LoAd 92.94±0.10 76.13±0.25 53.27±0.57 93.19±0.07 67.76±0.25 76.96±0.19 65.00±0.22 54.63±0.56 72.85±0.32 71.57±0.03
Table 4
Performance comparison on Cityscapes test set (online server).
Method Road Sidewalk Building Wall Fence Pole t.light t.sign vegetation Terrain

DLv3+ 97.86 80.91 90.14 43.73 48.73 49.14 62.11 67.82 91.69 66.42
Luc et al. (2016) 97.84 80.79 90.19 44.62 48.22 49.64 62.31 67.84 91.77 66.86
DLv3+ &LoAd 97.85 80.99 90.25 50.17 49.46 50.24 62.73 67.32 91.80 68.32

contd. Sky Person Rider Car Truck Bus Train m.cycle Bicycle mIoU

DLv3+ 93.85 79.43 59.21 93.86 53.41 64.54 58.96 56.79 68.55 69.85
Luc et al. (2016) 93.84 79.36 59.13 93.87 54.28 66.72 59.22 57.22 68.50 70.12
DLv3+ &LoAd 93.70 79.27 59.23 93.75 54.38 67.61 60.24 56.32 68.36 70.63
Table 5
Performance comparison (mIoU ± std.) on Stanford Background test set.
Method Sky Tree Road grass Water Building Mountain Foreground mIoU

DeepLabv3+ 89.38 72.21 87.28 77.44 72.70 80.03 48.64 66.92 74.33
Luc et al. (2016) 89.35±0.27 72.54±0.41 87.31±0.23 77.53±0.34 72.78±0.30 80.04±0.25 49.18±0.48 66.69±0.46 74.43±0.16

DeepLabv3+ &LoAd 89.47±0.27 72.89±0.40 87.71±0.23 77.90±0.33 73.89±0.30 80.87±0.24 50.11±0.48 67.54±0.45 75.05±0.16
6
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5.2. Results on cityscapes

We conducted similar extensive experimentation on Cityscapes as
well. Table 3 summarizes the performance comparison between the
baseline DeepLabv3+ (abbreviated as DLv3+), the adversarial approach
of Luc et al. (2016), and the proposed boosted model DeepLabv3+
&LoAd. Here again we achieve an overall mIoU improvement of 0.9%
(0.7% above (Luc et al., 2016)) averaged over 19 classes with consider-
ble performance boost (up to +7%) in ‘‘wall’’, ‘‘fence’’, ‘‘pole’’, ‘‘train’’
nd ‘‘terrain’’. To further consolidate our understanding, we evaluated
he same three models as in Table 3 on the test set of Cityscapes
n its online server and the results are summarized in Table 4. We
chieve an overall performance boost of about 0.8% above the base-
ine DeepLabv3+ (0.5% above (Luc et al., 2016)) and a considerable
mprovement (up to +5%) for ‘‘wall’’, ‘‘terrain’’, ‘‘train’’, and so on, that
nce again confirm the impact of the proposed method on this com-
only used dataset. Here, we consistently outperform the adversarial

pproach of Luc et al. (2016) on the aforementioned classes. Notably,
or Cityscapes, we almost consistently outperform DeepLabv3+ in all
lasses across both Tables 3 and 4. Check out the results for the baseline
eepLabv3+,6 the adversarial approach of Luc et al. (2016),7 and the

proposed method8 on Cityscapes’ online server.

.3. Results on stanford background

Following (Luc et al., 2016), we conducted yet another set of
xperimentation on the Stanford Background dataset. The results are
ummarized in Table 5. As can be seen, applying LoAd on DeepLabv3+
oosts the overall mIoU by 0.7% (0.6% beyond (Luc et al., 2016))
veraged over 8 classes, which is slightly less than PASCAL VOC 2012

and Cityscapes. However, here the boosted model consistently outper-
forms the baseline DeepLabv3+ and the adversarial approach of Luc
et al. (2016) on all classes without any exception with considerable
improvement on ‘‘mountain’’ and ‘‘water’’.

