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An improved version of Chubanov’s method for solving a
homogeneous feasibility problem
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(Received 6 January 2017; accepted 9 August 2017)

We deal with a recently proposed method of Chubanov [A polynomial projection algorithm for linear
feasibility problems. Math. Program. 153 (2015), pp. 687–713] for solving linear homogeneous systems
with positive variables. Some improvements of Chubanov’s method and its analysis are presented. We
propose a new and simple cut criterion and show that the cuts defined by the new criterion are at least
as sharp as in [1]. The new cut criterion reduces the iteration bound for his Basic Procedure by a factor
5, without changing the order of its strongly polynomial complexity. Our Modified Main Algorithm is in
essence the same as Chubanov’s Main Algorithm, except that it uses our Modified Basic Procedure as a
subroutine. It is shown that it has O(n4L) time complexity, just as in [1]. Some promising computational
results are presented, in comparison with the optimization package Gurobi.

Keywords: linear homogeneous systems; algorithm; polynomial-time

1. Introduction

We deal with the problem

find x ∈ Rn

subject to Ax = 0, x > 0,
(1)

where A is an integer (or rational) matrix of size m × n and rank (A) = m.
Recently Chubanov [1] proposed a polynomial-time algorithm for solving this problem. A

key ingredient for his algorithm is the so-called Basic Procedure (BP). As a result of the Basic
Procedure we get either

(i) a feasible solution of (1), or
(ii) a feasible solution for the dual problem of (1), or

(iii) a cut for the feasible region of (1).

The cut in (iii) has the form xk ≤ 1
2 for some index k and is used to rescale the matrix A.

The rescaling happens in the Main Algorithm, which sends the rescaled matrix to the Basic
Procedure until the Basic Procedure returns (i) or (ii).
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2 K. Ross

The dual problem in (ii) is

find u ∈ Rm

subject to ATu ≥ 0, ATu �= 0.
(2)

According to a variant of Farkas’ lemma, due to Stiemke [15], the systems (1) and (2) form an
alternative pair in the sense that exactly one of them is feasible. So if the Basic Procedure yields
(ii) then (1) is infeasible. Since A has integer (or rational) entries, the number of calls of the Basic
Procedure is polynomially bounded by O(nL), where L denotes the bit size of the A. This follows
from a classical result of Khachiyan [6] that gives a positive lower bound on the positive entries
of a solution of a linear system of equations. The Basic Procedure needs at most 4n3 iterations per
call and O(n) time per iteration. So the overall time complexity becomes O(n5L). By performing
a more careful analysis Chubanov reduced this bound by a factor n to O(n4L) [1, Theorem 2.1].

In this paper we present some improvements of Chubanov’s method and its analysis. In [13,
Section 1.2.2] we introduced a new way to derive cuts. We also proved that the new cuts are at
least as sharp as the cuts used by Chubanov. In this paper we present in Section 2 (Lemma 2.2)
a much simpler, almost obvious way to derive the same cuts. Section 3 is included not only to
convince the reader that the new cuts are indeed sharper than the cuts in [1], but also because we
need a biproduct (i.e. (11)) in Section 6.

The main contribution of this paper is the analysis in Section 4 of the Modified Basic Procedure
(abbr. MBP) that uses the new cuts. It takes much more work than for Chubanov’s cut to show
that the MBP requires no more than O(n3) iterations. Though it improves Chubanov’s bound
with the factor 5, it does not improve the order.

A second improvement is in the search direction of the MBP. This search direction was also
proposed in [13]; to make the paper self-supporting we include it in Section 4 (cf. Lemma 4.1).
We were not able to improve the iteration bound of the MBP but in practice it makes much
difference, as was acknowledged by Chubanov [1, Section 4.2].

In Section 5 we present our Modified Main Algorithm (abbr. MMA). In essence it is the same
as Chubanov’s Main Algorithm, except that it uses the Modified Basic Procedure as a subroutine.
Its analysis is presented in Section 6. It is shown that the MMA solves problem (1) in O(n4L)

time, just as in [1]. In Section 7 we present some computational results. We conclude with some
comments in Section 8.

2. Preliminaries

Let NA denote the null space of the m × n matrix A and RA its row space. So

NA := {x ∈ Rn : Ax = 0}, RA := {ATu : u ∈ Rm}.
We denote the orthogonal projections of Rn onto NA and RA as PA and QA, respectively:

PA := I − AT (AAT)−1
A, QA := AT (AAT)−1

A.

Our assumption rank (A) = m implies that the inverse of AAT exists. Obviously we have

I = PA + QA, PAQA = 0, APA = 0, AQA = A.

Now let y ∈ Rn. In the sequel we use the notation

z = PAy, v = QAy.
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Optimization Methods & Software 3

So z and v are the orthogonal components of y in the spaces NA and RA, respectively:

y = z + v, z ∈ NA, v ∈ RA.

These vectors play a crucial role in our approach. This is due to the following lemma.

Lemma 2.1 If z> 0 then z solves the primal problem (1) and if 0 �= v ≥ 0 then v gives rise to a
solution of the dual problem (2).

Proof Since z = PAy we have Az = APAy = 0, because APA = 0. Hence the first statement in
the lemma follows. The second statement follows by noting that v ∈ RA implies v = ATu for
some u. Since A has full row rank, u is uniquely determined by v and solves (2). �

Chubanov’s approach heavily depends on the following observation [1]. If x is feasible for
(1), then also x′ = x/ max(x) is feasible for (1), and this solution belongs to the unit cube, that is,
x′ ∈ [0, 1]n. It follows that (1) is feasible if and only if the system

Ax = 0, x ∈ (0, 1]n (3)

is feasible. Moreover, if d > 0 is a vector such that x ≤ d holds for every feasible solution of (3)
then x′′ = x/d ≤ e, where x/d denote the entry-wise quotient of x and d, so x′′

i = xi/di for each i.
This means that x′′ is feasible for the system

ADx = 0, x ∈ (0, 1]n, (4)

where D = diag (d). Obviously, problem (4) is of the same type as problem (3), since it arises
from (3) by rescaling A to AD. The algorithm presented below starts with d = e, and successively
improves d by dividing one of its coordinates by 2. Like Chubanov’s algorithm our algorithm
can be seen as a systematic way to construct a sequence of vectors d such that x ≤ d holds for
all feasible solutions of (3). However, while Chubanov used the vector z to construct cuts for (3),
in this paper this is done by exploring properties of the vector v.

