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INTRODUCTION

In Engineering 4, 777 (1903) G.T.Bennett published a paper on
a mechanism, which he called the skew isogram. It is a quadrila-
teral ABA'B' of which the sides are rods, hinged in its vertices.
He nroved that this skew quadrilateral is movable if the opposite
sides are equal. Further, he described several technical applica-
tions. In 1914 he published in J.London Math.Soc. 13, 151 (1914)
a series of theorems associated with the isogram, considered as a
pure mathematical subject. Bennett'’s papers contain various
theorems of which no proofs were provided. One of the aims of
this thesis is to give a summary of these theorems and to supply
the missing proofs.

If one of the rods, AB say, of the isogram with its two hinge-
lines is fixed, it is possible to determine a moving space in
which the rod opposite to AB, called the connecting rod, together
with its two hinge-lines are fixed lines. Another aim is to exam-
ine the motion of this moving space. The general theory of the
moving space given in chapter I as far as needed in the following
chapters, is taken from Schoenflies, Geometrie der Bewegung. To
make chapter I selfcontained, it was necessary to give proofs of
several theorems, which are different from those of Schoenflies,
especially the one of theorem IV, which is given by means of
analytical geometry.

Investigating the moving space we have made use of the method
of the axial reflection. The theorems which we need are given in
chapter II. They are taken from two papers of J.Krames: Zur Geo-
metrie des Bennett’schen Mechanismus (Wiener Sitz. Ber. IIa, 146,
159 (1937); Symmetrische Schrotungen I (Monatsh. Math. Phys. 45,
394 (1937). For the same reason as in chapter I the proofs are
not the same as those given by Krames,

Chapter III contains a selection of theorems of the isogram
given by Bennett. It appears possible to introduce various qua-
drics which are connected with the sides, hinge-lines and angle-
bisectors of the quadrilateral. Further, this chapter gives ne-
cessary and sufficient conditions for the quadrilateral to be
movable. In general a skew quadrilateral hinged in its vertices
is triply stiff, but if the opposite sides are equal it is mov=-
able, After giving the definition of the twist of a link, we
determine a relation between the twists and the lengths of the

sides.
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In chapter IV we consider the moving space in which the rod
A'B' together with its hinge-lines are fixed lines. Every point
of the movihg space describes, in general, a rational space curve
of the fourth degree. The parametric equations of these curves
are deduced. One of the most important quantities of the moving
isogram appears to be the quantity denoted by m, which only de-
pends on the ratio of the unequal sides and on the twist of the
fixed rod. This quantity m is the constant ratio of the sine of
half the sum of an angle and the supplement of the adjacent angle
to the sine of half the difference of these angles of theisogram.

In § 6 we prove that the space curves have four isotropic
points and it is further shown that no spherical curves occur
among them. In § 8 is deduced the equation of the surface of the
third degree which is the locus of the points with an osculating
plane with a fourth-order contact (these points are called the
points of inflection or the stationary points). In § 9 are de-
duced the equations of the locus of the points which have a tan-
gent with a second-order contact. This locus is, for any position
of the quadrilateral, a twisted cubic.

In chapter V the theorems of chapters I and II are applied.
It is shown that the hinge-lines are two by two conjugated lines,
which means that the planes through the points of one of the
hinge-lines normal to the tangent at these points go through an-
other hinge-line, called its conjugated line. Therefore many of
the theorems of chapter I are immediately applicable to the mov-
ing space. As the isogram has an axis of symmetry, namely the
line connecting the midpoints of the diagonals AA' and BB', and
as this axis describes a ruled surface during the motion of the
isogram, the moving space can be considered as the reflected
fixed space with regard to the generators of the ruled surface.
Several loci in the moving space are given in their reflected
position. In this way the locus of the points with a tangent
through a given point is found. Furthermore, the equations of
the instantaneous screw-axis are given, following from the theory
of chapter I.

In chapter VI we consider the surface generated by the con-
necting rod A'B'. This surface of the fourth degree has in ge-
neral two double-~lines, which intersect the line of the fixed
link at a right angle. Conditions are given that the double-lines
be real. Further, we deduce the effect -of the values m, and m, of
m on the quadrilateral being crossed or not-crossed, where cros-
sed means that the rotations of the links around the fixed hinge-
lines are in opposite directions.




Chapter 1

THE MOTION OF A RIGID SPACE %)

5 1. Displacement of a line

1. We consider the motion of a rigid space S in a fixed
space . If the position of three points of S, which do not lie
on one straight line is given, the position of each point of S is
determined. Let two positions of a point P of S be denoted by P
and P,. The line P P, is called the chord P P, or the chord of P.
The midpoint of Pon is denoted by PIn and the plane through Pm
and normal to the chord POP1 by IP. This plane TI® is called the
bisecting plane of P P, or the bisecting plane belonging to P.
Analogously we get: The points A, B, etc. give the chords AOAI,
BoBl' etc.,, the midpoints Am, B, etc. and the bisecting planes
oPf, BP, etc.

2. Two positions of a line 1 of S are denoted by 1o and 1,
(fig. 1). A series of points on
lo corresponds to a congruent
series of points on 11. Let P
and A be two points of 1. Po
and A° lie on 1o and P1 and A,
on 1,. The midpoints of the
chords POP] and AoA1 are Pm and
Am respectively,

We draw the lines 1; and 1]
through Pm parallel to 10 and
11 respectively and through the
points A  and A, the lines AOA;
and A A} parallel to P P,. As
A ] and AIA; are equal and
parallel, the quadrilateral
A, A'A A' is a parallelogram and
conseouently its diagonals A A
and A' A' meet each other in the
m1dp01nt A of the chord A A
As P A' = P A = P A = P A'
the triangle A' P A' is isosceles and as AOAm A A the 11ne P A
is the angle blsector of the angle between 1; and 1' The pOSl-

Figure 1

*) Schoenflies [3].
Note: The number between the signs [ ] denotes the number of the
paper given in the list of literature. 9
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tion of this bisector is independent of the position of Ao and Al
on 10 and 11 and now we obtain

Theorem I: The locus of the midpoints of the chords of the
corresponding points of l_and 1, is a line.

This line is called the middle-line of 1 _and 1, and is de-
noted by 1 .

3. We obtain a special case if 1m is perpendicular to PoPl.
As POPI is parallel to AOA; we get that lm is perpendicular to
AOA; and as 1 is perpendicular to ALA‘, 1 is perpendicular to
the plane through AOA;AIA; and consequently 1 is perpendicular
to AOAI. So we obtain

Theorem II: If one of the chords connecting the corresponding
points of the lines I and l, is perpendicular to the middle-line
L, then all chords are perpendicular to [ .

4, If the lines 1o and 11 approach each other we get in the
limit that the line AOA1 through the two positions Ao and Al of
any point A of 1 becomes the tangent at the point A to the curve
described by A. The bisecting plane oP of the chord AOA1 becomes
the plane through A normal to the curve described by A. We obtain

Theorem YII: If the tangent at any point of a line | to the
curve described by this point is perpendicular to l, the tangent
at each point of | is perpendicular to the curve described by
this point.

We notice that the bisecting planes of the points of 1 in
their limiting position go in this case through 1.

5. Theorem IV: The bisecting
zl1 planes of the chords of the
corresponding points of lo and

38 1, go through one line.
B This Iine, denoted by 1°P,
B, - By is called the line conjugated

to 1o and 1,, or briefly con-
jugated to 1.
The proof of this theorem will
% be given by means of analytic-
al geometry (fig. 2).
» We let, without loss of ge--
A b x nerality, 1° coincide with the
Z-axis and we take as the equa-
tions of 11:

x=b ad 2z =y tan a.
1f AJO;O;O)wuiAl(bl; a cos o
Figure 2 a sin o) are two correspon-
ding points, the points Bo and

10



Bl on 1° and ]1 respectively are also corresponding points if
AOB° = AlB1° If this distance AOB° is denoted by ), the coordi-
nates of Bo and B, are:
B (o o; \)
B_{b; (a+x)cos o (a+r)sin o}
The coordinates of the midpoint Bm of BOB are:

B {%b; x+(a+%)sina}

)\' .
cos o 2
The equation of the blsectlng plane BP of the chord B B, is:
bx+ (a+1) cosow y+{ (a+).) sina-2} z-%b *-%a 2-a). = 0.
This equation represents a pencil of planes and consequently
these planes go through one line 1P, the line conjugated to 1.

6. If the chords are perpendicular to the middle-line lm, the
bisecting planes of the chords go through 1 and therefore the
lines 1 and 1P coincide in this case. If 1, approaches 1 we get
in the 11m1t that 1 coincides with 1.

It 1m coincides w1th 1P we get in the limit that 1 coincides
with 1P, If 1 is identically equal to its conjugated line 1P, 1
is called a self-conjugated line.

From theorem III we draw the conclusion that if the tangent at
any point of a line 1 to the curve described by this point is
perpendicular to 1, the line 1 is a self-conjugated line.

7. The equation of the pencil of planes can be written as:
(bx+ay coso + az sina - %a?%b?) + A{y cosa + z(sino-1)-a} =

The planes given by 2=0 and by A=w are parallel if:
b:0 = a cosa : cosa = a sina : (sina~1).
These conditions are fulfilled in the following cases:
1° a=0; b=0; o#f /2
20 a=0; bH#0; oa=w2
30 a#0; DbD#0; o=mw2
In the first case the equation of the pencil becomes:
My cosa + z(sino-1)} = 0,
that is, the pencil is degenerated into one plane and consequent-
ly 1P is not determined.
The second case gives:
bx - %b? =
that is, again 1P is not determined.
The third case gives:
bx + az — %a? - %b2 —2a = 0
that is, the pencil is degenerated into a series of parallel
planes and consequently 1P is a line at infinity.
We obtain:
10 1f 1, and 1, intersect each other and their common point is a

11
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sel f-corresponding point of 1° and 11. the line 1P conjugated to
1, and 1, %s not determined.

20 If 1, and 1, are parallel and the chords are perpendicular to
1o (or 11) the line 1P is not determined.

30 If L_and L are parallel and the chords are not perpendicular
to 1 (or 1) Il is a line at infinity.

§ 2. Displacement of a planme

1. We consider two positions €, and £, of the plane & of the
moving space S. Each point of By corresponds to one point of €4
Let Ao be a point in €, and A1 its corresponding point in e;. The
midpoint of the chord AOA1 is Am. Each line 1o in e, through Ao
corresponds to a line 11 in €, through Al and one line lm through
Am corresponds to 1o and 1.' Any line m_ of g, not through Ao
intersects all lines 10. Hence the middle-line m of m, and m,
intersects all lines lm through Am. Consequently all lines lm lie
in one plane called. the middle-plane e_of the planes e  and e,.
We obtain

Theorem V: The locus of the midpoints of the chords connecting
the corresponding points of e and e, is a plane e _called the
middle-plane belonging to the two positions g, and g, of a plane
£.

2. Lete_ and e, be two positions of e and e_ its middle-plane.
If AOA1 and BOB1 are two chords connecting two pairs of corre-
sponding points of e, and €4 their midpoints Am and Bm lie in €
We draw the line a_ through Am in the plane n perpendicular to
the chord AoAl and the line bm through Bm in £, perpendicular to
the chord B B,. The common point of a_ and bm is denoted by Em.
As a_ and bm can be considered as middle-lines of two pairs of
lines a,,a, and bo,b1 of the planes g, and e,, the point Em is
the midpoint of the chord EOE1 where Eo is the common point of a
and bo a.ndE1 thatof ala.nd bl. The chord AOAI is perpendicular to a_
and therefore EOE1 is also perpendicular to a_ (theorem II).
Similarly EOE1 is perpendicular to bm and hence EOE1 is perpen-
dicular to e, The point Em of the middle-plane e, with the pro-
perty that its corresponding chord EE, is normal to e is called
the nullpoint of e .

3; LT e, approaches e, We get in the 1limit that the lines
which gothrough corresponding points of g, and €, become tangents
to the curves described by these points. If t is the tangent at P
to the curve described by P we write briefly: t is the tangent
at P.

Let € be the limiting position of €y A and B two points in g,

12



t, and t, the tangents at A and B respectively (fig.3). We draw
the line a in e through A perpendicular to tl and the line b in ¢
through B perpendicular to t,. As a and b are self-conjugated
lines (§ 1.6), the tangents in
each point of a and b are per-
pendicular to these lines. If,

t 3 in general, a and . meet each
other in E, the -tangent t3 at
L K is perpendicular to a and to

b and hence ¥s is normal to e.

If aand bare parallel there

B does not exist a point in e

b such that its tangent is normal

to € for if T is such a point,

TB is a selfconjugated line,

Figure 3 that is, TB is perpendicular

to t2, that is, T lies on b

and similarly T lies on a which is impossible as a and b have no
common point.

If a and b coincide (fig.4), the point % lies on a. If we give

a tangent t, at a point C that
does not lie on AB and the line
t ¢ in e through C perpendicular
to t,, the point E is the com-
mon point of c¢ and a.
If aand c are parallel we have
the foregoing case. So we ob-
tain
Theorem VIa: Each plane & gen-
erally contains a point in
which the tangent is normal to
€.

If the tangents t, and t, at the points A and B of the plane &
are both normal to e, we might draw through any point P of s the
lines PA and PB. As these lines are self-conjugated lines, the
tangent at P is perpendicular to PA and to PB and consequently to
e. Hence we notice that if two points of ¢ have a tangent perpen-
dicular to e, each point of e has a tangent perpendicular to e.

Theorem VIb: In each plane e there is in general one point E,
and only one with a tangent normal to e.

This point E is called the nullpoint of e. It may occur that
each point of a plane ¢ has a tangent normal to & or that no
point of ¢ has such a tangent.

Figure 4

4, The line of intersection of e, and e_ is denoted by e_ and
the one of €, and ) by e, (fig. 5). A point Po of e, gives a

13
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chord POPl with its midpoint Pm which lies in € . As P° and Pm
lie in Bm’,Pl also lies in e, and as Pl is a point of e P1 is a
point of the common line e, of ¢, and € that is, e, and e, are
corresponding lines, The nullpoint Em of e, is the midpoint of
the chord E‘OEl which is perpendicular to e We draw EOFO per-
pendicular to e, and E F, perpendicular to e . As the figure com-
posed of the line e, and the point E_ of the plane €, corresponds
to the figure composed of e,
and B, in e,, these figures
are congruent and consequently
the points F, and F, are cor-
responding points. From the
congruence of the triangles
EoFoEm and ElFlEm it follows
that FoEm = FlEm and further
that FOS = F,S where S is the
common point of e, and €.
Let P° be a point of e, and
P, a point on e, such that
PR =P The theorem of
Menelaos gives in the triangle
F_SF, with regard to the line
Figure 5 P P P, that PP = P P, where
Pm is the common point of the
lines POPl and FoFx' Consequently Pm is the midpoint of POP1 and
therefore the line F F, is the middle-line of e and e; it is
denoted by e . The line e_1is called the characteristic of the
plane €

Les

For the limiting position we obtain

Theorem VII: The locus of the points of a plane & in which the
tangent lies in e is a line,
called the characteristic e of

E the plane e.

5. If (fig. 6) S is consid-
ered as a point of el,it is
denoted by Sl, and as a point
of e, by To. The point So cor-
responding to S, lies such
that Fo is the midpoint of the
chord SOSI, and the noint T,
correspcnding to T0 lies such
that Fl is the midpoint of the
E, chord T T, Asthe plane F & E_

goes through Fo and is normal
Figure 6 to the chord SOS1 it is the

14



bisecting plane of SOSI. Similarly the plane FlElEm is the bi-
secting plane of the chord T T,. The line E E, is the line of
intersection of these bisecting planes, and as follows from the
definition, the line EOE1 is the line conjugated to the line
FoFl(em). In the limiting position we obtain: The line eP con-
jugated to the characteristic e of a plane e is the line normal
to ¢ and going through the nullpoint E of & .

6. Let a_ be a line in the middle-plane e, such that its con-
jugated line aP is perpendicular to & and let AOA1 be the chord
belonging to a point Am of a . As the bisecting plane of AOAl
goes through aP and as aP is normal to e the chord AOA1 lies in
e that is, AO lies on e, and A on e, It follows that Am lies
on e and hence the lines a_ and e, coincide.

For the limiting position we obtain
Theorem VIII: If the line lP conjugated to the line l is perpen-
dicular to l, the line | is the characteristic e of the plane e
through 1 normal to lP. The point of intersection of lP and e is
the nullpoint E of the plane s.

7. The direction of the tangent at P to the curve described hy
P is called the direction of
velocity of the point P, Let P
be apoint of the characterist-

Ve ic e of a plane ¢ and let E be
€ the nullpoint of & (fig. 7).
1E The 1ine PE is a self-conjugated

line since the direction of
velocity VE in E is perpendi-
cular to PE, Hence the direc-
tion of velocity ¥y in P is
perpendicular to PE, and as VP
lies in ¢ it follows from a known theorem that the tangents at
the points of the characteristic e of a plane e are tangents to a
parabola with the nullpoint E of ¢ as its focus.

8. Let 1; and 1, be two positions of a line 1, 1m its middle-
line and 1° its conjugated line (fig.8). A plane € through 1P

A 1 intersects 1 in a point, A
1 m
4}%://4/// " say, such that A is the mid-

Figure 7

point of the chord AOA1 which

1, CAp P is normal to e . Hence A is
<7 e, the nullpoint of ¢ . In the

A limiting position we obtain
1 Theorem IXa: If IP is the line

conjugated to the line I,

15




this line 1 is the locus of the nullpoints of the planes through
lr,

Let & be a plane through
1m (fig. 9), D its point of
intersection with 1?7, A a
point oflm and &, the plane
through 1° and Am. As AIn is
the nullpoint of e, and AmD
lies in & the line AmD is
a self-conjugated line. Let
Bm be another point of lm.
Then also the line BmD is a
self-conjugated line. The

Figure 9 chord of which D is the mid-

point is therefore perpen-

dicular to AmD and to B D and hence normal to the plane 8. It
then follows that D is the nullpoint of § and we get in the limit:

Theorem IXb: If LP is the line conjugated to the line I, LP
is the locus of the nullpoints of the planes through .

From the theorems IXa and IXb follows:

Theorem IXc: If lP is the line conjugated to the line [, 1
is the line conjugated to [P,

9. Let A be a point of a line 1 and B a point of the line 1P
conjugated to 1. As A is the nullpoint of the plane through 1P
and A, and, as AB lies in this plane, the tangent at A is perpen-
dicular to AB, that is, AB is a self-conjugated line.

So we obtain

Theorem X: The bisecants of two conjugated lines are self-
conjugated lines.

§ 3. The instantaneous screw-axis

1. Parallel planes can be considered as planes through a line
1, at infinity. The locus of the nullpoints of these parallel
planes isa line 1 conjugat-
ed to 1, Conversely (theo-
rem IXc) 1, is conjugated
to 1. A line | is called an
axis if the line LP conju-
gated to 1 is a line at in-
fintty,

2. Let & be a plane with
E asits nullpoint (fig. 10).
Figure 10 The plane v through E in-

16




tersects ¢ in the 1ine m. If F is the nullpoint of w, the line EF
is a self-conjugated 1ine, as the tangent at F is perpendicular
to EF. As E is the nullpoint of ¢, m is also a self-conjugated
line. The tangent at E is perpendicular to m and also to EF. This
is only possible if F lies on m. So we obtain: The nullpoint F of
a plane m through the nullpoint E of a plane ¢ lies on the line
of intersection of the planes n and e.

3. Let &' and &" be two parallel planes (fig.11), E' and E"
their nullpoints, n' and n" two other parallel planes through E'
and E" respectively, m' and m" the lines of intersection of the
planes ¢' and n' and of & and 7" respectively, and F' and F" the
nullpoints of n' and n". The point F' lies on m' and F" lies on
m". We draw the lines E'E"
and F'F" which lie in one
plane, as m' and m'" are pa-
rallel., If P be the point
of intersectionof thelines
lines E'E" and F'F", we
could lay a plane e paral-
lel to &' through P and a
plane n parallel to =
through P. The tangent at P
would then be normal to e
and to m but this is impos-
Figure 11 sible. Hence the lines E'E"

and F'F" are parallel.

We obtain
Theorem XI: The loct of the nullpoints of several series of
parallel planes are parallel lines called axes.

4. 1f we take a series of parallel planes normal to the axes,
we obtain as the locus of the nullpoints an axis with the proper-
ty that in every point the direction of velocity coincides with
the direction of the axis. This axis is called the instantaneous
screw-axis denoted by x-axis. So we get the following definition:
The x-axis ts the line with the property that every point has a
tangent in the direction of this line.

The point at infinity of the x-axis is the nullpoint of the
plane at infinity.

5. We consider two positions S1 and 82 of the moving space S.
The midpoints of the chords connecting corresponding points of S,
and S, give the space S . Let &' and ¢"" be two parallel planes of
S; e, and ¢! their positions in s_; e} and &} in S, and e/ and &'
in 8 . The nullpoints of &' and e are denoted by B! and E;.We
notice that e' and 92 are parallel, e and eq are parallel and e/

17




and eg are parallel. The line through E; and E: is an axis namely
the locus of the nullpoints of the planes parallel to e;.

Let B be a plane normal to the axis ELEZ and E_ the nullpoint
of e, E_can be considered as the midpoint of the chord EOE1
which is normal to e - As the locus, denoted by xm-axis, of the
nullpoints of the planes parallel to € is parallel to the axis
through E;E:, the chords belonging to the common points of these
planes and the xm-axis lie on this axis. Hence the corresponding
positions X, and X, of the xm-axis coincide with the xm-axis
briefly written as x-axis or the axis. The x_-axis is called the
screw-axis with regard to the positions S0 and S1 of the space S.
By a translation of So in the direction of the x-axis X, coin-
cides with x,. If this translation is followed by a rotation

around this a;is, §_ coincides with S,. We showed that every dis-
placement of a space S can be obtained by a screw~displacement
with the x-axis as its axis. If S, approaches S, we get in the
limit: At any moment the motion of S is an infinitesimal screw-

displacement.

§ 4. Constructions of the x-axis

1. Let 1 and 1P be two conjugated lines and « and B two paral-
lel planes through 1 and 1P respectively (fig.12). The nullpoint

lx-axis

Figure 12

of o is its point of intersection with 1P, As 1P is parallel to
o, the nullpoint of « is the point at infinity of 1P, Similarly
the nullpoint of the plane g is the point at infinity of 1. The
axis y belonging to the parallel planes o and @ is the line which
connects the nullpoints of o and B and hence this axis y is the
line at infinity of « and .