Before we proceed with presenting some qualitative results, let us
ighlight the summary of our understanding on where LoAd is making
he most impact. Based on our quantitative analyses so far (corrobo-
ated later on by the qualitative results), it appears that a combination
f two parameters play a role in which classes are most impacted by
oAd. First, classes that tend to be confused (such as ‘‘sofa’’ vs. ‘‘chair’’,
‘boat’’ vs. ‘‘aeroplane’’ in PASCAL VOC, and ‘‘wall’’ vs. ‘‘fence’’ and
‘pole’’ vs. ‘‘t.light’’ in Cityscapes) are significantly boosted as a result of
pplying LoAd. Second, classes that have fluid and non-compact shapes
nd can be elongated across the whole image (for instance, ‘‘wall’’
nd ‘‘terrain’’ in Cityscapes, and ‘‘water’’ and ‘‘mountain’’ in Stanford
ackground) are mostly boosted by LoAd compared to other baselines.
ne can also analyze this with confusion matrices. Interested reader is

eferred to Appendix C for more details.

.4. Qualitative results

A selected set of qualitative results are illustrated in the next four
igures. We compare the performance of LoAd with DeepLabv3+ (non-
dversarial baseline) and the work of Luc et al. (2016) (adversarial
aseline with DeepLabv3+ as segmentor) in predicting the ground truth
abel map. In Fig. 4, on the top row, the whole dining table is missed
y both baselines and LoAd manages to boost DeepLabv3+ to almost
ully recover that. On the second row, the confusion between ‘‘sofa’’
nd ‘‘chair’’ is resolved. Notably, Luc et al. (2016) (the fourth column)
s performing better than DeepLabv3+, but stays behind the proposed
pproach. On the third row, once again the impact is significant, a
isconception of a ‘‘boat’’ in the middle of the water is resolved. Th

6 DLv3+: https://tinyurl.com/ctyscps-dlv3plus.
7 Luc et al. (2016): https://tinyurl.com/ctyscps-dlv3plus-luc-2.
8 DLv3+&LoAd: https://tinyurl.com/ctyscps-dlv3plus-load-2.
7

next two rows show interesting signs of avoiding class swap/confusion.
Being a rather difficult case to distinguish even for human observer,
LoAd helps DeeLabv3+ to resolve mistaking the second ‘‘person’’ on
the boat with boat engine on the fourth row (a confusion which is
not addressed by Luc et al. (2016)). The same can be argued about
the next row where ‘‘sofa’’ (green) vs. ‘‘chair’’ (in red) confusions are
resolved. The last three rows from Cityscapes demonstrate a much
more consistent segmentation of ‘‘train’’, ‘‘truck’’ and ‘‘wall’’ compared
to the other baselines. Another set of qualitative results from both
PASCAL VOC and Cityscapes datasets is illustrated in Fig. 5. On the top
two rows, ‘‘sofa’’ is segmented with better consistency and continuity
compared to the other two baselines. The third row illustrates the con-
tinuity in segmenting ‘‘bird’’ foot. The fourth row, shows how confusion
about the existence of a ‘‘chair’’ is resolved. The fifth row shows how
LoAd outperforms in detecting the ‘‘bird’’ in the cluttered scene, and
manages to (a good extent) resolve the confusion of tree trunk with
another bird in the scene. The next three rows from Cityscapes illustrate
a more consistent and continuous label map generation for ‘‘fence’’,
‘‘motorcycle’’, and ‘‘pole’’.

To further consolidate the qualitative improvement of DeepLabv3+
& LoAd compared to DeepLabv3+, we provide eight examples in Figs. 6
and 7 where the gradual impact of LoAd with its embedded label
map aggregation on the performance of the baseline throughout its
cycles (ending up with divergence or leading to finding new peaks) is
at the center of attention. As can be seen, starting from the baseline
DeepLabv3+, LoAd gradually learns from the intermediate degradation
in its downward divergent stages at (c), (e) and (g) and resolves
confusion. The first example (top two rows) in Fig. 6 is a prime
example of how a complete instance of ‘‘sofa’’ is missed by the baseline
DeepLabv3+ (b), whereas LoAd manages to completely recover it (h).
The second example (next two rows) reiterate the same message,
offering much better consistency compared to the baseline. The third
example (third two rows) poses a challenging scenario where a ‘‘boat’’
and an ‘‘aeroplane’’ are confused due to perspective and texture com-
plexity. LoAd (h) shows a considerable improvement in resolving this
confusion. Last example in this figure depicts how the missing bottom
part of the bottle is recovered owing to label map aggregation. The
same story continues in Fig. 7. Top two examples highlight how LoAd
helps the baseline to infill the gaps and missing pieces in segmenting
a ‘‘dinning table’’. Last two examples (last four rows) in the figure
demonstrate how class confusion (‘‘sofa’’ vs ‘‘chair’’) is totally resolved
when compared to the baseline.

