<]
TUDelft

Delft University of Technology

Quantifying Location Privacy for Navigation Services in Sustainable Vehicular Networks

Li, Meng; Chen, Yifei ; Kumar, Neeraj ; Lal, Chhagan; Conti, Mauro ; Alazab, Mamoun

DOI
10.1109/TGCN.2022.3144641

Publication date
2022

Document Version
Final published version

Published in
IEEE Transactions on Green Communications and Networking

Citation (APA)

Li, M., Chen, Y., Kumar, N., Lal, C., Conti, M., & Alazab, M. (2022). Quantifying Location Privacy for
Navigation Services in Sustainable Vehicular Networks. IEEE Transactions on Green Communications and
Networking, 6(3), 1267-1275. https://doi.org/10.1109/TGCN.2022.3144641

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/TGCN.2022.3144641
https://doi.org/10.1109/TGCN.2022.3144641

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

1267

Quantifying Location Privacy for Navigation
Services 1n Sustainable Vehicular Networks

Meng Li"™, Member, IEEE, Yifei Chen, Student Member, IEEE, Neeraj Kumar™, Senior Member, IEEE,
Chhagan Lal™, Member, IEEE, Mauro Conti ™, Fellow, IEEE, and Mamoun Alazab™, Senior Member, IEEE

Abstract—Current connected and autonomous vehicles will
contribute to various and green vehicular services. However,
sharing personal data with untrustworthy Navigation Service
Providers (NSPs) raises serious location concerns. To address this
issue, many Location Privacy-Preserving Mechanisms (LPPMs)
have been proposed. In addition, several quantification meth-
ods have been designed to help understand location privacy and
illustrate how location privacy is leaked. However, their assess-
ment is insufficient due to the incomplete assumptions about the
adversary’s model. In particular, users tend to request the same
navigation routes from home to workplace and acquire traffic
information along the route. An adversary can collect the coor-
dinates of adjacent locations and infer the two true locations.
In this paper, we provide a formal framework for the analysis
of LPPMs in navigation services. Our framework captures extra
information that is available to an adversary performing local-
ization attacks. By formalizing the adversary’s performance, we
also propose and justify two new metrics to quantify location pri-
vacy in navigation services, namely accuracy and visibility. We
assess the efficacy of two popular LPPMs for location privacy,
i.e., differential privacy and k-anonymity. Experimental results
demonstrate that the adversary can recover users’ locations with
a high probability.
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I. INTRODUCTION

URRENT vehicular networks have provided more

efficient and green services [1]-[3] to vehicular
users. With the development in communication technolo-
gies and hardware [4]-[7], connected and autonomous vehi-
cles (CAV) will contribute significantly to the advancement
of various vehicular services under green and sustainable
economies.

Among the services, finding an optimal route from a
given location to a destination is a common one for drivers.
Due to the rapid development of sensing and communicat-
ing techniques, the increasing availability of users’ locations
has boosted the use of Location-Based Services (LBSs). In
the LBS-based application market, navigation services have
become favored in vehicular networks [8]-[12]. For exam-
ple, Google Maps currently has more than 1 billion users
worldwide [13].

In a typical navigation service, the user can be a driver
maneuvering a vehicle equipped with an On-Board Unit
(OBU) or a pedestrian holding a smartphone. The user sends
a navigation request including her/his current location and
a destination to a nearby Road-Side Units (RSUs) using
Dedicated Short Range Communications protocol and Long
Term Evolution (LTE)-based vehicle-to-everything technology
(i.e., LTE-based V2X or 5G V2X). The RSU then forwards
the navigation request to an NSP and returns a navigation
route to the user. Such services offer better user experiences
by allowing users to acquire optimal routes and driving guid-
ance. These services also reduce traffic accidents and improve
safety by enabling the vehicles to “see” the real-time road
traffic.