As the x-axis is parallel to the axis y, the point at infinity
of the x-axis must lie on the axis y and consequently the x-axis
is parallel to the planes « and B. So we obtain
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Theorem XII: The x-axis is parallel to a plane which is pa-
rallel to two conjugated lines l and [P.

9. Let p be the common normal of the conjugated lines 1 and 1P
and let o and B be two parallel planes through 1 and 1* respecti-
vely. As the x-axis is parallel to o and B, the angle between
this axis and the common normal p is a right angle, It is possi-
ble to lay a plane y through p normal to the x-axis. As p is a
self-conjugated line, it goes through the nullpoint E of y. Be-
cause of the definition of the x-axis, this axis goes through the
nullpoint E and we obtain

Theorem XIII: The common perpendicular p of two conjugated
lines | and 1P intersects the x-axis, and the angle between p and
the x~axis is a right angle.

3. Let 1 and 1P be two conjugated lines. A plane & through a
point P of the x-axis normal to this axis meets 1 in A and 1?P in
B. The Iine AB is a self-conjugated line for it connects two
points of conjugated lines. As AB lies in y, AB goes through the
nullpoint of y. This nullpoint is the point P and we obtain: The
points of intersection of a plane normal to the x-axis with two
conjugated lines lie on a line which intersects the x-axis.

4. If two pairs of conjugated lines 1, 1P and m, mP are given,
the construction of the x-axis is as follows (fig. 13).
Draw the common perpendicu-
lar p of the lines 1 and 1P
and the common perpendicu-
lar q of m and mP, As the
x-axis intersects p and q
at a right angle, the x~
axis is the common perpen=
dicular of p and q.

5. If again two pairs of
Figure 13 conjugated lines 1,1P and

m,mP are given (fig.14), a

construction of the nullpoint E of a given plane o is as follows:

E is the point of intersec-

l / l tion of the lines LL® and
1 1P m mP -

MMp, if L,LP,M,MP are the
points of intersection of
the lines 1,1P,m,mP with
the plane o. The lines LLP
and MMP are self-conjugated
lines and therefore they go
through the nullpoint E of
Figure 14 the plane a.
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§ 5. Constructioms of the characteristics of a plane

1. Let 1 and 1P be two conjugated lines such that 1 is per-
pendicular to 1P (fig.15). The plane & through 1 normal to 1P in-
tersects 1P in the point A
and the plane g through 1P
normal to 1 intersects 1 in
B. A is the nullpoint of 3
and B of e. Hence the tan-
O S gent at A coincides with 1P
2 A_-7 B :: and the one at B coincides
% : with 1. So we obtain

Theorem XIV: If | is a

line perpendicular to its
Figure 15 conjugated line [P, these

lines are both tangents at

the points in which the common perpendicular intersects 1 and LP,

2. Each line p which intersects the x-axis perpendicularly is

a sel f-conjugated line for the tangent at the point of intersec-
tion coincides with the x-axis and is therefore perpendicular to
the line p. A plane e through p (fig.16) contains p as a self-
conjugated line and conse-

quently p goes through the

///x‘aXis nullpoint E of & and we ob-
2 tain
-/ Theorem XV: If e is a

) 3 € plane not normal to the x~-
E axis, the line p in e which
intersects the x-~axis at a

right angle goes through the
nullpoint E of the plane e.

Figure 16

3. Let 1 and 1P be two conjugated lines (fig.17) and e a given
plane. The line p, perpen-

\\\\\Ji\\\\\\p dicular to o, which inter=~

sects the lines 1 and 1P,

cuts « in the point P. The

tangent at P is normal to
2 p for p is a self-conjugat~

~—~—

L

| ed line. Consequently the

P tangent at P Iies in «, that
o is, P is a point of the

. characteristic e of o.
Figure 17 If in a special case 1P
is normal to o (fig. 18),
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each line p normal to «
which intersects 1 is pa-
rallel to 1P, that is, in-
1P tersects 1P in its point at
infinity. Consequently p is
a self-conjugated line., The
e L < locus of the points of in-
tersection of the lines p
with the plane o is the
Figure 18 characteristic e of o We

obtain

Theorem XVI: The projection of a line |l on a plane o is the
characteristic e of o if the line lP conjugated to l is normal
to o.

4. Another special case occurs if 1P is the line at infinity
of a plane B (fig.19). Then the line 1 conjugated to 1P is an
axis. Let o be a plane norm-
al to B. The lines p which
intersect 1 and are normal
to o are parallel to B and
therefore they intersect 1P
at infinity. The locus of
€ the points of intersection
of these lines p with o is
the characteristic e of o.

Figure 19 So we obtain: If I is an

axis and o a plane perpen-

dicular to the planes through the line lP at infinity conjugated
to I, the projection of |l on o is the characteristic e of .

5. Let y be a plane perpendicular to the plane o and not par-
allel to the plane B of figure 19. If the line at infinity of y
is denoted by mP, we notice that the projectian of the axis m
conjugated to mP on the plane o is also the characteristic e of
o Consequently we have:

Theorem XVII: The locus of the axes which are the lines con~
jugated to the lines at infinity of the planes perpendicular to a
given plane o is the plane
perpendicular to o through
the characteristic e of o.

6. If in a special case
the x-axis is parallel toa
plane & (fig.20), the pro-
jection of the x-axis on g
Figure 20 is the characteristic e of
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e for the lines through the x-axis normal to e are self-conjugat-
ed lines.

§ 6. Tangents

1. If we return to figure 1, we notice that all chords are
parallel to the plane which is parallel to the lines POP1 and
ALA;. As all chords intersect lo and 11 they are generators of a
paraboloid. In the limit we obtain

Theorem XVIII: The tangents at the points of a line generate
a paraboloid.

2. Let 1 be a given line and n a plane normal to 1 (fig.21).
Each plane & through 1 is normal to n. The axis conjugated to the
line at infinity of the
plane 7 is denoted by u.
From the second special case
of theorem XVI (see § 5.4)
follows that the projection
of u upon e is the charac-
teristic e of e. As the
tangents at the points of u
are normal to the plane 7,

Figure 21 they are parallel to the
line 1. We obtain

Theorem XIX: The characteristic e of a plane e through a line
l ts the projection upon e of the locus of the points with a tan-
gent parallel to L.

3. Let the plane through u perpendicular to & be denoted by &'
(fig. 21). The characteristics e of all planes & through 1 are
defined as the lines of intersection of the planes e with the
planes g' through u perpendicular to e. The locus of the charac-
teristics e of the planes & through 1 is the locus of the lines
of intersection of the planes of two pencils through the skew
lines 1 and u such that a plane of the first pencil is normal to
a plane of the other one. Itis known that this locus is an ortho-
gonal hyperboloid and we obtain: The locus of the characteristics
of the planes through a line is an orthogonal hyperboloid H.

Let P be the point of intersection of u and n and m the line
of intersection of & and n (fig.21). If PA is normal to m, PA is
normal to e and hence A is a point of the characteristic e of e.
The point of intersection of 1 and 7 is denoted by B. In the se-
veral positions of & through 1 the point A describes a circle
with BP as its diameter and consequently the curve of intersec~

22




tion of the hyperboloid H with a plane normal to 1 is a circle.
Similarly the curves of intersection of H with the planes perpen-
dicular to u (that is, to the x-axis for u is parallel to this
axis) are circles.

4. As the points of the characteristic of a plane e have the
property that their tangents lie in e, these tangents intersect
any line 1 in e. Therefore we have

Theorem XX: The locus of the points with a tangent which in-
tersects a given line | is the locus of the characteristics of
the planes through l. From 3 follows that this locus is an ortho-
gonal hyperboloid H generated by the lines of intersection of the
orthogonal planes of the pencils through l and through the line u
if u is the axis conjugated to the line at infinity of a plane

normal to 1.
In the special case that 1 is a

tangent (fig. 22), the point of
contact P is a point of the cha-
racteristic of each plane through
1 and hence the characteristics
generate a cone with P as vertex.
This cone is a quadric and the
axis u through P is one of its
generators for at each point of u
the tangent is parallel to 1, that
Figure 22 is, intersects 1 in its point at
infinity.

5. Let 1 be a tangent (fig.23), A its point of contact and B
the foot of the perpendicular from

A to the x-axis. As AB is perpen-

'/ dicular to the x-axis, AB is a

/;-axis sel f-conjugated 1line and hence 1

1 h is perpendicular to AB. We obtain
‘/1 Theorem XXI: If a line |l is a

tangent, its point of contact lies
Figure 23 on the common normal of | and the
xX=-axis,

The point of intersection of a line 1 with its common normal with

regard to the x-axis is called the central point of the line L.
Let P be a given point. If we lay a plane e through P parallel
to the x-axis and a plane m through the x-axis normal to e, we
state that the line of intersection of e and m is the locus of
the central points of the lines through P in e. Let a be the line
through P parallel to the x-axis. The locus of the central points
of all lines through P is the locus of the lines of intersection
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of the planes through a with the planes through the x-axis normal
to them. We obtain

Theorem XXII: The locus of the central points of all lines
through a point P isca circular cylinder through P and the x-axis
such that the plane through P and the x-axis is a plane of sym-
metry of the cylinder.

6. What is the locus of the points which have a tangent
through a given point P ?

Let 1 be a line through P and m the line through P parallel

u to the x-axis (fig. 24).

This line m is also the axis

belonging to the planes

normal to the tangent at P.

P m The axis belonging to the

) ™~ planes normal to 1 is de-
(:://f//:: ‘\~S(i:; ; noted by u.

rp\S g Each tangent through P

—Bch_'_..—\._."L“i-S—--—S-_L—— is a tangent which inter-

sects 1. From theorem XX

Figure 24 follows that the locus of

the points with a tangent

which intersects 1 is a hyperboloid H generated by the lines of

intersection of the orthogonal planes of the pencils through 1
and u. The required locus is therefore a curve on H.

From theorem XXII follows that the locus of the central points
of the lines through P is a circular cylinder C through m and the
x-axis such that the plane through m and the x-axis is a plane of
symmetry of C.

Let S be a point of the curve of intersection of the hyperbo-
loid H and the cylinder C and let t be the tangent at S. As S is
a point of H the tangent t intersects 1, and as S is a noint of C
the tangent t intersects m. If S is not a point of the plane
through 1 and m, t goes through P.

Let S, be a point of the generator p of C which intersects 1
in B where B is the second point of intersection of 1 with C
(fig.24). B is the central point of 1. The tangent t, at S, in-
tersects m for S, is a point of C and consequently t, also in-
tersects 1 and hence S, is a point of H.

Each point of the generator p is a common point of H and C and
therefore p is a common generator of H and C. The generator p
does not belong to the locus of the points with a tangent through
P. The curve of intersection of C and H is in general a twisted
curve of the fourth degree. This curve is degenerated in the line
p and a twisted cubic. We obtain
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Theorem XXI1I: The locus of the points which have a tangent
through a given pownt P is a twisted cubic.

7. The curve of intersection of a plane ® perpendicular to the
x-axis with the hyperboloid H is a circle and the curve of inter-
section of & with the cylinder C is also a circle. The common
points of these circles are 19 a point of the common generator p,
90 g real point of the twisted cubic and 30 the two circular
points at infinity of the plane 5. As the twisted cubic goes
through these points, the cubic is called a cubical circle.

As the tangents at the points of the x-axis coincide with the
x-axis, there is no point on this axis with a tangent through P.
The generator of the cylinder C which has no common point with
the cubical circle on C is the asymptotic line of the cubic. We
obtain: The x-axis 1s the asymptotic line of the locus of the
points which have a tangent through a given point P.

8. If 1 is the tangent at P the locus of the points with a
tangent through P is the curve of intersection of the circular
cylinder C and the cone generated by the lines of intersection of
the orthogonal planes of the pencils through 1 and m respectively.
The common generator of the cone and the cylinder is the line m
namely the line through P parallel to the x-axis. In this special
case the lines u, D and m coincide.

§ 7. Tangents with a second-order contact

1. Let g and e, be two positions of the plane e (fig.25). The
middle-plane is & and the

/\ . ® / nullpoint € . Let A be a
I e point of & and of the bi-
secting plane through the
midpoint Am of the chord
AOAI. We draw the line EmAm.
As the chord EOE1 belonging
to Em is perpendicular to
the plane &g and as the
line E A lies in e_, E E

m m m o 1
is normal to EmAm and hence
the chord ADA1 is perpendi-
cular to AmEm (theorem II). Consequently the pisecting plane oP
of the chord AOA1 goes through E . We obtain

m

Theorem XXIV: The bisecting planes of the chords of the corre-

sponding points of a plane e in its two positions e/ and &, g0
through the nullpoint E_of the middle-plane e _.

Figure 25
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2. We consider three
positions Ao, A1 and A, of
a point A (fig.26). We use
the following notations:

“E: and afz are the bisect-

a;ﬁ/////;7 ing planes of the chords

- AOAl and AA, respectively.

- The line of intersection of

Figure 26 these two planes is denoted

by ka and 1is called the

axis of curvature belonging to the three positions A, Ay, A, of

the point A.

If Ao, A1 and A2 approach each other, the limiting position of

ka is called the axis of curvature belonging to the point A with
regard to the curve described by A.

3. Let e, €, ©, be three positions of a plane e. The middle-
plane of €, and By is denoted by B, and its nullpoint by Eol.
Similarly we get €y, and E12.

A point A of the plane g gives a bisecting plane ag
E01 and a bisecting plane agz through E12. All points of e give a
series of planes through E01 and a series of planes through EIT
These series are projective and therefore the lines of intersec-
tion of corresponding planes of the two series are the bisecants
of a twistedccubic *). These lines of intersection are axes of
curvature.

This cubic has three points of intersection with a given plane
8 and hence in & lie three bisecants of the cubic. Consequently
there are three points in e which have an axis of curvature in a
given plane 8. As each plane contains three points with an axis
of curvature in 8, the locus of these points is a twisted cubic.

If 8 is the plane at infinity, an axis of curvature lies in 8
if the bisecting planes “51 and mg2 of the points Ao, Al, A2 are
parallel. Hence AO, A1 and A2 lie in one line. In the limiting
position the chord AoA1A2 becomes a tangent with a second-order
contact at A to the curve described by A. We obtain

Theorem XXV: The locus of the points in the moving space S
which have a tangent with a second-order contact is a twisted
cubic.

1

X through

¢ 8. Osculating planes with a four-point rontact
1. Let A, A, A, and A be four positions of a point A (fig.

*) Reye, Geometrie der Lage II, p. 231 (Hannover 1880)
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27). The bisecting planes of,, af,,
“53 go in general through one point
denoted by A'. To every point A cor-
responds one point A'. This point A’
can be considered as the centre of
the sphere through Ao, A1' Az, A,
Any point A of a line 1 gives
three bisecting planes through A'.
The bisecting plane of goes through
the line lgl conjugated to 1° andll;
the plane of, goes through lgz and

12
Figure 27 the plane ag3 through 123 where lo,
1, 12, 1, are four positions of 1.

The locus of the points A', if A is any point of 1, is the locus
of the points of intersection of the curresponding planes of the
pencils through 1°, 1%, and 15, respectively. As these pencils
are projective, the locus of A' is a twisted cubic *).

2. If ¢ is a given plane, this twisted cubic intersects e in
three points. Consequently onl lie three points with their corre-
sponding point in s. This holds for every line 1. Hence the locus
of the points P in the moving space S of which the centre P' of
the sphere through Po, o ¥y and P, (which are four positions
of P) lies in a given plane e is a surface of the third degree.
If ¢ is a plane at infinity, P' is a point at infinity and hence
the points Po, Py, P2 and P3 lie in one plane. If these four
points approach each other the plane through them becomes the
osculating plane with four points of contact in P to the curve
described by P. We obtain

Theorem XXVI: The locus of the points which have an osculat-
ing plane with four points of contact with the curves described
by these points is a surface of the third degree.

A point with an osculating plane with four points of contact
is called 1° a point of inflection, 2° a stationary point or 3° a
point with an osculating plane with a third-order contact.

4. The surface of the third degree of theorem XXVI contains
the twisted cubic mentioned in theorem XXV for if A, A, and A,
lie in one line, the points Ao, A, A and A; lie in one plane. "

*) Reye, Geometrie der Lage II, p. 197 (Hannover 1880)
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Chapter II

THE AXIAL REFLECTION %)

§ 1. Definitions and theorems

1. The point Pr (fig.28) is the axially reflected point of the
point P with regard to the line 1 if the line 1 intersects the
line PPr in its midpoint P' and 1 is
perpendicular to PP", The line 1 is
called the axis of reflection. We say
that P is reflected with regard to 1.
PT Any figure F is reflected with regard
to a line 1 if each point of F is re-
flected to 1. The locus of the re-
flected points gives the figure Fr,

A space 2 is reflected if each point of 2 is reflected. The
locus of the reflected points gives the space 2T, the reflected
space of 2. The spaces » and 2" are congruent. If 2 makes half a
turn around 1 it coincides with 2". The spaces 2 and 2° have the
line 1 in common.

Figure 28

2. We can reflect a point P with regard to the generators of a
ruled surface T. The locus of the reflected points P" is a curve
called the path of P'. P is called the pole of the path. As the
midpoints P' of the lines PPT are points of the generators, that
is, points of T, and as these midpoints P' are the feet of the
perpendiculars of P on the generators, it follows that the locus
of P' is a curve on I' such that, if we multiply this curve by two
with regard to P, the path of PT is obtained. The curve described
by P' is called the pedal of P with regard to the generators of T,
and the ruled surface I' is called the basic surface of the axtial
reflection.

3. We can reflect a fixed space Zf with regard to several gen-
erators of the basic surface I. Then we obtain several spaces 2'.
As all these spaces are congruent we can consider them as the
several positions of a space moving as a rigid body.

Now we take the generators g, and g; of T' (fig.29) and we rer
flect any point P of Zf with regard to g, and - respectively.
The reflected points are P; and PE.

*) Krames [4}, [s], (6].
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Let x be the common perpendicular of g, and g, Q, R and S the
projections of P, P;, P; on X; and G° and G1 the points of inter-
section of g, and g, with the
line x.

From PP; = PLP;, PP’ and X
perpendicular to g, PQ and
P;R perpendicular to x follows
PQ = PZR. Similarly we get
PQ = P;S and hence P;R = P;S,
that is, the distances of the
reflected points of P to the
common perpendicular of g, and
g, are equal.

As P is an arbitrary point
of 2., we obtain

Theorem Ia: If we reflect

Figure 29 a space 2, with regard to two

generators g, and g, we get

the spaces 2! and Z%. The distances of corresponding points of
these spaces to the common perpendicular x of g, and g, are equal.

Further, we deduce that GOR = GOQ and G,8 = G,Q. The points R
and S are formed from the points Go and Gy if we multiply R and S
by two with regard to Q. Hence RS = 2 GoGI; thus we have

Theorem Ib: The distance of the projections on the line x of
two corresponding points of 3 and 2] is twice the distance of g,
and g,.

As the lines PQ, g, P;R, g, and P;S are parallel to any plane
o perpendicular to the line x, the angles between these lines are
equal to the angles between the projection of these lines on o.
Hence the angle between P;R and P;S is twice the angle between g,
and g,. So we obtain

Theorem Ic: The angle between the perpendiculars of two corre-
sponding points of Z: and Z; on the line x is twice the angle
between g_and g,.

4. From the theorems Iabc it follows that it is possible to
determine a displacement which is composed of a rotation around
the line x and a translation in the direction of this line x such
that 2: is displaced to 2f. The angle of rotation is twice the
angle between g, and g, and the size of the translation is twice
the distance of g_ and g,.

This displacement can be obtained by a continuous motion such
that the angle of rotation and the size of translation with
regard to the line x are proportional. This motion is a screw-
motion and the line x is its screw-axis. The parameter of the
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screw-motion is the ratio of the translation and the rotation,
that is, RS : Z (PR, PiS) = G G, : Z (g,¢g,).

At any moment the velocity distribution of the screw-motion is
such that the velocity in any point P of the moving space is com-
posed of a constant component parallel to the screw-axis and a
component perpendicular to the plane through the point P and the
screw-axis, This last component is proportional to the distance
of P to the axis.

5. It is also possible to determine a displacement which re-
places the line g, to the line g, by means of a translation GOGl
in the direction of the common perpendicular x and a rotation
around this line x. Every voint of g, has in this case a transla-
tion GOG1 and the rotation around the line x is the angle between
g, and g4

Again we can obtain this movement by a continuous motion, na-
mely a screw-motion with x as its axis. At any moment the points
of the moving line have a velocity distribution equal to that of
a screw-motion. The parameter of this motion is GOG1 o (go,gl).
Now we obtain

Theorem Ila: The axial reflection of the fixed space 2, with
regard to two generators g, and g gives the spaces Z: and 2. It
is possible to determine two screw-motions with the common per=-
pendicular of g_ and g, as their common axis and with the same
parameter, namely G G, :Z (g_,g,). The one displaces Z; to Z; and
the other g_ to g,.

6. If g, approaches g_we get in the limit

Theorem IIb: The velocity distributions of the points of %" and
of the points of g at any moment are those of screw-motions. The
common axis of these screw-motions is the limiting position of
the common perpendicular of g, and g, The parameters of the
screw-motions are equal.

7. Theorem IXI: If the basic surface is a ruled surface of the
nth degree the path of the reflected points P" of any point P in
the fixed space 2, is in
general a twisted curve of
the onth degree.

This theorem will have
been proved if we show that
the pedal of P with regard
to the generators of I' is a
curve of the 2nth degree.

If p is the polarline
(fig.30) of the point at
Figure 30 infinity L of any line 1
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with regard to the isotropic conic C,, it is known that each
plane through p is perpendicular to each line through L, that is,
each line that intersects p is perpendicular to :each line through
Y.

If m is an isotropic line, its point at infinity A lies on C,
and the polarline of A is the tangent t in A at C,. Each line
which intersects m at a right angle is a line in the plane through
t and m. This plane is called the isotropic plane of m. If P is
not a point of this isotropic plane, the line PA is the line
through P which intersects the isotropic line m in A at a right
angle. The foot of the perpendicular is the point A.