Before we sketch how this goes we introduce some notations. The vector that arises from v by
replacing all its negative entries by zero is denoted as v+. The vector v− is defined in a similar
way, so that v− = −(−v)+. Denoting the all-one vector of length n as 1, the sum of the positive
entries in v is given by 1Tv+ , and the sum of its negative entries by 1Tv− . We call y a weak
cutting vector if

1Tv+ < − min(v) or − 1Tv− < max(v). (5)

The reason for this name is that if (5) holds then there exists at least one index k such that xk < 1
holds for all solutions of (3). This is a consequence of the next lemma.

Lemma 2.2 Let x be feasible for (3) and v = QAy for some y. Then every non-zero element vk

of v gives rise to a an upper bound for xk , according to

xk ≤ 1T

[
v

−vk

]+
. (6)
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4 K. Ross

Proof Since Ax= 0 we have PAx = x. Hence vTx = vTPAx = xTPAv = xTPAQAy = 0 , because
PAQA = 0. Now suppose vk < 0. Then we deduce from vTx = 0 and 0 ≤ x ≤ 1 that

−vkxk =
∑
i�=k

vixi ≤
∑

i, vi>0

vixi ≤
∑

i, vi>0

vi = 1Tv+.

On the other hand, if vk > 0 we obtain in the same way

vkxk = −
∑
i�=k

vixi ≤
∑

i, vi<0

−vixi ≤
∑

i, vi<0

−vi = −1Tv−.

Hence we have

xk ≤

⎧⎪⎪⎨
⎪⎪⎩

1Tv+

−vk
if vk < 0,

1Tv−

−vk
if vk > 0.

(7)

These two results imply the inequality in the lemma, as one easily verifies. �

Corollary 2.3 If a non-zero entry vk of v gives rise to a cut of the form xk ≤ τ < 1 then vk

has the same sign as 1Tv.

Proof Suppose vk < 0 and 1Tv+/(−vk) = τ < 1 for some τ ≥ 0. This implies 1Tv+ + τvk = 0
. Hence we may write

1Tv = 1Tv+ + 1Tv− ≤ 1Tv+ + vk = 1Tv+ + τvk + (1 − τ)vk = (1 − τ)vk < 0.

It is left to the reader to verify (in the same way) that vk > 0 and 1Tv−/vk = τ < 1 imply
1Tv > 0. �

In the sequel we shall use only cuts of the form xk ≤ 1
2 . If the right-hand side expression in

(6) does not exceed 1
2 we call (6) a proper cut. Moreover, we call y a proper cutting vector if

it induces at least one proper cut, otherwise we say that y is weak cutting if the smallest upper
bound is less than 1 and else non-cutting. In the sequel we usually omit the word proper, so when
we say that y is a cutting vector we always mean that it is a proper cutting vector.

An important observation is the following: the right-hand side in (6) does not change if we
replace v by −v. More generally, it is homogeneous in v, because if we replace v by λv, where λ

is any non-zero number, we get the same cut.

Example 2.4 By way of example we consider the case where v is given by

v =

⎡
⎢⎢⎢⎢⎢⎢⎣

3
4

−2
0
2
6.

⎤
⎥⎥⎥⎥⎥⎥⎦

Since 1Tv = 13 > 0 only positive entries vk in v may give rise to a non-void cut, by Corollary
2.3, and this happens if vk exceeds

−1Tv− = 2.

Thus we obtain a weak cut for x1 and proper cuts for x2 and x6, namely:

x1 ≤ 2
3 , x2 ≤ 2

4 , x6 ≤ 2
6 .
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Optimization Methods & Software 5

3. More on cut-generating vectors

In Lemma 2.2 we showed how to obtain a cut for problem (3) from a vector y. In this section we
discuss two other methods to generate cuts from a given vector y and their relations to the cut
defined in Lemma 2.2.

Fixing k, Chubanov [1, p. 692] considered the LO-problem

max{xk : Ax = 0, x ∈ [0, 1]n}.
The dual problem is

min{1Tw : ATξ + w ≥ ek , w ≥ 0} = min{1T [ek − u]+ : PAu = 0}.
The above equality uses that u = ATξ for some ξ if and only if PAu = 0. Hence, if yk �= 0 we
may take u = v/yk , with v as defined Section 2. It then immediately follows from the Duality
Theorem for Linear Optimization that

xk ≤ 1T

[
ek − v

yk

]+
. (8)

If moreover y ≥ 0 it follows that[
ek − v

yk

]+
=
[
ek − y − z

yk

]+
≤
[

z

yk

]+
,

because then ek − y/yk ≤ 0. Hence we obtain

xk ≤ 1T

[
z

yk

]+
= 1Tz+

yk
≤

√
n‖z+‖
yk

≤
√

n ‖z‖
yk

, (9)

which is exactly the cut used in [1], where y is always non-negative.
We present yet another way to obtain the cuts in Lemma 2.2, thereby showing that these cuts

are tighter than the cuts used by Chubanov. Instead of u = v/yk we use more generally u = αv,
with α ∈ R. We then have xk ≤ q(α) for every α, where the function q(α) is defined by

q(α) := 1T [ek − αv]+ = [1 − αvk]+ +
∑
i�=k

[−αvi]
+ , α ∈ R.

