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Notation

Symbols used regularly are defined in the following and others are defined where
they first appear. Numbers in parentheses indicate the equation where the symbol
first appears.

𝑎 Cross-sectional convergence length [L] (2.1)
𝑎ኺ 𝑎 downstream of an inflection point [L] (2.1)
𝑎ኻ 𝑎 upstream of an inflection point [L] (2.1)
𝐴 Cross-sectional area [L2] (1.1)
𝐴ኻ Cross-sectional area at inflection point [L2] (2.1)
𝐴፟ Cross-sectional area of the river [L2] (2.4)
𝐴፦ Cross-sectional area at estuary mouth [L2] (2.1)
𝑏 Width convergence length [L] (2.2)
𝑏ኺ 𝑏 downstream of an inflection point [L] (2.2)
𝑏ኻ 𝑏 upstream of an inflection point [L] (2.2)
𝐵 Width [L] (2.2)
𝐵ኻ Width at inflection point [L] (2.2)
𝐵፟ Bankfull stream Width [L] (2.5)
𝐵፦ Width at estuary mouth [L] (2.2)
𝑐ፒ Saline expansivity [psuዅ1] (2.11)
𝐶 The coefficient of Chézy’s [L1/2Tዅ1] (2.19)
𝑑 Length scale of the longitudinal variation of dispersion [L] (4.10)
𝐷 Dispersion [L2Tዅ1] (1.1)
𝐷፞፟ Dispersion due to residual circulation [L2Tዅ1] (2.8)
𝐷፠ Dispersion due to gravitational circulation [L2Tዅ1] (2.8)
𝐷፭ Dispersion due to tide [L2Tዅ1]
𝐸 Tidal excursion length [L] (2.11)
𝐹 Force [MLTዅ2] (5.2)
𝑔 Gravitational acceleration [LTዅ2] (2.10)
ℎ Depth [L] (2.3)
𝐻 Tidal range [L]
𝑖 Longitudinal exchange discharge [L3Tዅ1] (3.14)

vii



viii Notation

𝑗 Lateral exchange discharge [L3Tዅ1] (3.14)
𝐾 Van der Burgh’s coefficient [-] (1.1)
𝐾ፄ Eddy viscosity [L2Tዅ1] (3.2)
𝐾ፇ Diffusion coefficient [L2Tዅ1] (3.2)
𝐾ፌ Strickler’s coefficient [L1/3Tዅ1] (3.5)
𝑙 Salinity intrusion length from the boundary [L] (3.7)
𝑙፦ Dispersive distance [L] (5.2)
𝐿 Salinity intrusion length [L]
𝑀 Moment [ML2Tዅ2] (5.1)
𝑁ፑ Estuarine Richardson number [-] (2.11)
𝑂 Contact area [L2] (5.3)
𝑃 Power [ML2Tዅ3] (5.5)
𝑞 Laminar resistance [LTዅ1] (5.4)
𝑄 Freshwater discharge [L3Tዅ1] (1.1)
𝑠 Length scale of the longitudinal salinity variation [L] (4.10)
𝑆 Salinity [psu] (2.6)
𝑆፟ Salinity of the fresh river water [psu] (2.7)
𝑡 Time [T] (2.6)
𝑇 Tidal period [T] (2.11)
𝑢፟ Freshwater velocity [LTዅ1] (3.2)
𝑣 Residual flow velocity [LTዅ1] (5.4)
𝑉 Water volume [L3] (3.14)
𝑥 Distance [L] (1.1)
𝑥ኻ Location of the inflection point [L] (2.1)
𝑧 Water level [L] (4.1)

𝛼 Mixing coefficient [Lዅ1]
𝛽 Dispersion reduction rate [-] (2.14)
𝛿ፇ Tidal damping rate [Lዅ1] (2.19)
𝛿Ꭲ Damping rate of tidal velocity amplitude [Lዅ1] (3.23)
𝜀 Phase lag [-]
𝜂 Tidal amplitude [L]
𝜆 Length of the tidal wave [L] (2.20)
𝜌 Density [MLዅ3] (2.10)
𝜎 A shape factor [-] (4.10)
𝜏 Shear stress [MLዅ1Tዅ2] (5.3)
𝜐 Tidal velocity amplitude [LTዅ1] (2.11)
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Abbreviations:
HW High water
HWS High water slack
LW Low water
LWS Low water slack
TA Tidal average

MP Maximum power (in Chapter 5)
VDB Van der Burgh (in Chapter 5)
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Summary

Saltwater intrusion is a crucial issue in estuaries. The spread of salinity is described
by the dispersion coefficient. A purely empirical equation which links the effective
tidal average dispersion to the freshwater discharge was developed by Van der
Burgh [1972]. Combining it with the salt balance equation, Savenije [1986] derived
a one-dimensional model for salinity intrusion in estuaries. This Van der Burgh
model has performed surprisingly well around the world. However, the physical
basis of the empirical Van der Burgh coefficient (𝐾) is still weak. This study provides
a theoretical basis for the Van der Burgh method and presents alternative equations.

MacCready [2004] presented a theoretical expression for the dispersion coef-
ficient following a reductionist approach. Comparing the density-related parts of
the equations of the dispersion coefficient developed by Savenije and MacCready,
a predictive equation is obtained for the coefficient 𝐾 using physical parameters. In
addition, a new box-model has been developed considering the longitudinal density-
driven gravitational circulation and the lateral tide-driven horizontal circulation. The
coefficient 𝐾 (closely related to the Van der Burgh’s coefficient) is used as an index
of the density-driven mixing mechanism while the tide-driven part is included by
assuming that it is proportional to the longitudinal dispersion. This model is vali-
dated in sixteen alluvial estuaries worldwide by using calibrated 𝐾 values (and the
boundary conditions). These calibrated values correspond well with the predicted
values from the theoretical derivation, revealing that 𝐾 has smaller values when the
tide is stronger.

From a system perspective, alluvial estuaries are free to adjust dissipation pro-
cesses to the energy sources that drive them. The potential energy of the river
flow drives mixing by gravitational circulation. The maximum power concept as-
sumes that the mixing takes place at the maximum power limit. To describe the
complex mixing processes in estuaries holistically, different assumptions had to
be made. The maximum power concept did not work satisfactorily when estuaries
were assumed as isolated systems. However, by including the accelerating moment
provided by the freshwater discharge, the open estuary system could be solved in
analogy with Kleidon [2016] applying the maximum power concept. A new expres-
sion for the dispersion coefficient due to gravitational circulation has been derived
and solved in combination with the advection-dispersion equation. This maximum
power model works well in eighteen estuaries with a large convergence length, pro-
viding an alternative equation for the dispersion. These estuaries also have larger
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calibrated 𝐾 values by the Van der Burgh method, revealing a relation between the
empirical coefficient 𝐾 and the geometry.

All these models: the Van der Burgh model, the box-model, and the maxi-
mum power model, can describe the longitudinal salinity profiles. The comparison
between these models implies that the empirical Van der Burgh coefficient is as-
sociated with the geometry and stratification conditions. Finally, new predictive
equations have been obtained by regression with physical-based parameters which
make the Van der Burgh salinity intrusion method predictive with a solid theoretical
basis.



Samenvatting

De indringing van zout water is een belangrijk fenomeen in estuaria. De ver-
spreiding van het zout wordt mathematisch bepaald door de Dispersiecoëfficiënt.
Van der Burgh [1972] ontwikkelde een empirische relatie om deze dispersiecoëffi-
ciënt te relateren aan de rivierafvoer. Door deze te combineren met de zoutbalans,
leidde Savenije [1986] een één-dimensionale vergelijking af die de zoutindringing
in estuaria beschrijft. Dit VanderBurgh-model bleek in de praktijk buiten verwach-
ting goed te werken in verschillende delen van de wereld. Echter, de fysische basis
voor de VanderBurgh-vergelijking was nog steeds zwak. Deze studie verschaft een
theoretische basis voor deze vergelijking en presenteert alternatieve methoden om
de evenredigheidsfactor (de VanderBurgh 𝐾) te bepalen.

Via een reductionistische methode leidde MacCready [2004] een theoretische
uitdrukking af voor de dispersiecoëfficiënt. Door deze met die van het Savenije-
model te vergelijken, wordt er in deze studie een voorspellende formule voor de
VanderBurgh 𝐾 verkregen, op basis van fysische parameters. Daarnaast wordt er
middels een box-model een betrekking gevonden om laterale getij-gedreven circu-
latie aan longitudinale circulatie te koppelen. Dit model is in 16 alluviale estuaria,
in verschillende delen van de wereld, gevalideerd met gecalibreerde 𝐾-waarden.
Deze gecalibreerde 𝐾 waarden kwamen goed overeen met de theoretische waar-
den, waaruit geconcludeerd kan worden dat een kleine 𝐾-waarde overeenkomt met
een sterker getij.

Redenerend vanuit een systeem-perspectief, kan men stellen dat alluviale es-
tuaria de menging van zoet en zout water aanpassen als functie van de energie-
bronnen die erop werken. De potentiële energie van het zoete rivierwater drijft
de zwaartekracht-gedreven menging aan. Het zogenaamde Maximum Power (MP)
concept veronderstelt dat deze menging plaatsvindt dicht bij de maximum power
limiet (de Carnot limiet). Om deze methode toe te passen moesten een aantal
aannames worden gemaakt. Het MP-concept werkte niet goed als estuaria als ge-
sloten systemen werden beschouwd. Echter, als wij een estuarium als een open
systeem beschouwen, waarbij het rotatie-moment uitgeoefend door het zoete wa-
ter beschouwd wordt als het aandrijvende mechanisme, dan blijkt het MP-concept,
in analogie met Kleidon [2016], goede resultaten te geven. Op basis daarvan is een
nieuwe betrekking voor de dispersiecoëfficiënt voor zwaartekrachtscirculatie verkre-
gen en–in combinatie met de zoutbalans–analytisch opgelost. Deze MP-methode
blijkt goed te werken in 18 estuaria met een lange convergentielengte (met matige
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convergentie). Deze estuaria hebben ook grotere 𝐾-waarden, wat erop duidt dat
de VanderBurgh 𝐾 aan de geometrie gerelateerd is.

Zowel het VanderBurgh model, het box-model, als het MP-model, bleken de
longitudinale verdeling van het zoutgehalte goed te kunnen beschrijven. Uit deze
vergelijking kan geconcludeerd worden dat de VanderBurgh 𝐾 gerelateerd is aan
de geometrie en de mate van gelaagdheid. Ten slotte is er, middels regressie, een
voorspellende vergelijking voor de VanderBurgh 𝐾 verkregen, als functie van fysi-
sche parameters. Hiermee is het VanderBurgh model een voorspellende methode
geworden met een stevige theoretische basis.



1
Introduction

Do not sit by idly,
for young men will grow old in regret.

Fei YUE (1103 ∼ 1142)

1
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2 1. Introduction

1.1. Importance of estuaries and the main issue
Estuaries, where rivers with fresh water meet the salty open sea, play an essential
role in the human-earth system. The estuary serves as a superb habitat for a vast
array of plants and animals. Of the thirty-two largest cities all over the world,
twenty-two are located on estuaries. Humans rely on estuaries for water, food,
leisure, transport, and coastal protection.

Estuaries are subject to marine and riverine influences. A crucial element of
estuarine dynamic is the interaction between saline and fresh water. The river
flow flushes fresh water into the estuary, pushing out the salt, while saline water
penetrates landward due to mixing. The temporal and spatial distributions of salinity
in an estuary are determined by the competition between freshwater flow and tidal
currents. Sea water intruding upstream can lead to contamination of drinking water
sources, diversified habitat loss, reduced production and quality of crops, and other
consequences. This makes salt water intrusion in estuarine system functioning an
important field of research.

1.2. Dispersion and salinity
In estuaries, the key to describe the spread of salinity is the dispersion coefficient.
The transfer of salinity between streamlines at microscopic scale results from in-
ternal mixing (such as entrainment and turbulent diffusion) and boundary layer
turbulence [Dyer, 1973]. Averaging small-scale turbulent diffusion over estuarine
depth including both internally generated mixing and boundary generated mixing
leads to a bulk transport, named depth average dispersion. It is used to describe
the instantaneous mixing. If, in addition, we average depth-averaged dispersion
over a full tidal cycle, then we obtain the tidal average dispersion, describing salinity
spreading over a tidal period.

1.3. Reductionism research on dispersion
The study of the mathematical description of the salinity mixing, dispersion, dates
back to the 1950s. Taylor [1954] pointed out the fundamental principles of dis-
persion due to shear flow in pipes. In that study, the longitudinal dispersion (𝐷)
was given by 𝐷 = 10.1𝑟𝑢∗, where 𝑟 [L] is the radius of the pipe and 𝑢∗ [LTዅ1] is
the shear velocity. Subsequently, (dye) observational techniques were applied to
flumes and open channel flows, and some researchers determined different ratios
between the dispersion coefficient and the product of the flow depth and the shear
velocity (reviewed by Fischer [1976]).

Then, analytical techniques matured rapidly, by which researchers decomposed
the velocity and salinity profiles. Following the pioneering work by, for instance,
Hansen and Rattray [1966], Fischer [1972, 1973], and Dyer [1974], a wide vari-
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3

ety of researchers using the reductionist approach derived equations and different
dispersive terms to determine different mixing mechanisms in specific estuaries
[e.g., Chatwin, 1976; Smith, 1980; Hunkins, 1981; Prandle, 1981; McCarthy, 1993;
Svendsen and Putrevu, 1994; MacCready, 2004, 2007, 2011; Lerczak et al., 2006].
Meanwhile, with the advance of computer software, a range of numerical and (semi-
) analytical models, yielding colorful cross-sectional and/or vertical distributions of
salinity, were used to investigate what the most effective mechanism is in a par-
ticular estuary [e.g., Ralston and Stacey, 2005; Burchard and Schuttelaars, 2012;
Pein et al., 2014; Wang et al., 2017].

It is easy to understand why they tried to obtain more accurate and detailed
salinity and current fields: it helps our understanding of dispersion processes if we
have accurate estimates of salt fluxes. Fischer [1976] remarked that “it is not yet
possible to look at a given estuary, compute the values of some appropriate dimen-
sionless parameters, and say with certainty which mass-transport mechanisms are
the most important or what factors control the intrusion of salinity”, but researchers
never stopped developing more advanced methods to observe and simulate the
salinity and current fields in estuaries. It indeed provided some insights into the
dominant mixing mechanism, but mostly limited to particular circumstances.

1.4. The holistic empirical method
In contrast to the reductionist approach, the holistic view regards the complex es-
tuarine system as a whole. For instance, Van der Burgh [1972] developed a purely
empirical method on the basis of the effective tidal average dispersion under equi-
librium conditions. He made use of a considerable number of salinity measurements
carried out in the Rotterdam Waterway over a period of eighty years. This method
used one equation to describe all mixing mechanisms:

𝜕𝐷
𝜕𝑥 = −𝐾

|𝑄|
𝐴 , (1.1)

where 𝐷 [L2Tዅ1] is the dispersion, 𝑥 [L] is the distance, 𝐾 [-] is the Van der Burgh
coefficient, 𝑄 [L3Tዅ1] is the freshwater discharge, and 𝐴 [L2] is the cross-sectional
area. The positive direction of flow is in the upstream direction.

Combining Van der Burgh’s equation with the salt balance equation, Savenije
[1986] published a one-dimensional model for salinity distribution in estuaries.
[Savenije, 1989] then derived the analytical solution where the empirical Van der
Burgh coefficient 𝐾 was assumed constant along the estuary. Predictive equations
for the empirical coefficient and the dispersion at the boundary were subsequently
developed [Savenije, 1993b]. This salt intrusion model appeared to have excel-
lent performance in a wide range of estuaries [e.g., Savenije, 2005; Nguyen and
Savenije, 2006; Zhang et al., 2011; Kuijper and Van Rijn, 2011; Gisen et al., 2015b;
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Xu et al., 2017]. The re-analysis by Gisen et al. [2015a] provided improved pre-
dictive equations using an expanded database, and the results were subsequently
tested in estuaries like the Yangtze [Cai et al., 2015] and the Shatt al-Arab [Ab-
dullah et al., 2016]. Overall, with scarce—or even without—field observations, salt
water intrusion methods applying Van der Burgh’s coefficient appeared to work
surprisingly well in estuaries around the world.

However, the complicated predictive expressions for the empirical Van der Burgh
coefficient provided by Savenije and Gisen, even though with significant mathemat-
ical correlation, did not reveal a physical meaning of this parameter. Whereas, for
a full understanding of mixing and salinity distributions in estuaries, it is imperative
that a solid theoretical basis is obtained for such an empirical coefficient.

1.5. Objectives and outline
This research is about trying to understand the complex interactions between tide,
geometry, salinity, and fresh water that govern mixing in alluvial estuaries. The
objective is to find a theoretical basis for the empirical Van der Burgh coefficient,
or to find an alternative that functions equally well, while providing a physical basis
for dispersion processes and salinity distributions in estuaries. The outline of the
thesis is shown in Figure 1.1.

In this chapter, the importance of understanding salinity profiles in estuaries is
firstly introduced. The empirical Van der Burgh equation is introduced, and the
need for providing a physical basis for the empirical coefficient (𝐾) is discussed.

Chapter 2 provides theories about the estuary, tide, salt transportations, and
mixing mechanisms in estuaries. The previous empirical salinity intrusion model is
introduced.

One possible physical basis behind the empirical coefficient is presented in Chap-
ter 3, which links one equation derived from traditional reductionist methods ([Mac-
Cready, 2004]) to the empirical approach. In addition, a salt intrusion box-model
including large-scale residual circulation in wide estuaries is developed.

Besides the reductionist approach, the saline and fresh water mixing using the
maximum power concept in a holistic view is introduced. Estuaries are assumed as
isolated systems firstly (Chapter 4), then discussed as open systems in Chapter 5.
The Van der Burgh method is then applied making use of the maximum power
method.

Chapter 6 provides an analysis of tidal strength on saltwater intrusion by data
collected in the Rotterdam waterway (RW) and the Scheldt estuary (SE).

The physical basis for the empirical coefficient is discussed, making the Van der
Burgh method predictable. Finally, conclusions, limitations, and recommendations
are summarized in Chapter 7.
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Nature has its own laws,
not depending on the will of people.

