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Abstract

Accurately classifying laser-scanned point cloud data remains a critical challenge in geospatial analysis,
particularly due to the complexity and volume of the data. This thesis presents a novel, confidence-aware
deep learning framework designed to improve the classification accuracy of point cloud data, specifically
focusing on the Actueel Hoogtebestand Nederland (AHN) dataset. The framework integrates geospatial
knowledge into the deep learning process, enabling the model not only to refine its predictions through
iterative learning but also to enhance the training data along the way via iterative online learning, ensuring
continuous improvement in both training data quality and model performance.

The preprocessing phase assigns confidence scores to each point in the point cloud based on local neigh-
borhood properties, with additional input from multispectral imagery (MSI) to further enhance the con-
fidence estimation. These confidence scores are central to the online learning process, where the model
prioritizes high-confidence points for training while progressively updating lower-confidence points to
improve accuracy. To test the hypothesis that confidence-aware learning can enhance point cloud clas-
sification, we selected the KPConv network due to its suitability for handling unstructured data and
capturing complex geometric features.

Extensive experiments demonstrate that the proposed framework, particularly with the Online strategy,
enables deep learning models to perform better when trained solely on native point cloud attributes
(elevation and intensity) compared to models without this strategy. Importantly, the Online strategy qual-
itatively enhances the training data by refining labels and reducing noise, thereby supporting more robust
model performance. While incorporating additional features from aerial imagery showed no overall im-
provement, specific classes, like High tension and others did see performance gains.

Github repo: https://github.com/AutumnMoon(00/RefineNet
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1 Introduction

Over the past two decades, point cloud data has emerged as a valuable source of rich information, finding
wide-ranging applications in diverse fields including floodplain management, robotics, autonomous nav-
igation, and medical imaging. Extracting knowledge from it is driving both the industrial and academic
research [Poux and Billen, 2019].

Point cloud can be understood as dense surveying data. Specifically, it can be defined as a collection
of data points in a three-dimensional coordinate system {X, Y, Z}. Thus, point cloud is a discretized
representation of the world around us. Additionally properties such as color (RGB), intensity, return
number, classification could also be stored. These points with properties can be used to create a digital
representation of an object or a scene (Figure 1.1).

(a) Point cloud of a chair (source: Open3D) (b) Point cloud of an outdoor scene (source: NPM3D)

Figure 1.1: Point cloud at different scales

Unlike images, that store information in a 2D gridded structure, point clouds inherently contain 3D spatial
data, providing depth information that images lack. This advantage makes them valuable for applications
where understanding the shape and structure of objects or environments is crucial, like in autonomous
vehicles, architecture, robotics etc [Xie et al., 2020; Zhang et al., 2023]. Further, point clouds can be viewed
from any angle, making it possible to analyze an object/scene comprehensively.

In many applications, understanding details in the scene and context is important. This detailed under-
standing is provided by semantic segmentation of point clouds, where every individual point in the cloud
is assigned a class label. These semantically labeled point clouds are essential for developing downstream
applications, especially in tasks involving interaction with the environment and decision-making. For
instance, in robotics, it is necessary to differentiate between objects like pedestrians, vehicles, and roads
for safe and effective operation.

Point cloud data serves as a foundation for creating a range of downstream applications. For instance,
in the Netherlands, the elevation model of the country—Actueel Hoogtebestand Nederland (AHN) point
cloud data—supports the creation of digital terrain model (DTM), and digital surface model (DSM) raster
maps. Specifically, points classified as ‘ground” are used to produce the DTM, while the DSM is derived
from all points except those classified as ‘water’. Additionally, 3D BAG!, a comprehensive and up-to-
date dataset of detailed 3D building models of the Netherlands, is automatically generated by combining
building data from Basisregistraties Adressen en Gebouwen (BAG) with height data from AHN.

13D BAG - https://3d.bk.tudelft.nl/projects/3dbag/


https://www.open3d.org/docs/0.12.0/tutorial/geometry/pointcloud.html
https://npm3d.fr/paris-carla-3d
https://3d.bk.tudelft.nl/projects/3dbag/
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(@) DTM (b) DSM (c) 3D BAG

Figure 1.2: Downstream applications from AHN point cloud

Although 3D point cloud semantic segmentation is crucial for accurate analysis, errors are still quite
common. In the AHN data, these segmentation errors can significantly affect the quality of the resulting
products. Misclassified points can lead to incorrect interpretations and flawed models. For example,
"ground’ points incorrectly classified as being inside ‘buildings’ can affect the DTM, leading to inaccurate
representations where the ground surface is shown within the building footprints (Figure 1.3). Such
errors can lead to unrealistic expectations for further analysis, such as water flow modeling, as they
may incorrectly suggest the presence of pathways through buildings. Similarly, the misclassification of a
"bridge’ as a ‘building’ results in an inaccurate representation of structures in the 3D BAG dataset (Figure
1.4). These type of errors can propagate through various applications, ultimately reducing the reliability
of the derived products.

Noisy classifications further exacerbate these issues, as illustrated in Figure 1.5, where ‘ground” points are
mixed with ‘other” points, resulting in inconsistencies. Figure 1.6 shows how misclassifying a jetty, which
should be labeled as ‘civil structure’, with ‘ground’ noise impacts the DTM. For additional examples of label
errors and inconsistencies in AHN data, please refer to my internship report with Geodelta [Madanu,
2024].

W Ground M Building Civil
W Water [ Others [ High tension

(a) RGB (b) AHN4 point cloud side view (c) DTM

Figure 1.3: Ground points inside building and reflected in DTM


https://www.geodelta.com/en

W Ground [ Building Civil
W Water M Others [l High tension

(a) RGB (b) AHN4 point cloud (c) DTM
Figure 1.4: Bridge misclassified as building and its reflection in 3D BAG

M Ground [H Building Civil [l Water [l Others M High tension

(a) 'Ground” mixed with “other’ (b) "Civil” mixed with ‘other’

Figure 1.5: Noisy classifications

Semantic segmentation of the point clouds typically begins with either manual annotation or semi-
automated approaches, where pre-trained models provide initial labels that are then refined manually.
To relieve the burden of manual annotation, various machine learning (ML) methods have been devel-
oped, generally following a pipeline of feature extraction, feature selection, and classification [Weinmann et al.,
2015]. Prominent methods ML classification include Random Forests [Grilli et al., 2019], Support Vector
Machines (SVM) [Zhang et al., 2013], and Conditional Random Fields (CRF) [Niemeyer et al., 2012]. These
traditional ML techniques often face challenges due to their dependence on handcrafted features, which
require domain expertise, and also their limited ability to capture complex spatial relationships inherent
in dense point cloud data.

Deep learning, on the other hand, has demonstrated significant advantages over traditional ML approaches
by eliminating the need for manual feature engineering. Since the introduction of PointNet in 2016 [Qi
et al., 2016], a sequence of deep learning methods specifically designed for 3D point cloud semantic
segmentation has been developed. These methods take raw point clouds as input and can be broadly cat-
egorized into multi-layer perceptron (MLP)-based architectures, convolutional neural networks (CNNs),
and transformer-based models. These advancements allows deep learning models to autonomously learn
high-dimensional features, eliminating the need for manual feature engineering, making them more suit-
able for complex tasks in geomatics and 3D computer vision [He et al., 2021].

Despite these advancements, deep learning models remain vulnerable to data quality issues; their per-
formance is highly dependent on the quality of the input data. Good quality input yields good quality
predictions. While several data-efficient approaches have been proposed to mitigate data quality and
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’:] Ground . Building I:l Civil . Water D Others

(a) RGB (b) DTM

Figure 1.6: Jetty (‘Civil’) classified with ‘Ground’ noise and its reflection on DTM

scarcity issues, they often involve complex models like generative adversarial network (GAN) and require
extensive training cycles [Li et al., 2021]. Therefore, there is a need for a simpler yet effective method to
improve model performance, particularly in correcting misclassifications in point cloud data.

This thesis proposes a deep learning framework coupled with an Online training label update strategy
for point cloud semantic segmentation that incorporates geospatial knowledge as priors. First, we give
a point-wise confidence measure to estimate to what extent we can trust the given class label. Then, by
iteratively refining misclassified points during training, the proposed approach enhances both the quality
of the training data and the model’s overall performance. This method aims to address the limitations of
existing techniques by providing a straightforward solution that improves segmentation accuracy without
the complexity of more intricate models.

The key contributions of this thesis are as follows:

1. Confidence measurement strategy: Developed a method to evaluate the quality of existing seman-
tic labels by combining local neighborhood consistency with geometrical knowledge derived from
additional data sources.

2. Customized deep Learning framework: A deep learning framework adapted for segmenting the
Dutch AHN point cloud, utilizing a dynamic selection of the most confident training samples.

3. Label update mechanism: Designed a label refinement strategy that iteratively improves training
data quality, thereby boosting the performance and robustness of teh deep learning model.

1.1 Research objective

The main research goal of this thesis project is to:

Develop a deep learning framework that automatically improves the existing classifications of laser-
scanned point cloud data by correcting misclassifications.

To achieve this, the following sub-questions will be relevant:

1. How can geospatial knowledge be incorporated into a deep learning framework, and
what benefits does this integration provide?

2. To what extent does the online learning strategy enhance the model’s ability to correct
misclassifications and improve overall segmentation accuracy compared to traditional
training approaches?
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3. What is the impact of incorporating additional spectral features (such as NIR and RGB) on
the performance of the proposed confidence-aware deep learning model for point cloud
segmentation?

1.2 Scope

With the current technology in the industry, point clouds can be generated at various scales; starting from
internal body organs at mm level, to country level dataset. The approaches in this thesis are developed
for outdoor with AHN4 data as reference, and all the data integrated into the projected are also massive
and available at country level. So its applicability, if any, on varied datasets at different scales, such as
indoor point cloud data or body parts is not known. Further, With change in meaning of what counts as
"building” and "high-tension” from AHN4 to AHNS, the model trained on one dataset may not be usable on
the other.