As the degree of a twisted curve is the number of points of
intersection with any plane, we can consider the number of points
of intersection with the plane at infinity. The foot of the per-
pendicular to a generator of I' is a point at infinity if

19 the generator lies in the plane at infinity, or

20 the generator is an isotronic one.

We suppose that T' has no generators at infinity.

An isotropic generator is a generator which intersects the
isotronic conic C,, Because the curve of intersection K of I' with
the plane at infinity is a curve of the nth degree, there are 2n
points of intersection of K and C_, that is, I'has 2n isotropic
generators. Hence the pedal of P has 2n points at infinity, that
is, the pedal of P is a curve of the Znth degree.

If T has one or more generators in the plane at infinity the
degree of the pedal is diminished.

8. Theorem IV: If there exists a one-to-one correspondence be-
tween the points of two rational twisted curves C, and C, of de-
grees d, and d,, and the curves have p self-corresponding points
of intersection the surface generated by the lines joining cor-
responding points is a ruled surface of the degree d, + d, - p.

Proof: Let the parametric equations of C; and C, be (without
restriction the parameters can be taken such that points with the
same parameter value correspond)

X = xl(t) X = xz(t)
y =y,(8) ¥y = y,(t)
C1 )z =2zt Cz )z = m,(t)
W= w,(t) w = wz(t)

in which Xy Yo 2y and w, are functions of t of the dEh degree

and X, Yy 3, and w, are functions of t of the dgh degree.
The points of intersection of C, and 02 are given by t = t,
Thpreees tf
The equations of a line 1 connecting two corresponding points

of C1 and 02 are:
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X
y
VA

W =

mined.

tion of m be:

y=oa(+@w

Elimination of A\ gives:

thus:
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3y1+ Ny, = (X,

Z,+ A2, = (X,

. gyl—q'xl"pw1+7‘(y2"°°x2'ﬁwz)=o
Z, =~ ¥%; = &, ) =

X, (t)
y ()
z,(t)
w,(t)

e ———————

+
+
+
+

In these equations t differs from
line through two corresponding points which coincide is undeter-

The equations of 1 can be considered as the two-parametric
equations of the surface S generated by the lines which connect
corresponding points of Cl and Cz.
number of points of intersection with any line m. Let the equa-

and

The voints of intersection of S and m are given by:
+ xxz) + ﬁ(w1 + AW,)
+ AX,) + S(w, + W,

+ )\(z2

The degree of a surface is the

A, (t)
A ,(t)
A2, (t)
w,(t)

t, (k =1,2,...,p) because a

= YX + Bw.

(¥ 1m0 = BW ) (Zp= YXp=BW,) = (Z=YX =BW ) (¥ p=0X ,=pW,) = 0
The degree of this equation in t is d1+d2.
Ift-= tk we get a self-corresponding point of C, and C, and

xl(tk) :Xz(tk) = yl(tk) :yz(tk) = zl(tk) :z2(tk) = wl(tk) :wz(tk)
Substitution of these values into the last equation gives an
identity, that is, t = tk is a root of the equation and the left-
hand member can be divided by t - ty.
of t corresponding to self-corresponding points of C1 and Cz'
Therefore the left member of the equation can be divided by
(t-tl)(t-t2)...(t-tp) and the degree in t is diminished by p.
As the degree was d; + d,, it becomes d; + d, — p and thus the
number of points of intersection with the line m is d1 + d2 - D.

This holds for every value

9. Theorem V. The reflected lines p* of any line p of the fix-
ed space 2, with regard to the generators of a ruled surface T' of
the nt degree generate a ruled surface of the o th degree.

Proof: If we reflect two points A and B of the line p we get
the paths of AT and B*, a’ and b' say. By means of the reflection
of p a one-to-one correspondence is determined between the points
of a’ and bf. The curves a’ and b* have 2n points of intersec-
tion, namely the points at infinity. These points are sel f-
corresponding points. The degree of

a’ and bf is 2n. From theorem



IV it follows (as d1-2n, d2=2n and p=2n) that the degree of the
surface generated by the reflected lines p’ is 2n+2n-2n = 2n.

$ 2. A hyperboloid as basic surface

1. As a hyperboloid H with one sheet has two series of genera-
tors, it is necessary to consider only one of these series if we
use this quadric as a basic surface. The hyperboloid H has four
points of intersection with the isotropic conic, for its curve at
infinity K is a conic. The four generators (belonging to the con-
sidered series) which go through these points are the isotropic
generators Y; (i=1,2,3,4) (fig.31). The plane T; through Y; and

Unglmetmmmttim
the isotropic conic Cy, in
. the point at infinity Ai of
1 Ay Y; is the isotropic plane
t ¢ belonging to y,. The hyper-
boloid H has four isotropic
Ay ty planes.

As the points Ai are
conjugate complex two hy
Py Tal  Yal|Y1 Y2 By twof the corresponding iso-
tropic planes are also con-
jugate complex. Therefore
Figure 31 two of the lines of inter-
section of these planes are

real; they are called the focal axes of the hyperboloid H.

The focal axes are denoted by b, and b,; bl is the line of in-
tersection of the isotronic planes Ty and Ty and b, the one of Ty
and Ty The points at infinity Al and A2 are conjugate complex
and so are A, and A,.

2. 1f we reflect any point P with regard to the considered
series of generators of H, we deduce from theorem III (as n=2)
that the path of P" and thus the pedal of P are twisted curves of
the fourth degree. If P is a point of the focal axis b1' P lies in
the two isotropic planes T, and 12.'Each line in an isotropic
plane T is perpendicular to the isotropic generator y of T (see
§ 1.7). It follows that each line through P that intersects Yy
Y, respectively is perpendicular to Yo Ya respectively, that is,
Y, and y, are lines which belong to the pedal of P, (The line PA,
makes an undetermined angle with Yy that is, A1 belongs to the
pedal of P). Hence the twisted curve generated by P’ degenerates
into two lines and into a curve of the second degree.

If P is reflected with regard to the two other isotropic ge-
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nerators y, and y, we get the points A; and A,, namely the points
at infinity of these generators. As these points belong to the
curve of the second degree, we conclude that this conic is a cir-
cle, Each point of b, gives a path which is @ circle. All these
circles have the same isotropic points A3 and A4 and therefore
their planes are parallel.

3. Two points R and S of b1 give on reflection two circles.
Between the reflected voints R and ST there exists a one~to-one
correspondence. The lines connecting two corresponding points are
reflected lines of b,. From theorem IV it follows that the ruled
surface generated by the reflected lines of b, is a surface of
the second degree for the curves C, and C, are now circles, that
is, d1 s Qg = 2 and these circles have two self-corresponding
voints of intersection (A3 and A,), that is, p = 2. The degree
becomes d1 + d2 - p=2+ 2 -2= 2. This quadric is denoted by
A,. As A, is a surface generated by skew lines and has no gener-
ators in the plane at infinity the quadric A, is a hyperboloid.

4, Let the distance of the two points R and S of b1 be denoted
by d (fig. 32). Hence the distance of the reflected points R* and

ST is also d. The two cir-

cles C, and C, described hy

€
Rf and ST respectively lie
in two parallel planes, CH
A and &, say. Let p be the

distance of g, and P The
d 0 angle o between R*ST™ and
the plane €, is given by

A s sin oo = p : d. As p and d
are constant o is also

c, constant.
Let M be the centre of

A, The cone generated by

Figure 32 the lines through M paral-

lel to the generators of A,

is the asymptotic cone of A,. As o is constant, the cone is a

surface of revolution and therefore A, is a hyperboloid of revo-
lution.

Consequently the conic at infinity K of A2 has only two points

of contact, namely A, and A,, with Cg

5. Theorem VI: The focal axis b, of the hyperboloid H is the
axis of revolution of the hyperboloid A, generated by the re-
flected lines of the other focal axis b with regard to the gen-
erators of H.
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Proof: Let the points of
intersection of b, with the
isotropic planes T, and Ty
be U, and U4 (fig.33). Each
line through U, and a point
of ¥s is perpendicular to
Ys that is, y; belongs to
the pedal of U,. If U, is
reflected with regard to y,
we get another isotropic
line YL through A, and lying
in the plane t,. As yj is
Figure 33 an isotropic generator of
A, the plane <, is a tan-
gent plane of A,. Nowthe conic at infinity K of A, has two points
of contact with C, and therefore the tangent t, on C, in A; is a
tangent of K. As T, goes through the generator Y; and through t3
the point of contact with &, is A;. Similarly A4 is the point of
contact of T, with A,. Now b, is the line of intersection of the
tangent planes <, and T, and hence the lines b, and A3A4 are
conjugated polarlines. The conjugated polarline of the line at
infinity of the planes through the circular sections of A2 is the
axis of revolution of Ay Consequently b2 is the axis of A,.
It is evident that b1 is the axis of revolution of the hyper-
boloid Ay generated by the reflected lines of b, with regard to
the generators of the hyperboloid H.

$ 3. Focal axes of a hyperboloid with one sheet

1. Let the equation of the hyperboloid be:

i = ] with a > b,

The equations of one of the series of generators are, if we use
homogeneous coordinates:

X Z y
_— e — = ——
a ¢ AW b)
(1)
X _zZ_ .l(w +_Z)
a c A b
and the equations of the isotropic conic Cg:
x? + y2 +z%2=0
(2)
W=o0
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Elimination of X, y, z and w out of (1) and (2) gives the condi-
tion that a generator intersects Cy:

Substraction and addition of the equations (1), after taking
w = o, gives:

¢ 1 a 1
= e Wil 4 and X ==—y(=—- 2\
Z T J()\ n) 25 Y(x )y (3)

Substitution of the expressions (3) in (2) gives the condition:
21 _ 4y2 bl 4 el & 22 4
a ()\ N2+ 4 ¢ <>\ ) o

or: 2@+ c?) + 202(-a?2+ 202+ ¢c?) + (a?+c?H) =o0

N Va? - b+ i vb? + c?

or: = 4 —

1234 a8 & o

These four values of 7, successively substituted in (1) give the
equations of the four isotropic generators (belonging to the con-
sidered series) of the hyperboloid.

2. If we take

" Va2 — b2 + i vVb% + c? " " va? - b? - i vb%+ c?
= . an -
b Va? + ¢? g Va? + ¢?

which are two conjugate-complex values, we obtain two conjugate
isotronic generators, A and N, say. Obviously we have:

The isotropic plane Ty through A, goes through the tangent t1
to C, at the point at infinity Al of Yqe

The coordinates of A, follow from (3) if we take A = M and
for instance y = '27‘1b' This gives:

2 : . .
A, {fa(a2 - 1) ; -2ab; c(a2+ 1) ; o}
The equations of the tangent t1 at Al to C, are:
a (32 -1) x - 2x,by + c(a2+1) z=o0)
| (4)
wW=o0

The plane Ty is the plane through t1 and an arbitrary point of
Y, Therefore we take in (1) for instance y = o and w = 1 which
gives the following point on Yy

1 WP 1 .
{Vza(rl—‘* }\1) y 0, - II/ZC(T" )\1) ’ 1} .
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The equation of Ty is, using non-homogeneous coordinates:

1 1
a(n?-1) {x-%a(=+2r)} -2x by +c(A?+1) {z +%ec(— - 1) =
| A 1 1 1 )‘1 1
or: 2 2
2 2 2~ * 4
::1()\l - 1)x - leby + c(x1 + 1)z = — — (xl - 1) (5)
20
1
Similarly the equation of the isotropic plane T, ist
2 2
a‘“+ c
a(Al - Dx - 2x,by + ¢c(A) + Dz=——— (A3 -1  (6)
2%2
3. The focal axis b1 is the line of intersection of the iso-
tropic planes T, and T,. After dividing (5) by A, and (6) by A,
and after addition and substraction we have for the equations of

bl:

=%/(a2+c2)(a - b?
z-b fa'+c?
Cc y 3.2 . b2
z Similarly we get for bf
X = —_a{-x/(a2+c2)(a2—b2)
b /2 2
Z = —_b_ u
. g, c aZ - p2
\\1 So we obtain: The focal
g axes bl and b, of the hy-
G, B aNB1 x perboloid
e e % x* ¥y’ 2’

a2 b2 c?
(where a > b) intersect the
x-axis at a right angle in
Figure 34 the points B (e;0,;0) and
B (-e;0;0), if we write
1 2
briefly e =E/(a2 + c)(a? - b? (fig. 34).

$ 4. A movable quadrilateral

1. Let g, be the generator of the considered series which goes
through one of the vertices G, on the major axis (x-axis) of the
hyperboloid H. As g1 and b are perpendicular to the x-axis the
reflected line b, lof b, w1th regard to g, intersects the x-axis
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at a right angle. Therefore the x-axis is the common perpendieu—
lar of b, "1 and b,. As blrl is a generator of the hyperboloid of
revolutlon A w1th b as its axis and the common perpendicular
of b, "1 and b 1ntersects b, in B,, we conclude that B2 is the
centre of A,.

The reflected point B 1 of B, with regard to g lies on the
x-axis. As B, 18, is the shortest distance of the lines b, ! and
b,, the point B, 1 is a point of the minimum circle of A, If B]
is reflected to all generators of H the path of the reflected
point B’ is this minimum circle.

Slmllarl" we have that the path of B ts the minimum circle
of the hyperboloid of revolution A, with b as its axis and B, as
its centre. From the symmetry follows that the hyperbecloids A,
and A2 are congruent.

2. If we reflect (fig. 35) the figure formed by b,, b, and its
common normal BB, with regard
to any generator g of the
hyperboloid H, we obtain the
reflected figure formed by
b;, b; and its common normal

;Ble.

As B7 is a point of the
m1n1mum c1rcle of A,, the line
B B is the common perpendic-
ular of b and b,. Similarly
B B, is the common perpendicu-
lar of b and b,. The lines

Figure 35 B B, and 8;82 are equal for
Al and A, are congruent.

If g is a moving generator of H, the quadrilateral B B2RIB2
moves, except tbe fixed lines b,, b, and B,B,.

During the motion the quadrilateral has the following proper-
ties:

1. its opposite sides are equal and constant,

2. the lines bx' b2, b;. b; are in each position perpendicular
to the adjacent sides,

3. the angle between b and b, is equal to the angle between
b and b and therefore thlS last angle is constant,

4, the angle between b and b is constant, because b is a
generator of the hyperb0101d of revolutlon A, with b as 1ts axis
and this angle is equal to that between b and b for A, and A
are congruent.

From these properties we draw the conclusion that tf the four
sides of the quadrilateral BIBZB;B; are material rods and if they
are joined in the vertices by hinges, such that the lines b,, b,,
b;, b; are hinge-axes, the quadrilateral is movable.
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Chapter III

THEOREMS ON
THE SKEW ISOGRAM MECHANISM %)

¢ 1. Degrees of freedom of a skew n-gon

1. We consider (fig. 36) a skew n-gon AA, ... A _, of which
the sides are rods, and these rods are hinged in the vertices.
The hinge-axes are supposed to be in rigid connection with the
rods. In each vertex Ap the hinge-line (or hinge-axis) hp is per-
pendicular to the rods through that vertex. Each rod with its two
hinge-axes is called a link of the n-gon. The angle P, (p=0,1,
, n-1) is the angle between the two rods through the vertex

A,
P

2. To find the number of degrees of internal freedom of the

n-gon we construct the figure in the following way:
Let AOA1 with its hinge-
lines h0 and h, be a fixed
link.
If the link AIA2 is hinged
to this fixed link AOA1 we
obtain a mechanism with one
degree of freedom, for the
angle P, between the two
links gives the position of
the mechanism. If we con-
tinue this procedure untill
Figure 36 the nth rod An_1 A is
hinged to the (n - 1)th rod
An_2 An_l,we obtain a mechanism with (n - 1) degrees of freedom.
The carthesian coordinates (x, y, z) (with regard to the fixed
space) of the points of the rod An_1 An and of the hinge-line hn
are functions of the angles ¢,, @, ¢ee @, _;e
The following conditions have to be satisfied:
1. Ao and An must coincide,
2. ho and hn must coincide
or:
1 A° and An must coincide,
2. Any point Pn of hn that does not coincide with An must lie

on h .
Le]

*) Bemnett [1], [2]:
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The first condition gives three relations between the angles
@y @y -eo @, _, and the second one gives two relations between
these angles. Hence there exist 5 relations between the (n - 1)
angles, that is,(n - 6) angles are independent. The position of
the n-gon is given by (n - 6) data, that is, the mechanism has in
general (n - 6) degrees of internal freedom. This is a special
case of the so-called Griubler-formula.

3. If n = 4 the skew n-gon is a aquadrilateral. From the for-
mula follows that this mechanism is triply stiff. We obtain a
quadrilateral which is not rigid only if special conditions are
fulfilled.

A sufficient condition is that the four hinge-axes are paral-
lel. The quadrilateral is then a plane one and it is well-known
that it is movable with one degree of freedom.

We get another case if the opposite sides are equal. This
quadrilateral has been considered in a paper of G.T.Bennett in
1903, who called it a skew isogram mechanism.

§ 2. Sufficient conditions for a quadrilateral to be movable

1. Let the quadrilateral be denoted by ABA'B' and the hinge-
lines in its vertices by
h, k, h', k' respectively
(fig. 37). We take the rod
AB with its hinge-lines h
and k as a fixed link. If
AB = A'B" = b and A'B =
= AB' = a we obtain a qua-
4 drilateral with equal op-

nosite sides. To prove that
\ this quadrilateral is mov-

able, we suppose first that
the hinge-joints in A' and B' are replaced by ball-joints. It is
evident that in this case the quadrilateral is movable (Grubler-
formula).

9. Let (fig. 38) N be the midpoint of AA' and M that of BB'.
The triangle AMA' is isosceles, as AM and A'M are corresponding
medians in the congruent triangles ABB' and A'B'B. Likewise the
triangle BNB' is isosceles. Hence MN is perpendicular to AA' and
to BB', that is, MN is the common normal of the diagonals AA' and

Figure 37
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BB'. As AN =NA' and BV =MB'
the axial reflection of AB
with regard to the line MN
gives A'B'. The line MN is
an axis of symmetry of the
quadrilateral and ts called
the s-axis.
The hinge-lines h and k
of the vertices A and B give
Figure 38 by reflecting with regard
to the S-axis the lines h'
and k' through the vertices A' and B'. The line h' is perpendicu-
lar to the two rods through A' and the line k' to the rods
through B'. As the angle between h' and k' is equal to the angle
between h and k and this last angle is constant during the motion
of the quadrilateral, it follows that the angle between h' and
k' is constant. However, we have still to prove that the angles
between h' and k and between h and k' are constant.

3. Let O be the midpoint of A3, We have: OM is parallel to
AB', ON is parallel to BA' and OM = ON = %a. As the planes ABB'
and ARA' are fixed planes the points M and N describe circles if
the quadrilateral moves. Between the points M and N of these
circles there exists a one-to-one correspondence and the points
of intersection of these circles are self-corresponding points.
Hence the surface generated by MV is a quadric, namely a hyper-
boloid H (Chapter II, theorem IV). As the line AB is the common
diameter of two circles on H it follows that AB is an axis of H
and from the symmetry it follows that O is the centre of H.

The path of the reflected point A* of A with regard to the
generators MN of H is the circle described by A'. Therefore A is
a point of a focal axis of H (Chapter II, § 2.2). As h is per-
pendicular to the plane of the circle on H described by N and as
h goes through A, h is a focal-axis of H. Similarly we get that k
is a focal-axis of H.

4. Now we have the same problem as given in Chapter II, § 4,
Hence the angle between h' and k is constant and so is the angle
between h and k'. The ball-joints in A" and B' can be replaced by
hinge-joints with h' and k' as their axes. We bave proved that
the conditions AR = A'B' and A'B = AB' are sufficient conditions
for the quadrilateral to be movable,
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§ 3. Necessary conditions for a quadrilateral to be movable

1. Let the sides of the quadrilateral ABA'B' be: AB = a;
BA' = b; A'B' = ¢; B'A=d (fig. 39). A is the origin of a system
of coordinates, B is a point of the X-axis and the hinge~-axis h
in A coincides with the Z-axis. The angle between the hinge-axis
k in B and the plane X0Z is o, where o < o < m. Consequently the
point A' moves in the fixed plane ABA' which is the plane through
AB such that the angle between this plane and the plane X0Y is o

Let the angle BAB' be denoted by ¢, the angle B'A'B by &, the
angle ABA' by m - y and the angle A'B'A by n — e. The projection
of A' upon the plane XOY is denoted by A", the projection of B'
upon the plane ABA' by B', the projections of A' upon AB and AB'
by P and Q respectively and the projections of B' upon AB and A'B
by R and S respectively.

2. We suppose that the
quadrilateral, which 1is
hinged in its vertices is
movable. The angles A'QA" =
and B'S'B" = y are constant
during the motion, for B is
the angle between the hinge-

Z

\
h axes of A and B' and y is
8 the one between the hinge-
Figure 39 axes of B and A', As A'A" =
Y, = A'P sin o = b sin y sin o
and A'A" = A'Q sin B8 = ¢ sin e sin B we obtain
b sin y sin o = ¢ sin & sin §
or:

sin & _ b sin «
sin y ¢ sin §
sin e

As b, ¢, o and B are constant, is also constant during the

motion. We write:

sin ¢

: =D (1)
sin y
The cosine-law in the triangles ABA' and A'B'A gives:
a2+ b2+ 2ab cos y=c? + d? + 2cd cos e

or, briefly written,

COs & =QCOS y+ r (2)
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ab a?+ p? - c?-a?
where q =—— and r=
cd 2cd

Elimination of ¢ from (1) and (2) gives:
1 =p? sin?y + q? cos?y + 2qr cos y + r?
or: (q? - p? cos?y + 2ar cos y + r2+p2 -1=0

If the quadrilateral is movable this equation has to be an
identity with regard to vy, that is,

g2 -p?=o0; 2qr = o ; r?+p?2-1=o0

As q is unequal to zero the second condition gives:

r=o0
We get: p2=q?=1; r=o0.
As q is positive we obtain:
qQ=1; r=o.
or: ab = cd ; a2+ b%2=1c2+ d2 (3)

Similarly we get if we use the cosine-law in the triangles
B'AB and BA'B' and the relations: B'B"=d singsino=c sin g siny:

ad = bc and a2+ d%2= b2+ c? (4)
From the four relations (3) and (4) follows immediately:
a? = c¢2? and b2 = d2
or: a=¢c and b=d
We obtain: Necessary and sufficient conditions that a skew qua-

drilateral hinged in its vertices be movable are: the opposite
sides are equal.
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§ 4. A relation between the twists and the sides

1. Let (fig. 40) APAp+1 be a link with its two hinge-lines hp
and h We shall give these hinge-lines a direction. The twist
of the link ApAp+1 is the

angle of rotation of a

right screw-motion with

A A as its axis which

\\x repfaces h to hp+1. This

P Apr1 angle is equal to that of

rJ Nh\\\ the right screw-motion with

A A as its axis which

ptl 'p

s h h .
Figure 40 raplace p+1 e P

2. Let (fig. 41) ABA'B'
be a movable quadrilateral hinged in its vertices, briefly called
a quadrilateral of Bennett or an isogram. The twists of AB' and
AB are denoted by (2n — o) and B respectively and the opposite
sides AB = A'B' by b and AB' = A'B by a. The points A, B, A', B'
can be considered as the
vertices of a tetrahedron.
Two planes go through each
of its edges. As h is nor-
mal to the plane B'AB (plane
e,) and k is normal to the
plane ABA' (plane e,), the
angle between h and k, that
is, the twist B8 of the link
AB, is equal to the angle

Figure 41 between €y and By Similar-
ly the angle between ey, and
€ ! (plane A'B'A) is equal to the twist (2 — o) of the link AB'.