6. Ablation study

The first angle to investigate is the impact of changing the core com-
ponents of the adversarial network. Our initial experimentation with
VGG16 as well as custom designed CNNs as discriminator did not lead
to any notable performance boost or degradation. So, here we focus
on the impact of modifying the generator (segmentor), currently being
DeepLabv3+. Table 6 summarizes the results of our experimentation
with a different backbone (MobileNetv2) for the segmentor in com-
parison with the main backbone used in our previous experimentation
(Xception-65). The results reported in this table correspond to the best
performing models (baseline and proposed) on PASCAL VOC 2012, for
the sake of a fair comparison. Obviously, a weaker backbone (Mo-
bileNetv2) results in performance drop for both baseline and boosted
model with LoAd on validation and test datasets. Nevertheless, what
remains consistent is the improvement of DeepLabv3+ & LoAd over the
baseline, even though the improvement is a bit less pronounced for both
validation and test datasets.

Another angle to investigate is the impact of hyperparamter change
on the performance of DeepLabv3+ & LoAd. We perturb all the impor-
tant design hyperparameters of LoAd described in Section 3 and in
Algorithm 2. The results summarized in Table 7 are extracted with our
main choice of backbone (Xception-65). As can be seen, increasing the

https://tinyurl.com/ctyscps-dlv3plus
https://tinyurl.com/ctyscps-dlv3plus-luc-2
https://tinyurl.com/ctyscps-dlv3plus-load-2
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Fig. 4. Selected qualitative results on PASCAL VOC 2012 and Cityscapes. These examples show how totally missing items and class swap/confusion are resolved or considerably
improved. Ignored pixels and classes (per standard) unused for evaluation in black. Best view in color with 300% zoom. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
d

t

maximum set size of the buffer results in performance degradation of
DeepLabv3+& LoAd in comparison with the best setting with 𝐵max =
3. This could potentially be due to the fact that we only generate
and aggregate ‘‘fake’’ label map datasets, keeping only one ground
truth label map set, which can be a source of imbalance if too many
of these sets are aggregated. This is the exact reason why we have
introduced this cap, 𝐵max. A possible solution to remedy this issue,
besides weighting the discriminator loss as discussed in Section 4, could
be to generate fake label maps only for a subset of training image set,
e.g., images that have been seen by the corresponding model (peak or
ending) up to that stage of training.

Next experiments are concerned with perturbing 𝛽𝑙 and 𝛽𝑢. As can be
seen in Table 7, lowering 𝛽𝑙 to 10% (in mIoU) does not seem to have

major impact on the overall mIoU (= 82.80%), whereas increasing
𝛽𝑢 to 0.5% downgrades the performance (mIoU = 82.42%), suggesting

conservative upper-bound for finding a peak per cycle. To further
8

Table 6
Impact of generator backbone change for val and test results of PASCAL VOC 2012.

Method Gen. backbone mIoU (val) mIoU (test)

DLv3+ Xception-65 82.20 76.81
DLv3+&LoAd Xception-65 83.08 77.51

DLv3+ MobileNetv2 75.32 71.45
DLv3+&LoAd MobileNetv2 75.70 71.74

investigate this, we conducted two more experiments. The results in-
dicate that decreasing 𝛽𝑙 further down to 20% seems to gradually
egrade the performance (mIoU = 82.43%), even though increasing the

divergence patience parameter 𝛤 from 50 to 80 iterations helps to avoid
his to some extent (mIoU = 82.65%). Overall, it seems aggregating

heavily degraded label maps (corresponding to lower 𝛽 ’s) does not help
𝑙
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Fig. 5. Selected qualitative results on PASCAL VOC 2012 and Cityscapes. These examples demonstrate how inconsistent body/edges and class swap/confusion are either totally
esolved or considerably improved. Ignored pixels and classes (per standard) unused for evaluation in black. Best view in color with 300% zoom. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
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he performance as this is implicitly related to how we constrain the
olution space of the optimization problem per cycle of LoAd.

