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The importance of transient analysis in hydraulic networks has been well recognized due to 

abrupt changes in flow or pressure introduced by valve closures or component failures. 

Therefore, accurate and robust numerical models are necessary to analyse the travelling 

pressure waves as a result of such sudden changes. This paper presents the formulation of a 

semi-analytical impulse response method applied to transient laminar flow in hydraulic 

networks. The method is based on the exact solution of a two-dimensional viscous model in 

the frequency domain with various interface and boundary conditions. The numerical 

computation is based on the use of the fast Fourier transform and the discrete numerical 

convolution with respect to time. To illustrate the method, a numerical example is presented 

and the results are compared with the method of modal approximations that is widely used in 

practice. The results show that the proposed method is able to predict the transient behaviour 

with better accuracy and without the need of spatial discretization. Thus, it is expected that 

for large networks, the computational cost of the impulse response method will have a great 

advantage when compared to existing grid-space methods. 
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1 Introduction 

Transient flow in hydraulic networks is a common phenomenon as a result of either 

accidental or normal operation of hydraulic systems. The study and analysis of unsteady-

flow conditions is very important due to the large disturbances in pressure and flow 

conditions that might be introduced [1]. Several numerical methods exist to model fluid 

transients [2, 3]. To date, the method of characteristics (MOC) is the most popular one due 

to its accuracy, simplicity and ability to include different boundary conditions in the one 

dimensional case [4]. This method has also been adapted for two dimensional cases to 

account for the frequency dependence of the friction forces [5, 6] and extended to be 
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applied in more complex hydraulic networks, [7, 8]. However, the MOC together with 

other discrete formulations such as finite differences [9], require a spatial discretization of 

the lines in the network, which turns to be computationally demanding as discussed in 

[10]. 

For laminar flow, another approach to model the fluid transients is possible through modal 

approximations. The idea behind this technique is to represent the transcendental 

expressions in the frequency domain, as a finite summation of low-order polynomial 

transfer functions. Thus, it is possible to approximate each mode of the transmission line 

by a second order linear differential equation [11–14]. The modal method can also be 

formulated directly in the time domain using a variational method [15].The modal 

approximation has certain advantages when used in time domain simulations, not only 

because it is easily coupled to other mechanical or hydraulic subsystems, but additionally 

because it can be implemented and solved numerically with a variable time step ODE 

solver. Furthermore, several studies have shown that modal methods are more convenient 

and numerically stable when compared, for example, with discrete methods [16, 17]. On 

the contrary, when modal approximations are used to construct hydraulic networks as a 

part of a complex fluid power system, i.e. through bond-graph models [18, 19], each line in 

the network should include enough number of modes to cover the frequency range of 

interest of both the overall system and input disturbance. Due to the different line 

geometries and interface conditions, the selection of the required number of modes for 

each line is not straightforward. Therefore, the modal method has the disadvantage of 

lacking a direct control on the accuracy of the results due to a propagation error 

introduced by the number of modes used for each line. 

A semi-analytical approach is presented in this paper based on the impulse response 

method (IRM). This method has been extensively used for dynamic analyses in other areas, 

like for example vibrations of mechanical systems, however its use in hydraulic systems 

has not been completely exploited. A variation of this method has already been used for 

analysis of a single pipeline as referred in [20, 21]. This work presents a direct extension 

towards a solution of a hydraulic network system consisting of multiple lines including 

dissipative boundary conditions. The approach is remarkably simple in its application. It 

consists of a solution of a coupled system of linear algebraic equations and the use of the 

Fourier transform. The method is accurate and reliable for the solution of large networks, 

overcoming the disadvantages of several other approaches. 

The paper is composed as follows. Section 2 revises the mathematical formulation of the 

two dimensional viscous compressible model for a single pipeline together with the exact 
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solution of a hydraulic network in the frequency domain. Section 3 describes the 

application of the impulse response method to solve a hydraulic network using the 

equations of the previous section. In section 4, a numerical example of a simple hydraulic 

network is presented in which the time-domain results are compared with the ones 

obtained by the use of the modal method. Finally the conclusions are presented in the last 

section. 

