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Abstract 

 
Hyperspectral imaging (HSI) is a promising imaging modality in medical applications, 

especially for non-invasive and non-contact disease diagnosis and image-guided surgery. 

Encoding both spatial and spectral information, it can detect subtle changes in the biochemical 

and morphological properties of a tissue, revealing the early progression of a pathological 

condition like cancer. Previous medical hyperspectral image analysis approaches depended on 

handcrafted features or feature extraction principle, requiring considerable domain expertise. 

To overcome this, automatic feature learning approaches like convolutional neural networks 

(CNN), previously used in tasks like classification, detection and segmentation in medical 

images were applied to hyperspectral data, although in a limited number of research studies. 

This thesis was proposed to review the state-of-the-art in medical hyperspectral image analysis, 

identify the limitations in current methods, and present a proof-of-concept for using limited 

hyperspectral image data in CNN-driven tissue characterization. 

  

 

 

The goal of this thesis is to characterize, using CNNs, ex vivo head and neck (tongue) tissue of 

patients affected by tumors. While previous work in this field implemented patch-based 

classification of tissue, in this thesis, a pixel-wise classification approach was proposed to 

obtain a smooth and continuous segmentation of hyperspectral images. To this end, two types 

of CNN models were trained from scratch using limited labelled training data, one to 

automatically learn the spectral features present in the hyperspectral data and the other to learn 

the combined spectral-spatial features from the hyperspectral data. Performance of four 

different trained models was evaluated by using a leave-one-out testing scheme, with the 

spectral-spatial learning approach with larger input spatial dimensions outperforming the other 

considered approaches. 
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Introduction 
 

In minimally invasive surgeries for tumor removal, it is important to diagnose the extent of the 

tumor and identify the tumor affected regions accurately. For this purpose, a non-contact, non-

invasive imaging method called Hyperspectral Imaging (HSI) has emerged in the last decade. 

By utilizing the characteristics of light-tissue interaction, the change in tissue condition can be 

identified. Manual segmentations of these medical images require domain expertise and can be 

time intensive, which necessitates automatic image segmentation methods to ease the workload 

of the clinicians and to possibly supplement their diagnoses. This clinical problem has spurred 

researchers on to apply deep learning models to automatically analyze the medical images, 

since the advent of models like convolutional neural networks in the last four years.  

 

At the In-body systems department of Philips Research, ongoing research on the HSI modality 

prompted a question “How can the state-of-the-art methods in deep learning be applied to 

hyperspectral images to develop a non-invasive, automatic segmentation tool that can be 

utilized during surgical procedures?”. This Master’s thesis is defined in a way to answer this 

research problem, which when successful could serve as a proof-of-concept solution.   

 

Tackling this problem requires a two-fold approach: first, a study into how the acquired raw 

hyperspectral patient data can be made available for training a deep learning model. The second 

involves investigating different architectures that are currently applied in medical imaging 

research and designing custom artificial neural network architecture if required for our case. 

All the developed methods can then be compared for their segmentation performance, which 

will help recommend the best method for further investigation.    

 

Research question 
 

The aim of this Master’s thesis can be expressed by formulating a research question and its 

associated sub-questions.   

 

“Can a convolutional neural network perform tissue segmentation on limited patient 

data?” 

1) Learning features: What are the possible approaches in learning features from a 

hyperspectral data cube? Are spatial features as informative compared to spectral 

features? 

2) Model design: What design choices were made corresponding to the feature learning 

approaches? 
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3) Model performance: How do the performance metrics compare for the considered 

experiments? 

4) Model tuning: How can the set of hyperparameters for a given experiment be 

determined?  

5) Augmenting data: What are the effects of data augmentation on the network’s 

performance? Can it overcome the problems due to limited patient data? 

 

To answer the question, the acquired patient hyperspectral data is studied extensively, and 

relevant image processing methods are identified to create the training data and the ground 

truth (labels). Following this, the training data is prepared in such a way to perform pixel-wise 

classification or semantic segmentation. Further, different approaches to automatically learn 

features from the hyperspectral data are proposed, then their performances are evaluated. The 

content of this thesis flows to attempt answering the formulated research question and its sub-

questions. 

 

Thesis outline 
 

Following this introduction section where the research problem is defined, Section I provides 

all the requisite background knowledge for the completion of this thesis, ranging from theory 

behind HSI to current applications in remote sensing and medical domains. Section II studies 

the available patient data, exploring possible processing techniques required before it can be 

used in training a deep neural network. In Section III, different approaches are proposed to 

configure the networks to perform the tissue segmentation task. Section IV discusses the results 

of these experiments in detail along with their performance specifications and observations for 

future research, before concluding the findings of this thesis. 
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Chapter I – Hyperspectral Imaging  
 

Hyperspectral Imaging (HSI) is a spectral imaging technique, which integrates conventional 

imaging and spectroscopy to acquire spatial and also spectral data of an object. It involves 

capturing two-dimensional images across a wide range of the electromagnetic spectrum, 

making it possible to characterize materials by means of their reflectance or emittance spectra. 

This means, across a particular wavelength band, a contiguous spectrum of each image pixel 

is acquired and thus a three-dimensional cubical structure called a 3-D hypercube is obtained. 

The “contiguous’’ aspect of the spectral bands is most significant because it can ensure that 

there are no gaps through which precious information could slip unnoticed. This is especially 

applicable in medical diagnosis, where any subtle spectral differences can be critical, which is 

not possible in a conventional RGB image, which has only three bands of red, blue and green 

colors of discrete wavelengths.  

 

The initial attempts in HSI were for mineralogical mapping of land surface, followed by 

vegetation classification based on nitrogen content, ocean and coastal studies, and hazardous 

waste clean up around mining sites. However, due to the continuing advances in the 

semiconductor industry, the application space of HSI has broadened to environmental [1], food 

[2], medical [3], forensic and surveillance fields [4].  

 

1.1 Hyperspectral versus RGB 
 

In RGB digital imaging, each two-dimensional image I can be represented as an array of pixels, 

with x number of rows and y number of columns. If the red, green and blue color intensities of 

each image pixel are combined, then an RGB or truecolor image is obtained, which can be 

represented as I (x, y, 3). However, in spectral imaging there are multiple (>3) intensity 

components B per pixel, where λ represents each wavelength at which each intensity image is 

captured. Thus, a spectral image can be represented as I (x, y, B), where B is the number of 

spectral channels. One such example from [5] is shown in Figure 1. It can be seen that a 

hyperspectral image contains more information than an RGB image, by storing information 

along the spatial and spectral dimensions. It could also be said that each pixel in a hypercube 

possesses its own individual spectral signature that can be used to identify it with better 

precision, which can in turn be utilized in pixel classification methods for different applications 

like remote sensing, material analysis, and medical diagnosis. 
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1.2 Overview of a hyperspectral imaging system 
 

A typical HSI system comprises the following components according to the review on medical 

HSI [3] 

1) Light source – illuminates the tissue after which it is projected to the front lens, which 

focuses the light into an entrance slit, permitting only a narrow line of light to pass. 

This controls the amount of light, which is further collimated onto the dispersion device. 

 

2) Dispersion device – prism or grating that splits the collimated light into various 

wavelengths. This dispersed light is focused onto the detector arrays. 

  

3) Detector arrays – optical detectors that can record the electromagnetic radiation 

  

One such typical system with its components is shown schematically in Figure 2. A pushbroom 

HSI system is synonymous to a line-scanning HSI system. 

 

 

Figure 1: Illustration of a hyperspectral image with two spatial dimensions along x,y axes and a spectral 
dimension along z axis. (Left) a typical hyperspectral image composed of an image at each wavelength; (Right) 
The spectral signature at each pixel [5].  
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1.3 Applications of hyperspectral imaging 
 

While the HSI modality has found predominant application in the remote sensing domain, HSI 

is emerging as a potent tool in the medical field, specifically for non-invasive disease diagnosis 

and surgical guidance. In the further discussion, the different applications of HSI for land-cover 

classification in remote sensing and tissue characterization within medical domain are 

reviewed. For both the domains, the traditional classification methods used earlier shall be 

discussed, segueing into the most recent progress in hyperspectral image classification using 

deep learning. This could also serve a path to explore how the state-of-the-art algorithms in 

deep learning used in remote sensing could be adopted into medical imaging applications, 

where still traditional classifiers with feature engineering continue to be used, with limited 

progress in the deep learning front. 

 

Table 1: List of references of HSI research in the remote sensing domain (traditional and deep learning based). 

Reference Method Remarks 
Traditional - remote sensing classification  

[6] SVM Multiple feature combining (spectral, texture and shape); manifold-

learning-based dimension reduction 

[7] SVM, k-NN, CART, 

Naïve Bayes 

Grouping of similar bands; Manifold ranking of grouped bands for 

group representatives 

[8] SVM Marker map using pixels multiple classifiers assign to a particular class 

(majority voting); spectral-spatial information 

Deep learning - remote sensing classification  

Figure 2: Schematic diagram of a typical hyperspectral imaging system as discussed in [3]. Here a line 
scanning (pushbroom) image acquisition method is illustrated. 
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1.3.1 Hyperspectral imaging in remote sensing 
 

1.3.1.1 Hyperspectral image classification by traditional methods 
 

Studies on hyperspectral image analysis originate from the remote sensing domain, in which it 

is predominantly used. Certain tasks like land-cover mapping, object recognition, and anomaly 

detection can be performed by classifying each pixel in a hyperspectral image. Since a 

hyperspectral image consists of spatial information along with rich, contiguous spectral bands, 

the possibility of accurate classification is high. In case of traditional classification methods, 

more emphasis is placed on band selection and feature extraction, by reducing the high 

dimensionality of data and identifying the most discriminative bands. This is to counter Hughes 

phenomenon, which postulates loss of classification accuracy with high dimensional features 

in a small number of training samples [6]. This is also called as the curse of dimensionality. By 

combining multiple features (spectral, texture and shape) linearly and reducing the high 

dimensionality, a classifier like support vector machine (SVM) can be trained to learn the 

extracted features [7]. Feature selection methods avoid any lower dimensional projections and 

identify the most representative features from all the bands. This is performed in [8] by using 

band clustering and subsequent manifold ranking of the bands in each cluster. 

 

1.3.1.2 Hyperspectral image classification by deep learning 
 

Further efforts to classify hyperspectral pixels, incorporate spatial features which are correlated 

and provide complimentary information along with the spectral features. Depending on the 

levels at which the spectral and spatial information are fused, there can be three different 

approaches: 

1) Feature level, where the spectral and spatial features are extracted independently and then 

concatenated. [7] 

[11] SAE, PCA/NMF, LR Spectra-spatial features extracted separately and classified using SAE 

and LR 

[12] CNN Pixel-pair joint classification using voting strategy; smaller dataset 

[13] DBN, LR DBN-based feature extraction, followed by LR based fine-tuning; 

spectral, spatial (using PCA) and spectral-spatial features 

[14] 1-D, 2-D, 3-D CNN Extract spatial, spectral and spatial-spectral features using three 

methods; effect of L2 regularization 

[15] CNN, BLDE Spectral dimension reduction using BLDE; CNN based spatial feature 

extraction; stacked features classified using SVM, LR 

[16] 3-D CNN Applying 3-D kernels on hyperspectral data to simultaneously learn 

spectral-spatial feature; no preprocessing 

[10] 3-D CNN Residual layers for deep feature learning; spectral-spatial classification 

[18] CNN, unpooling Unsupervised learning of hyperspectral data representation; first 

residual layer features detect classes in the land cover 
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2) Decision level, where the spectral and spatial features are extracted independently and then 

integrated by using a majority voting strategy. [9] 

3) Data level, where the spectral and spatial features are simultaneously extracted from the 

hyperspectral data. 

 

In the traditional methods, a considerable effort is spent on feature engineering. It is also argued 

that such features do not generalize well to all scenarios and kernel-based classifiers simply do 

not possess the representation capacity to learn the integrated spatial-spectral features [10]. 

Due to these shortcomings of the feature engineering frameworks, the attention turned towards 

deep learning methods, which automatically learn representations that are relevant to the 

classification. Thus, the two-fold process of feature extraction and classifier training is 

simultaneously incorporated in one. 

 

An early implementation used Stacked Auto Encoders (SAEs), which can extract deep 

hyperspectral features that can be classified by logistic regression [11]. It outperforms other 

feature extraction methods like PCA and NMF. Apart from learning spectral features, the 

spatial features from a PCA-reduced hyperspectral image, around a pixel’s neighborhood were 

extracted and concatenated with its corresponding spectral features. This study was able to 

validate that joint spectral-spatial features helped the SAE-LR perform better than when using 

only spatial or spectral features of the image. A novel approach of using pixel-pair features was 

introduced in [12], where a pair of pixels in the labelled training data would be receive a label 

L when they are from the same class and, labelled 0 when they are different. Following this, a 

majority voting strategy for the label prediction is performed for the central pixel by using the 

neighboring pixels and their labels. 

 

Similarly, another approach [13] made use of Deep Belief Network (DBN) and LR to classify 

the land cover, by using spectral, spatial and spectral-spatial features respectively. A DBN is 

constituted by stacking consecutive Restricted Boltzmann Machines (RBM), where the first 

layer of trained RBM input the learned representation or features to the next RBM layer. This 

chain of learning in the connected RBMs constitutes pretraining a DBN, which is then 

connected to an LR classifier to fine-tune the parameters by backpropagation. For spectral 

features, the 1-D data representation is learned by the DBN, whereas for spatial features, a PCA 

based feature extraction and flattening on a small spatial neighborhood can feed the data to the 

DBN. For spectral-spatial learning, two parallel channels with spectral and spatial learning are 

constructed, with feature stacking for the final classification (illustrated in Figure 3). 
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Similarly, three different strategies for the three features (spectral, spatial and spectral-spatial) 

were proposed in [14], which were: (1) 1-D convolution based spectral feature classification; 

(2) 2-D convolution based spatial feature classification; and (3) 3-D convolution-based 

classification of spectral-spatial features simultaneously. This study also investigated some 

strategies like L-2 regularization and virtual data augmentation to combat poor performance 

that can occur due to high dimensionality and small number of data cubes. In [15], spectral 

features were extracted using a balanced local discriminant embedding method (BLDE) and, 

combined with spectral features extracted from PCA and 2-D CNN network. It lacked the 

advantage of simultaneous spectral-spatial feature extraction: the correlation between these 

features, which was lost during PCA. Following this, another work [16] on joint spatial-spectral 

features using 3-D convolution, argued that using 3-D kernels or filters during convolution 

operation can extract spectral-spatial features simultaneously from hyperspectral images and 

improve classification performance. A closer look at this architecture can be found in the 

relevant architecture discussion in the later part of this report.  

 

While the 3-D architectures can perform better than the previously discussed feature-fusion 

methods, the classification performance degrades with increase in depth of the network, thus 

making it harder to train such deep networks. However, deeper networks are needed to learn 

the discriminative spatial-spectral features in high dimensional data with a small training data 

set and generalize robustly on test data. In order to solve this conundrum, residual network 

blocks [17] were introduced in the network, along with batch normalization and reported 

significant increase in performance on both small and large data sets. This network [10] is 

discussed in detail later, as an architecture relevant to this thesis. 

 

Figure 3: Illustration of hyperspectral image classification based on spectral-spatial features and DBN [13]. 
Two parallel channels are used for separately learning the spectral and spatial features respectively. A DBN 
followed by an LR classifier provides the output. 
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In one of the few efforts in unsupervised learning, a network with a conv-deconv structure with 

residual blocks was proposed [18]. The conv sub-network functions like an encoder, learning 

the abstract feature representation of the input hyperspectral image data, with max pooling to 

reduce the spatial feature size. In the deconv sub-network an unpooling operation was 

introduced to expand the spatial feature size by using the stored max pool indices. Though not 

intended for land cover detection, some of the learned features had activated/ suppressed pixels 

that denote particular classes in the land cover and could outperform other supervised learning 

methods (SVM, CNN etc.). This could open up potential applications classifying hyperspectral 

data with limited labels in an unsupervised manner. 

 

1.3.2 Hyperspectral imaging in medical domain 
                                          

1.3.2.1 Theory 
 

Medical HSI (or MHSI) is increasingly used as an imaging modality for non-invasive medical 

diagnosis and surgical guidance. By understanding how medical HSI works in the context of 

tissue, we can fully appreciate the technique’s potential for providing information about tissue 

constituents lying deep within the tissue. In the study of light–tissue interaction, the 

inhomogeneity of the tissue is an important aspect, making the optical properties vary spatially 

within the tissue. Multiple scattering and absorption are two important processes that occur 

when light interacts with matter. Scattering occurs when light crosses over media of different 

refractive indices while molecules absorb light, with the energy of the incident photon 

corresponding to the gap between the internal energy states of the molecule. Likewise, in tissue 

there are constituents, which scatter incident light, while some absorb light. It is observed that 

subcellular organelles, like mitochondria are the predominant scatterers of light [3].  In the 

therapeutic window from 600 to 1300nm, most tissues are weak absorbers of light, and light 

propagation becomes predominantly scattered and diffuse. However, at VIS wavelengths, most 

light is absorbed by blood and melanin and are called chromophores. From a medical 

standpoint, this can represent the concentration of haemoglobin and thus the oxygen 

concentration, and it could point for example, to signs of cancer like angiogenesis and 

hypermetabolism [19]. 