Next angle to investigate is the impact of the regularization pa-
ameter 𝜆 in the hybrid loss in (3). This parameter is set to 1 in the
revious experiments giving an equal weight to the pixel-wise and
dversarial terms. Setting 𝜆 = 0 would lead to only pixel-wise CE loss,
nd increasing it beyond 1 would gradually shadow the pixel-wise CE
oss. Table 8 summarizes the impact of varying 𝜆 within [0, 10] on LoAd
or PASCAL VOC 2012 and Cityscapes datasets. As can be seen, 𝜆 = 1
 s

9

eems to be the sweetspot on both datasets, even though the results are
n a comparable range for 𝜆 = 0.5, 1. Decreasing 𝜆 towards 0 (leading
o only pixel-wise) and increasing to 10 (resulting in adversarial loss
eing dominant) appears to have destructive effect.

Another aspect we would like to reflect on is LoAd’s potential in
tabilizing the adversarial network. Our metric to quantify this is the
verage number of times divergence happens throughout the adversar-
al training process as a result of which LoAd steps back to where it
tarted and avoids that by retraining the discriminator with new label
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Fig. 6. This illustrates how LoAd benefits from label map aggregation throughout its convergence process to boost the performance of the baseline DeepLabv3+. Every consecutive
wo rows correspond to a single input image. Best view in color with 300% zoom. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
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aps, as explained in Section 3. This is summarized for a total of 80
xperiments on PASCAL VOC 2012 (54 runs) and Cityscapes (26 runs)
n Table 9 where the average (avg.) and standard deviation (std.) of
he number of treated divergences are reported. On average, regardless
f dataset, LoAd handles 29 ± 9 divergences to reach the final perfor-
ance. Another point that is reported in this table is the percentage of

uccessful experiments. Here, a failed experiment is one that does not
each at least 0.1% improvement beyond the starting checkpoint. As
 w

10
can be seen, 91%+ of the experiments have been successful based on
his definition.

Finally, we would like to shed some light on what would happen
n terms of performance if we had also employed expensive time-
onsuming post-processing steps at inference time. Table 10 summa-
izes the impact of applying multi-scale and flip (denoted by MS&F)
nly for evaluation (the last column) against already reported results
ithout employing MS&F (the third column). We observe about 1%
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Fig. 7. This illustrates how LoAd benefits from label map aggregation throughout its convergence process to boost the performance of the baseline DeepLabv3+. Every consecutive
wo rows correspond to a single input image. Best view in color with 300% zoom. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
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o 3% performance boost in almost all models pushing their perfor-
ance towards state-of-the-art results in the literature. However, this
erformance boost comes at the cost of scales of magnitude (roughly
00 times) larger inference time rendering the models out of real-time
nference response. In summary, pushing the performance at any cost
s not our focus; keeping the inference time unchanged (in practice less
han 1 sec) and improving the performance is what we offer in this
ork.
 f

11
7. Concluding remarks

Summary and impact. We proposed a novel lookahead adversarial
earning (LoAd) approach with an embedded label map aggregation
dea for adversarial semantic segmentation with state-of-the-art models.
or experimental evaluation, we picked DeepLabv3+ (also abbreviated
s DLv3+) as segmentor/generator in the adversarial setting. We fur-
her elaborated in Sections 1 and 4 that among a few available choices
or DeepLabv3+ architectures and corresponding training/inference
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Table 7
Influence of hyperparameter change on LoAd (Xception-65) for val results of PASCAL
VOC 2012.

Method 𝛽𝑙 (%) 𝛽𝑢 (%) 𝛤 𝐵max mIoU (val)

DLv3+ – – – – 82.20
DLv3+&LoAd 5 0.1 50 3 82.88
DLv3+&LoAd 5 0.1 50 4 82.46
DLv3+&LoAd 5 0.5 50 3 82.42
DLv3+&LoAd 10 0.1 50 3 82.80
DLv3+&LoAd 20 0.1 50 3 82.43
DLv3+&LoAd 20 0.1 80 3 82.65

Table 8
Influence of regularization parameter 𝜆. Xception-65 is used as the generator backbone
or PASCAL VOC 2012 and MobileNetv2 is used for Cityscapes.
Dataset 𝜆 = 0 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 1 𝜆 = 10

VOC 2012 82.20 83.16 82.95 83.26 82.55
Cityscapes 70.67 71.23 71.11 71.91 71.14

Table 9
Summary of stability metrics.