1.3 Thesis Outline

This thesis is organized into six chapters. Chapter 2 provides the background on point clouds, aerial
Multispectral Imagery (MsSI), and relevant deep learning methods for point cloud segmentation. Chap-
ter 3 outlines the research methodology, detailing the confidence measurement, online deep learning
framework, and evaluation metrics. Chapter 4 explains the geographical context of the research and
implementation aspects, including data sources, software, and hardware used. Chapter 5 presents the
experimental results, comparing models trained with various features and evaluates the impact of online
learning during the training process. Finally, Chapter 6 discusses the findings, addressing the research
questions and suggesting directions for future work.


https://enatom.com/en/
https://www.ahn.nl/




2 Background

This chapter introduces the fundamental concepts and technologies relevant to this research. It covers
point cloud fundamentals, including acquisition methods and key properties, followed by an exploration
of the AHN dataset and multispectral imagery (MSI). Finally, the challenges associated with point cloud
classification are examined, along with a review of state-of-the-art machine learning and deep learning
methods used for point cloud segmentation, setting the stage for the methods developed in this thesis.

2.1 Point cloud fundamentals

Point cloud could be understood as dense surveying data. Specifically, point cloud can be defined as a
collection of data points in a three-dimensional coordinate system (X, y, z). Thus point cloud is discretized
representation of the world around us. Additional properties such as color (RGB), intensity, return num-
ber, classification could also be stored. The points represent the external surface of an object or scene,
capturing its shape, possibly its color, and other attributes. Point clouds have varied applications in a
range of fields such as computer graphics, virtual reality, 3D modeling, and autonomous navigation.

As discussed in Introduction, point clouds have tremendous advantages over 2D images, however there
are also a few disadvantages:

1. Large data size and complexity: Point clouds can consist of millions or even billions of points,
resulting in large data sizes requiring significant storage and computational resources to process
and analyze [Cai, 2024].

2. No surface connectivity: Point clouds inherently do not describe information between points. Ad-
ditional processing is required to create continuous surfaces.

3. No color and texture information: Unlike 2D images, piont clouds typically do not capture color or
texture information unless additional sensors or techniques are used.

2.1.1 Acquisition methods

Point clouds could be generated from a variety of methods like 3D scanners, and photogrammetry. Pho-
togrammetry creates point cloud of a scene by combining overlapping images captured from multiple
directions. This is done by identifying and matching common points (features) across multiple images,
followed by optimizing 3D positions of the camera and the features. Matched features are used to create
a dense point cloud, representing the 3D structure of the scene.

Light Detection and Ranging (LiDAR), a 3D scanning technology, is an active remote sensing technique
that emits intense, focused beams of light and measures the time it takes for the reflections to be detected
by the sensor. There are two kinds of range measurements in scanning systems: Time-of-Flight Time-of-
Flight (ToF) and phase shift based systems. Today, most scanning systems employ ToF ranging principle
[Fernandez-Diaz et al., 2014]. Using this system, the time for the laser to make round trip to and from the
reflective surface is measured. Combined with knowledge of the speed of light in the medium between
the sensor and the reflecting surface, the distance d between them is calculated (Eq. 2.1 and Figure 2.1,
where ¢ = speed of light, and t = time-of-flight between light emitted and detected).

d=-— 2.1)
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Figure 2.1: Time-of-Flight ranging measurement (source: http:/ /tof-insights.com/)

For terrestrial mapping, a laser in the near-infrared spectrum range (850-940 nm) is used [Mazzari, 2019].
This is one of the main disadvantages, where raw point cloud in itself does not contain RGB information.
A camera sensor along with LiDAR has to collect information, and later in processing, data from both the
sensors has to be fused [Yao et al., 2024].

LiDAR systems primarily employ two methods for capturing return signals: discrete return and full
waveform. Discrete return LiDAR records specific points where the laser pulse is reflected back to the
sensor, typically capturing a finite number of returns. This method simplifies data processing and reduces
data volume but may miss subtle details. In contrast, full waveform LiDAR records the entire return signal
as a continuous waveform. This method provides a more detailed representation of the scanned area by
capturing the complete energy profile of the returned pulse. Today, most of the LiDAR system stores data
in discrete form, and the return number is stored along with the xyz information.

LiDAR data can be collected using several acquiring techniques, namely Airborne Laser Scanning (ALS),
Terrestrial Laser Scanning (TLS), Mobile Laser Scanning (MLS), and Handheld (Backpack) Laser Scanning.
The main difference is that TLS, MLS and handheld LiDAR techniques are measured from ground, whereas
airborne is from air. TLS is a static method in which LiDAR is mounted on top of a tripod and for MLS the
scanner is mounted on a vehicle. Static methods are commonly preferred for construction sites and archae-
ology, while mobile technique for road mapping, infrastructure assessment, and city modeling. Handheld
LiDAR allows for flexible data collection and data collection in hard-to-reach areas like forests. Typically
airborne technique is used for mapping large areas like landscapes, forests, and urban environments.

ALS systems are equipped with GPS/IMU units on board, that helps in tracking platform’s positions and
altitudes, then ranges measured at these points allows their ground elevation values to be determined
[Jie Shan, 2018] (Figure 2.2).

Figure 2.2: ALS measuring terrain profile [Jie Shan, 2018]

ALS is carried out in two dimensions. The first dimension follows the direction of the aircraft, achieved
through its forward motion. The second dimension, typically perpendicular to the flight path, is accom-
plished by a scanning mechanism. Common designs for this mechanisms are oscillating mirror, rotation



2.1 Point cloud fundamentals

polygon, and Palmer scanner. The flight course combined with the scanning mechanism creates various
patterns of how points are detected on the ground [Fernandez-Diaz et al., 2014] (Figure 2.3).

Figure 2.3: Ground track patterns of different scanning mechanisms

The Palmer scan produces an elliptical scanning pattern on the ground. This allows each point on the
ground to be scanned twice from different angles (forward and backward views). Scanners that use
a rotating polygon produce a unidirectional, constant-velocity scan in a regular raster pattern over the
ground [Petrie, 2011].

Water surfaces absorb and reflect LiDAR pulses differently than terrestrial surfaces. This often results
in lower point returns from water surfaces. The rotating polygon scanning method detects more water
surface due to its varied angles of incidence. When the flight path is directly above the water, this scanner
sends laser pulses at multiple angles, increasing the likelihood of capturing returns from the water surface.
Whereas with Palmer scanning, is less effective over water. Even when the flight path is directly overhead,
the scanner’s fixed angle results in many pulses reflecting away from the sensor, reducing data capture
from the water surface. AHN4 project used a scanner which implements rotating polygon scanning, and
for AHNGS project data is being collected using Leica CityMapper - 2 that implements Palmer scanning
technology. Its effect on water data collection in AHN is shown in Figure 2.4

(a) whole tile (b) Zoomed-in view

Figure 2.4: Comparing AHN4 and AHNS (tile 16AN1)

2.1.2 Components of point cloud

In the context of point cloud analysis, properties can be broadly divided into primary and secondary
components [van der Heide et al., 2024; Donkers, 2024]. The primary components focus on the core
aspects of the point cloud, such as coverage, relative accuracy, and absolute accuracy. These are crucial
for tasks like accurate spatial measurements and feature extraction, as they determine the overall quality
and usability of the data for foundational analysis and decision-making.

However, this thesis is concerned primarily with the secondary components, which include features like
RGB coloring, intensity values, and classifications. While secondary components may not directly in-
fluence the spatial accuracy of the point cloud, they play a significant role in applications that rely on
enhanced data interpretation, such as semantic classification and visualization. In particular, this study
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emphasizes the role of RGB and NIR information in improving point cloud segmentation accuracy, even
though it is not part of the primary geometric properties. By leveraging these secondary aspects, the thesis
aims to explore how they can enhance the model’s ability to differentiate between different classes, thus
improving the overall effectiveness of point cloud classification.

2.2 Actueel Hoogtebestand Nederland (AHN)

Actueel Hoogtebestand Nederland (AHN) is the height model of the Netherlands. It is a digital dataset
that provides information about the elevation and topography of the Dutch landscape. AHN makes
various data sets available, such as point clouds in LAZ format, and raster images in GeoTIFF format for
Digital Terrain Model (DTM) and Digital Surface Model (DSM) at resolutions of 0.5 m and 5.0 m. It is
widely used in industry for various projects. As a considerable portion of the land lies below sea level,
the AHN plays a crucial role in flood risk management and water resource planning.

The measurements for the first AHN program were made in 1996. From then on the AHN program has
evolved from AHN1 to AHN4, providing the complete elevation datasets of the whole country [AHN,
2024a]. Currently the latest, AHNS, is in data collection phase, and only a part of the Netherlands’s data
is made available.

The AHN4 data was measured between 2020 and 2022 (Figure 2.5a). For the AHN4, the point density will
be about 10-14 points per square meter. For the area around Schiphol this can be 20-24 points per square
metre. The point cloud data is provided in LAZ format which is a compressed LAS file file format. LAZ
point clouds are heavy files and therefore most users use derivative products [AHN, 2024b].

(a) Data collection timeline [AHN, 2024a] (b) AHN4 colored point cloud

Figure 2.5: AHN4 acquisition timeline and colored point cloud

The AHN point cloud data has six classes of labels, and their definitions are mentioned in Table 2.1.
Concerning the semantic segmentation of the point cloud there are a few changes in the meaning given
to points over the versions of AHN:

1. Prior to AHNS, all the points of the building, including walls, roofs, windows, sunshades, etc, are
given building classification. However, with AHNS5, only the points that reflected from the roof are
classified as buildings, and the remaining are of classification others. add a picture

2. In AHN4, only the high-tension cables are given the classification of high-tension, but the towers

that hold them are of classification others. Coming to AHNS5, both the cables and towers are labelled
as high-tension. add a picture

10
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Label Definition

0 never classified
1 other

2 ground

6 building

9 water

14 high-tension
26 civil structure (bridges and jetties)

Table 2.1: AHN point cloud label values and definitions

2.3 Multispectral imagery (MSI)

Multispectral imagery refers to capturing images across multiple bands of the electromagnetic spectrum,
where each band represents a specific range of wavelengths. Unlike standard color photography that
captures light in only three bands (red, green, and blue). Multispectral images capture data from a wider
range of the spectrum, including visible light, NIR, and Short-wave Infrared (SWIR). MSI provides more
detailed information about objects and surfaces than standard color imagery [Schowengerdt, 2007].