 

Apart from the reflection and absorption processes that occur in the tissue, there are tissue 

components like collagen and elastin, which are two important proteins in the connective tissue, 

or NAPDH and Flavin, which exhibit fluorescence and are called fluorophores. Fluorescence 

occurs when the absorbed light (usually UV to VIS) is re-emitted at a higher wavelength 

ranging from VIS to NIR region. 

 

After multiple scattering and absorption within the tissue, light propagates back to the tissue 

surface, along with specular reflections, and it leads to highly randomized light directions. This 

phenomenon is called diffuse reflectance and is the basis for how hyperspectral image data is 
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acquired. Since this randomized light has propagated different sampling depths across a volume 

of tissue, the optical properties of this light could represent an average tissue property over this 

volume [3]. The implication of this morphological-optical connection is that, when the 

morphology of the tissue changes, there should correspondingly be a change in the measured 

reflected light and any changes in haemoglobin absorption (pointing to angiogenesis) should 

translate to change in the absorption signal. In combination, a diffuse reflected spectral signal 

can indicate the progression of disease. Similarly, by using fluorescence imaging, the 

alterations in biochemical composition of a tissue could be studied, thus paving way for a 

multimodal reflectance – fluorescence imaging, which can help diagnose cancer [20]. 

 

 

Figure 4: Different material - light interaction phenomena happening within the material. In HSI technique, 
diffuse reflection is mainly considered (slides of J. Workman). 
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Table 2: List of references of HSI research in the medical domain (traditional and deep learning based). 

Reference System/Method Remarks 

Traditional - Cancer diagnosis  

[21] Multimodal Differentiate various grades of cervical neoplasia; comparison with Pap 

smear. 

[23] VIS-NIR  HSI of colon biopsy slides; ICA, K-means clustering, and LDA for 

classification into normal and malignant. 

[24] HSI microscope Classification of nuclei into normal, benign, or malignant. 

[25] VIS, NIR Classification of colon tissue into fat, tumor, mucosa and healthy tissue 

using SVM; combination of VIS and NIR wavelength images 

[26] HSI – AOTF Distinguish tumor and normal tissue in tongue based on sparse 

representation; comparison with SVM. 

[27] Snapshot Multimodal (reflectance and autofluorescence) HSI for detection of oral 

cancer. 

[28] NIR, multispectral NIR for thermal signatures, VIS for extent of tissue; assess blood 

volume, oxygenation to study effectiveness of treatment for Kaposi’s 

sarcoma. 

[29] Handheld HSI – FPI Early/ malignant melanoma tumor margin; feature selection, 

dimensionality reduction of spectra; Aisles procedure to reduce false 

positives. 

HSI medical 
applications

Cancer Diagnosis

Cervical cancer

Colon cancer

Oral cancer

Skin cancer

Surgical guidance

Gall bladder 
surgery

Abdominal 
surgery

Mastectomy

Figure 5: Different applications of HSI in the medical domain. Primary categories include cancer detection and 
surgical guidance, which are both relevant to this thesis. 
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[30] Multi organ HIS One-vs-one modeling between multiple organs with SVM and spectral 

classification using best model; spectral classification using MLP. 

Traditional - Surgical Guidance 

[31] HSI, multispectral Identification of tumor in resected tissue; differentiate tumor, muscle and 

connective tissue; comparison with histopathology. 

[32] NIR, endoscopy Noninvasive examination of biliary tissue; PCA, differentiate 

surrounding tissue; identify molecular composition of specific regions. 

[33] VIS-NIR, IR SVM to classify normal and ischemic intestine. 

Deep learning – MHSI 

[34] CNN Preprocessing of mice tumor hyperspectral data; spatial-averaged 

spectral binary classification. 

[35] CNN Squamous cell and thyroid carcinoma detection using HSI spectra. 

[36] 3-D CNN, CNN Squamous cell and thyroid carcinoma detection, multi-class 

classification of normal thyroid tissue, multi-class classification of 

thyroid cancer. 

 

 

1.3.2.2 MHSI applications using traditional methods 
 

Cancer diagnosis 
 

It has been theorized that any spectral changes in a tissue points to the progression of its 

pathological state [3]. Any morphological and biochemical changes in the tissue alter its 

reflectance, absorption, and fluorescence properties. It has been shown that, by observing the 

absorption spectrum of a tissue, it is possible to quantify the haemoglobin concentration and 

oxygen saturation, and detect angiogenesis [19]. With HSI it possible to not just observe the 

reflectance/absorption, but also capture multiple images of a particular tissue. Most research 

on HSI that studied cancer focuses on the following aspects: 

1) Classify cancer grades by studying the morphological and structural properties of 

cancer affected histological specimens; 

 

2) Identify in vivo precancerous and malignant lesions; 

 

3) Quantify angiogenesis and rate of metabolism by measure haemoglobin concentration 

and oxygen saturation; 

 

4) Recognize genomic alterations that characterize tumor progression in the tissue. 

 

The first two aspects of research are aligned along the objectives of this master thesis, as 

discussed in the introduction section. Therefore, the literature review on HSI cancer research 

focuses particularly on these two aspects, and literature that discusses the problem of tumor 

tissue characterization is discussed below for the following types of cancer. 
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Cervical cancer is the leading cause of cancer death in women (in U.S) [22]. Traditionally, a 

Pap smear test is used for cervical cancer screening. However, it produces large false positive 

rates of 15 – 40%. Therefore, studies involving both reflectance and fluorescence have tried to 

detect pre-cancer in cervical tissue. A multimodal HSI system using the VIS to NIR range has 

been used to distinguish between affected and healthy tissue in vivo. It was able to distinguish 

high-grade lesions, low-grade lesions, and healthy tissue at a much greater rate than Pap smear 

[21]. 

 

Colon, or colorectal cancer, affects the colon, rectum or appendix, and it is the third most fatal 

type of cancer in both men and women [22]. Usually, the specimen is to be investigated 

pathologically under a microscope and the morphological changes in the cells and their 

distribution are observed. This process can be time-consuming and the observations 

inconsistent. Therefore, HSI has been used to distinguish cells, in biopsy tissues based on 

pathology slides, as normal and malignant, based on shape, size and other geometrical features 

of cellular components [23]. An extension of this experiment for classification of three grades 

of biopsy tissue (normal, benign and malignant) using HSI was performed in [24]. A recent 

study [25] examined the potential of HSI in laparoscopic surgical workflow, by using two 

cameras, one in the visible wavelength range (400 -1000 nm) and other in the NIR wavelength 

range (900 – 1700 nm). By utilizing the spectra in the hyperspectral image and an SVM 

classifier, the different tissue types like fat, tumor, mucosa and healthy tissue were 

distinguished. The main observation was that, combining images from both cameras led to a 

better classification performance than using only either of them. 

 

Oral cancer is a significant health problem, which is typically detected at the later stages after 

which treatment becomes ineffective. It is sometimes difficult for physicians to discriminate 

localized oral cancer from other benign conditions. In order to non-invasively detect tumor in 

tongue, a medical HSI system based on reflectance data was used with a Sparse Representation 

algorithm [26]. It distinguished the healthy part from the tumor affected part of the tongue, 

based on spectral signal at each pixel. Another study based on a snapshot HSI imaging system, 

utilized reflectance spectra to segment the tissue and fluorescence spectra to highlight 

suspicious regions [27]. 

 

Two types of skin cancer, namely Kaposi’s sarcoma and melanoma have been analyzed using 

hyperspectral/multispectral imaging. Melanoma is considered the deadliest form of skin 

cancer. Kaposi’s sarcoma was identified in [28] using a NIR range based six-band multispectral 

camera in which the thermal signatures of the patient’s blood volume were studied, and it was 

observed that blood oxygen saturation levels and blood volume were indicators of tissue 

angiogenesis and metabolism. In an in vivo study, non-invasive tumor margin identification for 

early and malignant melanoma was performed using a hand-held HSI camera and a Decision 

Tree classifier, based on feature selection and dimensionality reduction techniques [29]. 
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A research involving classification of cancer cell cultures experimented with different cancer 

cells from pancreas, breast, liver, colon, bladder and vascular endothelium [30]. From the 

hyperspectral data, spectral features were extracted by dimensionality reduction using PCA. 

These features were then classified using a multilayer perceptron (MLP) based neural network, 

and then classified by an SVM classifier in a one-vs-one classification scheme, with ten models 

developed and trained on the corresponding two tissue types (e.g. pancreas vs liver, pancreas 

vs breast etc.) and the best performing model was chosen for classification. This also revealed 

the spectral similarity (pancreas and liver) and variability (breast and pancreas) in cancer from 

different organs. 

 

Applications in surgical guidance 
 

While the success of a surgery depends on the surgeon’s expert judgements and visual ability, 

complimentary intraoperative tools are generally needed to confirm diagnosis and evaluate 

surgical therapy in the operation room, specifically visual aid tools like medical HSI. The role 

of such an imaging tool can be threefold: 

 

1) To aid visualization of tissue in the surgical field that is spilled with blood, which is a 

big visual obstacle during surgeries. 

 

2) For residual tumor detection, to maximize the removed tumor without harming the 

adjacent normal tissue. This can be performed real time by observing the spectral 

difference between tumor and normal tissue. 

 

3) To monitor tissue oxygen saturation, which is a positive indicator of normal tissue. 

Thus, dynamic changes in blood flow can be captured and untoward incidents avoided. 

 

By utilizing these three aspects of HSI in the surgical room, researchers have explored the 

possibilities of HSI in some surgical procedures. 
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Figure 6: Difference between RGB vs HSI image in detecting features under the surgical bed. Left: image of the 
surgical bed with the residual tumor. Right: Pseudocolor visualization of the characteristics of the tissue including 
hematoma under the surface [31]. 

 

In 2017, the estimated number of new cases of breast cancer in females in U.S was 252,710 

[22]. It was also the deadliest form of cancer in females and a predominant number of patients 

undergo mastectomy, which is the complete surgical removal of the cancer-affected breast. In 

some cases, lumpectomy or breast conserving surgery is performed to remove only a selective 

portion of the breast. While for cosmetic reasons the excised tissue should be kept minimal, it 

is crucial to completely remove all the cancer cells. Failure to remove it effectively will 

necessitate a re-excision. This can be avoided if it is possible to make an intraoperative 

evaluation of the residual tumor in the breast. A study on rats [31], was able to intraoperatively 

differentiate tumor, blood vessels, muscle, and connective tissue using HSI, after partially 

resecting the breast tumor tissue (illustrate in Figure 6). 

 

The surgical procedure to remove the gall bladder is called cholecystectomy and is a commonly 

performed surgery where the standard procedure is laparoscopy. In closed laparoscopy, several 

small incisions are made in the abdomen to facilitate the entry of surgical tools and an 

endoscopy-based video camera. This limits tactile feedback and the visualization of tissue. 

Therefore, a NIR HSI modality with an endoscope was built by Zuzak et al. [32], to identify 

the anatomy of the porcine biliary tissue during surgery by using only the measured spectra 

inherent to each tissue, before taking any invasive action. 
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Figure 7: Illustration of an application involving segmentation of abdominal cavity using HSI technique. Left: RGB 
image of the intestine. Right:  segmentation based on spectral signatures [33]. 

 

In surgical intestinal ischemia, there is diminished blood flow during which deoxygenated 

blood and waste products accumulate, in turn causing inflammation and ulcers. During surgery, 

visibility is crucial to diagnose the disease. Since the abdominal area is vast, HSI can be used 

to visualize different tissues and organs without any invasive action. Studies on porcine 

intestine using HSI identified that the spectral range 765 to 830 nm can best distinguish normal 

and ischemic tissue [33]. Based on spectral signatures, spleen, colon, and small intestine could 

also be segmented in the hyperspectral image. 

 

1.3.2.3 MHSI applications using deep learning 
 

Ling Ma et al. developed a CNN architecture, based on entirely the spectral information from 

12 hyperspectral data cubes of head and neck tumor on mice and performed leave-one-out 

cross-validation for the detection of tumor [34]. Each spectrum obtained from the pixels was 

utilized to characterize the tissue into normal or tumor affected. In another study [35], 

hyperspectral data of excised tissue samples of 50 patients was used to classify the spectra into 

squamous-cell carcinoma, thyroid cancer, and normal head and neck cancer. It was confirmed 

that the CNN developed, outperformed other classifiers like SVM, k-NN, DTC and LDA. A 

study furthering this research by the same group [36] was carried out for characterizing tissue 

in two tissue regions namely, thyroid and oral cavity tissue. For the thyroid tissue, a 3-D CNN 

based on AlexNet [37] was proposed to distinguish the tissue using binary classification into 

normal thyroid tissue and thyroid carcinoma, and multi-class cancer classification into normal 

thyroid carcinoma (medullary and papillary) and multi-nodular thyroid goiter tissue. With the 

oral and upper aerodigestive tissue, binary classification between normal tissue and squamous-

cell carcinoma, and in multi-class classification of normal tissue into epithelium, skeletal 

muscle and gland. For the oral tissue, an AlexNet-based CNN with convolution-only inception 

module was implemented. Both the experiments used hyperspectral image patches of 

dimension 25 x 25 x 91, classifying them into one of the above discussed classes.  
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1.4 Advantages of hyperspectral imaging 
 

1.4.1 Spatial information 
 

As has been discussed, HSI is spectroscopy integrated with imaging methods to obtain spectral 

and spatial information of a tissue under examination. Therefore, at each pixel of the tissue a 

spectrum is available for analysis. Due to the spatial correlation of different neighbouring 

spectra, more accurate models for classification and segmentation can be developed by using 

the spectral-spatial relationship in the image. 

 

1.4.2 Rich spectral information 
 

In the previous fundamental comparison between RGB/monochrome and HSI methods, the 

limitations of the former were discussed to establish the advantages of HSI. While 

RGB/monochrome images record geometric properties, color, gradient and textural 

information of the tissue, it is usually not adequate to distinguish between healthy and affected 

tissue. More information about metabolic activity and tissue compositional changes has to be 

utilized to characterize the affected tissue.  Also, RGB color images capture information only 

at the red (630 nm), green (545 nm) and blue (435 nm) wavelength bands. Due to metamerism, 

which is the inability to distinguish materials with varying chemical composition but similar 

color properties, the diagnostic ability of the RGB system limits the surgeon from identifying 

subtle changes in the tissue properties. In contrast, HSI records spectral information commonly 

in the VIS to NIR range and stores information across hundreds of spectral bands, which can 

be invisible to human eye.  

Figure 8: A representative result of spectral binary classification in head and neck tissue. The RGB image, 
output probability of cancer and its corresponding visualization are illustrated (from [35]). 
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Figure 9: Illustration comparing the structure of a hyperspectral and an RGB image as in [3]. The primary 
difference is in the number of channels or bands across which information is captured where a contiguous 
spectrum represents each point in the image, compared to discrete values in RGB. 

 

1.4.3 Non-contact and non-invasive 
 

For medical applications like disease diagnosis and surgical guidance, it is very significant that 

a non-invasive and non-contact modality like HSI can be employed by making use of only the 

optical properties of the tissue. Since it is a wide field imaging method with a large field of 

view (FOV), a vast area of tissue can be analyzed without the need to excise or process the 

tissue. An illustration of an HSI camera configuration [38] is shown in Figure 10. Further, the 

non-contact nature can make it suitable for usage in sterile environments, like the surgery room 

and laboratories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Illustration of an HSI camera setup described in [38] with the corresponding components. 
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1.5 Limitations of hyperspectral imaging 
 

1.5.1 Signal-to-noise ratio  
 

For HSI, the signal-to-noise ratio (SNR) is an important parameter, defined as: 

 

𝑆𝑁𝑅 =  (
𝐴signal

𝐴noise
)

2

 

 

where, Asignal is the root mean square amplitude of the signal and Anoise is the root mean square 

amplitude of the noise. 

SNR measures the ratio of useful signal to noise in a measurement. For HSI measurements, 

each pixel in the image provides the spectrum at that point of the subject. The SNR can be low 

due to the higher number of spectral channels, effect of background noise, and data from the 

entire image. 

 

1.5.2 Lack of depth 
 

The optical penetration depth is defined as the tissue thickness, which reduces the intensity of 

incident light to 37% of the intensity at the tissue surface. The value of this optical penetration 

depth for an average person is 3.57 mm at 850 nm and 0.48 mm at 550 nm. This limits the 

application of HSI in medical domain to only investigate tissue areas near the surface. It is also 

possible that HSI in thermal infrared range can be highly dependent on the surface skin 

temperature. 

 

1.5.3 Non-uniqueness 
 

The change in biological properties of tissue can be indirectly deduced from the change in the 

measurements of reflectance or transmittance. This is done through the determination of a 

spatial map of optical properties under the surface of the tissue using the interaction coefficients 

(absorption coefficient μa and reduced scattering coefficient μ's). Therefore, it is possible that 

photon path is unknown and gives rise to the problem of non-uniqueness where each 

reflectance value can be represented by more than one coefficient pair. This can lead to two 

substances with different optical properties yielding similar optical measurements. 
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1.6 Why deep learning for hyperspectral imaging? 
 

