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Abstract Several recent studies have indicated that members
of the phylum Planctomycetes are abundantly present at the
brine-seawater interface (BSI) above multiple brine pools in
the Red Sea. Planctomycetes include bacteria capable of an-
aerobic ammonium oxidation (anammox). Here, we investi-
gated the possibility of anammox at BSI sites using
metagenomic shotgun sequencing of DNA obtained from
the BSI above the Discovery Deep brine pool. Analysis of
sequencing reads matching the 16S rRNA and hzsA genes
confirmed presence of anammox bacteria of the genus
Scalindua. Phylogenetic analysis of the 16S rRNA gene indi-
cated that this Scalindua sp. belongs to a distinct group, sep-
arate from the anammox bacteria in the seawater column, that
contains mostly sequences retrieved from high-salt environ-
ments. Using coverage- and composition-based binning, we
extracted and assembled the draft genome of the dominant

anammox bacterium. Comparative genomic analysis indicat-
ed that this Scalindua species uses compatible solutes for
osmoadaptation, in contrast to other marine anammox bacteria
that likely use a salt-in strategy. We propose the name
Candidatus Scalindua rubra for this novel species, alluding
to its discovery in the Red Sea.

Keywords Scalindua . Anammox . Red Sea . Genome
binning .Metagenomics . Salt adaptation

Over 25 brine pools have been discovered along the rift
through the middle of the Red Sea. These brine pools are
characterized by anoxic, salty water, and in some cases geo-
thermal activity [1]. The high salinity of the brine pools pre-
vents mixing with the overlying seawater creating a brine-
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seawater interface (BSI) featuring steep salt and, in the case of
hot brines, temperature gradients. Several studies using 16S
rRNA gene amplicon community profiling and shotgun
metagenomics have recently revealed the abundant presence
of Planctomycetes (5–35%) in the BSI above the Discovery
Deep, Atlantis II Deep, and Kebrit Deep brine pools [2–4]. As
these are low-oxygen environments, detection of
Planctomycetes likely indicates the presence of anammox
bacteria. Furthermore, recent studies have shown the
presence of ammonia-oxidizing Archaea and nitrite-
oxidizing Bacteria in the Atlantis II Deep BSI, indicat-
ing an active nitrogen cycle in these systems [5, 6]. To
further investigate the presence and nature of anammox
bacteria in the Red Sea BSI, we employed genome-
resolved shotgun metagenomics of the BSI above the
Discovery Deep, where 16S rRNA gene amplicon com-
munity profiling indicated that Planctomycetes were
more abundant than in other brine pools [2].

Total microbial community DNA (sample DIS-BWI, see
[2] for sampling and DNA extraction) was prepared for
IonTorrent sequencing as previously described [7]. The
resulting library was used for two sequencing runs, resulting
in a total of 10.1 million single-end reads. Reads were
trimmed on quality (quality limit = 0.05) and length
(>100 bp) using CLCgenomics workbench (v8.0.3, CLCbio,
Arhus, Denmark). The presence of anammoxwas investigated
by reconstructing full-length sequences of the 16S rRNA and
hydrazine synthase alpha (hzsA) genes by mapping and as-
sembly using the CLCgenomics workbench, as described pre-
viously [8]. Two 16S rRNA genes matching the Scalindua
clade, with coverage 52× and 14×, and two hzsA sequences,
with coverage 37× and 16×, could be reconstructed. The 16S
sequence obtained from the former, dominant Scalindua spe-
cies (5.7% of all 16S rRNA gene reads in our dataset), here-
after referred to as Candidatus Scalindua rubra, is only 94%
identical to Candidatus Scalindua brodae and clusters with
sequences obtained from the Atlantis II Deep BSI, the brine
adjacent to the Discovery Deep [4] (Fig. 1a). The latter, low
abundant Scalindua species (1.3% of all rRNA gene 16S
reads) clusters with sequences from the Arabian Sea oxygen
minimum zone and other sequences obtained from the
Atlantis II deep (Fig. 1a). Previously sequenced Ca. S. brodae
[9] and Candidatus Scalindua profunda [10] formed a third
cluster that also includes most sequences obtained from the
Eastern Tropical South Pacific oxygen minimum zone
(Fig. 1a). Phylogenetic analysis of the hzsA genes corroborates
that Ca. S. rubra is distant from Ca. S. profunda and Ca. S.
brodae (Fig. 1b). Interestingly, the partial sequences 16S
rRNA and hzsA sequences obtained by Borin et al. [11] from
the chemocline above Bannock brine in the Mediterranean,
cluster with Ca. S. brodae and Ca. S. profunda, rather than
with the sequences obtained from the Atlantis II Deep and
Discovery Deep BSI.

To obtain a draft genome of Ca. S. rubra, we assembled the
metagenome de novo using the CLCgenomics workbench with
word size 31 and bubble size 5000. Contigs were assigned to
Ca. S. rubra using emergent self-organizing maps [12, 13],
coverage, and GC content [14]. Scripts used for binning are
available at www.github.com/dspeth. The resulting 1020 Ca.
S. rubra contigs were used for iterative reassembly using
SPAdes (version 3.5.0) [15] and Bowtie2 [16], resulting in
443 contigs assigned to Ca. S. rubra (Table 1). Contigs were
error corrected to account for persistent IonTorrent-specific er-
rors as described previously [7] and annotated using Prokka
(version 1.10) [17] using a custom database containing the
six Brocadiales draft genomes in Genbank [7, 9, 18–21].
Coverage of the contigs representing the low-abundance
Scalindua species was too low (∼15×) to enable extraction of
a good quality draft genome of this organism.

