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I N T R O D U C T I O N 

In Engineering 4, 777 (1903) G.T.Bennett published a paper on 
a mechanism, which he cal led the skew isogram. I t i s a quadr i la­
te ra l ABA'B' of which the sides are rods, hinged in i t s ver t i ces . 
He proved that t h i s skew quadri la tera l i s movable i f the opposite 
s ides are equal. Further, he described several technical applica­
t ions . In 1914 he published in J.London Math. Soc. 13, 151 (1914) 
a s e r i e s of theorems associated with the isogram, considered as a 
pure mathematical s u b j e c t . B e n n e t t ' s papers con ta in va r ious 
theorems of which no proofs were provided. One of the aims of 
t h i s t he s i s i s to give a summary of these theorems and to supply 
the missing proofs. 

If one of the rods, AB say, of the isogram with i t s two hinge-
l i n e s i s fixed, i t i s poss ib l e to determine a moving space in 
which the rod opposite to AB, cal led the connecting rod, together 
with i t s two hinge-l ines are fixed l i ne s . Another aim i s to exam­
ine the motion of t h i s moving space. The general theory of the 
moving space given in chapter I as far as needed in the following 
chapters , i s taken from Schoenflies, Geometrie der Bewegung. To 
make chapter I selfcontained, i t was necessary to give proofs of 
several theorems, wtoich are d i f ferent from those of Schoenflies, 
e s p e c i a l l y the one of theorem IV, which i s given by means of 
analyt ica l geometry. 

Inves t iga t ing the moving space we have made use of the method 
of the axial ref lect ion. The theorems which we need are given in 
chapter I I . They are taken from two papers of J.Krames: Zur Geo­
metrie des Bennett'schen Mechanisraus (Wiener Si tz . Ber. I l a , 146, 
159 (1937); Symmetrische Schrotungen I (Monatsh. Math. Phys. 45, 
394 (1937). Por the same reason as in chapter I the proofs are 

not the same as those given by Krames. 
Chapter I I I conta ins a se l ec t ion of theorems of the isogram 

given by Bennett. I t appears possible to introduce various qua­
dr ics which are connected with the s ides , h inge- l ines and angle-
b i sec to r s of the quadr i l a t e ra l . Further, t h i s chapter gives ne­
cessary and s u f f i c i e n t condi t ions for the q u a d r i l a t e r a l to be 
movable. In general a skew quadr i la te ra l hinged in i t s ve r t i ce s 
i s t r i p l y s t i f f , but i f the opposite s ides are equal i t i s mov­
ab le . After g iv ing the d e f i n i t i o n of the tw i s t of a l i nk , we 
determine a r e l a t i o n between the tw i s t s and the lengths of the 
sides, 
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In chapter IV we consider the moving space in which the rod 
A ' B ' together with i t s h inge- l ines are fixed l i n e s . Every point 
of the movihg space describes, in general, a ra t ional space curve 
of the fourth degree. The parametr ic equat ions of these curves 
are deduced. One of the most important quan t i t i e s of the moving 
isogram appears to be the quanti ty denoted by m, which only de­
pends on the r a t i o of the unequal s ides and on the twis t of the 
fixed rod. This quant i ty m i s the constant r a t i o of the s ine of 
half the sum of an angle and the supplement of the adjacent angle 
to the sine of half the difference of these angles of theisogram. 

In § 6 we prove t h a t t he space curves have four i s o t r o p i c 
p o i n t s and i t i s f u r t h e r shown t h a t no spher ica l curves occur 
among them. In § 8 i s deduced the equation of the surface of the 
t h i rd degree which i s the locus of the poin ts with an osculat ing 
plane with a four th-order contact ( these po in t s are ca l l ed the 
po in t s of i n f l e c t i o n or the s t a t i ona ry p o i n t s ) . In § 9 are de­
duced the equations of the locus of the ooints which have a tan­
gent with a second-order contact. This locus i s , for any posi t ion 
of the quadr i l a te ra l , a twisted cubic. 

In chapter V the theorems of chapters I and I I are applied, 
I t i s shown tha t the hinge- l ines are two by two conjugated l ines , 
which means t h a t the p lanes through the p o i n t s of one of the 
h inge- l ines normal to the tangent a t these points go through an­
o ther h inge- l ine , ca l led i t s conjugated l i n e . Therefore many of 
the theorems of chapter I are immediately applicable to the mov­
ing space. AS the isogram has an ax i s of symmetry, namely the 
l i ne connecting the midpoints of the diagonals AA' and BB ' , and 
as t h i s axis descr ibes a ruled surface during the motion of the 
isogram, the moving space can be considered as the r e f l e c t e d 
fixed space with regard to the generators of the ruled surface. 
Several l o c i in the moving space are given in t h e i r r e f l e c t e d 
p o s i t i o n . In t h i s way the locus of the p o i n t s with a tangent 
through a given poin t i s found. Furthermore, the equat ions of 
the instantaneous screw-axis are given, following from the theory 
of chapter I . 

In chapter VI we consider the surface generated by the con­
nec t ing rod A ' B ' . This surface of the fourth degree has in ge­
nera l two doub le - l ines , which i n t e r s e c t the l i n e of the fixed 
link a t a r ight angle. Conditions are given that the double-lines 
be rea l . Further, we deduce the effect of the values m̂  and m of 
m on the quadr i la tera l being crossed or not-crossed, where cros­
sed means that the ro ta t ions of the l inks around the fixed hinge-
l i n e s are in opposite d i rec t ions . 
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C h a p t e r I 

T H E M O T I O N O F R I G I D S P A C E *) 

§ 1. Displacenent of a l i n e 

i . We consider the motion of a r ig id space S in a fixed 
space a. If the pos i t ion of three poin ts of S, which do not l i e 
on one s t r a i g h t l ine i s given, the posi t ion of each point of S i s 
determined. Let two pos i t ions of a point P of S be denoted by P 
and P , . The l i ne P P, i s cal led the chord P P, or the chord of P. 

1 o 1 o 1 •* 

The midpoint of P P , i s denoted by P and the plane through P 
O 1 m m 

and normal to the chord P P, by T\^. This plane rC i s ca l led the 
o 1 

bisecting plane of P Pj or the b i sec t ing plane belonging to P. 
Analogously we get: The poin ts A, B, e t c . give the chords A^Aj, 
B B , , e t c . , the midpoints A , B , e t c . and the b i s ec t i ng planes 

O 1 m m 
a". pP, e tc . 

2. Two p o s i t i o n s of a l i n e 1 of S are denoted by 1 and I j 
(f ig. 1). A se r i e s of points on 
1 corresponds to a congruent 

O 

s e r i e s of p o i n t s on 1 j . Let P 
and A be two p o i n t s of 1. P 
and A l i e on 1 and P, and A, 

o o i l 

on 1 J. The m i d p o i n t s of the 
chords P P, and A A, are P and 

o 1 o 1 01 

A respectively, 
m 

We draw the l i n e s 1 ' and 1' 
o 1 

through P p a r a l l e l to 1 and 
m o 

1J respect ively and t h r o u ^ the 
points A and A, the l ines A A' 

o 1 o o 

and A,A', p a r a l l e l to P P . . As 
1 1 O 1 

A A' and A,A' are equal and 
o o 1 1 

p a r a l l e l , the q u a d r i l a t e r a l 

A A'A.A, i s a parallelogram and 
o o 1 1 

figure 1 

conseouently i t s diagonals A A, 
and A A' meet each other in the 

o 1 

midpoint A of the chord A A,. As P A' = P A PjA, = P A', 
the t r i ang le A'P A' i s isosceles and as A'A = A'A the l ine P A 

o m l o m l m m m 

i s the angle b i sec tor of the angle between 1' and 1 ' . The pos i -
O i 

•) Schoenflies [s ] . 
Note: The number between the signs [ ] denotes the number of the 
paper given in the l i s t of l i t e r a t u r e . 



tion of this bisector is independent of the position of A and A, 
o i 

on 1 and 1, and now we obtain 
o 1 

Theorem I : The locus of the midpoints of the chords of the 
corresponding points of I and I , i s a line. 

This l i n e i s ca l l ed the middle-line of 1 and 1, and i s de-
o 1 

noted by 1 . 
m 

3. We obta in a specia l case i f 1 i s perpendicular to P P . . 
*̂  m o 1 

As P P, is parallel to A A', we get that 1 is perpendicular to 
o 1 o 1 m 

A A' and as 1 is perpendicular to A'A', 1 is perpendicular to 
o l m o l ' m 

the plane through A A'A,A' and consequently 1 i s perpendicular 
o o 1 1 m 

to A A,. So we obtain 
o 1 

Iheoraii I I : If one of the chords connecting the corresponding 
points of the lines I and I. is perpendicular to the middle-line 
I , then all chords are perpendicular to I . 

4. I f the l i n e s 1^ and I j approach each o ther we get in the 
l i m i t t ha t the l i n e A A, through the two pos i t ions A and A, of 

O 1 O 1 

any point A of 1 becomes the tangent at the point A to the curve 
described by A. The bisecting plane a^ of the chord A A, becomes 

o 1 

the plane through A normal to the curve described by A. We obtain 
theorem I I I : If the tangent at any point of a line I to the 

curve described by this point is perpendicular to I, the tangent 
at each point of I is perpendicular to the curve described by 
this point. 

We n o t i c e t h a t the b i s e c t i n g p lanes of the p o i n t s of 1 in 
t h e i r l imi t ing pos i t ion go in t h i s case throu^i !• 

5. Bieorem IV: The bisect ing 
planes of the chords of the 
corresponding points of 1 and 
1J go through one l ine . 

This l i n e , denoted by 1 P , 
i s ca l l ed the l i n e conjugated 
to 1 
jugated to I 
The proof of t h i s theorem will 
be given by means of ana ly t i c ­
al geometry ( f ig . 2). 

We l e t , without loss of ge­
ne ra l i t y , 1 coincide with the 
Z-axis and we take as the equa­
t ions of 1 y 

X = b and z = y tan a . 
I f A^(0;0;0)and Aj(bj; a cos ex; 
a sin a) are two correspon­
ding points , the points B and 

and I j , or b r i e f ly con-
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B, on 1 and 1, respectively are also corresponding points if 
1 o 1 

A B = A,B,. I f t h i s d is tance A B i s denoted by X, the coordi-
o o 1 1 o o 

nates of B and Bj are: 
B^(o;o;X) 

B {b; (a+X)cos a; (a+X)sin a} 
The coordinates of the midpoint B of B B, are: 

m ox 
r„ a+X X+(a+X)sino(. 

B il^b; —;r—cosog ) , 
The equation of the bisect ing plane pP of the chord B^Bj i s : 

bx+(a+X)coscx-y+{(a+X)sina-?Jz-y2b^-'Aa^-aX = Ü. 
This equat ion r e p r e s e n t s a penc i l of p lanes and consequently 
these planes go through one l ine 1^, the l i n e conjugated to 1. 

6, I f the chords are perpendicular to the middle-l ine 1 , the 
m 

b i s e c t i n g planes of the chords go through 1 and therefore the 
l i ne s 1 and 1 P coincide in th i s case. If 1, approaches 1 we get 

BX 1 O 

in the l imi t that 1 coincides with 1. 
m 

I f 1 coincides with 1 P we get in the l im i t t ha t 1 coincides 
with IP. If 1 i s i d e n t i c a l l y equal to i t s conjugated l i n e 1P , 1 
i s ca l led a self-conjugated line. 

From theorem I I I we draw the conclusion tha t i f the tangent a t 
any po in t of a l i n e 1 to the curve descr ibed by t h i s po in t i s 
perpendicular to 1, the l ine 1 i s a self-conjugated l ine . 

7. The equation of the pencil of planes can be writ ten as: 
(bx+ay cosa + az s ina - 14a -̂'/4b )̂ + x{y cosa + z ( s i n a - l ) - a } = 0. 

The planes given by X=0 and by X=c» are pa ra l l e l if: 
b:0 = a cosa : cosa = a s ina : ( s ina-1) . 

These conditions are fu l f i l l ed in the following cases: 
b = 0 ; a ^ -n/2 
b ?̂  0 ; a = 7i/2 
b ?̂  0 ; a = 7i/2. 

In the f i r s t case the equation of the pencil becomes: 
X{y cosa + z(s ina-1)} = 0, 

that i s , the pencil i s degenerated in to one plane and consequent­
ly IP i s not determined. 

The second case gives: 
bx - ^b^ =0, 

that i s , again 1 P i s not determined. 
The th i rd case gives: 

bx + az - to^ - lib^ - Xa = 0 
t h a t i s , the penc i l i s degenerated i n t o a s e r i e s of p a r a l l e l 
planes and consequently 1 P i s a l ine at in f in i ty . 

We obtain: 
1° If 1^ and I j i n t e r s e c t each other and t he i r common point i s a 

1° 
2° 
30 

a = 0 
a = 0 
a ?̂  0 
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self-corresponding point of 1 and 1 j , the l ine 1 P conjugated to 
1 and 1, i s not determined. 

o 1 , 

2'3 If 1 and I j are p a r a l l e l and the chords are perpendicular to 
1 (or 1.) the l i ne 1 P i s not determined. 

o 1 

30 If I and Zj are parallel and the chords are not perpendicular 
to I (or I ) ZP is a line at infinity. 

§ 2 . Displacement of a plane 

1. We consider two pos i t ions e^ and BJ of the plane e of the 
moving space S. Each poin t of e corresponds to one point of ej_. 
Let A be a point in s and A, i t s corresponding point in s , . The 

o o 1 ^ 

midpoint of the chord A A, i s A . Each l i n e 1 in e„ through A 
"^ o 1 m o o o 

corresponds to a l ine I j in BJ through Aj and one l ine 1_̂  through 
A corresponds to 1 and 1 . Any l i n e m of B not through A 

m o - o o " o 

i n t e r s e c t s a l l l i n e s 1 . Hence the middle - l ine m of m and m, 
o m o l 

intersects all lines 1 through A . Consequently all lines 1 lie 
m m m 

in one plane cal led the middle-plane e of the nlanes B and e, . 
^ m ~ o 1 

We obtain 
Theorem V: The locus of the midpoints of the chords connecting 

the corresponding points of e and e is a plane e c a l l ed the 
middle-plane belonging to the two pos i t ions e and B, of a plane 

O 1 
8. 

2. Let B and B, be two posi t ions of B and B i t s middle-plane. 
o 1 m 

If A A, and B B, are two chords connecting two pairs of corre-
0 1 o 1 D t-

sponding points of B and e,, their midpoints A and B lie in B . 
O i m m m 

We draw the l i ne a throuöi A in the plane B perpendicular to 
m m m 

the chord A A, and the l i ne b through B in e pernendicular to 
o 1 m m m . 

the chord B B,. The common point of a and b i s denoted by E . 
o 1 m m m 

As a and b can be considered as middle - l ines of two p a i r s of 
m m 

l i n e s a , a , and b , b , of the planes e and B, , the po in t E i s 
O 1 O I O i m 

the midpoint of the chord E E, where E i s the common point of a 
o 1 o o 

andb andE, tha tof a, and b . . The chord A A, i s perpendicular to a 
0 1 1 1 o l m 

and therefore Ë E, is also perpendicular to a (theorem II). 
o 1 «- i- m ^ 

Similarly E E, is perpendicular to b and hence E E, is perpen-
0 1 m o 1 

dicular to B . The point E of the middle-plane e with the pro-
m m m 

perty that i t s corresponding chord E E, i s normal to e i s called 
o 1 in 

the riuZIpoinf of e . 
^ - ' m 3. If E, apnroaches s we get in the limit that the lines 1 ~ O which gothrouöi corresponding points of e and B, become tangents o 1 to the curves described by these points. If t is the tangent at P to the curve described by P we write briefly: t is the tangent at P. Let e be the limiting position of EJ, A and B two points in e, 
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through B perpend icu la r to t , 

Figure 3 

t j and t j the tangents a t A and B respect ive ly ( f ig . 3) . We draw 
the l ine a in E through A perpendicular to t and the l ine b in E 

As a and b are se l f -con juga ted 
l ines (§ 1.6), the tangents in 
each point of a and b are per­
pendicular to these l i ne s . If, 
in general , a and ^ meet each 
other in E, the tangent t^ a t 
E i s perpendicular to a and to 
b and hence t i s normal to s. 

If a and b a r e para l le l there 
does not ex i s t a point in E 
such that i t s tangent is normal 
to e for i f T i s such a point, 
TB i s a se l fconjugated l i n e , 
t ha t i s , TB i s pe rpend icu la r 
to t2, t h a t i s , T l i e s on b 

and s imilar ly T l i e s on a which i s impossible as a and b have no 
common point. 

If a and b coincide ( f ig .4 ) , the point 3 l i e s on a. If we give 
a tangent t^ a t a point C that 
does not l i e on A3 and tiie l ine 
c in E through C perpendicular 
to t^, the point E i s the com­
mon point of c and a. 
If a and c are para l le l we have 
the foregoing case. So we ob­
tain 
Iheorem Via: Each plane B gen­
erally contains a point in 
which the tangent is normal to 
6. 

If the tangents t j and t^ at the points A and B of the plane B 
are both normal to E, we might draw t h r o u ^ any point P of e the 
l i n e s PA and PB. As these l i n e s are sel f -conjugated l i n e s , the 
tangent a t P i s perpendicular to PA and to PB and consequently to 
e. Hence we notice that i f two points of e have a tangent perpen­
dicular to E, each point of E has a tangent perpendicular to B. 

theorem VIb: In each plane e there is in general one point E, 
and only one with a tangent normal to E. 

This point E i s ca l led the nullpoint of B. I t may occur t ha t 
each p o i n t of a plane E has a tangent normal to B or t h a t no 
point of B has such a tangent. 

4. The l i ne of in te rsec t ion of E and E i s denoted by e and 
o m o 

the one of B , and E by e, ( f ig . 5) . A po in t P of e gives a 
A m i o o 

Figure k 
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chord P P. with its midpoint P which lies in B . As P and P 
o 1 m m o m 

l i e in B , P, also l i e s in E and as P, i s a point of e, , P, i s a 
m f i- in 1 I *• 

point of the common line e, of E, and E , that is, e and e, are 
•̂  1 1 m o 1 

corresponding lines. The nullpoint E of e is the midpoint of 
m m 

the chord S E, which is perpendicular to B . We draw E^F^ per-
O 1 m o o 

pendicular to e and E^Fj perpendicular to e j . As the figure com­
posed of the l ine e and the point E of the plane E corresponds 
'^ o o o 

to the f igure composed of e j 
and E J in E J , t h e s e f i g u r e s 
are congruent and consequently 
the po in t s F and Fj are cor­
responding p o i n t s . Prom the 
congruence of the t r i a n g l e s 
E F E and E,F,E i t follows 

o o m 1 1 m 

t h a t F J?, = FjE and f u r t h e r 
tha t F S = F,S where S i s the 

o 1 

common point of e and e j. 
Let P be a point of e and 

Pi 
F P 

a poin t on ej such tha t 
F j P j . The theorem of 

Menelaos gives in the t r i ang le 
P SP, with regard to the l i n e 

o i figure 5 P P P, t h a t P P 
o m i o n 

P P, where 
m 1 P is the common point of the 

m 

l i n e s P P , and F P. . Consequently P i s the midpoint of P P, and 
o l o l ^ ^ ^ m o l 

the re fo re the line F F, is the middle-line of e and e,: i t i s 
o 1 •' o 1' 

denoted by e . The line e is called the characteristic of the 
m m 

plane B . 
m 

For the l imi t ing posi t ion we obtain 
Iheorem VII: The locus of the points of a plane E in which the 

tangent lies in B is a line, 
called the characteristic e of 
the plane E. 