Dataset Backbone Avg. div. Std. Succ. exps.

VOC 2012 Xception-65 30 8 95.0%MobileNetv2 25 2

Cityscapes Xception-65 23 7 84.6%MobileNetv2 32 11

Overall Any 29 9 91.9%

Table 10
Impact of multi-scale and flip (MS&F) inference strategy on validation data (unless
otherwise stated) for each dataset. Xception-65 is used as the generator backbone for
PASCAL VOC 2012 and Stanford Background, and MobileNetv2 is used for Cityscapes.

Method Dataset (val) mIoU mIoU (MS&F)

DLv3+ VOC 2012 82.20 83.58
Luc et al. (2016) VOC 2012 82.35 83.66
DLv3+&LoAd VOC 2012 83.08 84.57

DLv3+ Cityscapes 70.67 73.88
Luc et al. (2016) Cityscapes 70.85 73.96
DLv3+&LoAd Cityscapes 71.57 74.61

DLv3+ Stanford (test) 74.33 76.33
Luc et al. (2016) Stanford (test) 74.43 76.42
DLabv3+&LoAd Stanford (test) 75.05 76.78

strategies, we deliberately picked the ones which can be trained on
commodity GPU nodes (because not everyone has access to high-end

PUs) and run fast at inference; roughly speaking, less than a second
n average per sample input image. Therefore, we did not opt for
odels requiring multi-scaling strategies or small output strides leading

o several minutes or in some cases few tens of minutes inference
ime per image. Running fast at inference time for field applications
s a core motive of this work. We demonstrated that the proposed idea
an improve the performance of the baseline DeepLabv3+ by about
.9% in mIoU sense on two of the most modern and commonly-used
atasets (PASCAL VOC 12, Cityscapes) while boosting the performance
n certain classes up to 7% without introducing any extra delay at
nference. In other words, the proposed models run practically as fast
s the baseline on top of which they are applied. The qualitative results
how that our approach is helping the baseline segmentation model to
esolve class confusion to a good extent as well as to produce label
aps which are more consistent in terms of continuity and structure.
e think the application domain of LoAd could possibly be larger than

emantic segmentation. This is an interesting avenue to explore.
Complexity. LoAd adds architectural complexity by adding a (sim-

le) discriminator network but requires no changes to the base seg-
entation model, as such in theory, it can be applied on top of any

emantic segmentation model (not only DeepLabv3+). On the flip side,
12
we introduce complexity at training both in time and space slowing
it down in favor of performance. Roughly speaking, in worst case
scenario of large size images containing 𝑁 pixels, for an evaluation
(hold-out) subset of size 𝑉𝑒 samples, we impose an extra O(𝑉𝑒𝑁) time
complexity per propagation for adversarial training. In practice, 𝑉𝑒 ≪
𝑁 . Also, with the label map aggregation module of LoAd we need to
train the discriminator on 𝐵max 𝑀 images stacked in the buffer (space
complexity) instead of only 𝑀𝑏 images in a batch with 𝑀𝑏 < 𝑀 .
On the other hand, we train the discriminator once per LoAd cycle,
i.e., orders of magnitude less often than typical GDA based adversarial
training. In terms of time complexity, and for the sake of comparison,
on a P100 T GPU for PASCAL VOC 2012, DeepLabv3+ takes 20:01:41
(hour/min/sec) and DLv3+ & LoAd takes 53:48:30 (hour/min/sec) to
reach best performance. LoAd’s elapsed time is about 2.5 times larger,
even though looking at typical training times in literature (sometimes
taking weeks), only 1.5 days extra is not a significant overhead.

Future directions. A potential future direction is replacing
DeepLabv3+ with another state-of-the-art segmentation network and
analyzing the impact. We expect to obtain similar results as we have al-
ready shown by analyzing the impact of backbone change in Section 6.
So far, we have also understood that slightly different map aggregation
policies can be beneficial in different architectures. As an example,
one could replace the Flush operation that cleans up all the previous
ggregated maps with Retain for which always a certain number of

previous peaks (from previous cycles) are retained. In this work, we
do neither claim nor prove a generic applicability of LoAd beyond
semantic segmentation. Therefore, a more general understanding of the
impact of LoAd in adversarial settings requires it to be applied to other
applications which is outside the scope of this work.
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Appendices