Kuang XUN (313 ∼ 238 B.C.)
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2.1. Coastal plain convergent estuaries
In an estuary, water movement depends on the topography, and the topography in
turn depends on the hydraulics from seaside and riverside. Different characteristic
shapes are distinguished: fjord-type, coastal plain, bar-built, tectonic, and the rest.
The geomorphology of these shapes is too variable to study in general besides
the coastal plain type. In coastal plain estuaries, due to the long-term dynamic
equilibrium between sedimentation and erosion by tidal currents, the cross-sectional
area converges towards the land. Even though spits may modify the shape near the
mouth, this kind of alluvial estuary is ideal to generalize and it is the main research
object in this study.

Figure 2.1 shows the sketch of a representative coastal plain estuary from the
top, with the width (𝐵) converging landward, showing a trumpet near the mouth.
This kind of shape is composed of a wide mouth and a narrow stem with an inflection
point in between. The downstream part has a much shorter convergence length,
resulting from ocean waves dissipating their energy. The longitudinal distance of the
wider part is generally not longer than about 10 km except for very wide estuaries
(for instance, the Elbe and the Corantijn). Beyond the inflection point, the shape is
determined by the combination of the kinetic energy of the tide and the potential
energy of the river flow. If the tidal energy is dominant over the potential energy of
the river, then the convergence to river is short; if the potential energy of the river
is large due to regular and substantial flood flows, then the convergence is long.
The interdependence between hydraulics and topography is important because it
permits us to derive hydraulic information from the estuary shape and to derive
geometric information from the hydraulics. The exact position of the mouth is
often difficult to determine, but it can generally be found by connecting the adjacent
shorelines [Savenije, 2005].

Not all coastal plain estuaries have a geometric inflection point. A near pris-
matic estuary (with a large convergence length) develops when tidal waves do not
penetrate the estuary.

2.2. Description of the estuary shape
It is beneficial to represent the estuary shape in a mathematic way. As the shape
converges landward, the geometry, especially the width is considered to follow
an exponential function [e.g., Savenije, 1986; Friedrichs et al., 1998; Davies and
Woodroffe, 2010]. The topography can be represented as

𝐴(𝑥) = { 𝐴፦e
ዅ፱/ፚᎲ 0 < 𝑥 ≤ 𝑥ኻ

𝐴ኻeዅ(፱ዅ፱Ꮃ)/ፚᎳ 𝑥ኻ < 𝑥
, (2.1)
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Figure 2.1: Geometry of an alluvial estuary in general: example of the Bernam in Malaysia. Yellow lines
describe the geometry (The solid lines show the sketch of the shape, while the dot lines are part of the
(invisible) shape at the bottom). Orange lines describe the parameters, where ፀ is the cross-sectional
area, ፁ is the estuarine width, and ፡ is the depth.

𝐵(𝑥) = { 𝐵፦e
ዅ፱/፛Ꮂ 0 < 𝑥 ≤ 𝑥ኻ

𝐵ኻeዅ(፱ዅ፱Ꮃ)/፛Ꮃ 𝑥ኻ < 𝑥
, (2.2)

and
ℎ(𝑥) = 𝐴

𝐵 , (2.3)

where 𝐴 (𝐴፦, 𝐴ኻ) [L2] and 𝐵 (𝐵፦, 𝐵ኻ) [L] are the cross-sectional area and the width
at location 𝑥 (estuary mouth 𝑥 = 0, inflection point 𝑥 = 𝑥ኻ), respectively. 𝑎 [L] and
𝑏 [L] are the cross-sectional and width convergence length (𝑎ኺ and 𝑏ኺ downstream
of the inflection point; 𝑎ኻ and 𝑏ኻ upstream). Smaller values of 𝑎 and 𝑏 indicate
that the geometry is more convergent. ℎ [L] is the depth. In estuaries without the
inflection point, 𝑥ኻ equals zero.

As an example, Figure 2.2 shows the compilation of the geometry in two es-
tuaries: the Maputo with an inflection point and the Thames without an inflection
point. It can be seen that the natural geometry fits well on semi-logarithmic paper,
supporting an exponential variation of cross section and width.

Equations (2.1)–(2.3) are widely used based on the exponentially varying geom-
etry. However, in nature, the cross section converges upstream toward the cross
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Figure 2.2: Semi-logarithmic presentation of estuary geometry, comparing simulated (lines) to the ob-
servations (symbols), including cross-sectional area (blue diamonds), width (red dots), and depth (green
triangles).

section of the river (𝐴፟) connecting to the bankfull stream width (𝐵፟)1. In macro-
tidal estuaries, the part of the estuary where the salt intrusion occurs has a much
larger cross section than the upstream river, such that 𝐴፟ ≪ 𝐴. However, in riverine
estuaries, 𝐴፟ should not be ignored. Then, the expression of the cross-sectional
area can be modified as

𝐴(𝑥) = { (𝐴፦ − 𝐴፟)e
ዅ፱/ፚᎲ + 𝐴፟ 0 < 𝑥 ≤ 𝑥ኻ

(𝐴ኻ − 𝐴፟)eዅ(፱ዅ፱Ꮃ)/ፚᎳ + 𝐴፟ 𝑥ኻ < 𝑥
. (2.4)

Similarly, the equation for the width can be presented:

𝐵(𝑥) = { (𝐵፦ − 𝐵፟)e
ዅ፱/፛Ꮂ + 𝐵፟ 0 < 𝑥 ≤ 𝑥ኻ

(𝐵ኻ − 𝐵፟)eዅ(፱ዅ፱Ꮃ)/፛Ꮃ + 𝐵፟ 𝑥ኻ < 𝑥
. (2.5)

Based on equations (2.3)–(2.5), Figure 2.3 shows the geometry of the Maputo
and the Limpopo. It can be seen that in the Maputo, 𝐴፟ (50 m2) is not important,
while in the Limpopo, the size of the river cross section (750 m2) is not negligible,
showing a slight curve in the exponential functions.

One can see that equations (2.4)–(2.5) describe the geometry more precise
than equations (2.1)–(2.2), however, the convergence length does not reveal the
real convergence of the estuaries. Take the Limpopo as an example, based on
the measurements, the cross section further than 30 km has a large convergence

1ፁᑗ is measurable, ፀᑗ can be estimated based on [Savenije, 2015]:

ፀᑗ ዆ {
ኺ.ኽኼፁᑗᎳ.ᎸᎹ ፁᑗ ጺ ኻኺኺ
ፁᑗᎴ/ኼ኿ ፁᑗ ጿ ኻኺኺ

.
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Figure 2.3: Semi-logarithmic presentation of estuary geometry, comparing simulated (lines) to the ob-
servations (symbols), including cross-sectional area (blue diamonds), width (red dots), and depth (green
triangles). The cross section of the upstream river is considered when the river is wide compared to the
salt intrusion part.

length, while this parameter is small if 𝐴፟ is taken into account. Therefore this
paremeter no longer represents the near prismatic geometry upstream.

In the equations describing the geometry, 𝐴፦ and 𝐴ኻ are the boundaries of two
segments, the wide mouth and the narrow stem. For salt water intrusion analysis,
a boundary condition (subscript “0”) at a well-chosen location is required. Since
salinity generally intrudes further than the geometric inflection point, the boundary
condition is best taken at this point (at 𝑥 = 𝑥ኻ) if the estuary has one. If the estuary
has no inflection point, then the boundary is taken at the estuary mouth.

2.3. Propagation of the tide
In coastal plain convergent estuaries, the bottom is near horizontal, and the bot-
tom slope only begins where the estuary gradually changes into the river [Pethick,
1984; Savenije, 2005]. Figure 2.4 shows the sketch of a longitudinal cross section
of an estuary. Some instantaneous tidal waves are drawn. At all times, the wa-
ter levels in the estuary remain between the envelopes of high water (HW) and
low water (LW). The two envelopes converge to the water level of the river, which
is sloped, upstream. Averaging instantaneous water levels over one tidal cycle at
fixed locations, the mean water level (blue horizontal line in between HW and LW)
is obtained. Accordingly, the cross-sectional area, width, and depth discussed in
Section 2.2 are tidal-averaged. In nature, a full tidal wave seldom fits within the
length of an estuary except in very long estuaries, because the length of the wave
is in the order of hundreds of kilometers. In addition, two important vertical param-
eters, the tidal range (𝐻) and the mean depth (ℎ) are introduced. The amplitude
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Figure 2.4: Instantaneous water levels (dash curved lines) contained between envelopes (horizontal
dash lines) of high water (HW) and low water (LW). Area in between blue lines presents the water body.
Orange lines describe the parameters, where ፇ is the tidal range.

(𝜂) of the tidal wave equals half the tidal range. In macro-tidal estuaries mentioned
in Section 2.2, the tidal range is over 4 m. An estuary with a tidal range between
2 and 4 m is named meso-tidal estuary and with the range less than 2 m is micro-
tidal. A significant assumption in this study is that the amplitude to depth ratio
(𝜂/ℎ) is much smaller than unity. If the amount of energy per unit width lost by
friction is stronger than the amount of energy gained by convergence of the banks,
the tide damps; on the contrary, if the convergence is stronger than friction, the
tide amplifies. In an alluvial estuary, the tidal range is more or less constant along
the estuary, although it may be slightly damped or amplified. Being a schematic
picture, these processes are somewhat exaggerated.

Different types of tidal waves in an estuary can be identified with respect to the
wave celerity: standing wave, progressive wave, and mixed wave. Figure 2.5 shows
the variation of water level (solid lines) and velocity (dash lines) for different types
of waves at a fixed location within one tidal cycle. The moment of high water slack
(HWS) occurs some time after high water, whereby the incoming current stops and
changes direction. Similarly, the low water slack (LWS) happens some time after
low water.

For a standing wave, the wave reaches its highest (lowest) level at HWS (LWS),
like a pendulum. This type of waves occurs in short estuaries, semi-enclosed bod-
ies, or estuaries with a closing structure blocking the progression of the wave. A
progressive wave, however, occurs in prismatic frictionless channels with infinite
length. The high water happens at the same time as the maximum flow velocity.

In alluvial estuaries, the tide propagates as a wave of a mixed type that has
elements of both a standing and a progressive wave. The phase lag (𝜀) between
HW and HWS or between LW and LWS is determined by the shape of the estuary
and is very important in tidal hydraulics [e.g., Savenije, 2005; Cai and Savenije,
2013]. This phase lag is typically in the order of 0.3, resulting in a time lag of
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Figure 2.5: Types of waves. A phase of ኼጦ is in consonance with one tidal cycle.

around 30 to 45 minutes for a semi-diurnal tide which has two nearly identical tidal
cycles in a day. A tide which has only one complete tidal cycle in a day is a diurnal
tide, which has a phase lag about twice as large.

Finally, a sketch about how one water particle moves longitudinally and vertically
is shown in Figure 2.6. The particle flows in with the flood flow and out with the ebb
flow to its original position (orange cross) after every tidal cycle, when the effect
of river discharge is ignored. The longitudinal scale of the trajectory is the distance
one particle can travel along the estuary, which is named the tidal excursion (𝐸),
which is in the order of about ten kilometers for a semi-diurnal tide. The vertical
scale of the trajectory is the tidal range.

In field observations, the moments of slacks can be determined much easier than
that of high water and low water which also represent the maximum and minimum
local salinity. So the salinity observations are adequately measured at HWS and
LWS. Figure 2.7 shows a sketch of the longitudinal cross-sectional average salinity
distribution along an estuary that has an inflection point. There are three lines: at
HWS, LWS, and tidal average (TA). Averaging the condition between HWS and LWS
yields the TA condition. We can see that the TA intrusion has a change in curvature
near the inflection point where there is a sudden change in the convergence. The
tidal excursion is more or less constant landward, slightly affected by tidal damping
or amplification, if any.

At fixed sites, the instantaneous salinity varies with the rise and fall of the tide.
The average salinity during one tide cycle is the same as the TA condition, which
lies in the middle of the HWS an LWS lines, horizontally, in Figure 2.7.

2.4. Salt transport and steady state in estuaries
Dynamics in estuaries are subject to sea/ocean and river flow. On one hand, rivers
discharge fresh water seaward, pushing out the saline water. On the other hand,
saline water enters and leaves estuaries on the rhythm of the tide. One can imagine
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Figure 2.8: Sketch of longitudinal salt transportation in estuaries. Numbers show the isohalines (blue
lines).

that the salt penetrates landward due to mixing, otherwise all the saline water would
be pushed out in an estuary and the brackish environment is imbalanced. Figure
2.8 represents an example of how the fresh water and the salt water interact in a
partially-mixed condition.

The mixing of fresh and saline water in estuaries is governed by the advection-
dispersion equation, which results from the combination of the salt balance and the
water balance. The one-dimensional advection-dispersion equation averaged over
the cross section reads [e.g., Savenije, 2005]

𝐴𝜕𝑆𝜕𝑡 − |𝑄|
𝜕𝑆
𝜕𝑥 −

𝜕
𝜕𝑥 (𝐴𝐷

𝜕𝑆
𝜕𝑥) = 0 , (2.6)

where 𝑆 [psu] is the salinity, 𝑡 [T] is time, and 𝑄 [L3Tዅ1] is the water flow in the
estuary. The first term reflects the change in the salinity over time as a result of the
balance between advection by the water flow (second term) and mixing of water
with different salinity by dispersive exchange flows (third term). If there is no other
source of salinity, then the sum of these terms is zero. If we average this equation
over a tidal period, then the first term reflects the long-term change in the salinity
as a result of the balance between the advection of fresh water from the river and
the tidal average exchange flows. In a steady state, in which the first term is zero,
the equation can be simply integrated with respect to 𝑥, yielding

|𝑄|(𝑆 − 𝑆፟) + 𝐴𝐷𝑆ᖣ = 0 (2.7)

with the condition that at the upstream boundary, the salinity gradient 𝑆ᖣ (= d𝑆/d𝑥)
approaches zero and 𝑆 = 𝑆፟, which is the salinity of the fresh river water. In
the steady-state situation the discharge 𝑄 then equals the freshwater discharge
coming from upstream, which has a negative value moving seaward; similarly, the
salinity gradient is negative with the salinity decreasing in the upstream direction.
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Figure 2.9: Systematic salt transport in estuaries, with the seaside on the left and the riverside on the
right. The water level (in blue) has a slope as a result of the salinity distributions (in red) in different
time (፭Ꮃ in dash lines and ፭Ꮄ in solid lines). The black arrows show the corresponding salinity fluxes
at cross sections (black vertical lines). ᎞ᑤ and ᎞ᑗ are the density at the seaside and riverside, ፠ is the
gravitational acceleration, and ፋ is the salt water intrusion length. (ፒ ዅ ፒᑗ) is simplified by ፒ.

In the steady state, the flushing out of salt by the river discharge is balanced by
the exchange of saline and fresh water resulting from a combination of mixing
processes, which causes an upriver flux of salt along the estuary.

The sketch in Figure 2.9 presents the instantaneous system description of salt
transportation in estuaries (the average value between HWS and LWS), with a typ-
ical longitudinal salinity distribution (in red). It also shows the associated water
level 𝑧 (in blue), which has an upstream gradient due to the decreasing salinity.

Within a salinity intrusion length (𝐿) the salinity difference between the sea-
side (𝑆Ocean) and the toe (𝑆፟) is invariant, then the increase of water level (Δℎ)
is constant at moments 𝑡ኻ (dash lines) and 𝑡ኼ (solid lines). At 𝑡ኻ when the value
of Δℎ/𝐿(𝑡ኻ) is large (salinity gradient 𝑆ᖣ is large), the salt flux by dispersive ex-
change flows from downstream (𝐴𝐷𝑆ᖣ(𝑡ኻ)) at any location within the salt intrusion
length is larger than the advection by the water flow (|𝑄|𝑆(𝑡ኻ)), then the salin-
ity intrudes. Hence, the salinity intrusion length increases, diminishing the salinity
gradient, which would again affect the salt fluxes. The spread of salinity adjusts
the system from unsteady states towards steady states (𝑡ኼ) when the salt fluxes
seaward and landward are equal. The efficient dispersion coefficient describes the
spread of salinity. In estuaries, there are many different mixing processes at work
instantaneously. Here in a system approach in which the assumption is that the
different mechanisms are not independent but are jointly at work (in the form of
𝐷) to achieve the steady state.
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Figure 2.10: Types of salt distribution curves.

Different types of salinity distributions are distinguished: recession, bell, and
dome (Figure 2.10). These types are determined by the topography of an estu-
ary [Savenije, 2005]. The example in Figure 2.9 belongs to the bell type, which
is achieved in an estuary with a clear inflection point. A dome shape appears in
large and wide estuaries, and a recession shape in estuaries with a long conver-
gent length. In estuaries where the evaporation exceeds rainfall and fresh water
inflow (hypersaline estuaries), a totally different type (humpback) occurs, which
goes beyond this study. How the salt intrudes is similar, no matter what the salin-
ity distribution type is.

2.5. Maximum power concept in estuaries
Kleidon [2016] defines Earth system processes as dissipative systems that conserve
mass and energy, but export entropy. These systems tend to function at maximum
power, whereby the power of the system can be defined as the product of a process
flux and the gradient driving the flux. The ability to maintain this power (i.e.,
work through time) in steady state results from the exchange fluxes at the system
boundary. When work is performed at the maximum possible rate within the system
(“maximum power”), this state reflects the conditions at the system boundary. The
key parameter describing the process can then be found by maximizing the power.

Alluvial estuaries are systems that are free to adjust dissipation processes to
the energy sources that drive them, primarily the kinetic energy of the tide and the
potential energy of the river flow and to a minor extent the energy in wind and
waves. We use the concept of maximum power (MP), as described by Kleidon, to
see the mixing of saline and fresh water in estuaries which is a process of energy
dissipation. Looking from the ocean to the river, there is a gradual transition from
saline to fresh water and an associated rise in the water level in accordance with the
increase in potential energy. This potential energy gradient triggers gravitational
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circulation processes. Because the strength of the mixing of fresh and saline water
in turn deplete this gradient, there is an optimum at which the mixing process due
to density difference performs at maximum power.

The sketch of this system description of salt intrusion is similar to Figure 2.9.
From an energy perspective, the freshwater flux pushing out saltwater decrases
the salinity intrusion length 𝐿 (at 𝑡ኻ), then the salt flux by dispersion (𝐴𝐷𝑆ᖣ(𝑡ኻ))
increases. The salinity disperses further upstream till the power is maximazed (an
optimum at 𝑡ኼ). In this estuarine system, density-driven circulation is the dominant
mixing mechanism.