5. If (f ig. 6) S i s consid­
ered as a p o i n t of e^, i t i s 
denoted by S^, and as a point 
of e by T . The point S cor-

o o o 

responding to Sj lies such 
that P is the midpoint of the 

o 

chord S S,, and the Doint T, 
o 1 1 

corresponding to T l i e s such 
o 

tha t Fj i s the midpoint of the 
chord T T,. As the plane P E E 

o 1 o o m 

goes through P and i s normal 
o to the chord S S, i t i s the o 1 

Figure 6 

14 



b i s e c t i n g plane of S S,. S imi lar ly the plane F,E,E i s the b i -
° o l 1 1 m 

s e c t i n g plane of the chord T T,. The l i n e E E, i s the l i n e of 
" "̂  o 1 o 1 

i n t e r s e c t i o n of these b i sec t ing planes, and as follows from the 
d e f i n i t i o n , the l i n e E E, i s the l i n e conjugated to the l i n e 

O 1 

F F , ( e ) . In the l i m i t i n g pos i t ion we obta in : The line e^ con-
o 1 m 

jugated to the characteristic e of a plane E is the line normal 
to E and going through the nullpoint E of e . 

6, Let a be a l i ne in the middle-plane E such that i t s con-
m m 

jugated l i ne aP i s perpendicular to E , and l e t A Aj be the chord 
belonging to a po in t A of a . As the b i s e c t i n g plane of A A, 

m m o i 
goes through aP and as ap i s normal to B , the chord A A, l i e s in 

m o 1 

E , tha t i s , A l i e s on e and A, on e , . I t follows tha t A l i e s 
m o o i l m 

on e and hence the l ines a and e coincide. 

For the l imi t ing posi t ion we obtain 
Iheorem VIII: If the line ZP conjugated to the line I is perpen­
dicular to I, the line I is the characteristic e of the plane B 
throu^ I normal to ZP. The point of intersection of l^ and E is 
the nullpoint E of the plane B. 

7. The direct ion of the tangent at P to the curve described by 
P i s c a l l e d the direction of 
velocity of the point P. Let P 
be a point of the charac te r i s t ­
ic e of a plane E and l e t E be 
the n u l l p o i n t of B ( f ig . 7) . 
The linePE is a self-conjugated 
l i ne since the d i rec t ion of 
ve loc i ty V^ in E i s perpendi­
cular to PE. Hence the d i rec -

Figure 7 t i o n of v e l o c i t y Vp in P i s 
perpendicular to PE, and as Vp 

l i e s in B i t follows from a known theorem tha t the tangents at 
the points of the characteristic e of a plane e are tangents to a 
parabola with the nullpoint E of B as its focus. 

8. Let 1 and 1, be two pos i t ions of a l ine 1, 1 i t s middle-
o 1 "̂  ' m 

l ine and 1 P i t s conjugated l i ne ( f i g . 8 ) . A plane E through 1 P 
m 

i n t e r s e c t s 1 in a po in t , A 
m ' m 

say, such that A i s the mid-
m 

point of the chord A A, which 
O 1 

i s normal to B . Hence A i s 
m m 

the n u l l p o i n t of B . In the 
m 

l imi t ing posit ion we obtain 
Iheorem IXa: If ZP is the line 
conjugated to the line l, 

Figure 8 
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Figure 9 

this line I is the locus of the nullpoints of the planes through 
IP. 

Let 8 be a plane through 
1 (f ig. 9), D i t s point of 

m 

i n t e r s e c t i o n with 1P , A a 
m 

point of 1 and E the plane 
m m 

through IP and A . As A i s 
m ra 

the nul lpoint of B and A D 
tt. m 

l i e s in B , the l i ne A D i s 
m' m 

a self-conjugated l i n e . Let 
B be another point of 1 . 

m m 

Then also the l i ne B D i s a 
m 

se l f -conjugated l i n e . The 
chord of which D i s the mid­
po in t i s therefore perpen­

d i c u l a r to A D and to B D and hence normal to the plane 5. I t 
m m 

then follows tha t D i s the nul lpoint of 5 and we get in the l imi t : 
Theorem IXb: If ZP is the line conjugated to the line I, ZP 
the locus of the nullpoints of the planes throu^ I. 
Prom the theorems IXa and IXb follows: 
Iheorem IXc: If ZP is the line conjugated to the line I, I 
the line conjugated to ZP. 
9. Let A be a point of a l i n e 1 and B a point of the l i ne 1 P 

conjugated to I . As A i s the n u l l p o i n t of the plane through 1 P 
and A, and, as AB l i e s in t h i s plane, the tangent a t A i s perpen­
dicular to AB, tha t i s , AB i s a self-conjugated l ine . 

So we obtain 
Iheorem X: The bisecants of two conjugated lines are self-

conjugated lines. 

is 

IS 

3. The Instantaneous screw-axis 

loo a t 
Pa ra l l e l planes can be considered as planes t h r o u ^ a l i ne 
i n f i n i t y . The locus of the n u l l p o i n t s of these p a r a l l e l 

planes is a l i ne 1 conjugat­
ed to 1^. Conversely (theo­
rem IXc) loo i s conjugated 
to 1. A line I is called an 
axis if the line ZP conju­
gated to I is a line at in­
finity. 

2. Let e be a plane with 
E as i t s nullpoint ( f ig .10) . 
The plane r| through E i n -

• t"" . / 

y 
m i X 

^! ^ j 
1 1 

Figure 10 
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t e r sec t s E in the l ine m. If F i s the nul lpoint of r\, the l ine EP 
i s a self-conjugated l i ne , as the tangent a t F i s perpendicular 
to EF. As E i s the nu l lpo in t of E, m i s also a se l f -conjugated 
l i n e . The tangent at E i s perpendicular to m and also to EF. This 
i s only: possible i f P l i e s on m. So we obtain: The nullpoint F of 
a plane T) through the nullpoint E of a plane E lies on the line 
of intersection of the planes r\ and e. 

3. Let e' and E" be two p a r a l l e l planes ( f ig . 11), E' and E" 
t he i r nu l lpo in t s , T]' and T)" two other pa ra l l e l planes through E' 
and E" respec t ive ly , m' and m" the l i n e s of i n t e r sec t ion of the 
planes E' and r\ and of B" and ri" respectively, and F' and P" the 
nu l lpo in t s of ri' and T]". The point P' l i e s on m' and F" l i e s on 

m". We draw the l i n e s E'E" 
and p ' p " which l i e in one 
plane, as m' and m" are pa­
r a l l e l . I f P be the po in t 
of i n t e r s e c t l o n o f t h e l i n e s 
l ines E ' E " and P'p", we 
could lay a plane B p a r a l ­
l e l to e' through P and a 
plane r\ p a r a l l e l to T\ 
through P. The tangent at P 
would then be normal to B 
and to r\ but th i s i s impos­
s ib l e . Hence the l i ne s E'E" 
and F ' F " are p a r a l l e l . 

We obtain 
Iheorem XI: The loci of the nullpoints of several series of 

parallel planes are parallel lines called axes. 

h. I f we take a s e r i e s of pa r a l l e l planes normal to the axes, 
we obtain as the locus of the nul lpoints an axis with the proper­
ty t h a t in every poin t the d i rec t ion of veloci ty coincides with 
the d i rec t ion of the axis . This axis i s ca l led the instantaneous 
screw-axis denoted by x-axis . So we get the following defini t ion: 
The X-axis is the line with the property that every point has a 
tangent in the direction of this line. 

The po in t a t i n f i n i t y of the x -ax i s i s the nullpoint of the 
plane at infinity. 

5. We consider two pos i t ions S^ and S^ of the moving space S. 
The midpoints of the chords connecting corresponding points of Sj 
and S, give the space S . Let B' and E" be two pa ra l l e l planes of 

* ra 

S; e^ and B'J their positions in s^; E'J and B'J in S^ and E' and E" 

in S . The nullpoints of E' and e" are denoted by E' and E".We 
m m m m m 

notice that E and B are parallel, E', and s are parallel and s' 
o o ' 1 1 ^ m 

Figure 11 
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and B" are na ra l l e l . The l ine through E' and E" i s an axis namely 
m " m m 

the locus of the nullpoints of the planes parallel to E'. 
m 

Let E be a plane normal to the axis E'E and E the nullpoint 
m m m m 

of E . E can be considered as the midpoint of the chord E E, 
m m o 1 

which is normal to E . As the locus, denoted by x -axis, of the 
m m 

nu l lpo in t s of the planes pa r a l l e l to B i s pa ra l l e l to the axis 
m 

through E ' E " , the chords belonging to the common points of these 
m m 

planes and the x -axis l i e on t h i s axis . Hence the corresponding 
m 

positions x and x, of the x -axis coincide with the x -axis 
o 1 m m 

br ief ly writ ten as x-axis or the axis. The x -axis i s cal led the 
m 

screw-axis with regard to the posit ions S and Sj of the space S. 
By a t r a n s l a t i o n of S in the d i rec t ion of the x-axis x coin-

o o 

c ides with x . I f t h i s t r a n s l a t i o n i s followed by a r o t a t i o n 
around t h i s axis, S coincides with Sj. We showed that every dis­
placement of a space S can be obtained by a screw-displacement 
with the X-axis as its axis. If Sj approaches S we get in the 
l imi t : At any moment the motion of S is an infinitesimal screw-
displacement. 

4. Constructions of the x -ax i s 

1. Let 1 and 1 P be two conjugated l ines and a and p two para l ­
l e l planes through 1 and 1 P respectively ( f ig .12) . The nul lpoint 

x-axis 

Fi gur 

of a i s i t s point of in te rsec t ion with 1P . As 1 P i s pa ra l l e l to 
a, the nul lpoint of a i s the point a t i n f in i ty of 1P . Similarly, 
the nu l lpo in t of the plane (3 i s the point a t i n f i n i t y of 1. The 
axis y belonging to the para l le l planes a and p i s the l ine which 
connects the nul lpoin ts of a and p and hence t h i s axis y i s the 
l ine a t inf in i ty of a and j3. 

As the x-axis i s para l le l to the axis y, the point at inf in i ty 
of the X-axis must l i e on tbe axis y and consequently the x-axis 
i s pa ra l l e l to the planes a and p. So we obtain 
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Theorem XII: The x-axis is parallel to a plane which is pa­
rallel to two conjugated lines I and ZP. 

2. Let p be the common normal of the conjugated l i ne s 1 and 1 P 
and l e t a and p be two pa ra l l e l planes throu^i 1 and 1 P respec t i ­
vely. As the X-axis i s p a r a l l e l to a and (3, the angle between 
t h i s axis and the common normal p i s a r igh t angle. I t i s poss i ­
ble to lay a plane y through p normal to the x -ax i s . As p i s a 
se l f -conjugated l i n e , i t goes through the nu l lpo in t E of y- ^-
cause of the def ini t ion of the x-axis, t h i s axis goes through the 
nu l lpo in t E and we obtain 

Theorem XIII: The common perpendicular p of two conjugated 
lines I and ZP intersects the x-axis, and the angle between p and 
the x-axis is a right angle. 

3. Let 1 and 1P be two conjugated l i n e s . A plane 5 through a 
point P of the x-axis normal to th i s axis meets 1 in A and 1 P in 
B. The l i n e AB i s a s e l f - con juga ted l i n e for i t connects two 
points of conjugated l i n e s . As AB l i e s in y. AB goes through the 
nu l lpo in t of y. This nul lpoin t i s the point P and we obtain: The 
points of intersection of a plane normal to the x-axis with two 
conjugated lines lie on a line which intersects the x-axis. 

4. If two pa i r s of conjugated l ines 1, 1P and m, mP are given, 
the construction of the x-axis i s as follows (fig. 13). 

Draw the common perpendicu­
l a r p of the l i n e s 1 and 1 P 
and the common perpendicu­
l a r q of m and mP. As the 
X-axis i n t e r s e c t s p and q 
a t a r i g h t ang le , the x-
axis is the common perpen­
dicular of p and q. 

5. If again two pa i r s of 
Figure 13 conjugated l i n e s 1 , 1 P and 

m,mP are given ( f ig . 14), a 
construction of the nullpoint E of a given plane a i s as follows: 

E is the point of intersec­
tion of the lines LL^ and 
MMf, i f L,LP,M,MP are the 
p o i n t s of i n t e r s e c t i o n of 
the l ines 1 ,1P , m,mP with 
the plane a. The l i n e s LLP 
and MMP are self-conjugated 
l i n e s and therefore they go 
through the nu l lpo in t E of 

Figure 14 the plane a. 
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§ 5. Constructions of the characteristics of a plane 

' Igure 15 

1. Let 1 and 1 P be two conjugated l i n e s such t h a t 1 i s per ­
pendicular to IP ( f ig . 15). The plane 5 through 1 normal to 1 P in­

t e r s e c t s 1P in the poin t A 
and the plane e through 1 P 
normal to 1 i n t e r s e c t s 1 in 
B. A i s the nu l lpo in t of 5 
and B of B. Hence the t a n ­
gent a t A coincides with 1 P 
and the one a t B coincides 
with 1. So we obtain 

Theorem XIV: If I is a 
line perpendicular to its 
conjugated line ZP, these 
lines are both tangents at 

the points in which the common perpendicular intersects I and ZP. 

2. Each l i ne p which i n t e r s e c t s the x-axis perpendicularly i s 
a self-conjugated l i n e for the tangent a t the point of i n t e r s e c ­
t ion coincides with the x-axis and i s therefore perpendicular to 
the l i n e p. A plane B through p ( f i g , 16) conta ins p as a se l f -

conjugated l i n e and conse­
quently p goes through the 
nul lpoint E of E and we ob­
ta in 

Theorem XV: If e is a 
plane not normal to the x-
axis, the line p in Ë which 
intersects the x-axis at a 
right angle goes through the 
nullpoint E of the plane B. 

3. Let 1 and 1 P be two conjugated l i n e s (fig.17) and B a given 
plane. The l i n e p, perpen­
d i cu l a r to a, which i n t e r ­
s e c t s the l i n e s 1 and 1 P , 
cu ts a in the point P. The 
tangent a t P i s normal to 
p for p i s a self-conjugat­
ed l i n e . Consequently the 
tangent at P l i e s in a, that 
i s , P I s a point of the 
cha rac t e r i s t i c e of a-

I f in a spec ia l case 1 P 
i s normal to a ( f i g , 18), 

Figure 16 

Figure 17 
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IP 

Figure 18 

each l ine p normal to a 
which i n t e r s e c t s 1 i s pa­
r a l l e l to IP, t ha t i s , in ­
t e r s e c t s IP in i t s point a t 
i n f in i ty . Consequently p i s 
a self-conjugated l i ne . The 
locus of the po in t s of i n ­
t e r s e c t i o n of the l i n e s p 
with the plane a i s the 
c h a r a c t e r i s t i c e of a. We 
obtain 

Theorem XVI: The proj ection of a line I on a plane ais the 
characteristic e of a if the line ZP conjugated to I is normal 
to a. 

4i. Another special case occurs i f 1 P i s the l i n e at i n f i n i t y 
of a p lane p ( f i g . 1 9 ) . Then the l i n e 1 conjugated to 1 P i s an 

axis . Let a be a plane norm­
al to p. The l i n e s p which 
i n t e r s e c t 1 and are normal 
to a are p a r a l l e l to p and 
therefore they in te rsec t 1 P 
a t i n f i n i t y . The locus of 
the poin ts of i n t e r s ec t i on 
of these l i n e s p with a i s 
the c h a r a c t e r i s t i c e of a. 
So we o b t a i n : If I is an 
axis and a. a plane perpen­

dicular to the planes through the line ZP at infinity conjugated 
to I, the proj ection of I on a is the characteristic e of a. 

5. Let y be a plane perpendicular to the plane a and not par­
a l l e l to the plane p of figure 19. If the l i n e at i n f in i t y of y 
i s denoted by mP, we no t i ce t h a t the p ro j ec t ion of the a x i s m 
conjugated to mP on the plane a i s a lso the c h a r a c t e r i s t i c e of 
a. Consequently we have: 

Theorem XVII: The locus of the axes which are the lines con­
jugated to the lines at infinity of the planes perpendicular to a 

given plane a. is the plane 
perperidicular to a througfi 
the characteristic e of a. 

6. I f in a special case 
the X-axis is parallel to a 
plane e (tig.20), the pro­
jection of the X-axis on B 

Figure 20 is the characteristic e of 

Figure 19 

x-axis 
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E for the l i n e s through the x-axis normal to E are self-conjugat­
ed l i n e s , 

§ 6 . Tangents 

i . I f we r e tu rn to f igure 1, we no t i ce t h a t a l l chords are 
p a r a l l e l to the p lane which i s p a r a l l e l to the l i n e s P P, and 

O 1 

A'A'., As a l l chords i n t e r s e c t 1 and 1 , they are generators of a 
O 1 O 1 

paraboloid. In the l imi t we obtain 
Theorem XVIII: The tangents at the points of a line generate 

a paraboloid. 
2. Let 1 be a given l i n e and TI a plane normal to 1 ( f ig . 21). 

Each plane e through 1 i s normal to ri. The axis conjugated to the 
l i ne a t in f in i ty of the 
plane TI i s denoted by u. 
Prom the second special case 
of theorem XVI (see § 5.4) 
follows tha t the projection 
of u upon E i s the charac­
t e r i s t i c e of e. As the 
tangents a t the points of u 
are normal to the plane T̂ , 

Figure 21 they a re p a r a l l e l to the 
l i ne 1. We obtain 

Theorem XIX: The characteristic e of a plane e through a line 
I is the proj ection upon E of the locus of the points with a tan­
gent parallel to I. 

3. Let the plane through u perpendicular to e be denoted by e' 
( f i g . 21). The c h a r a c t e r i s t i c s e of a l l p lanes B through 1 are 
defined as the l i n e s of i n t e r s e c t i o n of the p lanes B with the 
planes B' throu^i u perpendicular to E. The locus of the charac­
t e r i s t i c s e of the planes B throu^i 1 i s the locus of the l i n e s 
of i n t e r s e c t i o n of the planes of two penc i l s through the skew 
l i n e s 1 and u such tha t a plane of the f i r s t pencil i s normal to 
a plane of the other one. I t i s known tha t t h i s locus i s an ortho­
gonal hyperboloid and we obtain: The locus of the characteristics 
of the planes through a line is an orthogonal hyperboloid H. 

Let P be the point of i n t e r s e c t i o n of u and r\ and m the l i n e 
of i n t e r sec t ion of E and r] ( f ig . 21). I f PA i s normal to m, PA i s 
normal to B and hence A i s a point of the c h a r a c t e r i s t i c e of B. 
The point of in te r sec t ion of 1 and T| i s denoted by B. In the se­
vera l p o s i t i o n s of B through 1 the poin t A desc r ibes a c i r c l e 
with BP as i t s diameter and consequently the curve of intersec-
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t ion of the hyperboloid H with a plane normal to 1 i s a c i r c l e . 
Similarly the curves of in te rsec t ion of H with the planes perpen­
d i c u l a r to u ( t h a t i s , to the x-axis for u i s p a r a l l e l to t h i s 
axis) are c i r c l e s . 

4. As the po in t s of the c h a r a c t e r i s t i c of a plane B have the 
property t h a t t h e i r tangents l i e in B, these tangents i n t e r s e c t 
any l ine 1 in E. Therefore we have 

Iheorem XX: The locus of the points with a tangent which in­
tersects a given line I is the locus of the characteristics of 
the planes through I. Prom 3 follows tha t this locus is an ortho­
gonal hyperboloid H generated by the lines of intersection of the 
orthogonal planes of the pencils throu^ I and through the line u 
i f u i s the axis conjugated to the l i n e a t i n f i n i t y of a plane 
normal to 1. 