While rendering convenience to users, sharing personal
data (e.g., location) results in digital crumbs of their pri-
vacy [14]-[17]. This is primarily because the NSP is assumed
to be an untrustworthy entity (or adversary) [18], [19] which
leaks user information due to system malfunctioning or some
malicious employee selling the information illegally. The con-
sequences of location leakage are threefold. First, a user’s
visited locations are leaked. Sometimes, these visits are fre-
quent which exposes more sensitive information, such as
home. Second, a location is always correlated to an activity.
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Fig. 1. Location privacy preserving mechanism in navigation services.

A visit to a hotel may reveal a secret meeting with some-
one. Third, combined with some background knowledge, an
adversary will disclose the real identity of a user.

Note that a set of locations is more than a set of coordinates.
Exposing this information can lead to three levels of location
privacy leakage [20], [21]: 1) Primary level. The submitted
locations directly reveal users’ highly sensitive locations, e.g.,
home and workplace. 2) Deep level. Combined with the con-
textual information attached to the locations, the adversary
can tell the users’ habits and activities, e.g., eating weekly in
an Italian restaurant and visiting a dentist five times in two
months. 3) Interconnected level. If the adversary has acquired
two sets of locations with the same spatiotemporal characters
from two users, this will possibly disclose the relationship
between these two users, e.g., two “strangers” exchanging
business secrets in a coffee shop. Then, the location privacy
leakage exposes the users to annoying advertisements, finan-
cial loss, and loss of time, as well as make them vulnerable
to stalking and even criminal injury.

Several LPPMs have been proposed previously to pro-
tect location privacy, as depicted in Fig. 1, including the
two popular differential privacy [22] and k-anonymity [23].
Differential privacy draws some noises from a distribution
(e.g., a planar Laplace distribution [22]) and adds them to
the locations before users upload their locations to the NSP,
and k-anonymity refers to hiding the true location in a set
of k locations realized by randomly selecting k—1 locations
near the true locations. LPPMs function as a noisy channel that
alters the location information communicated from users to the
NSP [24]-[26]. They provide users a degree of control over
the amount of location information shared with the NSP. In
addition, governmental efforts have been made to promulgate
privacy laws that address challenges raised by data shar-
ing with commercial companies. For example, the European
Union’s General Data Protection Regulation (GDPR) went into
effect on May 25, 2018. These laws enforce data autonomy
by requiring the companies to increase transparency during
data collection and strengthening user rights regarding their
data.

The possibilities of attack surfaces have always been under-
estimated and defense mechanisms cannot adapt to new attacks
efficiently. We have observed that many navigation users tend
to request a route from home to workplace multiple times.
For example, Alice uses Google Maps to request a route
from her apartment to her place of employment on week-
days. No matter how the above-mentioned two mechanisms
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Fig. 2. Localization attack against navigation services.

perturb or mask Alice’s location in multiple requests, the sub-
mitted locations will form two general regions that remain
stable as the number of requests increases. Integrated with
some background knowledge, e.g., the layout of a community
and commercial district, an untrustworthy NSP will eventually
recover start points and endpoints, as shown in Fig. 2. We
refer to this attack as localization attack under multiple same
requests.

To quantify location privacy in LBSs, some contributions
have been made in specific areas, e.g., building a unified
framework for location privacy and defining components that
affect location privacy [27], presenting a theoretical frame-
work to model and quantify location privacy [28], developing
a model to measure source-location information leakage for
routing schemes in wireless sensor networks [29], inferring
true identity of a user in a group of anonymous traces with
some side information [30], and evaluating and configuring
LPPMs [31]. These techniques have inspired us to quantify
location privacy in navigation services. While we share com-
mon concerns, they did not provide a framework that can be
used to quantify LPPM in navigation services under the new
localization attack. Motivated by these issues, we propose to
measure location privacy quantitatively when current LPPMs
face a localization attack in navigation services. Taken as a
whole, our work can be considered as an exploration of loca-
tion privacy measurement in navigation services that can be
used as a reference in designing privacy-preserving schemes.
Our primary contributions are summarized as follows.

e We provide a generic model that formalizes the adver-
sary’s localization attacks against the homes and work-
places of navigation users.