In addition, the time needed to achieve the optimum situation is not sure (larger
or less than a tidal period). In a low flow situation (which is the critical circumstance
for salt intrusion) the variation of the river discharge is slow (following an exponen-
tial decline). If the time scale of flow recession is large compared to the time scale
of salinity intrusion then it is reasonable to assume that maximum power optimum
is achieved based on the steady-state assumption.

2.6. The cause of mixing
Different processes causing saline and fresh water mixing can be distinguished.
Researchers split up mixing mechanisms in different processes at different scales
[e.g., Hansen and Rattray, 1966; Park and James, 1990; Banas et al., 2004]. Fischer
et al. [1979] mentioned three main drivers: wind, tide, and river. The effect of
wind in coastal plain estuaries is ignorable. The river providing density difference
along the estuary triggers baroclinic transport processes. For the dispersion over
a tidal period in coastal plain estuaries, the tide facilitates barotropic processes in
two ways: shear effect by friction at bottom turbulence and the interaction with
bathymetry. The latter type includes tidal pumping which causes residual flow in
flood and ebb channels, and trapping of low velocity water along the sides of an
estuary, which is the effect of side embayments and small branching channels.

The tidal average dispersion is then expressed as

𝐷 = 𝐷፠ + 𝐷፭ , (2.8)

where 𝐷፠ and 𝐷፭ with the dimension of [L2Tዅ1] are the density- and tide-driven
dispersion. The tide is an active hydraulic driver that creates shear stresses in the
flow as momentum, resulting from friction along the boundaries, transferred to the
heart of the channel by turbulence. To quantify the dispersion in estuaries due to
the shear effect, Fischer et al. [1979] described the theory and methods in detail.
However, this effect is limited over a tidal cycle, and it is considered only when
the shear effect appears to be the dominant mechanism for dispersion. In alluvial
estuaries without many asymmetric topography, trapping is not considered as a
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strong mixing mechanism. By using the tidal excursion as the mixing length, tidal
trapping can be incorporated into a predictive equation [Fischer et al., 1979]. In this
study, residual circulation in preferential ebb and flood channels (𝐷፞፟) is considered
as the main tide-driven mechanism.

Gravitational circulation
Besides describing the salt transportation, Figure 2.9 also shows the reason for
density-driven mechanism in estuaries. Because of the longitudinal density differ-
ence, the hydrostatic pressures on both sides (in yellow) are not equal, so the water
level at the toe of the salt intrusion curve is Δℎ higher, resulting in a seaward pres-
sure difference near the surface and an inland pressure difference near the bottom.
Although the hydrostatic forces (the integrals of the hydrostatic pressure distribu-
tions) are equal and opposed in steady state, they have different working lines
that are a distance Δℎ/3 apart. This triggers an angular moment, which drives the
gravitational circulation [Savenije, 2005]. When we have a strong density gradient,
gravitational circulation is often a dominant transport mechanism and it is the main
process in the maximum power concept.

The balance of the hydrostatic forces per unit width yields

1
2𝜌፬𝑔ℎ

ኼ = 1
2𝜌፟𝑔 (ℎ + Δℎ)

ኼ , (2.9)

leading to the result of Δℎ:

Δℎ =
(𝜌፬ − 𝜌፟)ℎ
2𝜌፟

= Δ𝜌ℎ
2𝜌፟

, (2.10)

where 𝜌፬ and 𝜌፟ are the density (𝜌 [ML3]) at the seaside and riverside, and 𝑔 [LTዅ2]
is the gravitational acceleration.

Vertical density differences essentially affect the gravitational circulation. When
the salinity gradient over the depth is large, the system is more stratified, with a
sharp interface (a saline wedge) as the most extreme stratification. On the other
hand, complete mixing occurs when there is very small stratification. Three basic
types of alluvial estuaries are distinguished according to the stratification condition:
the salt wedge estuary, the partially mixed (or slightly stratified) estuary, and the
well mixed (or vertically homogeneous) estuary. The salt wedge estuary is highly
stratified due to a large flow of the river. In this case, flooding is a more signif-
icant issue than saltwater intrusion. In this study, we focus on partially to well
mixied estuaries. Due to variation in river discharge and tide, the stratification con-
dition changes with time. Stratification is well depicted by the estuarine Richardson
number (𝑁ፑ):

𝑁ፑ =
Δ𝜌
𝜌
𝑔ℎ
𝜐ኼ
|𝑄|𝑇
𝐴𝐸 , (2.11)
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where Δ𝜌/𝜌 (= 𝑐ፒ𝑆) [-] is the relative density difference between river water and
saline water, 𝑐ፒ [psuዅ1] is the saline expansivity equal to 7.7 × 10ዅኾ, 𝜐 (= π𝐸/𝑇)
[LTዅ1] is the tidal velocity amplitude, and 𝑇 [T] is the tidal period.

This estuarine Richardson number describes the balance between the potential
energy of the fresh water flowing into the estuary (𝜌𝑔ℎ|𝑄|𝑇/2) and the kinetic
energy of the tidal flood flow (𝜌𝜐ኼ𝐴𝐸/2). Linking the gravitational circulation (𝐷፠)
with the stratification number (𝑁ፑ) is consistent with energy dissipation in estuaries.
If 𝑁ፑ is large, the potential energy of river discharge dominates and stratification
occurs, 𝐷፠ is enhanced; if it is small, the estuary is well-mixed due to sufficient
kinetic energy to reduce the density gradient, 𝐷፠ is reduced. In this study, we
connect 𝐷፠ and 𝑁ፑ with a power, which is further discussed in Chapter 3.

The parameter 𝑁ፑ is widely used in theoretical and practical studies [e.g., Fis-
cher, 1972; Fischer et al., 1979; Kuijper and Van Rijn, 2011]. Other estuary numbers
such as the Canter Cremers’ estuary number [e.g., Savenije, 2005], the Prandle’s
estuary number [e.g., Prandle, 1985], and the Simpson number [e.g., Simpson
et al., 1990; MacCready and Geyer, 2010; Stacey et al., 2001; Stacey and Ralston,
2005] are also used.

Residual circulation in wide estuaries
Residual circulation is complicated. It can be a very powerful mechanism where the
tide causes mixing by the cross-over of preferential ebb and flood channels which
develop in a wide estuary. For example, Figure 2.11 shows different channels in the
Scheldt estuary, exhibiting a remarkable pattern: a number of consecutive loops
around the major shoal complexes. The ebb channel is the main channel and the
flood channel is the side channel. Similar patterns can be observed in a number of
convergent estuaries, such as the Pungue, the Columbia, the Thames, the Mersey,
and the Yangtze River. In the Scheldt and the Columbia this mechanism happens
downstream from the point where the width to depth ratio is about 100.

Previous researchers focused on longitudinal dispersion in prismatic estuaries
[e.g., Hansen and Rattray, 1966], while the fact that cross sections of natural al-
luvial estuaries obey an exponential function is relevant. Even though the one-
dimensional tide-driven mixing should be included in the dispersion coefficient, tra-
ditional researches have ignored this kind of large-scale lateral mixing by resid-
ual circulation. However, the presence of preferential ebb and flood channels
is a major mechanism in wide estuaries, affecting salt transportation, sediment
movement, and long-term morphodynamic development [e.g., Bowden and Gilli-
gan, 1971; Wang et al., 2001; Van Veen, 2001; Savenije, 2005; Nguyen et al.,
2008; Guo et al., 2015].

How can we parameterize the large-scale residual circulation? Nguyen et al.
[2008] provided an equation for the dispersion due to residual circulation based on
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Figure 2.11: Ebb and flood channels in the Scheldt estuary. Shortcut and ebb- or flood-channel are not
specified. Based on Van Veen [2001].

a box-model:
𝐷፞፟ = 0.5𝑒፩

𝐸
𝑇𝐿፞፟ , (2.12)

where 0.5 is a factor assumed as the ratio of cross-sectional area of the flood
channel and total area, 𝑒፩ [-] is the pumping efficiency (relative difference of the
tidal velocity amplitude between flood and ebb currents in the flood channel), and
𝐿፞፟ [L] is the length of an ebb-flood channel loop which is forced by the width. This
simple equation implies that the effective longitudinal dispersion generated by the
flood-ebb channel interaction is directly proportional to the efficiency of the tidal
pumping, the tidal excursion, and the estuary width.

2.7. Previous empirical salinity intrusion models
Assuming that in a given estuary the geometry 𝐴(𝑥) is known, as is the observed
salinity and discharge of the fresh river water, the salt balance equation (2.7) has
two unknowns 𝐷(𝑥) and 𝑆(𝑥). Van der Burgh’s empirical equation (1.1) provides
an additional equation for 𝐷(𝑥) to describe the mixing of salt and fresh water in
estuaries. Integrating the combination of these two equations yields [Savenije,
1986]

𝐷
𝐷ኺ

= (
𝑆 − 𝑆፟
𝑆ኺ − 𝑆፟

)
ፊ
, (2.13)

where the subscript “0” defines the boundary condition for all distance-dependent
parameters. This boundary is conveniently chosen at the inflection point, or at the
mouth if there is no inflection point. This equation links the dispersion directly to
the salinity which is special because most other researchers link the dispersion to
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the salinity gradient [e.g., Fischer, 1976; Prandle, 1981; Thatcher and Najarian,
1983].

Substituting equation (2.1) for the cross section into the integration of (1.1) and
assuming that 𝐾 is constant gives [Savenije, 1989]

𝐷
𝐷ኺ

= 1 − 𝛽 (e፱/ፚ − 1) , (2.14)

where 𝛽 [-] is the dispersion reduction rate:

𝛽 = 𝐾|𝑄|𝑎
𝐴ኺ𝐷ኺ

. (2.15)

Combining equations (2.13) and (2.14), the salinity distribution 𝑆(𝑥) is solved
along an estuary:

𝑆 − 𝑆፟
𝑆ኺ − 𝑆፟

= [1 − 𝛽 (e፱/ፚ − 1)]ኻ/ፊ . (2.16)

The Van der Burgh method works only if the boundary conditions (𝑆ኺ and 𝐷ኺ)
and the empirical coefficient (𝐾) are known or calibrated. To make the empirical
salinity intrusion model predictive, Savenije [1993b] presented predictive equations
for 𝐾 and 𝐷ኺ (𝑆ኺ is easy to estimate):

𝐾 = 0.16 × 10ዅዀ(ℎ𝑏)
ኻ.ኻኺ
(𝐻ℎ )

ኻ.ዀዀ
( ℎ𝐵)

ኺ.ኻኽ
(𝑇√𝑔ℎ𝐻 )

ኼ.ኼኾ

, (2.17)

𝐷HWS

𝜐𝐸 = 1400ℎ𝑎𝑁ፑ
ኺ.኿ , (2.18)

where 𝐷HWS is dispersion at high water slack. Bulk parameters which are not time-
dependent were considered and 𝐾 is suggested in between zero and unity. Although
equation (2.18) is based on the high water slack situation, one can compute the
salinity distribution for both tide average and low water slack by shifting the curve
over 𝐸/2 and 𝐸 in the seaward direction.

Later, Savenije [2005] modified the predictive equation (2.17) involving more
parameters:

𝐾 = 0.3 × 10ዅኽ(𝐸𝐻)
ኺ.ዀ኿
( 𝑔𝐶ኼ )

ኺ.ኽዃ
(1 − 𝛿ፇ𝑏)ዅኼ.ኺ(

𝑏
𝑎)

ኺ.኿ዂ
( 𝐸𝑎𝐴ᖣ፦

)
ኺ.ኻኾ

, (2.19)

where 𝐶 [L1/2Tዅ1] is the coefficient of Chézy’s, 𝛿ፇ [Lዅ1] is the tidal damping rate,
and 𝐴ᖣ፦ [L2] is the cross-sectional area at mouth which is obtained by extending
the second segment of the exponential function of the area to the mouth.
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Gisen [2015] then provided another equation for the Van der Burgh coefficient:

𝐾 = 8.03 × 10ዅዀ(
𝐵፟
𝐵 )

ኺ.ኽኺ
( 𝑔𝐶ኼ )

ኺ.ኺዃ
(𝐸𝐻)

ኺ.ዃ዁
( ℎ𝑏ኻ

)
ኺ.ኻኻ

(𝐻
ℎ
)
ኻ.ኻኺ
( 𝜆𝐸)

ኻ.ዀዂ
, (2.20)

where ℎ [L] is the averaged depth after the inflection point and 𝜆 [L] is the length
of the tidal wave. The boundary condition of these distance-dependent parameters
is then adjusted from the estuary mouth to the inflection point. Gisen [2015] also
tested eighteen predictive equations for predicting dispersion at the boundary by
multiple regression analysis, obtaining the following two equations that performed
best:

𝐷ኺ = 0.1167𝑁ፑኺ.኿዁𝜐𝐸 , (2.21)

𝐷ኺ = 0.2558𝑓ፃዅኺ.ኼኻ𝑁ፑኺ.኿዁𝜐𝐸 , (2.22)

where 𝑓ፃ [-] is the Darcy-Weisbach friction factor.
Subsequently, although the processes of mixing and saline water intrusion are

clearly complex and three-dimensional, this empirical salinity intrusion model, based
on Van der Burgh’s relationship, provides an analytical approach to estimate the lon-
gitudinal salinity distribution in estuaries which appeared to have excellent practical
performance. The purely empirical 𝐾 combines into one parameter the effects of all
mixing mechanisms. However, the predictive equations (2.17), (2.19), and (2.20)
are still very complicated, and the physical foundation of the empirical coefficient
is still weak. To provide a theoretical basis for the empirical Van der Burgh coeffi-
cient is the main challenge in this study, which will be dealt with in the following
chapters.
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Water benefits everything and does not compete with anything.
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Zhang, Z. and Savenije, H. H. G.: The physics behind Van der Burgh’s empirical equation, providing
a new predictive equation for salinity intrusion in estuaries, Hydrol. Earth Syst. Sci., 21, 3287-3305,
2017.
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3.1. Background
Using the steady state equation (2.7) at a boundary condition, we can derive the
dispersion as a function of the salinity gradient [Savenije, 2015]:

𝐷
𝐷ኺ

= (− 𝐴𝐷ኺ
|𝑄|𝑆ኺ

d𝑆
d𝑥)

ᑂ
ᎳᎽᑂ

, (3.1)

which connects the dispersion coefficient to local variables (𝐴, d𝑆/d𝑥), boundary
conditions (𝐷ኺ, 𝑆ኺ), and 𝐾. It reveals the dispersion can be shown to be proportional
to the salinity gradient to the power of 𝐾/(1 − 𝐾).

Traditional literature presents different values for this power. Transferring these
back with this relationship to Van der Burgh’s coefficient, we found a value of 1/2
[Kuijper and Van Rijn, 2011], of 1 [Hansen and Rattray, 1966], a series of 0, 1/2,
and 2/3 [Prandle, 1981; MacCready, 2004] or an empirical range of 0.20–0.75
[Gisen, 2015]. It is important to have such different values, which means that
the Van der Burgh coefficient may be not a constant.

One objective of this chapter is to provide a theoretical background for this
coefficient. This chapter also aims to provide an approach to describe large-scale
tide-driven residual circulation caused by preferential ebb and flood channels that
develops in the wider part of estuaries, following from Nguyen et al. [2008].

3.2. Linking Van der Burgh to MacCready
Following from the reductionist approach by Hansen and Rattray [1966], MacCready
[2004, 2007] derived an equation for the exchange term theoretically:

�̃��̃� − 𝐾ፇ
d𝑆
d𝑥 = (𝑚ኻ

ℎኼ𝑢፟ኼ
𝐾ፒ

+ 𝐾ፇ)(−
d𝑆
d𝑥) +𝑚ኼ

𝑔𝑐ፒℎ኿𝑢፟
𝐾ፒ𝐾ፄ

(−d𝑆
d𝑥)

ኼ

+𝑚ኽ
𝑔ኼ𝑐ፒኼℎዂ

𝐾ፒ𝐾ፄኼ
(−d𝑆

d𝑥)
ኽ
,

(3.2)

where �̃� [LTዅ1] is the depth-varying velocity, �̃� [psu] is the depth-varying salinity,
and the over-bar denotes tidal average and cross-sectional average. 𝑚ኻ = 2/105,
𝑚ኼ = 19/(420 × 48), and 𝑚ኽ = 19/(630 × 48ኼ) are constant values following Mac-
Cready’s vertical integration. 𝑢፟ (= |𝑄|/𝐴) [LTዅ1] is the velocity of fresh water, 𝐾ፇ
[L2Tዅ1] is the along-channel diffusion coefficient, 𝐾ፒ [L2Tዅ1] is the effective vertical
eddy diffusivity, and 𝐾ፄ [L2Tዅ1] is the effective hydraulic eddy viscosity. For the
eddy viscosity, there are different empirical expressions [Fischer et al., 1979]; in
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this study, following equations are used:

𝐾ፄ = 0.1
2
π𝑢∗ℎ , (3.3)

𝑢∗ = √𝑔
𝐶 𝜐 , (3.4)

𝐶 = 𝐾ፌℎኻ/ዀ , (3.5)

where 𝐾ፌ [L1/3Tዅ1] is Strickler’s coefficient, generally known by its inverse value 𝑛
(𝐾ፌ = 1/𝑛), Manning’s coefficient, representing the bed friction.

Comparing the salt balance equation of MacCready to the steady state equa-
tion (2.7) implies that equation (3.2) is identical to −𝐷d𝑆/d𝑥. MacCready assumed
the estuary to be narrow and rectangular, in the sense that cross-sectional shape
does not basically modify the width-averaged dynamics. In the derivation, he also
assumed the effective vertical eddy viscosity to be constant with depth, following
Hansen and Rattray [1966], and that the salinity gradient of the depth-varying part
is much smaller than the depth-averaged part, following Pritchard [1952]. Addition-
ally, other effects like salt storage, internal hydraulics and the Coriolis acceleration
were considered negligible.

After division of all terms by the salinity gradient, equation (3.2) becomes an
equation for the dispersion coefficient:

𝐷 = (𝑚ኻ
ℎኼ𝑢፟ኼ
𝐾ፒ

+ 𝐾ፇ) +𝑚ኼ
𝑔𝑐ፒℎ኿𝑢፟
𝐾ፒ𝐾ፄ

(−d𝑆
d𝑥) +𝑚ኽ

𝑔ኼ𝑐ፒኼℎዂ

𝐾ፒ𝐾ፄኼ
(−d𝑆

d𝑥)
ኼ
, (3.6)

whereby the first term is not dependent on the salinity gradient, the second is
directly proportional to it, and the third term depends on the square of the salinity
gradient.