In § 2 we proved that the line MN connecting the midpoints M
and N of the diagonals BB' and AA' is an axis of symmetry (s-
axis) of the figure. From this symmetry follows the theorem:

The twists of the opposite links are equal.

If the quadrilateral moves with AB as its fixed link the
twists are constant during the motion and so are the angles be-
tween the two planes through each of the four sides. For this
reason the quadrilateral is called an isogram.

p+1°

3. If (fig. 42) E is the projection of A' on the plane e, F
and G the projections of E on AB and AB' respectively we state
that the angle A'GE is the angle o between the planes s, and g 1

h
Similarly the angle A'FE is B. From the congruence of the tr1-
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angles ABA' and A'B'A we
conclude that the angles
ABA' and A'B'A are equal,
0 say.

In triangle BFA' we have
A'F = a sin 0 and in tri-
angle EFA' we have: A'E =
= A'F sin B. Hence A'E =
a sin 6 sin B. ra

Similarly we obtain*in
Figure 42 the triangles B'GA' and
EGA':

A'G = b sin 6, A'E = A'G sin o and hence A'E = b sin 0 sin o

The two expressions for A'E give:

a sin 6 sin o = b sin 6 sin 8

or:
a b b
or - B = *)

sin oo sin B sin(-) sin B

We obtained the theorem:
In an isogram the ratio of the length of a link and the sine
of its twist has the same value or the opposite value for each

link.

§ 5. A relation between the angles of the isogram *)

1. In figure 43 (which is the same as figure 42) we denote the
angles BAB' and B'A'B by ¢. Projection of the line AGEF upon the
line AB gives:

AF = AG cos ¢ + GE sin ¢

or: b+ acos(n—0) ={a+ bcos(n~-0)} cos ¢+
+ b sin 6 cos o sin ¢

or: b-acos = (a—-bcos 0) cos ¢+ b sin 6 cos o sin ¢ (4)
The projection of the line AFEG upon the line AB' gives:
AG = AF cos ¢ + FE sin ¢

or: (a —bcos 6) = (b—-acos 6) cos ¢ + a sin 6 cos B sin ¢ (5)
*) Macmillan [13].
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Addition of the equations
(4) and (5) gives:

(a+b)~(a+b) coso =
= (a+b) cosg - (a+h) cose cosgp

+ sind sing (b coso + a cosp)

or:

(a+b) (1l-cose) (1l-cosyp) =
= sin6 sing (b cosa + a cosP)

Figure 43

or:

(a+ b) . 2sin? %0 . 2 sin? %o =
= 2 sin %0 cos %8 . 2 sin Yxp cos %2p (b cos « + a cos B)

or: tan %0 . tan %o = (b cos a+ a cos B) : (a+ b) (6)

As a, b, o and B are constant during the motion we obtain the
theorem: The product of the tangents of the adjacent semi-angles
of a moving isogram is constant.

2, Since a : sin o = b : sin B the equation (6) becomes:

tan %0 tan % = (sin B cos « + sin a cos B) : (sin « + sin B)
= sin(o + B) : 2 sin %(a + B) cos %(a - B)
= cos %(a + B) : cos (o - B)
= (cos %o cos %B — sin Yo sin %2p)
(cos %o cos %B + sin o sin 12p)

1 — tan %o tan %p
Yo, tan

1 + tan % %p

By aid of this expression we shall develop a planimetric con-
struction to find corresponding values of 6 and ¢ if the twists

o and @ are given.
2 2

3. Let lz +yTZ = 1 be the equation of an ellipse such that the
a

excentricity e = ji-va2 - b? is equal to tan ' . tan %@, where
27 ~ oo and B are the twists of a given isogram (fig., 44).

Any point P of the ellipse is connected with the foci F; and
F,. The angles PF1F2 and PF‘ZF1 in triangle PF,F, are denoted by
o' and ¢'. We write PF, = r and PF, = r,, We have the following
relations:

2¢
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= 2va?2 - b2 = 2¢ and e=c: a,

r. +r, = 2a ; F‘1F2

The sine-law in triangle PF1F2 gives:

r,: sing' =r

. . e 1
) sin ' = 2c : sin(¢' + 0")

2

From r, + F, = 2a follows:

1

: T . 3 Iy _
r,+ 7T, (sin @' :sin ¢') = 2a

or

r, = 2a sing': (sing'+sin@")
Substitution in r,: sin ¢' =
Figure 44 = 2c : sin (¢' + 0") gives:

2a sin o' : sin ¢' (sin ¢' + sin 8') = 2¢ : sin (¢' + 0")

or a: 2 sin %(¢' + 8') cos %(p' - 8" =
= c: 2 sin %(g' + 8") cos K(¢' + 0")

or a(cos o' cos %0' - sin o' sin 10') =
= c(cos %' cos %O' + sin %' sin %e'")

or tan %e' . tan hy' = (a -¢c) : (a+ c)
(1=8e): (1L+e)
(1 - tan %o tan %p): (1 + tan %o tan %p) .

In 2 we found that this last expression was equal to tan %6 tan %
If we take ' = 6, we obtain ¢' = ¢, that is, ©' and ¢' are the
corresponding values of the adjacent angles of an isogram.

$ 6. Quadrics associated with the isogram

1. The internal angle bisectors of the angles of the isogram
ABA'B' (fig. 45) are denoted by h,, k,, h'l and k] and the exter-
nal angle bisectors by h2, kz, h'2 and k;. The plane through an
angle bisector and the normal through the vertex upon the plane
of the angle is called a bisecting plane. The internal bisecting
plane of the angle A is the plane through h and h,. It is denoted
by €1 The plane &y 2 is the external bisecting plane of A and it
goes through h and h,. Likewise are defined the planes & 1

e 1, .1, g1 and g, 1.
hy’ “hy' Tky k)

B2
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From the symmetry of the figure
with regard to the s~axis follows
that the planes ¢, , and ah; inter-
sect each other by a line, r, say,
such that r, intersects the s-axis
in the point C, at a right angle.

As C1 is a point of €1 the dis-
tances to AB and A'B' are equal and
as C, is a point of g, | the dis-
tances to A'B and to A'B' are equal.
As C, is a point of the s-axis the

Figure 45 distances to AB and to A'B' are

also equal, that is, the distances

of C, to the four sides (or their extensions) are equal, C1 can
be considered as the centre of a sphere touching the sides of the
isogram. Similarly the internal bisecting planes e, , and e | in-
tersect the s-axis in the point C, which can also be considered
as the centre of a sphere touching the sides. The line of inter-
section of €y and sk' is the line r, through C, perpendicular to

1
the s-axis.

1

2. If a skew quadrilateral A3CD has a sphere which touches
the sides in voints between the vertices, the relation AB + CD =
= BC + AD must hold. As an isogram is a quadrilateral with equal
opposite sides it has not such a sphere, unless the four sides
are equal.

Al Let the points of contact of
the sphere around C, with the
sides be P, Q, P', A' (fie.
46). ¥rom the symmetry fol-
lows: AP =A'P' and A'Q=AQ'.
Consequently we get: PR =P'RB'
and R = 2’87,

As AP = AQ' (two tangents

a3 B
P through ® to the sphere) we
Q obtain AP = A'Q,
Figure 46 If we write AP = A'Q = x
we get:
® = |x ~ bl and RY = |x - al
As BP = BQ (two tangents) we have:
|x - b‘ = ‘x - a|
or: X = Wh(a + b)
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If b >a, P lies on AB and Q lies on the extension of A'B and
if b < a, P lies on the extension of AB and Q on A'B., Hence the
sphere with C, as its centre touches either AR and the extension
of A'B or A'3 and the extension of AB. Therefore the plane ¢,
goes through C,. So does the plane e, ,.

The line PQ goes, as follows from Menelaos theorem in triangle
ABA', through the midooint N of AA'. As P'Q' also goes through N
the lines PQ and P'Q' lie in one plane. The same theorem used in
triangle ABR' gives that PQ' goes through M. P'Qalso goes through
M.

As PQ' is parallel to h, we get that PQ' is normal to e, , and
as r, lies in €, We obtain: r, is normal to PQ'. As P'Q is par-
allel to h; we get likewise: r, is normal to P'Q. Hence r, is
normal to the plane PQP'Q', that is, r, is pervendicular to PQ,
PQ is normal to the external bisecting plane e, , and consequently
r, is parallel to €y 2° As r, and €9 80 through the same point
C,, we conclude that e , goes through r,. Similarly e ; goes
through r.

Analogously we obtain that the planes P eh;, €4 1’ ek; g0
through the line r, which intersects the s-axis at a right angle
in the point C,. We derived the following

Theorem: The internal bisecting planes of two opposite angles
of the isogram ABA'B' and the external bisecting planes of the
opposite angles go through one line r which intersects the axis
of symmetry in the point C at a right angle. This point C can be
considered as the centre of a sphere which touches the sides (or
their extensions) of the isogram. The four points of contact lie
in one plane which goes through the axis of symmetry and is per-
pendicular to the line r. We get two points C namely C, and C,
with their corresponding lines ry and r,.

As h lies in ¢, ,, k in g, ,, h' in g, ; and k' in €y 2
these planes go through the line r,, we obtain the

Theorem: The four hinge-lines of an isogram intersect the
lines r, and r,.

Further we conclude:

The locus of the centres of the spheres which touch the sides
(or their extensions) of an isogram consists of the lines r, and
r,a *).

3. If the line AB rotates around the line r, a hyperboloid of
revolution R1 is generated. As the plane &, g0es through r, and
the lines AB and AB' are symmetrical with regard to this plane
€y 12 AR' generates the same hyperboloid R, when rotating around
r,. As g _, goes through r, and the lines AB and A'B (with their

k k

and as

*) This theorem is a completion of the theorems of Bennett.
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extensions) are symmetrical with regard to this plane, A'B lies
on R,. From this follows that A'B' also lies on R,. As g,; goes
through r, and A'B and A'B' are symmetrical with regard to ehL
AB and A'B' belong to one of the series of generators of R, and
A'B and AB' belong to the other series.

Similarly we have an hyperboloid of revolution R, with r, as
its axis on which the four sides of the isogram lie. So we get
the

Tneorem: There exist two hyperboloids of revolution R, and R,
with the four sides of an isogram as generators. Their axes are
the lines of intersection of the internal bisecting planes of

opposite angles of the isogram.

4. The sides AB and AB' are generators of R, and R2° As these
generators intersect each other the plane e, through AB and AB'
is a tangent plane of R, and of R,. The point of contact is A.
The angle bisectors h, and h, of the angle BAB' lie in the plane
&y, and go through the point of contact. Consequently they are
tangents to R, and R2. Generally we have that each plane through
two adjacent sides of the isogram touches Rl and R, in their
common vertex. So we have: The internal and external bisectors of
the angles of an tisogram are tangents to the hyperboloids of

revolution B1 and R,.

5. In 3 we showed that ry (the line of intersection of €1 and
eh;) is perpendicular to the plane PQP'Q', where P, Q P' and Q'
are the points of contact of the sphere with c, (the common point
of r, and the s-axis) as its centre touching the sides of the
isogram.

As (fig. 47) PB = BQ, the line PQ is parallel to k1' Similarly

s~axis

50 Figure 47




P'Q' is parallel to k!. As AP = AQ' and A'P' = A'Q we get: PQ' is
parallel to h2 and P'Q is parallel to h;. Hence r, is perpendicu-
lar to k, k;, h, and h;, that is, these lines are parallel to a
planenormal to A for instance theplane PQP'Q'. As these four lines
intersect the lines AA' and BB', they can be considered as gener-
ators of a paraboloid. The lines lie in the planes By 1 sk;, €y, 2
and eh; respectively. These planes go through the line r, and
therefore the lines k , k;, h, and h; intersect r, Hence r, is
a generator of the paraboloid denoted by I,. The s-axis inter-
sects the generators AA', BB' and r, and consequently this axis
is also a generator of I, The lines AA', BR' and r, are perpen-
dicular to the s-axis. Therefore a plane normal to the s-axis is
a direction-plane of the paraboloid. As the plane PQP'Q' is also
a direction-plane and the two direction-planes are perpendicular
to each other, the paraboloid I, is a rectangular one.

Similarly the lines h,, h;, K, k; and the s-axis can be con-
sidered as generators of a rectangular paraboloid M. The line
r, lies on T,. The paraboloids I, and Il, have the s-axis and the
diagonals AA' and BB' in common. We obtain the theorem: The in-
ternal angle bisectors of two opposite angles, the external angle
bisectors of the other opposite angles and the axis of symmetry
(s-axis) of an isogram belong to one of the series of generators
of a rectangular paraboloid T. The diagonals of the isogram be-
long to the other series of generators.

6. If we take a pencil of planes through r, and a pencil
through r,, we can consider the lines of intersection of the
planes of the first pencil with the planes of the second one
which are perpendicular to the first planes. We observed in Chap-
ter I, § 6.3 that the locus of these lines of intersection is a
hyperboloid Q. We quote the following well-known theorems of this
quadric:

1. The common normal of r, and r, is an axis of ¢

2. The points of intersection of this common normal with r,
and with r, are two vertices of Q

3. The curves of intersection of Q with planes normal to r,

or to r, are circles;

4., The generators through the vertices on r, and r, are normal
to the planes of these circles. A hyperboloid with this quality
is called an orthogonal hyperboloid.

The internal and external bisecting planes of an angle of an
isogram have the hinge-line through the vertex of that angle in
common. These planes are perpendicular to each other. One of them
goes through " and the other through Consequently the hinge-
lines lie on the orthogonal hyperboloid Q and we obtain:
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The four hinge-lines of an isogram are generators of an ortho-
gonal hyperboloid Q. One of its axes is the part of the s-axis
limited by the points Cl and C2 which are the points in which the
internal bisecting planes of the isogram intersect the s-axis.

7. Let (fig. 48) T be the projection of C1 on the plane BAB'
(or ;) and U the projection of C, on this plane. As the line
C,C, (s-axis) is perpendicular to BB', its projection TU on g, 1is
also perpendicular to BB'. As C, is a point of r, and r, lies in
the plane €1 which is perpendicular to H T lies on h,. As C,
lies in the plane By 2 and this plane is perpendicular to g U
lies on h,. In the plane figure ABB' the internal bisector and

the external bisector of the angle A of triangle ABB' intersect

B' ;

Figure 48
Cy;

the line which intersects BB' in its midpoint M at a right angle
in the points T and U such that TU is a diameter of the circum-
scribed circle of triangle ABR'., Its centre is the midpoint V of
TU. The normal through V upon the plane ABB' intersects the line
CIC2 in its midpoint D. The distances of D to the points A, B and
B' are equal, and as D is a point of the s-axis, its distances to
the four vertices of the quadrilateral are equal. Hence D is the
centre of the circumscribed sphere of the isogram. We obtain the
theorem: The centre of the sphere through the vertices of an
isogram is the midpoint of the line limited by the points of
intersection C; and C, of the internal bisecting planes of the
angles of the isogram with the s-axis.

From 6 follows:

The centre D of the sphere through the vertices of an isogram
coincides with the centre of the orthogonal hyperboloid Q which
contains the hinge-lines.
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$ 7. The motion of the side A'B' to one of its nullpositions

If we reflect (fig. 49) A'B' with regard to the internal bi-
sector h' of the angle B'A'B of the isogram ABA'B' we get the
line A'B]. We state that A'B; = A'B' = b, If we reflect A’B; with

Figure 49

regard to the external bisector k2 of the angle ABA' of the iso-
gram we obtain the line A;B; lying on the extension of AB., We
notice that A'B) = ALB; = b. As BB] = a — b and BB} = BB we get
AB; = AB + BB; = b+ (a -b) = a, The four points A, B, A;, BL
lie such that AB = A'B! = b and A!B = AB! = a. The degenerated
quadrilateral ABA'B! can be considered as a special position of
the given isogram ABA'B'. The positions in which one of the an-
gles of an isogram is zero are called the nullpositions. An iso-
gram has two nullpositions namely if Z B'AB = o or if Z ABA' = o.

Now we consider the problem in the following way:

Take the point B; on A'B such that A'B; = AB = b. Reflection
of the line A'B; with regard to the skew lines h) and k, gives
the lines A'B' and A;B;. We showed in chapter II, O 1 that it is
possible to determine a screw motion with the common normal of
h] and k, as its axis, which replaces A'B' to A;B;. As the skew
lines h; and k2 are perpendicular to the line r, (§ 6.5), the
screw axis is parallel to r,. We obtain:

A screw motion with the common normal of the internal angle
bisector of A" and the external bisector of B as its axis can be
determined such that A'B' can be replaced to A'B' if the figure
ABA'B! is a nullposition of the isogran.
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§ 8. The screw-axis of a small displacement of A'B'

As usual we take AB as the fixed link of the isogram ABA'B'.
If the figure moves the axis of symmetry (s-axis) generates, as
we showed in § 2 a hyperboloid H. We consider two positions of
A'B', (A'B‘)1 and (A'B')2 say. Let the corresponding positions of
the s-axis be s, and S 5e

Axial reflection of AB with regard to s, gives (A'B‘)1 and
with regard to s, it gives (A’B’)z. Therefore the positions
(A‘B')1 and (A‘B')2 can be obtained by a screw-motion with the
common normal n,, of S, and S, as its screw-axis.

If (A‘B')2 approaches (A‘B')l and therefore s, approaches s,
and we denote the limiting positions by A'B' and s respectively
and the limiting position of n,, by n, we get in the limit: The
instantaneous screw-axis of the motion of A'B' is the line n.
This line n can be determined if we give the following remarks:

1. The locus of the limiting points of intersection of the
common normal of two near-by generators of a ruled surface is its
line of striction. The point of intersection of the line of
striction with a generator is called the central point of this
generator. If we have a ruled surface of the second degree there
are two series of generators and hence there are two lines of
striction.

2. The plane through a generator g, and parallel to its near-
by generator g, is perpendicular to the common normal n,, of
these generators. In the limiting pnosition this plane is perpen-
dicular to the limiting position n of n,,; it is the asymptotic
tangent-plane through g.

3. The asymptotic plane is the tangent-plane through g that
touches the ruled surface in the point at infinity of g.

Now we obtain the theorem: The instantaneous screw-axis of the
motion of A'B' is the line n through the central point and per-
pendicular to the asymptotic plane of the s-axis if this axis is
considered as a generator of the hyperboloid H.
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Chapter IV

THE MOTION OF THE SPACE
CONNECTED WITH
THE CONNECTING-ROD A'B'

§ 1. The ruled surface generated by the s-axis

1. Let be given the isogram ABA'B' (fig. 50). The plane through
AB and normal to the hinge-line h in A is denoted by e, and the
one through AB and normal to the hinge-line k in B by €y The
position of the isogram with regard to a fixed rectangular system
of coordinates will be chosen such that:

1. the midpoint of AB coincides with the origin O

2. AB lies in the x-axis

3. a bisecting plane of the planes €, and €y coincides with
the plane XOY.

We denote: a) the angle between €y and € by 2o

b) the length of AB = A'B' by 2a

c) the length of AB' = A'B by r

d) the angle between A'Band the positive X-axis by ¢

e) the angle between AB' and the positive X-axis by y

f) the projections of A' and B' on the plane YOZ
by A} and B’l.

If the isogram moves A' moves in the fixed plane h and B' in
the fixed plane €y A'1 moves along the fixed line of intersection
of €, with the plane YOZ and B'l along the one of &y, with the
plane YOZ. The line MN where M and N are the midpoints of BB'
and AA' is the line of symmetry or the s-axis of the isogram.