2 Mathematical formulation and exact solution in the frequency domain 

2.1 Transient laminar flow 

Consider a laminar, axisymmetric flow of a Newtonian fluid through a constant diameter 

line with constant material properties, in which the mean fluid velocity is considerably less 

than the acoustic velocity and the thermodynamic effects are neglected. The velocities in 

the axial x-coordinate and radial r-coordinate are denoted by u(x, r, t) and v(x, r, t), 

respectively. Assuming that the motion in the radial direction is negligible compared to the 

motion in the axial direction u v, the radial pressure distribution is constant across the 

cross-sectional area, i.e. P(x, t). 

 

 

 

  Figure 1. Schematic of a single hydraulic line 

 

The fluid properties are designated through the fluid density ρ, the fluid dynamic viscosity 

μ and the fluid bulk modulus of elasticity K. Hence, the partial differential equations 

corresponding to the mass conservation and the momentum equilibrium in the axial 

direction, are reduced to [1], 
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where the effective speed of sound in the fluid is = ρ/ec K ; the effective bulk modulus 

of the fluid eK takes into account the flexibility of the pipeline, compressibility of the 

hydraulic fluid and the effect of any entrapped air into the system. 

The cross-sectional volumetric flow is obtained through the integration of the axial velocity 

across the cross-sectional area of the line with finite radius 0r . The volumetric flow is also 

defined as the product of the average velocity ( , )u x t and the cross-sectional area. 

 

= π = π 02
0 0

( , ) ( , ) ( , , )2
r

Q x t r u x t u x r t r dr  (3) 

 

The previous equations correspond to what is known as a two-dimensional viscous 

compressible model or dissipative friction model [2, 3]. 

2.2 General solution of a single line 

The general solution of equations 1 and 2 can be obtained in the frequency domain by 

using the Fourier transform with respect to time according to the following transformation 

pair, 

∞ − ω
−∞

ω = ( ) ( ) j tf f t e dt  (4) 

∞ ω
−∞

= ω ω
π 

1
( ) ( )

2
j tf t f e d  (5) 

 

here w represents the frequency and j = −1 is a complex value. The average velocity and 

the pressure are then given by the following two equations [1], 
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in which A(ω) and B(ω) are the unknown integration constants to be obtained from the 

applied boundary conditions; ν = μ/ρ is the kinematic viscosity of the fluid and the 

constant β is expressed through the Bessel functions of the first kind ( )nJ z with n = 0, 1. 
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Using the boundary conditions at the upstream section where x = 0, and at the 

downstream section with x = L, the integration constants A(w) and B(w) are obtained for a 

single pipeline. Hence the velocity and pressure at the upstream side ω( )uU , ω( )uP can be 

expressed in terms of the downstream velocity and pressure ω( )dU , ω( )dP . If the 

volumetric flow is used instead of the average velocity using equation 3, the following 

relations are formulated in matrix form, 
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A most common representation of the previous equation is done in terms of hyperbolic 

functions instead of trigonometric functions. The hyperbolic notation is a popular way to 

show the solution for a single line and its derivation is found in the Appendix. 

Two pipeline parameters are introduced, the line impedance constant 0Z and the 

dissipation number of the line nD are defined respectively as: 
 

ρ
=

π
0 2

0

c
Z

r  (10) 

ν
=

2
0

n
L

D
r c

  (11) 

2.3 Extension towards the solution of a hydraulic network 

The solution of a complete hydraulic network consisting of multiple lines is an extension of 

the solution given by equations 6 and 7. Using equation 3, a general solution for the flow 

and pressure of each of the lines of the network, denoted by the subscript i, is given by: 
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The difference from the solution for a single pipeline is that the integrations constants for 

the pressure and flow descriptions cannot be determined explicitly for each of the lines of 

the hydraulic network. Instead they are obtained numerically by solving a linear system of 

coupled equations compiled from the various boundary and interface conditions according 

to the particular configuration of the system. The system of equations written in matrix 

form is 
 

=


x bA   (14) 
 

where A is the global system matrix, whose elements are frequency dependent. The vector 

x corresponds to the unknown integration constants for the network consisting of n lines. 