One may easily verify that q(α) is a non-negative piecewise linear convex function with a break-
point at α = 0 and, if vk �= 0, another breakpoint at α = 1/vk . Since q(α) is convex it attains its
minimal value at a breakpoint. The breakpoint at α = 0 yields the void inequality xk ≤ q(0) = 1.
So only the breakpoint at α = 1/vk is of interest, and this yields exactly the inequality in Lemma
2.2 (because the first term in the expression for q(α) vanishes at this breakpoint).

We conclude from the above analysis that for each non-zero y and for each k one has

xk ≤ min

(
1,

n∑
i=1

[−v

vk

]+)
≤ 1T

[
ek − v

yk

]+
≤

√
n ‖z‖
yk

, (10)

where the first inequality assumes vk �= 0, the second inequality yk �= 0 and the third inequality
y ≥ 0 and yk > 0.

Of course, an upper bound is non-void if and only if its value is less than 1. Note that the
second inequality yields a non-void cut only if vk has the same sign as yk . This easily follows
because otherwise the value of the kth term alone in this expression already is at least 1.
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6 K. Ross

We finally mention that (10) implies a result that we need later on, namely

n∑
i=1

[−v

vk

]+
>

1

2
⇒ yk < 2

√
n ‖z‖ , (11)

provided that y ≥ 0.

4. Modified basic procedure

We start by reformulating the dual problem (2) in terms of the vector y = ATu. Since y = ATu
holds for some u if and only if PAy = 0, it follows that the dual problem is feasible if and only if
the system

PAy = 0, y ≥ 0, y �= 0 (12)

has a solution. Chubanov’s algorithm can be viewed as a systematic search method for a vector
y satisfying (12). It will be convenient to call any such vector a dual feasible vector.

Since (12) is homogeneous in y and y �= 0, we may restrict the search to vectors y such that
1Ty = 1, where 1 denotes the all-one vector. If during this search it happens that PAy > 0, then
z = PAy is a solution of (1). This follows because APA = 0, whence Az = 0. If this happens we
call the vector y primal feasible.

From now on y always denotes a positive vector such that 1Ty = 1. In this section we show
that if y is not primal or dual feasible then it is possible to find in O(n3) time a new vector y such
that one of the following three cases occurs:

(i) z = PAy is feasible for (1);
(ii) z = 0, meaning that y satisfies (12);

(iii) y is a (proper) cutting vector.

In the first two cases the status of (1) is clear: in case (i) we have a solution of (3), and in case
(ii) a certificate for its infeasibility. In case (iii) y induces for at least one index k an inequality
xk ≤ 1

2 for all solutions of (3). Obvious such an inequality cuts off halve of the feasible region
of (3). It enables us to update the current vector d by dividing its kth entry by 2.

Our algorithm is presented in Algorithm 1; it is a modified version of Chubanov’s Basic
Procedure [1]. We call it Modified Basic Procedure and refer to it with the abbreviation MBP.

The MBP uses as input the projection matrix PA and the vector y, with y> 0 and 1Ty = 1. The
notation bound j(y) stands for the upper bound for xj in Lemma 2.2. So

bound j(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1Tv−

vj
if vj > 0,

1Tv+

−vj
if vj < 0.

The smallest of these bounds is denoted as bound (y). More precisely,

bound (y) =

⎧⎪⎪⎨
⎪⎪⎩

−1Tv−

max(v+)
if 1Tv > 0,

1Tv+

− min(v−)
if 1Tv < 0.

Note that each of these quantities can be computed in O(n) time.

D
ow

nl
oa

de
d 

by
 [

T
U

 D
el

ft
 L

ib
ra

ry
] 

at
 0

7:
05

 0
1 

D
ec

em
be

r 
20

17
 



Optimization Methods & Software 7

If the vector y is primal feasible or dual feasible and bound (y) > 1
2 the MBP requires only

one iteration. Then the output is y (unchanged), ȳ = 0, z = PAy and case = 1, or 2, respectively.
Otherwise it generates a new vector y such that one of the three cases (i), (ii) or (iii) occurs as we
now will show.

If y is such that the status of (1) is not yet decided (i.e. case = 0) then z �= 0 and at least one
component of z is negative or zero. Hence we may find a non-empty set K of indices such that

∑
k∈K

zk ≤ 0.

Denoting the kth column of PA as pk , we have pk = PAek , where ek denotes the kth unit vector.
We define

eK := 1

|K|
∑
k∈K

ek , pK := PAeK = 1

|K|
∑
k∈K

pk . (13)

Note that 0 �= eK ≥ 0, and 1TeK = 1 . If pK = 0 (pK > 0), then eK is dual (primal) feasible and
we are done. Hence, we may assume that pK �= 0. Using again that PA is a projection matrix
we obtain PAz = P2

Ay = PAy = z. This implies zTpk = zTPAek = zTek = zk for each k. Thus we
obtain

zTpK = 1

|K|
∑
k∈K

zTpk = 1

|K|
∑
k∈K

zk ≤ 0.

As a consequence, in the equation

‖z − pK‖2 = (‖z‖2 − zTpK
)+ (‖pK‖2 − zTpK

)
(14)

the two bracketed terms are both positive, because z and pK are non-zero and zTpK ≤ 0.
Therefore, we may define a new y-vector, denoted by ỹ, according to

ỹ = αy + (1 − α)eK , α = ‖pK‖2 − zTpK

‖z − pK‖2
= pT

K(pK − z)

‖z − pK‖2
. (15)

Because of (14), α is well-defined and α ∈ (0, 1). Since y > 0 and eK ≥ 0, we may conclude that
ỹ > 0 and, since 1Ty = 1TeK = 1, also 1Tỹ = 1.

The transformation (15) from y to ỹ is the key element in Algorithm 1.
It iterates (15) until y is primal feasible or dual feasible or a cutting vector. Our next step is to

find an upper bound for the number of iterations of the MBP. For this the next two lemmas are
important. The first lemma measures progress in terms of the merit function 1/‖z̃‖2.