Z

B! Bj
\s—axis

o M
A aN @ a B x
W a )
@

\ o \

‘N r

]

1
Al/
Figure 50
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2. The coordinates of the points A, B, A', B', M and N are:

% y z
A -a 0 0
B a 0 » 0 2
A' |a+rcosqe | rsingcosa -r sin ¢ sin « , (D
B' | -a+ rcosy | rsinycos a r sin y sin o )
M |%r cosy %2r sin y cos o | % r sin y sin «
N |%krecosgqg %2r sin ¢ cos a | =% r sin ¢ sin «

The equations of the line MN (s-axis) are:

x-%rcosy y-%rsin ycosa z-‘érsinwsino;(z)
cos ¢ — COS \p- cos o (sin ¢ - sin y)  -sin « (sin ¢ + sin y)

The first and second member of (2) may be written:

X cos o (sin ¢ — sin y) — y(cos ¢ — COS y) =
=} r cos y cos o (sin ¢=sin y) — %2 r sin y cos o (cos ¢-cos y)
=% r cos o sin (¢ - y)

or, after dividing by sin Y%(¢ - y):

2X cos o cos Y%(¢p + y) + 2y sin %(¢p + y) = r cos a cos %(p — y)
(3)
The first and third member of (2) give:

-2x sin a cos %(p - y) + 2z sin %(¢p = y) = -r sin « cos (¢ + V)
(4)

If we denote ’/z(cp + y) and 1/z(cp - y) by A and p respectively, the
equations (3) and (4) become:

2Xx cos o cos A + 2y sin A = r cos o COS (5)
2x sin o cos w — 2z sin p = r sin o cos A (6)

3. As the distance between A' and B' is 2a, we obtain:

4a? = {2a + r(cos ¢ — cos y)}? + r2osu(sin ¢ - sin y)? +
+ r?sin%u(sin ¢ + sin y) 2

or: 4a? = 4a? — 8ar sin A sin p + 4r2 sin? A sin?  +
+ 4r? cos? o sin? y cos? A + 4r? sin? o sin? A cos?

or: 2a sin A sin p=r {sin? A sin? y + cos? o sin?y (1-sinZ\) +
+ sin? o sin? A (1 = sin? )}
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or: 3%? sin y sin A = cos? o sin? p + sin? « sin? A (7

We write: sin A = m sin p (8)

Substitution of (8) in (7) gives the relation:

a .
EF m=cos? o+ m? sin? o (Ta)

From this relation follows that m is a function of o, a and r
only. Hence m is constant during the motion of the isogram. The
discussion about the reality of m is given in chapter VI, § 3.1

4, If in fig. 50 the values of « r, a and y are given, the
point A' can be considered as the point of intersection of:

1. a sphere around B' with radius 2a and

2. a circle in the plane XOA) around B with radius r.
In general a sphere and a circle have two points of intersection.
The two positions of A' give two values of ¢ Hence two values of
¢ correspond to a given series of values of o, r, a and y. As m
is given by the relation (8) and ) and p by:

A= Yale + ) and po= (e =y

we obtain if we substitute the given value of y and the two cor-
responding values of ¢ in (8), two values m, and m, of m. These
two values of m are the roots of the equation (7a). -

Consequently it ts, in general, possible to construct two
quadrilaterals when o, r and a are given. These two quedrilat-
erals are characterized by the values m and m, of m following
from the equation (7a).

5. The equation of the ruled surface generated by the s-axis
can be obtained by eliminating A and p from the equations (5),
(6) and (8).

We write (6) as:

cos A = (2x sin oo ews p - 2z sin p) : r sin ao .
Substitution of cos A in (5) gives:

2x cos o (2x sin a cos p — 2z sin p) : r sin o + 2y sin A =
=T COS o COS

and as sin A = m sin yu, we get:

4x? sin o« cos o cos p — r? sin o coS o COS y =
= 4xz cos o sin p - 2rym sin o sin p
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or: tan y = (4x2-r?) sin o cos o: 2(2xz cos a- rym sin o) 9)
Analogously we substitute cos p from (5) in (6):

2x sin o (2x cos o cos A+ 2y sin A) : r cos o ~ 2z sin y =
= r sin o cos A

and as sin p = misin A we obtain:

4x % sin o cos « cos A — rZm sin o« cOS o €OS A =
= 2rz cos o sin A — 4 xym sin o sin A
or:
tan A = (4x2?2-7r2?) m sin « cos o: 2(rz cos a- 2xym sin o) (10)

The relation sin A = m sin p is reducible to:
tanx:/m=mtanp:/m
or: (1 = m?) tan?) tan?, = m? tan?, - tan?)
Substitution of tan p and tan A from (9) and (10) gives:
(4x2 - r?)?2 m? sin?« cos?u (4x% - r? ? sin?x cos?a (1 - m?)

4(2xz cos o — rym sin «)2 . 4(rz cos o — 2xym sin «)?

. 2 &
m2(4x? - r?)? sin’%x cosZe m?4x? - r?) ? sin’« cos’a

4(2xz cos o = rym sin a)2 4(rz cos o — 2xym sin o) 2

After dividing by m2(r? — 4x2) 2 sin2a cos?x and multiplying by
the denominators we obtain:

(1 = m?) sin2u cos?n (4x2 —1r2)2 =
= 4(rz cos o — 2xym sin «)2 — 4(2xz cos o — rym sin o) 2

The right-hand member of this equation is reducible to:

4(rz cos o — 2xym sin o + 2XzZ cos o — rym sin o) (Trz cos o —
2Xxym sin o — 2XZ cOS o + rym Sin o) =

4(2x + 1)(Z cos oo — ym sin o) (r — 2X)(z cos o+ ym sin o)
4(r2? — 4x2)(z2 cos?a — ym? sin )

[}

The equation becomes, after dividing by r? — 4x2

(m? — 1) sin2x cos?a (4x2 — r2) = 422 cos?a - 4y™m? sin2«
2 2.2 2y .2
Z m 1-m° r
or: (1 -=m2) x% L. 3 ( (11)
sin%.  cos 2 4

where m is given by the equation (7a).
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6. From equation (11) follows that the ruled surface generated
by the s-axis is a hyperboloid I. Its axes coincide with the X-,
Y- and Z-axes respectively and its centre is the midpoint O of AB.

If the isogram moves the points M and N describe congruent
circles in the planes ey and &y 0 is their common centre and the
X-axis is their common diameter. The two circles are the curves
of intersection of the planes ey and €y with the hyperboloid. As
o # o these planes do not coincide and consequently the hyper-
boloid T is never a hyperboloid of revolution.

§ 2. The moving space S

1. The space connected with the X-, Y- and Z-axes is called
the fixed space Z. The line AB and the hinge-lines h and k are
fixed lines in 3. The moving space S is the space connected with
the line A'B' and the hinge-lines h' and k'. These lines are
fixed lines in S. If the quadrilateral moves, the space S also
moves. Every point of S describes a curve in the fixed space 2.

2. As the line MN(s-axis) is an axis of symmetry of the iso-
gram this line is also an axis of symmetry for the spaces 2 and
S. If any point P of 2 is reflected with regard to the s-axis,
we get the point P'. The position of P with regard to the lines
AB, h and k is identically equal to the position of P' with re-
gard to the lines A'B', h' and k'. The point P' in S cerresponds
to the point P in 2, Axial reflection of P with regard to the
s~axis in its several positions gives several positions of P'
which can be considered as points of the path which the point
P' of S describes in 2.

3. The twisted curves described by the points of S can be ob-
tained by reflection of corresponding points of 2 with regard to
one of the series of generators of the ruled surface I' described
by the s-axis (chapter II, § 1). T"is the basic surface of the
reflection. As I' is a quadric the curves are generally space
curves of the fourth degree. If we multiply I by two with regard
to any point P in 2 we obtain a quadric I''. The curve described
by P' lies on this quadric I', In general we have:

The twisted curves described by the points of the moving space
S lie on congruent quadrics I". T" is a quadric which is gener-
ated from the hyperboloid I' by multiplying by two with regard to
a point,
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§ 3. Reflection of a point P with regard to a line 1

Let the coordinates of a point P be (pl, Dys D) and the equa-
tions of a line I:
X;~-b; _Xp—~Dby; X3-Dby (12)

4y By %a

or, more briefly: e
et n § ik = 1, B 8

8y
where X, X, X, are the current coordinates.

The point of reflection of P with regard to 1 is denoted by
S(sl, S 5 s3). The equation of the plane o through P perpendicu-
lar to 1 is:

b a (x, ~p) =0

The point of intersection F of this plane o with the line 1 is
given by:

2 a,(a,t+b -p)=o0
. 2 = =
or: t > al + % a b 2, ap, =0
’ _ . 2
or: t=~-{Jab ~Zaplt:Zal

We obtain the coordinates of F, (fl, f2, f3) say, by substitution
of this value of t into the equations of 1:

£, = -a, {Z a b, -2 akpk} : Zal+b, Gd=1, 2 3)

As F is the midpoint of PS' we have the relations:

and hence the coordinates of the reflected point S of P are:

s, =2a, {Zap, -2Zablt: Tal+ 2, -p,

i -

=1, 2, 3 (13)
§ 4. Parametric equations of the curves described by the points
of the moving space

1, Let P(xo, Yo 2 ) be a point of the fixed space 2. Its cor-
o
responding point P' in the mcving space S is obtained hy reflec-
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tion of P with regard to the s-axis given by the equations:

2Xx cos o coS A+ 2y sin A = r cos o COS p (5)
2x sin o cos p — 2z sin = r sin « cos A (6)
sin A =m sin p (8)

The equations (5) and (6) are reducible to:

r COS o COS z+rsincxcos7»
x R & B uae —Zsingn
= =

sin A-sin u - cos « cos A sin p sin o cos p sin A

These equations are written in a form analogous to the equa-
tions (12) of the line 1, mentioned in § 3, namely

X=-b;y y-b, z-Dh;

a, a, a,
where we write x, y and z instead of X X, and X3
If we compare these equations we get:
a, = sin A\ sin p b, =0
a, = — Ccos o cos A sin p r cos o €os p : 2 sin A

a, = sin o cos p sin A by =—-r sin a cos A : 2 sin p

2. The formula (13) which gives the coordinates of the re-
flected point P' contains the expression:

(=2
1}

i 2
2 ap, - b ab) : 2 a
If this form is denoted by A, (13) becomes:

1

S, = 2aiA + 2bi -D.

Si+pi

or. -—2—-= a,A+ b, (i=1 2, 3)
or: %(x+x,) = sin A sin . A (14)
B(y +y ) = —cos acos A sin p.A+r cos o cos p: 2 sin A

(15)
sin o cos u sin A.A-r sin o cos A: 2 sin p (16)

W(z +2 )

where x, y and z are the coordinates of P' and X, ¥, 2, the
coordinates of the points P corresponding to P'. Elimination of
A from (14) and (15) and from (14) and (16) respectively gives:

(X + x_) cos o cos A + (y +y,) sin A =T cos a cos yu

and (X + x)) sin acos p - (z + z) sin u = r sin « cos A
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These equations are (cf the equations (5) and (6) of the s-axis)
the parametric equations of the hyperboloid I'" which can be re-
duced from the hyperboloid I' generated by the s-axis by multi-
plying by two with regard to the point P(xo, Yo zo). The space
curve described by P' lies on I'" which is in accordance with
§ 2.3.

3. To write down the equations (14), (15) and (16), combined
with the relation sin A = m sin p ... (8) as parametric equations
we make use of the following reducements and abreviations:

From sin A = m sin | follows:

(sin A + sin p) ¢ (sin A =s8in p) = (m + 1) : (m - 1)
or: tan (A + p) @ tan B(A - p) = (m+ 1) : (m - 1)
Since (§ 1.2): Y%(p+ y) = A and (g -y = pu

we obtain: tan g = tan Yoy

m+ 1
m

We consider tan ‘/z\p = t as a parameter and we write down briefly:
(m+1) : (m-1) =n and (1 +n%t?H(1+t?) =N

Hence we have: tan %y = n. t

Now we get the following reducements:

sin y = 2tan %y : (1 + tan? Yy) = 2t : (1 + t?)
cos y= (1 —tanZ?%y) : (1 + tan? toy) = (1 = t2)(1 + t?
and sin ¢ = 2nt : (1 + n%t?
cos o= (1 -n??% : (1+n0n?t?
Further we have:
sin A cos p = Y%(sin ¢ + sin y)
sin p cos A = l%(sin ¢ - sin y)
sin A sin y = J(cos y ~ cos ¢)
cos A cos p = %(cos y + cos ¢)

4, In 2 we denoted

t(1 +n)(1 +nt? : N

t(n ~ 1)(1 ~nt? : N

t2(n? - 1) : N (1%)
(1 -n%t%H : N

n

A= (2ap, —2ab): 2a2
We have: ke EE *

2 al=sin? x sin? p+cos? « cos? A sin? p+sin? « cos? , sin? 2
sin? A sin? p+cos? o sin? | - cos? « sin? A sin? y +

+ sin? a cos? , sin? A
sin? A sin? y sin? a+cos? o sin? p+sin? o cos? y sin? A
sin? ) sin? o + sin? y, cos? o
62 @ sin p sin A, which follows from (7a).
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If we denote 2_;1 = k where k is the ratio of the unequal sides
of the isogram, we get:

Zal=k sin y sin A

Furthermore we have:

2 ; .2 s
cOoS“ao. COS A COS sin sin “a. cos cos A sin %]
Zab =-Y%r [ . - e

kk sin A sin p

cos %o sin’y + sin’a cos?y

1]

- ¥%r cos A cos p .
sin A sin p

= — Jr cos A cos u . —21-?:

— a Ccos A Cos

And finally we get:

2ap, =x sin Asin p-y_cos o cos A sin p +

+ z_ sin o cos p sin A

A becomes:

{x_sin A sin u -y cos o cos A sin y +
+ z_ sin o cos p sin A + a cos A cos p} : k sin u sin A

or, written with the parameter t:

A= {xotz(n2 -1) -y_cosa. t(n-1)(1 -nt? +
+2z_ sin o, t(m+1)(1+nt?) +a(l-n2t%}:k N sin g sin 2 (18)

5. Substitution of (18) in (14) gives:

BN k(x +x) = xotz(nz - 1) -y_cos o. t(n - 1)(1 -nt? +
+2z_ sina. tm+ 1(1+nt? + a(l -n%tY

and in (15):
y+¥y cos A

% NK . ° = - {x t2n? - 1) -
CcoS o sin A °

-y, cos a. t(n = 1) (1 - nt?) + z, sin a, t(n + 1)(1 + nt?) +

+a(1—n2t4)}+%Nkrg_‘1)_i_}§

According to (17) we have:
cos » 1 -nt2
sin A t(n + 1)

63




and

) cosp aN cosp a (1+tH+ntH +n?t?
“NEkr o =

0

in A m ‘Sil’lp, m t(n - 1)
And we obtain:

+
‘/sz.-y_y_°=—-x°t(n~1>(l-nt2)+

CoSs o

{1~ %20 ~ 13

n+1

+y cos o -z sin a (1 = n2%t% +
o o

-1 -0tH%¥1 +ntH 1 @+ tHa +atHA + nt?H
-

. }
t(n + 1) m t(n - 1)

+a{

In this expression we reduce the coefficient of y, cos o and
the one of a respectively to:

-t2(n? - 1) +% and t(1 + nt2)(1 + n)

Therefore the equation (15) becomes:

y+y,
COS o

%k N . = - x t -1 -nt?) -y_cos at¥n?-1) +
+y, cos a .—:—-— z, sin o (1 = n%t* + at(l + nt?)
In the same way we get for (16).
%k Niz—°= x t(n+ 1)(1+ nt?) -y, cos a (1 =n%th -
sin o

-z sin o, t*m?-1) +mz_ sin o. N-at(n - 1)(1 - nt?

6. Recapitulation: The parametric equations of the twisted
curves described by a point P' of the moving space S are:

% kKN (x + x) = xot:’(n2 -1) =y, cos a t(n - 1)(1 ~nt?) +\
+ 2z sin a t(n + 1)(1 + nt?) + a(l - n2t%

y +

bk NTZZ Yo o iy cos at?m?-1) - x t(n - 1) (L - nt?) +
COS o 2 o

cos N

+at@ + (1 +nt?) —z_sin a (1 -n2t%h + y_o_m_“_/(l9>
2 + Z

ok N——= = ~z_sin o t*n? - 1) - at(n - 1)(1 ~nt? +
Sin o

+Xx t(m+ (1 +nt?Hh ~y_cos o (1 -n?t? +m z_ sin o N
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with the following relations:

m2 sin?2 o + cos?2 o =k .m ; k=2a:r
n=(m+1) : (m~-1); N=(l+t?(1+n%?
and t = tan b y

From the equations (19) follows that the curves described by
the points of the moving space S are rational twisted curves of

the fourth degree.

§ 5. Points at infinity of the curves given by (19)

The points at infinity can be found if we use homogeneous
coordinates X, ¥, Z, W. In the parametric equations (19) we sub-

-

W
we obtain the points at infinity for N = o, or:

stitute: x -%; y = 3 -%. If we take W=N=(1+t%(1+n2t?

(1 +t?)(1+n2t? =o0
. . . i i
that is, t, =1 ; t,=-1; t, =—; t, = ——
1 2 $ 4 5
Substitution of t = t1 = i in the equations (19) gives:
%ki=-—xo(n2—l) ~iy_ cosa(n-1(n+1)+

+iz_ sinoa(n+ 1)(1~-n)+a(l-n? =
= (1 = n? (x,+iy_ cosa+iz sina+a)

hkF:cosa=y cosa(m?®-1)-ix(n-1)(m+1) +
+ia(n + 1)(1 =n) - z_sin o (1 =n?) =

=i(l-n?) (x,+iy_ cosoa+iz, sina+a)
bWk Z: sinoc=z°sinoc(n2—1)—ia(n-l) (n+1) +

+ix @+ 1)(1~-n)-3, cos a (1 —n? =
=1i(1-n?% (x, +iy_cos a+ iz sina+ a)

Consequently we get:

=1:icosoa: isina

N|

Xe § i
on the understanding that
X +iy cosoa+iz sinoa+a#o0
o o o

If t = -i, we obtain:

X:y5:Z=1: -1 cosa: -isin«
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on the understanding that
X —iy cosa—-12z sinoa+a#o
o o o

Substitution of t34 = + i : n in the equations (19) gives:
n%- 1

bk X =

(-x°+1yocosai1zosma+a)

%k

<
"

(yOCOScinxoiia —zosin o) COS o

N|
]

% Kk (zosinaTiaiixo—-yOCOSa)sinoc

that is, X:¥Y:Z=1:t+ticosa; ¥i sin a

on the understanding that —x_ ¥ iy cos ot i z sin a + a # o.
It follows that the four points at infinity of all curves are
the isotropic points given by:

X:¥Y:Z=1:21cosa: t1isina

and X:¥Y:Z=1: t1icosoa: Fi sin o

These points are the isotropic points of the planes y sin o =
Z cos o = 0 which are the equations of the planes ABA' and ABB'
(fig. 50, p. 55).

If xoiiyocosaiizosina+a=o,

that is, X = -a and y, = -z, tan «
the point (xo; ¥ zo) is a point of the hinge-line through A and
its reflected point is a point of the moving hinge-line through
A'. As the points of the hinge-line through A' describe circles
which lie in planes parallel to the fixed plane ABA', the points
at infinity of these circles are the isotropic points of the
plane ABA'.

If ~ X, Fi Yy, cos ot Z sin oo + a = 0, we get the circles
described by the points of the moving hinge-line through B'.

So we obtained the theorem:
The four points at infinity of all curves of the fourth degree
described by the points of the moving space S are the isotropic
points of the planes ABA' and ABB'.
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§ 6. Plane curves and spherical curves

1. The curves given by the equations (19) are plane curves if
the right-hand sections are interdependent functions of t. To fix
this condition the functions might be written arranged in order
of size of powers of the parameter t.

Furthermore we write briefly:
ycosoa=y; zsina=2z;y cosa=y ; 2z sin a=2

| o

and X = X ; X =X
— o -0

The equations (19) become:

%kN(x+x)-a+t{(1—n)y +(1+n)z}+t2x(n2-1)+

+t3n{(n—1)y +(n+1)z} an2t*
N{M—é}=—z +t{(1=-n)x + (1+n)a} -
2 cos 2o, m e °

-t?y -1 +t*n{m-1x +(+ Da}+z n?t?
k(z + z
METCRER

2 sin %
-t?2z m?-D+th{n-Da+ @+ x}+y n’t!

o]

~-mz}t=-y +t{(l-na+@+n x}-

If we denote the right-hand sections of these equations by p
g and r respectively we have to examine if there exist values of
the constants A, B, C and D such that:

A.p+B.q+C.,. r=0D

is an identity with regard to t.
We obtain the following relations:

(I) Aa-Bz -0y,

(I1) A{(l-n)y +<1+n)z}+B{<1-n)x + (1 +n) a}+
+C{(1—n)a+(1+n)x}

(I1I) Ax_ - By - Cz_ = o

(IV) A (n-l)y +(n—1)z}+B{(n—1)x +(n+ 1) a} +
+c{(n-1)a+(n+1)x}

(V) —-Aa+ Bz +Cy =

The relations (I) and (V) give: D = o.
Adding and subtracting (II) and (IV) gives, after dividing by
n+ 1and by n - 1 respectively:

Az +Ba +Cx =o0
Ay, + Bx_+ Ca=o0
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So we obtain with (I) and (III) the four conditions:

(" Aa - Bz -Cy =0
(II') Az_+ Ba+ Cx =0
(II1') Az - By _-Cz =0
(Iv') Ay, +Bx _+Ca=o0

These four equations in A, B and C have a non-zero solution
if the determinants of the coefficients of A, B and C of the
equations (I', II', III') and of the equations (I', II', IV') are
zero, that is,

a "Eo '_y_o a -Eo -..y.o
Z a X | =o0 and X =y -Z | =0
= -0 -0 =o —0
3 L. A g & B
; 3 2 2 2y _ =
9Ls yo+y, (x7 -2 +a%) - 2axz =0
3.4 2 -y2 4 a2 - 2ax =0
and g2 (E-=F° ) XY

Subtraction of these relations after multiplying by z, and Y,
respectively gives:

. 2 2 2 2 2 2y _
. - + =
or (Zo ZH(xZ+yi+zi+a ) 0
or, restricting ourselves to real points of the moving space,
T
LT Lg " @

Substitution of ¥, = 2, gives:

z3+ 2z (x2-2z%2+a% ~2xz =o0
-0 —0 ‘e=p -y =0=o
or: 7z (x2~-2az +a? =o
g ey -
or: X, =a (z, # 0)
Substitution of y = - z gives: x = -a

If we mention the abreviations (20) we get:

X = a X = -a

o (o]
{ y 7z tan o and { y -Z tan o
o o o o

2. The equations of the hinge-line h through the vertex A and

of the hinge-line k through B are:
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a
z tan o

X = -a X
{y‘--ztmla and {y

It follows that P(x, ¥, Z,) must lie on one of these hinge-
lines. As in this case the reflected point P' of P with regard to
the s-axis is a point of one of the moving hinge-lines, it is
evident that the curve described by P' is a circle, and thus a
plane curve.

We obtain the theorem:

The only points of the moving space S which describe plane curves
are the points of the moving hinge-lines. These curves are cir-
cles.

3. The curve described by a point of the space S is a spheri-
cal curve, if it lies on a sphere. As every curve lies on a hy-
perboloid (§ 4.2) a spherical curve can be considered as a curve
of intersection of a hyperboloid and a sphere. As the curve of
intersection of two quadrics is in general not a rational curve,
it follows that the space S contains no points which describe
spherical curves except the circles mentioned in 2.