In the following, after a brief note on the limitations of pixel-wise
cross-entropy (CE) loss, we dive deep into the mechanics of LoAd pro-
viding an extended and more elaborate version of Algorithm 2 besides a
process flowchart view of the proposed method. Finally some confusion
matrices are presented to demonstrate how LoAd helps resolve class
swap/confusion on both PASCAL VOC and Cityscapes.
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Appendix A. Dimensionality of the problem

Let us briefly reflect on why employing only a pixel-wise cross-
entropy (CE) optimization loss for semantic segmentation and relying
on gradual increase in receptive field of CNNs might not be sufficient
for explicitly promoting a large set of candidate solutions for label
maps. A good portion of these solutions might not be valid, bearing
in mind that missing out on the rest could also lead to sub-optimal so-
lutions for the segmentation problem. This is in line with literature (Liu
et al., 2017; Chen et al., 2017; Shen et al., 2017; Liu et al., 2017; Ke
et al., 2018; Zhao et al., 2019a,b) proposing different approaches to
address this challenge. Following our notation in Section 2, let D𝑡 =
(𝐗,𝐘)1,… , (𝐗,𝐘)𝑀} be training dataset with 𝑀 samples so that for
ll (𝐗,𝐘)𝑖 ∈ D𝑡, (𝐗,𝐘)𝑖 ∼ 𝑃 (𝐗,𝐘) where X𝑡 = {𝐗|(𝐗,𝐘) ∈ D𝑡} and
𝑡 = {𝐘|(𝐗,𝐘) ∈ D𝑡} respectively denote the set of images and their
orresponding label maps in the training dataset. As discussed earlier,

is of size 𝐻 × 𝑊 × 3 for RGB images with a total of 𝑁 pixels and
the corresponding label map 𝐘 is of size 𝐻 × 𝑊 with elements in
K = {1,… , 𝐾} where 𝐾 is the number of classes in segmentation
ask. Let 𝑃 (𝐗), 𝑃 (𝐘) and 𝑃 (𝐗,𝐘) denote probability mass functions of

corresponding categorical distributions. Now, with pixel independence
assumption:

𝑃 (𝐘) =
𝑁
∏

𝑖=1
𝑃 (𝑦𝑖), (A.1)

where 𝑦𝑖 denotes the 𝑖th pixel in 𝐘. This obviously ignores the potential
orrelation among the pixels. 𝑃 (𝐘) is a function from the set 𝐸𝐘,

comprised of all possible values 𝐘 can take, to a probability in R. As
uch, learning 𝑃 (𝐘) mandates exploring 𝐸𝐘×R. But how do all possible
aps in 𝐸𝐘 look like? To answer this, let us consider a toy setup where
is a 2 × 1 label map

[ 𝑦1
𝑦2

]

with 𝐾 = 3 classes in K = {1, 2, 3}. The set
f all possible label maps is simply:

𝐘 =
{[

1
1

]

,
[

2
1

]

,
[

3
1

]

,
[

1
2

]

,
[

2
2

]

,
[

3
2

]

,
[

1
3

]

,
[

2
3

]

,
[

3
3

]}

,

hose size is equal to the permutations with replacement of 2 pixels
rom a set of 3 classes, i.e., 32 = 9. One can straightforwardly generalize
his toy example to any arbitrary number of pixels 𝑁 and classes 𝐾 and
how that |𝐸𝐘| = 𝐾𝑁 where |A| denotes the cardinality of set A. Follow-
ng the same approach, this time with pixel independence assumption
n (A.1) for 𝑦1 and 𝑦2, the set of permutations would be 6, counting 3
ossible values per 𝑦𝑖 summing them up due to independence. Again, it
s straightforward to show |𝐸𝐘| = 𝐾𝑁 . This toy example illustrates how
he solution space of the problem with pixel independence assumption
s significantly smaller than the one considering all possible correlations
etween pixels. However, the latter can easily become intractable for
arge size images, and that is the reason why a pixel-wise loss has
een so popular. We think a conditional adversarial approach has the
apacity to partially explore the larger solution space and to capture
hese pixel correlations in a general (and not only local) fashion.