Lemma 4.1 Let z �= 0 and let K be such that
∑

k∈K zk ≤ 0 and pK �= 0. With ỹ as in (15) and
z̃ := PAỹ, one has

1

‖z̃‖2
≥ 1

‖z‖2
+ |K| . (16)
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8 K. Ross

Algorithm 1: [y, ȳ, z, J , case] = Modified Basic Procedure(PA, y)

1: Initialize: z = PAy; ȳ = 0; case = 0; J = ∅;
2: while bound(y) > 1

2 and case = 0 do
3: if z > 0 then
4: case = 1 (y is primal feasible); return
5: else
6: if z = 0 then
7: case = 2 (y is dual feasible); return
8: else
9: find K �= ∅ such that

∑
k∈K zk ≤ 0

10: if pK > 0 then
11: y = eK

12: case = 1 (eK is primal feasible); return
13: else
14: if pK = 0 then
15: y = eK

16: case = 2 (eK is dual feasible); return
17: else
18: ȳ := y
19: α = pT

K(pK − z)/‖z − pK‖2

20: y = αy + (1 − α)eK

21: z = αz + (1 − α)pK (= PAy)
22: end
23: end
24: end
25: end
26: end
27: if case = 0 then
28: find a non-empty set J such that J ⊆ {j : boundj(y) ≤ 1

2 }
29: end

Proof We have

z̃ = αPAy + (1 − α)PAeK = αz + (1 − α)pK = pK + α(z − pK).

Hence,

‖z̃‖2 = α2‖z − pK‖2 + 2αpK
T(z − pK) + ‖pK‖2.

The value of α that minimizes this expression is given in (15). It follows that

‖z̃‖2 = ‖pK‖2 −
[
pT

K(z − pK)
]2

‖z − pK‖2
= ‖pK‖2‖z‖2 − (zTpK)2

‖pK‖2 + ‖z‖2 − 2zTpK
≤ ‖pK‖2‖z‖2

‖z‖2 + ‖pK‖2
,

where we used zTpK ≤ 0. Since PA is a projection matrix, ‖PAeK‖ ≤ ‖eK‖. So we may write

‖pK‖2 = ‖PAeK‖2 ≤ ‖eK‖2 =
∥∥∥∥∥ 1

|K|
∑
k∈K

ek

∥∥∥∥∥
2

= 1

|K|2
∥∥∥∥∥
∑
k∈K

ek

∥∥∥∥∥
2

= |K|
|K|2 = 1

|K| . (17)
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Optimization Methods & Software 9

It follows that

1

‖z̃‖2
≥ 1

‖z‖2
+ 1

‖pK‖2
≥ 1

‖z‖2
+ |K| , (18)

as desired. �

Below we derive an upper bound for 1/ ‖z‖2 if y is not a cutting vector. Thus we assume that
bound (y) ≥ 1/σ for some σ ≥ 1. Then we have bound k(y) ≥ 1/σ for all k such that vk �= 0.
This means that

1T

[
v

−vk

]+
≥ 1

σ
, ∀k such that vk �= 0. (19)

If v ≥ 0 or v ≤ 0 then the left-hand side expression in (19) equals zero. Hence, (19) implies that
v must have both positive and negative entries. The set of all (non-zero) vectors in Rn that satisfy
(19) is denoted as Vσ . So we have

Vσ = {v ∈ Rn \ {0} : v satisfies (19)}.

This definition implies that y is not a (proper) cutting vector if and only if the vector v belongs
to V2. As we made clear before, we may assume without loss of generality that 1Tv ≥ 0 . Then
only positive entries in v can give rise to a cut. Therefore v ∈ Vσ holds if and only if

− σ1Tv− ≥ max(v). (20)

The definitions of y, v and z imply the following relations:

y ≥ 0, 1Ty = 1, y = z + v, zTv = 0, (21)

where v ∈ Vσ . Our aim is to derive a positive lower bound for ‖z‖ if v ∈ Vσ . Fixing v ∈ Vσ , we
therefore consider the minimization problem

min
y,z,β

{‖z‖ : y ≥ 0, 1Ty = 1, y = z + βv, zTv = 0}. (22)

We introduced an additional variable β because if β = 1 problem (22) may be infeasible.1 A
crucial observation is that if β �= 0 then v ∈ Vσ if and only if βv ∈ Vσ . Another important fact is
that the problem is easy to solve if β = 0, because then z = y. Since y ≥ 0 and 1Ty = 1 we then
have ‖z‖ ≥ 1/

√
n, whence 1/ ‖z‖2 ≤ n. The main result in this section is the following lemma,

whose proof makes clear that much smaller values of ‖z‖ are achieved if β �= 0.

Lemma 4.2 Let n ≥ 2, σ ≥ 2 and v ∈ Vσ . If y and z satisfy (21) then

1

‖z‖2 ≤ n3σ 2

5
.
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10 K. Ross

Proof This proof uses a second optimization problem, namely 2

max
α, λ

{α : λ ≥ α1, ‖λ‖ ≤ 1, λTv = 0}. (23)

The relevance of this problem for our purpose is that if (y, z, β) is feasible for (22) and (λ, α) for
(23), then one has

‖z‖ ≥ ‖z‖ ‖λ‖ ≥ λTz = λT(y − βv) = λTy ≥ α1Ty = α, (24)

where we used the Cauchy–Schwarz inequality and the feasibility conditions for both problems.
Hence, if we have a feasible solution (λv, αv) for each v ∈ Vσ , then it follows that

‖z‖ ≥ min{αv : v ∈ Vσ }. (25)

This argument underlies the rest of the proof and leads to the upper bound for 1/ ‖z‖2 in the
lemma.

Let v ∈ Vσ . It will be convenient to introduce the index sets R and S as follows:

R = {i : vi > 0}, S = {i : vi < 0}.
We define the vector λ ∈ Rn as follows:

λi =

⎧⎪⎨
⎪⎩

τ if i ∈ R

ξ if i ∈ S

τ if vi = 0.