Each material reflects radiation differently across these bands, creating a unique pattern. These unique
patterns in which surfaces reflect energy are called “spectral signatures”, and can be used to identify
materials based on their interaction. The data collected forms a graph or a signature, plotting reflectance
or emission against wavelength (Figure 2.6).

Figure 2.6: Spectral signatures of soil, vegetation and water [Siegmund and Menz, 2005]

2.3.1 Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator used to analyze remote
sensing measurements and assess whether the target being observed contains live green vegetation. NDVI
is calculated using the visible red and NIR bands of the electromagnetic spectrum (Eq 2.2). Vegetation
typically reflects more NIR and absorbs more visible light, making Normalized Difference Vegetation
Index (NDVI) a useful measure for vegetation health and and density [Pettorelli, 2013; Xie et al., 2008].

11
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NDVI =GR T Red 2.2)

While NDVI is primarily used to map vegetation, it will only provide limited information about the built
environment. This is because buildings and other non-vegetative surfaces typically have low NDVI values,
similar to water bodies and bare soil, as they lack the photosynthetic activity of vegetation. The general
steps to delineate buildings from NDVI data:

1. Obtain high-resolution NDVI data for the study area using satellite imagery.

2. Combine it with additional data, such as LiDAR, digital elevation model (DEM), or other spectral
indices, to improve the accuracy of building delineation [Elshehaby and Taha, 2009].

3. Apply a threshold to the NDVI values to identify areas with log vegetation (e.g.NDVI < 0.3).

4. Use image segmentation techniques, such as edge detection or object-based image image analysis,
to group the low-NDVI pixels into distince building footprints.

5. Post-process the building footprints to remove small artifacts and refine the boundaries.

2.4 Challenges with point cloud

It is essential to examine some key properties of point cloud data that are relevant for automatic semantic
segmentation of point clouds. Certain challenges stem from the inherent qualities of point cloud, as
proposed by Bello et al. [2020], and they are

¢ Irregularity (data sparsity and density variation): Point clouds can be highly irregular, with varying
densities across different areas. Dense areas may capture and represent intricate object features,
while sparse areas might lack sufficient information (Figure 2.7).

¢ Unstructured: Point cloud data data lack a regular grid arrangement. Each point is scanned indi-
vidually, and the distances to neighbouring points can vary. Which is unlike images, where adjacent
pixel-pixel distance is fixed.

* Unorderedness: A point cloud represents a scene using a collection of points (usually represented by
XYZ coordinates). These points are typically stored as a list in a file [Bello et al., 2020]. Importantly,
the order in which the points are stored does not alter the scene representation; meaning, it remains
invariant under permutations [Qi et al., 2016, 2017].

Figure 2.7: Point cloud data challenges (Bello et al. [2020])
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2.5 Machine learning for point cloud segmentation

Traditional methods for point cloud segmentation typically rely on geometric features and spatial rela-
tionships to group points into meaningful segments. These approaches include clustering algorithms like
k-means; region growing methods where segments expand from seed points based on similarity criteria;
and model-fitting techniques such as RANSAC. These methods focus on dividing the point cloud into
non-overlapping regions by grouping points based on simple, hand-crafted features like curvature, color,
normal vectors, and smoothness, as well as geometrical constraints [Zhan and Yu, 2012; Rabbani Shah
et al., 2006]. However, since these methods do not incorporate supervised prior knowledge, the resulting
segments lack semantic information.

Supervised machine learning techniques addresses this problem. Machine learning way can be described
in a stepwise approach, Figure 2.8 [Weinmann et al., 2015]:

1. Neighborhood selection: The first step is to select the local neighborhood around each 3D point.
Typically the neighborhood is selected either by a fixed radius (spherical/cylindrical) [Thomas et al.,
2018] or k-nearest neighbors.

2. Feature extraction: For each point from its neighborhood various geometric features are extracted.
These features could include measures like curvature, normal vectors, and other shape descriptors
that capture local geometry around a point.

3. Feature selection: Number of features can quickly go out of hand, so it is crucial to select only the
most meaningful ones. This step reduces the dimensionality of the data, and improves efficiency
and accuracy of the classification process.

4. Classification algorithm: Finally, classification algorithms such as Random Forests [Grilli et al.,
2019], Support Vector Machines (SVM) [Zhang et al.,, 2013], Conditional Random Fields (CRF)
[Niemeyer et al., 2012], etc. are applied on extracted features. These algorithms learn to catego-
rize points into specific classes based on features extracted and the contextual information provided.

Figure 2.8: Machine learning point cloud semantic segmentation framework proposed by Weinmann et al.
[2015]

Following the above steps, each point is given label based on its own individual features. Further, neigh-
borhood selection also helps measuring just the geometrical features, but fails to encode contextual in-
formation. This leads to unavoidable noisy classification. To this extent, Niemeyer et al. [2012] proposed
using Conditional Random Fields (CRF) which adds contextual information into the model. Landrieu et al.
[2017] proposed a framework that takes the labeled points from above network and combines them with
a graph-based contextual information. This process is referred to as structured reqularization or smoothing,
which tries removing noise and smoothens the labels.

2.6 Deep learning for point cloud segmentation

Unlike conventional and ML approaches, deep learning methods automatically extract the features of
the point cloud and achieve better performance [Zhang et al.,, 2023]. Deep learning based methods
for semantic segmentation of point clouds can be categorized into two categorized into two categories:
projection-based and point-based methods. These techniques address the intrinsic challenges presented by
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point clouds—primarily their unorderedness and lack of structure. Projection-based methods approach
the challenge of unstructured data by transforming the original point cloud data into structured data like
images, voxels, or even graphs. Networks extract features using this transformed data as input. Whereas
point-based methods embrace the chaos. They directly work with raw point clouds, taking away the
necessity of preprocessing or tranformation into a structured grid.

2.6.1 Multilayer perceptron (MLP)-based methods

MLP is a type of neural network consisting of multiple layers of neurons, with each layer fully connected
to the next, typically used for supervised learning tasks like classification and regression.

PointNet [Qi et al., 2016] was the first technique to apply MLP directly to point clouds, and lay founda-
tional principles that have influenced subsequent developments in the field. It handles raw point clouds
by treating each point individually, using shared MLPs to extract features. PointNet also uses a technique
called max pooling to create a single global feature vector that captures the overall characteristics of the
entire point cloud. This global feature is crucial for tasks like semantic segmentation, as it ensures the
results are the same no matter the order of the input points. This allows the model to capture the global
features of the point cloud without the need for pre-processing or converting the data into a structured
grid.

PointNet fails to capture local structure because it does does not consider local dependency between
points. To address this and the problem of varying density in the point clouds, [Qi et al., 2017] made
improvements to PointNet. PointNet++ consists of sampling layer, grouping layer, and PointNet backbone
network. Firstly, sampling layer selects a set of points from input points, which defines the centroids of
local regions. These set of points are selected using iterative farthest point sampling (FPS) such that they
are more distant to the rest of the points. Followed by grouping layer, that constructs local region sets
by finding “neighbouring” points around the centers. Each neighbourhood group of points is created
by selecting all the points within a certain radius from the subsampled point. Each group of points
created by the grouping layer is then independently processed by a mini PointNet network, referred to as
the PointNet backbone network, to encode local region patterns into feature vectors. Hierarchically this
process is repeated, and thereby reducing the point resolution deep into the network. At the last layer
of the hierarchy, all features from the different groups are passed through the PointNet layer to extract
a global feature vector. Therefore, PointNet++ captures global information by aggregating local contexts
hierarchically.

2.6.2 Convolutional neural network (CNN)-based methods

Unlike images, which has data stored in regular grids, point clouds irregularity and unstructuredness,
made traditional CNNs inapplicable. So, in an attempt to take advantage of the established CNN archi-
tectures, initial research on CNNs focused on converting point clouds into regular grids (voxels in 3D
or projection images in 2D) [Maturana and Scherer, 2015; Su et al., 2015; Kanezaki et al., 2016; Riegler
et al., 2016]. However, this intermediary data representation in these methods poses several challenges.
Challenges such as quantization artifacts and increased computational complexity, especially with high
resolution intermediary structures. With image projection techniques, difficulties such as views occlu-
sions, and difficulties in capturing all objects in large-scale scenes using multiview imaging [Zhang et al.,
2023] are common. Voxelization techniques proved to be robust in object detection, but semantic segmen-
tation is still not good enough.

As an alternative point-based convolution approach suggests applying convolutions directly on points. Un-
like projection-based segmentation methods, point-based convolution methods do not rely on any trans-
formation of the input point clouds into a regular grid format. Further, unlike images, where neighboring
pixels are easily identifiable, point clouds lack a fixed spatial relationship between points. To overcome
this, point convolutions typically involve the following steps:

1. Neighborhood Selection: A local neighborhood is defined for each point in the cloud, often using
k-nearest neighbors (KNN) or ball queries based on Euclidean distance. The choice of neighborhood
size and shape impacts the receptive field and computational complexity.
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2. Feature Extraction: Features are extracted from each point and its neighbors. Common choices
include raw coordinates, RGB color channels, local normals, or higher-level geometric descriptors.
These features are often encoded into a hihger-dimensional space using MLPs.

3. Weighting and Aggregation: Through convolution operations, learned weights are applied to the
encoded features of each point and its neighbors. The weighted features are then aggregated using
aggregators like sum, max pooling, or more complex attention mechanisms.

A basic hierarchical U-net shaped architecture for segmentation tasks is shown in Figure 2.9.

Figure 2.9: Basic frameworks of point-based CNNs [Zhang et al., 2023]

Research in this field mainly revolves around the internal structures of encoders and decoders. Specifically
how kernel weights are distributed in space, and how convolution on points is defined. Pointwise CNN
[Hua et al., 2017] defined kernel weights with voxel bins, Flex-convolution and SpiderCNN [Xu et al,,
2018] used linear and polynomial functions to give weights to neighboring points. These approaches had
issues like, lack of flexibility due to grid voxels, and functions depended on distance-wise order to assign
weights making them spatially inconsistent.