¢ 7. Points of inflection or stationary points

1. A point of a twisted curve is a point of inflection or a
stationary point if the osculating plane at that point has a
third-order contact to the curve (chapter I § 8.2).

Let the equations of any curve be given in the parametric
form:

x = x(t) ; y =y(t); z = Z(t)

The differential geometry *) gives that a point is a station-
ary point if:

X y Z
X” yll zll =0 (22)
xIll ylll zlll

where the accents indicate differentiations with respect to the
parameter t.

2. Briefly we denoted the right-hand sections of the paramet-
ric equations (21) by p, q and r respectively. These letters rep-
resent functions of t of the fourth degree.

Further we use in (21) the abreviations:

*) Eisenhart, A treatise on the differential geometry of curves
and surfaces, p. 18 (Boston 1909). 69




llllllllIIllllIIIIlIIllllIIIIIIlIIIIIlIIIIIIIIllIllllllIllllIIlllIIIIIIIIIIIIIIIIIIIIIII1

hk(x + x ) =X
Wk(@y +y ) : costa-y m=Y
1/2h(_z_+ go) . sin%q -mz =2

e ]
Consequently we get:

xl = %kxl . xH > 1/2kxll ’ XHI - %kxlll
Y' = ¥ky' : cos?a; etc.

If we multiply the first column of (22) hy %k, the second one
by %k : cos2x and the third one hy %k : sin?x, we obtain the same
determinant as (22) but now written in X, Y and Z. From the
abreviations follows that the parametric equations (21) become:

X=p: N
Y=q: N
Z=71:N

Substitution in (22) gives:

p'N - pN' q¢'N-aN' r'N - 1N’
p'N - pN" =0
p"'N - pN"

or, if we increase the rank of this determinant:

N p

N' p
D it |= o (23)
p

"

NH
NIII

L= e T P

3. Let £_ = o + Bt + y,tZ2+ 8 t3+ et (k=1 2 3, 4) be
four functions of the fourth degree in t, such that

fIEp; f,=a; f,=r; f4EN

The values of the coefficients oy etc. may be tabulated as
follows (see the equations (21))

k| o By Yx By €
11 a [(1-n) y #(1+n)z | x (n*-1)|ni(n-1)y_+ (n+1)z_ ;| - an
2|-z |(I-m)x + (1+m)a |-y (n?-1) n{(n-1)x_ + (n+1)a } ~z, n?
3|-y,|(1-n) a + (+n)x |-z _(n3-1)|n{(n-1) a + (n+1)x }| y_ n?
4| 1 ) nZ1 0 " n?

Substitution in the determinant (23) gives, after increasing
the rank again:
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o o, o Oy t4
B, B, B; B, -4t?

¥y, Ya Y5 Ya 6t2| = o (24)
5, 8, By B, -4t
€, ©, €3 €4 1

If we mention the abreviations (20), this determinant (24) is
reducible to:

z sin a a X, 4n(1-n) t(nt?+1)
X, -y cos o -z sin a 12n%t?- (1+n?%)(1 +n2t4 ,

¥y oS a X, a 4n (n+1) t(nt?-1) =0 (25
-a zsin o y_cos a (1- n?)(n2t*-1)

4, If we give t any value t = t,, (25) is the equation of a
surface of the third degree with X Yo 2, 8S its current coor-
dinates. The locus of the points of inflection of the curves de-
scribed by the points of the moving space S is at any moment
(given by t = t,) found by reflection of the surface given by
(25) with regard to the s-axis in the position that corresponds
to t = tl. This is in accordance with chapter I § 8.2 (theorem
XXVI).

Let P(xo, ¥, zo) be a given point. Its reflected point P'
describes a rational curve of the fourth degree. Substitution of
the given values of 25 Yoo %, in (25) gives an equation of the
fourth degree in t. Hence the curves described by the points of
the moving space S have four points of inflection,

We obtain a special case if the terms of the second and the
third column are proportional,  say:

a = Cxo b -y COS o = -Czo sin o ; x =C. a
z, sin a = Cyo CcCoS o

and hence we get: C = t 1,
If C = -1 we obtain: X = -a
¥, 5 =z, tan o
{ X, =a
y, =z, tan o
From this follows that every point of one of the hinge-lines
in A and B gives a corresponding curve which has only points of
inflection. This is evident for these curves are circles and the
osculating plane at a point of a circle coincides with the plane

of the circle.

and if C = + 1:
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§ 8. Tangents with a second-order contact

1. The equation (11) of the hyperboloid I' generated by the

s-axis is:
4x? am?y ? 4z?
— - =1
r2 m?2-1) r2cos?2oa MmM?2-1) r?sin?a

Briefly we write:

2 2 2
X y z
— i ) g, ey
a? b? ¢
1
where a?="Y4%r?,; b2 =4—2. (m? - 1) r?2 cos? a ;
m

c? = Y%(m? - 1) r? sin? «

The equations of the two series of generators, called a-lines
and b-lines respectively are:

X z 1 y

X 0 Z 1 y

—_—t—=—(1 +-=) —_—t—=— (1 -—)

a ¢ A b a ¢ u b
a-lines b-lines

X Z y X zZ Y.

———= Ml =2 ——== w1+

a c b a c b

The b-lines coincide with the several positions of the s-axis
of the moving isogram.

If we solve x, y and z out of the equations:
X

zZ Y.
el ¢ Riry.
8 e - b

0 S )

a c b
X Z 1
—t—==1 +_y)
we obtain: . “ A b
an 1 b(A = w) cA 1
- =+ W ; yomw—— z = e
W+ A A At U At A

which are parametric equations of the hyperboloid T.

2. If T(Xx,, ¥, Z,) is a point of I, there exist values of A
and p such that:

ajn 1 b(A = w) cA 1
. y°=—__p'-; Zo= (..__“‘)
pt AA At At p A

The direction numbers of the b-line through T written in the
form
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X y Z 1
—_—t =t —= -
a ub ¢ W
X Wz
————— =
a b (& "
are the minors of: i i _1_
a ph e
1 oop 1
a b c
1 1 1
or: ) # s —_+ —; D R
wbc  be ac ac ab pab
or: alp? - 1) 3 2ub ; -c(p?+ 1)

The equation of the plane o« through T perpendicular to the
b-line through T is:

a(p? - 1) (x - X))+ 2ubly =y ) - c(u? + 1)(z - z) =0

or: a(u?-1) x + 2uby —c(u?+ 1) z=
1

At

or, written in order of size of the powers of u:

{a2(1 + M) (p?2 = 1) + 2ub?(A = p) = c2(1 = aw) (p? + 1)}

pdax — cz — a2n - c2\) + p2(arx + 2by - Acz - a? + 2b%2 + c?) +
+ p(-ax + 2bdp —cz + a%n - 202 - cP) +
+ (-nax — Az + a2+ c¢c?) =0 (26)

3. The coefficients of x, y and z in the equation (26) are
functions of the parameters A and p which belong to the a- and
b-line through the point T on the hyperboloid I. To find the
number of planes through a given point P if T moves along a given
a-line we have to substitute in (26) the coordinates of P and the
value of A belonging to the given a-line, As (26) is an equation
of the third degree in u, we conclude that we obtain three values
of p, that is, there are three b-lines with the property that the
planes normal to these b-lines and through their point of inter-
section with a given a-line go through P. That is, through any
point P go three perpendiculars on b-lines which intersect a
given a-line. Hence, the a-lines are trisecants of the pedal of P
with regard to the b-lines; the pedal is a (3,1)-curve on TI. If
we multiply the hyperboloid T and the pedal by two with regard to
P, we get the hyperboloid T" and a curve C which is the locus of
the reflected points P' of P with regard to the b-lines of I
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(§ 2). Cis a (3,1)-curve on 7' and the a'-lines of I are tri-
secants of C. On the other hand we have that the trisecants of C
are the a'-lines of I'". A well-known theorem *) says that the
trisecants of a rational twisted curve of the fourth degree gen-
erate a quadric. In our case this quadric is 1308

4. The equation (26), briefly written as

3 2 =
aop, + alp, + azp, + a3 (o]

has three equal roots if the left-hand member of the equation is
identically equal to:

— 3 =
a_(u = D) 0
. _ . - 2 . = vk
or. a, = -3pa° s a, 3p a  ; a, p-a

or: 3pa° +8a,=o0; a,p+a,=0; a,n + 3a3 =0

The values of a, a;, 8, 2, follow from (26). Therefore these
conditions become if we write

q2=a2_2b2__02
and r?2=a?+c?

3(ax —cz — Ar?) . p + (axx + 2y - Acz — q?)

=0
(axx + 2by — Acz — q2) . p + (-ax + 2bAy — ¢z + A@d) = o 27)
(-ax + 200y —cz + Aq2) . p+ 3. (-MaX -~ AcZ + r?) =0

Let n, be a given value of p. The b-line which corresponds to
this value p, is denoted by b,. If we let coincide the s-axis
with b1 we get the position of the isogram that corresponds to
o= g

The equations (27) represent three planes. Their point of
intersection P has coordinates which are functions of . Every
value of )\ gives a point P such that reflection of P with regard
to the s-axis (bl-line) gives the point P' which has a tangent
to the curve belonging to P (the path of P') with a second=order
contact (fig., 51). This tangent is the line obtained from the
a-line corresponding to the considered value of A by multiplying
by two with regard to P.

5. If ) is considered as a parameter, the locus of the points

*) Schrek, D.J.E. Rationale ruimtekrommen van den vierden graad,
25 Diss, Utrecht (1915).
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Figure 51

P in the fixed space 2 is given by the equations (27) which can
be written as (p is replaced hy ulx

Max - ¢z - 3u,r?) = -3ap.x - 2hy + 3cpz + q?
MapX + 2by - cp,z + a?) = ax - 2buy + cz + a?u, (27a)
AM(-3ax + 2buy = 3cz + qu) = apX + cpz - ar*

or, briefly M =B
AC =D (27Db)
AE = F

where A, B, C, D, E and F are linear functions of x, y and z.
Elimination of A gives:

C.F = D.E (28)

A.D = B,.C g
which are the equations of a twisted cubic being the curve of
intersection of two quadrics which have the line C= D = o in
common.

6. Theorem XXV of chapter I, § 7 gives that the locus of the
points P' of the moving space S with a tangent with a second-
order contact is at any moment a twisted cubic. In our case we
have:

The locus of the points P' with a tangent with a second-order
contact is obtained by reflection of the curve given by the equa-
tions (28) with regard to the s-axis of the isogram.
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Chapter V

THE TANGENTS TO THE CURVES

§ 1. Conjugated lines

4. The hinge-lines h' and k' are lines of the moving space S
(fig. 52). The curves described by the points of these lines are
circles around the hinge-lines k and h respectively. The plane
through any point P of h' normal to the tangent in P goes through
k. Hence h' and k are conjugated lines (chapter I, § 1.5). Simil-
arly k' and h are conjugated lines.

2. As AB' is the common perpendicular of the conjugated lines
h and k' and A'B that of the conjugated lines h' and k, the com~
mon perpendicular of AB' and A'B is the instantaneous screw-axis
(denoted by x-axis) of the motion of the space S (chapter I,
§ 4.4).

1
k z
'l

B

1
Figure 52 h/

The line MN joining the midpoints M and N of BB' and AA' re-
spectively is the axis of symmetry of the quadrilateral ABA'B'
and consequently the x-axis intersects MN (s-axis).

§ 2. Points with a tangent parallel to A'B'

1. Let T be the midpoint of A'B' and & the plane through T
normal to A'B'. The tangent in the nullpoint K of & is normal to
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8 and hence parallel to A'B'. The locus of the nullpoints of the
planes normal to A'B' is the locus of the points with a tangent
parallel to A'B'. As the locus of the nullpoints of a series of
parallel planes is an axis and hence a line parallel to the x-
axis, the required locus is the line u through the nullpoint K
of the plane & parallel to the x-axis (chapter I, § 33

The nullpoint K of & is the common point of the lines through
the points of intersection of & with two pairs of conjugated
lines, Let A, B, A;, B; be the points of intersection of h, Kk,
h', k' respectively with 8. The point K is the common point of
A B| and A}B, (chapter I, § 4.5).

2. If we reflect the moving space S with regard to the line
MN we obtain the space 2. The reflected figure in 2 of a figure F
in S is denoted by Fr. The figures F and F* are congruent.

We have the following transformations:

A'B' passes into AB, denoted by (A'B')r, because A and A' are
symmetrical with regard to MN,

h' passes into h , denoted hy h'r

h passes into h', denoted by h*

k' passes into k , denoted by k'~

k passes into k', denoted by kr

5 passes into the plane YOZ, denoted by &F.
If F is a fixed figure in S, Fr is a fixed figure in 2. The con-
sideration of the figures in S will be carried out in the fixed
space. The true position of these considered figures is obtained
by reflection with regard to the axis MN.

3. The nullpoint K of the plane 5 mentioned in 1 passes by
reflection with regard to MN into the point Kf of the plane YOZ.
The line AIB; passes into the line (AlB'l)r which is the line
through the points of intersection of h* = h' and h'* = h with
the plane YOZ. Similarly A‘lB1 passes into the line through the
points of intersection of h and k' with the plane X = o. If the
points of intersection of the hinge-lines h, k, h', k' with the
plane X = o are denoted hy A, B, A;, B; respectively, the point
Kr is the common point of ‘the lines AZB; and A;Bz.

As h is parallel to the plane YOZ, the point of intersection
A2 of h and this plane is the point at infinity of h. Therefore
the line AzB; is the line through B) parallel to h. Similarly
the line A;B2 is the line through the point of intersection A; of
h' and the plane YOZ parallel to k.

The plane through B' normal to AB' contains k'. As this plane
is parallel to h, it contains also the point at infinity A, of h.
Its line of intersection with the plane YOZ is therefore the line
A,B),. Similarly A'B, is the line of intersection of the plane
through A' normal to BA' with the plane YOZ.
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4, The direction numbers of AL are (chapter IV, § 1.2):
r cos vy ; r sin y cos « ; r sin y sin o
The equation of the plane through B' normal to AB' is:

cos y (X + a =T Ccos y) + sin y cos o (y — I sin y cos a) +
+ sin y sin « (2 = r sin y sin &) = 0

The equations of the line of intersection of this plane with the
plane YOZ are:

X =0
y Ccos o + Z sin o —-acot\p+rcose0\p %

(1)

The direction numbers of A'B are:
r CcoS ¢ ; r sin ¢ cos o ; — I sin ¢ sin «
The equation of the plane through A' normal to A'B is:

cos ¢ (X —a —r cos ¢) + sin ¢ cos a (¥ — r sin ¢ cos o) -~
~ sin ¢ sin o (z + r sin ¢ sin a) = 0

and the equations of the line of intersection with the plane YOZ
are:

X =0
y cos oo — z sin o = a cot ¢ + r cosec o g (2)
The two pairs of equations (1) and (2) give the point K* in the
plane YOZ. Reflection of this point K* with regard to the line MN
gives the nullpoint of the plane & through the midpoint T of A'B'
and normal to A'B',

5. Let 5, be a plane parallel to the plane § and let the equa-
tion of the plane 5;,obtained by reflection of 81 with regard to
MN,be x = p where p is the distance between & and 81.

The equations analogous to (1) and (2) are:

X =D
y cos o+ zsin a= - (a + p) cot y + r cosec y g (1a)

and X =D
y cos o ~ z sin o= (a — p) cot ¢ + r cosec ¢ g(Za)
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These equations give the reflected nullpoint of the plane 8y
Elimination of p gives the locus uf of the points with a tangent
parallel to (A'B')*. We obtain:

a cot y+y cos o+ z sin o=~ a cot y+ r cosec y ;
x cot ¢+ y cos oo — 2z sin o= a cot ¢ + r cosec y (3)
Reflection of the line given by these equations (3) gives the
locus u of the points with a tangent parallel to A'B'.

As the points of u have the same direction of velocity, the
conjugated line of u is a line at infinity namely the line at in-
finity of the plane & and hence, u is an axis (chapter I, § 3.1).
Consequently u is parallel to the screw-axis (x-axis). As the
x-axis intersects the axis MN at a right angle, the angle between
u and MN is also a right angle. Hence the lines u and u* are
parallel, As the x-axis is normal to the plane OMTN we obtain:
The locus of the points which have a tangent parallel to the line
A'B" is a line u normal to the midplane OMIN of the quadrilateral.

6. A line m which intersects the x-axis at a right angle is
a self-conjugated line (chapter I, § 1.6). If m is drawn perpen-
dicular to A'B', it is possible to bring a plane through m normal
to A'B'. The line m goes through the nullpoint of this plane, As
this nullpoint is a point of the locus u, m intersects u. We
obtain: The lines intersecting the x-axis at a right angle and
drawn perpendicular to A'B' intersect u.

§ 3. The point of A'B' in which the tangent coincides with
A'B'

If A'B' is a tangent, its point of contact is denoted by C.
This point C is the nullpoint of the plane through C normal to
A'B'. As the locus of the nullpoints of the planes normal to A'B'
is the line u given by the equations (3), C is a point of u.
Hence, C is the common point of the line u and A'B'. These lines
have a common point if the lines ur and (A'B')T intersect each
other.

The equations of u® are:

X cot y+y cos o+ z sin o = — a cot y + r cosec y

X cot ¢ +y cos o~z sin o = a cot ¢ + T cosec ¢ g 3

and the equations of (A'B')T are:

y=o0
fen 4§
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Elimination of y and z out of these four equations gives:

X cot 'y = —a cot y + r cosec y
and X cot ¢ = a cot ¢ + r cosec ¢
or: X==2a+ T secy

and X

a+ I sec ¢
These two equations have a solution if:
—a+Trse y=a+ T sec g
or: 2a : 2r = (cos ¢ - cos y) : 2 cos ¢ COS y
If we use the following substitutions and relations:
Bl =) = o+ 3 = N sin A = m sin p

(chapter IV, § 1.2 and 1.3), we obtain:

a_—2sin1/z(cp—\p) sin (e + ) - 2 sin p sin ) _
r cos (¢ + y) + coS (¢ — y) cos 2\ + cos 2
B m sin2p,
1 - (m2+1) sin?y,
or: sin?y = =

a + am? - mr

If the denominator a + am? - mr is denoted hy N we get:
. a
sin?y, = —
PEN

The point of contact Ctf of (A'B')r can be found by substitution
of this value into the equation:

X=a+T7Tseoqy

r r
=a+

We get: X = a+ S
cos ¢ cos (A + w)

T
= g + -

cos h CoS p—sinxSinM—
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r
= a + = =
+ V(1 = sin?)(1 - sin?y) - m sin

r Nr -
= V(a -mr) (am? ~mr) - am

-

= a + 5 =
m-a a a
i‘/(l—T)(l—ﬁé—mﬁ-

+ a/m(a -~ mr)(am - r) -~ a’m + ar + am?r ~ mr?

vm {tV(a - mr)(am - 1) - a Vm}

_ % a\/m(a - mr)(am - r)' —~ (am - r)(a - mr) _

vm {+V/(a — mr) (am — r) - a Vm}

- :t\/(a — mr) (am — r)‘

i Vi

/(a —~ mr)(am ~ r)
or: Xc = % :
m

We obtain:

The line A'B' is tangent in one of its points C if the posi=-
tion of the quadrilateral is given by: sin? y = a : N, where N
only depends on the data a, r and « of the isogram. The point of
contact C is given in its reflected position C* as a point of the

X-axis with
/a ~ mr) (am —-T)
XC = +

m

which also depends only on a, r and o.
In chapter VI, § 5 we shall prove that there exists no real

position of the isogram such that A'B' is a tangent.

$ 4. Characteristics of the planes through A'B'

1. If the pencil of planes through A'B' is reflected with
regard to the axis MN, we obtain the pencil of planes through the
X-axis. The locus of the characteristics of the planes through
A'B' is generated by the projections upon these planes of the
line u which is the line conjugated to the line at infinity of
the planes normal to A'B' (chapter I, § 6.3). In the reflected
position we obtain that the locus of the characteristics of the
planes through the X-axis is generated hy the projections of uf
upon these planes.
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2. The equations (3) of uf can be reduced by means of addition
and substraction in the following way:

x(cot y + cot ¢) + 2y cos a = a(cot ¢ — cot y) +

+ r (cosec ¢ + cosec y)
x(cot y ~ cot @) + 2z sin a = ~ a(cot ¢ + cot y) +
+ r (cosec y —~ cosec ¢)

or: ; mX cos L+ y cos o sin p (m? ~ 1) = - cos ¢ (a - mr)
X cos p + 2z sin « sin p (m? - 1) = - cos A (am - 1)

The equation of the pencil of planes through the line uf is:

X(m cos A+ P cos ) +y sin ycos o (m2 - 1) +
+ 2P sin p sin o« M? = 1) + ..... = 0 (5)

where P is the parameter.
The equation of the pencil of planes through the X-axis is:

y+Qz=o0 (6)
where Q is the parameter.
A plane of the first pencil is normal to a plane of the second
pencil if:

sin pcos o m? - 1) + P. Q. sin p sin a (2 -1) = o

or: P.Q=-rcota (M)

Figure 53

If (fig. 53) y is a plane of the first pencil and & a plane of
the second pencil perpendicular to o, the line of intersection e
of y and & is the projection of ur upon d and hence e is the
characteristic of 8. Elimination of P and Q out of (5), (6) and
(7) gives the locus of the characteristics of the planes through
the X-axis.
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We obtain:

m X cos A+ ¥y sin [LCOSO&(mz—l)+COSp,(a.-—mI‘) y

- « —= = Ccot «
X cos p + z sin y sin o (m? - 1) + cos A (am-r) z
or: mxy cos A sin o+ y?sin p sin o cos o (m2 - 1) +
y cos y sin o (& —mr) = — X Z cOS o COS p —

~2z2 sin pcos o sin o (m? = 1) - z cos A cos a (am — T)

or: (y%+ z? sin acos o« sin p (m? - 1) + m Xy cos A sin o +
+ X Z COS W COS a+y sin o cos p (a=-mr)+z cos o cos A (am-r)=0

(8)
The quadric given by this equation is a hyperboloid. If this hy-
perboloid is reflected with regard to the axis MN, we obtain the
locus of the points with a tangent which intersects the line
A'B',

§ 5. Equations of the instantaneous screw-axis

1. The instantaneous screw-axis (x-axis) is the common normal
of two pairs of conjugated lines., As noticed in § 1 the x-axis
is the common normal of the links AB' and A'B and intersects the
axis MN at a right angle. From this follows that the x-axis is
invariable with regard to the reflection upon the axis MN.