¢ We propose two new metrics to quantify location privacy:
1) accuracy, i.e., the distance between the true location
and inferred location and 2) visibility from the estimated
location to the true location.

e We demonstrate the efficacy of two LPPMs, i.e., dif-
ferential privacy and k-anonymity, when they are used
to quantify location privacy in navigation services. We
also present the success probability in recovering two
frequently visited locations.

The remaining of this paper is organized as below. We give

a formal description of our framework in Section II. We eval-
uate the efficacy of two LPPMs in navigation services, and
provide a mitigation strategy in Section III. Some related work
is discussed in Section IV. Lastly, we discuss some issues in
Section V and conclude our work in Section VL.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 17,2022 at 07:34:09 UTC from IEEE Xplore. Restrictions apply.
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Fig. 3. Elements of the proposed location privacy framework.

II. PROPOSED FRAMEWORK

We define a location-privacy framework as a tuple of ele-
ments: (U, TL,T,LPPM,P,SL, A, METRIC), where U is
the set of navigation users, 7 L is the set of true locations, 7
is a set of time points at which the users submit a query, and
LPPM represents the LPPM acting on true locations ¢/ € TL
and producing submitted locations sl € SL. P is the set of
pseudonyms with which users replace their real identities, and
SL is the set of submitted locations. Here, adversary A is
the NSP and an entity (eavesdropping on the communication
channel) who implements the localization attack to infer #
after observing s/ by relying on some background knowledge.
The performance of A and its success probability in recov-
ering true locations is characterized by an evaluation metric
METRIC.

The framework is shown in Fig. 3, and the summary of
the notations is presented in Table 1. In the following subsec-
tions, we present and describe all elements of the proposed
framework and discuss their interrelationship.

A. Navigation Users

We denote U = {uq, ug, ..., un} aset of n navigation users
who frequently query a route from point A to point B. Time
is discrete and 7 = {1,2,...,t}. Here, two sequential time
points can be one minute, hour, or day apart.

B. LPPMs

The mechanism that modifies location to protect naviga-
tion users’ location privacy is referred to as an LPPM, which
processes navigation queries in two phases. In the anonymiza-
tion phase, the identity of the querying user v € U is replaced
with a pseudonym p € P = {p1,p2,...,pn} by using an
anonymization function f;. There are many ways to anonymize

TABLE I

NOTATIONS
NSP Navigation service provider
LPPM Location Privacy-Preserving Mechanism
CAV connected and autonomous vehicles
LBS Location-based services
RSUs Road-side unit
LTE Long term evolution
GDPR General data protection regulation
Uu, TL Set of navigation users, set of true locations
T, P Set of time points, set of pseudonyms
SLC, A Set of submitted locations, adversary
u, tl, t User identity, true location, time point
p, sl, E Pseudonym, submitted location, euclidean metric
f1, f2 Anonymization function, Perturbation function
M, Trin Randomized mechanism, location radius
Amin, P Privacy-aware cloaking region, location profile
PLI, H W Public location information, home, workplace
H s 17% Inferred home, inferred workplace
HL, NL Home locatio, noisy location
CL, N Central location, number of noises
st Distance between HL and C'L

an identity, e.g., selecting a pseudonym randomly, computing a
hash value of the concatenation of identity and timestamp, and
using an anonymous credential. In the perturbation phase, the
location of the querying user is perturbed to another location
by using a perturbation function f5.

Andrés et al. [22] proposed the Geo-Indistinguishability
concept, where for two locations x, y and the Euclidean metric
E(.,-), arandomized mechanism M satisfies E(M(z), M(y)) <
€E(z,y). Here, ¢ is referred to as the privacy budget which
corresponds to the level of privacy.

Niu et al. [23] designed a virtual circle-based cloaking algo-
rithm to satisfy k-anonymity. They first construct a virtual
circle with a location radius 7, satisfying 7 rpmin > Amin,
where A,,;, is the privacy-aware cloaking region. The cen-
ter ¢ of the circle is selected randomly from the local map

Authorized licensed use limited to: TU Delft Library. Downloaded on October 17,2022 at 07:34:09 UTC from IEEE Xplore. Restrictions apply.
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satisfying i < E(tl,¢) < 1/2 where [ is the length of
the local map. The first perturbed location pl; is determined
with an angle satisfying oy = ZLtleply = 27/k. The other
k—1 delusive locations can be selected around c¢ clockwise in
sequence.