Based on equation (3.1) we can also derive an expression for the dispersion:

𝐷 = 𝐷ኺ(
𝐴ኺ𝐷ኺ
𝑙|𝑄| )

ᑂ
ᎳᎽᑂ
(− 𝐴𝐴ኺ

𝑙
𝑆ኺ
d𝑆
d𝑥)

ᑂ
ᎳᎽᑂ

, (3.7)

where 𝑙 (= 𝐿 − 𝑥ኻ) [L] is the distance from the inflection point to where salinity
becomes the same as the fresh water salinity.

Hence 𝐷 ∝ 𝛾ፊ/(ኻዅፊ) with 𝛾 = − ፀ
ፀᎲ

፥
ፒᎲ

dፒ
d፱ . Given the function 𝐹 (𝛾) = 𝛾ፊ/(ኻዅፊ), a
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Taylor series expansion near 𝛾 = 1 can be derived as

𝐹 (𝛾) = (2𝐾 − 1)(3𝐾 − 2)
2(1 − 𝐾)ኼ + 𝐾(2 − 3𝐾)

(1 − 𝐾)ኼ
( 𝐴𝐴ኺ

𝑙
𝑆ኺ
)(−d𝑆

d𝑥)

+ 𝐾
(2𝐾 − 1)
2(1 − 𝐾)ኼ

( 𝐴𝐴ኺ
𝑙
𝑆ኺ
)
ኼ
(−d𝑆

d𝑥)
ኼ
+ 𝑅ኼ (𝑥) ,

(3.8)

where 𝑅ኼ(𝑥) is the residual term, considered to be small. If 𝐾 = 0, 𝐹(𝛾) = 1,
dispersion is independent on the salinity; if 𝐾 = 1/2, dispersion is proportional to
the salinity gradient; and if 𝐾 = 2/3, dispersion is proportional to the square of the
salinity gradient, which means that the dispersion is more sensitive to the salinity
gradient.

To analyze the importance of the different terms in equation (3.8), Figure 3.1
presents the factors

𝑔ኻ =
(2𝐾 − 1)(3𝐾 − 2)

2(1 − 𝐾)ኼ , (3.9)

𝑔ኼ =
𝐾(2 − 3𝐾)
(1 − 𝐾)ኼ

, (3.10)

𝑔ኽ =
𝐾 (2𝐾 − 1)
2(1 − 𝐾)ኼ

, (3.11)

when 𝐾 is between 1/2 and 2/3. 𝑔ኻ seems a closure term which compensates for
𝑔ኼ and 𝑔ኽ so as to make ∑𝑔፩ = 1 (𝑝 = 1, 2, 3). It is clear that the absolute value
of the first term is much smaller than the density-related terms. Also, the larger
the value of 𝐾, the more important the third term is.

Considering only the density-dependent terms in equations (3.6) and (3.8), the
proportionality results in

2 − 3𝐾
2𝐾 − 1 = 36

𝐾ፄ|𝑄|
𝑔𝑐ፒℎኽ𝐴ኺ

𝑙
𝑆ኺ
=

7.2𝐸|𝑄፟|
√𝑔𝑐ፒℎኼ𝐴ኺ𝐶𝑇

𝑙
𝑆ኺ
= 𝜔 , (3.12)

leading to an analytical expression for 𝐾:

𝐾 = 2 + 𝜔
3 + 2𝜔 . (3.13)

One should realize that the coefficient 𝐾 is not exactly the Van der Burgh coeffi-
cient, since it only considers the density-related mechanisms, but in the part of the
estuary where density-driven mixing is dominant, it is likely a good approximation.
According to equation (3.12), 𝐾 is not time independent; rather, it is determined
by the tidal excursion and the fresh water discharge. In the case of a relatively
constant discharge, a larger tidal excursion implies larger values of 𝜔, hence 𝐾 ap-
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Figure 3.1: Comparison between the factors in the Taylor series expansion of ፅ(᎐) as a function of the
Van der Burgh coefficient ፊ.

proaches the lower limit (1/2). On the other hand, a smaller tidal excursion implies
more stratification, a smaller value of 𝜔, and 𝐾 approaching the higher limit (2/3).
Additionally, averaging over a tidal cycle, the parameters in equation (3.12) are
almost constant, hence, it is reasonable to assume 𝐾 is invariable along the estuary
as long as gravitational circulation is dominant. We have used this expression to
calculate 𝐾 values in sixteen real estuaries using the empirical database of Savenije
[2012]. These 𝐾 values are in a range of 0.51–0.64 (see Appendix A.4).

Overall, there are three results for the estimation of 𝐾: 1) by comparison with
traditional studies (𝐾 = 1/2 or 2/3), 2) by comparison with MacCready considering
the salinity relevant terms (1/2 < 𝐾 < 2/3), and 3) based on empirical calculation.

3.3. Model including residual circulation

3.3.1. A box-model approach for wide estuaries

For calculating the effect of residual circulation, a different approach is followed
than Nguyen et al. [2008], trying to combine lateral and longitudinal circulation in
the regular one-dimensional advection-dispersion equation.

Figure 3.2 presents a sketch of a box-model used to include lateral exchange
in longitudinal dispersion. Water particles in the middle can mix longitudinally and
laterally within their respective mixing lengths. For the longitudinal mixing length
we consider the tidal excursion and for the lateral exchange half of the estuary
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width. The mass balance can then be described as

𝑉Δ𝑆ኼ
Δ𝑡 = |𝑄|(𝑆ኼ − 𝑆ኻ) + 𝑖(𝑆ኻ − 2𝑆ኼ + 𝑆ኽ) + 𝑗(𝑆ፋ − 2𝑆ኼ + 𝑆ፑ) , (3.14)

where 𝑉 (= 𝐴𝐸) [L3] is the water volume, 𝑆፩ [psu] is the salinity at different locations
𝑝, and 𝑖 and 𝑗 [L3Tዅ1] are longitudinal and lateral exchange discharges.

The balance equation then becomes

𝑉𝜕𝑆𝜕𝑡 − |𝑄|
𝜕𝑆
𝜕𝑥Δ𝑥 − 𝑖

𝜕ኼ𝑆
𝜕𝑥ኼ (Δ𝑥)

ኼ − 𝑗 𝜕
ኼ𝑆
𝜕𝑦ኼ (Δ𝑦)

ኼ = 0 , (3.15)

where Δ𝑥 and Δ𝑦 [L] are the mixing lengths, which are taken as Δ𝑥 = 𝐸 and
Δ𝑦 = 𝐵/2.

The assumption used is that the lateral exchange is proportional to the longitu-
dinal exchange [Fischer, 1972]:

𝑗 𝜕
ኼ𝑆
𝜕𝑦ኼ ∝ 𝑖

𝜕ኼ𝑆
𝜕𝑥ኼ . (3.16)

As a result, longitudinal and lateral processes can be combined into one single
one-dimensional equation:

𝜕𝑆
𝜕𝑡 −

|𝑄|
𝐴
𝜕𝑆
𝜕𝑥 −

𝑖𝐸
𝐴 (1 + 𝐶ኼ(

𝐵
𝐸)

ኼ
) 𝜕

ኼ𝑆
𝜕𝑥ኼ = 0 , (3.17)

where 𝐶ኼ determines how important lateral exchange is in relation to longitudinal
exchange. Comparing equation (3.17) with the traditional salt balance equation
(2.6), if the variation of the cross section and dispersion is slight, the effective
longitudinal dispersion is

𝐷 = 𝑖𝐸
𝐴 (1 + 𝐶ኼ(

𝐵
𝐸)

ኼ
) . (3.18)

Subsequently, the longitudinal exchange discharge 𝑖 is assumed to be propor-
tional to the amplitude of the tidal flow (𝑄፭ = 𝐴𝜐), and to the stratification number
to the power of 𝐾:

𝑖 = 𝐶ኻ𝑁ፑፊ𝑄፭ , (3.19)

where 𝐶ኻ is a factor. Here the tide-driven residual circulation is presented by the
𝐶ኼ term and 𝐾 considers only density-driven processes, which is consistent with
equation (3.13). Tidal shear effect and trapping are assumed to be relatively small.
If not, it can be included in the 𝐶ኼ part.

We then obtain a simple dimensionless expression for the dispersion coefficient,
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Figure 3.2: Conceptual sketch for lateral and longitudinal mixing. Longitudinal and lateral mixing lengths
are ጂ፱ and ጂ፲, respectively.

similar to the one by Gisen et al. [2015a] but incorporating lateral processes:

𝐷
𝜐𝐸 = 𝐶ኻ𝑁ፑ

ፊ (1 + 𝐶ኼ(
𝐵
𝐸)

ኼ
) . (3.20)

3.3.2. Analytical solution
In almost all estuaries especially in the upstream part, the ratio of width to excursion
length is quite small. This is the part where salinity problems are important to water
users and the environment. So for analytical solutions of the salt balance equation
we shall focus on the first part of equation (3.20):

𝐷 = 𝐶ኻ𝑁ፑፊ𝜐𝐸 . (3.21)

The traditional approach by Savenije [2012] uses this equation for the boundary
condition, after which 𝐷(𝑥) values are obtained by integration of Van der Burgh’s
equation along the estuary axis. But, in principle, with this equation the dispersion
can be calculated at any point along the estuary, provided local hydraulic and ge-
ometric variables are known. Using the expression for 𝑁ፑ, equation (3.21) can be
elaborated into

𝐷(𝑥) = 𝐶ኻ(𝑐ፒ𝑔π)
ፊ(𝑆|𝑄|𝜐ኽ𝐵 )

ፊ
𝜐𝐸 , (3.22)

where all local variables are merely a function of 𝑥.
The following equations are used for the tidal velocity amplitude, width, and
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tidal excursion:
𝜐(𝑥) = 𝜐ኺe᎑ᒚ(፱ዅ፱Ꮃ) , (3.23)

𝐵(𝑥) = 𝐵ኺeዅ(፱ዅ፱Ꮃ)/፛ , (3.24)

𝐸(𝑥) = 𝐸ኺe᎑ᐿ(፱ዅ፱Ꮃ) , (3.25)

where 𝛿Ꭲ (≈ 𝛿ፇ) [Lዅ1] is the damping/amplifying rate of tidal velocity amplitude.
At the boundary, the predicted equation is given by:

𝐷ኺ = 𝐶ኻ(𝑐ፒ𝑔π)
ፊ( 𝑆ኺ|𝑄|𝜐ኺኽ𝐵ኺ

)
ፊ
𝜐ኺ𝐸ኺ . (3.26)

Substitution of equations (3.23)–(3.26) into (3.22) gives

𝐷(𝑥) = 𝐷ኺ(
𝑆
𝑆ኺ
)
ፊ
e጖(፱ዅ፱Ꮃ) , (3.27)

with Ω = 2𝛿ፇ − 3𝐾𝛿ፇ + 𝐾/𝑏.
Differentiating 𝐷 with respect to 𝑥 and using equation (3.27) results in

d𝐷
d𝑥 = 𝐾

𝐷
𝑆
d𝑆
d𝑥 + Ω𝐷 . (3.28)

Combining the result with the salt balance equation (2.7), equation (3.28) results
in

d𝐷
d𝑥 = Ω𝐷 − 𝐾

|𝑄|
𝐴 . (3.29)

If Ω = 0, equation (3.29) becomes Van der Burgh’s equation. A small value of
Ω occurs in estuaries with a long convergence length and limited damping. This is
why the exchange flow is a function of the stratification number to the power 𝐾
in equation (3.19). Even though 𝐾 here considers only the density-driven mecha-
nism and therefore is not exactly the same as the Van der Burgh coefficient (which
includes all mixing mechanisms), it is clearly closely related to the Van der Burgh
coefficient.

The cross-sectional area 𝐴 is given by

𝐴(𝑥) = 𝐴ኺeዅ(፱ዅ፱Ꮃ)/ፚ . (3.30)

Substitution of equation (3.30) into (3.29) gives

d𝐷
d𝑥 = Ω𝐷 − 𝐾

|𝑄|
𝐴ኺ

e(፱ዅ፱Ꮃ)/ፚ . (3.31)

In analogy with Kuijper and Van Rijn [2011], the solution of this linear differential
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equation is
𝐷
𝐷ኺ

= e጖(፱ዅ፱Ꮃ) − 𝐾|𝑄|
𝐴ኺ𝐷ኺ

𝜁 [e(፱ዅ፱Ꮃ)/ፚ − e጖(፱ዅ፱Ꮃ)] , (3.32)

with
𝜁 = 𝑎

1 − Ω𝑎 . (3.33)

The maximum salinity intrusion length is obtained from equation (3.32) after
substitution of 𝐷 = 0 at 𝑥 = 𝐿:

𝐿 = 𝜁 ln(1 + 𝐴ኺ𝐷ኺ
𝐾|𝑄|𝜁 ) + 𝑥ኻ . (3.34)

This is the same equation as in Savenije [2005] if 𝜁 = 𝑎.
Using equation (3.27), the longitudinal salt distribution becomes

𝑆
𝑆ኺ
= {1 − 𝐾|𝑄|

𝐴ኺ𝐷ኺ
𝜁 [e(፱ዅ፱Ꮃ)/᎓ − 1]}

ኻ/ፊ
. (3.35)

This solution is the same as equation (2.16) if Ω = 0 and it is similar to the
solution by Kuijper and Van Rijn [2011], with the difference that Kuijper and Van
Rijn used a constant value of 𝐾 = 1/2 and that their value of Ω depended on the
bottom slope.

So with these new analytical equations, the local dispersion and salinity can be
obtained, using the boundary conditions. This method is limited since it only works
if 𝐵/𝐸 < 1. If we want to account for residual circulation using equation (3.20),
then we have to use numerical integration of equation (2.7) using (3.20) for 𝐷.

3.4. Empirical validation
3.4.1. Summary information
Sixteen alluvial estuaries, covering a diversity of sizes, shapes, and locations, are
used for empirical validation of the new box-model. The general geometry of these
estuaries using equations (2.1)–(2.3) are compiled in Appendix A.1. It shows that
all these estuaries can be schematized in one or two segments separated by a well-
defined inflection point. The general geometry of these estuaries is summarized in
Appendix A.2. The same values of 𝑎 and 𝑏 indicate that the depth is constant.

Summary information on different measurement dates is presented in Appendix
A.3 and A.4, where 𝐸፦ [L] is the tidal excursion at estuary mouth and 𝛼 = 𝐷/|𝑄|
[Lዅ1] is the mixing coefficient. Tidal excursion and tidal period are more or less
the same in all estuaries, except for the Lalang and the Chao Phraya with a diurnal
tide. Most estuaries damp upstream, with negative values of 𝛿ፇ. In addition, most
estuaries have a small tidal amplitude to depth ratio, which means relatively simple



3

34 3. Physics behind the empirical method by reductionism

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 4 0 0 0 00

5

1 0

1 5

2 0

2 5

3 0

3 5

Sa
lini

ty 
(ps

u)

D i s t a n c e ,  x  ( m )

 M e a s u r m e n t
 K = 0 . 5
 K = 0 . 5 5
 K = 0 . 6
 K = 0 . 6 5

Figure 3.3: Salinity profiles using different values of ፊ: using data from the Thames at tidal average.

solutions of hydraulic equations are possible [Savenije, 2005].
𝐾 values have been obtained by calibration of simulated salinities to observations

in these estuaries. How the simulated salinity distribution changes for different
values of 𝐾 is presented in Figure 3.3. The smaller the value, the further the salinity
intrudes. The value of 𝐾 affects the salinity mostly in the upstream reach. The
dispersion at the boundary has a range of 50 − 600 m2/s in a variety of estuaries,
which is consistent with Prandle [1981]. The mixing coefficient demonstrates to
what extent the dispersion overcomes the flushing by river flow. The larger the river
discharge, the smaller the 𝛼, meaning it is difficult for the salinity to penetrate into
the estuary. The dispersion reduction ratio 𝛽 determines the longitudinal variation
of dispersion. Fischer et al. [1979] suggested that the transition from a well-mixed
to a strongly stratified estuary occurs if the values of stratification number 𝑁ፑ are
in the range of 0.08–0.8. With a ratio of π between Fischer’s and our expressions
for the stratification number, the range becomes 0.25–2.51. It is obvious that all
estuaries are partially to well mixed, with 𝑁ፑ below 2.51.

Using the automatic Solver, the best result was obtained with 𝐶ኻ = 0.10, 𝐶ኼ = 12,
and 𝐾 = 0.58. For individual estuaries, 𝐾 values were obtained ranging between
0.45 and 0.78.

3.4.2. Sensitivity to 𝐶ኼ
Through the use of 𝐶ኼ we can use a single dispersion equation accounting for
two-dimensional effects in a one-dimensional model. The assumption that lateral
exchange is proportional to longitudinal dispersion suggests 𝐶ኼ to be independent
of 𝑥. To check the sensitivity to 𝐶ኼ, different values (mainly 1, 10, and 50) have
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Figure 3.4: Comparison between simulated and observed salinity at high water slack (thin lines) and
low water slack (thick lines), scaled by the boundary salinity ፒᎲ for different ፂᎴ values. Observations at
high water slack are represented by triangles and low water slack by circles. The Thames only has low
water slack observations.

been used to calculate salinity curves. Figure 3.4 and Appendix A.5 demonstrate
how salinity changes with varying 𝐶ኼ values. Salinities were simulated by numerical
solution of equation (2.7) with (3.20) based on the boundary condition normally at
𝑥 = 𝑥ኻ. There is almost no effect on narrow estuaries like the Lalang, the Limpopo,
the Tha Chin, and the Chao Phraya. However, typically, 𝐶ኼ matters near a wide
mouth part. It is demonstrated that the larger the value of 𝐶ኼ, the smaller the
salinity gradient and the flatter the salinity curve near the estuary mouth. Addition-
ally, because of the interdependence of 𝐷, 𝑆, and d𝑆/d𝑥 through equation (2.7)
in the upstream part, a larger value of 𝐶ኼ can lead to larger salinities upstream
(e.g., the Thames, the Elbe, the Edisto, the Maputo, and the Corantijn). Overall,
the inclusion of the residual circulation improves the accuracy of salinity simulation
in wide estuaries and more particularly near the mouth of the estuaries where the
ratio of width to tidal excursion is relatively large.
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Figure 3.5: Estuary mouth shapes of (a) the Kurau and (b) the Perak. Thick lines show the estimation
of width and thin lines show reference streamlines. In yellow presents the situation may be the case
instead of the misinterpretation in red.