 

[ ]= ω ω ω ω ω ω T
1 1 2 2( ), ( ), ( ), ( ),..., ( ), ( )n nx A B A B A B   (15) 

 

The right-hand side vector

b corresponds to the external forcing terms at the boundary 

conditions or interfaces. Thus, the solution of a complex network is only limited by the 

computational considerations to solve a system of algebraic linear equations. The order of 

this system of equations is twice the number of lines in the hydraulic network, 2n. 

2.4 Interface and boundary conditions 

The interface conditions correspond to the junction points or nodes in systems of 

branching pipes. At these particular locations, the continuity equation is used to relate the 

inflows and outflows of the discharges at each node or junction, see equation 16. In 

addition, another set of equations is obtained through the general assumption of 

uniqueness of the pressure at each junction or node k according to equation 17. 
 

ω − ω = ( , ) ( , ) 0in k out kQ x Q x   (16) 

ω = ω( , ) ( , )l r
k kP x P x   (17) 

 

The different boundary conditions at the terminations of the lines could include any linear 

static or dynamic hydraulic component. An example of a static boundary condition is a 

resistive component, which relates the volumetric flow with the pressure difference across 
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the element at each moment of time through the hydraulic resistance R; in the frequency 

domain this condition is given by, 
 

ω − ω − ω =( ) ( ) ( ) 0a b bP P RQ  (18) 

 

A dynamic termination as a boundary condition is also possible, (i.e. a line termination 

with a large volume of fluid or an actuator). For this example the relation is given through 

a first order linear differential equation for the pressure bP , where the hydraulic 

capacitance 1C accounts for the fluid compressibility. The representation in both time and 

frequency domain is given as, 
 

− =1
( )

( ) 0b
b

dP t
C Q t

dt
  (19) 

ω ω − ω =1 ( ) ( ) 0b bC j P Q   (20) 

 

The treatment of a non-linear boundary condition at one of the terminations is also 

possible through this method; in this case a simultaneous numerical solution of the non-

linear boundary condition equation and the convolution integral at the boundary is 

required. An example is shown in [20], for the particular case of a non-linear valve 

description.  

3 Impulse response method for hydraulic networks 

The impulse response method makes use of the superposition property of linear systems; if 

an arbitrary but known input is decomposed to a series of impulses of different  

amplitudes, the response of the system is obtained by the superposition of the responses of 

each impulse. Thus, if the system or hydraulic network pressure and/or flow response to 

an impulse is known in the time domain, its response to a general forcing function can be 

obtained through the convolution of the impulse response and the forcing function. 

A known input at one of the boundaries of the hydraulic network can be given as either a 

pressure function ΔP(t) or flow function ΔQ(t). The pressure response of the system at a 

given location P(x, t) is therefore provided by the convolution of the pressure response at 

the same location to a pressure impulse ( )Pxr t and the desired pressure input function ΔP(t) 

 

= − τ Δ τ τ0( , ) ( ) ( )
t

PxP x t r t P d   (21) 
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in which t is a time variable used for the convolution. Or in the case of a flow input ΔQ(t) 

the convolution uses the pressure response to a flow impulse ( )Qxr t and the flow input 

function, 
 

= − τ Δ τ τ0( , ) ( ) ( )
t

QxP x t r t Q d   (22) 

 

Hence, in order to obtain the system response to an impulse, the complete hydraulic 

network is first solved in the frequency domain ω( )xr . Afterwards, the inverse Fourier 

transform of the pressure and/or flow is applied at the desired locations to obtain the time 

domain description ( )xr t . 