2. Let 1, and 1, be two lines given hy the equations:

X=X Y -¥ _ Z-2% e = 1)
g b, Cy

The equations of the common normal of 1, and 1, are:

X—le—y12—21 X—-X, Y~-Y, Z2-12,
a, by c, =0 and a, o c, [=0
4, A, A Ay B, Bg

where:

b c c a a b
A, = 1 1f. o 1 1 : A = 1 1
1 b2 c, 2 c, a, 3 a, b2
3. The equations of AB' and A'B are:
X + a y Z

—a+rcosy+a rsinycosa T sinysin o

X —a y z
and - - -
a+rcosg-a T singcosa -—r sin ¢ sin o
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If AB' and A'B are considered as the lines 1, and 1, we obtain:

A, = ~ 2 sin o cos o sin ¢ sin y
A, = sin o sin (¢ + )
A cos o sin (¢ - y)

n

3

Hence, the equations of the screw-axis are:

X+ a y z
cos y sin y cos « sin y sin o | = 0
—-2sinacos asingsiny sinasin (p+y) cosoasin (p-y)

and

X -a y z
cos sin ¢ cos o - sin @ sin a|= 0
- 2sin acos asin gsiny sinoasin (p+y) cosasin (- y)

Using the relations:

e+ y=2xr,; P-y=2yu,; sin A = m sin p ;
2a : r=k and cos? o+ m? sin? « = km

these equations are reducible to:

a cos A
2 k (1 -kmsinZ? p)

. m X cos A+ y cos o sin p (m% - 1) =

SXCOSp,*‘ZSinOLSinp,(m2—-1)=

(k?2m? sin? u - 2k m sin? y + 1)

amcosu
k (1 -kmsin? p)

(k2 sin? y — 2 kmsin? g+ 1)

§ 6. Points with a tangent through a given point of A'R'

1. The locus of the points with a tangent which intersects
the line through a given point P parallel to the x-axis is the
circular cylinder C through P and the x-axis such that the plane
through P and the x-axis passes through the axis of the cylinder
C (chapter I, § 6.5). The locus of the points with a tangent
which intersects the line A'B' is the locus of the characteris-
tics of the planes through A'B'. This locus is the hyperboloid H
given by the equation (8) of § 4, In chapter I, § 6.6 has been
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shown that the locus of the points which have a tangent through
the given point P is the curve of intersection of the cylinder C
and the hyperboloid H.

2, The equation of the cylinder C can be obtained if we re-
flect the point P of A'B' with regard to the axis MN. If the
distance of P to the midpoint T of A'B' is denoted by p, the
coordinates of PF are (p ; o ; 0). The x~axis is invariant with
regard: to the axial reflection.

The cylinder C can be defined as the locus of the lines of
intersection of the planes of the pencil through the x-axis with
the planes of the pencil through the line B, drawn through P
parallel to the x-axis which planes are normal to the planes of

the first pencil.
In the reflected position we get the pencil through the line

u; through Pr and parallel to the x-axis and the pencil through
the x-axis (this axis is invariant with regard to the reflec-
tion).

3. The equations of the x-axis are (see § 5).

AX + By = C1

Px+Qz=R,
where: A =m cos \ ; B = sin p cos a (m? - 1)
P=cos ;3 Q = sin p sin o (m? - 1)

c. - am cos
'k (1 - km sin2? ) °

(k? sin? p = 2 km sin? p+ 1)

a cos A
'k (1 -kmsinZy)

The equations of the line u; which is the line through (p ;
0 ; 0) parallel to the x-axis are:

R (k?m? sin? y - 2 kmsin? p + 1)

Ax + By = C,
Px + Qz = R2
where C, = mp cos A and R_= p cos p

2 2

Let the equation of the pencil of planes through the x-axis be:
(A+ A'P)x + By + QA'z — C,-AR,=0
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and the equation of the pencil of planes through the line u;:
(A+ u'P)x + By + Qu'z -C, - u'R, =0

A plane of the first pencil is perpendicular to a plane of the
second one if:

(A+ A'P)(A+ u'P) + B2+ A"u'Q%2 =0
or: A (P2+Q2) + (M + ') PQ+ A2+ B2Z=o0

Elimination of the parameters ' and p' out of this last equa-
tion and the equations of the two pencils gives the following
equation of the cylinder C:

Ax+ml—C1 Ax+By—C2.(P2+Q2)—A.P Ax+£iy—Cl

. o i —
Px + @ -R, Px+Qz-R, Px + @ - R,

A -C
+_x:_By__2)+(A2+B2)=O
Px+Qz—R2

4, This equation can be reduced in the following form:

{km + sin?, (m2 - km - km3)} (x? - px) +
+ {1+ sin?y (-m? —km + km®} y2 cos2u +
+ {m2 + sin2, (- m2 + km - km3)} 22 sin2o +
+ sin A cos A (1 — km)(~ 2Xy cos o + by cos o + az sin o) +
+m (k - m) sin g cos w (- 2Xxz sin a + ay cos « + pz sin o) +
+ m COS y coS A (— 2yZ sin o cos a — ax + ap) = o (9)

5. The locus of the points with a tangent through a given
point P*(p ; o ; o) is the curve of intersection of the hyper-
boloitd H and the cylinder C given by the equations (8) and (9)
respectively. Reflection of this curve with regard to the axis MN
gives the locus of the points with a tangent through the point P
on the line A'B' such that p is the distance of P to the midpoint
T of the link A'B'.

6. As we showed in chapter I, § 6.7 the quadrics (8) and (9)
have one generator in common. As the generators of the cylinder C
are parallel to the x-axis, the common generator is also parallel
to this axis. The hyperboloid H given by the equation (8) is
generated by the projections of the line u (which is the locus
of the nullpoints of the planes normal to A'B') upon the planes
through A'B'. Let y be the plane through A'B' parallel to the
x-axis, that is, to the line u. The projection u' of u upon this
plane y is a generator of H_parallel to the x-axis, The point of
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intersection of u' and A'B' is denoted by R. If we prove that R
is a point of the cylinder C, the line u' is the common generator
of C and H.

The direction numbers of the line ur are given hy (§ 4)

m cos A sin p cos o (m? - 1) )
cos 0 sin p sin o (m? - 1)
or:
sin y sin o cos o (m?2 - 1) ; - m cos A sin o ; — COS |, COS &
Z
! 2 4 r
u Y
s r
- ~\ | up
\‘\\r‘&"igﬁs
N T ——
r e S i s s oy i s S, S — X
o) ’)" S R P
" 3 ~\~
~
ul’
b4
Figure 54

The equation of the plane y* through the X-axis parallel to
ur (fig. 54) is:

y COS o cOS p — mz cos A sin o= o

The pencil of planes through u® is given by the equation (5)
namely:

mX cOS A + y cos o sin u (m? - 1) + cos p (a — mr) +
+ P{x cos p+ z sin o sin p (M2 - 1) + cos A (am - 1)} = o

The plane 8 of this pencil normal to the plane Y" is given hy:

cos o sin p (m? - 1) cos p cos o -
- P sin pusin o (m2~-1) ., m cos A sin « = o

or: P = cos? acos p: msin? o cos A
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If we substitute this value of P into the equation of the pencil
through u® and if we take y = z = o, we obtain the equation which
gives the posttion of R which is the point of intersection of the
X-axis with the generator of the hypverboloid H parallel to the
line u”*,

We get:

mx cos A+ cos yu (a —mr) +
+ (cos? cucos p: m sin? o cos 2) {x cos w+ cos A (am -~ 1)} = o
(am — m2r) sin %o + (am - 1) cos 2

or: X = >z .
- m sin’u

s 2
m cos A COS p Sin“a

"m? (1 -sin?y) sin%x+ (1 - sin?p)cos2a
This expression is reducible to:

am COS A COS p

X = (10)

km + sin?y (- km® + m? — km)
7. If we substitute the values y = z = o into the equation (9)
of the cylinder C, we obtain an equation which gives the points
of intersection of C with the X-axis. One of these points is the
point P given by x = p.
We get:

{km + sin? (m2 ~ km — km®)}(x2-xp) - ma cos p cos A (X —p) = 0

From this equation follows x = p and the value of x corresponding
to (10). As the generators of the cylinder C are parallel to the
x-axis, the line through R parallel to the x-axis is a generator
of C denoted by u'*. This line u'’ is the common generator of the
quadrics (8) and (9) and consequently the curve of intersection
is a twisted cubic.

§ 7. Points with a tangent through a point anywhere in the
space S (chapter I, § 6.6)

1. Let the coordinates of the reflected point PT be (p ; q ;
r). We draw the line 1 through P parallel to A'B'. The line u
conjugated to the line at infinity of the planes normal to 1 is
identical with the line conjugated to the line at infinity of the
planes normal to A'B’.

The equation of the hyperboloid generated hy the characteris-
tics of the planes through 17 is equal to the equation of the
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locus generated by the lines of intersection of the normal planes
of the pencils through u® and 1* respectively,
The equation of the pencil of planes through ur’ is:

mx cos A+ y sin p cos a (m? -~ 1) + cos p (a = mr) +
+ P{x cos p + z sin p sin « (m2~-1) + cos A (am = 1)} =0 (5)

and of the pencil through 1°:
y-a+Qz-r1)=0

The condition of the normal position of any plane of the first
pencil to a plane of the second one is:

P.Q=-cot a

Elimination of the parameters P and Q out of this equation and
the equations of the two pencils gives the following equation of
a hyperboloid:

2
mx cos Aty sin p cos oo (m™~-1) + cos a -mr) y-q
B ( b ( X = — cot o

X cos p+2z sin y sin o (m?-1) +cos A (am-r) zZ-T

or: (y2+ z?-qy - rz) sin « cos « sin p (m%2 - 1) +
X(y =@ m sin o cos A + X(Z = T) COS « COS p +
(y —q) sin aw cos p (a —mr) + (z —Tr) cOS o CcOS A (am — r) = O
(11)

2. The locus of the points with a tangent which intersects the
line uy drawn through P parallel to the x-axis is a circular
cylinder C' through the x-axis and through u, such that the plane
through P and the x-axis contains the axis of the cylinder,

The equations of the line u; are: (cf. § 6.3)

Ax + By
Px + Qz

mp cos A + Bq
p cos p + Qr

n

The equation of the cylinder C' follows from the equation (9)
of the cylinder C if C, is replaced by C, + Ba and R, by R2 + Qr.
Therefore the equation of the cylinder C' is reducible to:

{km + sin?y (m? - km - km3)} x(x — p) +
+ {1+ sin? (-m? —km + km3)} y(y - @) cos?u +
+ {m2+ sin?y (- m?2 + km - km3)} z(z ~r) sin%« +
+ sin A cos A (1 — km) {- x(y — @) cos oo —y(X — D) cOS o +
+ a(z - 1) sin o} + sin p cos pm(k - m) {-x(z - r) sin o -
~- z(x - p) sin o + a(y — q) cos o} + m cos p cos A [{-y(z -71) -
- z(y - @} sin o cos a - a(x = p)] = o (12)

89




FlIllIIIlllllllllllllllllllllllllllllllllllIIIlIIIII-IIIIlllIl-I-------H

3. The locus of the points with a tangent through a given
point P in the moving space S is obtained by reflection of the
curve of intersection of the quadrics (11) and (12) with regard
to the axis MN. As these quadrics have one generator in common,
the curve is a twisted cubic. The point P has been chosen such
that the coordinates of the reflected point Pr are (p ; q ; r).
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Chapter VI

THE SURFACE GENERATED BY THE
CONNECTING-ROD A'B'

§ 1. Double-lines of the surface Il generated by A'B'
1. In chapter IV, § 1 we stated that the coordinates of A' and
B' are:
A'"( a+rcos ; rsingcos a; —r sin ¢ sin o)

B'(—a+ rcosy; rsinycos a; r sin y sin o)

The equations of the line A'B' are:

X +a-=rTcos vy Yy ~ r sin y cos o

2a + r(cos ¢ — cos y) I cos o (sin ¢ — sin y) )

z — r sin y sin «

— r sin o« (sin ¢ + sin y)

or, if we write %(p + y) = A and %(p - y) = y,

2Xr cos o sin p cos A+ 2 ar cos o sin A cos p =
= 2ay - 2yr sin p sin A + r? cos a sin 2y

and: - 2xr sin a sin A cos p — 2ar sin o sin p cos A =
= 2az - 2zr sin y sin A - r? sin a sin 2 A

or, writing y and z as functions of x:

2y(a - r sin p sin ) =
= r cos a (2X sin y cos A + 2a sin A cos p — r sin 2 p)

"

and: 2z(a — r sin y sin ))
= —r cos o (2x sin A cos p + 2a sin y cos A — r sin 2 Q)

From these equations we reduce:

%Sinxcos)\+ 2am sin y cos p — r sin 2 y

y
—= - cot o
- stinpcosu+%sin)»cos)\—rsin2>\

.x_’n‘_sinzx+(am—r) sin 2 pu

= - cot a—;
(F =T sin 2 A+ m X sin 2y
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2. This expression is independent of N\ and p if:
X: E-r)=(am-1): xm
m m

or: x2 = (am - 1) (&~ 1)
m

or: x=i\/(am—r) (%—r)

The values of%corresponding to these values are:

iy

S apa il /(am—r) (mi-r)

Z a = mr

Briefly we write:

h a —mr
1/(aﬂl - r)(é__ r) =D and —_—=q
m p cot o

where p and q are functions of a, r and « only because m only
depends on a, r and o
Consequently we get:

X=1%p; I3l

z a

The lines: X = B
qy+z=§} and _D}

Qy - 2Z=0

denoted by d1 and d2 respectively are lines of the surface IT gen-
erated hy A'B'. They are the lines of intersection of the planes
X = + p with the surface TL

3. Between the points of the circles described by A' and B'
there exists a one-to-one correspondence. As these circles have
no self-corresponding points in common, the surface Il described
by A'B' is a surface of the fourth degree. A surface of the fourth
degree is not a doubly ruled surface for the quadrics are the
only doubly ruled surfaces *). As A' and B' move in different
planes through the X-axis, the line A'B' has a point in common
with this axis only if A'B' coincides with it. The lines d, and
d2 intersect the X-axis at a right angle and hence, d, and d2 are
no generators of TL

Il can be considered as a ruled surface with d1 and d_, and the
circle described hy A' as its directrices. Consequently d] and al2
are double~lines of the surface TI **).

*) Eisenhart, Differential Geometry, 224 (Boston 1909)
**) H,J.van Veen, Beknopt Leerboek der Beschrijvende Meetkunde,
228 (Groningen 1946).
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S 2. The equation of the surface Il

1. The surface Il can be considered as the surface generated
by the lines which intersect the lines dz and d2 and the circle
described by A' (fig. 55).

The equations of d1 and d2 are:

X=zxD

—_— } (1

A!
arc tan q arc tan q
a
Y 4
Figure 55
and the equations of the circle described by A' are:
zZ = -y tan o
(x —a)2+ y24 22=p2} (2)

The lines which intersect d1 and d2 are the lines of intersection
of the planes of the pencils:

(z - qy) + Mx + D) (3)

]
o

(4)

"
[e]

and (Z+ @) + u(x - p)

These lines intersect the circle given by the equations (2) if
the equations (2) ; (3) ; (4) have a solution. Elimination of X,
y and z out of these equations gives the condition for the common
solution.

Elimination of z gives:

(x —a)2+y2sec?2 q=r2




ﬁ

(5b)
(5¢)

1}
o O

X + AW —y(tan o — Q)
pX — up — y(tan o + Q)

If we write: q + tan o = f and q — tan o = g the equations (5b)
and (5c) become:

X - fy = = and uX + g = up

- Agp + uf 2
ors x=M and y:—.‘f_)\p_.
grn + uf gr + uf

The elimination of x and y is obtained by substitution of these

expressions into (5a). We get:

f - g\ 2 4 pihDp?
u_ - a) + s b = r?
uf + g\ cosZa (uf + gn)?

(p

The equation of the surface IT fol_lows by substitution of

-2z qQ + Z
'}\:_qy___ and fly W ——
P+ X P ~-X

(these expressions follow from (3) and (4)) into this relation

between A and p.
We obtain:

p?{f (p+x) (@ +2) —g(p~x) (@ -—2)}?%~
~2p {p+ N2 (y+22f2-(p~-x2 (v -2)2%g% +
+@-rH {f (p+x) (@ +2)+g(p-x (@ -2z)}*+
+ 4{a2y?-2z%2p?sec?a=o0 (6)

2. The equation (6) is reducible in the following way:
As f = q + tan oo and g = @ — tan o we have:

f«(p+ x)(ay + 2) = (pa% + qxz + pz tan o + QXy tan o) +
+ (paz + g%y + pPQy tan o + Xz tan o)

If we write this expression as A + B, we find
g(p - x)(ay ~z) =A-B

Substitution into (6) gives:

p?B2 — 2apAB + (a?2 -~ 12 A2+ (¥ ?-29)2p2sec?a=a

or: (pB —aA)?2 + (q% 2 - 2% 2p2sec? a=r2A? (M
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From the equation (7a) (chapter IV) namely:
Zam _ cos? o+ m2 sin? o

follows: 2am cos? o + 2am sin? o= r cos? o + m2 r sin? «

or: tan? o = (r — 2am) : m(2a — rm)
and sec2 =1+ tan?2a=r(m2~-1) : m(rm - 2a)
Furthermore we have: p.q = tan o (a — mr) (§ 1.2)

The expression (pB - aA) in (7) becomes:

p2qz + pa?xy + p2qy tan o + pxz tan o — apq?y — aqgxz -
— apz tan o — aqgxy tan o = (pz + qxy) (pq — a tan o) +
+ (pay + xz) (p tan o — aq)

where pq — a tan o« = tan o (a — mr) —a tan a = — mr tan o
and ptana_aq=tana(p2__m)z
p tan o

- tan o foon ~ (ﬁ—r) ~a(a -mr)} =

= tan o _pry {(am-T1) —am} = —rq : m
mp
This gives:
< rq
pB — aA = — mr tan o (pz + 4xy) ~—ﬁ-(pqy + X2z)

—Hr{mzpz tan o + m2axy tan o + pa¥y + qxz}
If we write:

F = rpz tan o +rgxy tan o and G = rpa% + raxz
we get: pB—-aA = —-mF - G : m
The expression rA from (7) becomes:

TrA =G+ F
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Substitution of (pB - aA) and rA into (7) gives:

2.1

~WF =G : m 2 2 _pn2p2L W
(- mF m 2+ (aF* - BN Pl

= (G+ F)?

or:
2
(m? - 1) F‘2+(-1—.-1) G2+(q2y2-z2)2p2£."‘ 1=0
m? m rm - 2a

2y e ixe m2 -1

or, after dividing by_z_.;
m
2
m?¥F? - 62 + (a2 -232 B .o
rm - 2a

The equation of the surface Tl generated by A'B' becomes:

m2r2p2z2? tan? o + m2r2g% %2 tan? o - p2qtr¥y 2 - 2 q¢irx%? +

2
2 2 . _ g2 2 _ a2 PTTR
+ %xyzrpq (m? tan? o - q?) + (q% e R

where: 1, r, a and o are data of the quadrilateral,
2. m is given by the equation 2am : r = cos? o + m? sin %,

3. p=1f(am—r)(m3—r)'andq=(a_—pmr) tan o

$ 3. Reality of the double-lines
1. The equation (7a) from chapter IV:
2am : r = cos? o+ m2 sin? «

or, if we write 2a : r = Kk,

4+ msin? «

gives k as a function of o and m. If k and m are taken as current
coordinates and o as a parameter, the equation gives a series of
curves (fig. 56). The limiting values of « are o and 7/2 in which
cases the equation becomes k = 1/m and k = m respectively.

Each value of o < o < ©/2 gives a curve (hyperbola) through
the point S(1 ; 1). The k-axis is one of the asymptotic lines of
the curves, All curves lie in the shaded area of the graph.

2
2. The equation k = 9.‘%.;“+ m sin? o is reducible to:

2
k = {/m sin o =25%" 4 2 sin o cos «
Vi
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\ k=m (osoﬂ),(r
k \ Aﬂﬂ
2
1 /]
I
h k== (0=km)
m
0 i | m
Figure 56
Hence, kmin = 2 sin o cos o = sin 2 o if m= cot o
2 sin o cos o 2 cot o 2n
or k . = = -
™ cos? o+ sin?2 o cot? q+-1 m2 4+ 1
The curve corresponding to kmin = 22"] goes through the origin
m*+ 1

and through S. The greatest value of kmin is 1 namely if m = 1.

3. The surface Il has two real double-lines d1 and d2 if

p= /(am -T) (% — 1) is real. This gives the condition:

(am - r)(%— ry >o

or, as m > o, (2am - 2r)(2a - 2mr) > o
or: (km - 2)(k - 2m) > o
k

k=2m

The points of the shaded
area only (fig. 57) limited by

2| the line k = 2m and the curve
”’} k = 2/m have coordinates which
satisfy the inequation:

(km - 2)(k - 2m) > o

Figure 57
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4a, Combination of the conditions given in 1 and 3 gives that
the values of k and m are only the values of the coordinates of
the points in the areas 8,08 and A,SS,B, (fig. 58), where A, and
B, are the points at infinity of the curves km = 1 and km = 2
respectively which coincide with the point at infinity of the
m-axis,

km=2
=2m
P( kT m=1

[¢7]
[6)]
w [ &)
et
n
-
1]
=
0
"
g
L =]

[XT=]
Q
w3
TN
o1y |
o
1=
o
—
=]

Figure 58

4b, The left-hand figure gives k as function of o The limit-
ing curve corresponding to the line 08, (k = 2n) is given by:
2

koo pind g ogm08 &
2 k
4 cos?
or: k? = =

1+ cos? o

2 cos o

or: K = ————
V1 + cos? o

which gives the line Cs,.

The line corresponding to 0S (k = m or o = 7w/2) is the line CD
and the line corresponding to SS1 (oo =0) is the line ES,. The
point S in which k=1, m=1 and o is undetermined corresponds to
the line DE. Hence, the “triangle”’ SIOS corresponds to the figure
S ,CDES ,.
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k =—=si
m n
2 sin o
or: k =2 ————
V1 +sin? o

which gives the line 5,0 (o < a < 7/2).