Thomas et al. [2019] proposed a state of the art point convolutional architecture, KPConv, which is in-
spired by image-based convolution, but instead of kernel pixels, kernel points in 3D space are used to
define the area where each kernel weight is applied, as shown in Figure 2.10. In images, kernel aligns
with the pixels which makes it easy for multiplying kernel weights with pixel feature vector. However,
KPConv lacks this flexibility, because kernel points in space do not align with neighbour points. However,
KPConv lacks this flexibility, because kernel points in space do not align with neighbour points. Each
neighbor point feature vector within the kernel is multiplied by all the kernel weights carried by kernel
points, and with correlation factor based on neighbor point’s distance from kernel point. For detailed
mathematical implementation, please refer to the source KPConv paper [Thomas et al., 2019].
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Figure 2.10: Comparison between an image convolution (left) and a KPConv (right) on 2D points. Source:
Thomas et al. [2019]

KPConv also follows standard U-shaped architecture (like in Figure 2.9). The detailed source architecture
is shown in Figure 3.7.

Figure 2.11: KPConv network architecture for segmentation (top) and classification (bottom). Segmenta-
tion network is called KP-FCNN (fully convolutional network), and an adaptation of it is used for this
thesis project. Source: Thomas et al. [2019]

2.6.3 Transformer-based methods

Originally developed for natural language processing (NLP), the architecture was adapted for visual tasks
with the introduction of the Vision Transformer (ViT) [Dosovitskiy et al., 2020], and proved to be very
successful in 2D image understanding [Parmar et al., 2018; Strudel et al., 2021; Zheng et al., 2020; Sun
et al., 2021]. This model demonstrated that transformers could process images not just as arrays pixels,
but as sequences of image patches, which allows model to capture dependencies between different parts
of an image.

The application of transformers on point cloud is obvious because the self-attention operator, which is at
the core of the transformer networks, is a set operator. It is invariant to point set order and cardinality
of the input point cloud, which makes it more suitable for point cloud processing than CNN. The first
influential paper that uses transformers in this field is Point Transformer [Zhao et al., 2020a]. The orig-
inal idea of transformer model where it is designed for sequence data (like text), utilizing self-attention
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mechanism to process data points in relation to each other is adopted. The Point Transformer adapts this
concept to 3D point clouds by implementing a local neighborhood-based self-attention mechanism where
each point in the cloud attends to its neighbours determined by k-nearest neighbors (KNN) approach. The
core component of the model is the point transformer layer. For which positional encoding plays a crucial
role in NLP, and standard way to encode them into features is by using sine and cosine or normalized
range values (Vaswani et al. [2017], Zhao et al. [2020a], Zhu et al. [2020]). An advantage with point cloud
is that positional information is inherently part of the data (as points occupy specific position in space),
and in the point transformer layer relative position between the neighbouring points is used for position
encoding.

Stratified Transformer (Lai et al. [2022]) improved the existing transformers by better modeling long-range
contextual dependencies. They achieve this by enlarging the effective receptive field using a technique
called stratification. The method stratifies the input point cloud into different levels based on spatial hi-
erarchies. At higher stratification level, the points are subsampled using FPS (Qi et al. [2017]). To encode
context into point’s features, the self-attention mechanism aggregates information densely from nearby
points (lower stratification level points) and sparsely from distant points (higher stratification level points).
For efficient self-attention implementation, to manage computational complexity, the paper introduced ef-
ficient self-attention mechanism called sparse attention, where only a subset of points are considered for
each attention operation. Contrary to most research where the position of points is considered unnec-
essary for 3D transformer-based networks because the xyz coordinates have already been used as the
features(Misra et al. [2021]), the stratified transformer adopted a context-based adaptive relative position
encoding scheme (Wu et al. [2021]), and achieved better performance compared to no encoding.

Xu et al. [2022]; Zhang et al. [2021] to enlarge effective receptive field (ERF), the point cloud data is vox-
elized and attention maps are build using the voxels. However, feature information loss and contextual
information loss is incurred because of back projecting voxel features to point features using a devox-
elizing operator. To address both issues: loss of information due to devoxelization in self-attention, and
limited context size, Zhou et al. [2023] proposed SAT: Size-Aware Transformer. SAT is designed to tailor
effective receptive fields for objects of different sizes using a novel Multi-Granularity Attention (MGA)
scheme and a Re-Attention module. MGA utilizes point-voxel cross attention to build attention maps
between points and voxels directly, and it doesn’t require a devoxelizing operator. Re-attention module
refines the output from the MGA by recalibrating the attention scores based on object size, ensuring that
different size objects receive appropriate attention weighting.

2.7 Data efficient methods

Data efficient semantic segmentation of point cloud models are crucial in applications where labeled
data is scarce or labeling is costly. These models try making most of the limited labeled data available
through various techniques and architectures. Many interesting approaches exists, here are a few impor-
tant ones:

¢ Transfer learning and pre-training: Model is trained to learn general features from large datasets
and finetuned to more specific features from smaller datasets.

¢ Self-supervised learning: These methods do not require labeled data. Self-supervised learning
models generate their own labels from within the data by defining a pretext task (Jing and Tian
[2019]), like predicting a part of point cloud from another part. Without needing many labeled
examples, useful representations could be learnt this way.

* Semi-supervised learning: This method combines small amount of labeled data with a large amount
of unlabeled data achieving better performance than supervised learning with limited labeled data
for training (Bergmann [2023]). Semi-supervised models utilize unlabeled data to better understand
the distribution of data and complements the learning process with labeled data.

* Active learning: From unlabeled dataset, active learning models selectively prioritises the data
which needs to be labeled to have highest the impact to train a supervised model. When unlabeled
data is too huge, priority has to be given to labeling particular parts of data in a smart way.
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Hu et al. [2021] introduced the Semantic Query Network (SQN), a novel weak supervision technique for
3D point cloud segmentation that dramatically reduces the need for labeled data. This network requires
only 0.1% of the labels typically needed by fully supervised models. SQN’s architecture includes a point
local feature extractor, which encodes the raw point cloud into hierarchical latent representations, capturing
spatial and geometric context through established networks like PointNet, PointNet++, or RandlaNet.
Followed by, point feature query network, which propagates sparse labeling information by querying and
summarizing features from neighboring points, leveraging the assumption that nearby points share similar
semantic information. This innovative approach addresses the data inefficiency challenge, setting a new
benchmark in weakly supervised learning for 3D point clouds.

Li et al. [2021] proposed a semi-supervised method that utilizes unlabeled data through a self-training
process that involves a mechanism for predicting the confidence of labels assigned to the unlabeled data.
A GAN architecture is adopted with two components: Segmentation network and Discriminator network
(Figure 2.12).

One network performs the actual task by giving labels” to the points, and another network judges the
given label by giving confidence scores. The former network is segmentation network and the latter is
discriminator network. Segmentation network performs the actual task of segmenting the point cloud,
predicting the labels for each point. Discriminator network judges the confidence of the labels predicted by
the segmentation network. Based on discriminator’s confidence measure, pseudo labels of the unlabeled
point clouds that are more trustable are selected to participate in the network training.

Figure 2.12: Basic frameworks of point-based CNNs [Li et al., 2021]
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In recent years, deep neural network (DNN)s have achieved impressive results in 3D point cloud seg-
mentation using supervised learning. However, the effectiveness of these supervised learning techniques
heavily relies on the data quality. Poor-quality inputs lead to poor-quality segmentation results, and vice
versa. The strong learning abilities of DNNs can become a disadvantage when they learn from incorrect
labels, which can impair the model’s performance [Ye et al., 2022].

To address this issue, we propose a new deep learning framework that not only learns from accurate labels
but also corrects possible mislabelings in the process. Our approach involves two main steps, illustrated
in Figure 3.1:

1. Preprocessing: We calculate and assign confidence scores to each point in the point cloud based on
heuristic knowledge.

2. Network training: Confidence values guide the deep learning model to learn from most supposedly
correct classifications.

3.1 Preprocessing for confidence measurement

Confidence is how confident we are with the current label of the point. The confidence score ranges from
zero to one, with lower values indicating less trust in the current classification and higher values repre-
senting greater certainty. During preprocessing, we assign a confidence score to each point to quantify
the reliability of its semantic label.

Importantly, confidence is measured with the belief that it helps in segregate points that are likely mis-
classified or have noisy labels. However, confidence values are not absolute, and should not be viewed as
infallible indicators of label accuracy.

Calculating confidence is a two step process. First, primary confidences are calculated based on neighbor-
hood consistency. This is followed by a refinement process that further adjusts these primary confidences
based on heuristic knowledge of the data, such as building footprints.

3.1.1 Primary confidence
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Figure 3.2: Neighbourhood consistency
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3.1 Preprocessing for confidence measurement

It is fairly logical to assume that points of same classification can be expected together. So, Neighbourhood
Consistency is measurement of how well a point is surrounded by points of same classification. For each
point, within a sphere of radius r surrounding it, the percentage of points sharing the same classification
gives the neighbourhood consistency confidence score (Figure 3.2). This neighborhood consistency is our
primary confidence.

total

N, eclass 1 —
C— N L if Niota1 >=5,
0 if Nyotar < 5

where Nggpeciass 1S number of points belonging to the same class, and N, is the total number of points
including all the classes inside the sphere of radius *. A minimum threshold of five points is chosen
within the radius neighborhood. This makes sure there is enough context in the neighborhood, and also
eliminates most of the data outliers by giving them zero confidence. In Section 6.1.2, we experiment with
thresholds of 5, 10 and 15, showing that a threshold of 5 optimally balances neighborhood density and
minimizes the risk of giving high confidence to sparse, and potentially noisy classifications.

M Ground M Building Civil I Water [ Others M High tension

(a) Annotated point cloud (b) Primary confidence

Figure 3.3: Primary confidence by neighborhood consistency measurement
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Figure 3.4: Refining confidences through buildings footprint extraction

3.1.2 Refining confidences

In AHN4, it is common to see building outer walls/facades with very less point density, or sometimes no
points at all. Together the flight elevation and rotating polygon scanning, as discussed in Chapter 2.1.1,
leads to this. In such cases, neighbor consistency fails to give confidence to points because of minimum
five points threshold in the radius neighborhood (Figure 3.3).

Since walls and facades are key components that contribute to the overall structure of a building, it’s
important to enhance their confidence. The first step in achieving this is to identify the building footprint.
Afterward, the confidence of the relevant building points within this footprint can be increased.

Having building footprints offers an additional advantage: it helps identify an incorrect mislabeling,
where ground points are mistakenly located inside buildings. These points confidence is reduced to zero.
This is critical because if such points are included in the DTV, it could lead to inaccurate surface water
modeling, potentially showing water flow through buildings, which is unrealistic.