In the special case that 1 i s a 
tangent ( f i g . 22) , the p o i n t of 
contac t P i s a po in t of the cha­
r a c t e r i s t i c of each plane through 
1 and hence the c h a r a c t e r i s t i c s 
generate a cone with P as vertex. 
This cone i s a quadric and the 
axis u through P i s one of i t s 
generators for a t each point of u 
the tangent i s para l l e l to 1, tha t 

Figure 22 is, intersects 1 in its point at 
infinity. 

5. Let 1 be a tangent ( f ig . 23), A i t s point of contact and B 
the foot of the perpendicular from 

/ A to the X-axis. As AB i s perpen­
d icu la r to the x-axls , AB i s a 

/ x - a x i s se l f -conjugated l i n e and hence 1 
B i s perpendicular to AB. We obtain 

Iheorem XXI: If a line I is a 
tangent, its point of contact lies 

Figure 23 on the common normal of I and the 
X-axis. 

The point of in tersec t ion of a l ine 1 with i t s common normal with 
regard to the x-axis i s called the central point of the line I. 

Let P be a given point. If we lay a plane B through P para l le l 
to the x-axis and a plane TI through the x-axis normal to E, we 
s t a t e t ha t the l i n e of i n t e r s e c t i o n of E and r| i s the locus of 
the central points of the l ines through P in B. Let a be the l ine 
through P para l l e l to the x-axis. The locus of the central points 
of a l l l i n e s through P i s the locus of the l i ne s of in te rsec t ion 

23 



of the planes through a with the planes through the x-axis normal 
to them. We obtain 

Theorem XXII: The locus of the central points of all lines 
through a point P is: a circular cylinder through P and the x-axis 
such that the plane through P and the x-axis is a plane of sym­
metry of the cylinder. 

6. What i s the locus of the po in t s which have a tangent 
through a given point P ? 

Let 1 be a l i n e through P and m the l i n e through P p a r a l l e l 
u to the X-axis ( f i g . 24) , 

This line m i s also the axis 
> / belonging to the planes 

J ^ normal to the tangent a t P, 
p / ^ ni The ax i s belonging to the 

\ p lanes normal to 1 i s de-
_t 'i noted by u. 

/ Each tangent through P 
^ i s a t angent which i n t e r ­

s e c t s 1, From theorem XX 
Figure 24 fol lows t h a t the locus of 

the p o i n t s with a t angen t 
which i n t e r s e c t s 1 i s a hyperboloid H generated by the l i n e s of 
i n t e r s e c t i o n of the orthogonal planes of the penc i l s through 1 
and u. The required locus i s therefore a curve on H, 

From theorem XXII follows tha t the locus of the central points 
of the l i ne s t h r o u ^ P i s a c i r cu la r cylinder C through m and the 
X-axis such that the plane through m and the x-axis i s a plane of 
symmetry of C. 

Let S be a point of the curve of in t e r sec t ion of the hyperbo­
lo id H and the cyl inder C and l e t t be the tangent a t S. As S i s 
a point of H the tangent t i n t e r sec t s 1, and as S i s a noint of C 
the t angen t t i n t e r s e c t s m. I f S i s not a po in t of the plane 
through 1 and m, t goes throuöi P. 

Let Sj be a point of the generator p of C which i n t e r s e c t s 1 
in B where B i s the second po in t of i n t e r s e c t i o n of 1 with C 
( f ig , 24), B i s the central point of 1. The tangent t j a t Sj in­
t e r s e c t s m for Sj i s a point of C and consequently t j a lso in ­
t e r s e c t s 1 and hence S^ i s a point of H. 

Each point of the generator p i s a common point of H and C and 
t he r e fo re p is a common generator of H and C. The generator p 
does not belong to the locus of the points with a tangent through 
P. The curve of i n t e r sec t ion of C and H i s in general a twisted 
curve of the fourth degree. This curve i s degenerated in the l ine 
p and a twisted cubic. We obtain 
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Theorem XXIII: TTie locus of the points which have a tangent 
through a given point P ts a twisted cubic. 

f in tprspct ion of a plane 6 perpendicular to the 7. The curve of ^"^ersection ot P ^ ^ ^ ^ ^^ .^^^^_ 

. . a x i s w i ^ I'l^fX: ; Z l l C i s a l s o a c i r c l e . The common 
s e c t i o n of 5 with the cy i in generator p, 
points of these Circles are 1 a P o - t o ^ ^ ^ ^^ ^^^ ^^^ ^ .^^^^^^ 

! i : t r : ï^n Ity th: ÏLe .. AS the twisted cubic goes 
C : r t h e s f pointes, the -Mc is c^led a c„ .co^^c- ^̂ ^ 

AS the tangents a t the P - J ^ J / J f ^ ^ ^ . ^ tangent through P. 

x-axis . there ^ ^ / ^ / « - ^ ^ ^ . ' ' r w h T c h has no common point with 
Ihe generator of the cyl inder " ĵ̂ e cubic. We 
the cubical c i r c l e on C i s the - ™ t o t i c l i n e of ^^^ 
ob ta in : The x-axis is the asymptotic Une of the 
points which have a tangent through a given point P. 

, . I f 1 i s the tangent a t P the locus of ^^e Po in t s wit a 
tai ig;nt t h r o u ^ P i s the - - o f i n t e r s e c t i o n of t̂he^c^^^^^^^^^ 

cylinder C and the - - ^ f ^ / l ^ ^ , f , , t u g ^ a^d m respectively. 
the orthogonal planes of the pencils ttirougn ^ 
The common generator of the cone and the ^ J ^ - ^ - \ ^ . ^ ^p^cial 
namely the l i ne through P pa ra l l e l to the x-axis . 
case the l i n e s u, p and ra coincide. 

§ 7 . Tangents with a second-order contact 

i . Let 6- and e , be two posi t ions of the plane ^(^^^'f- ^ ^ 
^ middle-plane i s e„ and the 

n u l l p o i n t E__,. Let A be a 
po in t of 6 and aP the b i ­
s e c t i n g p lane through the 
midpoint A_̂  of the chord 
A A J. We draw the l ine E__̂A_̂. 
As the chord E^E^ belonging 
to E i s pe rpend icu la r to 
the plane E_̂  and 

l i n ^ ^mK ^^^^ ^" ^«'' " " " ' 
i s nonTal to E__A___ and hence 
the chord A_̂ Aj i s perpendi­

cular to A E (theorem I D . Consequently the b i sec t ing plane aP 

of the cho;d"A„A. goes through E We obtain 
Theoren XXIV: The bisecting planes of the chords oj me 

spoZTnTpo^nts of a plane s m its two positions B„ and B , go 
through the nullpoint E^ of the middle-plane B„. 

as the 
. E E, 

figure 25 
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2. We consider three 
positions A , A, and A, of 

O 1 ^ 

a point A (fig.26). We use 
the following notations: 
aP. and a?, are the bisect-

o 1 12 

ing planes of the chords 
A A J and AjAj respect ively, 
The l ine of in te rsec t ion of 

Figure 26 these two planes i s denoted 
by k and is cal led the 

a 

axis of curvature belonging to the three pos i t ions A , Aj, A^ of 
the point A, 

If A , A, and A, approach each other, the l imi t ing posi t ion of 
O 1 * 

k i s ca l led the axis of curvature belonging to the point A with 
a 

regard to the curve described by A, 
3. Let B , Bj, Bj be three posi t ions of a plane E. The middle-

plane of E and B, i s denoted by E , and i t s nu l lno in t by E ,. 
o I o 1 " o 1 

Similarly we get B^^ and Ej^. 
A point A of the plane E gives a b i sec t ing plane aP, through 

o 1 

E^j and a bisect ing plane a^^ through Ej2. All points of E give a 
s e r i e s of planes through E^j and a s e r i e s of planes through Ej^. 
These s e r i e s are pro jec t ive and therefore the l i ne s of in t e r sec ­
tion of corresponding planes of the two se r i e s are the bisecants 
of a tw i s t ed ' cub ic * ) . These l i n e s of i n t e r s e c t i o n are axes of 
curvature. 

This cubic has three points of in te rsec t ion with a given plane 
5 and hence in 5 l i e three bisecants of the cubic. Consequently 
there are three points in B which have an axis of curvature in a 
given plane 5. As each plane contains three po in t s with an axis 
of curvature in 5, the locus of these points i s a twisted cubic. 

If 5 i s the plane a t i n f in i ty , an axis of curvature l i e s in 8 
i f the b isec t ing planes aP, and aP^ of the points A , A,, A, are 

O 1 12 o 1 '̂  

parallel. Hence A , A, and A, lie in one line. In the limiting 
O 1 J 

pos i t i on the chord A A A becomes a tangent with a second-order 
contact at A to the curve described by A. We obtain 

Theorem XXV: The locus of the points in the moving space S 
which have a tangent with a second-order contact is a twisted 
cubic. 
§ 8 . Osculat ing planes with a four-point rontact 

1. Let A ,̂ AJ, A2 and A3 be four pos i t ions of a point A (f ig, 

*) Reye, Geometrie der Lage I I , p. 231 (Hannover 1880) 
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27). The b i sec t ing planes aPj, a f j , 
aPj go in general through one point 
denoted by A'. To every point A cor­
responds one point A'. This point A' 
can be considered as the cen t re of 
the sphere through A , A,, A., A,. 

o 1 ^ -5 

Any point A of a l i n e 1 gives 
th ree b i s e c t i n g p lanes through A'. 
The bisect ing plane aP, goes throu^i 

o 1 

the l ine 1 P , conjugated to 1 andl ,; 
o 1 o 1 

the plane a^j goes through 1^^ and 
figure 27 the plane aPj through IP3 where 1^, 

1 J, 1 „ I3 are four pos i t ions of 1. 
The locus of the points A', i f A i s any point of 1, i s the locus 
of the poin ts of i n t e r sec t ion of the corresponding planes of the 
penc i l s through 1 P , , 1 P and 1 P , respec t ive ly . As these penc i l s 

O 1 1 z 2 O 

are project ive, the locus of A' i s a twisted cubic *) . 
2. I f 8 i s a given plane, t h i s twisted cubic i n t e r s e c t s e in 

three points . Consequently on 1 l i e three points with the i r corre­
sponding point in s. This holds for every l i ne 1. Hence the locus 
of the points P in the moving space S of which the centre P ' of 
the sphere through P , P j , P^ and P^ (which are four pos i t i ons 
of P) lies in a given plane e is a surface of the third degree. 
I f 6 i s a plane a t i n f in i ty , P ' i s a point a t i n f i n i t y and hence 
the p o i n t s P , P , , P . and P , l i e in one p lane . I f these four 

o 1 2 3 

po in t s approach each o the r the plane through them becomes the 
oscu la t ing plane with four po in t s of contact in P to the curve 
described by P. We obtain 

Theorem XXVI: The locus of the points which have an osculat­
ing plane with four points of contact with the curves described 
by these points is a surface of the third degree. 

A point with an oscu la t ing plane with four po in t s of contact 
i s cal led 1° a point of inflection, 2° a stationary point or 3'-' a 
point with an osculating plane with a third-order contact. 

k. The surface of the t h i rd degree of theorem XXVI contains 
the twisted cubic mentioned in theorem XXV for i f A , Aj and Aj 
l i e in one l ine , the points A , A ,̂ Â  and A3 l i e In one plane. 

*) Reye, Geometrie der Lage I I , p. 197 (Hannover 1880) 
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C h a p t e r II 

T H E A X I A L R E F L E C T I O N *) 

§ 1, D e f i n i t i o n s and theorems 

1. The point ?"• (f ig. 28) i s the axial ly ref lected point of the 
point P with regard to the l i n e 1 i f the l i n e 1 i n t e r s e c t s the 

l i n e PP"" in i t s midpoint P' and 1 i s 
J ^ pe rpend icu la r to P P ' . The l i n e 1 i s 

^-^--jj,^ I y^ ca l led the axis of reflection. We say 
^><C tha t P i s r e f l ec t ed with regard to 1. 

y^ ^""-^pT Any figure F i s re f lec ted with regard 
y^ to a l i ne 1 i f each point of F i s r e -

^ Figure 28 f lee ted to 1. The locus of the re ­
f lected points gives the figure P ' . 

A space 2 i s r e f l ec t ed i f each point of 2 i s r e f l ec ted . The 
locus of the re f lec ted poin ts gives the space 2' ', the re f lec ted 
space of 2. The spaces 2 and 2'' are congruent. If 2 makes half a 
turn around 1 i t coincides with 2" .̂ The spaces 2 and 2'' have the 
l ine 1 in common. 

2. We can re f l ec t a point P with regard to the generators of a 
ruled surface r . The locus of the ref lec ted points P"̂  i s a curve 
cal led the path of P'. P i s ca l led the pole of the path. As the 
midpoints P' of the l i ne s PP"" are points of the generators, that 
i s , po in t s of r , and as these midpoints P ' are the feet of the 
perpendiculars of P on the generators, i t follows that the locus 
of P' i s a curve on T such that , i f we multiply th i s curve by two 
with regard to P, the path of P"' i s obtained. The curve described 
by P' i s called the pedal of P with regard to the generators of V, 
and the ruled surface r i s called the basic surface of the axial 
reflection. 

3. We can re f l ec t a fixed space 2 with regard to several gen­
e ra to r s of the basic surface r. Then we obtain several spaces 2 ' . 
As a l l these spaces are congruent we can consider them as the 
several pos i t ions of a space moving as a r ig id body, 

Now we take the generators g and g, of r (fig,29) and we rer 
O 1 

f l e e t any point P of 2 with regard to g^ and gj r e spec t ive ly , 
The ref lec ted points are P ' and P ^ 

O 1 

•) Krames [4], [5], [e] , 
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Let X be the common perpendicular of g and g • Q, R and S the 
O 1 

project ions of P, P'', P[ on x; and G and Gj the points of i n t e r ­
sec t ion of g and g, with the 

O 1 

l ine x. 
Prom PP' = P ' P ' , PP ' and x 

o o o o 

perpend icu la r to g , PQ and 
P'R perpendicular to x follows 

o , 

PQ = P R, Similar ly we get 
PQ = p f s and hence P^R = PJS, 
t ha t i s , the d i s tances of the 
r e f l e c t e d p o i n t s of P to the 
common perpendicular of g and 
gj are equal, 

As P i s an a rb i t r a ry point 
of 2J, we obtain 

Theorem la: If we reflect 
Figure 29 ^ space 2 , with regard to two 

generators g and gj we get 
the spaces 2'' and 2 ' . The distances of corresponding points of 
these spaces to the common perpendicular x of g and g, are equal. 

Further, we deduce tha t G R = G Q and GjS = GjQ. The points R 
and S are formed from the points G and G, i f we multiply R and S 
by two with regard to Q, Hence RS = 2 G G,; thus we have 

O 1 

Theorem lb: The distance of the projections on the line x of 
two corresponding points of 2*̂  and 2^ is twice the distance of g 
and g j . 

As the l ines PQ, g , P'̂ R, g, and p 'S are pa ra l l e l to any plane 
O O 1 1 

a perpendicular to the l i ne x, the angles between these l ines are 
equal to the angles between the project ion of these l i n e s on ex. 
Hence the angle between P''R and P'S i s twice the angle between g 

o 1 o 

and gj . So we obtain 
Theorem Ic: The angle between the perpendiculars of two corre­

sponding points of 2 and 2 , on the line x is twice the angle 
between g and g.. 

k. Prom the theorems labc i t follows tha t i t i s poss ib le to 
determine a displacement which i s composed of a ro ta t ion around 
the l ine x and a t rans la t ion in the direct ion of t h i s l ine x such 
tha t 2"' i s displaced to 2^. The angle of ro ta t ion i s twice the 

O 1 

angle between g and gj and the s ize of the t rans la t ion i s twice 
the distance of g and g^. 

This displacement can be obtained by a continuous motion such 
t h a t t he angle of r o t a t i o n and the s i z e of t r a n s l a t i o n with 
regard to the l i n e x are p ropor t iona l . This motion i s a screw-
motion and the line x is its screw-axis. The parameter of the 29 



screw-motion is the ratio of the translation and the rotation, 
that i s , RS : Z ( P ' R , P ' S ) = G G , : Z (g , g , ) , 

' o Z o 1 o 1 

At any moment the velocity d i s t r ibu t ion of the screw-motion i s 
such that the velocity in any point P of the moving space i s com­
posed of a constant component p a r a l l e l to the screw-axis and a 
component perpendicular to the plane through the point P and the 
screw-axis . This l a s t component i s proport ional to the dis tance 
of P to the axis. 

5. I t i s also poss ib le to determine a displacement which re ­
p laces the l i ne g to the l i ne g, by means of a t r ans l a t ion G G, 

o J o 1 

in the direction of the common perpendicular x and a rotation 
around this line x. Every point of g has in this case a transla-

O 

t ion G G, and the ro ta t ion around the l i ne x i s the angle between 
o 1 

g and g,. 
o 1 

Again we can obtain t h i s movement by a continuous motion, na­
mely a screw-motion with x as i t s ax is . At any moment the points 
of the moving l ine have a veloci ty d i s t r ibu t ion equal to tha t of 
a screw-motion. The parameter of t h i s motion i s G^Gj :Z (g^ .g j ) . 
Now we obtain 

Theorem Ila: The axial reflection of the fixed space 2 , with 
regard to two generators g and g gives the spaces 2"̂  and ^.. It 

O 1 O 1 

is possible to determine two screw-motions with the comm.on per­
pendicular of g and g j as their common axis and with the same 
parameter, namely G G ; Z (g , g.). Hie one displaces 2 to 2 , and 
the other g to e,. 

°o ° 1 
6. If gj approaches g^ we get in the l imi t 
Theorem lib: The velocity distributions of the points of "Z and 

of the points of g at any moment are those of screw-motions. The 
common axis of these screw-motions i s the l i m i t i n g pos i t ion of 
the common pe rpend icu l a r of g^ and g j . The parameters of the 
screw-motions are equal. 

7. Theorem III: If the basic surface is a ruled surface of the 
n^'^ degree the path of the reflected points P' of any point P in 

the fixed space 2 , is in 
general a twisted curve of 
the 2n^"' degree. 

This theorem wi l l have 
been proved i f we show that 
the pedal of P with regard 
to the generators of r i s a 
curve of the 2nth degree. 

I f p i s the p o l a r l i n e 
( f i g . 30) of the p o i n t a t 

Figure 30 i n f i n i t y L of any l i n e 1 
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with regard to the i s o t r o p i c conic C ,̂, i t i s known t h a t each 
plane through p i s perpendicular to each l i ne t h r o u ^ L, tha t i s , 
each l ine that i n t e r s ec t s p i s perpendicular to each l ine throu^i 
L. 

If m i s an i so t rop ic l i ne , i t s point a t i n f in i ty A l i e s on C„ 
and the p o l a r l i n e of A i s the tangent t in A a t C„. Each l i n e 
which i n t e r s ec t s m at a r igh t angle i s a l i n e in the plane t h r o u ^ 
t and m. This plane i s ca l led the isotropic plane of m. I f P i s 
no t a po in t of t h i s i s o t r o p i c p lane , the l i n e PA i s the l i n e 
through P which i n t e r s e c t s the i so t rop i c l i n e m in A a t a r i gh t 
angle. The foot of the perpendicular i s the point A. 