LPPMs for navigation services can be implemented in
different manners, i.e., centralized or distributed implemen-
tations. In the distributed implementation, the modification is
performed by a trusted third party, i.e., a central anonymity
server, as opposed to being performed by users on OBUs or
smartphones in a distributed manner.

C. Adversary

When the navigation users submit their locations to the
NSP, some curious entities can eavesdrop on the wireless
communication channel to store these locations. A malicious
employee at the NSP may leak locations to profit organiza-
tions for financial benefits. How we describe the new threat
is very important to the proposed framework; therefore, we
model adversary A prior to enforcing protection on location
privacy. Here, A is portrayed by his background knowledge
and localization attacks. A knows the anonymization function
f1 and perturbation function fo, and he possesses some pub-
lic location information, e.g., private residential community,
apartment block, office building, and factory. Based on this
information, A forms a location profile P, for each user u.

When the attack type is different, the behavior of the system
will shift accordingly. If not come up with a protection mech-
anism accordingly, privacy may be sacrificed. However, in this
work, we concentrate on the location inferring attack.

D. Two Metrics to Quantify Location Privacy

The location profile P, is the output of A4 attacking user u.
Note that location profile P, can range from general to spe-
cific. However, in the proposed framework, P, contains two
locations, i.e., an inferred home H and an inferred workplace
w. Adversary A cannot access infinite resources; thus, H and
W are only estimates of two true locations H and W. The pri-
mary concern for a user is whether A finds the true locations.
To illustrate the efficacy of how A attacks and quantify the
location privacy, we present the following two metrics.

e Accuracy: We quantify the accuracy of each location in

P, by calculating the distance between H and H, ie.,
d; = E(H,H), and calculating the distance between

V{j and W, ie., dg = E(W, W). In other words, we
estimate how the inferred locations deviate from the true
locations and compute their distances. Here, a smaller
distance indicates more successful localization.

o Visibility: We quantify the visibility of the true locations
by calculating whether there is any barrier between HIW
and H/W. In other words, we estimate whether a person
standing at the inferred locations can see the true loca-
tions. Here, higher visibility indicates more successful
localization.

Note that accuracy by itself cannot cover the entirety of

location privacy; thus, we propose to use visibility as a sup-
plement. Given the same accuracy, e.g., dg = 5 meters, if

IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

there is a high wall between CL and HL, then A cannot see
HL or fully acquire the location privacy of HL, which makes
the attack less effective.

III. EVALUATION OF LPPMs

In this section, we first introduce the database used in this
study and present the experimental methodology. We then use
two LPPMs (Section II-B), i.e., the differential privacy-based
mechanism and k-anonymity based mechanism, and evaluate
their efficacy on location privacy in navigation services.

A. Database

We use the GeoLife as the database [32], which was col-
lected by the Microsoft Geolife project from April 2007 to
October 2011. This dataset involves 182 users holding dif-
ferent GPS loggers and GPS-phones, and contains more than
17,000 trajectories with a total distance of 1,251,654 km. Each
user has multiple files, each of which contains a GPS trajectory
for a single day. A sequence of time-stamped points repre-
sents each trajectory, and it includes latitude, longitude, date,
and time information. More than 90% of the trajectories were
recorded densely, e.g., 1-5s apart. GeoLife tracks users’ out-
door movements, including moving from home to workplace,
which is suitable for our experiments.

B. Experimental Methodology

First, we cluster the locations of each user by converting
.plt files containing their separate GPS locations into .csv
files, extracting the initial location item in the .csv files and
employing a DBSCAN clustering algorithm. For example, as
portrayed in Fig. 4(a), we found that user 000 had seven
start location clusters marked in red circles after we clustered
his/her start locations in 171 files.