(26)

Denoting the restriction of λ to the index set S as λS and using similar notation for the restrictions
of λ, v and 1 to a set of indices, we may write λR = τ1R and λS = ξ1S . Now λ is feasible for (23)
if for some α:

ξ1S
TvS + τ1R

TvR = 0, (27)

|S| ξ 2 + |R| τ 2 = 1. (28)

λ ≥ α1. (29)

The definitions of the sets S and R imply 1T
RvR > 0 and 1T

S vS < 0. Since 0 ≤ 1Tv = 1T
S vS + 1T

RvR

we have 1T
RvR ≥ −1T

S vS . Since (27) holds if and only if

ξ = 1T
RvR

−1T
S vS

τ . (30)

we must have ξ ≥ τ . Then (29) holds if α = τ . Hence λ is feasible for (23) with objective value
τ if (28) holds. This is true if and only if

|S| (1T
RvR)2

(1T
S vS)2

τ 2 + |R| τ 2 = 1,

which is equivalent to

τ 2 = (1T
S vS)

2

|R| (1T
S vS)2 + |S| (1T

RvR)2
. (31)
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Optimization Methods & Software 11

At this stage we use v ∈ Vσ , that is, (20). Since 1Tv− = 1T
S vS we derive from (20) that each vi

with i ∈ R satisfies −σ1T
S vS ≥ vi > 0. So we may write

0 < 1R
TvR =

∑
i∈R

vi ≤
∑
i∈R

−σ1S
TvS = −σ1S

TvS

∑
i∈R

1 = −σ |R| 1S
TvS .

Substitution into (31) yields

τ 2 ≥ (1T
S vS)

2

|R| (1T
S vS)2 + σ 2 |S| |R|2 (1T

S vS)2
= 1

|R| (1 + σ 2 |S| |R|2) . (32)

Hence, by (25),
1

‖z‖2 ≤ max
R,S

|R| (1 + σ 2 |S| |R|2) .

It remains to find out how large the last expression can be. This is possible because of the obvious
inequality |R| + |S| ≤ n. Since the expression is decreasing in both |R| and |S| the largest value
occurs if |R| + |S| = n. Therefore, putting t = |R| and |S| = n − t we need to find the maximal
value of the function

f (t) = t(1 + σ 2t(n − t)), 1 ≤ t ≤ n − 1.

One easily verifies that the largest value of f (t) occurs if t = θ , with θ = (m + √
3 + m2)/3σ ,

where m = nσ , and then the value is given by

f (θ) =
(
m + √

3 + m2
) (

6 + m2 + m
√

3 + m2
)

27σ

= 2m3 + 9m + (
6 + 2m2

)√
3 + m2

27σ
.

Since n ≥ 2 and σ ≥ 2 we have m ≥ 4, whence
√

3 + m2 ≤ m + 9
25 . Hence we get

f (θ) ≤ 2m3 + 9m + (
6 + 2m2

) (
m + 9

25

)
27σ

= 4m3 + 18
25 m2 + 15m + 54

25

27σ
.

Since m ≥ 4, we have 18
25 m2 + 15m + 54

25 ≤ 1.4 m3. Substitution gives

f (θ) ≤ 5.4 m3

27σ
= m3

5 σ
= n3σ 3

5 σ
= n3σ 2

5
.

This implies the inequality in the lemma. �

Our interest is the case where σ = 2. Then Lemma 4.2 yields that if y is non-cutting then

1

‖z‖2 ≤ 4n3

5
< n3. (33)

It may be worth noting that this improves the upper bound for 1/ ‖z‖2 in [1, Lemma 2.2] by a
factor 5.

Theorem 4.3 After at most n3 iterations the MBP yields a vector y that is either a cutting
vector (case = 0) or primal feasible (case = 1) or dual feasible (case = 2).
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12 K. Ross

Proof If bound (y) ≤ 1
2 then y is a cutting vector and the MBP requires only 1 iteration. Oth-

erwise bound (y) > 1
2 , which implies 1/‖z‖2 < n3, by (33). If during the execution of the while

loop in Algorithm 1 it happens that z > 0 or z = 0 then the MBP immediately stops. Otherwise,
since |K| ≥ 1, the while loop increases 1/‖z‖2 by at least 1, by Lemma 4.1. Hence, after at most
n3 executions of the while loop the algorithm yields a vector y that is primal feasible (case = 1)
or dual feasible (case = 2) or such that 1/‖z‖2 ≥ n3. In the last case it follows from Lemma 4.2
that y is a cutting vector (case = 0). �

Provided that we take care that |K| = O(1), each execution of the while loop requires at most
O(n) time. Therefore each execution of the MBP will require at most O(n4) time. Note that this
bound is valid only if the size of the set J in line 23 of the MBP is also of order 1, because the
computation of bound j(y) requires O(n) time for each element of J. Therefore, we assume below
always that the set J is chosen in a such a way that |J | = O(1).

In order to solve (1) one needs to call the MBP several times by another algorithm, named the
Modified Main Algorithm, a modified version of Chubanov’s Main Algorithm [1]. We deal with
this in the next section. Then it will become clear why the output of the MBP contains the vector
ȳ. One easily verifies that ȳ is the zero vector if the MBP requires only one iteration; otherwise it
is the last non-cutting vector y generated during the course of the MBP.

5. Modified main algorithm

As announced in Section 2 the MMA maintains a vector vector d such that x ≤ d holds for
every feasible solution of problem (3). Initially d is the all-one vector. But each time the MBP
generates a cutting vector the upper bound dj for xj can be divided by 2, for all indices j in the
set J.

As a consequence, the entries of d have the form 2−ti , where ti denotes the number of times
that a cut was generated for the i-th entry of x. Hence we may restate (4) in the following way:

Ax = 0, 0 < xi ≤ di, 1 ≤ i ≤ n, (34)

where di = 2−ti . According to Khachiyan’s result [6] there exists a positive number τ satisfying
1/τ = O(2L), where L denotes the bit size of the matrix A, such that the positive coordinates of
the basic feasible solutions of (3) are bounded from below by τ [6,12,14].