As the degree of a twis ted curve i s the number of po in t s of 
in te r sec t ion with any plane, we can consider the number of points 
of in t e r sec t ion with the plane a t i n f i n i t y . The foot of the per­
pendicular to a generator of r i s a point at in f in i ty if: 

1° the generator l i e s in the plane a t in f in i ty , or 
2° the generator i s an i so t rop ic one. 
We suppose that r has no generators at i n f in i ty . 
An i s o t r o p i c generator i s a generator which i n t e r s e c t s the 

i so t ropic conic Ĉ ,̂ Because the curve of in te rsec t ion K of r with 
the plane a t i n f in i t y i s a curve of the n*'^ degree, there are 2n 
points of i n t e r sec t ion of K and Ĉ ,̂ t ha t i s , r has 2n i so t rop i c 
generators . Hence the pedal of P has 2n points a t i n f in i ty , tha t 
i s , the pedal of P i s a curve of the 2n™ degree. 

If r has one or more generators in the plane a t i n f i n i t y the 
degree of the pedal i s diminished. 

8. Theorem IV: If there exists a one-to-one correspondence be­
tween the points of two rational twisted curves Cj and C of de­
grees ff J and d^, and the curves have p self-corresponding points 
of intersection the surface generated by the lines joining cor­
responding points is a ruled surface of the degree d^ + d^ - p. 

Proof: Let the parametric equations of Cj and C^ be (without 
r e s t r i c t i o n the parameters can be taken such tha t points with the 
same parameter value correspond) 

X = X j ( t ) / X = X 2 ( t ) 

• • / 

/ X = Xj( 

) y = y i ( ( t ) J y = y^it) 
Z = Z j ( t ) ^2 i Z = Z 2 ( t ) 

W = W j ( t ) { w 

in which x, , y , , z , and w are functions of t of the d," degree 
and X , y , z and ŵ  are functions of t of the dj degree, 

The points of i n t e r sec t ion of Cj and C^ are given by t = t j , 
o^, • • • , tp» 

The equations of a l i ne 1 connecting two corresponding points 
of Cj and C^ are: 
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X = Xj(t) + Xx.^(.t) 
y = y j ( t ) + ^y^^t) 
z = Zj( t ) + -Kz^it) 
w = Wj(t) + \W2(t) 

In these equat ions t d i f f e r s from t̂ ^ (k = l , 2 , . . . , p ) because a 
l i n e through two corresponding points which coincide i s undeter­
mined. 

The equat ions of 1 can be considered as the two-parametric 
equat ions of the surface S generated by the l i n e s which connect 
corresponding points of C and C^. The degree of a surface i s the 
number of po in t s of i n t e r s e c t i o n with any l i ne m. Let the equa­
tion of m be: 

y = ox + pw and z = yx + 5w. 

The points of intersection of S and m are given by: 

Vj + Xy^ = a(Xj + XXj) + p(Wj + Xw^) 

Zj + XZj = y(Xj + Uj) + 5(Wj + XWj) 

or: c y J - otx J - pw J + X(y 2 - ax 2 - pw 2) = 0 

( Zj - yXj - 8Wj + X(Z2 - yx2 - SWj) = 0. 

Elimination of X gives: 

(yj-oaj-pWj)(Z2-yx2-5w2) - (z^-yXj-SWj) (y2-ax2-pw2) = 0 
The degree of t h i s equation in t i s d^+dj. 

I f t = t|^ we get a se l f -corresponding point of Cj and C2 and 
thus: 

x , ( t ^ ) :x2( t^) = y / t ^ ) :y2( t^) = z^(t^) : Z2(t^) = w^(t^) : w^(t^) 

Subst i tu t ion of these values i n to the l a s t equation gives an 
iden t i ty , that i s , t = t^ i s a root of the equation and the l e f t -
hand member can be divided by t - t^. This holds for every value 
of t corresponding to se l f -cor responding po in t s of Ĉ  and C^ 
Therefore the l e f t member of the equation can be divided by 
( t - t j ) ( t - t j ) , . , ( t - t ) and the degree in t i s diminished by p, 
As the degree was dj + d j , i t becomes dj + d2 - p and thus the 
number of points of in te rsec t ion with the l ine m i s dj + d2 - n. 

9. Theorem V: The reflected lines p ' of any line p of the fix­
ed space 2 tuith regard to the generators of a ruled surface V of 
the n*" degree generate a ruled surface of the 2n "^ degree. 

Proof: I f we r e f l e c t two po in t s A and B of the l i n e p we get 
the paths of A'' and B'', a"" and b'' say. 5y means of the ref lect ion 
of p a one-to-one correspondence i s determined between the points 
of a'' and b"'. The curves a'' and b"̂  have 2n poin ts of i n t e r s e c ­
t i o n , namely the p o i n t s a t i n f i n i t y . These p o i n t s a r e s e l f -
corresponding points . The degree of a ' and b'' i s 2n. Prom theorem 
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IV i t follows (as dj»2n, d2=2n and p=«2n) tha t the degree of the 
surface generated by the ref lec ted l i ne s p ' i s 2n+2n-2n « 2n. 

§ 2 . A hyperboloid as bas ic surface 

i . As a hyperboloid H with one sheet has two se r i e s of genera­
tors , i t i s necessary to consider only one of these s e r i e s i f we 
use t h i s quadric as a basic surface. The hyperboloid H has four 
points of in tersec t ion with the i so t ropic conic, for i t s curve at 
in f in i ty K i s a conic. The four generators (belonging to the con­
sidered se r i e s ) which go through these poin ts are the i so t rop i c 
generators yj ( i = 1,2,3,4) ( f ig .31) . The plane x. through y^ and 

through the tangent t . to 
the i s o t r o p i c conic Ĉ j, in 
the point at in f in i ty A. of 
y. i s the i s o t r o p i c plane 
belonging to y.. The hyper­
boloid H has four i so t ropic 
planes. 

As the points A. are 
conjugate complex two by 
two, the corresponding iso­
t ropic planes are also con­
jugate complex. Therefore 

Figure 31 two of the l i n e s of i n t e r ­
section of these planes are 

real; they are cal led the focal axes of the hyperboloid H. 
The focal axes are denoted by bj and h^', b i s the l ine of in­

tersect ion of the Iso t ropic planes Xj and z^ and b^ the one of X3 
and x^. The points at i n f in i t y Aj and A2 are conjugate complex 
and so are A, and A.. 3 4 

2. If we r e f l e c t any poin t P with regard to the considered 
s e r i e s of generators of H, we deduce from theorem I I I (as n«2) 
that the path of P*̂  and thus the pedal of P are twisted curves of 
the fourth degree. If P i s a point of the focal axis b j , P l i e s in 
the two i s o t r o p i c p lanes x, and X2. Each l i n e in an i s o t r o p i c 
plane x i s perpendicular to the i so t rop ic generator y of x (see 
§ 1.7). I t follows tha t each l i n e through P tha t i n t e r s e c t s YJ, 
Y2 respectively i s perpendicular to yj, y2 respectively, that i s , 
yj and y^ are lines which belong to the pedal of P. (The l i ne PA^ 
makes an undetermined angle with yj, tha t i s , A^ belongs to the 
pedal of P). Hence the twisted curve generated by P"' degenerates 
into two l i ne s and into a curve of the second degree. 

If P i s re f lec ted with regard to the two other i so t rop i c ge-
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nera tors y3 and y^ we get the points A3 and A ,̂ namely the points 
a t i n f i n i t y of these genera tors . As these po in t s belong to the 
curve of the second degree, we conclude tha t t h i s conic i s a c i r ­
c l e . Each point of b^ gives a path which is a circle. All these 
c i r c l e s have the same i s o t r o p i c po in t s A3 and Â  and there fore 
their planes are parallel. 

3. Two poin t s R and S of b^ give on r e f l e c t i o n two c i r c l e s , 
Between the re f lec ted poin ts R'' and S"' there ex i s t s a one-to-one 
correspondence. The l i n e s connecting two corresponding points are 
re f lec ted l i n e s of b^. Prom theorem IV i t follows tha t the ruled 
surface generated by the reflected lines of b ^ is a surface of 
the second degree for the curves C2 and C2 are now c i r c l e s , that 
i s , d = d2 = 2 and these c i r c l e s have two se l f - co r re spond ing 
po in t s of i n t e r s e c t i o n (A3 and A^), t h a t i s , p = 2, The degree 
becomes d j + d 2 - P = 2 + 2 - 2 = 2 . This quadric i s denoted by 
AJ. As A, i s a surface generated by skew l i n e s and has no gener­
a tors in the plane at in f in i ty the quadric ^^ i s a hyperboloid, 

4, Let the distance of the two points R and S of bj be denoted 
by d (f ig. 32). Hence the distance of the ref lected points R"' and 

S ' i s a lso d. The two c i r ­
c les Cj and CJ described by 
R' and S"' respec t ive ly l i e 
in two oa ra l l e l planes, BJ 
and 82 say . Le t p be the 
distance of BJ and B2. The 
ang le a between R'^S' and 

s given by 
As p and d 

also 

the p l a n e E2 i s given by 
s in a = p : d 
are constant a 
constant. 

Let M be the centre 

i s 

of 
A J . The cone generated by 

figure 32 the l i n e s through M p a r a l ­
l e l to the generators of Aj 

i s the asymptotic cone of Aj. As a i s cons tan t , the cone i s a 
surface of revolution and therefore Aj is a hyperboloid of revo­
lution. 

Consequently the conic at in f in i ty K of A has only two points 
of contact, namely A3 and A ,̂ with C^, 

5, Theorem VI: The focal axis b^ of the hyperboloid His the 
axis of revolution of the hyperboloid Aj generated by the re­
flected lines of the other focal axis b with regard to the gen­
erators of H. 
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Proof: Let t he p o i n t s of 
in te rsec t ion of bj with the 
i s o t r o p i c p lanes X3 and x^ 
be U3 and U^ (fig, 33), Each 
l i ne through U3 and a point 
of y i s pe rpend i cu l a r to 
y3, tha t i s , y^ belongs to 
the pedal of U3, I f U3 i s 
ref lected with regard to Y3 
we ge t ano the r i s o t r o p i c 
l ine Yg through A3 and lying 
in the plane Xj. As yl, i s 
an i s o t r o p i c gene ra to r of 
AJ the p lane X3 i s a t an ­

gent plane of Aj. Now the conic at in f in i ty K of Aj has two points 
of contact with C^ and therefore the tangent t3 on Ĉ^ in A3 i s a 
tangent of K. As X3 goes through the generator y^ and t h r o u ^ t^ 

Similarly Â^ i s the point of 
i s the l i n e of in te r sec t ion of the 

conjugated p o l a r l i n e s . The conjugated p o l a r l i n e of the l i n e a t 
i n f in i t y of the planes through the c i rcu la r sect ions of A, i s the 
axis of revolution of Aj. Consequently b i s the axis of Aj. 

I t i s evident that bj i s the axis of revolution of the hyper­
boloid AJ generated by the re f lec ted l i n e s of bj with regard to 
the generators of the hyperboloid H. 

Figure 33 

the point of contact with A i s A3 
contact of X4 with Aj. Now b^ 
tangent p lanes X3 and x^ and hence the l i n e s b j 

3. Focal axes of a hyperboloid with one sheet 

1. Let the equation of the hyperboloid be: 

x' y' 7? 
+ —: r = 1 with a > b, 

The equations of one of the s e r i e s of generators are , i f we use 
homogeneous coordinates: 

J L . ^ = x ( w - 2 ) 
a c b 

a c X b 

and the equations of the i so t ropic conic C^: 

,2 . „ 2 ^ ^2 

(1) 

+ y ' + z^ = 0 ) 

w = o ' 
(2) 
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Elimination of x, y, z and w out of (1) and (2) gives the condi­
t ion tha t a generator i n t e r s e c t s C^^: 

Substract ion and addi t ion of the equations (1), a f t e r taking 
w = o, gives: 

z=-~y(-+X) and x = ̂  y ( i - x) (3) 
2b X 'iP X 

Subst i tu t ion of the expressions (3) in (2) gives the condition: 

a 2 ( l _ x)2 + 4b2 + c 2 ( i + x)2 = o 

or: X''(a2 + c^) + 2x2(-a2 + 2b2 + c^) + (a^ + c^) = o 

or: X, „ , = ± 
/ a ^ - b^ ± i A ^ + c^ 

i " 4 - / a ^ + c ' 

These four values of 7., successively substituted in (1) give the 
equations of the four isotropic generators (belonging to the con­
sidered series) of the hyperboloid. 

2. If we take 

/ a ^ - b^ + i A ^ + c^ / a ^ - b^ - i / b ^ + c^ 

"•̂ ^ A^TT^— ^ ' '•^'- 7:r^— 
which are two conjugate-complex values, we obtain two conjugate 
i so t rop ic generators, Xj and Xj say. Obviously we have: 

Xj . Xj = 1 . 

The i so t rop ic plane Xj through Xj goes through the tangent t^ 
to C^ a t the point a t i n f in i ty Aj of y^. 

The coordinates of A^ follow from (3) i f we take X = Xj and 
for instance y = -2Xjb. This gives: 

AJ {a(X^ - 1) ; -2Xib ; dx^ + 1) ; o} 

The equations of the tangent t j a t Â^ to Ĉ ,̂ are: 

a (Xi - 1) X - 2Xihy + c(Xi + 1) z = o \ 

w = o S 
(4) 

The p lane Xj i s the plane through t^ and an a r b i t r a r y po in t of 
Y . Therefore we take in (1) for instance y = o and w = 1 which 
gives the following point on y^: 

{'/2a(J_+ XJ) ; o ; -y2c(-L- X,) ; l} . 
\ ' \ 
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The equation of Xj i s , using non-homogeneous coordinates: 

1 1 
a ( X ? - l ) { x - ^ a ( - + X,)} -2x,by +c(X?+ 1) {z+!4c( — - X,) = o 

\ ' 

or : 
a(x^ - l )x r- 2Xiby + c(X ĵ + l ) z 

2 2 

a + c 
2X, 

(X^ - 1) (5) 

Similarly the equation of the i so t rop ic plane Xj i s : 

a(X2 - l)x - 2X2by + c(X2 + l ) z a + c 
2K 

(x ; - 1) (6) 

3. The focal axis b , i s the l i n e of i n t e r s e c t i o n of the i s o ­
t rop ic planes Xj and X2. After dividing (5) by Xj and (6) by Xj 
and a f t e r addit ion and substract ion we have for the equations of 
b^: 

= - i / ( a 2 + c2)(a2 - b^) 

b / 
Z = _ y / -

a^ + c' 
a^ - b2 

Similarly we get for bj: 

/ X = - J - / ( a 2 +c2) (a2-b2) 

Figure 34 

1 / " 2 ' " ' 
br ief ly e =—i/(a2 + c2)(a2 - b^) ( f ig . 34). 

b / a i + c i 
f z = y V 
^ c •" a2 - b2 

So we obtain: The focal 
axes b. and b^ of the hy­
perboloid 

2 2 2 

a2 b2 c2 

(where a > b) intersect the 
X-axis at a right angle in 
the points B (e;o;o) and 
B (-e;o;o), i f we write 

§ 4. A movable quadr i la tera l 

1. Let gj be the generator of the considered se r ies which goes 
through one of the ve r t i ces Gj on the major axis (x-axis) of the 
hyperboloid H. As g^ and bj are perpendicular to the x-axis the 
ref lected l ine bj*^' of bj with regard to gj i n t e r sec t s the x-axis 
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a t a r igh t angle. Therefore the x-axis i s the common perpendicu­
l a r of b "̂ ' and b2. As bj"^' i s a generator of the hyperboloid of 
revolu t ion A with bj as i t s axis and the common perpendicular 
of bj"^^ and b2 i n t e r s e c t s bj in B2, we conclude tha t ^2 i s the 
centre of Aj. 

The re f lec ted point Bj ^ of Rj with regard to gj l i e s on the 
x-axis . As Bj'^^B, i s the shor tes t dis tance of the l ines bj ^ and 
b j , the point Bj 1 i s a point of the minimum c i r c l e of Aj. If Bj 
i s r e f l e c t e d to a l l genera tors of H the path of the r e f l e c t e d 
point BJ i s t h i s minimum c i r c l e . 

S imi lar ly we have tha t the path of B^ is the minimum circle 
of the hyperboloid of revolution Aj with bj as i t s axis and Bj as 
i t s c en t r e . Prom the symmetry follows t h a t the hyperboloids A, 
and A are congruent. 

2. If we re f l ec t (f ig. 35) the figure formed by bj, bj and i t s 
common normal BjBj with regard 
to any generator g of the 
hyperboloid H, we obta in the 
r e f l ec t ed f igure formed by 
b j , b j and i t s common normal 

As BJ i s a point of the 
minimum c i r c l e of A , the l ine 
BjBj i s the common perpendic­
u l a r of bj and b j . S imi la r ly 
B B, i s the common perpendicu-

^ r 

l a r of bj and b j . The l ines 
Figure 35 ^2^1 ^^'^ ^1^2 ^^^ equal for 

A J and Aj are congruent. 
If g is a moving generator of H,the q u a d r i l a t e r a l BjBjBjRj 

moves, except tbe fixeö l ines bj , bj and R^Rj. 
During the motion the quadr i la tera l has the following proper­

t i e s : 
1. i t s opposite s ides are equal and constant, 
2. the l ines bj, b j , b j , bj are in each position perpendicular 

to the adjacent sides, 
3. the angle between b and bj i s equal to the angle between 

bj and bj and therefore th is l a s t angle i s constant, 
4. the angle between b and b , i s constant , because b i s a 

generator of the hyperboloid of revolution A2 with b2 as i t s axis 
and t h i s angle i s equal to tha t between bj and b^, for Aj and A 
are congruent. 

From these p roper t i e s we draw the conclusion tha t if the four 
sides of the quadrilateral B B^ B^ are material rods and if they 
are joined in the vertices by hinges, such that the l i ne s b j , b j , 
b j , bj are hinge-axes, the quadrilateral is movable, 
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C h a p t e r III 

T H E S K E I 
T H E O R E M S O N 
I S O G R A M M E C H A N I S M *) 

1. Degrees of freedom of a skew n-gon 

1. We consider ( f ig . 36) a skew n-gon A A, . . . A , of which 
O 1 n - 1 

the s ides are rods, and these rods are hinged in the v e r t i c e s , 
The hinge-axes are supposed to be in r i g i d connection with the 
rods. In each vertex A the hinge- l ine (or hinge-axis) h i s per-

p p 

pendicular to the rods through that vertex. Each rod with i t s two 
hinge-axes i s ca l led a link of the n-gon. The angle cp (p = 0, 1, 
, . . , n-1) i s the angle between the two rods through the ver tex 

2. To find the number of degrees of i n t e rna l freedom of the 
n-gon we construct the figure in the following way: 

Let A A with i t s hinge-
o 1 

l i n e s h and h, be a fixed 
o 1 

l ink. 
I f the l ink A^Aj i s hinged 
to t h i s fixed l ink A A, we 

o 1 

obtain a mechanism with one 
degree of freedom, for the 
angle cpj between the two 
l inks gives the posi t ion of 
the mechanism. I f we con­
tinue th i s procedure u n t i l l 
the n*^ rod A ^ j A i s 
hinged to the (n - l ) tn rod 

A 2 A .1 , we obtain a mechanism with (n - 1) degrees of freedom, 
The carthesian coordinates (x, y, z) (with regard to the fixed 

space) of the points of the rod A , A and of the hinge- l ine h 
n - 1 n n 

are functions of the angles cpj, cpj, ..,cp^_ j . 
The following conditions have to be sa t i s f ied : 
1, A and A must coincide, 

o n ' . 
2, h and h must coincide 

Figure 36 

or: 
1. A and A must coincide, 

o n ' 
2. Any point P of h that does not coincide with A 

n n r 

on h . 

must lie 

*) Bennett [l], [2], 
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The f i r s t condit ion gives three r e l a t i o n s between the angles 
cpj, cpj , . , ' cp _j and the second one gives two r e l a t i o n s between 
these angles . Hence there ex i s t 5 r e l a t i o n s between the (n - 1) 
angles, t h a t i s , (n - 6) angles are independent. The pos i t ion of 
the n-gon i s given by (n - 6) data, that i s , the mechanism has in 
general (n - 6) degrees of internal freedom. This i s a spec ia l 
case of the so-cal led Grfibler-formula, 

3. I f n = 4 the skew n-gon i s a q u a d r i l a t e r a l . From the for­
mula follows t h a t this mechanism is triply stiff. We obta in a 
quad r i l a t e r a l which i s not r i g id only i f special condit ions are 
fu l f i l l ed . 