ppendix B. Deeper dive in LoAd

As discussed in Section 3, there are subtle details we skipped or
escribed on a high level to convey the core idea of the proposed
ethod (LoAd) and not to steal the readers attention away from the
ain message. In this section, we dive deeper into the mechanics of

oAd using Fig. B.8, a flow chart that breaks down its process flow in
lear terms, together with a more detailed version of Algorithm 2. For
he sake of clarity, we are using line numbers in Algorithm 3 to be able
o refer to specific lines throughout the following explanations. Except
or more details, the most important difference between Algorithm

and its simplified version, Algorithm 2, is that the search process
o find a new peak per cycle is conducted in a dynamic fashion by
ntroducing a new parameter, 𝜔, that we call peak finder patience

ounter. The flowchart in Fig. B.8 does not go down into the smallest

13
etails of every single line in Algorithm 3 yet it reflects on the most
mportant steps to clarify the process. As can be seen in Fig. B.8, there
re three components: (a) initialization (a one-off process), (b) label
ap aggregation (corresponding to Algorithm 1), and (c) the main body

f LoAd for semantic segmentation (corresponding to Algorithm 3). The
rocess starts from initialization depicted on the top left (part a), which
orresponds to the preamble of Algorithm 3. Provided a starting model,
he cycles of LoAd can start and iterate between its main body (part c)
nd its label map aggregation module (part b).
Algorithm 3: LoAd for Semantic Segmentation — Detailed Version
Initialize: 𝜓 = 0, 𝑔𝑠 = 𝑔0, B = 𝑔𝑠(X𝑡)
Input: maximum cycle:𝛹 , maximum divergence:𝛤 , maximum

peak finder:𝛺, 𝛽𝑙, 𝛽𝑢
1 𝜇𝑠, 𝜇, 𝜇∗ ← Evaluate mIoU
2 Train Discriminator(D𝑡 ∪ B)
3 while 𝜓 < 𝛹 do
4 keep the very first starting point: 𝜇0 ← 𝜇𝑠

5 start a divergence patience counter: 𝛾 ← 0
6 start a peak finder patience counter: 𝜔 ← 0
7 while 𝜇𝑠 − 𝛽𝑙 < 𝜇 and 𝛾 < 𝛤 do
8 update the model: 𝑔 ← Train Adversarial
9 𝜇 ← Evaluate mIoU
0 if 𝜇 > 𝜇𝑠 + 𝛽𝑢 then
1 if new peak is found: 𝜇 > 𝜇∗ then
2 update best performance: 𝜇∗ ← 𝜇
3 update best model: 𝑔∗ ← 𝑔
4 end
5 if 𝜔 > 𝛺 then
6 update starting performance: 𝜇𝑠 ← 𝜇
7 update starting model: 𝑔𝑠 ← 𝑔
8 reset peak finder counter: 𝜔 ← 0
9 reset divergence counter: 𝛾 ← 0
0 end
1 𝜔 ← 𝜔 + 1
2 end
3 𝛾 ← 𝛾 + 1
4 end
5 𝑔𝑒 ← keep last model of the cycle
6 if best peak is better than very first start: 𝜇∗ > 𝜇0 then
7 set best model as start model: 𝑔𝑠 ← 𝑔∗

8 set best mIoU as start mIoU: 𝜇𝑠 ← 𝜇∗

9 B ← Lookahead Map Aggregation(𝑔∗, 𝑔𝑒,X )
0 reset cycle counter 𝜓 ← 0
1 else
2 B ← Lookahead Map Aggregation(0, 𝑔𝑒,X )
3 start a new cycle 𝜓 ← 𝜓 + 1
4 end
5 Train Discriminator(D𝑡 ∪ B)
6 end

Let us delve deeper into this process by zooming into Algorithm 3.
Lines 3 to 35 outline what happens in a single cycle of LoAd. A cycle
tarts by initializing the divergence patience counter 𝛾 ∈ [0,… , 𝛤 ] and