 

∞ ∞ω ω
−∞

 = ω ω = ω ω π π   0
1 1

( ) ( ) Re ( )
2

j t j t
x xrx t r e d r e d   (23) 

 

An efficient way to obtain such response from a numerical perspective, is to use the 

discrete fast Fourier transform (FFT). Although the FFT is based on a fixed discrete time 

step, the impulse response has only to be calculated once for the whole network. Once this 

response is available for the particular configuration, the numerical convolution is 

obtained in a separate step for any desired input without the necessity to solve the system 

once more. Furthermore the convolution can also be implemented for a variable step 

approach.  

3.1 Computational efficiency comparison 

For large hydraulic networks, the computational efficiency of the proposed method can be 

compared with other approaches. A general overview is observed in table 1. Hence let us 

consider a network comprising of linesn = 100. In the MOC, first of all an internal 

discretization is required; assuming that ten elements are used per line, a final grid of 

around 1,000 points is obtained. Every time step, a solution using finite differences is 

found for all the points in the grid. With the modal method no discretization is required, 

however a few modes are needed at least to model each line modesperlinen = 4. Assuming 

that four modes are used to describe accurately each line, a system of 900 ode’s is obtained. 

It is important to mention that the order of the final system might be considerably higher 

as the number of modes per line is independent and some lines would require higher 

modes in order to obtain a minimum accuracy. Finally the IRM requires the solution of an 

independent linear system of equations of 200 × 200 per frequency (which is equivalent as 



 45 

per time step in the frequency domain), where the obtained solution is exact. At the end of 

the method, an inverse FFT is required but the computational cost of this operation is also 

independent of the number of lines in the network. 
 

Table 1: Overview of calculation requirements for hydraulic networks 

Approach Calculation requirements per Δt 

MOC Solution required at all interior points of the grid; 

results are approximate. 

Modal method Solution to a system of linear ordinary differential equations 

+lines modesperline(4 1)n n  ; results are approximate. 

IRM Solution to a system of linear algebraic equations 

×lines lines2 2n n ; exact results in frequency domain, accuracy in 

time domain depends on FFT required at the end of the method. 

 

4 Numerical results 

In order to illustrate the proposed method and to compare the predictions with the modal 

approach proposed in the literature [18], three cases are solved numerically based on the 

simple hydraulic network shown in figure 2. The forcing input function ΔP(t) is a unit step 

pressure at the upstream side x = 0. The examples include different linear terminations and 

the input parameters for each case are summarized in table 2. It is important to note that 

the dissipation numbers of each line are relatively high nD 0.0001. nD is an a 

dimensional number which is used to characterize both transient and frequency response 

of a pipeline and given by equation 11; a high value implies that the energy dissipation 
 

 

 

Figure 2. Schematic of the hydraulic network used for the numerical simulations 
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due to the shear friction at the wall of the line is important. Therefore the dissipative model 

with frequency-dependent friction will give a more accurate description of the transient 

behaviour than the linear friction model. 

In general, there exist two unknown integration constants for each line comprising the 

network. This means that for the particular configuration shown in figure 2, six 

independent linear equations are required. The first equation corresponds to the boundary 

condition at the upstream side of the supply line where the required pressure impulse is 

applied at x = 0. Three more equations are obtained from the interface conditions at the 

branching node a; one for the continuation of flows; the other two from the uniqueness 

assumption of the pressure. The supply line of the network is noted by the subscript s, 

while the two other branch lines are noted by the subscripts 1 and 2 respectively. 
 

= ω =at 0 (0, ) 1sx P   (24) 

= ω − ω − ω =1 2( , ) ( , ) ( , ) 0s s s s sat x L Q L Q L Q L   (25) 

ω − ω =1( , ) ( , ) 0s s sP L P L   (26) 

ω − ω =2( , ) ( , ) 0s s sP L P L   (27) 

 

The fifth and sixth equations are derived from the boundary conditions at the terminations 

of the hydraulic lines 1 and 2. Once the integration constants are obtained for all the lines 

in the network, the average velocity and pressure can be evaluated at any desired location 

by equations 12 and 13. The time domain response of the pressure impulse is obtained 

numerically through the discrete inverse FFT. For all cases, the number of samples used 

was N = 216, with a discrete step time of 0.0001 s. The selected time step allows to follow 

the pressure wave propagation along the spatial coordinate with sufficient detail. 