Second, we manually review all location clusters for all
182 users and determined which stay points are homes and
workplaces based on the duration of stay and public location
information on the map. We set the stop time of each cluster
to one hour to detect stay points that represent a Point-of-
Interest (Pol). We then mark locations clusters on the Folium
map using the detection.stops() function in the open-source
library scikit-mobility (skmob). Then, we mark the location
clusters in different colors based on the stay time to facilitate
assessment. For example, if a user always stays in a location
from 22:00 to 06:00, we consider this location to be that user’s
home. As illustrated in Fig. 4(b), we list the stay time and loca-
tion clusters of 20 users for a typical day. The green pillar and
blue pillar represent their home and workplace, which domi-
nate their stay time. There are 61 and 68 users in the dataset
who only show their home and workplace, respectively.

Third, we select a home location HL randomly from the
abovementioned results as the home location. This location is
set as the ground truth. Here, two LPPMs are used to generate
noises.

Fourth, the noises are added to HL to produce noisy loca-
tions NL, and we compute the central location CL of the noisy
locations are the inferred location and compute the distance
dc/?, between CL and HL.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 17,2022 at 07:34:09 UTC from IEEE Xplore. Restrictions apply.
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Fig. 4. Preprocessing of the dataset.

Finally, we determine any objects or barriers (e.g., fence,
building, river) between CL and HL. To improve the accu-
racy of the inference attack, we combine some contextual
information on the map and adjust CL to obtain a more
reasonable output, i.e., the inferred location.

C. Differential Privacy-Based Mechanism

We quantify the location privacy of the differential privacy-

based mechanism. The detailed experiment is as follows.

e We randomly select an HL for user 000 (40.0097,
116.3151).

e We draw N noises from the planar Laplace distribu-
tion whose probability density function is ¢/ 2¢ €=zl
by using the laplace() function provided by the NumPy
library. Here, p is equal to O, which means the drawn
noises can be positive real numbers or negative real num-
bers. To achieve a meaningful perturbation and maintain
the utility of the navigation service, we limit the noises
to within [—10, 10], i.e., not more than 100 m away from
the HL. It corresponds to the filter step in Fig. 3. Here,
N noise values are 3, 4, 5, and 10.

o We add the N noises to the HL and obtain N noisy locations.
Note that the coordinate system is WGS—84, and that
meters have been converted to coordinate values on noisy
values. We compute the CL of the N noisy locations.

o After obtaining the CL, we compute the distance
dc/‘\L between CL and HL through using the dis-
tance(CL, HL).m method in GeoPy library. Here, the
dCAL indicates accuracy, i.e., smaller d(TL values indicate
higher accuracy.

e We identity CL and HL on the satellite map provided by
the Folium library and Google Maps and check to see
whether there is any object or barrier between CL and
HL by manually observing the map. If there is no object
or barrier, it means there is good visibility for A standing
at CL toward HL.

e We combine the map information and adjust the CL to
obtain a more reasonable inferred HL. For example, if
the CL is 3 meters from an entrance gate of a private
residential community, we consider the user’s HL is this
gate, and she/he lives in this community.

(b) Stay time of different location clusters for 20 users in one day

The experimental results are shown in Fig. 5(a), and we
mark the HL, NL, and CL in blue, yellow, and red, respec-
tively. We start from N = 3 because this scenario allows us to
obtain a possible CL. Then, we observe how the d oL changes
when N = 4 and N = 5. Note that the dé\L decreases as N
increases because the location privacy of the CL leaks more
when there are more noisy locations around it. After N reaches
10, dé\L = 2. For visibility, we set N € [3,10] and the result-
ing vector v. = [1,1,1,1,0,0,0,0] where 1 indicates there
is an object or barrier, and 0 otherwise. Under these condi-
tions, we can recover all HLs for all 182 users with a success
probability of 100% when N > 4.