Since the basic feasible solutions also satisfy x ≤ d, we conclude that (3), and hence problem
(1), must be infeasible as soon as di < τ for some i. This explains the statement in line 7 of
Algorithm 2. As a consequence of this line the MMA will stop if problem (3) turns out to be
infeasible due to Khachiyan’s criterion (case = 3).

The MMA starts with d = e and y = e/n. As long as the status of problem (1) is not yet fixed
(i.e. case = 0) each execution of the while loop does the following. Given the current matrix
A the projection matrix PA is computed. Then the MBP is called. If the MBP yields case > 0
the algorithm stops. If case = 1, the vector z is positive and satisfies ADz = 0, whence x=Dz
solves problem (1) and if case = 2 the problem is infeasible (or more precisely, has no solution
x satisfying x ≥ τ1). Otherwise, if case = 0, it divides the entries of d indexed by the set J by 2
and then checks if one of the new entries in d is smaller than τ . If so, it stops (with case = 3).
Otherwise we still have case = 0. So far everything goes as one might expect.

At this stage the auxiliary vector ȳ enters the scene. Without this vector the algorithm would
still work correctly, but with it the runtime can be guaranteed via Lemmas 6.1 and 6.2 in the next
section. As mentioned before this vector equals the zero vector if the MBP did not change the
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Optimization Methods & Software 13

Algorithm 2: [x, y, d , case] =Modified Main Algorithm(A, τ)

1: Initialize: d = e; y = e/n; x = 0; case = 0;
2: while case = 0 do
3: PA = I − AT(AAT)−1A
4: [y, ȳ, z, J , case] = Modified Basic Procedure(PA, y)
5: if case = 0 then
6: dJ = dJ/2
7: if min(dJ ) < τ then
8: case = 3
9: else

10: if ȳ �= 0 then
11: y = ȳ
12: end
13: AJ = AJ/2
14: yJ = yJ/2
15: y = y/1Ty
16: end
17: end
18: end
19: if case = 1 then
20: D = diag(d)

21: x = Dz
22: end

vector y, but otherwise it is the last non-cutting vector generated by the MBP. The current y –
which is a cutting vector with respect to the current A – is replaced by the non-cutting vector ȳ.

Next the MMA divides the columns of A and the entries of y indexed by the set J by 2. As a
consequence the constraint matrix equals AD, with D = diag (d) (where A is the original matrix
and d the current vector of upper bounds for the entries of feasible vectors x). Finally the MMA
normalizes y. After this the while loop is entered again. So the PA is computed for the new matrix
A, etc.

6. Complexity analysis

Due to the use of Khachiyan’s result we can easily derive an upper bound for the number of
iterations of the MMA. As we noticed in the previous section, during the course of the MMA
we certainly have ti ≤ log2

1
τ

for each i. Let T denote the number of times that the MMA calls
the MBP. Then T is also equal to the number of returns from the MBP to the MMA. Since each
return, except possibly the last one, yields at least one cut, we must have

T ≤ 1 +
n∑

i=1

ti.

Hence we get

T ≤ 1 +
n∑

i=1

log2
1

τ
= 1 + n log2

1

τ
= O(nL). (35)
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14 K. Ross

Since the MBP needs at most n3 iterations, by Theorem 4.3, in total we need O(n4L)

MBP-iterations. Each MBP-iteration needs O(n) time. Hence, the contribution of the MBP to
the time complexity of the MMA becomes O(n5L).

The main computational task in the MMA is the computation of PA. The first time this can
be done in O(n3) time [3,12]. Since |J | = O(1), in each next iteration the matrix A is a low-
rank modification of the previous matrix A. By applying the Sherman–Morrisen–Woodbury
formula [5]

(A + aaT)−1 = A−1 − (
1 + aTA−1a

)−1
A−1aaTA−1

|J | times, the new projection matrix PA can be computed in O(n2) time. So, in total the MMA
needs

O(n3) + O(n2)O(nL) = O(n3L) (36)

time. This yields the overall time complexity O(n5L) + O(n3L) = O(n5L).
Clearly the time estimate for the MBP is worse than for the MMA. We conclude the paper by

proving that the time complexity for the MBP can be improved by a factor n, thus yielding an
overall time complexity of O(n4L).

Crucial for our result is the next lemma. It deals with the case where the MMA redefines y
in line 10-14. There ȳ is a non-cutting vector and y is obtained by rescaling ȳ to Dȳ and then
normalizing y so that 1Ty = 1 , with D = diag (d) and di = 1

2 if i ∈ J and di = 1 if i /∈ J . More
generally we will assume that di ≤ 1

2 for i ∈ J . Moreover, A will denote the current version
(maybe already rescaled) of the initial matrix A. The lemma slightly improves [1, Lemma 2.3];
it differs from that lemma only in the assumption di ≤ 1

2 for i ∈ J .

Lemma 6.1 Let ȳ be non-cutting with respect to (the current matrix) A, D as just defined and
y = Dȳ/1TDȳ . If z̄ = PAȳ and z = PADy, then

1

‖z̄‖2
− 1

‖z‖2
< 2 |J | n2.

Proof We start by proving the inequality ‖PADDȳ‖ ≤ ‖PAȳ‖ = ‖z̄‖. Since v̄ := ȳ − z̄ ∈ RA we
have v̄ = ATu for some u. Using PADDAT = 0 it follows that PADDv̄ = 0. Hence PADD(ȳ − z̄) =
0, whence PADDȳ = PADDz̄. Since PAD is a projection matrix, it does not increase the length of
a vector. Therefore, also using 0 ≤ d ≤ 1 we obtain

‖PADDȳ‖ ≤ ‖Dz̄‖ ≤ ‖z̄‖.

Also using the definitions of y and z it follows that

‖z‖ = ‖PADy‖ =
∥∥∥∥PAD

Dȳ

1TDȳ

∥∥∥∥ = 1

1TDȳ
‖PADDȳ‖ ≤ ‖z̄‖

1TDȳ
.