A su f f i c i en t condition i s t ha t the four hinge-axes are pa ra l ­
l e l . The quadr i l a t e ra l i s then a plane one and i t i s well-known 
tha t i t i s movable with one degree of freedom. 

We get another case i f the oppos i t e s i d e s are equal . This 
q u a d r i l a t e r a l has been considered in a paper of G.T.Bennett in 
1903, who cal led i t a skew isogram mechanism. 

§ 2. S u f f i c i e n t condit ions for a quadri lateral to be movable 

1. Let the quadr i l a t e ra l be denoted by ABA'B' and the hinge-
l i n e s in i t s ve r t i c e s by 
h, k, h ' . k ' r e s p e c t i v e l y 
( f ig . 37). We take the rod 
AB with i t s h i n g e - l i n e s h 
and k as a f ixed l i n k . I f 
AB = A'B' = b and A ' B = 
= AB' = a we obta in a qua­
d r i l a t e r a l with equal op­
posi te s ides . To prove tha t 
t h i s quadr i l a t e r a l i s mov­
able, we supDOse f i r s t tha t 

the h inge- jo in t s in A' and B' are replaced by b a l l - j o i n t s . I t i s 
evident t ha t in t h i s case the quadr i la tera l i s movable (Gnibler-
formula). 

2. Let ( f ig . 38) N be the midpoint of AA' and M tha t of BB'. 
The t r i ang l e AMA' i s i sosce le s , as AM and A'M are corresponding 
medians in the congruent t r i a n g l e s ABB' and A ' B ' B . Likewise the 
t r i ang le BNB' i s i sosce les . Hence MN i s perpendicular to AA' and 
to BB', that i s , MN i s the common normal of the diagonals AA' and 
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BB'. As AN =NA' and BM=MB' 
the axial r e f l e c t i o n of AB 
with regard to the l i n e MN 
gives A ' B ' . The line MN is 
an axis of symmetry of the 
quadrilateral and is called 
the s-axis. 

The h i n g e - l i n e s h and k 
B of the ver t ices A and B give 

Figure 38 by r e f l e c t i n g with regard 
to the S-axis the l i n e s h ' 

and k' t h r o u ^ the ver t ices A' and B' . The l i ne h' i s perpendicu­
l a r to the two rods through A' and the l i n e k ' to the rods 
through B ' . AS the angle between h ' and k' i s equal to the angle 
between h and k and t h i s l a s t angle i s constant during the motion 
of the q u a d r i l a t e r a l , i t follows t h a t the angle between h' and 
fe' is constant. However, we have s t i l l to prove t h a t the angles 
between h ' and k and between h and k' are constant. 

3. Let 0 be the midpoint of A3. We have: OM i s p a r a l l e l to 
AB', ON i s p a r a l l e l to BA' and OM = ON = '^a. As the planes ABB' 
and ABA' are fixed planes the points M and N describe c i r c l e s i f 
the q u a d r i l a t e r a l moves. Between the po in t s M and N of these 
c i r c l e s there e x i s t s a one-to-one correspondence and the po in t s 
of in te r sec t io i j of these c i r c l e s are self -corresponding po in t s . 
Hence the surface generated by MN is a quadric, namely a hyper­
boloid H (Chapter I I , theorem IV), As the l i ne AB i s the common 
diameter of two c i r c l e s on H i t follows tha t AB i s an axis of H 
and from the symmetry i t follows that 0 i s the centre of H, 

The path of the r e f l e c t e d poin t A'' of A with regard to the 
generators MN of H i s the c i r c l e described by A', Therefore A i s 
a point of a focal ax is of H (Chapter I I , § 2 .2) , As h i s per­
pendicular to the plane of the c i r c l e on H described by N and as 
h goes through A, h is a focal-axis of H. Similarly we get tha t k 
i s a focal-axis of H. 

^. Now we have the same problem as given in Chapter I I , § 4. 
Hence the angle between h' and k i s constant and so i s the angle 
between h and k ' . The ball-joints in A' and B' can be replaced by 
hinge-joints with h ' and k ' as t h e i r axes. V/e have proved tha t 
the condit ions AB = A'B' and A'B = AB' are sufficient conditions 
for the quadri la teral to be movable. 
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§ 3 . Necessary condi t ions for a quadri latera l to be movable 

1. Let the s i d e s of the q u a d r i l a t e r a l ABA'B' be: AB = a; 
BA' = b; A'B' = c; B'A = d ( f ig . 39). A i s the or igin of a system 
of coordinates , B i s a point of the X-axis and the .hinge-axis h 
in A coincides with the Z-axis. The angle between the hinge-axis 
k in B and the plane XOZ i s a, where o < a < TC Consequently the 
point A' moves in the fixed plane ABA' which i s the plane through 
AB such tha t the angle between t h i s plane and the plane XOY i s a. 

Let the angle BAB' be denoted by cp, the angle B ' A ' B by ^, the 
angle ABA' by -n: - *[< and the angle A ' B ' A by U - E. The project ion 
of A' upon the plane XOY i s denoted by A", the project ion of B' 
upon the plane ABA' by B", the project ions of A' upon AB and AB' 
by P and Q respectively and the project ions of B' upon AB and A'B 
by R and S respectively. 

2. Vie suppose that the 
quadrilateral, which is 
hinged in its vertices is 
movable. The angles A'QA"=p 
and B ' S ' B " = y^ are constant 
during the motion, for p i s 
the angle between the hinge-
axes of A and B' and x i s 
the one between the hinge-
axes of B and A'. As A'A" = 
= A'P sin a = b sin v|; sin a 

and A'A" = A'Q sin p = c sin B sin p we obtain 

b sin \\! sin a = c sin E sin p 

or: 
sin E _ b sin g 
sin \\i c sin p 

AS b, c, a and p are constant, —.—^is also constant during the 
' s m u) 

motion. We write: 

sin B 
= P (1) 

sin v|/ 

The cosine-law in the t r iangles ABA' and A'B'A gives: 

a^ + b^ + 2ab cos \[y=c2 + d2+ 2cd cos E 

or, briefly writ ten, 

cos e = q cos v)/ + r (2) 
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ab a^ + b^ - c^ - d^ 
where q = and r = 

cd 2cd 

Elimination oT B from (1) and (2) gives: 

1 = p^ s i n \ + q^ cos^i)/ + 2qr cos »)/ + r^ 

or: (q^ - P^) cos \̂(y + 2qr cos v | /+r^ + p ^ - l = o 

If the quadrilateral is movable this equation has to be an 
identity with regard to vp, that is, 

q2 - p2 = o ; 2qr = o ; r2 + p 2 _ i = o 

As q i s unequal to zero the second condition gives: 

r = 0 

We get: p ^ = q 2 = l ; r = o . 

As q i s pos i t ive we obtain: 

q = 1 ; r = 0 . 

or: ab = cd ; a2 + b^ = c^ + d2 (3) 

S imi l a r ly we get i f we use the cosine- law in the t r i a n g l e s 
B'AB and B A ' B ' and the r e l a t ions : B ' B " = d sin cp sin a = c sin ^ sin x̂  

ad = be and a 2 + d 2 = b^* c^ (4) 

Prom the four re la t ions (3) and (4) follows immediately: 

a2 = c2 and b^ = d2 

or: a = c and b = d 

We obtain: Necessary and sufficient conditions that a skew qua­
drilateral hinged in its vertices be movable are: the opposite 
sides are equal. 
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§ 4. A relation between the twists and the sides 

1. Let ( f i g 
and h , . 

p+i 

40) A A , , be a l ink with i t s two h inge- l ines h 
P P ^ P 

We shall give these h inge- l ines a d i rec t ion . The twist 

' p + i 

^ P X 

is the 
of a 

screw-motion with 
as i t s a x i s which 

P + i 

of the l i n k A A , , 
p p+ 1 

angZe of rotation 
right 
A A ^, 

p p + i 
replaces h to h ,, This 

^ p p+1 

angle i s equal to t h a t of 

Fi gure 40 

A 4 . , A p + 1 p 
replaces h 

the r igh t screw-motion with 
as i t s a x i s which 

. ,1 to h . 
p+i p 

2. Let ( f i g . 41) ABA'B' 
be a movable quadr i la tera l hinged in i t s ver t ices , br ief ly cal led 
a quadrilateral of Bennett or an isogram. The twis t s of AB' and 
AB are denoted by (2Tt - a) and p respec t ive ly and the opposi te 
s ides AB = A'B' by b and AB' = A'B by a. The points A, B, A', B' 

can be considered as the 
v e r t i c e s of a te t rahedron. 
Two planes go through each 
of i t s edges. As h i s nor­
mal to the plane B'AB (plane 

B^) and k i s normal to the 
plane ABA' (plane B ^ ) , the 
angle between h and k, t ha t 
i s , the twis t p of the l ink 
AB, i s equal to the angle 

Figure 41 between EĴ  and E^. Similar­
ly the angle between B. and 

E î (plane A'B'A) i s equal to the twist (27c - a) of the l ink AB'. 
In § 2 we proved tha t the l i ne MN connecting the midpoints M 

and N of the diagonals BB' and AA' i s an axis of symmetry ( s -
axis) of the figure. Prom t h i s symmetry follows the theorem: 

The twists of the opposite links are equal. 
I f the q u a d r i l a t e r a l moves with AB as i t s f ixed l i n k the 

tw i s t s are constant during the motion and so are the angles be­
tween the two p lanes through each of the four s i d e s . For t h i s 
reason the quadr i la tera l i s cal led an isogram. 

3. I f ( f i g . 42) E i s the project ion of A' on the plane E , P 
and G the p ro jec t ions of E on AB and AB' respec t ive ly we s t a t e 
tha t the angle A'GE i s the angle a between the planes B^ and B^I . 
S imi la r ly the angle A'PE i s p. From the congruence of the t r i -
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angles ABA' and A'B'A we 
conclude tha t the angles 
ABA' and A'B'A a re equal , 
9 say. 

In t r i ang le BPA' we have 
A'P = a s in 9 and in t r i ­
angle EPA' we have: A'E = 
= A'P s in p. Hence A'E = 
= a sin 9 sin p. -̂

S i m i l a r l y we ob ta in ' ' i n 
the t r i a n g l e s B 'GA' and 
EGA': 

A'G = b sin 9; A'E = A'G sin a and hence A'E = b sin 0 sin a. 
The two expressions for A'E give: 

Figure 42 

a sin 9 sin a = b sin 9 sin p 

or: 
or • ) 

sin a sin p s in(-a) s in p 

We obtained the theorem: 
In an isogram the ratio of the length of a link and the sine 

of its twist has the same value or the opposite value for each 
link. 

§ 9, A r e l a t i o n between the angles of the isogram *) 

i . In figure 43 (which i s the same as figure 42) we denote the 
angles BAB' and B ' A ' B by cp. Projection of the l ine AGEP upon the 
l i n e AB gives: 

AP = AG cos cp + GE sin cp 

or: b + a cos(7i - 9) = {a + b cos(7i - 9)} cos cp + 
+ b sin 9 cos a sin cp 

or: b - a cos 9 = (a - b cos 9) cos cp + b sin 9 cos a sin cp (4) 

The projection of the l ine APEG upon the l ine AB' gives: 

AG = AP cos cp + PE sin cp 

or: (a - b cos 9) = (b - a cos 9) cos cp + a sin 9 cos p sin cp (5) 

') Macmillan [is]. 
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Addition of the equations 
(4) and (5) gives: 

(a+b)-(a+b) cos9 = 
= (a+b) coscp - (a+b) .cos9 coscp 
+ sin9 sincp (b cosa + a cosp) 

or: 

B P (a+b) (1-C0S9) (1-coscp) = 
sin9 sincp (b cosa + a cosp) 

Figure 43 
or: 

(a + b) . 2sin ^ '/29 . 2 sin ^ i/acp = 
= 2 sin '729 cos '/29 . 2 sin '/2cp cos '/2cp (b cos a + a cos p) 

or: tan '729 . tan 'Acp = (b cos a + a cos p) : ( a + b ) (6) 

As a, b, a and p are constant during the motion we obtain the 
theorem: The product of the tangents of the adjacent semi-angles 
of a moving isogram is constant. 

2. Since a : sin a = b : sin p the equation (6) becomes: 

tan ViQ tan 'Acp = (sin p cos a + sin a cos p) : (sin a + sin p) 
= sin (a + p) : 2 sin '/2(a + p) cos '/2(a - p) 
= cos '/2(a + p) : cos '^(a - p) 
= (cos Vza cos '/zp - sin '/2a sin 'Ap) : 

(cos '/2a cos '/2p + sin '/2a sin 'Ap) 

_ 1 - tan '/2a tan 'Ap 

1 + tan 'Aa tan 'Ap 

2 2 
3. Let— + - ^ = 1 be the equation of an e l l i p s e such that the 

2 b2 

% aid of t h i s expression we shal l develop a planimetr ie con­
s t r u c t i o n to find corresponding values of 9 and cp i f the tw i s t s 
a and p are given 

_x 
a 

e x c e n t r i c i t y e = T"i'a2 - b2 i s equal to tan 'Aa . tan 'Ap, where 
271 - a and p are the twis ts of a given isogram (f ig. 44). 

Any point P of the e l l i p s e i s connected with the foci Pj and 
F J . The angles PPjPj and PPjPj in t r i ang l e PPjPj are denoted by 
9' and cp'. We wri te PFj = r j and PPj = T J . We have the following 
re la t ions : 
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rJ + r j = 2a ; FjFj = 2 / a 2 - b2 = 2c and e = c : a . 

The sine-law in t r i ang le PPjPj gives: 

r j : sin cp' = r^ : sin 9' = 2c : sin(cp' + 9') 

From r j + r2 = 2a follows: 

r j + r j (sin 9' : sin cp') = 2a 

or 

r j = 2a sincp': (sinq)'+sin9') 

Substi tut ion in TJ : sin cp' = 
= 2c : sin (cp' + 9') gives: 

2a sin cp' : sin cp' (sin cp' + sin 9') = 2c : sin (cp' + 9') 

or a : 2 sin 'A(cp' + 9') cos i/2(cp' - 9') = 
= c : 2 sin 'A(cp' + 9') cos 'Mep' + 9') 

or a(cos 'Acp' cos 'A9' - sin Acp' sin 'A9') = 
= c(cos 'Acf' cos '/29' + sin 'Acp' sin ^29') 

or tan '/29' . tan '/2:p' = (a - c) : (a + c) 
= (1 - e) : (1 + e) 
= (1 - tan 'Aa tan 'Ap): (1 + tan 'Aa tan 'Ap) . 

In 2 we found tha t t h i s l a s t expression was equal to tan 'A9 tan 'Acp. 
If we take 9' = 9, we obtain cp' = cp, that i s , 9' and cp' are the 
corresponding values of the adjacent angles of an isogram. 

§ 6. Quadrics as soc ia ted with the isogram 

1. The in te rna l angle b i sec to r s of the angles of the isogram 
ABA'B' ( f ig . 45) are denoted by h j , k , h'j and kj and the exter­
nal angle b i s e c t o r s by h j , k j , h j and k j . The plane through an 
angle b i sec to r and the normal through the vertex upon the plane 
of the angle i s ca l led a bisecting plane. The in terna l b i sec t ing 
plane of the angle A i s the plane through h and h j . I t i s denoted 
by B^j. The plane e^j i s the external bisect ing plane of A and i t 
goes through h and h j . Likewise are defined the planes B. j , E. j , 
6. 1, E, I , E, I and E, 1. 

h j ' h2 k j k j 

Figure 44 
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Figure 45 

Prom the symmetry of the f igure 
with regard to the s - ax i s follows 
tha t the p lanes B^ , and E, ', i n t e r -

h i h i 

sect each o ther by a l i n e , r j say, 
such tha t r j i n t e r s e c t s the s -ax i s 
in the point Cj a t a r igh t angle. 

As C, i s a point of B^, the d i s -
1 n 1 

tances to AB and A'B' are equal and 
as C, i s a p o i n t of B^', the d i s -
tances to A'B and to A B' are equal. 
As CJ i s a point of the s -axis the 
d i s t a n c e s to AB and to A'B' are 
also equal, t h a t i s , the d i s t a n c e s of CJ to the four sides (or t h e i r extensions) are equal. CJ can 

be considered as the centre of a sphere touching the sides of the 
isogram. Similarly the in te rna l b i sec t ing planes B^ j and B^'J in­
t e r s e c t the s -axis in the point Cj which can also be considered 
as the centre of a sphere touching the s ides . The l i n e of i n t e r ­
section of 6^ J and E '̂j i s the l ine r j t h r o u ^ Cj perpendicular to 
the s-axis . 

2. I f a skew q u a d r i l a t e r a l A3CD has a sphere which touches 
the s i de s in Doints between the ver t i ces , the re la t ion AB + CD = 
= BC + AD must hold. As an isogram i s a quadr i la te ra l with equal 
oppos i te s ides i t has not such a sphere, unless the four s ides 
are equal. 

Let the po in t s of contact of 
the sphere around Cj with the 
s i d e s be P, Q, P ' , q' ( f i g . 
46) . From the symmetry f o l ­
lows: AP=A'P' andA 'q=AQ' . 
Consequently we get: P B = P ' B ' 

and 93 = q 'B ' . 
As AP = Aq' (two tangents 

through >? to the sphere) we 
obtain AP = A'Q. 

If we wr i t e AP = A'q = x 
we get: 

s-axis 

Figure 46 

BP = |x - bl and RQ 

As BP = BQ, (two t angen t s ) we have: 

|x - b | = |x - a | 

or : X = 'A(a + b) 
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I f b > a, P l i e s on AB and q l i e s on the extension of A 'B and 
i f b < a, P l i e s on the extension of AB and q on A'B. Hence the 
sphere with Cj as i t s centre touches e i the r AB and the extension 
of A'B or A'B and the extension of AB. Therefore the plane E^J 
goes through Cj. So does the plane E^2* 

The l ine PQ goes, as follows from Menelaos theorem in t r i ang le 
ABA', through the midpoint N of AA'. As P 'q ' a lso goes through N 
the l ines PQ and P'Q' l i e in one plane. The same theorem used in 
t r i ang le ABB' gives that Pq' goes t h r o u ^ M. P'Qalso goes through 
M. 