Basically, 𝐶ኼ = 10 (green lines) can perform perfectly in 12 out of 16 estuaries,
for instance, in the Maputo and the Thames in Figure 3.4. Hence, a general value
of 𝐶ኼ = 10 is recommended.

Tailor-made 𝐶ኼ values are needed in some estuaries that have peculiar shapes
near the mouth. A larger value of 𝐶ኼ (= 200) applies to the Kurau. This may
be because the width is underestimated in the estuary mouth (Figure 3.5), due
to misinterpretation of the direction of the streamline (the width is determined
according to a line perpendicular to the streamline). As a matter of fact, the width
should be larger (yellow solid lines) and dispersion should be larger with smaller
salinity gradients, which would then result in a lower value of 𝐶ኼ. The same applies
to the Endau (𝐶ኼ = 35). By contrast, a smaller value of 𝐶ኼ (= 0) in Perak fits
better, because of overestimation of the width (Figure 3.5). Here the topographical
map suggests a wide estuary mouth, whereas the tidal flow is concentrated in a
much narrower main channel due to a the north bank protruding into the estuary
and a spur from the south projecting into the mouth. The Selangor has a similar
situation (𝐶ኼ = 3). It shows that the configuration of the mouth is important for
the correct simulation of the salinity near the estuary mouth. But, fortunately, a
relatively poor performance near the mouth of these estuaries does not affect the
salinity distribution upstream as long as 𝐶ኼ is not too large. In conclusion, 𝐶ኼ = 10
appears to be a suitable default value as long as the trajectory of the tidal currents
can be considered properly.

The poor fit in the downstream parts of the Lalang and the Chao Phraya, in
which measured salinities are lower than simulated, can be explained by a complex
downstream boundary. The Lalang estuary has a pronounced riverine character and
is a tributary to the complex estuary system of the Banyuasin, sharing its outfall
with the larger Musi river. So the salinity near its mouth is largely affected by the
Musi. Also, pockets of fresh water can decrease the salinity near the confluence.



3.5. Reductionist approach to the coefficient

3

37

The Chao Phraya opens to the Gulf of Thailand where the salinity is influenced by
historical discharges rather than ocean salinity, remaining relatively fresh. Other
measurement uncertainties may cause outliers as well.

3.5. Reductionist approach to the coefficient
The physical meaning of the coefficient 𝐾 has been analyzed, linking it to the tra-
ditional theoretical research. Equation (3.12) shows a direct relation between this
parameter and MacCready’s parameters, which are measurable quantities. Hence,
the coefficient is affected by tide, geometry, and freshwater discharge. Shaha and
Cho [2011] also found 𝐾 values to depend on river discharge while considering the
value to increase upstream in a range of (0, 1) due to different mechanisms along
the estuary.

A 1:1 plot is presented in Figure 3.6, relating the empirical 𝐾 values by cali-
bration applying the box-model to the predicted values using equation (3.13). The
predicted 𝐾 values are close to the calibrated ones, even though the former have
a smaller range (0.51–0.64) than the latter (0.45–0.78). It can be seen that there
is a steep linear relation between predicted and calibrated 𝐾 values, which reveals
that the predictive method overestimates the low calibrated 𝐾 values and underes-
timates the high values. Or, the range of (1/2, 2/3) appears too narrow. Mixing
mechanisms not related to density, corresponding to 𝐾 = 0, are strictly avoided
in the predictive method. While even though the non-density driven mechanism
is represented in the 𝐶ኼ term, it may affect the empirical calibration. An increase
of tide which deminishes the stratification would also decrease the 𝐾 value. As a
result, the predicted values are higher than the calibrated ones in the lower region.
On the other hand, the Taylor series to approximate 𝐹(𝛾) could have more terms,
resulting 𝐾 to equal, for instance, 3/4, 4/5, approaching unity. According to Hansen
and Rattray [1966], 𝐾 equals 1 under their central regime assumption, where the
salinity gradient is maximized. Hence, a larger range than [1/2, 2/3] may be fea-
sible. However, considering that the 𝐾 values have been obtained from different
approaches, they are still reasonably similar. As a result, this correspondence pro-
vides a physical basis to 𝐾, which is connected to the Van der Burgh coefficient.
Finally, all 𝐾 values are very close to 0.58, which may be a good starting value in
estuaries where information on geometry and channel roughness is lacking.

Overall, there are quite some uncertainties in calibrating an empirical model to
data in real estuaries, as a result of a whole range of uncertain factors related with
observational errors, data problems, the assumption of steady state, flows in the
geometry, and other factors. The outlier from the Thames (#8 in Figure 3.6) is
most likely due to the geometry. Maybe the Thames is too wide for the dispersion
to be dominant by density differences which is underlying MacCready’s method.
The outlier estuary #1 (Kurau) may be because of an underestimated freshwater
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discharge.

3.6. Concluding remarks
The coefficient 𝐾 determines the way the density-relevant process of dispersion re-
lates to the stratification number by a power function. Two approaches, theoretical
derivation from the traditional literature using a reductionist approach and empir-
ical validation based on observations in a large set of estuaries, provided similar
estimates of 𝐾. Under MacCready’s assumptions, there are three ways to estimate
𝐾: 0.51 < 𝐾 < 0.64 from empirical application of equations (3.12) and (3.13);
1/2 < 𝐾 < 2/3 as the physical boundaries of equation (3.13); and the comparison
with traditional approximations (𝐾 = 1/2 and 2/3). After validation of the new
box-model to the database of field observations, the values of 𝐾 are in a range of
0.45−0.78 for a wide range of conditions, with an average of 0.58, close to the pre-
dicted values. Although these one-dimensional expressions of velocity and salinity
may be simplifications of reality, the good correspondence provides a promising
theoretical basis for 𝐾, revealing that the Van der Burgh coefficient has a lower
value when the estuary is less stratified due to a stronger tide.

A previous analytical salinity intrusion model was developed by Gisen [2015],
from which the Van der Burgh coefficient values resulted in a range of 0.20–0.75
by calibration and 0.22–0.71 by prediction. These solutions cover a wider range
than our estimates because of Gisen’s assumption that Van der Burgh’s coefficient
does not depend on river discharge and the absence of the two-dimensional tide-
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driven mixing near the mouth. Moreover, three improvements have been made
in this chapter. Firstly, we used the local hydraulic parameters to simulate the
salinities, while Gisen used a constant depth and no damping. In addition, by
using an uncertainty bound of 25% on freshwater discharge we could reduce the
inaccuracy of the tail of the salinity curve and obtain a better fit (where 𝐾 matters
most). And finally, all geometric analyses were improved by revisiting the fit to
observations.

An important consequence of this study is that 𝐾 depends on time. Where Gisen
assumed the Van der Burgh coefficient to be constant for each estuary, we find
substantial variability for estuaries where a larger range of discharges is available:
e.g. in the Maputo, 0.57 < 𝐾 < 0.70 and in the Limpopo, 0.61 < 𝐾 < 0.72.

Overall, the single one-dimensional salinity intrusion model including residual
circulation appears to work well in natural estuaries with a diversity of geometric
and tidal characteristics, by both analytical and numerical computation. The new
equation is a simple and useful tool for analyzing local dispersion and salinity di-
rectly on the basis of local hydraulic variables. In a calibration mode, 𝐾 is the only
parameter to be calibrated using 𝐶ኻ = 0.10 and 𝐶ኼ = 10. In a predictive mode,
a value of 𝐾 = 0.58 can be used as a first estimate. If information on river dis-
charge, roughness, and geometry is available, 𝐾 can be determined iteratively by
taking 𝐾 = 0.58 as the predictor and subsequently substituting 𝑆ኺ and 𝑙 from the
first iteration by equations (3.12) and (3.13) and repeating the procedure until the
process converges.

The addition of the factor (1 + 𝐶ኼ(𝐵/𝐸)ኼ) in the dispersion equation proved
valuable near the wide mouth of estuaries where the interacting ebb and flood
channels dominate dispersive actions. The value 𝐶ኼ = 10 was found to perform
best in most estuaries.

In some particular cases, the simulated salinity with 𝐶ኼ = 10 does not fit the
observations near the estuary mouth. So one should be aware of peculiar con-
figurations of streamlines and geometries near the estuary mouth when using this
model. However, a poor fit near the estuary mouth has almost no effect on the total
salinity intrusion. Finally, this predictive one-dimensional salinity intrusion model,
having a stronger theoretical basis, may be a useful tool in ungauged estuaries.
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4.1. Background
The freshwater flow that enters an estuary from the river contains potential energy
with respect to the saline ocean water. This potential energy is able to perform
work. Gravitational circulation is a process that dissipates the potential energy of
the fresh water. The maximum power concept assumes that this dissipation takes
place at maximum power [Kleidon, 2016].

The sketch in Figure 4.1 presents a typical longitudinal salinity distribution at the
maximum power optimum. The seaward and landward salt fluxes are the same,
at any location along the estuary. The power is described by the product of the
upstream dispersive water flux and the gradient in geopotential height driving this
flux or, alternatively, the product of the dispersive exchange flux and the water level
gradient. In this chapter, the system is assumed closed hence these two aspects
are considered affecting each other and can lead to a maximum product (toward
thermodynamic equilibrium).

4.2. Maximum power in estuaries
The water level gradient follows from the balance between the hydrostatic pressures
of fresh and saline water, resulting in

d𝑧
d𝑥 = −

ℎ
2𝜌፟

d𝜌
d𝑥 , (4.1)

Figure 4.1: Salinity distribution at maximum power (at ፭Ꮄ in Figure 2.9). The black arrows show the
boundary fluxes.



4.2. Maximum power in estuaries

4

43

where 𝑧 (= ℎ+Δℎ) [L] is the tidal average water level (blue line in Figure 4.1). The
depth gradient is essential for the density-driven mixing, but Δℎ is small compared to
ℎ (typically 1.2 % of ℎ). Note that this equation applies to the case in which the river
flow velocity is small, which is the case when estuaries are well mixed. Otherwise a
backwater effect should be included, but this only applies to a situation of high river
discharge when the salt intrudes by means of a salt wedge with a sharp interface.

One can express the density of saline water as a function of the salinity:

𝜌 = 𝜌፟(1 + 𝑐ፒ𝑆) . (4.2)

As a result, equation (4.1) can be written as

d𝑧
d𝑥 = −𝑐ፒ

ℎ
2
d𝑆
d𝑥 = −𝑐ፒ

ℎ
2𝑆

ᖣ . (4.3)

The upstream dispersive flux is implicit in the salt balance equation in steady
state. Writing water fluxes both downstream and upstream results in

𝑄 = 𝐴𝐷𝑆ᖣ
𝑆 − 𝑆፟

. (4.4)

The right-hand side is the water exchange flux, which is the flux that depletes
the gradient. As equation (4.4) shows, in steady state this exchange flux is equal
to the freshwater discharge. The combination of the flux and the gradient leads to
the power of the mixing system per unit length (defined as a positive quantity):

𝑃 = |𝜌𝑔𝑄d𝑧
d𝑥 | = −

1
2𝑐ፒ𝜌𝑔ℎ|𝑄|𝑆

ᖣ . (4.5)

Applying the theory of maximum power to the dispersive process, we need to
maximize the power with regard to the dispersion coefficient, which is the parameter
representing the mixing and which is the main unknown in salt intrusion prediction:

d𝑃
d𝐷 = 0 . (4.6)

Applying equation (4.6) with constant river discharge and constant depth, which
is the property of an ideal alluvial estuary1 according to Savenije [2005], leads to

d𝑆ᖣ
d𝐷 = 0 . (4.7)

1In an ideal estuary, the convergence of the estuary banks is just sufficient to balance the damping of
the tidal range due to friction Langbein [1963]; there is no damping or amplification.
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Using the salt balance equation, differentiation leads to

d𝑆ᖣ
d𝐷 = d𝑆ᖣ

d𝑥
d𝑥
d𝐷 = −

|𝑄|
𝐴𝐷 {

𝑆ᖣ
𝐷ᖣ −

𝐴ᖣ(𝑆 − 𝑆፟)
𝐴𝐷ᖣ −

𝑆 − 𝑆፟
𝐷 } , (4.8)

where the prime means the gradient of the parameters with respect to 𝑥. The
application of equation (4.7) then yields:

𝐷𝑆ᖣ
(𝑆 − 𝑆፟)𝐷ᖣ

= 𝐴ᖣ𝐷
𝐴𝐷ᖣ + 1 . (4.9)

4.3. Thermodynamic approach for the empirical co-
efficient

We introduce three length scales: 𝑎 = −(𝐴 − 𝐴፟)/𝐴ᖣ, 𝑠 = −(𝑆 − 𝑆፟)/𝑆ᖣ, and 𝑑 =
−𝐷/𝐷ᖣ, where 𝑠 [L] is length scale of the longitudinal salinity variation and 𝑑 [L] is
length scale of the longitudinal variation of dispersion. A shape factor 𝜎 (= 1−𝐴፟/𝐴)
[-] is included considering the effect of river cross section. In an exponentially
shaped estuary, the convergence length 𝑎 is a constant, but 𝑑 and 𝑠 vary with 𝑥.
It can be shown that the proportion 𝑠/𝑑 equals the Van der Burgh coefficient 𝐾
(= −𝐴𝐷ᖣ/|𝑄|) [Van der Burgh, 1972], which in this approach varies as a function
of 𝑥. Using these length scales, equation (4.9) can be written as

𝑠
𝑑 =

𝑎
𝑎 + 𝑑𝜎 (4.10a)

or:

𝑠 = 𝑎𝑑
𝑎 + 𝑑𝜎 (4.10b)

or:
𝑑 = 𝑎𝑠

𝑎 − 𝑠𝜎 , (4.10c)

where in estuaries with a pronounced funnel shape 𝜎 approaches unity. Equation
(4.10) is an additional equation to the salt balance, which in terms of the length
scales reads 𝑠 = 𝐴𝐷/|𝑄|.

As a result, we have two differential equations with two unknowns: 𝑆(𝑥) and
𝐷(𝑥). Adding two boundary conditions at a given point 𝑆ኺ and 𝐷ኺ would solve the
system. The first boundary condition is relatively simple to measure. Then the
only unknown parameter left is the value for the dispersion at the boundary. If
observations of salinity distributions are available, then the value of 𝐷ኺ is obtained
by calibration.

What the maximum power equation has contributed is that it provides an addi-
tional equation. In the past, a solution could only be found if an empirical equation
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was added describing 𝐷(𝑥), containing an additional calibration parameter. In the
approach by Savenije [2005] this was the empirical Van der Burgh equation con-
taining the constant Van der Burgh coefficient 𝐾. However, with the new equation
(4.10), which in fact represents a spatially varying Van der Burgh coefficient, this
additional calibration parameter is no longer required. So this thermodynamic ap-
proach replaces the empirical equation with a new physically based equation and
removes a calibration parameter, leaving only one unknown: the dispersion at a
well-chosen boundary condition.

4.4. Applications
Besides sixteen estuaries used in Chapter 3, seven additional estuaries from a less
reliable dataset have been added to the database for empirical validation. The
general geometry of all these estuaries uses equations (2.3)–(2.5) and is compiled
in Appendix A.6 and summarized in Appendix A.7. This compilation considers that
the estuaries converge to rivers. Comparing to Appendix A.1 using equations (2.1)–
(2.3), most of the estuaries have similar characteristics while in some of them, for
example, the Thames and the Limpopo, the location of the inflection point has been
changed by the revisiting of geometry. Salinity measurements of the first sixteen
estuaries are displayed in Appendix A.3 and A.4, and information of new estuaries
is presented in Appendix A.8.

Subsequently we have integrated equations (2.7) and (4.10) conjunctively by
using a simple explicit numerical scheme in a spreadsheet and confronted the solu-
tion with observations. The solutions are fitted to the data by selecting values for 𝑆
and 𝐷 at the boundary condition. Figures 4.2 shows applications of the solution to
selected observations in the Maputo and the Limpopo. In the Appendix A.9 more
applications are shown for estuaries in different parts of the world. It is clear that
the new equation appears to fit very well to the observations in these estuaries.

Salinity, dispersion, and estuarine Richardson number at the boundary condition
are summarized in Appendix A.10.

4.5. Critical remarks
By making use of the maximum power concept, it was possible to derive an addi-
tional equation to describe the mixing of salt and fresh water in estuaries. Together
with the salt balance equation, these two first-order and linear differential equa-
tions only require two boundary conditions (the salinity and the dispersion at a
well-chosen boundary) to be solved. However, there is a problem.

An analytical solution of equation (4.9) with the steady-state equation (2.7) is
possible (see below in Section 4.5.1). The solution shows that the longitudinal
salinity gradient is a constant and the salinity curve is a straight line. Hansen and
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Figure 4.2: Application of the numerical solution to observations for high water slack (red) and low water
slack (blue). The green line shows the tidal average condition. The symbols reflect the observations.

Rattray [1966], based on the data from Pritchard [1952], also claimed that the lon-
gitudinal salinity distribution in many coastal plain estuaries is almost linear with
the maximum gradient in the central part. Nevertheless, even though the analyt-
ical solution can simulate the salinity in the central part, it is not yet satisfactory.
The realistically looking profiles in the applications are an artifact of the numerical
solution: a predictor-corrector method for the dispersion coefficient was used.

Alternatively we considered maximum power over a segment. This leads to a
dome-shaped intrusion curve with 𝐾 = 1 (see below in Section 4.5.2).

Subsequently, we considered the maximum power over the entire intrusion
length. This leads to the trivial condition of steady state (see below in Section
4.5.3).

4.5.1. Analytical solution of the maximum power equation
Combining the steady-state equation (2.7) and (4.9), the salinity terms can be
eliminated as

𝐷ᖣ − 1𝑎𝐷 = −
|𝑄|
𝐴ኺ

e(፱ዅ፱Ꮃ)/ፚ . (4.11)

The solution of the first-order linear differential equation (4.11) using a boundary
condition that 𝐷 = 𝐷ኺ at 𝑥 = 𝑥ኻ is

𝐷 = e(፱ዅ፱Ꮃ)/ፚ [𝐷ኺ −
|𝑄|
𝐴ኺ
(𝑥 − 𝑥ኻ)] . (4.12)

Substituting equation (4.12) in the steady-state equation and integrating the
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result using the boundary condition that 𝑆 = 𝑆ኺ at 𝑥 = 𝑥ኻ,

𝑆 = 𝑆ኺ −
|𝑄|𝑆ኺ
𝐴ኺ𝐷ኺ

(𝑥 − 𝑥ኻ) . (4.13)

This analytical solution shows that the simulation of salinity is a straight line.
Hence, the solution in equation (4.8) is not the correct approach to equation (4.6).