1.6.1 Automatic feature learning 
 

In the previously popular statistical approaches used in machine learning like SVM, k-NN, 

LDC and even classical neural networks, feature extraction is a crucial step, after which the 

computer algorithm can optimize the decision boundary in the usually high-dimensional feature 

space. It is required to extract highly discriminant features that contain the most information of 

the data representation and is usually done by domain experts, thus being termed handcrafted 

features. This process is very cumbersome and time-consuming, hence the need to automate it 

and make an intelligent system learn the data representations in a highly optimized way.  

 

Backpropagation is the fundamental cog for the recent advances in supervised learning, which 

is basically a gradient descent-based learning method for neural networks. In this, a loss 

function which is constituted by the training data and the network together is minimized with 

respect to the weights in the hidden layers of the network. By optimizing these weights to a 

minimum error mapping between the predicted values and the true values, the feature 

representations are learned. Thus, the step of feature extraction is absorbed within the learning 

step (with the exception of minor preprocessing steps) making it easier even for non-experts to 

analyse data, especially in the medical domain. 

 

1.6.2 Generalization ability 
 

By learning the hierarchical representation of data, the deep learning models can outperform 

the classifiers like SVM, which depend on handcrafted features. Deep models can learn features 

at multiple levels of abstraction, though a network with higher capacity can memorize the 

training dataset. By utilizing explicit regularization methods like weight decay and dropout, 

the generalization ability of networks can be improved. By using early stopping of training or 

by utilizing batch normalization, the generalization can be implicitly improved. The same 

cannot be said for other typical classification frameworks working on handcrafted features. 

 

1.6.3 High dimensional data 
 

Kernel methods like SVM are theoretically appealing because of the loss function to be 

minimized is convex, and in principle, a suitable choice of kernel should be able to learn any 

training data. Still, they have been rarely used in large-scale experiments involving high-

dimensional data (order of 104 variables) because they are computationally very intensive and 

thus cannot scale easily to larger datasets. Additionally, the single-layer nonlinear 
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transformation of these kernel methods can only have a limited representation capacity to learn 

the rich features from image data (2-D, 3-D or 4-D). In contrast, deep learning networks have 

abundant nonlinear transformations that can learn the decision boundaries much easily for 

varied and complex data. Additionally, researchers are pushing efforts to make deep learning 

models highly robust, scalable and distributable. 
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Chapter II – Data Preprocessing 
 

For this Master’s thesis, the ex vivo tissue data from head and neck region, specifically from 

tongue is acquired from an HSI setup according to patient number. For each patient, there are 

a set of images which capture the tumor affected tissue. First, there is the raw hyperspectral 

image data acquired at different timeframes and an associated header file which contains 

information about the wavelength range, wavelength values of individual bands, image size 

and data format. It can be observed by reading the header file of the raw data, there are 192 

wavelength bands ranging from 478 nm to 922 nm, with a mean wavelength difference of 2.79 

and it is possible to identify certain bands which hold no information. These bands can be 

clipped off to obtain only valuable information from the raw hypercube. Since the data is 

obtained from pushbroom scanning of HSI imaging, the information about the number of lines 

covered while scanning and the number of samples acquired from each line scan is also 

available. As discussed in the previous section on HSI scanning, the band interleaved by line 

(BIL) image encoding is used for generating the hypercube. By writing a small MATLAB code, 

it is possible to read the raw data using the multibandread function and convert it into a 3-D 

array representing the spatial dimensions and the spectral dimensions. It is also possible to view 

individual images or a representative mid-range image to evaluate the hypercube, when it 

comes to choosing the region of interest. Each image pixel holds a value of the uint16 data type 

 

Second, there is a high resolution RGB image of the affected tissue for a given patient. Apart 

from this there is pathological slide image, which is obtained from slicing the tissue block and 

staining it to distinguish different cells under the microscope. On such a pathology slice, hand 

drawn markings indicating the different regions in the slice like tumor, muscle, fat and epithelia 

are made. To the pathology image, color thresholding and edge segmentation has been applied 

so that that a region of interest (ROI) mask can be applied to eliminate the insignificant portions 

of the image. Then the annotations are sketched manually on this annotate image to demarcate 

different portions in the tissue according to the color scheme red – tumor, green – muscle and 

blue – fat. 

 

Since the RGB and the pathology images are captured at different time instances and using 

different sensors, it is necessary to establish a mapping between these two images so that the 

different tissue regions match. This is carried out by manually selecting multiple points in both 

these images which match and performing a geometrical transformation of the annotated image 

with respect to the coordinates of the RGB image. Through this process, a one-to-one mapping 

of the RGB and annotated images is established. More on this topic will be discussed in the 

Label Preparation section. 

 

 

 



24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The complete workflow of the thesis. It starts from preparing training data from the patient records 
till obtaining the final segmentation images from the trained network. 

 

Commonly, raw medical images require some preprocessing before they can be used for any 

application. In this case too, certain image preprocessing methods were required so that it can 

be used in training and testing the deep learning network for tissue characterization. 

 

 

2.1 Image cropping 
 

As mentioned previously, the raw data cube comprises high resolution images (for instance 

2048 x 1155), hence it is necessary to crop the images when dealing with voluminous data like 
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the hypercube, in order to reduce the computation time. Therefore, a representative image slice 

from the mid-range band (677.54 nm) is extracted from the data cube and its region of interest 

is estimated. A cropping boundary is drawn around this region using a MATLAB code and the 

entire data cube is cropped using that cropping boundary. There is however a caveat to this, 

since a proper cropping boundary is required to be chosen in order to accommodate the 

translation error (discussed later) in the hypercube across all the bands. By cropping the images 

too close to the periphery of the tissue, we may risk a portion of the tissue being cropped out 

of the region of interest in the image. Hence a suitable margin around the tissue is considered 

while cropping the data cube.  

 

2.2 Image resizing and rotating 
 

It is also important to verify if the RGB and pathology images are in the same orientation as 

the representative hyperspectral image. Suitable image rotations are performed on the RGB 

and pathology images until they are aligned with the hyperspectral image. In the previous data 

cube cropping step, the ROI is selected, and the cropping area is drawn, thus reducing the 

dimension of the images in the hyperspectral data cube. In this step the high resolution RGB 

and pathology images are downsized to one dimension of the hyperspectral image, thereby 

maintaining the aspect ratio of the matched RGB and pathology images. It may also be 

necessary to apply rotation to some of the images, so that the medical image record 

(hyperspectral, RGB and annotated pathology) of each patient are of the same orientation. 

 

2.3 Cube stabilization 
 

Image registration in medical imaging is the one-to-one mapping between the coordinates in 

one image to another, such that points that represent the same anatomical feature are mapped 

together. For this a geometric transformational model is established between the two images, 

which can involve rotation, translation, scaling and affine modes. Thus, a moving image, the 

image to be mapped to the reference image or fixed image, is transformed into the registered 

image based on two different registration methods: (1) Feature-based; and (2) Intensity-based 

registration. In MATLAB, the feature-based method can be employed using the Computer 

Vision System Toolbox, which can detect image features like corners and blobs between the 

moving image and the fixed image and estimate a transformation. The intensity-based method 

can be implemented using Automatic Image Registration with the imregister command, with 

which a similarity metric between the moving and fixed image is maximized or minimized 

using an optimizer to obtain the required geometrical transformation. 
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In the case of hyperspectral images, which are hundreds of stacked grayscale images, the latter 

method was easier to work simply because of the volume of image required to be processed 

(for cube stabilization, which is described next), also the difficulty in detecting tissue features 

from the data cube in the former method. 

  

As discussed previously, there is discernible translation motion in the image sequence that 

constitutes the 3-D hypercube. This is the most undesirable effect when working on a volume 

of images, since there can be only one labelled image for the entire hypercube and the 

translations of the tissue areas could misrepresent tissue areas to the during network training. 

For instance, in tissues with smaller tissue regions, it is possible that one type of region is 

misrepresented as a different one: muscle encroaching upon the tumor region. Since there is 

already class imbalance between tumor and the healthy tissue, it becomes critical that the 

translation of the image sequence is prevented. This procedure maybe called the ‘data cube 

stabilization’. For the cube stabilization, two different strategies were attempted based on 

which images in the data cube are chosen as the moving and fixed image: 

 

 1) The image at the mid-range band, which belongs to the visible spectrum (red) is chosen. All 

the other images in the data cube are set as the moving images and thus the entire cube is 

stabilized with respect to the mid-range image. 

 

Figure 12: Translation (in pixels) between initial and final bands, across all patient records. It can be observed 
that this effect is prominent in certain samples (like #2) than in others before stabilization.  
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 2) The image at the mid-range band is chose as the fixed image In. Its neighbouring images In-

1, In+1 are set as the moving images. Once these moving images have been registered, they 

become the fixed images to the preceding or succeeding images, respectively. Thus, with two 

channels of registration starting from Imid to I1 and Imid to Ib (where b is the number of bands in 

data cube), the entire data cube is registered. 

 

With respect to the registration performance the first method managed to stabilize the data cube 

by curtailing the translation observed in the data cube (Figure 12). On the other hand, the 

second method could only reduce the translation to certain extent in a few bands, exacerbated 

by the bad image quality in certain bands and, also by the removal of uninformative bands. 

Thus, the error in registration progressed up or down the cube, depending on which bad quality 

image was assigned as the fixed or reference image. 

 

2.4 Label Preparation 
 

2.4.1 RGB – hyperspectral image registration 
 

The ground truth labels are generated from the pathology images, gold standard for medical 

image annotation, which were already matched to their respective RGB images. Now, in order 

to obtain the ground truth to be overlaid on the hyperspectral data cube, a suitable image 

matching or registration method is required to convert the pathology annotations to the 

coordinates of the hyperspectral image. Thus, it is decided to establish a one-to-one mapping 

between the RGB image and the hyperspectral image, which would automatically establish a 

Figure 13: Illustration of the two cube stabilization methods utilized. Left: Median band is chosen as the reference 
(fixed) image and the adjacent bands are moving images. These transformed bands become the reference for 
the subsequent bands up and down the range. Right: Median band is chosen as the reference image and all other 
bands in the spectral range are considered as moving images. 
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mapping between the hyperspectral image and the annotated pathology. However, this was not 

a straightforward method like the image registration used for cube stabilization; visually, there 

were mismatches between the RGB images and the representative hyperspectral images in 

terms of rotation, scaling, orientation and even deformation of tissue. In the dataset, only a few 

images were image registered using the Automatic Intensity-based method and for the 

remaining images a robust registration mechanism is needed: Control Point registration, which 

is the manual mode of image registration. 

 

2.4.2 Automatic vs manual 
 

In the automatic method, multimodal registration is chosen since the RGB and hyperspectral 

images were captured using different sensors. Since the representative hyperspectral image was 

obtained from the mid-range band (in this case, 677.54 nm), which belongs to the red 

wavelength range, the logical choice would be to use the red channel of the RGB image for 

image registration. It was also observed that using other bands or converting the RGB image 

to grayscale using rgb2gray command did not yield satisfactory results.  

 

Thus, using imregister command, with red channel of RGB image as the moving image and 

representative hyperspectral image as the fixed image, the automatic image registration can be 

implemented. While in most images it yielded a reasonable global image registration in terms 

of scaling, rotation etc., the local registration in terms of the anatomical tissue features to be 

matched was incomplete. Therefore, a two-fold image registration method involving both 

automatic and manual methods is developed. 

 

 

Figure 14: Collection of image point pairs by the Control Point method in MATLAB. Left: RGB image of 
corresponding to #3. Right: Representative hyperspectral image of #3. It is to be noted that the points are focused 
around the tumor affected regions for remove local image distortions. 

 

After removing gross or global image distortions, it is possible to use the transformed image 

in the Control Point method to manually select point pairs of the anatomical features to be 

matched in both the images. This is critical especially in the tumor areas of the tissue - which 
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are sparse compared to the muscle or fat areas - where inaccurate point mapping can lead to 

adverse effects on the deep learning performance. This way, local registration can be 

performed by choosing the points from the desired areas in both images and saving those 

image point pairs as movingPoints and fixedPoints, corresponding to the moving image and 

fixed image ( 

Figure 14). A geometrical transformation (similarity) is estimated from these point pairs and 

applied to the fixed images. By iterative transformations, accurate image registration becomes 

possible. The different image registration methods implemented on different patient 

hyperspectral images is shown in Table 3. 

 

 

Figure 15: Images of a tongue affected by tumor. From left to right: Representative hyperspectral image; 
Grayscale of RGB image; After Automatic Intensity-based image registration;  After Control Point image 
registration. 

 

Table 3: The method utilized for mapping the RGB image to the hyperspectral image coordinates globally or 
locally for different patient samples. 

 

2.4.3 Label generation 
 

From the transformed annotated pathology images, we can obtain the segmentation label 

images for training the deep neural networks. Clearly, there are three categories in the 

annotated pathology slides of the excised tongue tissue: tumor and muscle (and fat in specific 

samples). However, on comparison with the hyperspectral image, we can see that some 

portions of tissue have not been annotated by the pathologist. This is because thin slices of the 

tissue block are made and annotated by the pathologist. Depending on the number of slices 

made and the elevation found in the tissue block, regions of the tissue may not be available for 

Patient sample  Global transformation Local transformation 

#1 Automatic Control point 

#2 Control point Control point 

#3 Automatic Control point 

#4 Automatic NA 

#5 Automatic Control point 

#6 Automatic Control Point 

#7 Automatic Control point 
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the annotation. Thus, overlaying the label image on the original hyperspectral image would not 

provide complete annotation. The regions which are not covered by the pathology slide can be 

denoted as an ‘uncertain’ or ‘unknown’ category in the label, thus making it a label of four 

categories or classes namely tumor, muscle, unknown and background. Since it is a pixel-wise 

annotation, the regions of the tissue class can be given a pixel value like, 0 for tumor, 1 for 

muscle, 2 for unknown tissue and 3 for background. 

 

The unknown tissue region can be easily obtained from a hyperspectral image channel, by 

performing thresholding and relevant morphological operations to obtain the outermost tissue 

regions not annotated by the pathology slides. The labels can be converted to a categorical 

image, which has the dimension (x, y, n=4), where n is the number of defined tissue classes and 

each tissue class is represented as a separate channel of the categorical image. This makes it 

easier to work with multiclass labels, especially within the TensorFlow framework, which will 

be discussed later. The complete process of label generation is illustrated in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patient medical record (HSI, RGB and annotated pathology) 

Image registration RGB and HSI 

Transformation on annotated 

pathology 

Creation of ground truth labels 
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2.5 Dataset preparation 

 

Once the labels are available, we can assess the regions that are constitute a particular class, 

for instance, muscle, tumor or unknown tissue. Immediately, we can observe that the pixels in 

the label images (or hyperspectral images) that are categorized as tumor are far fewer than the 

pixels categorized as muscle. In Table 4 shown below, the ratio of number of pixels belonging 

to each class based on ground truth labels. 

 

Table 4: The ratio of number of pixels belonging to different classes based on the labels before class balancing, 
in the form background : tumor : muscle : unknown. 

Patient sample Background : Tumor : Muscle : Unknown ratio 

for pixels per class 

#1 10 : 1 : 1 : 2 

#2 22 : 1 : 7 : 3 

#3 10 : 2 : 2 : 3 

#4 44 : 3 : 5 : 4  

#5 45 : 1 : 13 : 8  

#6 20 : 1 : 8 : 2 

#7 40 : 1 : 3 : 2 

 

This class imbalance can create a bias towards the tissue classes that have the maximum 

number of pixels (in case of hyperspectral image, spectra). In order to counter this class 

imbalance in tumor pixels compared with the remaining class pixels, an explicit sub-cropping 

scheme is introduced to ascertain that adequate pixels are represented in the crucial tumor class.  

 

In this cropping scheme, the label images of all the samples are examined and manual cropping 

is performed on them. The cropping in done in an overlapping manner, such that the spatial 

dimension is 224 x 224 and most of the cropped regions have tumor class pixels and also 

limiting the regions representing the background, while making sure at least two class regions 

are present in each cropped region. The number of pixels represented by each tissue class, post-

cropping for class balancing can be seen in Table 5. 

 

When the 224 x 224 cropped regions were made, the coordinates of the crop (x, y, height, 

width) are stored separately so that they can be applied to the hyperspectral data cubes and the 

corresponding correct blocks can be cropped from an original hyperspectral data cube. Using 

Figure 16: Illustration showing the process of ground truth labels creation.  From the annotated pathology, RGB 
image and hyperspectral images from original patient records, the ground truth labels are created by registering 
the pathology and the hyperspectral images. 
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this cropping scheme, we can obtain 31 sub-blocks (224 x 224 x 164) and their corresponding 

label images (224 x 224 x 4). This number (Table 6) varies for different hyperspectral data 

cubes because the spatial size of the ROI crop is different (size of the tissue in the image is 

different). This constitutes the data set preparation step, which can now be read easily in Python 

using the H5PY library.   