Furthermore, it includes frequency components up to 5000 Hz which are sufficient to  

 

Table 2. Numerical parameters for the different cases taken from [18] 

 nsD  1nD  2nD  1
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L
L

 2

s

L
L

 1

s

A
A
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s

A
A

 1

s

R
Z

 2

s

R
Z
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c

C
C

* 

Case 1 0.1 0.1 0.1 1 1 1 1 ∞ 3 - 

Case 2 0.01 0.01 0.1 1 5 1 0.5 ∞ ∞ - 

Case 3 0.01 0.1 0.1 5 10 0.5 1 2 6 0.25 

* with 
π

=
ρ

2

2
s s

c
L r

C
c
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describe the step input considered in the examples. The final step is to convolute 

numerically the impulse response with a step function to obtain the desired step response 

of the system in the time domain. 

4.1 Model comparison and discussion 

The results for each case are compared with the results of the same network using the 

modal method. The modal method is based on four modes for each of the lines in the 

hydraulic network as presented in [18]. 

 

Case 1 

All the lines have the same geometric characteristics; one of the terminations of the 

pipeline is blocked while the other consist of a linear resistance element; the boundary 

conditions are shown in equations 28 and 29. 
 

= ω =1 1 1( , ) 0at x L Q L   (28) 

= ω − ω =2 2 2 2 2 2( , ) ( , ) 0at x L P L R Q L   (29) 

 

The pressure response to an impulse at the locations 1 2, ,aP P P is shown in figure 3a; this 

response is numerically convoluted with a unit step input to obtain the results of figure 3b. 

Figure 3c shows the comparison of results with the modal method. The pressure transient 

shows a smooth response which is accurately described, with minor differences, by both 

methods. However, the modal method contains spurious oscillations at the initial moments 

in time, which are not present in the results of the IRM. The oscillations present in the 

modal method are impossible to eliminate since this would require the inclusion of 

infinitely many modes. In the presented method such oscillations are absent since the 

solution is exact. 

 
Case 2 

In this case, different geometries of the lines are used and both terminations are blocked; 

the respective boundary conditions are given in equations 30 and 31. 
 

= ω =1 1 1( , ) 0at x L Q L   (30) 

= ω =2 2 2( , ) 0at x L Q L   (31) 

As seen in figure 4, when blocked terminations are used, the modal approximations are 

inadequate to provide an accurate response of the system. Spurious oscillations are again 
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Figure 3a. Impulse response comparison of case 1 

 

 

Figure 3b. Step response comparison of case 1 

  

 

Figure 3c. Step response comparison between the IRM and modal approximations of case 1 
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Figure 4a. Impulse response comparison of case 2 

 

 

Figure 4b. Step response comparison of case 2 

 

 

Figure 4c. Step response comparison between the IRM and modal approximations of case 2 
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present at the initial moments of time for the reason explained previously. In addition, a 

higher dissipation of the transient response is observed in the modal approximations 

together with a phase difference. 

The results provided by the IRM method also show sharp variations in the pressure 

response due to reflected wave fronts, however this effect is not captured correctly by the 

modal method. 

 

Case 3 

In the final case 3, different geometries are present with both dynamic and static 

terminations, such boundaries are given through equations 32 and 33. 
 

 
= ω − + ω = ω 

1 1 1 1 1 1
1

1
( , ) ( , ) 0at x L P L R Q L

C j
  (32) 

= ω − ω =2 2 2 2 2 2( , ) ( , ) 0at x L P L R Q L   (33) 

 

In figure 5 the results show a relatively smooth response for both methods. As can be seen, 

the pressure response aP at the hydraulic branch using modal approximations, presents 

large oscillations specially after the first wave front surpasses the branch junction. The 

oscillations might be reduced by increasing the number of modes for this particular line. 