4.5.2. Maximum power at fixed location
Another solution is considered assuming the power achieves its maximum with time
(d𝑃/d𝑡 = 0). Then the resulting 𝑆 and 𝐷 distributions are no longer time-dependent
and linked at any segment.

The solution of equation (4.7) then can be

d𝑆ᖣ
d𝐷 = 𝜕𝑆ᖣ

𝜕𝐷 + 𝜕𝑆
ᖣ

𝜕𝑆
d𝑆
d𝐷 = 0 . (4.14)

Substituting the steady-state equation yields

|𝑄|𝑆
𝐴𝐷ኼ −

|𝑄|
𝐴𝐷

d𝑆
d𝐷 = 0 . (4.15)

Hence, the relation between the salinity and dispersion using the boundary con-
dition that at 𝑆 = 𝑆ኺ, 𝐷 = 𝐷ኺ is

𝑆
𝑆ኺ
= 𝐷
𝐷ኺ

. (4.16)

Combining the steady-state equation, the salinity along the estuary can be de-
rived using the boundary condition that at 𝑥 = 𝑥ኻ, 𝑆 = 𝑆ኺ:

𝑆 = 𝑆ኺ [1 −
𝑎|𝑄|
𝐴ኺ𝐷ኺ

(e(፱ዅ፱Ꮃ)/ፚ − 1)] . (4.17)

If we compare equations (4.16) and (4.17) to the traditional equations (2.13)
and (2.16), the Van der Burgh coefficient 𝐾 equals 1.

Correspondingly, the following equations are solved:

𝑆ᖣ = −|𝑄|𝑆ኺ𝐴ኺ𝐷ኺ
e(፱ዅ፱Ꮃ)/ፚ , (4.18)

𝑆ᖥ = − |𝑄|𝑆ኺ𝑎𝐴ኺ𝐷ኺ
e(፱ዅ፱Ꮃ)/ፚ . (4.19)

Both of these two equations have negative values for 𝑆ᖣ and 𝑆ᖥ along the estuary,
suggesting that the salinity distribution is a dome shape curve. This is certainly not
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the common case in natural estuaries. It reveals that the maximum power concept
is not used correctly assuming it is in thermodynamic equilibrium along the estuary.

4.5.3. Maximum power at a certain moment in time
Instead of considering that the thermodynamic equilibrium is achieved at fixed lo-
cations along the estuary, the solution may be that the power of the entile estuary
is maximized at a certain moment. Then the maximization of the power along the
estuary is considered as

𝜕
𝜕𝑡 ∫

፱

ኺ
𝑃 d𝑥 = 0 . (4.20)

Under this circumstance,

𝜕
𝜕𝑡 ∫

፱

ኺ
𝑆ᖣ d𝑥 = 𝜕𝑆

𝜕𝑡 = 0 , (4.21)

which correspondence to the steady-state situation.
In conclusion, we have to admit that the thermodynamic approach of this chap-

ter has a flaw. An estuary is an open system. Therefore the thermodynamics of
saline and fresh water mixing in estuaries can not be solved easily assuming it as
an isolated system. In the next chapter, the maximum power concept is explored
in open estuarine systems.
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Maximum power concept
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systems

Three passions, simple but overwhelmingly strong,
have governed my life: the longing for love,

the search for knowledge,
and unbearable pity for the suffering of mankind.

Bertrand Russell

This chapter is based on:

Zhang, Z. and Savenije, H. H. G.: Maximum power concept towards saline and fresh water mixing in
open estuarine systems, Earth Syst. Dynam., (under review).
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5.1. Background
In Chapter 4, the maximum power concept was used trying to solve the saline
and fresh water mixing as in thermodynamic equilibrium systems. The problem is
that the freshwater discharge provides continuous potential energy into the estuary
hence the system is not isolated.

Kleidon [2016] presented an example of the maximum power limit for non-
thermal energy conversions. In the example, fluid is kept in motion by an acceler-
ating force which provides kinetic energy to the system. The velocity of the fluid
is slowed down by friction and the remainder is converted into another form of
energy. If the velocity is too large, the friction is large and energy dissipation dom-
inates, then the power of the force to generate work is limited. In contrast, if the
velocity is too small, the power is not enough to generate work. Hence, there is
an optimum value for the product of the force and velocity to produce maximum
useful energy.

Estuaries are comparable to this non-thermal system. This chapter tries to solve
the dynamics of an estuary using a similar concept considering it as an open system.

5.2. Maximum power concept for an open estuary
system

In an estuary, the cross-sectional average hydrostatic forces have equal values
along the estuary axis. Over a segment, the forces are opposed but working on
different lines of action due to the density gradient in upstream and downstream
directions. As a result, they exert an angular moment 𝑀acc that drives the gravita-
tional circulation, performing as accelerating energy. 𝑁fric is the energy dissipation
due to friction. The remainder moment 𝑀ex drives the dispersive movement and
performs work (Figure 5.1). Hence, the balance of work in steady state over a
segment is

𝑀acc −𝑀ex − 𝑁fric = 0 . (5.1)

Energy dissipation is expressed as

𝑁fric = 𝐹fric𝑙፦ , (5.2)

with 𝐹fric [MLTዅ2] being the friction that causes energy dissipation and 𝑙፦ [L] the
dispersive distance scale where energy dissipates due to mixing.

Friction is expressed as
𝐹fric = 𝜏𝑂 , (5.3)

where 𝜏 [MLዅ1Tዅ2] is the shear stress and 𝑂 [L2] is the contact area. Since the
process of mixing is essentially to move the saline water up in the vertical column
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Figure 5.1: (a) Systematic salt transport in estuaries, with the seaside on the left and the riverside on
the right. The water level (in blue) has a slope as a result of the salinity distributions (in red). The
hydrostatic forces on both sides have different working lines, which triggers the gravitational circulation,
providing an accelerating moment ፌacc to the system. (b) A box-model displaying the moment balance
in an open estuarine system.

(vertical salinity gradient essentially enhances gravitational circulation), the contact
area may be dominated by the depth. Following that reasoning, 𝑂 is assumed equal
to 2𝐵ℎ, one 𝐵ℎ for the upward lift of saline water and one 𝐵ℎ for the downward push
of relatively fresh water. The dispersive distance then equals the depth (𝑙፦ = ℎ).

Because the velocity of the dispersive gravitational circulation is small, the mix-
ing flow is assumed to be laminar. The shear stress is typically considered as a
function of flow velocity (𝑣): 𝜏 = 𝜌𝑞𝑣, with 𝑞 [LTዅ1] being a laminar resistance,
assumed to be proportional to the tidal velocity amplitude. The flow velocity rep-
resents the residual flow performing saline and fresh water exchange. Then, the
expression for the velocity results in

𝑣 = 𝑀acc −𝑀ex

2𝜌𝑞𝐵ℎኼ . (5.4)

Figure 5.2 illustrates how the mixing moment (energy) and residual flow velocity
vary. If the working moment is too large and causes fast mixing flow, the energy
dissipation would increase and diminish the flow velocity. If it is too small, the
mixing would also be sub-optional. In analogy with Kleidon [2016], the product of
the working moment and velocity has a well-defined maximum.

Power is defined by the product of a force and its velocity. The power of torque
(angular moment) is defined as the product of the moment and its angular velocity.
Hence, the power is defined as

𝑃 = 𝑀ex𝜔 = 𝑀ex
𝑣
ℎ/22π =

2π
𝜌𝑞𝐵ℎኽ (𝑀acc −𝑀ex)𝑀ex , (5.5)
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where 𝜔 [Tዅ1] is the angular velocity, or the rotational speed. The maximum power
is obtained by: 𝜕𝑃/𝜕𝑀ex = 0, hence, the optimum values of the execution moment
𝑀ex,opt and the velocity 𝑣opt are

𝑀ex,opt =
1
2𝑀acc (5.6)

and
𝑣opt =

𝑀acc

4𝜌𝑞𝐵ℎኼ . (5.7)

Here, the accelerating force that produces the moment is the hydrostatic force
obtained by integrating the hydraulic pressure over the depth:

𝐹acc =
1
2𝜌ኺ𝑔ℎ

ኼ𝐵 . (5.8)

The accelerating moment has an arm Δℎ/3 [Savenije, 2005], subsequently the
accelerating moment can be described as

𝑀acc = 𝐹acc
1
3
dℎ
d𝑥𝐸 = −

1
2𝜌ኺ𝑔ℎ

ኼ𝐵13
ℎ
2𝑐ፒ𝑆

ᖣ = − 1
12𝜌ኺ𝑔ℎ

ኽ𝐵𝑐ፒ𝑆ᖣ𝐸 . (5.9)

Accordingly, in steady state (|𝑄|𝑆 + 𝐴𝐷𝑆ᖣ = 0), the optimum velocity is

𝑣opt ∝
𝑐ፒ𝑔ℎ𝑇
48

|𝑄|𝑆
𝐴𝐷 . (5.10)

Assuming that the steady state over a tidal cycle is driven mainly by the acceler-
ating moment especially in the upstream part where tidal effects are small (𝐷 ≈ 𝐷፠)
and this gravitational circulation is proportional to the dispersive residual velocity
(𝐷፠ ∝ 𝑣𝐸),

𝐷፠ ∝ (
𝑐ፒ𝑔
48

𝑆|𝑄|𝐸𝑇
𝐵 )

ኻ/ኼ
. (5.11)

5.3. Analytical solution for the dispersion equation
Equations derived from the maximum power concept are obtained along the estuary
axis, hence they can be used at any point along the estuary. Then, equation (5.11)
becomes

𝐷፠(𝑥) = 𝐶ኽ(
𝑆|𝑄|𝐸𝑇
𝐵 )

ኻ/ኼ
, (5.12)

where 𝐶ኽ [psuዅ1LTዅ2] is a factor and all local variables are a function of 𝑥.
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Figure 5.2: Sketch of the sensitivity of the exchange flow velocity ፯ to the working moment ፌex.

In analogy with the solution in Section 3.3, this gives

𝐷፠(𝑥) = 𝐷፠ኺ(
𝑆
𝑆ኺ
)
ኻ/ኼ
𝑒጖Ꮄ(፱ዅ፱Ꮃ) (5.13)

with

Ωኼ =
𝛿ፇ
2 + 1

2𝑏 . (5.14)

Differentiating 𝐷፠ with respect to 𝑥 and using the steady state equation results
in

𝐷ᖣ፠(𝑥) =
𝐷፠
2𝑆

d𝑆
d𝑥 + Ωኼ𝐷፠ = Ωኼ𝐷፠ −

1
2
|𝑄|
𝐴 . (5.15)

This is comparable to Van der Burgh’s equation using dispersion due to grav-
itational circulation (𝐷ᖣ፠ = −𝐾|𝑄|/𝐴). In alluvial estuaries, 1/𝑏 is relatively large
and Ωኼ is larger than zero. In this case, 𝐾 is smaller than half. The stronger the
convergence, the smaller the coefficient 𝐾. If tide damps heavily in a prismatic
estuary (with large 𝑏 value), Ωኼ becomes negative and 𝐾 can be larger than half.
Overall, the coefficient 𝐾 is linked to the balance between the convergence of the
geometry and tidal damping. If Ωኼ happens to equal zero, 𝐾 equals half. The Van
der Burgh coefficient which considers density-driven as well as tide-driven mixing
proceses should be slightly smaller than the 𝐾 discussed here.

Accordingly, the solution of the linear differential equation (5.15) is

𝐷፠
𝐷፠ኺ

= 𝑒጖Ꮄ(፱ዅ፱Ꮃ) − |𝑄|𝜁ኼ
2𝐴ኺ𝐷፠ኺ

[𝑒(፱ዅ፱Ꮃ)/ፚ − 𝑒጖Ꮄ(፱ዅ፱Ꮃ)] , (5.16)
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with 𝜁ኼ = 𝑎/(1 − Ωኼ𝑎).
At the salinity intrusion limit (𝑥 = 𝐿), 𝐷፠ = 0, resulting in

𝐿 = 𝜁ኼ ln(1 +
2𝐴ኺ𝐷፠ኺ
|𝑄|𝜁ኼ

) + 𝑥ኻ . (5.17)

The solution for longitudinal salinity distribution yields

𝑆
𝑆ኺ
= {1 − |𝑄|𝜁ኼ

2𝐴ኺ𝐷፠ኺ
[𝑒(፱ዅ፱Ꮃ)/᎓Ꮄ − 1]}

ኼ
. (5.18)

These results are similar to the solutions in Section 3.3. Furthermore, the solu-
tion is the same as Kuijper and Van Rijn [2011] if 𝑎 equals 𝑏 in their cases. With
these analytical equations, the dispersion and salinity can be obtained, using cali-
brated boundary conditions (𝐷ኺ and 𝑆ኺ).

5.4. Empirical validation and discussion
Appendix A.12 demonstrates how the new equation (5.12) based on the maxi-
mum power concept works in twenty-three estuaries including the less reliable
database (in Appendix A.8 and A.11). The Van der Burgh (VDB) method (equations
(2.14)–(2.16)) and curve fitting based on the observations are used for compar-
ison. Density-driven gravitational circulation is one part of the dispersive actions
in estuaries. Hence the total dispersive process (𝐷VDB) must be larger than the
dispersion from the maximum power method (𝐷MP) (Appendix A.12). By fitting
the real observations, total tidal average dispersion (𝐷FT) is calculated based on
the steady state equation (2.7), and dispersion by gravitational circulation (𝐷FG) is
evaluated by the new model (equation (5.12) using tailor-made 𝐶ኽ). Information is
summarized in Appendix A.13.

It shows that the simulation curves by the new MP method are in recession
shape, increasing seaward from the inflection point owing to the widening. The
salinity observations can be simulated well landward from the inflection point in
most estuaries. In the Bernam, the Pangani, the Rembau Linggi, and the Incomati
estuaries, the part in the center, where 𝐷MP closely approach 𝐷VDB, fits well. In
these estuaries, the calibration is slightly lower than the measurement near the in-
trusion limit. In general, the dispersion from the maximum power method declines
upstream the inflection point approximately with the total dispersion from the em-
pirical Van der Burgh method, which means that the gravitational circulation is the
predominant mixing mechanism in the landward part of these estuaries.

However, in the Thames (#8), the Delaware (#20), the Scheldt (#21), and the
Pungwe (#22), the new approach seems not to work, both from the salinity and
dispersion profiles. Figure 5.3 shows the relation between the geometry and the
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Figure 5.3: Comparison of the geometry to the Van der Burgh coefficient. The red color represents
estuaries from a less reliable dataset.

𝐾 values. It can be seen that estuaries with poor performances by MP approach
have lower 𝑏ኻ/𝐵ኺ and 𝐾 values. However, not all estuaries with strong convergent
geometry perform poor, revealing that the geometry is not the only effect. Accord-
ing to the expression of Ωኼ, tidal damping can play a role. In wide estuaries with
strong convergence, the role of gravitational circulation is insufficient to describe
the mixing. Tidal mixing processes such as lateral circulation, tidal pumping, and
tidal shear are dominant. The Scheldt with preferential ebb and flood channels is
a case in point. Besides, the Corantijn (#9) is considered uncertain because it has
a low 𝑏ኻ/𝐵ኺ value but contains few observations.

Appendix A.13 also shows that simulated salinity and dispersion by curve fitting
(which follows the “truth”) and the Van der Burgh method are basically similar
except the near mouth part which is due to few salinity observtions. It supports that
the Van der Burgh model is a useful tool to study the salinity intrusion in estuaries.
Besides, reasons for outliers can be referred to the discussion in Chapter 3.

Overall, the maximum power approach in open systems is a useful tool to un-
derstand the mixing processes in most estuaries. In the upstream part where the
effect of tide is small, gravitational circulation plays the main role. Meanwhile, ob-
servations upstream are more important for salinity intrusion research and more
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relevant for water users. Where the salinity is high, it is less relevant since the
water is already too saline to use.

This chapter provides an approach to define the dispersion coefficient which
is proportional to the product of the velocity of the gravitational circulation and
tidal excursion length. The latter parameter comes from the fact that water par-
ticles travel within this distance over a tidal cycle. The dispersive velocity actually
represents the ability of dispersion due to gravitational circulation. Based on the
maximum power method (equation (5.12)), the velocity can be described as

𝑣 ∝ (𝑐ፒ𝑆𝑔ℎ48
|𝑄|𝑇
𝐴𝐸 )

ኻ/ኼ
. (5.19)

Here, the dispersive flow due to gravitational circulation strengthens with larger
freshwater discharge and weakens with stronger tide.

Using the calibrated dispersion coefficient at the boundary, 𝐶ኽ can be calcu-
lated. Except in estuaries with poor performance, 𝐶ኽ values range from 3.47×10ዅኽ
to 9.95×10ዅኽ with an average 6.76×10ዅኽ (the relative standard derivation equals
0.2634). Finally, the R2 of the regression between the predicted and calibrated val-
ues of the dispersion at the boundary equals 0.86. Considering all the uncertainties
in the measurement, 6.76 × 10ዅኽ is a promising approximation to predict 𝐷፠ኺ.

5.5. Concluding remarks
An estuary is an open system which has a maximum power limit when the accel-
erating source is stable. This chapter has described a moment balance approach
to non-thermal open systems, yielding a new equation (5.12) for the dispersion
coefficient due to the density-driven gravitational circulation. It shows that the dis-
persive action is closely related to the salinity, the freshwater discharge, the tide,
and the estuarine width. This equation has been used to solve the tidal average
salinity and dispersion distributions together with the steady-state equation. The
maximum power model has then been validated with fifty salinity observations in
twenty-three estuaries worldwide and compared with the traditional Van der Burgh
method. Generally, the new equation is a helpful tool to analyse the estuaries
providing an alternative solution for the empirical Van der Burgh method where
gravitational circulation is the main mixing mechanism. A predictive equation for
dispersion at the boundary has been provided. More reliable observations in other
estuaries are suggested to validate this maximum power method.

The maximum power method offers a connection between Van der Burgh’s co-
efficient and the geometry, providing a physical basis for this empirical coefficient.