Table 5: The ratio of number of pixels belonging to different classes based on the labels after class balancing, in 
the form background : tumor : muscle : unknown. 

 

Table 6: Number of sub-cropped regions obtained from ROI hyperspectral image of each patient sample. 

Patient sample Number of sub-cropped regions 

#1 31 

#2 32 

#3 27 

#4 31 

#5 32 

#6 31 

#7 32 

2.6 Spectral signature analysis 
 

In this section, individual patient data cubes are studied by plotting their spectral curves for the 

tissue classes including tumor and muscle. The unknown and background classes are not 

considered in this study because the unknown class spectra have similar profiles to muscle, 

while the background spectra are not usually prominent compared to the other classes. 

Therefore, to eliminate clutter and facilitate better understanding of inter-class difference 

between the tumor and muscle spectra, the other two classes are not considered for the 

following plots. They are plotted on their reflectance values across all the 164 spectral bands. 

By using the labels coordinates(ground truth), spectra belonging to tumor and muscle tissue 

are obtained. The mean values of all the spectral signals are calculated along with their standard 

deviation, for both the tissue classes. This allows examining the spectral signatures for each 

individual patient sample. 

Patient sample Background : Tumor : Muscle : Unknown 

ratio for pixels per class 

#1 6 : 2 : 1 : 2 

#2 4 : 1 : 8 : 2 

#3 4 : 4 : 5 : 3 

#4 7 : 8 : 2 : 7 

#5 4 : 1 : 10 : 4 

#6 5 : 1 : 9 : 2 

#7 5 : 2 : 10 : 2  
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As can be seen from Figure 17, this patient sample has little inter-class overlap of spectral 

values, which indicates that it can provide good distinction between tumor and muscle class. 

Given that the mean tumor spectrum is similar in many characteristics to muscle spectrum, by 

having a separation in the intensity values, it is possible to delineate the hyperspectral data 

cube by classifying the individual spectra into one of the possible four categories. 

 

Figure 18: Spectral signatures of the #2 patient sample. It shows the confidence interval around the mean spectra 
of tumor and muscle tissue. 

Figure 17: Spectral signatures of the #1 patient sample. It shows the confidence interval around the mean 
spectra of tumor and muscle tissue. 
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For the second patient sample, considerable overlap in the plotted spectra of tumor and 

muscle is observed. The overlapped area is represented by the darker shade of red and it is 

also worth noticing how close in intensity the average spectra of tumor and muscle are to 

each other. This decreases the inter-class separability when approaching the segmentation 

problem from the perspective of spectral information. 

 

 

In the next patient sample #3, (Figure 19), there is again overlap of the spectra, but there is 

distinction in the spectral intensities between bands 35 and 100, which can make these bands 

most informative in discriminating between tumor and muscle. One other observation specific 

to this sample is there is significant tissue curvature, which can raise the intensity of the spectra 

belonging to the curved or raised regions of the sample. Adding to this, the inter-class spectral 

overlap could potentially deteriorate the spectrum discriminating ability of a classifier. 

 

In this particular hyperspectral data cube (Figure 20), there is higher inter-class separability in 

terms of the spectral intensity, as seen from the minimal overlap (especially along the lower 

bands) and the separation between the average muscle and tumor spectra. In a stark contrast to 

this, Figure 21 representing the spectra of the patient sample #8, shows the least inter-class 

separability with complete overlap of the spectral curves. The hyperspectral images (and 

spectra) are low intensity and it is not viable to apply preprocessing techniques to improve the 

separation between the two classes. This can indicate that this data cube was not acquired 

properly from the HSI setup. 

Figure 19: Spectral signatures of the #3 patient sample. It shows the confidence interval around the mean spectra 
of tumor and muscle tissue. 
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From the spectral plots (Figure 22) of sample #5, we can notice overlap and small intensity 

difference between average spectra of muscle and tumor tissue (especially in the mid bands 60 

to 120). This effect worsens as we move across the bands and this separation is non-existent in 

the final bands of the hyperspectral data cube. For sample #6, shown in Figure 23, there is still 

overlap but not to the extent of the #5. There is a window upto the 120th band where the inter-

class separation is still prominent and can be used to distinguish the tumor and muscle spectra. 

 

Figure 20: Spectral signatures of the #4 patient sample. It shows the confidence interval around the mean spectra 
of tumor and muscle tissue. 

 

Figure 21: Spectral signatures of the #8 patient sample. It shows the confidence interval around the mean 
spectra of tumor and muscle tissue. 
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In the final patient sample #7 shown in Figure 24 , while there is spectral overlap along the 

initial bands, the inter-class separation improves strongly in the mid-range, starting from band 

60 with peak separation happening around band 120. Thus, this spectral window could be 

informative in discriminating between the muscle and tumor class. 

Figure 22: Spectral signatures of the #5 patient sample. It shows the confidence interval around the mean spectra 
of tumor and muscle tissue. 

Figure 23: Spectral signatures of the #6 patient sample. It shows the confidence interval around the mean spectra 
of tumor and muscle tissue. 
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2.7 Discussion 
 

This spectral analysis of all the patient hyperspectral data cubes reveals how informative they 

are in distinguishing between the tumor and muscle class spectra. By using the confidence 

interval about the mean of the spectra, the inter-class separation can be visualized. The 

separation is non-uniform across different samples, with #1, #4 and #7 showing distinct 

separation between tumor and muscle. Samples #2 and #8 show complete overlap between the 

classes, which means that the separation between both the classes is small or, the hyperspectral 

data cubes acquired from these patient samples have considerable similarity in the spectral 

profiles of tumor and muscle tissue. The remaining data cubes have spectral overlap to certain 

extent, but also have maximum separation across a few discriminatory bands, which can be 

useful when classifying spectra. Hence, inter-patient variability is considerable in the 

hyperspectral image data set and to what degree it could influence the prediction performance 

of the proposed networks could be seen in the upcoming sections. 

  

Figure 24: Spectral signatures of the #7 patient sample. It shows the confidence interval around the mean spectra 
of tumor and muscle tissue. 
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Chapter III – Deep Learning Setup 
 

3.1 CNN theory 
 

Convolutional neural networks or CNNs, are an attempt to model the functioning of the human 

visual cortex and to replicate the human vision system. It is one of the successful models in 

machine learning, especially for solving computer vision problems like image classification 

and object recognition. In this section, the basics of the functioning of the visual cortex are 

briefly discussed, which can facilitate the understanding of how CNNs work. 

 

The visual cortex is present at the back of the skull, in a region called the occipital lobe and is 

instrumental in the processing of visual information [39]. Visual information propagates 

starting from the eyes, through various brain areas, before reaching the visual cortex. V1, 

primary visual cortex, is the area of the visual cortex that receives the visual signals and is 

further managed by visual areas V2, V4 and the Inferior temporal gyrus (IT). With a focus on 

object recognition, it is enough to limit the explanation of functioning of regions V1, V2, V4 

and IT as illustrated in Figure 25. 

 

Figure 25: Flow of information from the retina to the visual cortex to the inferior temporal gyrus [39]. The 
regions V1, V2 and V4 detect edges, color, geometric shapes etc. from a scene.  

 

1) In the retina, the visual information is converted into chemical energy, which is in turn 

converted into action potentials that are transferred to the visual cortex. 
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2) V1 performs edge detection, where areas with local contrast are highlighted. 

 

3) V2, the secondary visual cortex, extracts simple properties like color, orientation from 

the signal and some complex properties from the signal from V1 and sends it further. 

 

4) V4 detects features of intermediate complexity, like geometric shapes and it also 

receives direct input from V1. 

 

5) TI performs object identification based on form and color of the object, while 

comparing it with the already stored memories of objects to identify it. 

 

 

A precursor to the development of the Convolutional Neural Network is the Neocognitron [40], 

which is a learning model for pattern recognition. It consists of an input array and a cascade of 

modular structures, each with two layers called S-layer and C-layer containing S-cells and C-

cells respectively, inspired from the S-cells or simple cells and C-cells or complex cells of the 

visual cortex. The S-layer serves as a feature extractor while the C-layer is responsible of 

organizing the extracted features. Local features like edges are detected in the lower layers, 

while global features like overall shape are captured in the higher layers. This imparts position 

invariance property to the network, i.e., a pattern is identified precisely irrespective of its 

position in the image. This eliminates the need to normalize the position of the image patterns 

and is one of the reasons for the superior performance of CNNs. 

 

Extending this model, we get the Convolutional Neural Network or CNN, which can process 

data in the form of multiple arrays. In this way, most forms of data can be accepted by the 

CNN, like signals and sequences as 1-D, images and audio spectrograms as 2-D, and 

volumetric images or videos as 3-D data. The two most important aspects of the CNN are the 

convolution layer and the subsampling layer (pooling layer) and the first model combining both 

these layers was introduced by LeCun for handwritten character recognition [41]. The main 

difference from the Neocognitron, was the supervised learning stage that happens after the 

unsupervised learning stage, also called as backpropagation.  
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3.2 Backpropagation  

The possibility of a neural network to learn from its different inputs is due to the 

backpropagation algorithm. For explaining this learning method [42], we must define a loss 

function C which depends on the input and the configuration of the network and find the partial 

derivative of this loss function with respect to the elements, weight w and bias b. By computing 

these partial derivatives, we can update these network parameters once a minimum value of 

the cost function is reached. If L is the last layer in the network, then the error term at the last 

layer 𝛿𝐿, can be computed by the equation below. The term 𝛻𝑎𝐶 denotes a vector which holds 

the terms of the partial derivative of C, with respect to the jth output activation at the last layer 
𝜕𝐶

𝜕𝑎𝑗
𝐿 . By computing the Hadamard product of this vector with 𝜎′(𝑧𝐿), which is the rate of 

change of the activation σ at the output layer and zL its weighted input. The first equation is 

given by: 

 

𝛿𝐿 = 𝛻𝑎𝐶 𝜊 𝜎′(𝑧𝐿) 

 

The second equation describes the backward propagation of error in the (l+1)th layer, to the lth 

layer through the transposed weight matrix of the (l+1)th layer and the Hadamard product with 

the rate of change of activation function with the weighted input zl. This is equivalent to moving 

the (l+1)th layer’s error 𝛿𝑙+1 backward to the lth layer to obtain its error 𝛿𝑙. The second equation 

is defined as the following: 

 

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) 𝜊 𝜎′(𝑧𝑙) 

 

In the third equation we can compute the partial derivative of the loss function with respect to 

the bias parameter 𝑏𝑗
𝑙, of the jth neuron in the lth layer. It is defined as the following: 

𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 

Figure 26: Illustration of intermediate layers in a neural network obtained from [42].  Left: represents the 
output layer activations and the cost function. Right: represents the weights between neurons in 
intermediate layers. 
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In the final equation we can compute the gradient of the loss function with respect to any weight 

in the network 𝑤𝑗𝑘
𝑙 , between the kth neuron in the (l-1)th and jth neuron in the lth layer (as shown 

in Figure 26). The final equation is defined as: 

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝛼𝑘

𝑙−1𝛿𝑗
𝑙 

 

3.3 Network Layers 
 

3.3.1 Convolution 
 

The convolution is a mathematical operation, involving two functions f and g to produce an 

integral h, which is the output function. The integral represents the amount of overlap of 

function f as it is shifted over the other function g, which is described as: 

 

ℎ(𝑡)  = ∫ 𝑓(𝜏 )
∞ 

−∞

𝑔(𝑡 −  𝜏 )𝑑𝜏 

and it can be denoted as h = f ∗ g 

In a CNN, the convolution operation would be 2-D in case of images and is illustrated in the 

Figure 27. An input matrix is convolved with a smaller square matrix called a kernel or filter 

and an output matrix is obtained. As can be seen, the convolution involves the element-wise 

product followed by a sum between the two highlighted matrices and the same operation is 

applied by sliding the kernel one column to the right. Once the kernel can no longer be slid 

right on the input matrix, it is slid down by one row and the operation is continued. In this way, 

a 3 x 3 output matrix is produced and has reduced dimension compared to the input matrix (5 

x 5).  

 

Figure 27: Demonstration of the convolution operation between two matrices. A 5 x 5 matrix is convolved with 
a 3 x 3 kernel to produce a 3 x 3 output matrix. 
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The significance of sliding the same kernel across the input matrix is to apply the operations 

across different regions in the input matrix and also to reduce the number of free parameters 

by a huge amount, since the same weight is shared by all the units in the output matrix 

 

With respect to an image, the kernel’s weights decide what type of operation is applied on the 

input image. Some examples of image operations include edge detection (Sobel filter), line 

detection, blur, sharpening, and identity. The convolution of such filters on a sample natural 

images is visualized in Figure 28 with the corresponding convolution filter activations [43]. In 

CNNs, each neuron in the convolutional layer is connected only to local region surrounding an 

input neuron - in contrast to regular neural networks, in which each neuron in a layer is 

connected to all the neurons in the previous layer – called as the local receptive field. 

 

 

Figure 28: Visualization of the different convolution filters/feature maps [43] that show activations at layers 1 
and 2 of a fully trained CNN, with its corresponding original image patches. 

 

The output of the convolution layer is called a feature map, as it is created by the convolution 

of a filter with an input image and contains information about the features that are present in 

the image. At each layer there is a bank of filters m, which subsequently creates m feature maps 

of the same image. These feature maps are stacked along the direction of the image depth. 

When the feature maps after the convolution operation with m filters are connected to the non-

linearity layer, which consists of an activation function, activation maps are created. The 

commonly used activation functions are sigmoid or hyperbolic tangent functions, which help 

to extract meaningful features from the feature maps by squashing the input in the range [0, 1] 

or the range [-1,1] as shown in Figure 29. The sigmoid activation thus eliminates all the 

negative values in the image, while the tanh function zero centers the input.  

 

However, the sigmoid function’s undesirable feature is the tendency to saturate at 0 or 1, which 

makes the gradient at these regions zero. This can kill the gradient so that no signal flows 

through the neuron and the network barely learns. Also, since the outputs are not zero-centered, 
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the gradient update has zig-zag patterns, which is again undesirable. Because of these reasons, 

the tanh non-linearity is always preferred over the sigmoid function in practice. 

 

3.3.2 Activations 
 

ReLU or Rectified Linear Unit is a combination of an activation function and also a rectifier 

(|x(l-1)|), defined as: 

𝑥𝑙 = 𝑚𝑎𝑥 (0, 𝑥𝑙−1) 

 

which is 0 when x<0 and linear with slope 1 when x>0. The rectifier component is regarded to 

be quite crucial in the average pooling layer because of the cancellation of negative and positive 

activation values, which affects the accuracy of the network. This also leads to more sparse 

activation layers. It has been proven that, including the ReLU layer increases the speed and 

effectiveness of training [44], and alleviates the vanishing gradient and exploding gradient 

problem in backpropagation. 

Figure 29: Plots showing the sigmoid function and the tanh function. The sigmoid function operates entirely in 
the positive range whereas tanh function operates between -1 and 1. 

 

ELU or Exponential Linear Units is an alternative approach [45] to speed up learning process 

during training and to alleviate the vanishing gradient problem. As can be seen from the plot 

Figure 30 for the ELU function, it has negative values contrary to ReLU. This allows it to push 

the mean activations towards zero at lower computational complexity. Research shows ELUs 

improve the speed of learning and the generalization ability of the network. 

 

f(x) = {
𝑥                                 𝑖𝑓 𝑥 > 0

𝛼(𝑒𝑥 − 1)                 𝑖𝑓 𝑥 ≤ 0
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3.3.3 Pooling 
 

It is the downsampling layer applied after the activation function, with many options like max 

pooling, average pooling and L2-norm pooling. The max pooling layer partitions the input into 

non-overlapping blocks and outputs the maximum value in that block, whereas average pool 

outputs the average value from that block. Illustration of pooling operation is shown in Figure 

31. However, is widely preferred because (1) it eliminates non-maximal values, thereby 

reducing computation in the layers; and (2) it provides translational invariance, because 

regardless of a pixel shift the max pooling layer is sensitive to the maximum value in that 

neighborhood. 

 

 

Figure 31: Comparison between max pooling and average pooling operations. Max pooling emphasizes on 
maximal value features, whereas average pooling de-emphasizes the maximal value features. 

 

3.3.4 Additional Configurations and Layers 

3.3.4.1 Residual layers/networks 
 

Figure 30: Plots showing the ELU and ReLU activation functions. ReLU does not permit negative 
activation values whereas ELU allows smaller negative activations. 
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Residual layers are building blocks of the ResNet architecture proposed by [46] . It was 

identified as a solution to the degradation problem in training deep neural networks, where 

stacking more layers does not improve the accuracy, rather counterintuitively degrades the 

accuracy after a state of saturation.  

 

If a few stacked layers constitute a function H(x), then we can define another function called a 

residual function, F(x), which differs from H(x) by an identity mapping. Thus H(x) = F(x) + x 

and can be constructed by using a feedforward function involving an identity mapping (skip or 

shortcut connection). 