The Ca. S. rubra draft genome encoded the genes required
for hydrazine metabolism, hydrazine synthase [22]
(SCARUB_01028–SCARUB_01030), and hydrazine dehy-
drogenase [23] (SCARUB_00654). The genes encoding hy-
drazine synthase subunits B and C are not fused in Ca. S.
rubra, suggesting that the fusion of these genes in Ca. S.
profunda and Ca. S. brodae is a recent event. Like the other
Scalindua species, Ca. S. rubra encodes a heme-cd1 type ni-
trite reductase (nirS) (SCARUB_03231). In contrast to Ca. S.
profunda, neither Ca. S. brodae nor Ca. S. rubra encode a
cyanase. Another interesting feature in the Ca. S. rubra ge-
nome is the apparent capability to synthesize gas vesicles, as
11 gas vesicle synthesis proteins are present. Although gas
vesicles are often regulated by light intensity, gas vesicle for-
mation is induced by high salinity in halophilic Archaeon
Haloferax mediterranei [24]. It is possible that Ca. S. rubra
uses gas vesicles to stabilize its position within the BSI and
prevent osmotic and/or heat shock as a result of the steep
gradients in the BSI. The cellular location of gas vesicles in
the already complicated cell architecture of an anammox bac-
terium is an interesting topic for further investigation.

To assess further adaptations to life in the BSI we searched
the draft genome of Ca. S. rubra for mechanisms of
osmoadaptation. Based on the recent work of Ngugi and col-
leagues [5], we used protein isoelectric point (IEP) distributions
as indicator for a charged cytoplasm resulting from a Bsalt-in^
osmoadaptation strategy [25]. We calculated the IEP of all pre-
dicted proteins in the eight available genomes of anammox
bacteria using the Biep^ script from the EMBOSS package
(v6.5.7) [26]. Surprisingly, the median protein IEP of Ca. S.
rubra is more basic than the median protein IEP of Ca. S.
brodae and Ca. S. profunda and comparable to that of the
freshwater species (Fig. 2). The acid-shifted distribution of pro-
tein IEP indicates that both previously sequenced Scalindua
species have adapted to seawater salinity using a Bsalt-in^ strat-
egy, adding acidic residues to prevent protein denaturation in
high-ion concentrations [27]. The observations that, in contrast
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to freshwater species, salt in the growth medium was required
to enrich Ca. S. profunda and that 90% of dry weight of this
organism consisted of salt further support this interpretation
[28, 29]. As expected, the acid shift is more pronounced if only
cytoplasmic proteins are considered, and absent from mem-
brane proteins (Supplemental Figure S1). In contrast, the more
basic IEP of Ca. S. rubra proteins suggests that it relies on
compatible solutes to cope with the salinity at the BSI.
Synthesis of compatible solutes is energetically more costly

than coping with salinity using a salt-in strategy [30].
Although some halophiles use a salt-in strategy at higher salin-
ity than observed at the Discovery Deep BSI [31, 32], it is
possible that Ca. S. rubra uses compatible solutes to adapt to
the range of salt concentrations resulting from the steep salt
gradient in the Discovery Deep BSI [2]. In line with this hy-
pothesis, the recently published genomes of ammonia-
oxidizing Archaea and nitrite-oxidizing Bacteria from the
BSI above the Atlantis II Deep, which is adjacent to the
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Fig. 1 Maximum likelihood trees of anammox 16S rRNA and hzsA
genes. a Maximum likelihood tree of 109 near full-length Brocadiales
16S rRNA genes matching >90% of the length the Ca. S. rubra sequence,
originating from enrichment cultures, draft genomes, and clone libraries
of marine environments. bMaximum likelihood tree of all available full-
length hzsA gene sequences obtained from draft genomes. Sequences

obtained in this study are indicated in bold. Trees were constructed
using MEGA5 [36], bootstrapped with 1000 replicates, and visualized
using the interactive tree of life (iTOL) v3 webserver [37]. Wedge
height was scaled proportional to number of sequences. OMZ oxygen
minimum zone, BSI brine-seawater interface, ETSP Eastern Tropical
South Pacific

Table 1 Metrics of the available Scalindua spp. draft genomes

Species Genome
size
(Mbp)

GC
content

Completeness
(%)

Contamination
(%)

# of contigs Reference

Candidatus Scalindua profunda 5.14 39.1 95 3 1580 [10]

Candidatus Scalindua brodae 4.08 39.6 92 2.3 282 [9]

Candidatus Scalindua rubra 5.19 37.3 92 5.1 443 This study

Completeness and contamination of the Scalindua spp. draft genomes were estimated using checkM [35]
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Discovery Deep, also indicate that these organisms employ
compatible solutes [5, 6].

We searched the Ca. S. rubra draft genome for proteins
required for biosynthesis and transport of common compatible
solutes. Many organisms use the amino acids glutamate, glu-
tamine, or proline as compatible solutes [33]. All anammox
bacteria can synthesize these amino acids, and thus, it is pos-
sible that Ca. S. rubra utilizes any or all three of these amino
acids. This could also provide an explanation for the adapta-
tion of freshwater anammox species Ca. K. stuttgartiensis to
marine salt concentrations [34]. None of the Scalindua species
is capable of synthesizing amino acid-derived compatible sol-
utes glycine-betaine or (hydroxy)ectoine, but all three encode
a glycine-betaine transporter. Furthermore, none of the
Scalindua genomes encode the potential for biosynthesis of
glycerate-derived compatible solutes or mannitol or sorbitol
[33]. Conclusive evidence on the presence, and nature, of
compatible solutes in Ca. S. rubra will require biomass for
experimental verification of the amino acid content.

In conclusion, we have presented the draft genome of a
moderately halophilic anammox bacterium, Ca. S. rubra.
Our analysis of the adaptations to salt stress in this genome
has shed new light on previous results of salt adaptation in
anammox bacteria.
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