The fact that the relationship derived from the maximization works well in a
wide range of estuaries is an indication that natural systems evolve towards max-
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imum power, much like a machine that approaches the Carnot limit, which is the
maximum efficiency that any machine can achieve that transforms free energy into
work (whether it transforms potential energy from water into hydropower or chem-
ical energy from fuel into motion by a combustion engine).
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The influence of tidal

strength on salinity intrusion

Stay hungry, stay foolish.

Stewart Brand
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6.1. Background
Vertical stratification enhances gravitational circulation. Hence in slightly stratified
estuaries tide decreases dispersion dominated by the gravitational circulation. On
the other hand, tide triggers the tide-driven mixing mechanism. In natural estu-
aries, different mixing mechanisms occur together. The question then is: does
tidal strength increase or decrease salt intrusion? This makes the influence of tidal
strength on salinity distribution an interesting topic for study.

The salinity range between high water slack and low water slack is directly con-
nected to the tidal excursion length hence the tidal strength. In this chapter, salinity
observations in two different estuaries, the Scheldt estuary and the Rotterdam Wa-
terway, are used to study the relation between the tide (represented by salinity
range) and average salinity, under simple one-dimension consideration and over a
tidal cycle, to see the effect of the tidal strength on salinity intrusion in estuaries.

6.2. Case study
6.2.1. Case description
Two different estuaries have been researched. The Scheldt estuary is a signifi-
cant shipping route to the Port of Antwerp and has a great ecological value. It
exhibits a well-developed funnel-shaped geometry, with exponentially decreasing
cross-sectional area from the estuary mouth at Vlissingen to the head near Gent,
while the width-averaged depth is almost constant up to Antwerp. The estuary is
tide-dominated and the yearly-averaged discharge is about 120 m3/s [Winterwerp
et al., 2013].

The New Waterway is a man-made channel constructed to give the harbors
in Rotterdam a better connection to the North Sea. Since there are no tidal flats
between the New Waterway and the New Maas, they can be considered as the
Rotterdam Waterway with almost rectangular cross section. Sea water enters the
Rhine-Meuse estuary via the waterway, meanwhile, by operating the Haringvliet
sluice gates, the waterway can discharge a rather constant value of about 1500
m3/s for as long as possible [Rijkswaterstaat, 2011; Verlaan and Spanhoff, 2000].

6.2.2. Field study
The field measurements in the Scheldt estuary were made by Rijkswaterstaat of
the Netherlands (NL) and Hydraulic Information Centre of Belgium (BE). Salinity
and water level observations were carried out every 10 min at different locations
along the estuary. The measurements in the Rotterdam Waterway were taken by
Rijkswaterstaat, every hour for salinity and every 10 min for water level. Figure
6.1 gives the locations of the measuring sites. Salinity was measured at different
depths, and detailed information is shown in Table 6.1. Fixed sensors are located
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Table 6.1: Information about the salinity observation sites. The first five sites belong to the Scheldt
estuary and the last three belong to the Rotterdam Waterway. Depth shows the vertical location of the
sensors.

Site Abbreviation Depth (cm) Description Country

(1) Overloop
van Hansweert OVE Top: -75 Floating NLBottom: -800 Fixed

(2) Baalhoek BAA Top: -75 Floating NLBottom: -550 Fixed

(3) Boei-84 B84 Top: 350
About the
riverbed

BEBottom: 100

(4) Oosterweel OOS Top: 400 BEBottom: 50
(5) Driegoten DRI -300 Floating BE

(6) Hoek
van Holland HOE

Top: -250

Fixed

NLMiddle: -450
Bottom: -900

(7) Lekhaven LEK
Top: -250

NLMiddle: -500
Bottom: -700

(8) Brienenoordbrug BRI Top: -250 NLBottom: -650

below the water depth at mean sea level; floating sensors are settled below water
level; and some sensors used in Belgium are fixed at a certain depth above the
riverbed. There is only one sensor at site (5), and other sites without available data
were not considered.

The freshwater discharge in the Scheldt estuary is taken as a combination of
seven drain points (Eppegem, Aarshot, Hulshout, Grobbendonk, Melle, Dender-
monde, and Bath) from different branches. The discharge in the Rotterdam Wa-
terway is measured as the Rhine run-off, at Lobith near the Dutch-German border.
During the dry seasons, most of the Rhine water flows through the waterway [Ver-
laan and Spanhoff, 2000; Stigter and Siemons, 1967].

Two study periods were chosen: 27-10-2011 to 26-11-2011 (begins with the
1st day of a lunar month) for the Scheldt estuary and 13-07-2003 to 23-08-2003
(begins with the 14th day of a lunar month) for the Rotterdam Waterway, due to
the relatively constant freshwater discharge during these periods. Both the Scheldt
estuary and the Rotterdam Waterway have semi-diurnal tide, hence, for simpler
analysis, daily average values are used instead of tidal average.
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6.3. Results and discussion
6.3.1. The Scheldt estuary
The freshwater discharge in the Scheldt estuary is shown in Figure 6.2. The values
were relatively stable from one month before (dot line), diminishing the effect of
discharge on salinity intrusion in the estuary. It is during the dry season and the
discharge varies between 5–55 m3/s.

Figure 6.3 shows statistics at five sites, containing several parts: (a) water level,
(b) salinity and salinity range, (c/e) the relation between salinity and water level,
and (d/f) the relation between salinity and salinity range. The first part shows
the rise and fall of water level temporally, and the strength of the tide (spring
or neap tide) is quite clear. Daily average water level was also shown, keeping
relatively stable during the study period. In addition, the water level increases
slightly upstream, showing the amplification of the Scheldt estuary (till Driegoten).
From the (b) part, daily average salinity rises with time to some extent at all sites,
which may be caused by low freshwater discharge for a long time and continuous
sea water intrusion. The variation of salinity range basically fluctuates with the lunar
cycle. Also, salinity ranges increase landward. Comparing the relations between
data on top (c and d parts) and at bottom (e and f parts), the patterns are almost
the same along the estuary.

The spring and neap tides are separated according to the lunar calendar. It is
shown that the average water level is similar during spring and neap tides, only
the former type causes a larger range. The average water level is slightly related
to the salinity at all sites (c and e parts), which is because of a weak advection
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5 0

1 0 0

1 5 0
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Figure 6.2: Freshwater discharge in the Scheldt estuary.
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effect: more sea water entering the estuary leads to larger salinity concentration.
For ideal waves, the average water level tends to be constant within a lunar cycle,
and the variations here are due to outside influences. The wind set-up, for instance,
displays sudden increase of water level on Nov 5, 2011 (Figure 4.3.1a). From (d)
and (f) parts, there are slight positive relations between salinity range and average
salinity, and the slopes are almost stationary at the first four sites. The relation at
site (5) is because of the tail effect. The salinity range between LWS and HWS is
reduced near the intrusion limit where the salinity values are low.

The vertical salinity gradient shows how well the saline and fresh water mix in
estuaries. Figure 6.4 displays that the salinity gradients are small (less than 0.1
psu/m) except at site (3) which may be due to the fact that it is connected to a
buoy, showing that the Scheldt estuary is well-mixed.

The Scheldt estuary is well-mixed and the stratification number is minor (𝑁ፑ
in the order 0.001 near the mouth). Gravitational circulation mechanism is much
smaller than the tide-driven mechanism. The effect of tidal strength performs in
different ways along the estuary which leads to a slightly positive relation between
the salinity range and average salinity. Near the wide mouth, at the first two sites,
the tide plays a role in the residual circulation in preferential ebb and flood chan-
nels, which increases the dispersive action. In the upstream, at sites (3) and (4),
the residual circulation no longer exists. The effect of tide on other tide-driven
mechanisms, such as tidal trapping and hydraulic shear stress, which are normally
considered ignorable when they are not the dominant mechanism for dispersion,
increses due to the tidal amplification.

6.3.2. The Rotterdam Waterway
The same analysis was done in the Rotterdam Waterway. According to Figure 6.5,
the Rhine run-off at Lobith is relatively stable in July and August, 2003. The simu-
lated discharge at Maassluis is presented for reference.

Figure 6.6 demonstrates similar results as in Figure 6.3, with three observation
depths at two sites. The results are very similar to the Scheldt estuary, except the
following three aspects. Firstly, the difference between the spring and neap tides
are small during the study period. Besides, the relation between the average water
level and salinity is stronger than the Scheldt estuary, which leads to a larger range
of daily average salinity by the advection process. Last but not least, the trends
between the salinity range and average salinity show negative relation at site (6).

From Figure 6.7, the vertical salinity gradient is relatively large at site (6). The
black line, varying synchronized with the lunar cycle, demonstrates that the Rot-
terdam Waterway is strongly stratified and the stratification depends on the tidal
strength: the statification is weaker during spring tide and stronger during neap
tide. The line at site (7), however, shows different variation.
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Near the mouth at site (6), the Rotterdam Waterway is stratified with 𝑁ፑ in the
order 0.95. Gravitational circulation is strongly enhanced and is the predominant
mixing mechanism. Tide-driven mixing mechanisms are not notable in the prismatic
estuary. The tide decreases the degree of stratification hence declines the disper-
sive action. Pu et al. [2015] also reported that gravitational circulation is weaker
during spring tide in the Yangtze River during wet and dry seasons. On the other
hand, the effect of freshwater discharge seems more essential at site (7) where
it is less stratified. The vertical salinity gradient varies to some extent following
the discharge, which also explains why the salinity varies largely with small tidal
variation there.

The negative relation at site (6) provides a view towards the Van der Burgh
coefficient. According to equation (3.21), the effect of tidal strength on the dis-
persion coefficient is: 𝐷 ∝ 𝜐ኼዅኽፊ. Previous research showed that the dispersion is
proportional to salinity to the power 𝐾 (equation (2.13)). Hence, the effect of tide
is linked directly to the salinity distribution—eliminating the dispersion coefficient—
𝑆 ∝ 𝜐(ኼዅኽፊ)/ፊ. Only when 𝐾 is larger than 2/3, the stronger the tide, the smaller
the salinity. The 𝐾 discribing the density-driven mechanism is bound to Van der
Burgh’s coefficient. It suggests that the coefficient is large when the estuary is par-
itally mixed where gravitational circulation is enhanced. Unfortunately, it is not easy
to conclude whether 𝐾 is constant or not along the estuary since the stratification
and the mixing mechanisms vary.

6.3.3. Delft3D data of the Scheldt estuary

Delft3D simulation of the Scheldt estuary is studied as another approach to study
the tidal effect. Two periods were chosen to show the cross-sectional average
salinity: 14-01-2013 (spring tide) to 21-01-2013 (neap tide) and 16-06-2013 (neap
tide) to 26-06-2013 (spring tide). Simulated freshwater discharges are 183, 144,
106, and 183 psu/m, and the tide excursion lengths are 13000, 7500, 8500, and
13000 m on the four days, respectively.

Salinities at high water slack, low water slack, and their average on spring and
neap tides are shown in Figure 6.8. It can be seen that the saltwater intrudes
further at HWS and shorter at LWS on spring tide than neap tide. For the average
(in green), the salinity is slightly larger locally on spring tide than neap tide in
January, 2013. In June, the difference between these two average values does
almost not exist. This may be caused by an increase in the tidal strength and a
decline in the freshwater discharge compared to that in January. It reveals that
the saline and fresh water mixing in estuaries is complex under the interaction of
different effects from downstream and upstream.
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6.4. Concluding marks
In this Chapter we use actual observations and the Delft3D model, as a virtual lab-
oratory, to study which velocity and length scale should be used in the empirical
analysis to derive predictive equations. The intention was to test whether salt in-
trusion is positively or negatively correlated with tidal strength and under which
conditions. This chapter is driven by data, using two different estuaries: the con-
vergent Scheldt estuary and the prismatic Rotterdam Waterway. The influence of
tidal strength on salinity intrusion depends on the mixing mechanisms in estuar-
ies. When the estuary is partially mixed and the density-driven mixing mechanism
is dominant, the stronger spring tide declines the gravitational circulation and the
salinity intrudes less (for instance, at the mouth of the prismatic Rotterdam Wa-
terway). When the estuary is well-mixed, the tidal strength is positively related
to the dispersive actions if the tide-driven mechanisms play an important role (for
instance, in the strongly convergent Scheldt estuary. Both the observation analysis
and the numerical model reveal that the salt water intrudes slightly further in the
well-mixed Scheldt estuary with stronger tide.

The negative relation between the tide and salinity supports that the Van der
Burgh coefficient has a large value when the estuary is more stratified.

Comparing the simulation in Figure 6.8 with field observations in Appendix A.9,
it seems that Delft3D can not represent salinity well in the Scheldt estuary. The
salinity observation displays a dome shape in the estuary while in the model the
curve is of the recession type. This may be an artefact of the schematization in
Delft3D. Maybe the large-scale residual circulation is not well included in Delft3D.

However, the saline and fresh water mixing is a complex interaction between
the sea and river, and the effect of freshwater discharge is also significant. More
observations are always encouraged.
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Figure 6.3: The statistics about the water level, salinity, and salinity range in the Scheldt estuary at
sites: (1) OVE, (2) BAA, (3) B84, (4) OOS, and (5) DRI. Thin lines display the observations; thick lines
show the daily average values; dash lines show the salinity range (right-Y); squares show the relation
between the daily average salinity and water level (c and e parts); rounds show the relation between the
average salinity and salinity range (d and f parts); colors follow the legends at different measurement
depths and tides.
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Figure 6.4: Vertical salinity gradient at different sites in the Scheldt estuary.
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Figure 6.5: Freshwater discharge in the Rotterdam Waterway.
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Figure 6.6: The same as Figure 6.3, except for in the Rotterdam Waterway at sites: (6) HOE, (7) LEK,
and (8) BRI.
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Figure 6.7: Vertical salinity gradient at different sites in the Rotterdam Waterway.

Figure 6.8: Simulated salinity in the Scheldt estuary by Delft3D in two study periods: (1) Jan 2013 and
(2) Jun 2013. Symbols show values in neap tide while lines show values in spring tide at LWS (in blue),
HWS (in red), and TA (in green).
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7.1. Predictive equations with a solid physical basis
7.1.1. The empirical Van der Burgh coefficient
In Chapter 3, the good performance of the predictive equation (3.12) suggests that
the Van der Burgh coefficient decreases when the tide strengthens. In addition, the
analytical solutions for dispersion due to gravitaional circulation in Chapters 3 and
5 demonstrate that Van der Burgh’s coefficient is related to tidal damping and ge-
ometric convergence. Discussion in Chapter 6 also reveals that 𝐾 can have a large
value in the more stratified Rotterdam Waterway. Furthermore, the calibration of
the Van der Burgh method based on the maximum power method reveals that Van
der Burgh’s coefficient is remarkably related to the geometry (Figure 5.3). Based
on the discussion above, 𝐾 is closely connected to the geometry and the compe-
tition between tide and freshwater discharge. The simple Canter-Cremers estuary
number is a promising parameter to show the ratio between the amount of fresh
and saline water entering the estuary during a tidal period [Savenije, 2005]. The
combination of width and its convergence length is used to present the geometry.
Hence, the Solver results in the following predictive equation:

𝐾predicted = 0.20 (
𝑏ኻ
𝐵ኺ
)
ኺ.ኻ኿

( |𝑄|𝑇𝐴ኺ𝐸ኺ
)
ኺ.ኺኼኽ

; 𝐾 ∈ (0, 1) . (7.1)

The correlation between the predictive value by equation (7.1) and calibrated
value is shown in Figure 7.1, with R2 = 0.86. The predictive equation works well
in most estuaries. Outliers in the lower left corner (wide and convergent estuaries)
imply that the value is overestimated when tide-driven dispersion plays a significant
role. Considering all the uncertainties in the data, the physics-based equation (7.1)
is a capable predictor for the empirical Van der Burgh coefficient.

When the freshwater discharge is not well-measured, the 𝐾 value can be esti-
mated based on the geometry only. Regression of the values in Figure 5.3 yields

𝐾predicted = 0.18 (
𝑏ኻ
𝐵ኺ
)
ኺ.ኻ኿

; 𝐾 ∈ (0, 1) , (7.2)

with R2 = 0.85. It reveals that even though the 𝐾 may be time-dependent according
to the stratification condition, the effect of the geometry is predominant. Appendix
A.13 shows that the 𝐾 values vary in a small range in a certain estuary.

The average value of both calibrated and predicted 𝐾 is 0.38. This can be a first
estimation of the Van der Burgh coefficient.

It is notable that the empirical coefficient 𝐾 is a result of complex interaction
between the freshwater discharge, the tide, and the geometry. This kind of predic-
tive equation helps in the practical application of the one-dimensional salt intrusion
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Figure 7.1: Comparison of calibrated and predicted ፊ values. The red color represents estuaries from a
less reliable dataset which have been used for validation.

model based on the Van der Burgh method.

7.1.2. The dispersion coefficient at the boundary
To make the Van der Burgh method fully predictive, an equation for the disper-
sion coefficient at the boundary is required. According to the nice performance by
the maximum power concept, gravitational circulation is significant in most estu-
aries. Hence, the estuarine Richardson number describing the stratification which
determines the strength of gravitational circulation is a significant parameter for
dispersion. Regression for 𝐷ኺ values by the pure Van der Burgh method gives:

𝐷predicted = 0.093𝑁ፑኺ.኿ኺ𝜐ኺ𝐸ኺ , (7.3)

with R2 = 0.75. The result is comparable to previous predictive equations (2.18),
(2.21), and (2.22), but with a lower value for the power of the estuarine Richardson
number.

The relation between the predicted and calibrated values is shown in Figure 7.2.
The outliers, which are all wide, reveal that the stratification number is not enough
for describing the dispersion coefficient. Subsequently, the geometry is included to
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Figure 7.2: Comparison of calibrated and predicted ፃᎲ values by equation (7.3).

represent the effect of tide. According to Section 2.6, the dispersion results in:

𝐷predicted
𝜐ኺ𝐸ኺ

= 0.095𝑁ፑኺ.኿ኼ + 0.16 (
𝐵ኺ
𝑏ኻ
)
ኼ.ኼ኿

, (7.4)

with R2 = 0.79. Figure 7.3 presenting how the predictive equation performs shows
that almost all the data falls within a factor of 2, but equation (7.4) is obviously not
suitable for the Delaware and the Scheldt estuaries, which have very large 𝐵ኺ/𝑏ኻ
values (0.90 and 0.58, respectively). More precise equations could be developed,
but for estuaries without extremely convergent geometry, the predictive equation is
promising. The power of 𝑁ፑ increased after adding the tide term, supporting that 𝐾
is overestimated if we consider only the density-driven mechanism. Consequently,
the pure Van der Burgh method is predictable with a solid theoretical basis.