the peak finder patience counter 𝜔 ∈ [0,… , 𝛺]. At the beginning of
every cycle, we mark the very initial model performance (in mIoU)
as 𝜇0 which will only be used in line 26 to decide if throughout the
cycle we actually found a new model (a new peak in the convergence
graph) that is better than the very initial model of the cycle in mIoU
sense. Lines 7 to 24 embody the main while loop of the cycle that keeps
training the adversarial network until one of the following conditions
is met: (1) the current mIoU (𝜇) touches the bottom line we defined
for downward/divergence trend (𝜇𝑠 − 𝛽𝑙 < 𝜇) or 𝛾 meets its limit in
the number of iterations. Inside this while loop, we watch for finding a
new peak (model) in lines 10 to 22, and such a peak is only valid if the
current mIoU goes beyond the starting mIoU plus a minimum increment
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Fig. B.8. Process flow of LoAd with label map aggregation for semantic segmentation.
(𝜇 > 𝜇𝑠+𝛽𝑢). We came to understand by extensive experimentation that
if the starting model (𝑔𝑠 with mIoU 𝜇𝑠) is kept unchanged in this while
loop (e.g., kept as 𝜇0 as in line 4), and thus, we select a peak based
on a static peak finder patience counter 𝜔, we can prematurely kill an
 r

14
upward trend leading to a higher peak. This is the rationale behind
the dynamic peak finding process in which we dynamically update the
starting model (𝑔𝑠, 𝜇𝑠) in lines 16 and 17. To do so, every time we
each the end of a peak finding process (𝜔 reaches 𝛺), if the mIoU is
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Fig. C.9. Confusion matrices (CM) on PASCAL VOC 2012.
beyond the current starting model mIoU by at least 𝛽𝑢 in mIoU sense,
we reset both 𝛾 and 𝜔 and allow this upward trend to continue and
keep updating the best model. This is delineated in lines 15 to 20.

At the end of this inner while loop (lines 7 to 24), we are expected
to mark one or two models: an ending model and possibly a new peak.
The ending model of the cycle 𝑔𝑒 (line 25) will be passed to the label
map aggregation module regardless of whether we find a new peak or
not. In case the dynamic peak finding process discovers a new peak
that is better than the initial model of the cycle (𝜇∗ > 𝜇0), then we pass
both the new peak model 𝑔∗ and the ending model 𝑔𝑒 to our label map
aggregation module. Lines 29 and 32 highlight the two ways in which
the label map aggregation module can be invoked, with and without a
new peak found. Based on that the map aggregation buffer B will be
15
updated at the end of each cycle. The containment of the updated buffer
will be concatenated with the full training dataset (D𝑡 ∪ B) and will be
used to retrain the discriminator (line 35). As discussed in Section 2,
we do not follow a standard GDA approach and every time train the
discriminator with this dynamically updated dataset until a sufficient
accuracy is reached. Lastly, a new peak serves as a new starting model
based on which counting the cycles will be restarted (lines 27, 28 and
30). On the other hand, if no new peak is found, we go back to where
we started and continue (lines 32 and 33) hoping for finding a new peak
in the next cycle. We fully stop the algorithm if we run 𝛹 cycles and a
new peak is not found. This process is also sketched in Fig. B.8.
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Fig. C.10. Confusion matrices (CM) on Cityscapes.
Appendix C. More quantitative results

Here, we delve deeper into the impact of LoAd on resolving class
swap/confusion in comparison with DLv3+. To this aim, row/column-
normalized confusion matrices are presented. Note that confusion ma-
trices (in normalized pixel counts) are calculated across the whole
validation set of the corresponding datasets. When normalized by row,
these represent recall values on the diagonal, and in the case of normal-
ization by column, they represent precision values. The selected classes
are highlighted with dashed lines of the same color. As an example,
‘‘sofa’’ vs. ‘‘chair’’ in Fig. C.9. From recall perspective, comparing (a)
and (b), chair is more confused with ‘‘sofa’’ by LoAd (9.2% vs. 6.6%),
but ‘‘sofa’’ is significantly less confused with ‘‘chair’’ by LoAd (2.1% vs
7%). In line with this, the recall increase of ‘‘sofa’’ (67.1% → 81.1%)
16
is larger than the decrease in ‘‘chair’’ (68.9% → 63.7%). The opposite
trend can be seen in precision sense, comparing (c) and (d), but again
the impact on the confusion of ‘‘chair’’ with ‘‘sofa’’ (11.4% → 4.1%) is
considerably larger than the other way around (5.2% → 5.5%). Thus,
overall, the confusion of these two classes has been alleviated to some
extent as a result of applying LoAd. Another way to look at this in a
combined fashion (incorporating both precision and recall) is the IoU
of these classes in Table 1, which are both increased when comparing
LoAd and baseline DLv3+. A similar analysis can be applied to other
highlighted class pairs in Figs. C.9 and C.10.
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