Based on the hypothesis that “if a complicated function can be asymptotically approximated 

by multiple nonlinear functions then, these nonlinear functions can also asymptotically 

approximate its residual function”, one can surmise that the residual function is easier to fit 

using nonlinear layers than the actual function H(x). This research makes it visible that  

i) residual functions permit stacking of layers without adding any more parameters  

 

ii) compared to the blocked or plain stacking of layers, the residual function method 

of stacking has lower training error for the same depth of the network. 

This permits us to utilize the benefits of employing deep neural networks, which can learn 

highly discriminative features from complex data, while avoiding the degradation problem 

previously reported. 

It can be seen in the further discussions that the proposed architectures utilize one or more 

residual layers because of the dimensionality of the data (spatial – spectral). For hyperspectral 

data without any factorization or dimensionality reduction to be used, deep layers would be 

required in order to extract discriminative features.   

 

3.3.4.2 Batch Normalization 
 

Batch Normalization or BatchNorm [47] was an important technique developed to increase the 

speed of training deep neural networks by reducing the internal covariate shift. While training 

the networks, the weights or parameters of the networks are constantly updated by error back 

propagation during each pass of the mini batch (in mini batch SGD optimization). Due to this 

the input distribution of the intermediate layers in the network keep varying, coercing the layers 

to learn from the varying distribution in the activation, thus increasing the time taken to train 

the network. If it is possible to make the inputs to the network layer all zero mean – unit 

variance, then the training can be accelerated, because of this stable gaussian input distribution. 

 

While this is the conventional intuition provided for the success of BatchNorm in improving 

network performances, it is worth exploring the complicated effects of multiple layers in the 

networks whose output becomes the input to a subsequent layer. The higher order terms 

appearing in the Taylor’s expansion of weight update around the current layer, can pose 
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problems during weight updates (requiring a very small step size or learning rate). By making 

the mean and variance of the activations to a layer independent of their values and the 

complicated interactions between layers, done by simplifying the learning dynamic using the 

learnable parameters γ and β, it can accelerate training and improve performance. The equations 

that describe the batch norm process are shown in Figure 32.  

 

The most recent works on BatchNorm have proposed that its potential can be attributed to the 

smoothening effect on the loss optimization landscape [48]. 

 

 

Figure 32: Equations that describe the BatchNorm layer as proposed in [47]. 

 

In the above equations, m refers to the number of mini batch samples; 𝜇𝐵 and 𝜎𝐵
2 denote the 

mini-batch mean and variance respectively. As discussed earlier, the learnable parameters γ 

and β are used to scale and shift the activations. 

 

3.3.5 Optimizers 
 

Based on a chosen loss function, an optimizer or optimization algorithm can create a model of 

a given dataset. Gradient Descent optimization does so by minimizing a loss function in the 

negative direction of a gradient or slope of the error, leading towards a minimum error value. 

Hence it is called as Gradient Descent optimization. 

 

Depending on after which subset of the dataset the model is updated, it can be classified into 

Stochastic Gradient Descent or SGD, mini-batch gradient descent or batch gradient descent. 
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SGD, also known as online learning algorithm, calculates the error for each sample in the 

dataset and updates the model accordingly. While this method of learning provides frequent 

updates to the model development, the learning can be noisy. As an advantage, noisy updates 

can help skip the local minima and prevent premature convergence of the parameters. However, 

this method is computationally intensive because of regular model updates and cannot be used 

for big datasets because of higher training time. The parameter update equation is: 

𝜃 =  𝜃 −  η. ∇𝜃 𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)) 

 

where, θ is the model parameters, η is the learning rate, ∇ θ J(θ) is the gradient of the loss 

function J(θ), with x(i) and y(i) the individual samples and labels in the dataset. 

 

In the batch or vanilla gradient descent, the error is computed for every sample in the dataset, 

but the update happens only after all the samples in the dataset have passed. The term ‘epoch’ 

refers to the training cycle of (forwards and backward pass) of the entire data set. Conversely, 

we can say that the network updates after each training epoch in such way that: 

𝜃 =  𝜃 −  η. ∇𝜃 𝐽(𝜃) 

 

where, ∇𝜃 𝐽(𝜃) denotes the gradient of the loss function, considered over the entire data set.  

 

Another variant of this is the mini-batch gradient descent, which is commonly used in deep 

learning applications. In this, the dataset is split into smaller ‘mini-batches’ and the error is 

computed, and the model parameters are updated for each pass of these mini batches. This 

method is more efficient than SGD, because the computational burden is reduced and the 

memory requirement for holding an entire dataset (as in batch gradient descent) is eased. The 

update rate is higher than the batch gradient descent but lower than SGD, which provides it a 

balance in terms of speed of convergence and computational efficiency. By splitting the data 

set into a number of mini-batches, denoted as ‘batch size’, the update occurs batch size times 

during an epoch and is defined as follows: 

𝜃 =  𝜃 −  η. ∇𝜃 𝐽(𝜃; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)) 

 

where, 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛) denote the number of samples and labels considered during training 

according to the chosen mini batch size. 

 

Another relevant concept is the learning rate (a multiplier to the gradients), which defines how 

quickly the gradients are updated. Choice of a larger learning rate like 0.1 may lead to bigger 

jumps in the gradient descent process and skip an existing (local) minimum, thus never being 

able to converge to a stable minimum. On the other hand, a smaller learning rate like 0.0001 
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causes shorter jumps, and updates the gradients much slower, leading to entrapment in a local 

minimum. 

 

For SGD, there are landscape features like ravines, commonly present around local minima. 

This slows down the SGD in reaching the local minima and it starts oscillating along the ravine 

slopes. In order to accelerate the convergence and reduce the effect of oscillation a technique 

called momentum can be used. This can be used in the following update equation to provide a 

fraction (𝛾) of the previous update term to the current one: 

𝑣𝑡 =  𝛾𝑣𝑡−1 +  η. ∇𝜃 𝐽(𝜃) 

 𝜃𝑡+1  =   𝜃𝑡  −  𝑣𝑡 

 

3.3.5.1 Adaptive learning optimizers 
 

This class of optimizers has adaptive learning rate, (i.e) different learning rate for each 

parameter at every time step t, making 𝑔𝑡,𝑖  the gradient of the parameter θi at the time step t. 

 

RMSprop 

RMSprop [49] is an adaptive learning optimizer which has an update rule based on the 

exponentially decaying average of squared gradients (g2) at time step t. In this the learning rate 

η is divided by the exponentially decaying average of g2: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐸[𝑔2]𝑡 + 𝜖
𝑔𝑡 

  

ADAM 

ADAM or Adaptive Moment Estimation [49] is similar to RMSprop in that it stores the 

exponentially decaying average of past gradients along with that of the past squared gradients. 

The former is the estimate of the first moment (�̂�𝑡) and the latter is the estimate of the second 

moment (𝑣𝑡). The update equation is: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜖
�̂�𝑡 

 

3.3.6 Performance Metrics 
 

3.3.6.1 Recall 
If Tp is number of true positives and Fn is number of false negatives, then the metric recall is 

defined as:  
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𝑅 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

Recall is also called as sensitivity.  

 

3.3.6.2 Precision 
If Tp is number of true positives and Fp is number of false positives, then the metric precision 

is defined as: 

𝑃 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 

Precision can also be referred to a positive predictive value. It can be seen for our case, that the 

precision indicates how precise the deep learning model is in classifying a voxel/ spectrum as 

one of the four categories. In other words, of the voxels predicted as positive, how many are 

actually positive. 

3.3.6.3 F-1 score 
The F-1 score or Intersection over Union (IoU) or Dice coefficient is defined as the harmonic 

mean of recall and precision, denoted as: 

𝐹1 =  2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 

 

From the definitions of recall and precision, we can observe trade-off relationship existing 

between them. By calculating their harmonic mean, we can provide a balance to these metrics. 

 

3.3.7 Loss Functions 
 

3.3.7.1 Softmax activation 
 

It is utilized at the output layer of a network to squash an output vector in the range (0,1). This 

means the output probability range is in the range (0,1) and adds up to 1. This function 

calculates the probabilities of each target class over all possible target classes (C). If 𝑠 is the 

output score (vector) of the network, then 𝑓(𝑠)𝑖 is the function for each individual element of 

the vector. The softmax function is represented as: 

𝑓(𝑠)𝑖  =  
𝑒𝑠𝑖

∑ 𝑒𝑠𝑗𝐶
𝑗

 

Where, 𝑠𝑖 is the element in the score corresponding to each class, and in the summation, 𝑠𝑗 is 

the function score for each class in C. It can be seen, that the softmax function activations 

depend on all the elements of 𝑠. 
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3.3.7.2 Categorical cross-entropy loss 
 

This is also called softmax loss (softmax activation + cross-entropy loss). The cross-entropy 

loss is defined as: 

𝐶𝐸 =  − ∑ 𝑡𝑖𝑙𝑜𝑔(𝑠𝑖)

𝐶

𝑖

 

where, 𝑡𝑖 denotes the ground truth and 𝑠𝑖 the output score for each class 𝑖 in C. In the case of 

multi-class classification, the ground truth labels are one-hot encoded. Therefore, only one 

element in the ground truth is non-zero (𝑠𝑂𝐻) which eliminates the remaining terms in the 

summation. The categorical cross-entropy loss is hence defined as: 

𝐶𝐶𝐸 =  − 𝑙𝑜𝑔 (
𝑒𝑠𝑂𝐻

∑ 𝑒𝑠𝑗𝐶
𝑗

) 

In case of multi-label classification, the above equation can be modified to include M positive 

classes of the sample, defined as follows:  

𝐶𝐶𝐸 =  −
1

𝑀
 ∑  𝑙𝑜𝑔 (

𝑒𝑠𝑝

∑ 𝑒𝑠𝑗𝐶
𝑗

)

𝑀

𝑝

 

where, p is the positive class and sp is the score corresponding to each positive class and 
1

𝑀
 is 

the scaling factor for invariance to number of positive classes. Similarly, an equation to 

represent the negative classes can also be obtained. 

 

3.3.7.3 Dice coefficient loss 
 

Dice coefficient or F-1 score is a metric that determines the overlap in segmentation, to evaluate 

the segmentation performance based on a ground truth label, especially to counter class 

imbalance in the data. While binary segmentation problems(foreground vs background) are 

common, in order to implement multi-class segmentation, a generalized dice coefficient loss 

formulated as shown below: 

𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 =  1 −  2 
∑ 𝑤𝑙 ∑ 𝑡𝑙𝑛𝑛

2
𝑙=1 𝑝𝑙𝑛

∑ 𝑤𝑙 ∑ 𝑡𝑙𝑛  +𝑛
2
𝑙=1 𝑝𝑙𝑛

 

where, l determines if it is binary or multi-class, 𝑡𝑙𝑛 and 𝑝𝑙𝑛 refer to the ground truth labels and 

predicted probability map respectively; 𝑤𝑙 is a weighting term used to make the Dice score 

invariant to the label region size, which can be performed by dividing the contribution from 

each label by its volume. 
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3.4 Relevant Architectures 
3.4.1 U-Net 
 

The U-Net is an adaptation of the Fully Convolutional Network (FCN), which can be 

specifically used in the case of segmentation of biomedical images, where very little training 

data is usually available [50]. This architecture, illustrated in Figure 33, relies on data 

augmentation in the upsampling part of the network at the feature map level, thus increasing 

the context available to the higher resolution layers. It consists of a symmetrical pathway from 

the input layer to the output, with the downsampling (or contractive) path on the left and 

upsampling (or expanding) path on the right of the network, thus giving it a U-shaped 

appearance. By creating skipped connections between the contractive path and the expanding 

path and, concatenating the low-level and high-level feature maps from the two paths and 

applying convolutions and nonlinearities at each upsampling step, the so called long-skipped 

connections are created. They have been found useful in recovering the full spatial resolution 

at the output layer [51]. This can also be vital for the accurate class localization at the output, 

which is the prediction of the spatial location of a particular class [50]. 

 

The U-Net architecture is well known in medical applications, since it learns the whole context 

from entire scans/images and produces a segmentation map of the tissue/organ under 

consideration. This certainly gives U-Net an advantage when compared to patch-based 

segmentations. An extension of this architecture to 3-D medical images, used a few 2-D 

annotated slices (sparse annotations) to generate 3-D volumetric segmentations [52]. Two 

different architectures based on U-Net include the V-Net, which utilizes 3-D convolutional 

layers and a loss function based on Dice coefficient [53], and the FusionNet, which makes use 

of long skip connections in the form of residual layers, along with the U-Net skip connections 

to create a deep architecture for automatic Electron Microscopy segmentation [54]. 

Figure 33: U-Net architecture proposed in [50]. It consists of a contractive path on the left following by an 
expansive path in the right, with feature concatenation occurring between layers of corresponding feature 
dimensions on both sides. 
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3.4.2 Spectral – Spatial Residual Networks 
 

This architecture [10] tries to exploit the 3-D structure (one spectral and two spatial 

dimensions) of a hyperspectral data cube by consecutive learning of spectral features first and 

then the spatial features. In the literature review section of this report, it has been briefly 

mentioned, along with its potential use in the remote sensing domain. It consists of a spectral 

channel, connected in series with a spatial channel of feature learning. The crucial component 

of this architecture is the (multiple) residual block(s) in each learning channel, which will be 

discussed at length at the architecture components part later.  

 

 

This architecture classifies small hyperspectral data volumes of the dimension 7 x 7 x 200, into 

one of the many landcover classes from the Kennedy Space Center and University of Pavia 

data sets (appendix). In the spectral channel, the spectral dimension is downsized to 97 using 

3-D convolution filter of 1 x 1 x 7. In the subsequent two residual blocks, the dimensions of 

the volume are preserved by using zero padding along the spectral dimension. It can be seen, 

there are 24 convolutional filters or kernels that are defined in each stage of the channel. 

However, at the final stage the 7 x 7 x 97 volume is converted to a 7 x 7 x 128 volume by 

convolving with 128 kernels of the dimension 1 x 1 x 97. By concatenating all these spectral 

feature kernels, the final volume is obtained, to be made the input for the spatial learning 

channel. 

 

In the spatial channel, a structure similar to the spectral learning channel is adopted with 

different convolution filter sizes of 3 x 3 x 128. This means, in the input 7 x 7 spatial area, a 3 

x 3 convolution filter is applied across all the 128 spectral channels. This is followed by residual 

blocks and an average pooling layer, and finally a fully connected layer that outputs a 1 x 1 x 

L vector, which could denote on of the L landcover categories. 

 

 

Figure 34: The spectral feature learning channel of the spectral-spatial residual network architecture [10]. 
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Figure 35:The spatial feature learning channel of the spectral-spatial residual network architecture [10]. 

 

3.4.3 Simultaneous 3-D convolution 
 

While the previous approach followed a consecutive spectral and spatial approach for feature 

learning of hyperspectral data cubes, the simultaneous method of spectral-spatial feature 

learning [16] can be performed by using 3-D convolutional kernels. In this architecture (shown 

in Figure 36), there are two 3-D convolutional layers and their output is flattened into a feature 

vector before being fed to a fully connected layer with a softmax activation to classify the input 

volumes into only of the multiple landcover categories, obtained from the Pavia University 

Scene, Botswana Scene and Indian Pines Scene (refer appendix) datasets. Between the first and 

second 3-D convolutional layers, the number of kernels/ filters is in the 1:2 ratio. Since a 

hyperspectral data cube has rich information in the form of spatial – spectral correlations, it 

may be necessary to preserve those correlations by simultaneously learning the joint spectral – 

spatial features. In comparison, a 2-D convolution-based configuration has no convolution 

occurring along the spectral dimension, thus not able to preserve the useful spectral 

information. This architecture also avoids any pooling operation in order to eliminate further 

reduction of the spatial resolution. The simultaneous 3-D convolution operation also eliminates 

the need for any dimensionality reduction (like PCA, NMF) required along the spectral 

dimension, which would be necessary were 2-D convolution layers to be used. This is because 

each 2-D convolution applied to the spatial dimension of a hyperspectral data cube would 

create multiple kernels/ filters for each 2-D channel. Combining with about 100 – 200 channels, 

a huge number of learnable kernels or parameters would arise, leading to a highly overfitting 

network. In contrast, a 3-D convolutional network would possess fewer parameters to train and 

hence lower computation costs. 

Figure 36: The simultaneous spectral-spatial learning network based on 3-D convolution layers [16]. It utilizes 3-D 
convolutional kernel to simultaneously learn spatial and spectral features. 
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3.5 Frameworks & processing capability 
 

For experimenting with deep learning, a terminal with an access to Philips Linux-based 

compute cluster was utilized. While this was adequate for debugging and small computations 

like image preprocessing and visualization, a separate batch server with Nvidia Tesla K80 

GPUs proved to be useful for training the network and predictions. For creating the networks 

and training them, frameworks like Caffe2 and TensorFlow were initially considered. 