D. k-Anonymity-Based Mechanism

Here, we quantify the location privacy of the k-anonymity-

based mechanism. The experimental details are as follows.

o Similar to the last subsection, we randomly select an HL
for user 000 (40.0097, 116.3151).

e To maintain consistency with the previous experiment,
we set 7, to 100. After the center c¢ is selected, we
construct a new Cartesian Coordinate System with ¢ as
the origin of the coordinate axis. Then, we use grid lines
to split the coordinate system into cells where the cell
size is 10%10 (m?).

e Given the values k and p, we implement a clockwise
rotation algorithm to determine the next k—1 candidate
locations. A geometric algorithm is also implemented to
determine which cells are passed through each radial. For
each radial, a passed through cell whose distance is no
greater than 7x*p from the candidate locations is randomly
selected. The center of the selected cells will be noisy
locations. Note, here k values are 3, 4, 5, and 10, and p
is 0.5.

o After obtaining the k—1 noisy locations, we compute the
center location CL of the k—1 noisy locations and the HL
with the same method. For every location that needs to
be shown on the map, its coordinates must be converted
from the Cartesian Coordinate System to WGS—84.

o After obtaining CL, we also compute the distance
between HL and CL by using distance(CL, HL).m method
in the GeoPy library.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 17,2022 at 07:34:09 UTC from IEEE Xplore. Restrictions apply.
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Fig. 5. Quantifying location privacy.

e We show CL and HL on the satellite map and manually

detect any object or barrier between CL and HL.

o Information around CL location is integrated to estimate

a reasonable HL.

The experimental results are shown in Fig. 5(b). HL, NL,
and CL are represented in blue, yellow, and red, respectively.
As with the previous experiment, we start from k = 3 to obtain
the CL. Then, we can determine whether dc/‘\L decreases as k
increases. We find that when k increases to 10, d 5 reaches 4.
For the visibility, we also set k € [3,10] and the resulting vec-
torv=[1,1,1,1,0,1,0,0]. As the HL in this experiment is in
a building, a reduction in the d 71, does not necessarily change
the visibility. However, when HL is in an open field, visibility
will more likely be 0. In the end, we can recover 100% of the
homes and workplaces for all the users after integrating some
geographical information. This is because multiple releasing
the same location with noises and background knowledge will
disclose the location.

E. A Mitigation Strategy

To defend the localization attack, we could first turn the
navigation model to a traffic congestion querying model, i.e.,
users do not have to input their home and workplace but only
query the traffic status on certain roads. To protect location
privacy, we could leverage secure searchable encryption. We
will encrypt locations into secure indexes and users obtain the
traffic by sending secure trapdoors to the NSP.

IV. RELATED WORK

Shokri et al. [27] were the first to construct a unified frame-
work for location privacy and define different components

of location privacy. They modeled mobile networks (includ-
ing users, time and space, and the spatiotemporal state of
users), and the profile of users’ activities after being processed
by LPPMs. They identified three components related to pro-
tecting location privacy, i.e., users, applications, and privacy
tools. Each component controls a certain amount of location
information. The adversary is characterized by observing the
output of an LPPM. It has three dimensions: means, actions,
and goals. Next, they defined location privacy on macro and
micro levels where the macro level referred to the user’s
privacy level throughout his trajectory and the micro level
referred to the user’s privacy on a small scale. By leverag-
ing the proposed framework, they model location privacy in
LBS and show its effectiveness.

Based on their previous work [27], Shokri et al. [28]
presented a formal framework to quantify location privacy by
formulating three location attacks, i.e., tracing attack, localiza-
tion attack, and meeting disclosure attack, and proposed three
quantification metrics, i.e., accuracy, certainty, and correct-
ness. They pointed out that uncertainty and inaccuracy alone
cannot measure location privacy. The core of the attack is
whether the adversary reveals the correct answer or how close
the adversary’s estimation is to the answer. A distance, which
is considered the correlation of the attack, can be computed
by using the estimation and the answer. By adopting the exist-
ing statistical methods, they implemented attacks to measure
user location privacy and evaluate the efficacy of entropy and
k-anonymity.

Li et al. [29] presented a model and three criteria to
quantify source-location privacy in existing routing-based
schemes for wireless sensor networks. For a routing trace-
back attack and to reduce a source node space attack, they
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define two criteria to quantify the leakage of source-location
information, i.e., source-location disclosure index and source-
location space index. An additional criterion is the normalized
source-location space index. These metrics can also be used
in many energy-constrained applications.