As pq' i s pa r a l l e l to hj we get tha t PQ' i s normal to E^J and 
as r , l i e s in E. , we obtain: r , i s normal to PQ'. As P'Q i s par-

1 n 1 1 

a l l e l to h j we get l ikewise : r j i s normal to P'Q. Hence r j i s 
normal to the plane PQP'Q', that i s , r j i s perpendicular to PQ. 
PQ i s normal to the external bisect ing plane e^j and consequently 
TJ i s p a r a l l e l to B,^2* AS TJ and e^^ SO through the same poin t 
Cj, we conclude t h a t BJ^J goes through r j . S imi l a r l y B^J goes 
through r j , 

Analogously we obtain tha t the planes BJ^J, E^J , B^J, E^ J go 
through the l ine r j which i n t e r s e c t s the s-axis a t a r ight angle 
in the point Cj. We derived the following 

Theorem; The internal bisecting planes of two opposite angles 
of the isogram ABA'B' and the external bisecting planes of the 
opposite angles go through one line r which i n t e r s e c t s the axis 
of symmetry in the point C at a r i ^ t angle. This point C can be 
considered as the centre of a sphere which touches the sides (or 
t h e i r extensions) of the isogram. The four points of contact lie 
in one plane which goes through the axis of symmetry and is per­
pendicular to the line r. We get two po in t s C namely Cj and Cj 
with t he i r corresponding l ines r , and r j , 

As h lies in B,.,, k in E, ,, h' in B,. ! and k' in E, !, and as 
h i k2 ' h i k2 

these planes go through the l ine r we obtain the 
Theorem: The four hinge-lines of an isogram intersect the 

lines r j and r j . 
Further we conclude: 
The locus of the centres of the spheres vjhich touch the sides 

(or their extensions) of an isogram consists of the lines r^ and 
r, *). 

3. If the l i ne AB ro ta t e s around the l ine r j a hyperboloid of 
revolution R, i s generated. As the plane E. , goes through r , and 

1 n 1 _ 1 

the lines AB and AB' are symmetrical with regard to this plane 

e^j, AB' generates the same hyperboloid R.j when rotating around 

rj. As E^j goes through rj and the lines AB and A'B (with their 
*) This theorem is a completion of the theorems of Bennett. 
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extensions) are symmetrical with regard to th i s plane, A 'B l i e s 
on Rj. Prom t h i s follows tha t A ' B ' also l i e s on Rj. As BĴ J goes 
through r j •and A'B and A'B' are symmetrical with regard to EJ^J, 
AB and A'B' belong to one of the se r i e s of generators of Rj and 
A'B and AB' belong to the other se r ies . 

Similar ly we have an hyperboloid of revolut ion R2 with r^ as 
i t s ax is on which the four s ides of the isogram l i e . So we get 
the 

Iheorem: There exist two hyperboloids of revolution R. end R. 
with the four sides of an isogram as generators. Their axes are 
the l i n e s of i n t e r s e c t i o n of the in t e rna l b i s ec t i ng p lanes of 
opposite angles of the isogram. 

4. The sides AB and AB' are generators of Rj and Rj. As these 
generators i n t e r s e c t each other the plane E^ through AB and AB' 
i s a tangent plane of Rj and of R2. The point of contact i s A. 
The angle bisectors hj and h^ of the angle BAB' l i e in the plane 
Ê  and go through the oo in t of contac t . Consequently they are 

h 

tangents to Rj and Rj. Generally we have that each plane t h r o u ^ 
two ad jacent s ides of the isogram touches Rj and R2 in t h e i r 
common vertex. So we have: The internal and external bisectors of 
the angles of an isogram are tangents to the hyperboloids of 
revolution R and R^. 

5. In 3 we showed that r j (the l ine of intersect ion of EĴ J and 
B ' ) i s nerpendicular to the plane PQP'Q', where P, Q, P' and Q' 

h i 
are the points of contact of the sphere with Cj (the common point 
of r j and the s -ax is ) as i t s cent re touching the s ides of the 
isogram, 

As (f ig. 47) PB = 3Q, the l ine Pq i s para l le l to k j . Similarly 



P'Q' i s para l le l to k | . As AP = AQ' and A'P' = A'q we get: PQ' i s 
para l le l to hj and P'Q i s para l le l to h j . Hence r j i s perpendicu­
l a r to k J, k j , h j and hj , that i s , these l ines are pa ra l l e l to a 
planenormal to r , for instance the plane PQP'Q'. As these four l ines 
in te rsec t the l ines AA' and BB', they can be considered as gener­
a tors of a paraboloid. The l ines l i e in the planes E. j , E, 1, E. j 
and E^2 r e spec t ive ly . These planes go through the l i n e r^ and 
therefore the l i ne s k j , k | , h^ and h j i n t e r s ec t r j . Hence r^ i s 
a generator of the paraboloid denoted by ITj. The s-axis i n t e r ­
sec t s the generators AA', BB' and r j and consequently t h i s axis 
i s also a generator of ITj. The l ines AA', BB' and r j are perpen­
dicular to the s-axis . Therefore a nlane normal to the s-axis i s 
a di rect ion-plane of the paraboloid. As the plane PQP'Q' i s also 
a direct ion-plane and the two direct ion-planes are perpendicular 
to each other, the paraboloid Ilj i s a rectangular one. 

Similarly the l ines h j , h'j, kj- ^ j and the s-axis can be con­
s idered as generators of a rec tangular paraboloid Tlj. The l i n e 
r j l i e s on üj . The paraboloids iTj and rij have the s-axis and the 
diagonals AA' and BB' in common. We obtain the theorem: The in­
ternal angle bisectors of two opposite angles, the external angle 
bisectors of the other opposite angles and the axis of symmetry 
(s-axis) of an isogram belong to one of the series of generators 
of a rectangular paraboloid FI, The diagonals of the isogram be­
long to the other ser ies of generators, 

6, I f we take a penc i l of p l anes through r j and a penc i l 
through r j , we can consider the l i n e s of i n t e r s e c t i o n of the 
p lanes of the f i r s t penci l with the planes of the second one 
which are perpendicular to the f i r s t planes. We observed in Chap­
t e r I, § 6 , 3 that the locus of these l ines of in tersec t ion i s a 
hyperboloid Q. We quote tne following well-known theorems of th is 
quadric: 

1, The common normal of r j and r j i s an axis of Q, 
2, The po in t s of i n t e r sec t ion of t h i s common normal with r j 

and with r are two ver t ices of Q ; 
3, The curves of i n t e r sec t ion of Q with planes normal to r 

or to r j are c i rc les ; 
4, The generators throuöi the ver t ices on r j and r j are normal 

to the planes of these c i r c l e s . A hyperboloid with t h i s quali ty 
i s called an orthogonal hyperboloid. 

The in ternal and external b isec t ing planes of an angle of an 
isogram have the hinge- l ine t h r o u ^ the vertex of tha t angle in 
common. These planes are perpendicular to each other. One of them 
goes through r j and the other through r j . Consequently the hinge-
l ines l i e on the orthogonal hyperboloid Q and we obtain: 
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The four hinge-lines of an isogram are generators of an ortho­
gonal hyperboloid Q. One of i t s axes i s the p a r t of the s - ax i s 
l imited by the points Cj and C which are the points in which the 
in terna l b isec t ing planes of the isogram i n t e r s e c t the s-axis . 

7. Let ( f ig . 48) T be the pro jec t ion of Cj on the plane BAB' 
(or E^) and U the p ro j ec t ion of C^ on t h i s p lane . As the l i n e 
CjCj (s-axis) i s perpendicular to BB', i t s projection TU on e^ i s 
a lso perpendicular to BB'. As Cj i s a point of r j and r j l i e s in 
the plane E^J which i s perpendicular to EJ ,̂ T l i e s on h j . As Cj 
l i e s in the plane e^j and t h i s plane i s perpendicular to B^, U 
l i e s on h j . In the plane f igure ABB' the i n t e r n a l b i s ec to r and 
the external b i sec tor of the angle A of t r i ang l e ABB' i n t e r s e c t 

the l ine which i n t e r s e c t s BB' in i t s midpoint M at a r igh t angle 
in the po in t s T and U such tha t TO i s a diameter of the circum­
scribed c i r c l e of t r i ang l e ABB', I t s centre i s the midpoint V of 
TU. The normal through V upon the plane ABB' i n t e r s e c t s the l i ne 
CjCj in i t s midpoint D. The distances of D to the noints A, B and 
B ' are equal, and as D i s a point of the s-axis , i t s distances to 
the four ve r t i ces of the quadr i la tera l are equal. Hence D i s the 
cent re of the circumscribed sphere of the isogram. We obtain the 
theorem: The centre of the sphere through the vertices of an 
isogram is the midpoint of the line limited by the points of 
intersection Cj and C. of the internal bisecting planes of the 
angles of the isogram with the s-axis. 

Prom 6 follows: 
The centre D of the sphere through the vertices of an isogram 

coincides with the centre of the orthogonal hyperboloid Q which 
contains the hinge-lines. 
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§ 7. Ihe motion of the s ide A'B' to one of i t s n u l l p o s i t i o n s 

If we r e f l e c t ( f ig . 49) A'B' with regard to the in te rna l b i ­
s e c t o r h ' of the angle B'A'B of the isogram A B A ' B ' we get the 
l i ne A'Bj. We s t a t e that A'BJ = A ' B ' = b. If we r e f l ec t A ' B J with 

Figure 49 

regard to the external b isec tor kj of the angle ABA' of the i so ­
gram we obta in the l i n e A'B' l y ing on the extension of AB. We 

o o 

notice that A'BI = A'B' = b. As BBl = a - b and BB! = BB' we get 
l o o 1 1 o 

AB' = AB + BB' = b + (a - b) = a. The four points A, B, A' B' 
o o b o 

lie such that AB = A'B' = b and A'B = AB' = a. The degenerated 
o o o o 

quadr i l a t e r a l ABA'B' can be considered as a special pos i t ion of 
o o 

the given isogram ABA'B'. The positions in which one of the an­
gles of an isogram is zero are called the nullpositions. An iso­
gram has two nullpositions namely if Z B'AB = o or if Z ABA' = o. 

Now we consider the problem in the following way: 
Take the point Bj on A'B such that A'B'j = AB = b. Reflection 

of the line A'Bj with regard to the skew lines h' and kj gives 
the lines A'B' and A'B'. We showed in chapter II, § 1 that it is 
possible to determine a screw motion with the common normal of 
hi and k, as its axis, which replaces A'B' to A'B'. As the skew 

1 2 ' ^ o o 

l i n e s hJ and k are pe rpend icu la r to the l i n e r j (§ 6.5) , the 
screw axis i s para l le l to r j . We obtain: 

A screw motion with the common normal of the internal angle 
bisector of A' and the external bisector of B as its axis can be 
determined such that A'B' can be replaced to A'B' if the figure 
ABA'B' is a nullposition of the isogram. 
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§ 8 . The screw-ax i s of a small displacement of A ' B ' 

As usual we take AB as the fixed l ink of the isogram ABA'B'. 
I f the f igure moves the axis of symmetry (s-axis) generates, as 
we showed in § 2 a hyperboloid H. We consider two o o s i t i o n s of 
A ' B ' , ( A ' B ' ) J and ( A ' B ' ) J say. Let the corresponding posi t ions of 
the s -axis be Sj and Sj, 

Axial r e f l e c t i o n of AB with regard to Sj gives ( A ' B ' ) J and 
with regard to Sj i t g ives ( A ' B ' ) J , Therefore the p o s i t i o n s 
( A ' B ' ) and ( A ' B ' ) j can be obtained by a screw-motion with the 
common normal Ujj of Sj and Sj as i t s screw-axis. 

If (A'B')J approaches ( A ' B ' ) J and therefore Sj approaches Sj 
and we denote the l i m i t i n g p o s i t i o n s by A ' B ' and s respec t ive ly 
and the l i m i t i n g pos i t ion of HJJ by n, we get in the l imi t : The 
in s t an t aneous screw-axis of the motion of A'B' i s the l i n e n, 
This l i n e n can be determined i f we give the following remarks: 

1. The locus of the l i m i t i n g p o i n t s of i n t e r s e c t i o n of the 
common normal of two near-by generators of a ruled surface i s i t s 
line of striction. The point of i n t e r s e c t i o n of the l i n e of 
s t r i c t i o n with a generator i s ca l l ed the central point of t h i s 
generator. If we have a ruled surface of the second degree there 
are two s e r i e s of genera tors and hence the re are two l i n e s of 
s t r i c t i o n . 

2. The plane throuöi a generator g and p a r a l l e l to i t s near­
by genera to r gj i s pe rpend icu l a r to the common normal Uj j of 
these generators . In the l imi t ing pos i t ion t h i s plane i s perpen­
d icu la r to the l i m i t i n g pos i t ion n of Ujj; i t i s the asymptotic 
tangent-plane through g. 

3. The asymptotic plane i s the tangent-p lane through g tha t 
touches the ruled surface in the point a t i n f in i ty of g. 

Now we obtain the theorem: The instantaneous screw-axis of the 
motion of A'B' is the line n through the central point and per­
pendicular to the asymptotic plane of the s-axis if this axis is 
considered as a generator of the hyperboloid H. 
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C h a p t e r IV 

T H E M O T I O N O F T H E S P A C E 
C O N N E C T E D W I T H 

T H E C O N N E C T I N G - R O D A ' B ' 

1. The ruled surface generated by the s - a x i s 

1. Let be given the isogram ABA'B' (f ig. 50). The plane t h r o u ^ 
AB and normal to the h inge- l ine h in A i s denoted by B^ and the 
one through AB and normal to the h i n g e - l i n e k in B by B^. The 
posit ion of the isogram with regard to a fixed rectangular system 
of coordinates will be chosen such that: 

1. the rai(fe)oint of AB coincides with the origin 0 
2. AB l i e s in the x-axis 

a b i s e c t i n g plane of the planes B^ and B^ coincides with 
the plane XOY. 

We denote: B^ by 2a a) the angle between E^ and 
b) the length of AB = A'B' by 2a 
c) the length of AB' = A 'B by r 
d) the angle between A'B and the pos i t ive X-axis by cp 
e) the angle between AB' and the pos i t ive X-axis by vp 
f) the projections of A' and B' on the plane YOZ 

by Â  and B'j. 
If the isogram moves A' moves in the fixed plane B, and B' in 

the fixed plane E,^. A'J moves along the fixed l ine of in tersect ion 
of E^ with the p lane YOZ and B'j along the one of e^ with the 
plane YOZ. The l i n e MN where M and N are the midpoints of BB' 
and AA' i s the l ine of symmetry or the s-axis of the isogram. 

Figure 50 
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2. The coordinates of the points A, B, A', B', M and N are: 

A 
B 
A' 
B' 
M 
N 

X 

-a 
a 
a + r cos cp 
-a + r cos vp 
'A r cos vp 
'A r cos cp 

y 

0 

0 

r sin cp cos a 
r sin vp cos a 
'A r sin vp cos a 
HL r sin cp cos a 

z 

0 

0 

- r sin cp sin a 
r sin vp sin a 
tó r sin vp sin a 
-'A r sin cp sin a 

The equations of the line MN (s-axis) are: 

X - ¥i r cos vp y - tó r sin vp cos a z -i4 r s in vp sin a 

cos cp - cos vp cos a (sin cp - sin vp) -s in a (sin cp + sin vp) 

The f i r s t and second member of (2) may be writ ten: 

X cos a (sin cp - sin vp) - y(cos cp - cos vp) = 
» ^ r cos vp cos a (sin cp-sin vp) - 'A r sin vp cos a (cos cp- cos vp) 
= 14 r cos a sin (cp - vp) 

or, a f te r dividing by sin 'A(cp - vp): 

2x cos a cos 'A(cp + vp) + 2y sin 'A(cp + vp) = r cos a cos 'A(cp - vp) 
(3) 

The f i r s t and th i rd member of (2) give: 

-2x s in a cos 'A(cp - vp) + 2z sin 'A(cp - vp) => - r sin a cos 'A(cp + vp) 
(4) 

If we denote 'A(cp + vp) and 'A(cp - vp) by X and |x respect ive ly , the 
equations (3) and (4) become: 

2x cos a cos X + 2y sin X = r cos a cos ^ (5) 
2x sin a cos p, - 2z sin pi = r sin a cos X (6) 

3. As the distance between A' and B' i s 2a, we obtain: 

4a2 - {2a + r(cos cp - cos vp)}^ + r2cos2a(sin cp - sin vp) ̂  + 
+ r^s in^a(s in cp + sin vp) ^ 

or: 4a2 = 4a2 - Bar sin X sin p, + ir^ s in^ X sin^ y, + 
+ 4r^ cos^ a sin^ |x cos^ X + 4r^ sin^ a sin^ X cos^ |x 

or: 2a sin X sin pi, = r {sin ^ X sin^ |x + cos^ a sin^(j, (1-sin^X) + 
+ sin^ a sin 2 X (1 - s in^ pt)} 
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or: — sin î, sin X = cos^ a sin^ y, + sin^ a sin^ X (7) 

We write: sin X = m sin ̂  (8) 

Substitution of (8) in (7) gives the relation: 

— m « cos2 a + m^ sin ̂  a (7a) 
r 

Prom t h i s re la t ion follows tha t m i s a function of a, a and r 
only. Hence m is constant during the motion of the isogram. The 
discussion about the r e a l i t y of m i s given in chapter VI, § 3.1 

4. If in f ig . 50 the values of a, r , a and vp a re given, the 
point A' can be considered as the point of in tersec t ion of: 

1. a sphere around B' with radius 2a and 
2. a c i r c l e in the plane XOA'j around B with radius r. 

In general a sphere and a c i r c l e have two points of in te rsec t ion . 
The two pos i t ions of A' give two values of cp. Hence two values of 
cp correspond to a given s e r i e s of values of a, r, a and vp. As m 
i s given by the re la t ion (8) and X and [i by: 

X = 'A(cp + vp) and fj, = /2(cp - vp) 

we obtain i f we subs t i tu t e the given value of vp and the two cor­
responding values of cp in (8), two values mj and m^ of m. These 
two values of m are the roots of the equation (7a), -^ 

Consequently it is, in genera l , possible to construct two 
quadrilaterals when a, r and a are given. These two quadrilat­
erals are characterized by the values m and m^ of m following 
from the equation (7a), 

5, The equation of the ruled surface generated by the s -axis 
can be obtained by e l imina t ing X and [L from the equations (5), 
(6) and (8). 

We write (6) as: 

cos X = (2x sin a cos (j. - 2z sin \i,) : r s in a . 

Substi tut ion of cos X in (5) gives: 

2x cos a (2x sin a cos jx - 2z sin [i) : r sin a + 2y sin X = 
= r cos a cos y. 

and as sin X - m sin p,, we get: 

4x-̂  sin a cos a cos [x - r^ sin a cos a cos p, « 
• 4xz cos a sin [i. - 2rym sin a sin ^ 
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or: tan (x = (4x^- r^) sin a cos a : 2(2xz cos a - rym sin a) (9) 

Analogously we subs t i t u t e cos pi, from (5) In (6): 

2x sin a (2x cos a cos X + 2y sin X) : r cos a - 2z sin pi = 
= r sin a cos X 

and as sin ix = — sin X we obtain: 
m 

4x%i sin a cos a cos X - r^ sin a cos a cos X = 
= 2rz cos a sin X - 4 xym sin a sin X 

or: 
tan X = (4x^- r^) m sin a cos a : 2(rz cos a - 2xj'm sin a) (10) 

The re la t ion sin X = m sin fx i s reducible to: 

tan X : / l + tan X̂ = m tan (x : v l + tan ^[i 

or: (1 - m )̂ tan^X tan^jx = m^ tan^^x - tan^X 

Subst i tu t ion of tan |x and tan X from (9) and (10) gives: 

(4x^ - r^) ^ m̂  s in^a cos^a (4x^ - r^) ^ s in^a cos^a (1 - m )̂ 

4(2xz cos a - lym sin a )^ . 4(rz cos a - 2xym sin a )^ 

m^(4x^ - r^)^ s i n \ cos^a m^(4x^ - r^) ^ sin^a cos^a 

4(2xz cos a - rym sin a )^ 4(rz cos a - 2xym sin a )^ 

After d iv id ing by m^(r^ - 4x^)2 s in^a cos^a and mul t ip ly ing by 
the denominators we obtain: 

(1 - m^) s in^a cos^a (4x^ - r ^ )^ = 
= 4(rz cos a - 2xym sin a )^ - 4(2xz cos a - rym sin a )^ 

The right-hand member of t h i s equation i s reducible to: 

4(rz cos a - 2xym sin a + 2xz cos a - rym sin a) (TZ COS a -
- 2xym sin a - 2xz cos a + rym sin a) = 
= 4(2x + r ) ( z cos a - ym sin a ) ( r - 2x)(z cos a + ym sin a) 
= 4( r^ - 4x2) (z 2 cos^a - y ^i^ sin ^a) 

The equation becomes, af ter dividing by r^ - 4x^: 

(m^ - 1) sin^a cos^a (4x2 - r^) = iz^ cos^a - ty^m- sin^a 

2N 2 z ' -""y' ( 1 - m^) r' or: (1 - m^) x-'+ — = • (11) 
sin-^a cos^a 4 

where m i s given ty the equation (7a). 
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6. Prom equation (11) follows that the ruled surface generated 
by the s-axis is a hyperboloid V. I t s axes coincide with the X-, 
Y- and Z-axes respectively and i t s centre i s the midpoint 0 of AB, 

If the isogram moves the po in t s M and N descr ibe congruent 
c i r c l e s in the planes B, and B, . 0 i s t h e i r common centre and the 

h k 

X-axis i s t h e i r common diameter. The two c i r c l e s are the curves 
of in t e r sec t ion of the planes B and B. with the hyperboloid. As 
a ^ o these planes do not coincide and consequently the hyper­
boloid V is never,a hyperboloid of revolution. 