TensorFlow was preferred for its multi-language support including Python, which was utilized 

for programming a major part of this project. Also, it has emerged as the industry standard for 

deep learning development, with a vast number of repositories and documentations. With a 

high-level wrapper in Keras and TensorFlow backend, the experiments and prototyping can be 

performed seamlessly. Keras also receives regular updates with respect to the latest 

developments happening through deep learning research (example: advanced activations, 

convolution layers etc.) 

 

“What are the possible approaches in learning features from hyperspectral 

images?” 

“What design choices were made corresponding to the feature learning 

approaches?” 

3.6 Proposed approaches 
 

3.6.1 Patch classification vs pixel-wise classification 

 

In all the HSI research on landcover classification, a small spatial patch of size 7 x 7 or higher 

is considered as the input to the network, which usually classifies the patch into one of the 

multiple landcover classes. While this is cogent for the scale involved in the landcover or aerial 

images of a geographical area, a small spatial patch like 7 x 7 is still considerably smaller in 

the geographical scale and for convenience, can represent a basic spatial unit that constitutes 

the image.  However, this need not be replicated for a medical image, since for a hyperspectral 

image of 224 x 224 spatial dimension, a 7 x 7 spatial neighborhood becomes a significant area. 

Given that the labels are derived from hand drawn pathological slides, there is a level of 

uncertainty in the borders between the tissue categories, for instance between tumor and 

muscle. We have in fact modelled this uncertainty in annotation, as a separate tissue class 

‘unknown’. Any additional noise introduced into the labels during (local) image registration 

process could also affect the quality of labelling. Also, a patch-based classification assumes 

that each patch belongs to a unitary category. Crucial regions (like tumor) that do not fit into 

this spatial area, might be rejected. Given that, we have limited patient samples, it may be 

prudent to entirely utilize the regions of tissue. Designing this problem as pixel-wise 

segmentation also permits a spatial area to consist of more than one tissue class. By explicitly 

retaining this spatial correlation, we can facilitate better discrimination between the tumor and 
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muscle tissue classes.  By line of this reasoning, it is decided to adapt a pixelwise classification 

approach, initially with inputs of spatial size 16 x 16.  

 

3.6.1 Spectral approach 
 

In this approach, from each of the 31 sub-cropped hyperspectral image blocks of dimension 

224 x 224 x 164, input volumes corresponding to a 16 x 16 spatial neighborhood are extracted 

in a non-overlapping fashion. Each input volume is of the dimension 16 x 16 x 164 and the 

spectral information is kept intact during this procedure. The reasoning for the choice of a 

smaller spatial neighborhood is that by associating an individual spectrum with its 

corresponding spatial neighborhood spectra (in this case 16 x 16), we can provide spatial 

correlation to that spectrum. The previously explored method does not take this correlation into 

consideration, because the network is trained on each individual spectrum in each hyperspectral 

sub-crop of 224 x 224 spatial size. By providing this form of spatial correlation, we can segue 

into answering if spatial information is indeed essential to perform pixel-wise segmentation of 

hyperspectral images. 

Figure 37: The proposed architecture for the spectral feature learning approach. It utilizes 1-D kernels of the 
form 1 x 1 x N, followed by two residual spectral layers for deep feature learning.  

 

An illustration of the architecture is shown in Figure 37. In this configuration we have the 16 

x 16 x 164 input volume provided to the input layer, after which it is passed to the 3-D 

convolution layer, where 3-D convolution kernels of size 1 x 1 x 5 are defined, which stride 

along the input volume at 2 units along the spectral direction. After this, two ‘residual spectral’ 

blocks, which are basically two residual blocks stacked in series, process the output from the 

previous layer. A spectral residual block is illustrated in Figure 38. 

 

It comprises twice- stacked 3-D convolution layers with 1 x 1 x 3 kernels, ELU activation and 

a batchnorm layer which are then added to a shortcut connection, finishing with another ELU 

activation and a spatial dropout layer. In these spectral residual blocks, zero padding is done to 

preserve the dimension of the data volumes, wherever necessary. Since the problem is a pixel-
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wise segmentation, we configure the network to be Fully Convolutional, thus avoiding any 

flattening or fully connected layer. Therefore, the next layer is a 3-D convolution which 

diminishes the spectral dimension using convolving with 1 x 1 x 80 kernels, producing a 16 x 

16 spatial output. By convolving them once more by using 4 kernels and concatenating them 

we obtain the 16 x 16 x 4 final volume (comparable with the categorical label of 16 x 16 x 4 

size), which will then be passed through a softmax activation layer that can produce a 

probability map of the 16 x 16 spatial area. By utilizing these residual layers, we can stack six 

3-D convolutional layers in the network.  

 

3.6.1.1 Training set up 
 

The data obtained by converting the sub-cropped hyperspectral volumes into 16 x 16 x 164 are 

used in this configuration. This is further split into training data (80%) and validation data 

(20%) for identifying overfitting during the training process. In accordance with TensorFlow 

data shape requirements, the N inputs of size 16 x 16 x 164 are reshaped into (N x 16 x 16 x 

164 x 1) to be introduced into the input layer. 

Again, a leave-one-out scheme of testing new patient data is performed. Thus, after training it 

on 6 patients’ data in the form of 16 x 16 x 164 input, we test it on the one remaining patient 

data of the same shape. For performing this prediction, we require the model weights to be 

stored after training. Sometimes, it might be required to save the entire model if one wants to 

Figure 38: Schematic showing the constituent layers of the spectral residual block in the proposed architecture. 
It follows the order conv-ELU-BNorm, with a final BNorm and Dropout layer after identity summation. 
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retrain the network or fine tune the network, because the latest optimizer states are required to 

continue training an already trained network. 

The network is trained by optimizing the categorical cross-entropy loss. It is trained for 100 

epochs using a minibatch size of 80. The preferred optimizer in this case is Adam at a learning 

rate of 1e-3. The following (Table 7) showcases all the hyperparameters that were determined 

for this configuration. The graphs corresponding to the model accuracy vs number of epochs 

and model loss vs number of epochs during model training are shown in Figure 39. 

 

“How can the set of hyperparameters for a given experiment be determined?”

  

The choice of the number of residual spectral layers, kernel size, minibatch size, learning rate 

were determined using a grid-search algorithm from a grid of kernel sizes [1x1x5, 1x1x7, 

1x1x9], learning rates [0.0001, 0.005, 0.001, 0.05], minibatch sizes [32, 64, 80, 96], optimizers 

[Adam, RMSprop], Activations [ELU, ReLU] and number of residual blocks [1,2,3,4] 

 

Table 7: Different hyperparameters determined during training of first experiment. 

Hyperparameter Value/ choice 

During training 

Epochs 100 

Mini batch size 80 

Learning rate 0.001 

Network structure 

Optimizer Adam 

Number of residual blocks 2 

Activation  ELU 

 

 

Figure 39: Plots showing the model accuracy and loss values for 100 epochs during model training and 
validation for the first experiment.  
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Table 8: The elapsed time during model training and testing process in the first experiment. 

Stage Time for completion (hours) 

Model training 4 

Model testing / prediction 0.025 

 

3.6.1.2 Prediction 
 

Given that the training input data cubes 16 x 16 x 164 are obtained from the sub-cropped 

volumes of size 224 x 224 x 164, in order to visualize the probability map or segmentation of 

the leave-one-out testing scheme, we crop the remaining one original patient data cube into 

non-overlapping blocks of size 224 x 224 x 164 and further into 16 x 16 x 164. In contrast, the 

training data is obtained by manually cropping relevant sub-cropped blocks, though of the same 

volume. Thus, to obtain the segmentation of the complete testing data (remaining one data 

cube), it is necessary to stitch the 16 x 16 non-overlapping regions together into the 224 x 224 

sub-crop. By stitching back all the sub-crops corresponding to the whole testing data, we get 

its pixel-wise classification. 

 

3.6.2 Spectral-Spatial Approach 
 

While the previous approach did include the spatial correlation in the small data volumes (16 

x 16 x 164) by considering the spatial neighborhood of a spectrum, it explicitly learned only 

the spectral information. No convolution operation (or striding) was performed on the spatial 

region, therefore a new approach can be proposed to include both the spectral and spatial 

information simultaneously during convolution. Similar to the previous architecture discussed, 

this too can be realized using the 3-D convolution layer available in TensorFlow. The 

difference in the former however, is that the kernels by definition are 3-D, but the dimensions 

are set to 1 x 1 x N, making them behave like 1-D convolution. For the spectral-spatial 

architecture, the 3-D kernels are defined in the spatial dimension also, indicated by the form M 

x M x N. By using such a 3-D kernel, we can concurrently perform convolution on the spatial 

plane and the spectral plane of the 3-D hypercube. This approach can compactly learn spectral-

spatial features from the hypercube volume, without having to lose spatial information by 

convolving along the spectral plane or lose the spectral information by only convolving along 

the spatial plane (not to forget the linearly increasing number of parameters to learn). 
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The architecture developed for this spectral-spatial approach is illustrated in Figure 40. In this 

case, we use the 31 sub-cropped data cubes of size 224 x 224 x 164 from the original 7 patient 

data, without narrowing the spatial size down to a smaller neighborhood like in the previous 

approach. This choice of spatial dimension stems from the notion that the distinctive spatial 

features of a tissue category like tumor (or muscle) are appreciable in size to the spatial 

resolution of 224 x 224 and by preserving this, we can provide better distinction with the 

remaining categories. When we analyze the spectra of the hyperspectral data, we can observe 

that the spectral signatures of tumor and muscle tissue for a few samples are dissimilar (as they 

should be theoretically), the remaining samples have similar spectral signatures for tumor and 

muscle [refer Chapter II]. By providing spatial context to these spectra, we can explicitly form 

an inter-class distinction. However, it is important to bear in mind that this size of 3-D data 

cube can place restrictions on choice of number of kernels, intermediate volumes (through 

convolution, volume concatenation) and network depth. While working with TensorFlow with 

the GPU, the tensors created can often consume a major portion of the memory. It is thus 

important to design an architecture which circumvents these limitations and some of the design 

choices are discussed further. 

 

Figure 40: The proposed architecture for the simultaneous spectral - spatial feature learning approach. 
Hyperspectral images of dimension 224 x 224 x 164 are provided as the input. 

 

In the first layer, 3-D convolution is performed by using two kernels of size 5 x 5 x 7 and 

including padding. This non-standard kernel can help capture the global features along both 

the spatial and spectral dimensions faster. This can be useful considering the noisy nature of 

the spectral signals (separate strategies to overcome this problem are described at a later stage). 

In order to work around the memory restrictions, a max-pooling layer is used to downsize the 

3-D volume from the previous layer. By using the MaxPooling3D operation, we can downsize 

the volume to 112 x 112 x 82. On this smaller volume we can now perform 3 x 3 x 5 convolution 

by increasing the number of kernels to 8. By only downsizing the volume along the spectral 

dimension and preserving the spatial dimension we can prevent the further loss of spatial 

information. Thus, the subsequent 3-D max-pool layer creates a data volume of 112 x 112 x 

41, upon which a standard 3 x 3 x 3 convolution operation using 8 kernels is performed. For 

this pixel-wise segmentation task, we must restore the output to the original spatial resolution, 

which can be done by a UpSampling3D layer only on the spatial dimension leading to a 224 x 
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224 x 41 volume. To match this with an associated label image size, we perform a 1 x 1 x 41 

convolution with 4 kernels, which can then be concatenated to create an output volume of 

dimension 224 x 224 x 4. After this, a softmax classifier creates a probability map 

corresponding to the output from the previous layer. 

 

3.6.2.1 Training set up 
 

The 31 sub-cropped data cubes of size 224 x 224 x 164 corresponding to the 7 patient samples, 

form the data set. This is further split into training data (80%) and validation data (20%) for 

identifying overfitting during the training process. In accordance with TensorFlow data shape 

requirements, the Nb inputs of size 224 x 224 x 164 are reshaped into (Nb x 224 x 224 x 164 x 

1)* to be introduced into the input layer. 

Again, a leave-one-out scheme of testing new patient data is performed. Thus, after training it 

on 6 patients’ data in the form of 224 x 224 x 164 input, we test it on the one remaining patient 

data of the same shape. For performing this prediction, we require the model weights to be 

stored after training. If it is required to retrain the network or fine tune the network, we may 

choose to save the whole model because the latest optimizer states are required to continue 

training an already trained network. 

The network is trained by optimizing the Dice coefficient loss, described previously. It is 

trained for 100 epochs using a minibatch size of 4. The preferred optimizer in this case is Adam 

at a learning rate of 5e-3. The following Table 9 showcases all the hyperparameters that were 

determined for this configuration. The graphs corresponding to the model accuracy vs number 

of epochs and model loss vs number of epochs during model training are shown in Figure 41. 

 

 

The choice of the number of residual spectral layers, kernel size, minibatch size, learning rate 

were similarly determined using a grid-search algorithm. The choice of the number of kernel 

Figure 41: Plots showing the model accuracy and loss value for 50 epochs during model training and validation 
for the second experiment. Early stopping is applied to prevent overfitting in this case. 
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size, minibatch size, optimizers and learning rate were determined using a grid-search 

algorithm from a grid of kernel sizes [5x5x7, 3x3x5, 7x7x9], learning rates [0.0001, 0.005, 

0.001, 0.05], minibatch sizes [3, 4, 5, 6] and optimizers [Adam, RMSprop]. 

 

Table 9: Different hyperparameters determined during training of second experiment 

Hyperparameter Value/ choice 

During training 

Epochs 50 

Mini batch size 3 

Learning rate 0.005 

Network structure 

Optimizer Adam 

Activation  ELU 

 

Table 10: The elapsed time during model training and testing process in the second experiment 

Stage Time for completion (hours) 

Model training 3 

Model testing / prediction 0.016 

 

3.6.2.2 Prediction 
 

In the first leave-one-out training and testing scheme, the first patient sample data cube (#1) 

was treated as the testing data cube, in the second, the #2 was treated as the testing data cube 

and so on. In this manner, 7 testing schemes were instituted after which their corresponding 

pixel-wise segmentation images were generated. From Table 6, it can be seen all schemes did 

not have the same number of sub-cropped regions or blocks due to the varying size of the tissue 

in the region of interest. 

 

The pixel-wise segmentation output for a leave-one-out testing scheme is obtained by stitching 

all the segmented 224 x 224 (non-overlapping) sub-crops together. This is easier than the 

stitching procedure in the previous architecture. This probability map can be converted into the 

final segmentation by using the arg-max operation across the four channels corresponding to 

the four tissue categories. 

 

3.6.3 Data augmentation in spectral-spatial method with 224 x 224 

spatial dimension 
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While working with limited patient data and fewer training sub-cropped data cubes (example 

31) and a simpler network without concatenating features (like U-Net), it may be necessary to 

formulate a data augmentation solution to try to improve performance. Therefore, 

transformations like rotation and flipping can be utilized to augment more data to the original 

training data. By using 90° rotation and horizontal flipping of the data cubes, the number of 

sub-cropped data can be tripled. Various observations from this experiment are recorded in the 

next section. However, increasing the data more than three times (vertical flipping, 

deformation) did not improve the performance any further or introduced some undesirable 

effects. This could be due to simply multiplying the number of data cubes which are themselves 

correlated across different channels. 

 

This experiment is similar to the previous method, except with increase number of training 

samples (thrice the previous). The hyperparameters and the training set up are exactly the same 

as the previous method. 

 

 

Table 11: The elapsed time during model training and testing process in the third experiment 

Stage Time for completion 

Model training 4  

Model testing / prediction 0.016 

 

 

Figure 42: Plots showing the model accuracy and loss value for 50 epochs during model training and 
validation for the third experiment. Early stopping condition is applied to prevent overfitting in this case. 
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3.6.4 Spectral-spatial method with spatial dimension 112 x 112 (data 

augmented) 

 

In the final approach, the same spectral-spatial combined feature learning network is 

implemented on training data of dimension 112 x 112 x 164. This method is motivated due to 

the constraints in GPU memory in creating tensors for performing operations on inputs of the 

dimension 224 x 224 x 164. This places a restriction on the choice of number of learnable 

kernels, configuration of the architecture (feature concatenation), depth of the network and 

minibatch size. By working with smaller input hyperspectral image dimensions, an effort to 

alleviate the problems can be put in place. From each 224 x 224 spatial region, four 112 x 112 

spatial regions can be extracted. Four sub-blocks from each 224 x 224 x 164 data cube can be 

used for training data, thus creating four times as many training data samples as the previous 

approach. Further, it was decided to augment additional data by applying geometrical 

transformations to increase the data samples by an additional three times (90° rotation and 

horizontal flipping).  

 

Further experiments include, using data cubes of dimension 112 x 112 x 164 without data 

augmentation, using an intermediate spatial sized data cube with dimension 160 x 160 x 164, 

architectures with skip connections (residual layer, U-Net feature concatenation). These 

experiments failed to provide optimal results in terms of lower segmentation performance, 

convergence problems of the parameters or even memory constraints in case of the 160 x 160 

x 164 input and they will not be discussed hence forth. 