Hence, it is evident that even for a relatively simple network the modal method has not 

direct control in the required number of modes for each line. 
 

From the results presented in the previous cases, it is clear that sharp wave fronts and 

reflections cannot be approximated with a few number of modes. For larger networks with 

multiple number of lines, the inclusion of a large number of modes per line can be both 

computationally demanding and inexact. On the contrary, the adopted IRM method is 

based on an exact solution in the frequency domain, making this approach more accurate 

and reliable for the solution of larger networks, overcoming the disadvantages of several 

other approaches. 
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Figure 5a. Impulse response comparison of case 3 

 

 

Figure 5b. Step response comparison of case 3 

 

 

Figure 5c. Step response comparison between the IRM and modal approximations of case 3 
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5 Conclusions 

An application of a semi-analytical impulse response method to hydraulic networks was 

presented for transient laminar flow using a two-dimensional viscous compressible model. 

By solving analytically the complete network in the frequency domain, a unique impulse 

response of pressure and/or volumetric flow is obtained in the time-domain through the 

inverse FFT. A discrete numerical convolution with respect to time is then applied 

separately to obtain the response of the complete network to a chosen arbitrary input. 

Although the application of the method was shown for a simple hydraulic network, it can 

be easily extended to networks with large numbers of lines with various interface and 

boundary conditions. 

Since the IRM does not require any spatial discretization, it is expected that the 

computational cost has a great advantage, especially for applications in large networks, 

when compared to existing grid-space methods. The method is only limited by the 

numerical considerations to solve a system of coupled linear algebraic equations and the 

fast Fourier transform. This means that for large networks, the increase in computational 

cost is only determined by the order of the global system matrix, which is linearly 

dependent to the number of lines forming the system. 

In addition, the presented results show that the adopted IRM method provides a more 

accurate description of the transient behaviour than the modal approximation of 

individual lines used for network modelling. For a large network, the modal method might 

provide inaccurate results, as the required number of modes for each line is not a priori 

known. 
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Appendix 

The matrix solution for a single line can also be expressed in terms of the complex Laplace 

variable s = σ + j ω; where σ is a decay factor and ω represents the frequency. Hence, 

equation 9 is rewritten as, 
 

β βρ β − π    =    π β β    
 βρ 

2
0

2
0

cos sin
( ) ( )
( ) ( )

sin cos

u d

u d

s L c s L
c crP s P s

Q s Q sr s L s L
c c c

 (34) 

 

The previous equation can also be expressed in terms of hyperbolic functions instead of 

trigonometric function using the relations sin jx = j sinh x and cos jx = cosh x. The 

hyperbolic notation is the most usual way to show the solution for a single line as it is 

expressed only in terms of the line characteristic impedance ( )cZ s and the propagation 

operator Γ(s) [2, 3]. 
 

Γ Γ 
    =    Γ Γ     

cosh ( ) ( )sinh ( )
( ) ( )

1
sinh ( ) cosh ( )( ) ( )

( )

c
u d

u d
c

s Z s s
P s P s

s sQ s Q s
Z s

  (35) 

 

This general notation allows to use the solution for the different distributed parameters 

models (i.e. 1D inviscid model, 1D linear friction model) depending on the expression used 

for the terms ( )cZ s and Γ(s). Using the normalized Laplace operator = ω/ cs s , where 

= ν 2
0/cw r  is the viscosity frequency, the line characteristic impedance ( )cZ s and the 

propagation operator Γ( )s are given by, 

 

−
  

  = −
  

  

1
2

1
0

0

2
( ) 1c

J j s
Z s Z

j s J j s
  (36) 

−
  

  Γ = −
  

  

1
2

1

0

2
( ) 1n

J j s
s D s

j s J j s
  (37) 
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