Since 1Tȳ = 1 , di = 1 if i /∈ J and di ≤ 1
2 if i ∈ J , we may write

0 ≤ 1TDȳ ≤
∑
i/∈J

ȳi +
∑
i∈J

1

2
ȳi = 1 −

∑
i∈J

ȳi +
∑
i∈J

1

2
ȳi = 1 −

∑
i∈J

1

2
ȳi.

We therefore obtain

1

‖z‖2
≥
(
1TDȳ

)2

‖z̄‖2
≥
(
1 − 1

2

∑
i∈J ȳi

)2

‖z̄‖2
≥ 1

‖z̄‖2
−
∑

i∈J ȳi

‖z̄‖2
.

D
ow

nl
oa

de
d 

by
 [

T
U

 D
el

ft
 L

ib
ra

ry
] 

at
 0

7:
05

 0
1 

D
ec

em
be

r 
20

17
 



Optimization Methods & Software 15

Since ȳ is non-cutting, we derive from (11) that

ȳk < 2 ‖z̄‖ √
n, 1 ≤ k ≤ n.

Using this and 1/‖z̄‖ ≤ n
√

n, by (33), we obtain

1

‖z̄‖2
− 1

‖z‖2
≤
∑

i∈J ȳi

‖z̄‖2
≤ 2 |J | ‖z̄‖ √

n

‖z̄‖2
= 2 |J | √n

‖z̄‖ ≤ 2 |J | n2.

This proves the lemma. �

Lemma 6.1 makes it possible to improve the upper bound for the total number of MBP-
iterations. Following Chubanov [1], we distinguish two types of MBP-iterations: slow iterations
when the MBP changes ȳ – and also y – and fast iterations that leave ȳ and y unchanged. In short,
a MBP-iteration is slow if and only if it yields ȳ �= 0.

The number of fast iterations is denoted as Nf and the number of slow iterations as Ns. So the
total number of MBP-iterations equals N := Nf + Ns.

Since case = 0 at the start of the MBP, a fast iteration occurs if and only if at the start of the
while loop in the MBP y is a proper cutting vector or y (or eK) is primal or dual feasible. Hence,
it is either the last MBP-iteration or it generates cuts for the indices in J, without changing y.
From this one easily understands that Nf = T , where T is the total number of MMA-iterations.
Since T = O(nL), by (35), we obtain

N = O(nL) + Ns.

In order to obtain an upper bound for Ns we number the MBP iterations (including the fast
ierations) from 1 to N. We define iteration numbers a1, . . . ak and b1, . . . bk in such a way that
ai ≤ bi < ai+1 for 1 ≤ i < k and if ai ≤ j ≤ bi for some i then iteration j is slow, and otherwise
iteration j is fast. In other words, the sequence of MBP iterations contains k ‘trains’ of slow
sequences [ai, bi] that are separated by one or more fast MBP-iterations (see Figure 1). Note that
fast iterations may also occur before the first train and after the last train.

It may happen that k = 0, that is, all MBP iterations are fast. Then N = O(nL), and the MBP
needs O(n2L) time in total. So we assume below that k ≥ 1. We denote the y- and z-vector at the
start of the while loop at iteration j as yj and zj, respectively. Then we have the following result.

Lemma 6.2 For each i such that 1 ≤ i ≤ k one has

bi − ai ≤ 1

‖zbi‖2
− 1

‖zai‖2
.

Proof One has

bi − ai =
bi−1∑
j=ai

1 ≤
bi−1∑
j=ai

(
1

‖zj+1‖2
− 1

‖zj‖2

)
= 1

‖zbi‖2
− 1

‖zai‖2
,

where the inequality is due to Lemma 4.1 and the equalities are obvious. �

Figure 1. Sequence of BMP iterations.
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16 K. Ross

It follows from Lemma 6.2 that the total number of slow MBP iterations satisfies

Ns ≤
k∑

i=1

(
1

‖zbi‖2
− 1

‖zai‖2

)
.

By rearranging the terms in the above sum we obtain

Ns ≤ 1

‖zbk ‖2
− 1

‖za1‖2
+

k−1∑
i=1

(
1

‖zbi‖2
− 1

‖zai+1‖2

)
.

Since iteration bk is slow, the y-vector at the start of the while loop is non-cutting. Due to (33)
this implies that the first term in the last expression does not exceed n3. Neglecting the second
term we obtain

Ns ≤ n3 +
k−1∑
i=1

(
1

‖zbi‖2
− 1

‖zai+1‖2

)
. (37)

If k = 1, this gives Ns ≤ n3, in accordance with Theorem 4.3. Then N ≤ O(nL)+n3, which
implies that the MBP needs O(n4 + n2L) time in total.

It remains to deal with the hardest case, where k ≥ 2. We use that if 1 ≤ i < k and bi < j <

ai+1 then iteration j is fast. Denoting the number of these fast iterations as Ti, their iteration
numbers are bi + 1 to bi + Ti. So one has Ti = ai+1 − bi − 1 ≥ 1.

Lemma 6.3 For each i such that 1 ≤ i < k one has

1

‖zbi‖2
− 1

‖zai+1‖2
< 4n2 O(Ti).

Proof To clarify the reasoning in this proof we include Table 1.
Since iteration bi is slow it yields a cutting vector y and a non-cutting vector ȳ as output, as

well as the set J of indices for which y yields cuts. Then the MMA replaces y by Dȳ/1Tȳ , where
D is the diagonal matrix with Dii = 1

2 if i ∈ J and Dii = 1 if i /∈ J . This vector is the input for
MBP iteration bi + 1 and denoted as ỹ1 in Table 1. Since iteration bi + 1 is fast, ỹ1 is cutting. So
it does not change ỹ1, but yields cuts according to the corresponding set J1 in its output. Then the
MMA changes ỹ1 to ỹ2 by rescaling the J1-coordinates of ỹ1 and then normalizing, and so on.