 

As can be seen from the illustration in Figure 43, this method utilizes a similar architecture 

from the previous two methods. However, due to the reduced spatial dimension, there is 

leniency in the choice of number of kernels. The number of 3-D kernels is increased to 6, 8 and 

12, from 2, 8 and 8 in the original architecture. The depth of the network is still the same so as 

to not lose the spatial features further through max-pooling, while trying to keep the number 

Figure 43: The proposed architecture for the simultaneous spectral - spatial feature learning approach. 
Hyperspectral images of dimension 112 x 112 x 164 are provided as the input. 
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of parameters in the subsequent layers under check. The 3-D kernels are of the same dimension 

and the following hyperparameters have been determined as in Table 12. 

 

 

Table 12: Different hyperparameters determined during training of the fourth experiment 

Hyperparameter Value/ choice 

During training 

Epochs 50 

Mini batch size 12 

Learning rate 0.005 

Network structure 

Optimizer Adam 

Activation  ELU 

 

 

Table 13: The elapsed time during model training and testing process in the fourth experiment 

 

 

 

  

Stage Time for completion (hours) 

Model training 4.5 

Model testing / prediction 0.025 

Figure 44: Plots showing the model accuracy and loss value for 50 epochs during model training and 
validation for the fourth experiment. Early stopping is applied to prevent overfitting in this case. 
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Chapter IV – Experimental Results 
 

“How do the performance metrics compare for the considered experiments?” 

“What are the effects of data augmentation on the network’s performance? Can it overcome the 

problems due to limited patient data?” 

4.1 Comparison of results 
 

For comparing the performances of both the spectral and spectral-spatial architectures, their 

leave-one-out prediction segmentation images are considered. Based on these two 

architectures, four different experiment predictions based on the leave-one-out training and 

testing scheme, and the performance metrics are published in this section. In the first 

experiment, a network based on the spectral feature learning method is trained using an input 

dimension of 16 x 16 x 164. For the second experiment, a simultaneous spectral-spatial feature 

learning network that trains on input samples of dimension 224 x 224 x 164 with its number of 

training samples based on Table 6. In the third experiment, data augmentation is performed on 

the training samples of dimension 224 x 224 x 164, with 90° clockwise rotation and vertical 

flipping, thus increasing the number of samples to thrice the previous experiment. In the final 

experiment, smaller sized input samples of dimension 112 x 112 x 164 are trained on an 

architecture similar to the second and third experiments, but with increased number of 

convolutional kernels. 

 

There are seven patient samples considered for the experiments (#1, #2, #3, #4, #5, #6, and #7). 

Patient sample #8 is excluded from the training dataset because the spectral signals lack any 

inter-class difference (based on the reasoning in Section II, spectral data analysis). As for 

sample #5, the inter-class separation is low, but it exists across a few spectral bands. Therefore, 

we opted to include the sample in the training dataset. However, after performing these four 

experiments it can be observed that none of the methods could predict any tumor pixels in the 

final segmentations corresponding to this sample. Hence, #5 is utilized only for training in the 

leave-one-out scheme, but in testing it is not included and not accounted for in the performance 

metrics determined afterwards. For the six remaining patient samples, the final multi-class 

segmentations are compared with the labels and the precision, recall, and F-1 scores are 

determined. In order to understand the misclassifications of pixels, the true negative, true 

positive, false negative, and false positive values are determined for each tissue class and 

displayed using a confusion matrix representation. This is repeated for each of the samples and 

finally performances of all the experiments are juxtaposed to provide a comparison of the 

considered approaches and to answer the sub-questions in the research approach. While the 

research problem was instituted as a multi-class semantic segmentation to delineate different 

regions of the tissue and to model the uncertainty in manual annotation as a separate tissue 

class, the prominence of how accurately tumor is predicted cannot be understated. The 

performance metrics for the tumor class carry significant weight, while that of the background 
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and unknown tissue carry the least importance. Thus, the experiments are compared for the 

metrics corresponding to tumor prediction only.  

 

Figure 45: Left column: Top to bottom, label for #1, predictions for the four methods (spectral method, spectral 
spatial method, spectral spatial with data augmentation, and spectral spatial with 112 x 112 x 164). Right 
column: confusion matrices for the four considered methods. 
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4.1.1 Sample #1 
 

The final segmentations corresponding to the hyperspectral data cube of patient sample #1 are 

displayed in Figure 45, along with their corresponding confusion matrices. The label is also 

provided for comparing the segmentations visually. The colorbar provided at the top of the 

figure provides a legend of the colormap scheme for different tissue classes. As for the 

confusion matrices, the intensity of the monochrome colormap varies with the value of the 

normalized confusion matrix (row elements adding up to 1.0). Thus, the darkest box indicates 

highest value, while lightest (white) box indicates lowest values. The diagonal elements 

indicate the recall value of each tissue class, while the off-diagonal elements provide the false 

positive (FP) and false negative (FN) rates. 

 

By comparing the segmentation image of the first experiment with the ground truth label, it is 

possible to observe that the tumor regions are faintly predicted (especially the right excised 

tongue). This corresponds to the low recall value in the confusion matrix for tumor class, which 

also shows almost half the tumor class spectra misclassified as muscle class. The segmentation 

is discontinuous and pixelated because of the spectral feature classification approach and 

importantly the categorical cross-entropy loss function. The confidence rate for unknown 

prediction is low because of misclassification with background and tumor class. This low 

confidence rate for unknown tissue is insignificant to this research problem, however it is 

interesting to see misclassification of some of the unknown class spectra as background class 

(which could be due to the low intensity of the spectra corresponding to these two classes).  

 

For the second experiment, the segmentation image shows discernible improvement in the 

confidence of tumor prediction (especially for the second tongue tissue), as can also be seen 

from the second confusion matrix. There is reduction in misclassification rate of tumor region 

to muscle class. Also, across the other classes like muscle and unknown, there is reduction in 

misclassification. The segmentation is smooth due to the Dice coefficient loss function in the 

spectral-spatial approach. Compared to this, the third experiment with data augmentation 

further improves the accuracy of prediction of tumor and muscle class in the segmentation. 

And it can be seen from Figure 56, this experiment provides the best F-1 score for this particular 

sample. In the fourth experiment with a smaller spatial dimension of 112 x 112 x 164, there is 

a drop in the confidence in tumor prediction, nearly to the values of the spectral approach in 

the first experiment. Thus, it can be concluded that data augmentation with spontaneous 

spectral-spatial learning performs the best for this patient sample. 
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Figure 46: Left column: Top to bottom, label for #2, predictions for the three methods (spectral method, 
spectral-spatial method with data augmentation, and spectral-spatial method with input dimension 112 x 112 
x 164). Right column: confusion matrices for the three considered approaches. 
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4.1.2 Sample #2 
 

In Figure 46, the final segmentations of the experiments on sample #2 are shown along with 

their confusion matrices. After observing the final segmentations for this sample, it can be 

noticed that the first experiment provides very faint prediction of tumor and the second 

experiment with spectral-spatial method does not provide any prediction on tumor tissue. 

Owing to this, these experiment results are excluded from the results comparison section. This 

is also corroborated by the first confusion matrix which displays a negligible recall metric 

corresponding to tumor class. The second method does not predict tumor at all, therefore it is 

not displayed in the figure. Since this hyperspectral image has a smaller spatial dimension (560 

x 336), in order to test for segmentation, only a single sub-crop of the spatial dimension 224 x 

224 can be extracted. This particular sub-crop is chosen such that it represents majority of the 

true tumor pixels in the label. It is uniformly used on all the experiments to calculate the 

segmentation scores, even though full ROI segmentation is possible on the first and fourth 

experiments. 

 

When trained on augmented data, the segmentation shows prediction of tumor regions and 

more than half of the true tumor pixels are correctly classified as tumor by the network. There 

are some false positives in the glare pixel region of the hyperspectral image, which could 

indicate generalization problems with unseen data. The fourth experiment shows a smaller 

predicted tumor area, with about 75% of the true tumor pixels appearing as false negatives. 

Interestingly, the false positives on the glare regions from the previous method no longer appear 

on the segmentation. While not large enough to contain the global contextual features to 

distinguish tumor regions from the rest in the tissue ROI, this particular approach can reduce 

the misclassification of glare regions.  

 

 

Figure 47: The original ROI spatial region of the label (left) and its smaller cropped area (right) emphasizing 
the tumor region. 
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Figure 48: Left column: Top to bottom, label for #3, predictions for the four methods (spectral method, spectral-
spatial method, spectral-spatial with data augmentation, and spectral-spatial with 112 x 112 x 164). Right 
column: confusion matrices for the four considered methods. 
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4.1.3 Sample #3 
 

For the four experiments, the segmentations for the data cube of patient sample #3, along with 

the ground truth label can be seen in Figure 48. The confusion matrices are also available beside 

the segmentations. In the segmentation corresponding to the first experiment, it can be observed 

that the confidence of tumor prediction is higher on the convex regions on the tissue surface, 

and the segmentation follows the curvature of the tissue surface (as can be seen from the 

sample’s hyperspectral or RGB image). Because of this, almost half the tumor spectra are 

misclassified as muscle, likewise some of the muscle spectra are misclassified as tumor. As 

can be seen in the spectral analysis of the samples, the inter-class separation in terms of spectral 

intensity is low, which can complicate the differentiation of tumor and muscle spectra. 

 

 

In the second segmentation, based on the spectral-spatial feature learning, there is higher 

misclassification of tumor spectra as muscle, but lower misclassification of muscle spectra as 

tumor. This reflects on the confusion matrix corresponding to this experiment. The influence 

of tissue curvature still remains significant in the segmentation. Since this particular data cube 

has a larger ROI, the number of sub-cropped areas available for training is higher compared to 

the data cubes of the other samples (seen from Table 6). This reduced number of training 

samples in the leave-one-out cross validation could have a bearing on the accuracy of tumor 

prediction in the #3 sample. By increasing the number of training samples through data 

augmentation, there is marginal increase in the tumor accuracy in the third experiment, 

however still lower than the value for learning individual spectral features in the first 

experiment. As for the final experiment with smaller input spatial dimensions, the 

misclassification is the highest for both tumor spectra to muscle and vice versa. 

 

 

 

Figure 49:  Representative hyperspectral image which shows tissue curvature on the central 
tissue region. 
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Figure 50: Left column: Top to bottom, label for #4, predictions for the four methods (spectral method, spectral-
spatial method, spectral-spatial with data augmentation, and spectral-spatial method with 112 x 112 x 164). 
Right column: confusion matrices for the four considered methods. 
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4.1.4 Sample #4 
 

For the sample #4, the labels and the segmentation results of the four experiments are shown 

in Figure 50. The first segmentation is a pixel-wise classification and by comparing with its 

label it can be noticed that there are many false positives (FP) in the segmentation. Almost half 

the spectra of the muscle tissue are misclassified as tumor. This can be noticed in the 

hyperspectral image of the sample, with the tissue along the top periphery having a convex 

surface (Figure 51). The spectra corresponding to this tissue region have higher intensities, 

hence have a high possibility of getting misclassified as tumor. This is consistent with the 

findings of the spectral analysis of this individual sample. 

 

 

In the second segmentation image, the influence of the tissue curvature along the periphery still 

exists, while as per the confusion matrix the misclassification of the muscle spectra as tumor 

is slightly reduced. With data augmentation in the third segmentation, there is noticeable 

reduction in the convex muscle tissue areas misclassified as tumor, which is also reflected in 

the confusion matrix corresponding to muscle class. There is reduction in the stray tissue 

predictions on the right, which correspond to the high intensity glare pixels. Being one of the 

three samples (also #6 and #7, but they have higher intensity glare pixels, as seen from 

histogram) that has significant number of pixels as glare pixels (or spectra), removing it from 

the training dataset and performing data augmentation reduces the number of misclassifications 

of glare pixels that are comparatively low intensity. 

 

In the final experiment, the confusion matrix shows increase in number of false positives for 

tumor and the segmentation image shows increase in the tumor regions corresponding to 

convex tissue regions and glare pixels. This result is very similar to the one produced in the 

first experiment and decreasing the spatial dimension of the input or increased number of 

learnable kernels has no positive effect, moving away from the spectral learning approach.  

 

Figure 51:  Representative hyperspectral image which shows tissue curvature on the periphery. 
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Figure 52: Left column: Top to bottom, label for #6, predictions for the four methods (spectral method, spectral-
spatial method, spectral-spatial with data augmentation, and spectral-spatial with 112 x 112 x 164). Right 
column: confusion matrices for the four considered approaches. 
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4.1.5 Sample #6 
 

The segmentations of the hyperspectral data cubes obtained by means of four experiments and 

the ground truth label of the data cube are available in Figure 52. In the first segmentation, the 

tumor region is localized but almost half the true tumor pixels turn out to be false negatives, 

misclassified as muscle class. There are also some false positives in the lower end of the tissue, 

which correspond to the glare pixels present in the hyperspectral image. By learning the 

combined spectral-spatial features in experiment two, there is a decrease in the number of false 

negatives as can be seen in the corresponding confusion matrix, but there is a noticeable 

increase in false positives, with respect to the raised portion of tissue along the periphery on 

the left misclassified as tumor region.  

 

 

If data augmentation is introduced, it can be seen there is a further decrease in false negatives, 

but overall there is an increase in false positives due to the curvature of tissue along the 

periphery and the presence of glare pixels in the original hyperspectral image. The effect of 

misclassification to tumor seems rather pronounced after augmenting data, in a way that the 

additional data has reinforced how the network looks at glare pixels or spectra. It is also to be 

noticed that this sample has higher intensity glare pixels compared to the other samples. By 

excluding this sample from the training data set it could be possible that, the network does not 

explicitly learn to correctly classify the glare pixels from spatial context and hence does not 

generalize well on unseen data similar to this. In the final experiment with a smaller spatial 

size, the performance deteriorates with higher number of false negatives for tumor 

(misclassified as muscle). However, it generalizes better with respect to the glare pixel false 

positives, which could be explained in terms of the local receptive field that the neurons are 

able to observe. 

 

 

 

Figure 53: Representative hyperspectral image which shows tissue curvature on the periphery. 
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Figure 54: Left column: Top to bottom, label for #7, predictions for the four methods (spectral method, spectral-
spatial method, spectral-spatial with data augmentation, and spectral-spatial method with 112 x 112 x 164). 
Right column: confusion matrices for the four considered approaches.  

G
ro

u
n

d
 t

ru
th

 l
ab

el
 

S
p

ec
tr

al
 m

et
h

o
d
 

S
p

ec
tr

al
-s

p
at

ia
l 

m
et

h
o

d
 

S
p

ec
tr

al
-s

p
at

ia
l 

au
g
 

S
p

ec
tr

al
-s

p
at

ia
l 

1
1

2
x
1
1

2
 



79 
 

4.1.6 Sample #7 
 

For the final patient sample, Figure 54 displays the segmentation results and the ground truth 

labels, with their respective confusion matrices. In the spectral learning experiment, the 

segmentation reveals misclassification of muscle spectra as tumor due to the presence of glare 

spectra or pixels. The spectral-spatial learning shows improvement in performance by reducing 

the number of false positives of tumor in muscle tissue regions. For this sample, the tissue 

sample is smaller and hence its ROI, which means that a spatial dimension of 224 x 224 is 

appreciable when compared to the ROI spatial dimension (560 x 336). Therefore, only one sub-

crop of the spatial size 224 x 224 can made from the ROI data cube which can comprise of 

majority of the tumor region represented in the ground truth. Since the prediction performance 

of tumor is of primary importance, this selective method of tumor region segmentation is 

implemented. Thus, for all the four experiments this selective spatial region is considered the 

label and the segmentation metrics are computed only for this region but trained on sub-crops 

obtained from the whole spatial region (ROI).  

 

 

In the third experiment, tumor false positives appear in the region of the glare pixels and the 

network fails to generalize them as muscle class based on spatial context. This could be the 

effect of removing one of the samples affected by high intensity glare. This effect subsequently 

reduces in the fourth experiment with a smaller spatial region of 112 x 112.  This method with 

data augmentation, used more samples than the second and third methods, while also delivering 

comparable performance to them. This can also be noticed by observing the entire ROI’s 

segmentation available for the first and fourth methods. This lends support to the reasoning 

that the choice of the spatial dimensions of the input must be commensurate to the local 

receptive field that the neurons can observe from the ROI image. 

 

 

 

 

Figure 55: The original ROI spatial region of the label (left) and its smaller cropped area (right) emphasizing 
the tumor region. 
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Figure 56: Comparison of precision, recall and F-1 score metrics corresponding to the testing samples across 
four experiments. By observing the F-1 score across all the patient samples, clearly the spectral-spatial method 
outperforms the spectral method. (_S, _SS, _SSA and _112 denote the experiments with spectral, spectral-
spatial, spectral-spatial augmented and spectral-spatial 112x112 respectively.) 
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4.2 Discussion 
 

By analyzing the segmentation results of the samples across the four experiments and their 

confusion matrices, we can understand how the different approaches learn features from 

hyperspectral data and predict on unseen data. Figure 56 shows the performance metrics 

precision, recall and F-1 score for all the tissue samples, across the four proposed experiments. 