In this thesis, we extract building footprints from open-source datasets such as DSM and DTM from AHN4,
and aerial ortho MSI imagery. Using elevation and NDVI thresholds, we identify and isolate likely building
structures in a step-by-step process. Our assumption is that buildings generally have lower NDVI values
and are elevated above the surrounding ground, allowing for effective differentiation from vegetation and
other features. Refer to Figure 3.4 for theoretical pipeline and Figure 3.5 for illustration. The detailed
steps used to extract the building footprints are as follows:

1. Binary elevation map: First, we create a binary raster map (0.5m resolution) from the DSM, high-
lighting pixels that are higher than 2m above the average ground elevation (mean DTM elevation).
Next, we convert the binary map into polygons, assuming that all DSM pixels exceeding the 2m
threshold represent buildings, trees, poles, or noise.

2. Smoothing and noise removal: To remove tree and noise polygons, the polygons are eroded and
then dilated by 1m. This process may still leave polygons representing trees clustered in areas larger
than 1m?.

3. Mean NDVI and buildings extraction: We generate NDVI raster maps using the equation 2.2 in
Chapter 2.3.1. The extracted polygons are then overlaid onto the NDVI layer, and the mean NDVI
values are calculated by averaging the NDVI pixels within each polygon. Polygons with an NDVI
value below 0.3 are classified as buildings, since buildings typically have low NDVI while trees have
high NDVI.
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Figure 3.5: Buildings footprint extraction using 2D datasets

Finally, for the points labeled as building in the point cloud and falls inside a building polygon, their
confidence is increased to one, and Ground labeled points confidence is reduced to zero. Figure 3.6
compares primary and refined confidence scores.

M Ground M Building Civil I Water [ Others M High tension

(a) Annotated point cloud (b) Primary confidence (c) Refined confidence

Figure 3.6: Confidence scores — Primary and Refined
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After refining the confidences of the points, they are then segregated into two categories based on their
confidence scores: under-confident and over-confident points, using a custom threshold, #;.

It is also possible to enhance Building point confidences using 3rd party building footprints resources such
as 2D BAG. However, experiments suggest that our extraction method achieves on-par performance as
2D BAG. In some areas we are able to detect building footprints with higher precision. Please refer to
Chapter 6.1.3 for detailed discussions.

3.2 Network training

The next step in the workflow is training the deep learning model. Here we want the over-confident
point samples to guide the learning process, and not let under-confident samples to participate and pollute
training of the model. However, the approach has a challenge, that is, less data participates in the training
process, as we mask under-confident points. Our method, online deep learning strategy, address this by
iteratively refining the confidences and labels of under-confident points and makes them participate in the
training. The step by step process is as follows (Figure 3.1):

1. Network training with confident samples: We start by selecting a state-of-the-art deep learning
model for point cloud segmentation, which is known for its flexibility and adaptability. The model
serves as the backbone network, which will be trained and tested. For the thesis, KPConv model
proposed by Thomas et al. [2019] is chosen. The model is first trained only on over-confident point
samples for a fixed number of epochs e, in order to learn good feature representations.

2. Model predictions: After the initial training, the model is then used to make predictions on all the
points in the cloud, including both over and under confident points.

3. Psuedo-label selection: The model’s predictions yield probabilities (via softmax outputs, detailed
in the appendix). We select the most confident predictions using a second threshold, known as
the online confidence threshold t;. These strong predictions replace the original ground truth labels,
creating new labels referred to as pseudo-labels. This approach enables the deep learning model to
dynamically adjust both the confidence values and existing labels of the training points from which
it learns, enhancing its ability to refine and update its understanding of the data during the training
process.

4. Tterative training: The model is retrained iteratively, incorporating these pseudo-labels in each iter-
ation, thereby refining its performance.

5. Outputs: The process yields two main outcomes. First, a cleaned point cloud dataset with reduced
or no under-confident points, as they have been relabeled using the model’s confident predictions.
Second, a robustly trained model capable of accurate semantic segmentation of point clouds in
unseen urban scenes.

Our online learning strategy shares some similarities with the self-training technique used by Li et al.
[2021]. In self-training, there is limited training data, which is augmented using a GAN. This involves
two networks—a segmentation network that makes predictions and a discriminator network that evalu-
ates them—working together. However, this method can be computationally demanding. In contrast, our
online learning method uses only a single segmentation network by incorporating prior geospatial knowl-
edge during the preprocessing phase to provide confidence scores, making our model more lightweight.

3.2.1 Backbone network - KPConv

For this thesis project, we selected the KPConv model [Thomas et al., 2019], a point-based convolutional
network, as our backbone network. Details about this model are covered in Chapter 2.6.2. Although there
are other state-of-the-art transformer-based models, such as Point Transformer and Stratified Transformer
[Zhao et al., 2020b; Lai et al., 2022], we opted for KPConv because it strikes a good balance between perfor-
mance and computational cost. In principle, any deep learning network could serve as the backbone since
our primary interest is exploring how online learning can improve the model, rather than determining
the best deep learning architecture.
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3.2 Network training

Figure 3.7: Backbone KPConv network used for the project

The following network parameters are implemented:

1. Input: N x (3 + F), where F is input feature dimension. Multiple feature combinations are imple-
mented for the thesis:

features

elevation, intensity

elevation, intensity, NIR

elevation, intensity, red, green, blue

g1 W N

Table 3.1: Features used for deep learning model

2. Number of classes: 6. They are other, ground, building, water, high-tension, and civil structures, with
label values of 1, 2, 6, 9, 14, and 26.

3. Encoder: 5 layers, and each layer has 3 convolutional blocks, with first one being strided (for down-
sampling) except for first layer. Each block consists of KPConv, batch normalization, and leaky ReLu
activation.

4. Decoder: 4 layers, with each layer consisting nearest neighbor upsampling, and unary convolution.

5. Output: N x K, where K is the number of classes. In this thesis, K = 6. Output values represents
probability predictions of points belonging to a particular class.

3.2.2 Class imbalance

Class imbalance is a situation where certain classes dominate others. For instance, most points in the
point clouds of AHN4 belong to ground, building, water, and other categories, while the number of points
belonging to civil or high-tension are relatively lower.

The points that participated in training across classes in training datasets is shown in Table 3.2.

Others Ground Building Water High-tension  Civils |  Total
102,865,725 215,135,387 66,534,958 16,900,460 47,943 1,126,217 | 402,610,690

Table 3.2: Training dataset point cloud distribution

Due to the fact that there is less data available to learn from minority classes, the model faces obstacles in
learning useful features, and this is because loss function is overly exposed to only a few classes [Griffiths
and Boehm, 2019]. Consequentially, the segmentation quality of minority-class objects would also be
relatively low.

A common technique in deep learning (DL) to address class imbalance is by adjusting the loss function
to give more weight to underrepresented classes. One effective method is focal loss, introduced by Lin
et al., 2017. Focal loss assigns weights to the loss based on class frequency, so classes that appear less often
receive higher weights. These weights ensure that the loss function is not overwhelmed by dominant
classes, ensuring better performance on rare classes.
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3 Research method

M Ground [ Building Civil I Water [ Others [ High tension

Figure 3.8: A sample training tile showing the scarcity of high tension and civil points

In our study, given prior knowledge of class frequencies, we used a weighted cross-entropy loss. The
weights are calculated based on the ”inverse proportion of class frequencies”, as shown in the equation
below:

pe= e (3.1)

where ¢ is a given class, 1, is the number of points in class ¢, N is the total number of points in training
and p. is the proportion of points in class c. Final class weights are calculated using the following equation
(Eq. 3.2):

Pmax
we = g/ —— (3.2)
p

where pyx is the proportion of the majority class. The cubic root scaling ensures a balanced yet nuanced
adjustment, amplifying the importance of the underrepresented classes without overly penalizing the
overrepreseneted ones. These weights are integrated into the cross-entropy loss function (Eq. 3.3):

M

)3 WeYe,j In(7Jc,;) (3.3)
]:1 c=

Mz

Leross- entropy

[ey

where N is the total number of labeled points, and M is the number of classes, y,; is a binary indicator
(0 or 1) of a point belonging to a certain class ¢, and 7. ; is the model’s prediction probability of a point
belonging to a certain class c.
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3.3 Evaluation metrics
3.3 Evaluation metrics
The predictions are compared with the original labels, assuming them as ground truth, using the following

metrics:

1. Per-class IoU: Intersection over Union is a metric to measure the overlap between predicted and
ground truth labels of a specific class in segmentation tasks.

_ AreaofOverlap TP

loUe = a0 Union ~ TP+ EP+ EN G4

where TP is true positives, FP is false positives, TN is true negatives, FN is false negatives.

2. Per-class accuracy: is the proportion of correctly classified samples for a specific class out of all
actual samples of that class.

TP

TP+ FN (3:5)

accuracyc =

3. Mean IoU and mean accuracy: It is the average of per-class IoU scores, and average of per-class
accuracy scores across all classes.

1 c

mloU = E Y IoU, (3.6)
i=1
1 c

mAcc = - ) TolU, (3.7)
i=1

4. Overall accuracy: is the fraction of all correct predictions in the whole dataset.

Correct precdictions

Overall AccuracyOA = Total number of predictions

(3.8)

The online deep learning model predictions are evaluated using the above formulas. However, during the
training process, the model updates the training samples which are considered as ground truth labels.
The changes in the training data qualitatively evaluated and understood by visual inspection, but not
through any quantitative measurements.
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4 Implementation

In this chapter, we discuss the practical aspects of implementing the proposed deep learning framework.
This includes a description of the dataset, hyperparameter settings, and the hardware and libraries used.

4.1 Data

The primary dataset used in this thesis is Actueel Hoogtebestand Nederland (AHN), specifically the
AHN4 version. Detailed information about AHN4 is provided in Chapter 2.2. AHN4 data is publicly
available, which can be accessed from official website here: https://www.ahn.nl/ahn-viewer.

The AHN dataset from the original source includes standard point cloud attributes such as intensity,
return number, number of returns, classification labels, GPS time, etc. However, it does not include RGB
colors or NIR (Near-Infrared) reflectance values, meaning the original AHN4 dataset consists of uncolored
point clouds.