7.2. Conclusions
The tidal average salinity profile in an estuary follows the mass balance equation.
Assuming that the estuary achieves the steady state over a tidal period, there are
two unknown parameters (𝑆(𝑥) and 𝐷(𝑥)) in one equation, if the geometry, fresh-
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Figure 7.3: Comparison of calibrated and predicted ፃᎲ values by equation (7.4).

water discharge, and tide condition are provided. Hence, an addition relation should
be found to solve the salinity distribution along the estuary, which is the main core
of saltwater intrusion research.

Van der Burgh [1972] found an expression for the dispersion coefficient (equa-
tion (1.1)). This purely empirical method was developed by Savenije [1986, 1989,
1993a] and Gisen [2015]. This method combines all mixing mechanisms into one
empirical coefficient—the Van der Burgh coefficient 𝐾, which can be obtained by
calibration on salinity observations. Chapter 5 has validated this Van der Burgh
method based on the fact that the total dispersion is larger than the dispersion
only due to gravitational circulation (𝐷፠). The physical background of the empirical
coeffient has then been developed based on the comparison with other theoretical
methods. Finally, the Van der Burgh method becomes more powerful with predic-
tive equations for the empirical coefficient (7.1) and the dispersion coefficient at
the boundary (7.4).

A box-model has been built considering large-scale residual circulation in devel-
oped preferential ebb and flood channels, which resulted in a new equation (3.20).
Combining it with the steady state equation, 𝑆(𝑥) and 𝐷(𝑥) have been solved. This
model considers density- and tide-driven mixing mechanisms in seperate parts. Ap-
plying 𝐶ኻ = 0.10, 𝐶ኼ = 10, and predictive equation (3.13) helps the box-model to
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perform well in most of the estuaries, making it an alternative solution. Besides, a
physical basis for Van der Burgh’s coefficient has been provided by linking a reduc-
tionist method with strong theoretical background.

From a system perspective, another method applying the maximum power con-
cept in saline and fresh water mixing in estuaries has been derived. First, an un-
satisfactory solution was derived because of the assumption that the system is
isolated. This is impossible due to the continuous freshwater discharge. As a re-
sult, by including the accelerating moment provided by the freshwater discharge,
the maximum power condition for an open estuary system has been solved. A new
equation (5.12) describing the spread of salinity due to gravitational circulation has
been found and the relevant salinity distribution model works well in estuaries with
a large 𝑏ኻ/𝐵ኺ value. These estuaries also have larger 𝐾 values in the pure Van der
Burgh method. A predictive value for the dispersion coefficient at the boundary
has also been provided, making this method a practical alternative for application
in partially- to well-mixied estuaries.

In conclusion, the empircal Van der Burgh method which is accounts for all
mixing mechanism is now predictive, based on the results from the new box-model
and maximum power method. For an estuary with less available data, 0.38 can
be a useful first estimate for the empirical Van der Burgh coefficient. This value
appears to be a good estimate in estuaries with a large width convergence length.
If, however, the proper geometric data and hydraulic characteristics are available,
equations (7.1) and (7.2) are more powerful (and have a more solid physical basis)
for predicting the Van der Burgh coefficient. However, these equations appear to
be less accurate in wide estuaries with strong convergence.

7.3. Limitations and recommendations
7.3.1. Limitations
Limitations of this study mainly come from two aspects: the assumptions made and
the uncertainties in the observations.

There are several assumptions used in this study. The geometry and the tide
propagations are simplified. In addition, the large-scale lateral salinity exchange
is assumed proportional to the longitudinal exchange and the proportionality is
considered the same in different estuaries. This is how the two-dimensional box-
model results in a one-dimensional equation and the two main mixing mechanisms
are combined into one expression. Moreover, the maximum power condition is an
assumption. Natural estuaries may not be in a steady state over a tidal cycle. Fur-
thermore, other tide-driven mechanisms besides horizontal circulation have been
ignored. Assumptions are also made in the analytical solutions dealing with the
non-linear equations in Chapters 3.

Measurement uncertainties are unavoidable. Take the freshwater discharge as
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an example, which is probably the most significant parameter in saline and fresh
water mixing. It is not easy to measure the freshwater discharge in estuaries, and
it may not be constant over a tidal cycle. Cross-sectional average salinity is also
not easy to observe due to lateral variability, the complex topography, and the time
required for detailed observations.

Due to the three-dimenssional charecter of wide estuaries, the capacity to de-
scribe the effect of tide in wide estuaries generally is also a limitation.

7.3.2. Recommendations
Here are some recommendations based on this study.

First of all, more field observations are necessary. It is important that these
models can be tested in more estuaries. Also, most of the measurements were
taken during spring tide. Even thought this is the case when the saltwater intrudes
the furthest, cases during the neap tide are helpful to understand the mixing mech-
anisms.

Additionally, this study is focused on equations in steady-state condition. How-
ever, this is not always the case in estuaries. These models are recommended to
be solved and tested in unsteady-state conditions.

Moreover, these tidal average salinity intrusion methods are recommended to
trace other soluble substances in estuaries. It provides useful information for people
concerned with water quality in alluvial estuaries.

The total dispersion is well described by the Van der Burgh method and the
gravitational circulation can be described by the maximum power method. The
difference between these two is regarded as the tide-driven dispersive processes.
From Appendix A.12, the tidal effect is always large near the mouth and decreases
landward. In Chapter 3, tidal effects are ideally included by using the 𝐶ኼ part.
However, 𝐶ኼ can vary and tidal effects can be complicated since the geometry is
so variable in estuaries around the world. General theories for the tidal effects
separating from the density-driven part are suggested to be developed.
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A.1. Compilation of the geometry
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Figure A.1 The same as Figure 2.2.
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A.2. Summary of the geometry
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A.3. Summary of measurements
In Table A.2 and A.3, the data chosen from each estuary with star-marked label
is used in Appendix A.5. The subscript ’0’ represents parameters at the boundary
condition.
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A.4. Summary of parameters using the box-model
method

Table A.3: Parameters using ፂᎴ ዆ ኻኺ, with data in bracket using a tailor-made ፂᎴ value.

Label 𝐾calibrated 𝑆ኺ 𝐷ኺ 𝛼 𝛽 𝑁ፑኺ 𝐾calculated
(-) psu (m2/s) (mዅ1) (-) (-) (-)

1⋆ 0.78 15 370 (382) 7.4 9.4 0.55 0.51
2⋆ 0.54 8 255 (201) 0.81 3.3 0.041 0.51
3⋆ 0.49 28 234 5.6 0.49 0.022 0.52
4⋆ 0.51 14 314 (314) 7.5 0.94 0.084 0.51
5⋆ 0.45 18 326 9.3 3.1 0.12 0.52
6⋆ 0.65 17 282 (286) 5.2 15 0.23 0.53
7a 0.70 29 80 3.2 0.77 0.019 0.57
7b 0.69 32 47 5.9 0.41 0.028 0.62
7c⋆ 0.57 22 281 2.3 0.86 0.068 0.52
7d 0.65 24 135 2.7 0.85 0.031 0.54
7e 0.63 26 133 3.3 0.67 0.030 0.55
8⋆ 0.55 31 239 6.0 0.030 0.0044 0.65
9a⋆ 0.61 14 178 1.5 0.92 0.018 0.55
9b 0.55 12 206 1.6 0.78 0.014 0.53
9c 0.51 10 292 1.3 0.86 0.019 0.52
10a 0.52 9 368 2.2 8.2 0.53 0.51
10b 0.52 7 335 2.3 8.0 0.17 0.51
10c⋆ 0.54 12 359 3.2 5.8 0.30 0.51
11a⋆ 0.52 24 484 8.1 12 0.51 0.51
11b 0.58 25 177 15 7.6 0.21 0.54
12a 0.72 24 45 23 5.9 0.038 0.62
12b 0.67 12 63 13 10 0.070 0.58
12c 0.61 15 86 17 6.6 0.059 0.57
12d⋆ 0.64 17 62 21 5.8 0.040 0.59
13a⋆ 0.44 21.5 532 13 1.9 0.043 0.51
13b 0.45 25 592 15 1.7 0.77 0.52
13c 0.46 16 431 11 2.3 0.031 0.51
14a⋆ 0.65 11 336 5.3 3.5 0.068 0.53
14b 0.58 1 163 0.90 18 0.089 0.51
14c 0.62 8.5 402 4.0 4.4 0.17 0.53
14d 0.62 12 485 5.4 3.3 0.083 0.52
15a 0.62 10 142 0.71 3.1 0.0050 0.53
15b⋆ 0.62 10.5 149 0.74 2.9 0.0073 0.53
16a 0.48 11 290 2.5 7.1 0.19 0.52
16b 0.45 15 323 3.4 5.0 0.22 0.52
16c 0.48 27 402 6.9 2.6 0.064 0.53
16d⋆ 0.52 15 234 3.7 5.2 0.14 0.54
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A.5. Sensitivity to 𝐶2
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Figure A.2 The same as Figure 3.4.
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A.6. Geometry considering the river cross section
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Figure A.3 The same as Figure 2.3.
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A.8. Hydraulics of the extra database

Table A.5: Summary of hydraulic measurement in seven more estuaries.

Label Date 𝐸፦ 𝑇 |𝑄| 𝛿ፇ
(m) (s) (m3/s) 10ዅ6 mዅ1

17a 27/10/2007 14000 44440 15 -10
17b 11/12/2007 12000 44440 11 -10
18 05/07/2012 8700 44440 26 -14
19 15/09/2009 15000 86400 10 -6.7
20a 23/08/1932 8000 44440 120 0.7
20b 04/10/1932 9000 44440 72 0.7
21a 01/07/1987 10000 44440 90 2.8
21b 02/11/2000 12000 44440 220 2.8
22a 27/02/2002 21000 44440 200 -8.5
22b 01/03/2002 27000 44440 150 -8.5
23a 05/09/1982 9000 44440 2 -19.9
23b 23/06/1993 11000 44440 4 -19.9
23c 07/07/1993 13000 44440 4 -19.9

A.9. Applications of the thermodynamic equation
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Figure A.4 The same as Figure 4.2.
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A.10. Summary of the thermodynamic method

In Table A.6, the data chosen from each estuary with star-marked label is used in
Appendix A.9.

Table A.6: Summary of boundary conditions using the thermodynamic equation.

Label 𝑆ኺ 𝐷ኺ 𝑁ፑኺ Label 𝑆ኺ 𝐷ኺ 𝑁ፑኺ
(psu) (m2/s) (-) (psu) (m2/s) (-)

1⋆ 14.8 300 0.4705 13b 26 530 0.7875
2⋆ 11.7 230 0.0932 13c⋆ 17 395 0.0319
3⋆ 26.5 260 0.0209 14a⋆ 19 400 0.0774
4⋆ 18.5 310 0.1168 14b 9 490 0.5274
5⋆ 19 370 0.1293 14c 17.3 570 0.2253
6⋆ 22 285 0.2428 14d 20 640 0.0915
7a 29 75 0.0186 15a 11 170 0.0060
7b 32 43 0.0282 15b⋆ 11.2 175 0.0084
7c 22 285 0.0679 16a 24.5 380 0.2335
7d 24 130 0.0308 16b 29 380 0.2327
7e⋆ 25.8 130 0.0337 16c 35 450 0.0456
8⋆ 28.5 185 0.0167 16d⋆ 30 250 0.1580
9a 11.7 155 0.0213 17a 28.7 205 0.0386
9b⋆ 10.0 150 0.0124 17b⋆ 28.5 130 0.0446
9c 8.4 230 0.0177 18⋆ 28 250 0.2873
10a 7.8 225 0.3552 19⋆ 9.5 90 0.0612
10b 6 190 0.1150 20a 13 100 0.0055
10c⋆ 14 340 0.2703 20b⋆ 35 55 0.0062
11a⋆ 24.5 520 0.4963 21a 31 150 0.0127
11b 26 495 0.6172 21b⋆ 34 400 0.0196
12a 35 55 0.0155 22a⋆ 20 360 0.0052
12b 35 85 0.0579 22b 20 420 0.0018
12c 35 100 0.0388 23a 26 43 0.0299
12d⋆ 35.0 70 0.0233 23b 20.2 47 0.0254
13a 23.0 470 0.0442 23c⋆ 18.2 49 0.0139

A.11. Geometry of the extra database

The compilation and the summarized information of the geometry in the less reliable
database are presented.
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Figure A.5 The same as Figure 2.2.
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Table A.7: Summary of the geometry of the less reliable database.

Label 𝐴ኺ 𝑎ኺ 𝑎ኻ 𝐵ኺ 𝑏ኺ 𝑏ኻ 𝑥ኻ ℎኺ
(m2) (km) (km) (m) (km) (km) (m) (m)

17a 995 1300 15000 279 1300 15000 3000 3.57
17b 995 1300 15000 279 1300 15000 3000 3.57
18 1547 450 7500 264 350 14500 500 5.87
19 2060 60000 60000 230 60000 60000 0 8.96
20a 255000 41000 41000 37655 42000 42000 0 6.77
20b 255000 41000 41000 37655 42000 42000 0 6.77
21a 150000 26000 26000 15000 26000 26000 0 10.00
21b 150000 26000 26000 15000 26000 26000 0 10.00
22a 17000 18000 18000 5700 18000 18000 0 2.98
22b 17000 18000 18000 5700 18000 18000 0 2.98
23a 921 6300 60000 349 5500 60000 14000 2.64
23b 921 6300 60000 349 5500 60000 14000 2.64
23c 921 6300 60000 349 5500 60000 14000 2.64

A.12. Application of the maximum power method
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Figure A.6 Left: Application of the analytical solution from the maximum power (MP) method (solid
lines) to observations (symbols) for high water slack (in red) and low water slack (in blue). The green
line shows the tidal average condition. Dash lines reflect the curve fitting to the observations. Dash dot
lines reflect the application of the Van der Burgh (VDB) method. Right: Simulated dispersion coefficient
using different methods. Total dispersion (ፃFT) and dispersion due to gravitational circulation (ፃFG)
from curve fitting are shown in dash lines for reference.
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A.13. Summary of application by two methods
The application results using the maximum power (MP) concept and the pure Van
der Bergh (VDB) approach are summarized in Table A.7. The data chosen from
each estuary with star-marked label is used in Appendix A.12.

Following mathematic functions are used for curve fitting: Dose Response (Dose
Resp), Slogistic1, Rational5, and Polynomial4 (Poly4).

Table A.8: Summary of boundary conditions by two methods.

Label 𝑆ኺ
MP VDB

Fitting function𝐷ኺ (m2/s) 𝐶ኽ (psuᎽ1msᎽ2) 𝐷ኺ (m2/s) 𝐾 (-)

1⋆ 15 325 0.0064 325 0.4 Dose Resp
2⋆ 10 225 0.0082 225 0.3 Slogistic1
3⋆ 28 213 0.0089 255 0.18 Slogistic1
4⋆ 18 275 0.0066 280 0.35 Dose Resp
5⋆ 19 320 0.0093 330 0.35 Rational5
6⋆ 18 245 0.0059 250 0.45 Poly4
7a 29 66 0.0035 68 0.25 Slogistic1
7b 32.5 37 0.0043 42 0.2 Dose Resp
7c⋆ 22 250 0.0069 258 0.3 Poly4
7d 25 115 0.0046 118 0.25 Slogistic1
7e 26 120 0.0055 125 0.23 Dose Resp
8⋆ 31 98 0.0093 245 0.12 Poly4
9a 14 170 0.0114 170 0.3 Slogistic1
9b 12 150 0.0100 150 0.25 Dose Resp
9c⋆ 10 250 0.0141 250 0.3 Poly4
10a 8 250 0.0063 250 0.35 Dose Resp
10b 6.5 220 0.0058 220 0.4 Slogistic1
10c⋆ 13 310 0.0070 310 0.35 Dose Resp
11a 24 510 0.0090 520 0.5 Dose Resp
11b⋆ 26 163 0.0069 165 0.5 Slogistic1
12a 23 46 0.0044 51 0.5 Slogistic1
12b 13 66 0.0056 70 0.5 Slogistic1
12c 16 78 0.0056 92 0.55 Dose Resp
12d⋆ 17.5 58 0.0051 63 0.5 Dose Resp
13a 23 490 0.0094 490 0.45 Slogistic1
13b 25.5 590 0.0087 600 0.45 Slogistic1
13c⋆ 16.5 435 0.0099 440 0.48 Dose Resp

continued on next page
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continued from previous page

Label 𝑆ኺ
MP VDB

Fitting function𝐷ኺ (m2/s) 𝐶ኽ (psuᎽ1msᎽ2) 𝐷ኺ (m2/s) 𝐾 (-)

14a 11 295 0.0051 305 0.5 Poly4
14b 1 160 0.0071 165 0.43 Poly4
14c⋆ 8.5 430 0.0076 430 0.45 Rational5
14d 12 495 0.0066 510 0.5 Dose Resp
15a 10 145 0.0055 150 0.35 Slogistic1
15b⋆ 10 158 0.0063 160 0.3 Dose Resp
16a 11.5 280 0.0088 280 0.45 Slogistic1
16b 16 340 0.0099 340 0.45 Rational5
16c 27 400 0.0092 400 0.48 Dose Resp
16d⋆ 15.5 235 0.0086 235 0.5 Dose Resp
17a⋆ 28.5 212 0.0070 243 0.38 Dose Resp
17b 28 130 0.0054 145 0.38 Dose Resp
18⋆ 28 292 0.0090 310 0.3 Dose Resp
19⋆ 9 90 0.0040 93 0.45 Dose Resp
20a 11 95 0.0269 200 0.12 Dose Resp
20b⋆ 32 51 0.0103 100 0.13 Dose Resp
21a 31 88 0.0097 225 0.12 Slogistic1
21b⋆ 33 278 0.0173 800 0.12 Dose Resp
22a⋆ 21.5 330 0.0124 350 0.1 Poly4
22b 20 415 0.0165 500 0.1 Dose Resp
23a⋆ 25 39 0.0058 39 0.4 Dose Resp
23b 17 46 0.0052 46 0.38 Dose Resp
23c 16 50 0.0056 50 0.42 Dose Resp
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