The recall value was already available from the confusion matrices; however, we can use the 

F-1 score as a single metric to study how the networks in different experiments performed 

segmentation on unseen data, specifically for the tumor tissue class. While the deep spectral 

learning network with residual layers in the first experiment could learn discriminatory features 

from a hyperspectral data cube, a simple shallow convolutional neural network with 3-D 

convolutional kernel for simultaneous spectral-spatial learning improves the F-1 score on most 

of the samples (except #3, where there is comparable performance). Therefore, when training 

on limited hyperspectral data, it is necessary to exhaustively learn all the available information 

from the data cube instead of only the spectral information. The mean F-1 scores for all the 

experiments are shown in Figure 57, along with the standard deviations.  

 

 

 

By augmenting data to the training data set, the effect on segmentation performance as seen 

from Figure 56 is varied. For certain samples, data augmentation improves the F-1 score 

compared to the previous experiment. This is significant for #2, which had no tumor region 

predictions in the previous experiments, but by augmenting data tumor region is predicted in 

the final segmentation. However, an opposite effect is observed in samples like #6 and #7 

which have intense glare pixels in the hyperspectral data cube. There is an increase in tumor 
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Figure 57: Bar graph showing the mean and standard deviation values of precision, recall and F-1 metrics 
across all testing samples, for four experiments. 
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false positives in the glare regions which proves that while training on limited data, the 

generalization ability of the network to specific spatial features is affected. When augmenting 

data by geometrical transformations, the effect of glare pixels becomes pronounced, where the 

network misclassifies all spectra with high intensity as tumor, without regarding the spatial 

context. In the final experiment with a smaller spatial dimension of 112 x 112 on the training 

samples, no improvement is seen over previous two experiments with larger spatial dimension 

of 224 x 224. The performance is seen to vary with the spatial dimensions of the hyperspectral 

data cube ROI: for example, #1, #3 and #6 have larger spatial dimensions for their ROIs, while 

#2, #4 and #7 have smaller ROIs. By sub-cropping to a smaller spatial dimension like 112 x 

112, the network is not able to capture global spatial context from the small neighborhood for 

these images with larger ROIs. The network with 224 x 224 spatial neighborhood - which is 

four times larger - performs better on all these samples. From the perspective of 

misclassification of glare pixels, the smaller spatial dimension performs better than the larger 

one, because of the choice of the earliest convolutional kernel 5 x 5 x 7, which can capture the 

local spatial features (instead of global spatial features) in the 112 x 112 spatial region better 

than a 7 x 7 x 9 on a 224 x 224 spatial region. From the table below, it can be observed that the 

local receptive field at the output layer of both the architectures have the same 63 x 63 area 

(arbitrarily ignoring the spectral dimension). Since the network views a 63 x 63 spatial area 

from the input image, it provides reasoning for worse performance of 112 x 112 architecture 

on larger ROI hyperspectral images (like #1, #3) compared to the smaller ROI images. 

 

Table 14: Determination of receptive field for each layer of the proposed network 

Layer Spatial kernel size Receptive field 224 Receptive field 112 

Conv1  5 x 5 5 x 5 5 x 5 

Maxpool 2 x 2 7 x 7 7 x 7 

Conv 2 3 x 3 15 x 15 15 x 15 

Conv 3 3 x 3 31 x 31 31 x 31 

Upsampling 2 x 2 47 x 47 47 x 47 

Conv 4 3 x 3 63 x 63 63 x 63 

Final  63 x 63 63 x 63 

 

As can be seen from Table 14, the effective receptive field is 63 x 63 in spatial dimension, 

which is smaller than the proposed input dimensions of 224 x 224 and 112 x 112. It was not 

possible to further increase the receptive field by (1) increasing the depth of the network (even 

with residual layers) because of non-convergence during training; (2) adding more pooling and 

upsampling layers due of loss of spatial resolution during these operations. Therefore, to 

expand the receptive field without suffering any of these limitations, dilated convolution layers 

can be used in place of regular convolution layers [55]. While this could be the way forward, 

it was not experimented extensively here as networks with dilated convolution were harder to 

train. 
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4.3 Other relevant methods 
 

4.3.1 Noisy Spectrum 
 

An individual spectrum in any of the available data cubes are found to be quite noisy (with 

lower SNR). Noise can be introduced to the signals due to many sources, mainly classified into 

photon noise, readout noise, dark noise and digitization noise. If we were to conceive an 

approach, where the network learns features from each individual spectrum with or without 

any spatial correlation information, it is worth investigating if any noise removal method would 

improve the segmentation of the data cube. In the following portion, we explore a few 

denoising or signal reconstruction methods to determine the influence of noise in the spectra. 

 

4.3.2 Signal Smoothening 
 

In order to smoothen the noisy spectral signals, various signal filtering techniques were 

evaluated. Among them, the Gaussian filter was applied to smoothen the spectral data of the 

data cubes and training was performed on the spectral-based deep learning network. This 

Gaussian filtering can be performed by applying a convolution kernel with a Gaussian function, 

with standard deviation σ of the distribution:  

𝐺(𝑥)  =  
1

√2𝜋𝜎2
𝑒

−𝑥2

2𝜎2  

 

The smoothening effect of Gaussian filter on two different spectra is illustrated in Figure 58. 

Another filter, the Savitzky-Golay filter, performs convolution on a subset of points in the 

spectra, with a window possessing a n-degree polynomial to fit the subset of data points. In 

order to smoothen the filter but to avoid losing finer spectral details, an 8th degree polynomial 

is chosen. The smoothening effect by this filter is illustrated in Figure 58.  When the 

smoothened spectral signals were used to train the proposed architecture, the performance 

deteriorated, with many false negative predictions of tumor. This could indicate that by 

smoothening the spectra, finer details of individual spectra, which can discriminate between 

tumor and other class spectra could be lost. 

 

It was deliberated that a median filter not be used, despite its effectiveness in smoothening, 

since it creates unnatural spectral values that could not have been acquired by the sensor. By 

staying as close to the raw spectral data as possible, we can train the network to be robust to 

the varying inter-class separability across the tissue samples. 
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4.3.3 Principal Component Analysis  
 

PCA or Principal component analysis, is a statistical method that can be used to reveal the 

structure of a given data, set in a way which best explains the total variance of data. This can 

be computed by using the Singular Value Decomposition. By considering the data points along 

the spectral dimension as the variables, we can determine the linear combination of these 

variables that can account for the maximum variance in the data. These are called the principal 

components and it can be observed that almost 90% of the total variance can be captured by 

the first three principal components. By retaining these three components, we can now 

reconstruct the original signal by projecting them back into the original space. This can be done 

by multiplying the observations corresponding to the first three components, with the first three 

eigenvectors. By adding the mean of the original data, we get the projection of the reduced data 

on the original space or the reconstruction of original data corresponding to the three principal 

components or (90% of variance).  

 

We can observe that this method can remove the noise present in the original data. However, 

by using this reconstructed data in the first architecture, there was no improvement as 

Figure 58: Plots showing the effect of filtering on noisy spectral signals. Counter clockwise from top: Graph 
of raw spectral signatures of tumor and muscle class; smoothening spectra using Savitzky-Golay filter; 
smoothening spectra using Gaussian filter. 
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anticipated. There was degradation in the prediction of tumor regions compared to using the 

raw noisy data. To check if loss of fine spectral features during the reconstruction method 

influenced this, increasing number of principal components were considered (4, 6, and 8). 

While this could account for 92% variance, the improvement of tumor prediction was only 

marginal. These tests led to the understanding that though noisy, the raw spectral data could 

have fine, discriminating spectral features crucial for distinguishing between tumor and the 

muscle class. The inter-class similarity in spectral signatures for certain samples should also 

be considered while investigating spectral filtering methods. 

 

4.3.4 Non-Negative Matrix Factorization 
 

NMF or non-negative matrix factorization is another type of factor analysis, where a non-

negative matrix A (m x n) can be factorized into two non-negative matrices W (m x k) and H 

(k x n). This W x H factorization is a lower-rank approximation of the original matrix A, 

determined through an alternating least-square minimization of the residual between A and 

W*H: 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑊,𝐻

‖𝐴 − 𝑊𝐻𝑇‖𝐹
2  

It is required to provide an initial value to the matrices as W0 and H0, which can first be 

iteratively determined using the multiplicative update algorithm. By using the best of these 

values as W0 and H0, a set number of iterations (e.g. 1000) and lower rank k for the 

factorization, the data cube can be factorized into a lower rank approximation. This experiment 

was repeated for values of k = 3, 5 and 8. These approximations of the data cube were not 

adequate to predict the tumor pixels, further underlining the importance of the fine spectral 

features in distinguishing between tumor and the other classes. Figure 59 provides the result of 

NMF. 

 

After experimenting with all the above methods to denoise the spectra in the data cubes, it was 

concluded that such methods do not improve the pixel-wise prediction of the hyperspectral data 

cubes. Therefore, it may be worth only looking at convolutional kernels of the size 1 x 1 x 5 or 

1 x 1 x 7 to trade-off between learning the noisy spectra (with smaller 1 x 1 x 3 kernels) and 

also losing finer features to filtering or approximations. 
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4.3.5 Curvature Dependence 
 

The excised tongue tissue samples have uneven surfaces which are usually convex in nature. 

This is an important observation from a HSI perspective as these raised surfaces have spectral 

signatures that are higher in value compared to the neighboring flat or depressed areas. The 

consequence is, tumor affected tissue areas have higher spectral values and so do the convex 

areas of tissue that may or may not be tumor affected. This dependence of spectra on the tissue 

curvature can be remedied by the integral method proposed in previous research on medical 

hyperspectral image analysis. In this method, in order to make each spectrum independent of 

its intensity value, it can be divided by its integral or the area under the spectral curve. This 

method was applied on the individual hyperspectral data cubes and the following changes in 

spectral signatures are obtained as shown in Figure 61. 

 

It can be seen for tissue class spectra, that the higher values spectra (corresponding to the 

convex areas) can be lowered and banded with the other lowered value tissue. While this can 

eliminate the dependence of tumor class spectra on tissue curvature (and the intensity values), 
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Figure 59: Plots showing the effect of approximations on raw noisy spectral signals. Clockwise from top: 
noisy raw spectra; spectra after NMF application; spectra after PCA application. 
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it introduces inter-class banding which bands the lower valued tumor spectra with the higher 

valued non-tumor class spectra like muscle and unknown. 

 

 

 

 

 

 

 

 

 

 

 

This effect of curvature was confirmed in the segmentation output of the spectral approach of 

various samples (example #3, #4) and with introduction of spatial information in the second 

approach (spectral – spatial), improvement in this effect was anticipated. However, even this 

method was not able to generalize to new data cubes, by reducing the influence of tissue 

curvature on the segmentation regions.  

 

4.4 Remaining challenges and future perspective 
 

While this project was able to explore different aspects of configuring a convolutional neural 

network to segment hyperspectral images by seeking solutions to the formulated research 

problems and their respective sub-questions, there are still some open-ended challenges that 

have not found a solution in the course of this thesis. 

1) Effect of glare pixels: Should these pixels be entirely excluded from the training data 

set or should they be allowed to learn to generalize in order to make the network more 

robust to such illumination defects? 

 

2) Sparse annotation: Should the tissue classes be completely annotated for the 

hyperspectral images? How does the network handle sparse annotations (partially 

annotated tissue regions)?  

 

3) Curvature correction: What techniques can be used to eliminate the dependence of 

tumor prediction on the curvature of tissue surface? Can a mapping of the tissue 
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Figure 61: Plots showing the effect of integral normalization. Left: Raw spectral signature of tumor tissue; 
Right: Effect of diving individual spectrum by its integral or area under the curve. 
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thickness be determined, or can a network be trained to include the curvature during 

classification of pixels? 

 

4) Spatial features: It is evident that inclusion of spatial features in feature learning 

improves performance, but can there be an efficient way of using the spatial features 

without losing information through downsampling and preprocessing? 

 

While this thesis would serve as a pilot project to implement automated medical image 

segmentation on hyperspectral images, it important to provide some direction to future research 

and recommendations based on the findings of this work. More experimentation with feature-

efficient architectures like the spectral-spatial network should be carried out, especially without 

downsampling layers. This was necessary in this thesis due to memory constraints that were 

posed when working with larger data dimensions, however it can be circumvented by utilizing 

techniques like dilated convolutions, which preserve the spatial features by only introducing 

holes in between pixels, allowing deeper architectures to be trained without increasing the 

network parameters excessively. This could also pave way for experimenting with architectures 

that contain skip connections similar to U-Net and ResNet, especially for the spectral-spatial 

approach.  

 

It would also be interesting to investigate the correlation of spatial dimension choice on the 

glare pixels introducing tumor false positives. More experiments varying spatial dimensions of 

input data and also the convolutional kernels should be performed in order to make the network 

learn both finer and global spatial features. By incorporating multi-scale learning, a balanced 

method of learning spectral-spatial features can be formulated. 

 

Further, sparse annotations can be explored to eliminate time spent on creation of complete 

ground truth labels and the problem can also be reconstituted with fewer tissue classes. It would 

also be worth exploring transfer learning of models, which could ease the training process. 

However, no particularly suitable trained model was found because most of the research on 

hyperspectral data prior to this thesis was on landcover classification and the learned spectral 

features could be too different from the features in medical hyperspectral images and fine 

tuning the kernel layers may not yield the desired result. It can be experimented with, which 

could reduce the time of configuring an architecture from scratch and make it possible to place 

emphasis on developing better techniques in training the network. While more data is always 

welcome, lack of it made this thesis even more challenging to work on!  
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Conclusion 
 

 

This Master’s thesis was a study to explore possibilities of automated image analysis using 

deep learning on the emerging medical imaging modality called hyperspectral imaging. 

Previously, image analysis tasks like classification, detection and segmentation involved 

feature engineering steps with medical domain expertise to analyze the medical images. With 

deep learning, a supervised learning method to automatically learn the features from the image 

can be developed. The research problem was to develop a proof of concept for a non-invasive, 

automatic segmentation tool that can assist surgeries. The following research question should 

be answered to draw conclusions from this study. 

 

“Can a convolutional neural network perform tissue segmentation on 

limited patient data?” 

 

Two different approaches to feature learning were proposed: spectral and spectral-spatial 

features. For each of these approaches, different architectures were experimented with, leading 

to two different architectures. Based on these two architectures, four experiments were devised 

according to the input dimensions of the image data. After training the networks for these 

experiments, pixel-wise segmentation images were generated (predictions) and based on the F-

1 metric, it can be concluded that learning both spectral and spatial information would improve 

segmentation performance. Within spectral-spatial method, the basic architecture (224 x 224 x 

164) produces a mean F-1 score of 0.64 and with data augmentation a mean F-1 score of 0.6. 

This outperforms experiments with smaller input dimensions (112 x 112 x 164) and with only 

spectral features. Thus, even with limited patient data, networks which can generalize on new 

patient data can be crafted. 
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Appendix I 
 

Spectral reconstruction using PCA 
 

In order to understand if the noise affecting the individual spectrum can have influence on 

classification performance by the spectral-only network proposed in Chapter III, different 

methods of spectrum approximation were performed. Principal component analysis or PCA 

was among the considered approaches to find an approximation of the original hyperspectral 

image data. The PCA of this data was computed using the Singular Value Decomposition 

(SVD) method, to decompose the matrix X of the dimension M x n into 𝑋 = 𝑈𝛴 𝑉𝑇. By 

considering the first k dimensions of the reduced U space (or k principal components which are 

the columns of 𝑈𝛴) and multiplying with the corresponding reduced dimension matrices 𝑈 and 

𝛴. By adding back the mean vector of the original matrix, the reconstruction of the 

hyperspectral data can be obtained, based on the chosen number of first principal components.  

 

Input: M x n matrix X, reshaped from a l x m x n hyperspectral image matrix 

Output: Reconstructed X, based on a lower rank approximation 

                                    Perform SVD  →   𝑋 = 𝑈𝛴 𝑉𝑇  

   Select first k Principal Components or columns of 𝑈𝛴 

   Multiply matrices →  �̂�  =   𝑈:,1:𝑘 𝛴1:𝑘,1:𝑘 𝑉:,1:𝑘
𝑇  

   Reconstructed �̂�𝑟𝑒𝑐𝑜𝑛  =  �̂�  +  𝜇 

   Reshape M x n to l x m x n again 

 

The matrix reconstruction is performed for different number of first principal components like 

3, 4, 6 and 8. The total variance represented by these principal components ranges from 90 to 

92%, the reconstructions are not adequate to improve the performance over that of the original 

noisy spectra. 
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Abbreviations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

HSI Hyperspectral imaging 

VIS Visible 

NIR, IR Near-Infrared, Infrared 

UV Ultraviolet 

AOTF Acousto-optical tunable filter 

ICA Independent component analysis 

PCA Principal component analysis 

LDA Linear discriminant analysis 

SVM Support vector machines 

CNN Convolutional neural network 

NMF Nonnegative matrix factorization 

BLDE Balanced local discriminant 

embedding 

LR Logistic regression 

k-NN k-nearest neighbor 

DTC Decision tree classifier 

NAPDH Nicotinamide adenine dinucleotide 

phosphate 
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