The curves S40 and S,C are symmetrical with regard to the line
o = n/4. The line SS, (o = n/2) corresponds to DS, and the curve
SAOO (km = 1; o= 0) corresponds to the line EO. Hence, the figure
A,SS,B, corresponds to the figure OEDS,0. The line CFO in the
left part of the graph is the curve given by the equation:

kK . = sin 2 a

min
2 cos o 2 sin o

As sin 20 < ~=———==\and sin 2 a < ——=—
V1 + cos? a V1 + sin? o

is drawn beneath the curves CS, and 0S,.

If we follow the curve o = 7/3 in the right-hand graph, we
meet the special points 1, 2 and 3. These points correspond to
the points 1, 2 and 3 in the left-hand graph on the line o = /3.
Similarly we get the points 1, 2 and 3 on the line « = 7/6. Con-
sequently each point of the area in the left figure between the
curve CFO and the curves CG and GO corresponds to two points of
the shaded areas of the right figure.

5. The surface IT generated by A'B' has two real double-lines
if:

the curve CFO

2 COS o

I sin 20 < k < —m—m—m—m=
V1 + cos? «

2 sin
II  sin 20 < k < ———2— if /4 < & < /2
V1 + sin? o

Let Po be a point of the double-area of the left-hand graph
and let its coordinates be do and ko. There exist two values of
m, m, and m, say, corresponding to o = o, and k = ko. So we ob-
tain: If we have an isogram with « = o, and k = ko, there exist
two surfaces I, and IT, which can be generated hy A'B' and each of
them has two real double-lines (chapter IV, § 1.4).

if 0 < o < W4,
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$ 4. Special cases given by the limiting values of k
1, If k = sin 2o the equation

cos? o + m? sin? o = km

becomes: cos? oo+ m2 sin? o = m sin 2o
or: (m sin o — cos ) 2 = o
or.: m= cot a

The value p = V(am - r)(1 - 1) given in § 1.2 becomes:
m

p =% m= yzr‘/(s-in 2. cot o~ 2) (sin 2a- 2 cot o)
m

cot o

= r sin o cos o

and the value of—sz[— given in § 1.2 becomes:

p = — cot o I S1n o COS o« _

a - mr a -1 cot o

J = «~ cot a
Z

2 sin o cos a
= ~ cot o — = tan o
sin 2o - 2 cota

The equations of the double-lines d1 and d2 are in this case:

X = 1+ r sin o cOS o

<

(y=iztanoc

2 sin o
’
V1 + sin?

cos? o + m?2 sin? o = km

2. 1f k = the equation

becomes: cos? o+ m2 sin? o = 2m sin o : V1 + sin? «

—_—

or: m2 sin? o - 2m sin o : V1 + sin? o + cos? a = o
2 sin o 4 sin’ o g 5
/—1+sin2 " - 1+sin2a"4sm o CosS” a
or: m, =

2 sin? «

1 +V1 -cos? « - sin? « cos? «

sin a V1 + sin? «
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1+sin? o

sin o V1 + sin? «

or: .3
V1 + sin o 2 cos? a
m,6 = —m—m—m—m—m——=— and m =
1 " 2 % / s 9
sin a k sin o V1 + sin“ a

Ifwetakem=m1=

double=-lines coincide with the z-axis. In every position the line
A'B' intersects the z-axis. Hence, in every position the projec-
tions of A' and B' upon the plane XOY lie on a line through the
origin.

o we notice that p = o and—yz- = 0. The two

2 cos o )
3. If Kk = -=—=———=—=——=,the equation
V1 + cos? «

cos? o+ m? sin? o = km
becomes: m2.sin? o - 2n cos o : V1 + cos? o + cos? a = 0

From this equation follows:

1

cos cos o

=211 + co82 and m2=/————-==.=%k
sin? o 1+ cos? «

Ifms= m, = %k we obtain p = o and—‘;'-= o and again the double=

lines coincide with the z-axis.

§ 5. The value x_ of chapter V § 3
In chapter V we found that the point of the line A'B' with a

tangent which coincides with A'B' is given in its reflected posi-
tion with regard to the axis MN of the isogram hy:

X=il(am—r)(%—r)';' y=o0; Z =0

if the position of the quadrilateral follows from:

|sin ul . VR and lcos | = vV2=1L

N N

where N = a + am? - mr.
The considered point is a real point if:

(am - r)(mi— r) >o

or, asm > o (km - 2)(k - 2m) > o
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From |sin u| = vféé follows: N > o and from |cos | = vV 2 =1L

fol lows: =
a-—-mr >o ox: k-2m>o0
Hence, the condition (km - 2)(k — 2n) > o is only fulfilled if:
km - 2 > o0 and k —-2m >o
Fig. 56 shows that if we draw the curve km = 2 and the line
k = 2n there are no values of k and m which hold to the inequa-

tions

km - 2 >0 and kK ~2m >o

and to the equation: km = cos? o + m2 sin? «

Consequently we obtain the theorem: There exist no position of
the i1sogram ABA'B' such that a real point of A'B' has a tangent
that coincides with A'B',

§ 6. Distance of the point of intersection of the double-
line d, with A'B' to the X-axis

1. Let FG (fig. 59) be the double-line dl through (p ; o ; 0)
and GH its projection on the plane XOY. F is the point of inter=-
section of d, and the line A'B', that is, the common point of
A'B' and the plane x = p.

In § 1.1 we found as one of the equations of A'B':

2r(a —r sin p sin A) =
=T cos o (2X sin y cos A+ 2a sin A cos w — r sin 2 w)

Z

\ G(p;0: 0)

Figure 59
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Substitution of x = p gives:

2p sin p cos A+2a sin A cos p-2r sin p oS p
2(a - r sin p sin )

Vg = HG = r cos a

sin p {p cos A + (am - r) cos p}

r COS o

a-m sin? p

As cos ) is a function of p, y. is also a function of .
We write y_ = r cos a f (u). The extreme value of y. can be
calculated hy .taking the derivative of y, or of f (u). We obtain:

1

rqp—— )2E(a—rmsir12p.) [cos 1 {p cos A +
- n

f'(w) =
. ’ dx i
+ (am - T) cos;;.}+s1np,{—ps1nxa-(am-—r) sin p}] -
-~ sin w {p cos A+ (am = r) cos u} (- 2 m sin pu cos p)l
We suppose: a -rsinpsin A€o

that is, a-mm sin? , # o

As sin A = m sin y, we get: cos A . dr = m cos p du and we obtain
if £'(p) = o:

(a — m sin? ) [cos p {p cos A + (am - r) cos p} +

+sin y {-p sin A 2225 £ _ (am — r) sin p}] +
cos. M

+ 2rm sin? y cos p {p cos A + (am -~ 1) cos p} = o
This equation is reducible to:
{(am? + a — mr) sin? y -~ a} (mr sin?2 p -a)? = o
or: sin? T R e
a+ am? - mr
as mr sin? y - a # o

or |sin p,l = \/—Tz—

2. If sin p = V%, we obtain:
r - - " fa -mm
{",(am r)(a rm)./ m
m "N

Ccos

Z|lp |R

extr 1 -
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/m(am = 1)y /&
+ (am - 1) N S } 5
This expression is reducible to:

/am - T
Yy = I CcoS o0V —mm

F

extr am
C a =
As L & OtOL1/(am—r)(——r)
4 a-=-mr m
(a - mr) /m_‘
we get: Zextr = —yextr tan

OL1/(3. —mr)(am — r)

. S & = Mr
= T BlR QY=

a
The extreme value of FG becomes:
. am — I . a — mr
FG2 =y?2 + z2 = r¥cos? o —— + sin? o ——}
extr extr extr
am a
2 2 .y r 2 2 qin 2
= r?{cos? o + sinm oc—-a;(cos— o+ m?sin? «)}
2 r 2am
= r(l = ——)
am T
= - r2
or FG__ 1is imaginary namely:
FG = ir
extr

3. If T is the midpoint of A'B' we shall calculate the dis-
tance TF if GF has its extreme value.
The coordinates of T are:

{r cos A cos w; T cos o sin A cos u ; —I‘SinouSinp,COS')\}

and the coordinates of F are:

/am — T " /a - mr
Ip; reos nV B =L . v sin oV 2200
a

am

where:

p=l/(am-r)(i—r); sinu=\/§'sin)\=m\/—;¢;
m
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cosu=vm(;am_—r); cos A=V2"" and N=a+am?-mr

N N

The coordinates of T are reducible to:
{%; r cos a%v am(am - 1) ; - r sin cx-li—\/a(a ~mr)}

We obtain:

rpm, 2

2 = (p N ¢l

2
cos? o am(am — r)(i ... S
am N
. 1.2
+ r?2sin? o a(a - mr)(%—-ﬁ)

This expression is reducible by aid of the relation r cos? o +
+ rm? sin? o« = 2am to: TF? = p2

or TF =p
We obtain the theorem:

If A'B' is tangent in one of its points F, this point F is a
point of one of the double-lines d, of the surface Il generated by
A'B'. The distance of F to the midpoint T of A'B' is equal to the
distance of d, to the midpoint O of AB. The corresponding posi-
tion of the quadrilateral, however, is not real.

§ 7. The case in which A'B' is characteristic

The tangent in A' is perpendicular to A'B and intersects the
X-axis in the point D (fig. 60). Similarly the tangent in B' is
perpendicular to AB' and intersects the X-axis in E. A'B' is the
characteristic of a plane through A'B' if the tangents in A' and
B' lie in one plane. Therefore it is necessary that the points E
and D coincide.

Figure 60
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We get: OE = AE —a =T sec y —a
OD=BD+a=r7rsec @+ a

The points E and F coincide if OE = OD.

or. I'SBC\P'—3.=I‘S€CQP+3,

cos - COS
or: Tr ____QP___\V_= 2a

COS ¢ COS y

2 sin A sin p

i = 2a
% (cos 2 N+ cos 2 p)

or: -

s a
or: Bin® g e
am“ + a —

which is in accordance with the condition that A'B' is a tangent.

§ 8. The line conjugated to A'B'

1. The line (A'B')P is defined as the line of intersection of
the planes o and @ through A" and B' respectively and normal to
the tangents at these points.

The plane o is the plane through A' and k or through A'B and k
and the plane B is the plane through B' and h or through AB'
and h,

The pencil of planes through the hinge-axis h is:

Yy + 2z tan oo + A(Xx + a) =0
Substitution of the coordinates of B' namely
{~a + rcos y; rsin ycos a; r sin y sin o}
gives: A= ~—tan y ! cos o
The equation of the plane 8 becomes:
y cos o+ z sin a = (X + a) tan y
Similarly the equation of the plane o is:

y cos o~ 2z sin o = (x ~ a) tan ¢

The line (A'B')P conjugated to A'B' is given by these two
equations.
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2. The direction numbers of A'B' are (§ 1):

2a + T (COS ¢ — COS V) ; r cos o (sin ¢ — sin y) ;
- r sin o (sin ¢ + sin y)

or: a —r sin A sin p ; r cos o sin p cos A ;
- 1 sin a sin A\ cos p

The direction numbers of (A'B')” are given by:

.= tan y cos o sin o

~ tan ¢ coSs o ~ sin «
or: — 2 sin o cos o ; — sin a (tan ¢+ tany) ; cos o (tan ¢- tany)
or: - 2 sin o coS o COS @ COS vy ; - sin o sin (@ + y) ;

cos a sin (¢ = y)

or: - sin a cos o (cos 2 A+ cos 2 ) ; - sin a sin 2 A ;
cos o sin 2 p

The line A'B' is perpendicular to its conjugated line (A'B')P if:

— (a = r sin A sin y) sin o cos o (cos 2\ + cos 2u) -
= r sin « cos o sin u cos A sin 2\ -
- T sin « cos o sin A cos p sin 2y = o0

The equation is reducible to:
a

sin2 p =——
a+am? - m
which is the same equation as given in §7. Consequently the con-
ditions that A'B' is a tangent and that (A'B')® is perpendicular
to A'B' are identically equal. This is in accordance with theorem
XIV (chapter I, § 5): If a line 1 is perpendicular to its conju-
gated line 1P, 1 is a tangent.

§ 9. Crossed and not-crossed quadrilaterals

1. The orientation of the angles ¢ and y, that is, the angles
between the rotating sides and the positive X-axis, is given in
fig. 61,

From sin A = m sin p where A = %(¢p + y) and p = %(p - y)
follows:
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Figure 61
sin %(p + y) = m sin %(q ~ y)
or: (m+ 1) tan o y= (m = 1) tan % @ (1)
where m is given hy the equation:
m2 sin? « - km + cos? a = 0 (2)

Let m, be one of the roots of this equation and y, any value
of y. We get:

my +
tan Y%y = —1——

A tan % ¥y
m, 1
This equation gives only one value of ¢(+ n . 2mr). Consequently
if m, and m, are the roots of (2), a surface I, generated by A'B'
corresponds to m = m, and a surface I, corresponds to m = m,,
%nly if m, = m, the surfaces H1 and H2 are identical (chapter IV,
1. 4).

2. The isogram is called a crossed quadrilateral if an in-
crease of ¢ corresponds to a decrease of y. If an increase of ¢

corresponds to an increase of y, the quadrilateral is called not-
crossed,

We consider ¢ and y as functions of the time t. If we take the
derivative with respect to t in the equation (1), we obtain:

m+1 " m-1 .
2cos?hy ¥ 2cos’ho T
The mechanism is crossed if y : ¢ < o and not-crossed if y : c})>o
orB=1 g angl=1s, respectively.
m+ 1 m+ 1
Fromm, + m, =k : sin? c and m; . m, = cot? a follows that
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ifm, and m, are real (k > sin 2w«), they are positive. Therefore
the condition of the crossed mechanism ism — 1 <o orm < 1 and

of the not-crossed mechanism m > 1.
The mechanism corresponding to m = m, is denoted hy Ml and the

one corresponding to m = m, by M,.
If we define m, > m, we distinguish the following cases:

A. m, > 1 and m, > 1% Ml and M2 are both not-crossed.
B. m, > 1 and m, < 1 ; M1 is not-crossed and M2 is crossed.
C. m, < 1 and m, < ) i M1 and M2 are both crossed.

and further we have the limiting cases:

D. m1>1 and m, =1
E.m, =1 and m, <1
F.m, =1 and m, =1
3. A. m, and m, are both > 1 if:

a) m, and m, are real, that is, k > sin 2«

b) m, + m, > 2, that is, k > 2 sin? «

&) (ml—l)(mz-l) >oorm1.m2—(ml+m2)+1>o,

that is,k < 1
Hence: 3251n2o¢<k<1
sin 2aa < k < 1

The first condition is only satisfied if o < o < /4 and for
these values of o we have 2 sin? « < sin 2o
We obtain: The two mechanisms M1 and M2 are not-crossed if

sin 20 <k <1 and 0< o< w4
B. my > 1 and my, < 1 if:
(m, - H(m, -1) <o
or: m1m2-(m1+m2)+1<o or k>1 or 22 > r

We obtain: If the fixed link AB is longer than the links AB'
and A'B the mechanisms M, and M, are not-crossed and crossed
respectively.

C. m, and m, are both < 1 if:

a) m, and m, are real, that is, k > sin 2«

b) m, + m, < 2, that is, k < 2 sin? «

c) (ml - 1)(m2 -~ 1) >o0, that is, k < 1

Hence: ssin 200 < k <1
{ sin 20 < k < 2 sin? o




§

The second condition is only fulfilled if « > 7/4. For the
values of o between 7/4 and 7/2 we have 2 sin® « > 1 and there-

fore we obtain:
The two mechanisms M1 and M, are crossed if

sin 20 < k < 1 and w4 < o < /2
D. m, = 1. Subsitution into the equation (2) gives:

sin? o -~k + cos?2 o= 0 or k=1

As m,.m,= cot? o we get m, = cot? o« As we supposed m, 2z m,,
we conclude cot? o > 1 or o < a < 7/4 and from m, > 1 follows
that the mechanism M; is not-crossed. The mechanism M, with m, =
= 1 is a deégenerated mechanism which follows from the equation
(1): tan o, y=o0or y=o0 (+n . 2n) and ¢ is undetermined.

As y = o the point B' coincides with B (fig. 62). The surface I,
generated by A'B' if m = m, = 1 is the plane through the circles

described by A'.

P o x

AI

Figure 62

E, o, = 1. Substitution into (2) gives again k = 1. Further we
get m, = cot? o and as we supposed m, 2 m, we have cot? o < 0 or
/4 < o & /2,

As m, <1, the mechanism M, is crossed. The value w, = 1 gives
the same degenerated mechanism M, as mentioned in D.

Fom;=m, =1
Hence we obtain: k = sin 2« ; kK = 1 ; o = /4, that is, the two
mechanisms M, and M, are degenerated.
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STELLINGEN

I y
Koppelt men twee niet-evenwijdige assen door middel van de
ruimtelijke stangenvierhoek van Bennett, dan verkrijgt men een
overbrenging zonder dood punt. De nadelen van deze koppeling
zijn:
1. het verschil in momentane omwentelingssnelheid van de assen;
2. de wringing in de koppelingsstang.

Diss. pag. 46.
Bennett, A new mechanism. Engineering 4, 12, 777 (1903).

11

Zij van een orthogonale paraboloide a één der beschrijvenden
door de top en b een beschrijvende die a snijdt in een punt P,
dat niet met de top samenvalt, dan kan men vier punten A, B, C en
D op b aannemen, zodanig dat AB = CD en BP = PC, terwijl de pun-
ten de volgorde A, B, C, D hebben. Noemt men de beschrijvenden
door deze punten respectievelijk a,, a8, a,; a,en de normalen in
deze punten n,, Ng, N, D, dan geeft spiegeling van A met n, ten
opzichte van az en van C met n. ten opzichte van 8, de punten,A'
met n,r, en C' met n.1. De vierhoek A'BDC' blijkt dan een vier-
hoek van Bennett te zijn met n,r, ny, n,, n.r, als respectieve-
lijke scharnierassen.

Bennett, The skew isogram mechanism.
J.London Math. Soc. 13, 151 (1914).

III
Dat de door Schoenflies gegeven theorie rechtstreeks kan wor-
den toegepast op de beweging van de aan de verbindingsstang van
de vierhoek van Bennett gekoppelde ruimte berust op het feit dat
de scharnierassen twee aan twee toegevoegde rechten zijn.

Schoenflies, Geometrie der Bewegung (Leipzig, 1886)
pag. 87.

Iv
In Euclides IIi-IV, 140-141 (1953) kiest Haantjes in zijn
artikel over de kinematische methode in de meetkunde als voor-
beeld de rechte van Wallace. Zijn oplossing kan kinematisch
fraaier worden gegeven door een bijzondere wenteling om P,

\Y
Door Griss is de rol-glijbeweging gedefinieerd als een bewe-
ging van een vlak Vl, ten opzichte van een vast vlak V, waarbij
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een kromme C, uit V, voortdurend raakt aan een kromme C uit V,
terwijl tussen overeenkomstige booglengten op deze krommen een
constante verhouding A bestaat.

De rol-glijbeweging is geen speciale beweging, elke beweging
van vlak V1 ten opzichte van V kan als zodanig worden beschouwd,
Daarbij kan de factor A nog willekeurig worden gekozen.

Griiss, Zur Kinematik des Rollgleitens, Z. Angew. Math.
Mech., 31, 97-103 (1951).

VI

Bekend is de volgende eigenschap. Een kegelsnede raakt aan de
zijden van de driehoek A1A2A3; verbindt men de raakpunten op de
beide in Ai samenkomende zijden en snijdt men de verbindingslijn
met de overstaande zijde van Ai, dan liggen de drie snijpunten
(volgens het theorema van Pascal) op €én rechte.

Deze eigenschap laat een meerdimensionale uitbreiding toe;
deze heeft betrekking op de figuur van een quadratische varié-
teit, die aan de ribben van een simplex raakt.

VII
De methode van Alders, volgens welke de oppervlakte van een
driehoek wordt gedefinieerd als het halve product van hoogte en
basis biedt een goede gelegenheid tot de formele opbouw van het
begrip oppervlakte. Zijn analoge methode voor de inhoud daaren-
tegen heeft ernstige bezwaren.

Alders, Vlakke Meetkunde (1952) pag. 109,
Alders, Stereometrie (1950) pag. 53.

VIII
De door De Kok ontwikkelde en door hem als nieuw beschouwde
methode van numerieke quadratuur, volgens welke bij integratie over
het interval m — a < X < m + a de functiewaarden in de punten
X=mz+taen X=m £ a : V5 worden gebruikt, is een bijzonder
geval van een algemene integratiemethode, die op de eigenschappen

der polynomen van Legendre berust.
De Kok, Numerieke Integratie, Euclides 25, 271-273 (1950)

IX
Schuh geeft een kenmerk voor convergentie van uitgebreide
kettingbreuken, waarbij ondersteld is dat de gedeel telijke tel-
lers b,, bz,... en de gedeeltelijke noemers B Bgreee alle posi-
tief zijn. Dit kenmerk kan als volgt verscherpt worden:

b

n <
a_ a N

n n-1

Schuh, Lessen over Hoogere Algebra III, 683 (1926)
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X
De didactische waarde van films over de wiskunde is belangrijk
minder dan die van films over de natuurkunde.

X1
De omzetting van de H.B.S. met vijfjarige cursus in een Athe-
neum met zesjarige cursus heeft grote nadelen.

XII
Het is wenselijk dat onderwijzers en leraren kennis nemen van
de industrie door tenminste €én jaar in één of meer fabrieken te
werken.

XIII
De nomografie kan, ondanks de ontwikkeling van de rekenmachi-
nes, veelvuldiger toegepast worden bij de bedrijfsefficiéntie.

X1V
Nu ons land, noodgedwongen, in een snel tempo wordt geindus-
trialiseerd, is het gewenst de toekomstige fabrieksarbeider in de
laatste jaren van zijn schoolopleiding begrip bij te brengen van
deze noodzaak en van het belang der arbeidsproductiviteit voor
het nationale, materi€le bestaansniveau.

XV
Het is aan te bevelen, grote industri€le ondernemingen onder
te verdelen is niet te grote, in zichzelf zoveel mogelijk afge-
ronde, zelfstandige eenheden, die alle phasen van het industri€le
proces verzorgen voor een beperkte variatie van producten en die
geografisch gespreid zijn.