To address this, GeoTiles has integrated RGB and NIR data into the point cloud using publicly available
aerial imagery. The GeoTiles colored point cloud, which includes both RGB and NIR values, can be
accessed here: https://geotiles.citg.tudelft.nl/. Since our project uses RGB and NIR values as input
features for model training, we utilized the GeoTiles point cloud data for this purpose.

GeoTiles provides a finer tiling of the AHN dataset, where each tile covers 1 x 1.25 Km and includes a 20-
meter overlap with neighboring tiles. Due to hardware limitations when handling large datasets, each tile
is further subdivided into four mini tiles, each measuring 0.25 x 0.3125 Km, with a 10-meter overlap with
neighboring mini tiles. The dataset is split approximately 85% for training and 15% for validation, utilizing
52 mini tiles for training and 8 mini tiles for validation. The number of points per class participated in the
training process is described in the Table 3.2, and validation dataset point distribution in the Table 4.1.

Others Ground  Building Water High-tension Civils |  Total
17,605,936 37,244,632 5,804,124 10,381,515 1,461 33,819 | 71,071,487

Table 4.1: Validation dataset point cloud distribution

The point per class distribution is highly skewed. We have high-tension and civil structure points as minority
classes, as they are in thousands, whereas other classes are present in millions.

4.2 Hyperparameters and deep learning training details

This section outlines the hyperparameters crucial for both the preprocessing and online deep learning
stages, as shown in Table 4.2. These hyperparameters are essential for the preprocessing of point cloud
data and the online deep learning process, influencing the model’s performance and ensuring the repro-
ducibility of results.
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4 Implementation

Preprocessing
Hyperparameter Value Remark
r 0.5m Neighborhood radius for primary confidence measurement
t 0.9 Confidence threshold for under and over confident segregation

Backbone network — KPConv

Hyperparameter Value Remark

first_subsampling.dl 02m  Voxel size for downsampling

N 300 Training epochs

Epoch steps 300 Number of batches in each epoch

Ir 0.01 Learning rate

in_radius 10.2  Neighborhood selection radius for each point
conv_radius 25 Radius of the convolution sphere

kernel points 15 Number of kernel points

KP_extent 1.2 Spatial extent of the kernel points

Online learning specific

Hyperparameter Value Remark
e 150 Epoch at which online learning begins
ty 0.99 Online confidence threshold

Table 4.2: Preprocessing and Network training hyperparameters

4.3 Hardware and libraries

In this section, we outline the computational resources, python libraries, and visualization tools utilized
in the project, highlighting the hardware infrastructure for preprocessing and deep learning, along with
the key software libraries that facilitated data handling and processing.

1. Hardware: The hardware setup includes CPU-based preprocessing for efficiency and GPU-powered
deep learning to handle computationally intensive tasks.

a) Preprocessing: The preprocessing pipeline was fully executed on CPUs, with no GPU resources
utilized. To improve efficiency, various workflow components were parallelized using multi-
threading techniques.

b) Deep learning: For model training and evaluation, we utilized the DelftBlue HPC cluster from
the Delft High-Performance Computing Centre (DHPC) [Delft High Performance Comput-
ing Centre , DHPC]. The computations were powered by NVIDIA Tesla V100 GPUs (32 GB
memory), optimizing the deep learning workload.

2. Libraries: A variety of Python libraries were used to manage, process, and analyze geospatial and
point cloud data, alongside tools for deep learning and scientific computation.

a) PyTorch [Paszke et al., 2019]: The deep learning framework is built using the PyTorch frame-
work.

b) laspy: This Python library handles operations such as reading, writing, and manipulating
LAS/LAZ files. It supports filtering and processing point cloud data.

c) scipy: A core Python library for scientific computation. In this project, scipy was used to
identify nearest neighbors through kd-tree structures.

30


https://pytorch.org/
https://laspy.readthedocs.io/en/latest/
https://docs.scipy.org/doc/scipy/reference/spatial.html

4.3 Hardware and libraries

d) rioxarray: A python library which is an extension of xarray library. It is used for handling
geospatial raster data (GeoTiff).

e) GeoPandas: A python library used for geospatial vector data.
3. Visualization tools:

a) Potree: Potree is an open-source web-based renderer for visualizing large 3D point cloud
datasets efficiently in web browsers. It's accompanied by Potree Converter, a tool that trans-
forms point cloud data into a specialized, web-friendly format with a hierarchical structure
[Schutz et al., 2020]. This combination enables smooth rendering and progressive loading of
massive datasets without requiring high-end hardware or software installations. Additionally,
Potree offers extensive customizability through JavaScript and HTML web development kits,
allowing users to tailor the visualization experience to their specific needs and integrate it into
web applications.

For this thesis Potree has been utilized at every step of the project. Starting from visualizing
the confidences in preprocessing to finally viewing the prediction results of our deep learning
models.

b) QGIS: QGIS (Quantum GIS) is an open-source GIS software used for viewing, analyzing, and
editing geospatial data. It supports a wide range of vector, raster, and database formats, making
it a powerful tool for mapping and spatial analysis. In this thesis project we have used it for 2D
visualizations of satellite MSI, intermediary outputs of NDVI and preprocessing steps, especially
"Refining confidences’.
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5 Results

The following chapter presents the experimental results for this thesis project. First, Section 5.1 examines
segmentation results and compares the performance of deep learning models trained on point clouds
using base features—elevation and intensity. Subsequently, the models’ segmentation results will be
evaluated and compared when additional features, such as RGB and NIR, are incorporated. Section 5.3
discusses online updates to the training data to provide a clearer understanding of their impact.

In the comparison tables in the following sections, the backbone network-KPconv, trained on just the over-
confident samples, without online learning implementation is referred to as ‘Baseline’ model. Backbone
network-KPConv, trained with online learning strategy using the primary confidence scores, is referred
to as "+Online’ model. Because online learning is a strategy that is applied on top of baseline model.
For reference, Baseline model is left-side model implementation, and +Online model is right-side model
implementation in Figure 3.1. Due to high variations of network training outputs, for each setting, we
experimented with three training runs and reported the averaged scores to achieve a fair comparison.

5.1 Results with base features — Elevation, Intensity

Intensity is one of the important features of LiDAR point cloud data. It signifies the return strength of
the laser pulse that generated the point, and its value is based on the reflectivity of the object struck by
the laser pulse. For point cloud classification, intensity values are used as an aid in feature detection
and extraction [ESRI, 2023]. Since intensity is collected during the data acquisition stage—unlike RGB
values, which are fused later to the point cloud—it naturally serves as a foundational feature for training
models.

Similarly, elevation, another critical base feature, provides essential contextual information about the po-
sitioning of points within the 3D space. This information aids the model in understanding variations
in ground levels, structures, and landscape features, offering spatial context necessary for segmentation
tasks.

Both intensity and elevation are chosen as base features because they complement each other by capturing
different aspects of the environment—intensity reflects the material properties of surfaces, while elevation
provides crucial spatial information. The below Table 5.1 shows the performance of models when trained
with base features, and Figure 5.1 visualizes the predictions of models.

Overall, our +Online model has a slight edge over the baseline model, outperforming it in two of the
three key overall metrics. While the baseline achieves a slightly higher mAcc—79.6% compared to the
online model’s—79.4%, the online strategy surpasses the baseline in both overall accuracy (OA) and mean
Intersection over Union (mloU), scoring 95.1% in OA versus the baseline’s 94.8%, and 65.0% in mloU
compared to 63.8% for the baseline. These results suggest that online learning enhances the model’s
ability to learn more effective features, leading to overall better performance. This improvement could
be attributed to the fact that online learning exposes the network to a larger number of samples, that are
highly likely to have good quality which are refined and updated during the training iterations.

A notable improvement in accuaracy is seen in the Others class (89.8% to 90.8%), with slight gains in
Building (78.1% to 79.4%) and High tension (32.2% to 33.2%), indicating benefits from the online strategy.
The Water class maintains a high accuracy of 99.2% across both approaches, showing consistent perfor-
mance. However, the Civil class experiences a decrease in accuracy with online learning (80.0% to 75.3%),
suggesting challenges for this class. Despite an accuracy above 75% for both approaches, IoU for the Civil
class remains very low, at less than 6%. Importantly, online learning excels in IoU performance across all
classes, with notable gains in Building (73.5% to 75.4%) and High tension (27.4% to 30.4%).
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5 Results

Model features: elevation, intensity

Per class accuracies mAcc OA
Others Ground Building Water High tension Civil
Baseline 89.8 98.6 78.1 99.2 322  80.0 79.6 948
+Online 90.8 98.6 79.4 99.2 33.2 753 794  95.1
Per class IoUs mloU
Others Ground Building Water High tension Civil
Baseline 86.6 94.8 73.5 98.1 274 2.6 63.8
+Online 85.4 94.8 75.4 98.4 30.4 5.7 65.0

Table 5.1: Baseline and online learning performance comparison with accuracies and IoUs, when trained
with base features—elevation, intensity. (All values represent the average of three experiments, ensuring
fair comparison)

M Ground M Building Civil Il Water M Others M High tension

RGB Ground truth Baseline +Online

Figure 5.1: Deep learning models comparison when trained on base features — Elevation and Intensity
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5.2 Results with additional features

Given the raw attributes of the point cloud data—intensity and elevation—as features, these results high-
light the online learning strategy’s effectiveness in enhancing the model’s overall performance and gener-
alization ability across classes.

5.2 Results with additional features

In this section, we incorporate additional features into the deep learning models, specifically adding com-
ponents such as RGB and NIR, which can be considered supplementary to the base features of elevation
and intensity. These features, as discussed in Section 2.1.2, represent secondary components of the point
cloud. Our aim is to evaluate how the inclusion of these additional features affects the model’s perfor-
mance compared to when it is trained solely with the base features.

To read the tables, the arrows indicate the direction of change in the model’s performance when additional
features (such as NIR or RGB) are included, compared to the base features (elevation and intensity). The
numbers in brackets show the difference in accuracy or IoU relative to the base model. An upward arrow
(1) represents an improvement, while a downward arrow (/) signifies a decline in performance.

5.2.1 Results with additional NIR feature

In Table 5.2, the performance of the Baseline model and the +Online model is compared, when they are
trained with elevation, intensity and NIR features.