§ 2. The moving space S 

i . The space connected with the X-, Y- and Z-axes i s ca l l ed 
the fixed space S. The l i n e AB and the h i n g e - l i n e s h and k are 
fixed l i ne s in 2. The moving space S is the space connected with 
the line A'B' and the hinge-lines h' and k'. These l i n e s a re 
fixed l i n e s in S. If the q u a d r i l a t e r a l moves, the space S a lso 
moves. Every point of S describes a curve in the fixed space Z. 

2. As the l i ne MN(s-axis) i s an axis of symmetry of the i so ­
gram t h i s l i n e i s also an axis of symmetry for the spaces 2 and 
S, I f any po in t P of 2 i s r e f l ec ted with regard to the s -ax is , 
we get the point P ' , The pos i t ion of P with regard to the l i n e s 
AB, h and k i s i den t i ca l l y equal to the posi t ion of P' with r e ­
gard to the l ines A'B', h ' and k ' . The point P ' in S corresponds 
to the po in t P in 2. Axial reflection of P with regard to the 
s-axis in its several positions gives several positions of P' 
which can be considered as points of the path which the point 
P' of S describes in 2. 

3. The twisted curves described by the points of S can be ob­
tained by re f lec t ion of corresponding points of 2 with regard to 
one of the s e r i e s of generators of the ruled surface r described 
by the s -ax i s (chapter I I , § 1 ) . r i s the basic surface of the 
r e f l e c t i o n . As r i s a quadric the curves a re genera l ly space 
curves of the fourth degree. If we multiply r by two with regard 
to any point P in 2 we obtain a quadric r ' . The curve described 
by P' l i e s on th i s quadric r ' . In general we have: 

The twisted curves described by the points of the moving space 
S lie on congruent quadrics r ' . r ' is a quadric which is gener­
ated from the hyperboloid T by multiplying by two with regard to 
a point. 
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§ 3 . Ref l ec t ion of a po int P with regard to a l i n e 1 

Let the coordinates of a point P be (Pj, P j , Pj) and the equa­
t ions of a l i ne 1: 

Xi - bl ^ Xj - bj ^ X3 - ba ^^2) 

a j a j a3 

or, more br ief ly : 
X . — p i , = t (k = 1, 2, 3) 

k 

where Xj, Xj, X3 a r e t he c u r r e n t c o o r d i n a t e s . 
The p o i n t o f r e f l e c t i o n o f P w i t h r e g a r d t o 1 i s d e n o t e d by 

S ( s , , S-, s , ) . The equa t i on of t he p l a n e a th rough P p e r p e n d i c u -
1 2 >j 

l a r to 1 i s : 

2 ^k^^k - Pk̂  = ° 

The po in t of i n t e r s e c t i o n P of t h i s plane a with the l i n e 1 i s 
given by: 

2 a^(a^t + b^ - p^) = 0 

or: t 2 a^ + 2 a, b, - 2 a,p, = 0 
k k k k k 

or: t = - {2 a^b^ - 2 a^p,^} : 2 a^ 

We obtain the coordinates of P, (f j , f j , f3) say, by subs t i tu t ion 
of t h i s value of t into the equations of 1: 

f. = -a . {2 a^b^ - 2 a^p^} : 2 a^ + b. ( i = 1, 2, 3) 

As P i s the midpoint of PS' we have the r e l a t ions : 

s . + p . = 2f. 
1 1 1 

and hence the coordinates of the reflected point S of P are: 

Sj = 2aj {2 a^p^ - 2 a ^ b j : 2 â ^ + 2h^ - p . ( i = 1, 2, 3) (13) 

§ 4, Parametric equations of the curves described by the points 
of the moving space 

1. Let P(x , y , z ) be a point of the fixed space 2. Its cor-
o 0 0 

responding point P in the moving space S i s obtained by re f lec-

60 



t i o n of P with r ega rd to the s - a x i s given by t h e equa t ions : 

2x cos a cos X + 2y sin X = r cos a cos fx (5) 
2x sin a cos [x - 2z sin (x = r sin a cos X (6) 

sin X = m sin y. (8) 

The equations (5) and (6) are reducible to: 

_ r cos g cos u, r sin a cos X 
X _ -̂  2 sin X 2 sin (X 

sin X sin |x - cos a cos X sin x̂ sin a cos [x sin X 

These equations are wri t ten in a form analogous to the equa­
t ions (12) of the l ine 1, mentioned in § 3, namely 

X - bj _ y - b j z - b j 

where we wri te x, y and z instead of Xj, Xj and X3. 
If we compare these equations we get: 

a J = sin X sin |x bj = 0 
a j = - cos a cos X sin p, bj = r cos a cos jx : 2 sin X 
a j = sin a cos î sin X bg = - r sin a cos X : 2 sin |x 

2. The formula (13) which gives the coord ina tes of the r e ­
f l ec ted po in t P' con ta ins the expression: 

(2 a^p^ - 2 a^b^) : 2 a^ 

If this form is denoted by A, (13) becomes: 

s. = 2a.A + 2b. - p. 
1 1 1 *̂  1 

Sj + p. 

or: -1 J.= a A + b. (i - 1, 2, 3) 
2 ' ' 

or: 'A(x+x<,) = sin X sin |x . A (14) 
!^(y ^y^) = - cos a cos X sin ^x. A + r cos a cos pi: 2 sin X 

(15) 
!4(z +z^) = sin a cos [x sin X . A - r sin a cos X: 2 sin (x (16) 

where x, y and z are the coordina tes of P ' and x , y , z the 
coordinates of the poin ts P corresponding to P ' . Elimination of 
A from (14) and (15) and from (14) and (16) respectively gives: 

(x + x^) cos a cos X + (y + y^) sin X = r cos a cos y, 

and (X + x^) sin a cos x̂ - (z + z^) sin (x = r sin a cos X 
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These equations are (cf the equations (5) and (6) of the s-axis) 
the parametric equations of the hyperboloid V' which can be re ­
duced from the hyperboloid r generated by the s - ax i s by mul t i ­
p lying by two with regard to the point P(x„. y„, z^) . The space 
curve desc r ibed by P ' l i e s on r ' which i s in accordance with 
§ 2 .3 . 

3. To wr i te down the equations (14), (15) and (16), combined 
with the re la t ion sin X = m sin x̂ . , . (8) as parametric equations 
we make use of the following reducements and abreviat ions: 

Prom sin X = m sin y, follows: 

(sin X + sin |x) : (sin X - sin [x) = (m + 1) : (m - 1) 

or: tan 'A(X + y.) : tan 'A(X - pi) = (m + 1) : (m - 1) 

Since (§ 1.2): 'A(cp + vp) = X and %(cp - vp) = ^ 

we obtain: tan '/2fp = tan iivp 
m - 1 

We consider tan î vp = t as a parameter and we write down br ief ly : 

(m + 1) : (m - 1) = n and (1 + nh^)(l + t^) = N 

Hence we have: tan î ip = n. t 

Now we get the following reducements: 

sin vp = 2tan v̂p : (1 + tan^ v̂p) = 2t : (1 + t^) 
cos vp = (1 - tan^ 'Avp) : (1 + tan^ y2vp) = (1 - t^)a + t^) 

and sin cp = 2nt : (1 + n^t^) 
cos cp = (1 - nh^) : (1 + n^t^) 

Purther we have: 
sin X cos y. = %(sin cp + sin vp) = t ( l + n ) ( l + nt^) : N 
sin jx cos X = 'A(sin cp - sin vp) = t (n - 1)(1 - nt^) : N 
sin X sin (X = ^(cos vp - cos cp) = t2(n2 - 1) : N ^ ^^'^^ 
cos X cos fx = ^(cos vp + cos cp) = (1 - n^t*) : N 

4. In 2 we denoted 

A = (2 a.p. - 2 a h ) : 2 a.^ 
We have: "̂  " " "* " 

2 a^ = sin 2 x sin^ x̂ + cos^ a cos^ x sin^ x̂ + s in^ a cos ^ y, sin ^ x 
= sin 2 X sin 2 x̂ + cos^ a s in^ y, - cos^ a sin^ x sin^ |x + 

+ sin 2 a cos 2 y, s in^ x 
= sin 2 X sin 2 y, s in^ a + cos^ a sin^ [x + sin^ a cos^ |x sin^ x 
-'^ sin 2 X sin 2 a + sin ^ x̂ cos^ a 

62 = ^ sin (J. sin X, which follows from (7a). 



2a If we denote ^ = k ij^ere k is the ratio of the unequal sides r 
of the isogram, we get: 

2 a^ = k sin |x sin X 

Purthermore we have 

, ^ = _ W.T- r — 
k k 

rCos a cos X COS ix sin u, sin oc cos ix cos X sin X, 
2 a^b^ = - ^ r [ ^ ^ + "^ ^ 

sin X sin y. 

cos^a sin^ix + sin^a COŜ LX 
= - YiT COS X COS y, , 

sin X sin y, 
./ 2a = - 'Ar cos X cos ix . — '^ r 

= - a cos X cos y. 

And f inal ly we get: 

2 â P̂ĵ  = x^ sin X sin y. - y ^ cos a cos X sin y. + 

+ z^ s in a cos |x sin X 
A becomes: 

{x^ sin X sin |x - y cos a cos K s in y, + 

+ z sin a cos jx sin X + a cos X cos y} : k sin |x sin X 

or, writ ten with the parameter t : 

A = {x^t2(n2 - 1 ) - y_̂  cos a . t(n - 1) (1 - nt^) + 
+ z^ sin a . t (n + 1)(1 +nt2) +a ( l -n^t"*)} : k N sin |x sin X (18) 

5. Subst i tut ion of (18) in (14) gives: 

ii N k(x + x^) = x^t2(n2 - 1) - y^ cos a . t(n - 1)(1 - nt^) + 
+ z^ sin a . t (n + 1)(1 + nt^) + a ( l - n^t**) 

and in (15): 

^ N k , L l ± . = . ^ ^ \ { , t 2 ( n 2 _ l ) -
cos a sin X ° 

- y cos a . t (n - 1) (1 - nt^) + z sin a , t (n + 1)(1 + nt^) + 
+ a( l - n^t*)} + ViN k T £ 2 ^ 

sin X 
According to (17) we have: 

cos X 1 - nt^ 

s in X t(n + 1) 
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and 

cos IX a N cos u, a (1 + t ^ ) ( l + n t ^ ) ( l + n^t^) 
'/2 N k r = . = — . 

s in X m sin î m t (n - 1) 
And we obtain: 

72 k N . I-LLl = - X t (n - 1)(1 - nt^) + 
cos a ° 

( 1 - n t ' ) ' ( n - 1) ^, j . ^ 
+ y cos a z sin a (1 - n^t^) + 

n + 1 ° 

, - (1 - n t ^ ) ^ ( l + nt^) 1 (1 + t ^ ) ( l + n t ^ ) ( l + n^t^) , 
+ a { + — . } 

t (n + 1 ) m t (n - 1) 
In t h i s expression we reduce the coe f f i c i en t of y cos a and 

o 

the one of a respect ively to: 

- t2(n2 _ 1) + J i and t ( l + n t 2 ) ( i + n) 
m 

Therefore the equation (15) becomes: 

1/2 k N . LJLJ-2.= _ X t(n - 1)(1 - nt^) - y cos a t2(n^ - 1) + 
cos a " 

+ y cos a . z sin a (1 - n ^t'') + a t ( l + nt^) 
o m ° 

In the same way we get for (16). 

z + Zj 

sin a 

- z^ sin a . t^(n^ - 1) + m z^ sin a . N - at(n - 1)(1 ^ nt^) 

6. Recap i tu l a t i on : The parametric equations of the twisted 
curves described by a point P' of the moving space S are: 

'A k N (X + x^) = x^t2(n2 - 1) ^ y^ cos a t(n - 1)(1 - nt^) + 
+ z^ sin a t(n + 1)(1 + nt^) + a ( l - n^t"*) 

y + Y 
y2 k N 2.= - y cos a t^(n^ - 1) - x t(n - 1) (1 - nt^) + 

cos a ° ° 

+ at(n + 1)(1 + nt2) - z sin a (1 - n^t' ') + L2_22f_^J>( 19) 
o ' m l 

z + z 
'A k N 2. = - z sin a t^(n^ - 1) - a t (n - 1)(1 - nt^) + 

s in a ° 

+ x^t(n + 1)(1 + nt^) - y^ cos a (1 - n^f*) + m z^ sin a N 

'A k N 2- = x t(n + 1)(1 + nt^) - y cos a (1 - n^t'*) 
r> - ; « . . O o 
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with the following re la t ions : 
ra ^ sin 2 a + cos ^ a - k . m ; k » 2 a : r 

n = (ra + 1) : (m - 1) ; N - (1 + t 2 ) ( l + n^t^) 
and t » tan 'A vp 

Prom the equations (19) follows tha t the curves described by 
the points of the moving space S are rational twisted curves of 
the fourth degree. 

§ 5. Po in t s at i n f i n i t y of the curves given by (19) 

The p o i n t s a t i n f i n i t y can be found i f we use homogeneous 
coordinates x, y, z, w. In the parametric equations (19) we sub­
s t i t u t e : X - ^ ; y =-r; z - : § . . If we take w = N = (1 + t ^ (1+n2t2) 

w w w 
we obtain the points at inf in i ty for N = o, or: 

(1 + t 2 ) ( l + n^t^) = 0 

that i s , t , = i ; t , = - i ; t , =— ; t . = —— 
^ '' -̂  n ' n 

Substitution of t « tj = i in the equations (19) gives: 

i^kx = - x ( n ^ - l ) - i y cos a (n - l)(n + 1) + 
O O 

+ i z^ sin a (n + 1)(1 - n) + a ( l - n^) = 
= (1 - n^) (x + i y cos a + i z sin a + a) 

* ^ o o o ' 

14 k y : cos a = y^ cos a (n^ - 1) - i x (n - 1) (n +1 ) + 
+ ia(n + 1)(1 - n) - z^ sin a (1 - n^) = 

= i ( l - n ^ ) ( x + i y cos a + i z sin a + a) 
^ ^ o o o 

A k z : sin a = z sin a (n^ - 1) - ia(n - 1) (n + 1) + 
+ i x^(n + 1) (1 - n) - y cos a (1 - n^) = 

= i ( l - n ^ ) ( x + i y cos a + i z sin a + a) 
o o o ' 

Consequently we get: 

X : y : z = 1 : i cos a : i sin a 

on the understanding that 

X + i y cos a + i z sin a + a ?̂  o 
o o o 

If t = - i , we obtain: 

X : y : z = 1 : - i cos a : - i sin a 
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on the understanding that 

X - i y cos a - i z sin a + a ̂  o 
o o o 

Subst i tut ion of t^^ « ± i : n in the equations (19) gives: 

„ - n^ - 1 
72 k X = — ( - X + i y cos a ± i z sin a + a) 

n^ -

n2 

n ^ -

n 2 

n ^ -

n^ 

1 

1 

1 

14 k y = (y cos a + i x ± i a - z sin a) cos a 

that i s , X : y : z = 1 : ± i cos a ; + i sin a 

on the understanding that - x + i y cos a ± i z sin a + a jf o. 
O O O 

I t follows tha t the four points a t i n f in i t y of a l l curves are 
the i so t rop ic points given by: 

X : y : z = 1 : ± i cos a : ± i sin a 

and X : y : z = 1 : ± i cos a : + i sin a 

These po in t s are the i s o t r o p i c po in t s of the planes y sin a ± 
z cos a = o vihich are the equations of the planes ABA' and ABB' 
( f ig . 50, p. 55). 

I f X ± i y cos a ± i z sin a + a = o , 
o o o 

that i s , X = - a and y = - z tan a 
* o '̂  o o 

the point (x ; y ; z ) i s a point of the h inge- l ine through A and 
O O O 

i t s r e f l ec ted point i s a point of the moving h inge- l ine through 
A'. As the points of the h inge - l ine through A' describe c i r c l e s 
which l i e in planes pa r a l l e l to the fixed plane ABA', the points 
a t i n f i n i t y of these c i r c l e s are the i s o t r o p i c p o i n t s of the 
plane ABA'. 

If ~ X + i y cos a ± z sin a + a = o, we get the c i r c l e s 
O O O 

described by the points of the moving hinge- l ine throu^i B'. 
So we obtained the theorem: 

The four points at infinity of all curves of the fourth degree 
described by the points of the moving space S are the isotropic 
points of the planes ABA' and ABB'. 
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§ 6. Plane curves and spherical curves 

1. The curves given by the equations (19) are plane curves i f 
the right-hand sections are interdependent functions of t. To fix 
t h i s condition the functions might be wri t ten arranged in order 
of s ize of powers of the parameter t . 