Ma et al. [30] focused on how an adversary with some
side information can infer an extended view of the loca-
tions of a user in an anonymous trajectory. Their experimental
results quantify the loss of user privacy as a function of sev-
eral parameters, including node mobility, inference strategies,
and noises in the trajectory or side information. To some
extent, the side information implies the location of a user at
a certain time; however, the implied information may not be
accurate. In reality, the side information could be acquired
by chance or engineered encounters. Different strategies are
used to identify the users’ trajectories, such as the maximum
likelihood estimator based approach and a minimum square
approach. To measure the efficacy of strategies, three metrics
are defined, i.e., fraction of correct conclusions, fraction of
incorrect conclusions, and fraction of undecided conclusions.

Primault et al. [31] proposed a framework ALP to support
evaluation and configuration of LPPMs. It forms a generic
model to specify privacy and utility goals that an LPPM should
satisfy. Instead of setting static configuration parameters, it
designs an optimizer to adjust the parameters to meet the
privacy and utility goals. However, the number of available
metrics and the definition of the objectives are limited.

Besides, there are cryptography-based approaches in pro-
tecting locations in vehicular networks and social networks.
Li and Jung [33] tackled the challenge raised from guaran-
teeing location privacy and utility at the same time. They
proposed a new fine-grained privacy-preserving location query
scheme based on attribute-based encryption and functional
encryption to achieve different levels of location query for
mobile platforms. Puttaswamy et al. [34] utilized secure user-
specific and distance-preserving coordinate transformations to
all locations shared with the cloud server for geosocial appli-
cations. A friend shares a user’s secrets so that they can use
the same transformation. It enables all location queries to
be processed correctly by the cloud server while the server
cannot know or infer the actual locations. Yu et al. [35]
proposed a privacy-preserving protocol to exploit the sparse
meeting opportunities for pseudonym changing in vehicu-
lar social networks. They leverage group signatures to build
pseudonym-changing regions where vehicles exchange their
pseudonyms. It enlarges the uncertainty of pseudonym mixture
for tracking adversaries.

V. DISCUSSIONS
A. Business Model

Since current commercial corporations are more concen-
trated on utility and efficiency, enforcing location privacy-
preserving mechanisms will incur computational burdens. It
is necessary to convince them to use such mechanisms. There
are some options for us to choose. First, we can use lightweight
cryptography [36], [37] to reduce computational costs. Second,
local differential privacy is also applied by Google Chrome to
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protect users it barely affect the efficiency while keep a rea-
sonable utility. Furthermore, with the improvement of device
capabilities, the extra burdens from location privacy-preserving
mechanisms will not be a significant issue.

B. Future Research Directions

The future research directions include several aspects. First,
semantic privacy in location privacy is to be explored and
measured. Second, it is necessary to locate other possible
sources of location privacy leakage, such as users’ misopera-
tions and cross-references with other social platforms. Third,
user-defined privacy should be integrated into the protection
mechanism to meet different user requirements. Next, privacy
computing that combines several existing privacy-enhancing
techniques is a powerful tool to further enhance location
privacy. Last, a united metric for quantifying privacy and
pertinent standardization are in need.

VI. CONCLUSION

Location information is of the utmost importance in many
LBSs because location information correlates to both system
utility and user privacy. This work targets the navigation ser-
vice in vehicular networks and quantifies users location privacy
under LPPMs. First, we provide a formal description of our
framework and propose two new metrics, i.e., accuracy and
visibility, to quantify location privacy. Then, we evaluate the
efficacy of two LPPMs in navigation services, i.e., differen-
tial privacy and k-anonymity. From the experimental results
by using a real-world dataset, we show that we can infer
users’ home and workplace if they frequently query the route
between the two locations.

Evaluating the efficiency of an LPPM and quantifying loca-
tion privacy is no easy task. This study explores location
privacy measurement customized for navigation services. We
suggest that special attention be paid to privacy quantification
in LBSs when designing LPPMs for such services.
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