Model features: elevation, intensity, NIR

Per class accuracies mAcc OA
Others Ground Building Water High tension Civil
Baseline 911 (1.1) 984 | (-03) 73.5/ (-4.6) 99.2(0) 4481 (12.6) 79.0 | (-1.0) 811 (1.3) 94.6 | (-0.2)
+Online 90.8 (0) 98.6 (0) 729 (6.5 9931 (0.1) 309](23) 77671 (23) | 783, (-1.1) 94.7 | (-0.5)
Per class IoUs mloU
Others Ground Building Water High tension Civil
Baseline 865 ] (-0.1) 9517 (0.3) 69.1 | (-4.3) 98.41(03) 38371(109) 25 (-0.1) 65 1 (1.2)
+Online  87.01 (1.6) 9517 (0.2) 69.6 | (-5.9) 979 (-05) 288/ (-1.7) 24](-33) | 634/ (-1.6)

Table 5.2: Generic and online learning performance comparison with accuracies and IoUs, when trained
with three features—elevation, intensity, NIR. (All values represent the average of three experiments,
ensuring fair comparison)

The addition of the NIR feature to the base features (elevation and intensity), led to mixed performance
outcomes across different metrics and classes. When comparing the overall metrics, the addition of the
NIR feature led to a decrease in overall accuracy (OA) for both the baseline and +online models, although
the +online model maintained a slightly better OA (94.7%) compared to the baseline (94.6%). The Baseline
model, however, showed improvements in both mean accuracy (mAcc) and mean IoU (mloU), outper-
forming the +Online model on these metrics. Specifically, the baseline achieved an mAcc of 81.0% and an
mloU of 65.0%, while the online model had an mAcc of 73.9% and an mloU of 63.4%. Considering these
three overall metrics, the Baseline model emerged as the best performer when trained with three features
(elevation, intensity, NIR).

Looking at class specific performance, such as Civil, High tension, and Ground, showed varying responses
to the addition of NIR. The Civil class, in general, experienced a minor drop in both accuracy and IoU,
with the baseline performing better in both metrics (accuracy: 77.6%, loU: 2.4) compared to the online
model (accuracy: 77.6%, IoU: 1.7). For the High tension class, the baseline saw a notable improvement in
accuracy (44.8%), while the online model remained stable but lower (30.9%). In the Ground class, both
the baseline and online models had similar performance, with minimal differences (accuracy of 98.4% for
both). The baseline was generally more consistent in these classes, showing slightly better or comparable
performance to the online model when trained with NIR.
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5 Results

M Ground [ Building Civil I Water M Others M High tension

RGB Ground truth Baseline +Online

Figure 5.2: Deep learning models comparison when trained on 3 features — Elevation, Intensity and NIR

The mixed impact of adding NIR reflects that while some classes benefited from the additional spectral
information, others experienced reduced performance. This could be due to the increased complexity
of the data or differences in the class-specific contributions of NIR. For example, the Others class, which
is largely dominated by vegetation, saw improved performance with the addition of the NIR band. This
improvement is likely due to the fact that NIR is particularly effective for vegetation analysis, as it captures
specific spectral properties related to plant health and density. Conversely, the Building class experienced
significant drops in accuracy and IoU.
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5.3 Online learning updates

5.2.2 With additional RGB features

In Table 5.3, the Baseline model and the +Online model are compared when trained with five features:
elevation, intensity, red, green, and blue. Figure 5.3 shows the visualizations of predictions.

Model features: elevation, intensity, red, green, blue

Per class accuracies mAcc OA
Others Ground Building Water High tension Civil
Baseline  90.5 1 (0.6) 97.9 ] (-0.8) 80.3 1 (2.2) 99.3 1(0.2) 46 1 (13.8) 84.27 (4.3) 83 1 (34) 94.8 (0)
+Online 91.7 1+ (1) 98 | (-0.6) 689 | (-10.5) 972 | (-2) 313](-19) 704 ] (-4.8) | 76.3 ] (-3.1) 939 | (-1.2)
Per class IoUs mloU
Others Ground Building Water High tension Civil

Baseline  87.2 1 (0.6) 945 (-03) 7587 (23) 96.5|(-1.6) 4451 (171) 2771(02) | 6691 (3)
+Online 8531 (-0.1) 942 | (-07) 66/ (-94) 954 |(29) 256 (-49) 24 (-3.3) | 615 (-3.5)

Table 5.3: Baseline and online learning performance comparison with accuracies and IoUs, when trained
with five features—elevation, intensity, Red, Green, Blue. (All values represent the average of three
experiments, ensuring fair Comparison)

With the addition of RGB, we observe that the Baseline model performed better in all the overall metrics.
The Baseline achieved mAcc of 83% and maintained OA of 94.8%, while the Baseline model has a lower
mAcc of 76.3% and a reduced OA of 93.9%. For mloU, the Baseline outperformed the +Online model
(66.9% vs. 61.5%). Overall, the Baseline model demonstrated better generalization when trained with five
features (elevation, intensity, RGB).

When comparing class-specific measures to the values from models trained with just base features—
elevation and intensity, the Baseline model consistently showed increased accuracies (except Ground class).
The +Online model showed decreased accuracy across classes, with the exception of the Others class. With
RGB features, the Others class improved for both baseline and online models, while the Ground class
performance declined for both.

Even when comparing the Baseline and +Online models, the +-Online model continued to perform poorly
relative to the Baseline. The Baseline demonstrated consistently better performance across all class-specific
metrics and overall metrics, reinforcing that the +Online strategy struggled to utilize the additional RGB
features effectively, while the Baseline model was able to leverage them for enhanced performance.

5.3 Online learning updates

The online learning model starts by training on the highly confident samples for several epochs e. During
this phase, the model learns strong feature representations from these overconfident samples. After this
initial phase, the model begins refining the labels in the training data. This label refinement process
happens when the model becomes highly confident about its predictions on the underconfident points.
These new predictions, or pseudo-labels, gradually replace the original labels in the training dataset. By
iteratively updating both the model and the training labels, the online learning strategy helps to reduce
noise in the dataset and enhances the model’s overall performance. The below Figure 5.5 shows a few of
such improvements.

In some instances, online learning may update the training data in ways that can deteriorate its quality.
As shown in 5.4, when trained with base features such as elevation and intensity, the model mistakenly
updated Ground points to Water. One possible explanation for this confusion is that the intensity values
of these updated points are low compared to the surrounding Ground points, resembling the intensity of
Water points (since water tends to absorb most of the energy, leading to low intensity values). Additionally,
these points are located in flat areas, which is another characteristic similar to water surfaces.
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5 Results

M Ground [ Building Civil I Water M Others M High tension

RGB Ground truth Baseline Online

Figure 5.3: Deep learning models comparison when trained on 5 features — Elevation, Intensity and RGB

M Ground [ Building Civil I Water M Others M High tension

RGB Ground truth +Online (base features) Intensity

Figure 5.4: Confusion of Ground with Water because of intensity
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5.3 Online learning updates

M Ground M Building Civil I Water [ Others M High tension

RGB Ground truth +Online

Figure 5.5: Online learning updates on training data with improvements
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6 Discussion and conclusions

In this chapter, Section 6.1 provides a comprehensive discussion of the overall model performance, synthe-
sizing key results from the previous chapter, and we examine the impact of preprocessing hyperparam-
eters selection. This is followed by a comparison of our building footprints extracted from open-source
datasets with the 2D BAG reference. Lastly, the section addresses limitations that may have constrained
the deep learning models from reaching their full performance potential. Section 6.2 then provides de-
tailed answers to each of the research sub-questions.

6.1 Discussions

6.1.1 Overall analysis

The analysis of results from the previous chapter shows that the +Online model with base feature—
elevation and intensity, achieved the highest overall accuracy (OA) of 95.1%, demonstrating strong gener-
alization across classes using minimal input features. However, the Baseline model with additional RGB
features achieved the highest mean accuracy (mAcc) of 83% and mean IoU (mloU) of 66.9%. A high mAcc
indicates consistently good average prediction accuracy across all classes, while a high mloU demonstrates
better overlap between predicted areas and actual class regions, which suggests improved segmentation
performance.

In conclusion, if only raw LiDAR data (intensity and elevation) is available, the +-Online learning strategy
is the most effective for segmentation. However, if additional features like NIR or RGB are available, the
Baseline model significantly outperforms the +Online model, particularly for classes such as High tension
and Others. Despite the improvements, it is important to note that using additional features can sometimes
reduce performance for certain classes. Specifically, the Building class experienced a significant reduction
with NIR, while the Ground class saw a slight reduction with RGB. Depending on specific use cases and
data availability, choosing Baseline with or without 4+-Online strategy can be determined.

6.1.2 Confidence scores — hyperparameters comparison

In the primary confidence measurement, we have two key hyperparameters: the neighborhood radius
(r) and the minimum number of points in the neighborhood threshold. We assume that a radius of 0.5
m is sufficient for capturing neighborhood context. Figure 6.1 shows the histogram of the number of
points within neighborhoods generated from a sample of training files. The number of points varies
significantly, with higher counts observed for larger bins (e.g., 20-30 points), but the range from 1-10
points still contains a substantial number of neighborhoods, indicating that smaller neighborhoods are
common. However, very small neighborhoods (<5 points) are frequent but taper off quickly and may
be unreliable due to noise. Setting a threshold too high would exclude many points that provide useful
local context, while a threshold too low could lead to high confidence scores for sparse, potentially noisy
neighborhoods. Choosing a threshold of 5 points allows us to avoid overly sparse neighborhoods while
maintaining adequate coverage for neighborhood density, effectively balancing the exclusion of single,
isolated points (which could be outliers or noise) with capturing meaningful local spatial structure.