As a result, after iteration bi + Ti the vector ỹTi has the form Dȳ/1TDȳ , where the matrix D
is the product of matrices Dj (1 ≤ j ≤ Ti). This vector is the input at iteration ai+1. Each Dj is
a diagonal matrix with

∣∣Jj

∣∣ entries equal to 1
2 and the remaining entries 1. It follows that D is a

diagonal matrix with a most
∑Ti

j=1

∣∣Jj

∣∣ entries less than or equal to 1
2 and the remaining entries 1.

Since
∣∣Jj

∣∣ = O(1), for each j, the number of entries less than 1 in D is O(Ti).
Now Lemma 6.1 implies that

1

‖zbi‖2
− 1

‖zai+1‖2
< 2n2 O(Ti).

This proves the lemma. �

Table 1. A sequence of MBP-iterations as considered in Lemma 6.3.

iteration number bi bi + 1 bi + 2 . . . . . . bi + Ti bi + Ti + 1 = ai+1
type slow fast fast . . . . . . fast slow
input ỹ1 ỹ2 . . . . . . ỹTi

output y, ȳ �= 0 J1 J2 . . . . . . JTi
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Optimization Methods & Software 17

Table 2. Comparison of the modified method of Chubanov with Gurobi.

size(A) iterations accuracy sizes K and J time (s)

m n MMA MBP |Ax| |K| |J | Chubanov Gurobi

5 10 2.0 2.5 9.7e − 15 0.2 5.0 0.0004 0.0011
25 50 3.5 47.0 1.8e − 13 5.6 17.9 0.0016 0.0020
125 250 4.7 918.0 3.5e − 12 37.3 69.7 0.0490 0.0303
625 1250 7.3 4676.2 2.3e − 11 243.5 525.3 4.7700 5.2611

Substitution of the inequality in Lemma 6.3 into (37) yields

Ns ≤ n3 + 2n2
k−1∑
i=1

O(Ti) ≤ n3 + 2n2 O(T).

Finally, using T = O(nL) again we get

N = O(nL) + n3 + 2n2 O(nL) = O(n3L).

Each MBP-iteration requires O(n) time. Hence the contribution of the MBP to the time complex-
ity is O(n4L). As we established in (36) the contribution of the MMA is O(n3L). Hence without
further proof we may state our main result.

Theorem 6.4 The total time complexity of the MMA is O
(
n4L

)
.

7. Computational results

To compare our approach with other approaches for solving linear systems we produced Table 2.
Each line gives the average results for a class of 100 randomly generated problems with matrices
A of size m × n as given in the first two columns. The elements of A were randomly chosen
integers in the interval [−100, 100], and uniformly distributed. For each of the given sizes the
corresponding line gives the average number of iterations of the MMA and the MBP, the average
accuracy and the average sizes of the sets K and J. The last two columns give the average solution
times for our approach and for Gurobi, which is one of the fastest solvers nowadays, if not the
fastest. Like any solver for LO problems, Gurobi cannot handle strict inequalities. So we used
Gurobi with as input the following LO problem, which is equivalent to the homogeneous problem
that we want to solve:

min{0Tx : Ax = 0, x ≥ e}.
Taking into account that our implementation was in Matlab, and rather straightforward, it seems
promising that the new approach competes with Gurobi. It must be admitted, however, that our
experiments were conducted on a limited class of dense randomly generated problems and not
on sparse problems.

8. Conclusion

Though conducted on a limited class of dense problems our comparison with Gurobi, which is
nowadays one of the fastest solvers for linear systems, yielded promising results.
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It remains as a topic for further research to find out if more can be said on the behaviour of
the sizes of the sets K and J. In [1] these sets are always singletons. Our experiments made clear
that taking larger sets strongly affects the computational behaviour. In the theoretical analysis,
however, we were unable to take advantage of this. It may be noted that it may happen that during
a slow iteration of the MBP the vector z has always precisely one negative entry. In that case the
set K will be a singleton in each iteration, just as in [1]. However, since z is the orthogonal
projection of a positive vector into the null space of a changing matrix, one might expect that
this will be a rare event, as was confirmed during our experiments. On the other hand, if one, for
example, could show that on average the size of K is a certain fixed fraction of the dimension n,
this might open the way to further improvement of the iteration bound for the MMA.

Finally, as mentioned in [1], Chubanov’s BP resembles a procedure proposed by Von Neu-
mann that has quite recently been described by Dantzig [2]. This Von Neumann algorithm has
been elaborated further in [4] and [8]. More recently it has been shown that the idea developed
in the current paper can also be used to speed up Von Neumann’s procedure [9]. Moreover,
some authors successfully generalized Chubanov’s method from LO to conic optimization (see,
e.g. [7,10,11]).
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Notes

1. It can be shown that (21) is feasible if and only if ‖v‖2 ≤ max(v). For a proof we refer to the appendix.
2. Problem (23) is the Lagrange dual of problem (22). Both problems have the same optimal value. In this proof we

need only (24), which expresses the so-called weak duality property of the Lagrange dual.
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Appendix. Feasibility condition for system (21)

Lemma A.1 Given v �= 0, there exist y and z satisfying (21) if and only if ‖v‖2 ≤ max(v).

Proof Let v �= 0. Suppose that y and z satisfy (21). Then zTv = 0 and y = z + v imply yTv = ‖v‖2 . One has

max
y

{yTv : 1Ty = 1, y ≥ 0} = max(v),

which is attained if y is the unit vector ei with i such that vi = max(v). Hence it follows that ‖v‖2 ≤ max(v). On the
other hand, if ‖v‖2 ≤ max(v) we need to show that there exist y and z that satisfy (21). Let λ := max(v)/ ‖v‖2. Then
λ ‖v‖2 = max(v). Take y = ei, with i such that vi = max(v), and z = y − λv. Then

zTv = (y − λv)Tv = yTv − λvTv = vi − λ ‖v‖2 = vi − max v = 0.

This proves the lemma. �
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