Figure 6.2 shows confidence scores for several scenes with thresholds of 5, 10, and 15. At higher thresh-
olds (e.g., 15 and beyond), low confidence patterns appear on building roofs and the ground, failing to
accurately represent neighborhood consistency due to the high number of points expected (Figures 6.2d).
To address the low confidence of building wall points because of low point density with the threshold of
5 points, we employed a refining strategy (Chapter 3.1.2) for confidence scores.
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6 Discussion and conclusions
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Figure 6.1: Histogram of neighborhood point counts
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Il Water [l Others [ High tension
(a) Ground truth (b) Threshold 5 (c) Threshold 10 (d) Threshold 15

Figure 6.2: Preliminary confidence (neighborhood consistency) comparison with different thresholds
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6.1 Discussions

6.1.3 Building footprint comparison — QOurs vs 2D BAG

To qualitatively validate the fidelity of our extracted building footprints, which were used to refine con-
fidence scores, we overlay our building footprints with 2D BAG! building polygons (Figure 6.3). Overall,
there is a strong agreement between our extracted footprints and the 2D BAG polygons, suggesting that
our approach of utilizing DSM and NDVI from MSI is effective. In some instances, our extracted footprints
are more accurate, such as when the 2D BAG dataset has not been updated to reflect recent changes
in building boundaries (Figure 6.3b). Conversely, there are situations where the 2D BAG polygons are
more reliable (Figure 6.3c), particularly in areas where tree clusters are misclassified as buildings. This
misclassification could be attributed to the NDVI threshold of 0.3, which may not always be sufficient
to distinguish between vegetation and built structures, especially for features like greenhouses or tree
canopies close to buildings. These discrepancies highlight the need for refining our approach, poten-
tially by incorporating multi-temporal NDVI data or exploring adaptive thresholds based on local context
could also further enhance the reliability of building footprint extraction [Huang and Zhang, 2012]. An-
other promising direction is to leverage recent advances in computer vision, such as the SAM2 model
[Ravi et al., 2024], for extracting building footprints directly from images, which could also be utilized to
refine confidence scores and improve overall accuracy.

!The BAG dataset provides building footprint data for the whole of the Netherlands, and is available for free download.
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Extracted Footprints

2D BAG i Vegetation (ndvi>(0.3)

Budildings (ndvi<0.3)

(a) Overveiw of 2D BAG and our extracted footprints

(b) Our footprints better than 2D BAG (c) Our footprints bad than 2D BAG

Figure 6.3: Comparing our building footprints with 2D BAG
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6.1.4 Limitations

Although our results are promising, the performance of the deep learning models—both with and without
the Online strategy—remains constrained due to several factors, as outlined below.

1. Model capacity

The KPConv backbone network, used in this thesis, has limitations in feature-learning capacity compared
to newer transformer-based architectures. Transformer networks belong to a different family of networks
that work fundamentally differently from convolutional networks. They typically incorporate self-attention
mechanisms, which allow them to process larger geographical contexts with broader receptive fields—a
capability that sets them apart from the inherently local operations of convolutional networks, limited by
kernel size. For instance, recent studies have shown superior performance with transformer networks like
SuperPoint [Robert et al., 2023] and Stratified Transformer [Lai et al., 2022], which leverage innovative
self-attention mechanisms. Notoriously, however, self-attention is computationally intensive, requiring
high computational resources compared to the more lightweight convolution-only networks like KPConv
[Kappé, 2024].

2. Quality of additional features

The raw point cloud data from AHN lacks RGB and NIR information. GeoTiles enhances this data by
merging it with colored aerial MSI; however, it does not specify the source or resolution of the imagery
used. Additionally, there is an inherent temporal gap between point cloud and satellite image acquisitions.
Since satellite imagery is two-dimensional and typically ortho-corrected to counteract the oblique angles
at which it’s captured, alignment issues arise . This correction can introduce inaccuracies in the fused
point cloud, causing, for instance, buildings in the point cloud to be mistakenly colored with ground
features from nearby areas, or vice versa (Figure 6.5b).

Moreover, shadows from large structures in the MSI often project onto the point clouds, and temporal
changes in land cover can add further discrepancies. For example, agricultural fields might appear green
in the point cloud but show up as harvested in the imagery, or the opposite (Figure 6.5a). When NIR
data is incorporated, the effect is similar: NIR values from ground or tree features near buildings may be
projected onto building walls in point cloud, leading to inconsistent NIR representation across the fused
point cloud (Figure 6.4).

The artifacts incurred from fusing the two datasets could be a reason for the decline in performance on
specific classes, and also overall. For instance, the Buildings class saw a decline when NIR was added as
an additional feature to the deep learning models. Similarly, the Ground class performance dropped when
RGB features were added.

(a) RGB point cloud (b) Inconsistent NIR along building walls and roof

Figure 6.4: Artifacts from fusing aerial imagery NIR with AHN point cloud
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(a) Temporal Misalignment Artifacts: Temporal differences causing vehicle and land use inconsistencies in
point cloud.

(b) RGB Alignment Issues: Misalignment resulting in incorrect coloring of roofs and ground surfaces

Figure 6.5: Artifacts from fusing aerial imagery RGB with AHN Point Cloud

3. Missing context in training data

A notable observation across all experiments is the stark contrast between the per-class accuracy and the
IoU for Civil structures. While achieving more than 75% accuracy in most of experiments, with the best
84.2% when trained with additional RGB features, IoU remains less than 5%. This suggests that, while
the model is correctly identifying most Civil structures, it is also mistakenly classifying many points from
other classes of Ground and Building as Civil. The main reason for it being that, in the training data, there
is almost no green house data for the models to learn from. Structurally, green houses look very different
from normal buildings, but semantically they are labeled as Buildings in AHN. When the deep learning
models encountered these green house structures during validation, they have to classify structures which
they have not seen during the training phase. So, models created their own context to label green houses,
by labeling roof as Civil and points under the roof as Water and Ground (Figure 6.6). This emphasizes the
fact that deep learning models only learn from what they see—Good inputs gives good outputs.
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M Ground M Building Civil I Water [ Others M High tension

(a) RGB (b) Ground truth (c) +Online (with NIR)

(d) Under the greenhouse [+Online (with NIR)]

Figure 6.6: Greenhouses mislabeling

4. Misclassifications in ground truth

In the validation dataset, we observed numerous instances where buildings were incorrectly labeled as
Others in the ground truth data (Figure 6.7b), indicating errors in the ground truth itself. Although the
model has correctly identified these points as belonging to the Buildings class (Figure 6.7c), this mislabeling
in the ground truth data prevents the correct predictions from being accurately reflected in metrics such
as accuracy and IoU. Consequently, despite the model’s strong predictive ability, these metrics suggest
otherwise. Currently, aside from qualitative observations, we lack a quantitative method to measure these
discrepancies.

M Ground I Building  Civil Il Water [l Others M High tension

(a) RGB (b) Ground truth (c) +Online (trained on base features)

Figure 6.7: Wrong Building classifications in AHN
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6.2 Conclusions

In this section we will sequentially address each of the research sub-question.

* How can geospatial knowledge be incorporated into a deep learning framework, and what benefits

does this integration provide?

Geospatial knowledge is crucial to our confidence-aware deep learning model. In the preprocess-
ing stage, each point is assigned a confidence score using Neighborhood Consistency based on its
surroundings, which is then further refined with heuristic knowledge. The model is then trained
iteratively using these confidence scores, allowing the online learning framework to continuously
enhance the model’s understanding, refining the training data, and improve segmentation results.
Most importantly, unlike the self-training approach proposed by Li et al. [2021], which uses a com-
putationally intensive GAN with two networks, our method is lightweight and requires significantly
fewer computational resources.

To what extent does the online learning strategy enhance the model’s ability to correct misclassifica-
tions and improve overall segmentation accuracy compared to traditional training approaches?

When only raw LiDAR data (intensity and elevation) is available for segmentation tasks, a deep
learning model with the Online learning strategy proves to be the most effective. Specifically, the
Online strategy using base features—intensity and elevation—achieves the highest overall accuracy.
However, when additional features like NIR or RGB are available, the Online model falls short of
the Baseline model, both in overall performance and in specific classes such as High tension and
Civil. Observing the Online label updates on the training data, the updated labels show qualitative
improvements, with noisy labels and inconsistencies rectified, and bulk misclassifications, such as
Buildings mislabeled as Others, are corrected. This suggests that the Online strategy can enhance the
quality of training data; however, these improvements cannot be easily quantified.

What is the impact of incorporating additional spectral features (such as NIR and RGB) on the
performance of the proposed confidence-aware deep learning model for point cloud segmentation?

NIR offers marginal improvements for specific classes like Others (e.g., vegetation) due to its sensi-
tivity to plant characteristics, though it introduces spectral inconsistencies that can reduce accuracy
for classes like Building. While both NIR and RGB significantly improve the Baseline model’s perfor-
mance, they fail to yield similar gains when combined with the Online learning strategy. Artifacts
and temporal misalignments, likely explain the performance dips seen in Building (when using NIR)
and Ground (when using RGB) classifications, as these inconsistencies affect spatial and spectral
alignment. Based on the specific requirements and characteristics of each case, the appropriate
choice of additional features (NIR or RGB) can be identified to optimize model performance.

6.3 Future scope
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1. A couple of limitations discussed in this thesis (Chapter 6.1.4) could be addressed by employing

transformer networks, with the availability of greater computational resources to train the models.
Additionally, the colored point cloud data provided by Geotiles presents quality issues, such as
temporal and alignment artifacts. An alternative approach would be to use the raw AHN point
cloud data and independently fuse it with aerial or satellite imagery acquired as close as possible to
the point cloud data collection date. This method could mitigate alignment issues and improve the
coherence and reliability of the supplementary features, such as NIR and RGB.

. In theory, our approach is designed to be generic and applicable to various point cloud data sources.

However, the effectiveness of the confidence scoring mechanism and online learning strategy has
not yet been verified on other types of point cloud data, such as Terrestrial Laser Scanning (TLS)
or Mobile Laser Scanning (MLS), or across different geographic regions. Experimenting with TLS
and MLS data would further validate the generalizability of our method to diverse data types and
environments.



6.3 Future scope

3. Another promising direction is to leverage recent advances in computer vision, such as the SAM2
model [Ravi et al., 2024], for extracting building footprints directly from images, which could also
be utilized to refine confidence scores and improve overall accuracy. A potential future direction in-
volves incorporating synthetic point cloud data [Shinohara et al., 2021] to address the performance
limitations of minority classes. By artificially generating additional data for underrepresented cate-
gories, such as high tension lines and civil structures, the model could be exposed to a more balanced
dataset, improving its ability to learn robust features. This approach would not only mitigate the
effects of class imbalance but could also lead to more accurate and reliable classification of these
challenging categories, enhancing overall model performance and generalizability.
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