Purthermore we write briefly: 
y cos a = ^ ; z sin a = z ; y^ cos a = y^ ; z^ sin a = z^ ^ 

and X = X ; X = X W ^ > 

The equations (19) become: 

J4 k N (X + x^) = a + t {(1 - n) y^ + (1 + n) zJ + t2x^(n2 - 1) + 
+ t ^ {(n - l)°y^ + (n + D °z^} - an^t" 

f̂  ^^(y. ^ lo) _ i o } _ 2 + t {(1 - n) X + (1 + n)a} -
2 cos 2a m ~° 

- t^ y (n^ - 1) + t^ n {(n - 1) X + (n + l )a} + z nH* 

^k(z + z ) , , -, 
N {—= =2- _ m z } » - y + t {(1 - n)a + (1 + n) x„} -

2 sin ^a 
- t^ z (n^ - 1) + t ^ {(n - 1) a + (n + 1) X } + y„ n^t"* 

I f we denote the right-hand sect ions of these equations by p 
q and r respectively we have to examine i f there ex is t values of 
the constants A, B, C and D such that: 

A . p + B . q + C . r = D 

i s an ident i ty with regard to t. 
We obtain the following re la t ions : 

( I ) Aa - Bz^ - ^o ' ^ 
(II) A {(1 -°n) yj+ (1 + n) zJ + B {(1 - n) x^ + (1 + n) a} + 

+ C {(1 - n) a + (1 + n) x^} 
( I I I ) Ax - ^ ^ - Cz^ = o 
(IV) A ' ( n - 1) y^~+ (n - 1) z^} + B {(n - 1) x^ + (n + 1) a} + 

+ C {(n - 1) a + (n + 1) X J = 0 
(V) - Aa + Bz + Cy = o 

—o —o 

The re la t ions (I) and (V) give: D = o. 
Adding and sub t rac t ing ( I I ) and (IV) gives, a f t e r dividing by 
n + 1 and by n - 1 respectively: 

Az + Ba + Cx = 0 
—o —o 

Ay^ + Bx^ + Ca - 0 
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So we obtain with (I) and ( I I I ) the four conditions: 

( I ' ) Aa - Bz - Cy = 0 
( I I ' ) Az^ + Ba + Cx^ = o 
( I I I ' ) Az^ - ^ o - Cz^ = o 
(IV') Ay + Bx + Ca = 0 

These four equations in A, B and C have a non-zero solu t ion 
i f the de terminants of the c o e f f i c i e n t s of A, B and C of the 
equations ( I ' , I I ' , I I I ' ) and of the equations ( I ' , I I ' , IV') are 
zero, tha t i s , 

or: 

-z 
—o X 

—o 

X -y 
— o —o 

and X -y -z 
—o —o —o 

y X a 
—o —o 

y'^ + y ( x ^ - z ^ + a ^ ) - 2ax z = o 
± 0 — o —o —o —0—0 

and z 3 + z ( x 2 - y 2 + a 2 ) - 2ax y = o 
—o —o —o —o 0 0 

Subt rac t ion of these re la t ions af ter multiplying by z_^ and y^ 
respectively gives: 

y'* - z* + (x2 + a2)(y2 - z^) = o 
— O —O — O O 

or: (y ^ - z-')(x'' + y' + z^ + a'') = o 
—o —o —o —O —O 

or, r e s t r i c t i n g ourselves to real points of the moving space, 

y 2 _ 2^ = o 
— o —o 

Substitution of y = z gives: 
— o —o 

z-" + Z (x^ _ z^ + a^) - 2ax z = o 
o —o —o —o—o 

or: z (x^ - 2az + a^) 
— 0 — 0 —o 

or: (^^ o) 

Substi tution of y = - z gives: x = - a 
— o —o '^ —o 

If we mention the abreviations (20) we get: 

X = a 
ƒ ° 
^ y = z tan a 

and ^ y. = z tan a 

2. The equations of the hinge-l ine h through the vertex A and 
of the hinge- l ine k through B are: 
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x = - a x = a 
^ y - -z tan a ^ ^ ^ y = z tan a 

I t follows tha t P(x^, y^, z^) must l i e on one of these hinge-
l ines , As in th is case the reflected point P' of P with regard to 
the s -ax i s i s a po in t of one of the moving h i n g e - l i n e s , i t i s 
evident t ha t the curve described by P ' i s a c i r c l e , and thus a 
plane curve, 

We obtain the theorem: 
The only points of the moving space S which describe plane curves 
are the points of the moving hinge-lines. These curves are c i r ­
c les , 

3. The curve described by a point of the space S i s a spheri­
cal curve, i f i t l i e s on a sphere. As every cyrve l i e s on a hy­
perboloid (§ 4.2) a spherical curve can be considered as a curve 
of i n t e r s e c t i o n of a hyperboloid and a sphere. As the curve of 
In tersect ion of two quadrics i s in general not a ra t ional curve, 
i t follows t h a t the space S contains no points which describe 
spherical curves except the c i r c l e s mentioned in 2, 

§ 7 , Points of inflection or stationary points 

1. A point of a twisted curve i s a point of i n f l ec t i on or a 
s t a t i o n a r y po in t i f the osculating plane at that point has a 
third-order contact to the curve (chapter I § 8,2), 

Let the equat ions of any curve be given in the parametr ic 
form: 

X = x( t ) ; y = y ( t ) ; z = z ( t ) 

The d i f fe rent ia l geometry *) gives that a point i s a s ta t ion­
ary point if: 

x' 
x" 
x"' 

y ' 
y" 
y'" 

z' 
z" 
z'" 

(22) 

where the accents indicate d i f fe ren t ia t ions with respect to the 
parameter t, 

2, Briefly we denoted the right-hand sections of the parajnet-
r ic equations (21) by P, q and r respectively. These l e t t e r s rep­
resent functions of t of the fourth degree. 

Purther we use in (21) the abreviations: 

') Eisenhart, A t r e a t i s e on the d i f fe ren t i a l geometry of curves 
and surfaces, p. 18 (Boston 1909). __ 



y^iy + 
^ ( z 

y 
+ 

yzb 

o> 
Z 

(X 

) 

^ i o ) = 
cos ^a -

s i n ^ a 

X 

l o ' 
- mz 

m 

= Z 

Consequently we get: 

X' = 'Akx' ; 
' I _ 

X" = 'Akx" 
14ky' : cos^a 

^kx' 
etc . 

I f we multiply the f i r s t column of (22) ty 14k, the second one 
by 'Ak : cos^a and the th i rd one ty 'AR. : sin^cx, we obtain the same 
determinant as (22) but now wr i t t en in X, Y and Z. Prom the 
abreviat ions follows that the parametric equations (21) become: 

X = p : N 
Y = q : N 
Z = r : N 

S u b s t i t u t i o n in (22) g ives : 

p'N - pN' q'N - qN' 
p " N - p N " 
p " ' N - p N " ' 

r'N - rN' 

or, if we increase the rank of this determinant: 

N 
N' 

3. Let f. M + Y,t- + 8,t-
k 

+ e,t^ (k 

(23) 

1, 2, 3, 4) be 
four functions of the fourth degree in t, such that 

^ 2 ^ f , - p ; 

The values of the c o e f f i c i e n t s a 

f a " 

e tc . may be tabu la ted as 
follows (see the equations (21)) 

k 
1 
2 
3 
4 

% 
a 

- z 
—o 

- ^ o 

1 

Pv 
(1-n) y^ * ( l + n ) z ^ 
( l - n ) x ^ + ( l+n)a 
(1-n) a + ( l+n)x 

0 

Yu 
x^ (n^ - l ) 

- z „ ( n ^ - l ) 
n^+i 

6 , 
n { ( n - l ) y ^ + (n+l)z^> 
n { ( n - l ) x ^ + (n+ l ) a } 
n { ( n - l ) a + (n+l)x } 

—o 
0 

H 
-ak' 

- O H H 
lo " 

n2 1 

Subst i tu t ion In the determinant (23) gives, a f t e r increas ing 
the rank again; 
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r 

a 

Pi 
Y, 
5j 

Sj 

aj 

P7 
Y2 
6j 

ej 

*3 

Pa 
Ya 
83 

63 

a^ 

P4 
Y4 

64 

^4 

t* 
-4t3 
6t2 

-4t 
1 

= 0 (24) 

If we mention the abreviat ions (20), t h i s determinant (24) i s 
reducible to: 

z sin a 
o 

X 
o 

y cos a 
o 

-a 

a x„ 4n(l -n ) t (n t^ + l ) 
-y cos a -z^sin a 12n2t^ - (1 + n^) (1 + n^t*) 

x^ a 4n (n + 1) t ( n t 2 - 1 ) 
z sin a y cos a (1 - n^) (n^t* - 1) 

o (25) 

k. I f we give t any value t = t j , (25) i s the equation of a 
surface of the th i rd degree with x , y , z as i t s current coor-

o ' ^ o ' o 

dinates . The locus of the points of inflection of the curves de­
scribed by the points of the moving space S is at any moment 
(given by t = t j ) found by reflection of the surface given by 
(25) with regard to the s-axis in the pos i t ion t h a t corresponds 
to t = t . This i s in accordance with chapter I § 8.2 (theorem 
XXVI). 

Let P(x^, y , z ) be a given poin t . I t s r e f l e c t ed point P' 
describes a ra t ional curve of the fourth degree. Subst i tut ion of 
the given values of x , y , z in (25) gives an equation of the 
fourth degree in t . Hence the curves described by the points of 
the moving space S have four points of inf lect ion. 

We obtain a special case i f the terms of the second and the 
third column are proportional, say: 

Cx -y cos a = -Cz sin a ; 
O 

z sin a = Cy cos a 

= C . a 

and hence we get: C = ± 1. 
If C = -1 we obtain: x -a 

-z tan a 
and i f C = + l : , x « a 

•f ° '• y = z tan a 
o o 

Prom t h i s follows that every point of one of the h inge- l ines 
in A and B gives a corresponding curve ?rtiich has only points of 
inf lect ion. This i s evident for these curves are c i r c l e s and the 
osculat ing plane a t a point of a c i r c l e coincides with the plane 
of the c i r c l e . 
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§ 8. Tangents with a second-order contact 

1. The equation (11) of the hyperboloid r generated by the 
s-axis i s : 

4x^ 4mV^ 4z2 

r^ (m^ - 1) r^ cos^ a (m^ - 1) r^ sin ^ a 

Briefly we write: 2 2 2 
— + — — - 1 
a2 ^ b^ ~ c2 ° 

vrtiere a^ « Yiv^ ; b^ = — - . (m^ - l) r^ cos^ a ; 
4m 2 

c^ = Vi(m^ - 1) r^ sin2 a 

The equations of the two se r i e s of generators, ca l led a - l ines 
and b- l ines respectively are: 

x z l y v x z l y 
- + - = — ( 1 + - ) _ + _ = _ ( l - J L ) 
a c X b / a c f x b 

} a - l ines } b- l ines 
= X(l ) ) = [xd +—) 

a c b ' a c b 
The b- l ines coincide with the several posi t ions of the s-axis 

of the moving isogram. 
If we solve x, y and z out of the equations: 

X z y 
= tx(l +--) 

a c b 

X z y 
= X(l ) 

a c b 

we obtain: 

—+— = - < l +—) 
a c X b 

ax 1 , b(x - (x) cx 1 
(—+ y) : y = — ; z = ( — x̂) ( x + X X X + p i X + [ x X 

which are parametric equations of the hyperboloid V. 

2. I f T(x^, y , z ) i s a point of r, there exis t values of X 
and [X such that: 

ax 1 , b(\- y.) cX 1 , 
- - .( + p.) ; y = — ^ — — : z = - ( - - H - ) 

° H . + X X \ + y. ° X + i x X 

The d i rec t ion numbers of the b- l ine through T writ ten in the 
form 
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X y z _ 1 

a (xb c (X 

are the minors of: 

OK 

or: 

of: 

1 
+ 

fxbc 

a((x2 . 

X 

JL. • 
bc 

- 1) ; 

yy z 
(X 

b c 

i_ 1 1 
a |.ib c 

a b c 

1 1 

ac ac 

2fxb ; 

) 

_ Ji_ ± 
ab [xab 

- c(fx2 + 1) 

The equation of the plane a through T perpendicular to the 
b-l ine t h r o u ^ T i s : 

a(ix2 _ 1) (X - x^) + 2(xb(y - y^) - c([x2 + 1) (z - z_̂ ) = o 

or: a((x2 - 1) x + 2y.by - c(y.^ + 1) z = 

= — {a2(l + Xtx)(ix2 - 1) + 2(xb2(x - y.) - cHl - Xy.)(\i^ + 1)} 
X + n 

or, written in order of size of the powers of |x: 

(x^(ax - cz - a^x - c^X) + |x2(axx + 2by - Xcz - a^ + 2b^ + c^) + 
+ (x(-ax + 2bXtA - cz + a^X - 2b2x - c \ ) + 

+ (-Xax - xcz + a2+ c^) = o (26) 

3. The coe f f i c i en t s of x, y and z in the equation (26) are 
functions of the parameters X and |x which belong to the a- and 
b - l i n e through the po in t T on the hyperboloid r . To find the 
number of planes through a given point P i f T moves along a given 
a- l ine we have to subs t i tu te in (26) the coordinates of P and the 
value of X belonging to the given a- l ine . As (26) i s an equation 
of the third degree in fx, we conclude that we obtain three values 
of |x, that i s , there are three b- l ines with the property that the 
planes normal to these b- l lnes and through the i r point of in te r ­
sect ion with a given a - l ine go through P. That i s , through any 
po in t P go th ree perpendicu la rs on b - l i n e s which i n t e r s e c t a 
given a- l ine . Hence, the a-lines are trisecants of the pedal of P 
with regard to the b-lines; the pedal i s a (3 , l ) -curve on F, If 
we multiply the hyperboloid r and the pedal by two with regard to 
P, we get the hyperboloid r ' and a curve C which i s the locus of 
the r e f l e c t ed po in t s P' of P with regard to the b - l i n e s of V 
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( § 2 ) , C i s a (3 , l ) -curve on P' and the a ' - l i n e s of r ' are t r i ­
secants of C, On the other hand we have tha t the t r i s e c a n t s of C 
are the a ' - l i n e s of r ' , A well-known theorem *) says t h a t the 
t r i s ecan t s of a ra t ional twisted curve of the fourth degree gen­
era te a quadric. In our case th i s quadric i s r ' . 

4. The equation (26), briefly written as 

a ;x̂  + ajfx^ + aj|x + a^ = o 

has three equal roots i f the left-hand member of the equation i s 
ident ica l ly equal to: 

a (ix - p) ^ = o 

or: a, = -3pa ; a» « 3p% ; a , = - p % 
1 * ^ o 2 ' ^ o 3 * ^ o 

or: 3pa^ + aj = o ; ajp + a j = o ; ajP + Sa^ = o 

The values of a , a,, a., a , follow from (26). Therefore these 
O 1 2 ^ 

conditions become i f we write 

q2 = a2 - 2b2 - c^ 

and 

3(ax - cz - Xr^) . p + (axx + 2t(y - Xcz - q^) = o 
(aXx + 2by - Xcz - q^) . p + (-ax + 2bXy - cz + Xq )̂ = o '> (27) 

(-ax + 2bXy - cz + Xq2) . p + 3 . (-Xax - Xcz + r^) = o ; 

Let jxj be a given value of p. The b- l ine which corresponds to 
t h i s value |Xj i s denoted by b j . If we l e t coincide the s -ax i s 
with b j we get the pos i t ion of the isogram tha t corresponds to 
[X - ( X j . 

The equat ions (27) r ep resen t th ree p l a n e s . Their po in t of 
i n t e r sec t ion P has coordinates which are functions of X, Every 
value of X gives a point P such that ref lect ion of P with regard 
to the s-axis ( b j - l i n e ) gives the point P' which has a tangent 
to the curve belonging to P (the path of P ' ) with a second-order 
contact ( f ig . 51). This tangent i s the l i n e obtained from the 
a - l i ne corresponding to the considered value of X by multiplying 
by two with regard to P, 

5, I f X i s considered as a parameter, the locus of the points 

Xr2) 

q^) . 

r ^ » a^ + c-̂  

. p + (aXx + 2by 
p + (-ax + 2bXy 

- Xcz - q2) 
- cz + Xq2) 

*) Schrek, D.J.E. Rationale ruimtekrommen van den vierden graad, 
25 Diss. Utrecht (1915). 
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Figure 51 

fixed space 2 i s given by the equations (27) which can P i n t h e X J L A C U i^jja>\^^ L^ A O g,j.vv,,ii uj 

be written as (p i s replaced by |Xj) 

X( 

or, br ief ly 

- cz - 3jxjr2) = -3aM,jX - 2by + 3c(XjZ + q^ 
jX + 2hy - C(XjZ + q2) = ax - 2btXjy + cz + q ^ j 
ax + 2b|xj^ - 3cz + qVi ) = .̂jx.x + ĉ x z - Sr^ 

X(ax -
X(a(Xj.- __„ . ^ j _ . . 

-3ax + 2b|Xjy - 3cz + q V p = .̂jXjX + c^j,. 
(27a) 

(27b) 

where A, B, C, D, E and P are l inear functions of x, y and z. 
Elimination of X gives: 

A.D = B. C 
C P = D.E \ 

(28) 

which are the equations of a twis ted cubic being the curve of 
i n t e r s e c t i o n of two quadrics which have the l i n e C = D = o in 
common. 

6, Theorem XXV of chapter I , § 7 gives that the locus of the 
po in t s P ' of the moving space S with a tangent with a second-
order contact i s a t any moment a twisted cubic. In our case we 
have: 

The locus of the points P' with a tangent with a second-order 
contact is obtained by reflection of the curve given by the equa­
tions (28) with regard to the s-axis of the isogram. 

75 



C h a p t e r V 

T H E T A N G E N T S TO T H E C U R V E S 

§ 1. Conjugated l i n e s 

1. The h inge- l ines h ' and k' are l i n e s of the moving space S 
( f ig . 52). The curves described by the points of these l ines are 
c i r c l e s around the h inge - l ines k and h respec t ive ly . The plane 
t h r o u ^ any point P of h ' normal to the tangent in P goes through 
k. Hence h' and k are conjugated lines (chapter I, § 1,5). Simil­
arly k' and h are conjugated lines. 

2. As AB' i s the common perpendicular of the conjugated l ines 
h and k' and A'B that of the conjugated l ines h ' and k, the com­
mon perpendicular of AB' and A'B is the instantaneous screw-axis 
(denoted by x -ax i s ) of the motion of the space S (chapter I , 
§ 4.4) . 

The l ine MN jo in ing the midpoints M and N of BB' and AA' re­
spect ive ly i s the axis of symmetry of the quadr i l a t e ra l ABA'B' 

and consequently the x-axis intersects MN (s-axis). 

§ 2. Points with a tangent para l l e l to A'B' 

1, Let T be the midpoint of A'B' and 8 the plane through T 
normal to A'B'. The tangent in the nul lpoint K of 5 i s normal to 
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5 and hence pa ra l l e l to A ' B ' , The locus of the nu l lpo in t s of the 
planes normal to A'B' i s the locus of the poin ts with a tangent 
p a r a l l e l to A ' B ' , AS the locus of the nu l lpo in t s of a s e r i e s of 
p a r a l l e l planes i s an axis and hence a l i n e p a r a l l e l to the x-
ax i s , the required locus i s the line u through the nullpoint K 
of the plane 5 pa ra l l e l to the x-axis (chapter I, § 3,3) , 

The nu l lpo in t K of 5 i s the common point of the l ines throu^i 
the p o i n t s of i n t e r s e c t i o n of 5 with two p a i r s of conjugated 
l i n e s . Let Aj, Bj, A'j, B'j be the poin ts of in te r sec t ion of h, k, 
h ' , k ' r e spec t ive ly with 6. The poin t K i s the common po in t of 
AjBj and A'jBj (chapter I, § 4 .5) . 

2. If we r e f l e c t the moving space S with regard to the l i n e 
MN we obtain the space 2. The ref lected figure in 2 of a figure P 
in S i s denoted by P''. The figures P and P'' are congruent. 

We have the following transformations: 
A ' B ' passes into AB, denoted by ( A ' B ' ) ' ' , because A and A' are 

symmetrical with regard to MN, 
h ' passes into h , denoted by h'"' 
h passes into h ' , denoted by h"" 
k' passes into k , denoted by k'•• 
k passes into k ' , denoted by k"' 
5 passes into the plane YOZ, denoted by 6''. 

I f P i s a fixed figure in S, P"' i s a fixed figure in 2. The con­
sideration of the figures in S will be carried out in the fixed 
space. The t rue posi t ion of these considered f igures i s obtained 
by ref lec t ion with regard to the axis MN. 

3. The n u l l p o i n t K of the plane 6 mentioned in 1 passes by 
ref lec t ion with regard to MN into the point K'' of the plane YOZ. 
The l i n e AjB'j passes i n t o the l i n e (AjB'j)'' which i s the l i n e 
through the po in t s of i n t e r s e c t i o n of h'' = h' and h'"' = h with 
the plane YOZ. Similar ly A'jBj passes i n to the l i n e through the 
poin ts of i n t e r sec t ion of h and k' with the plane X » o. If the 
po in t s of i n t e r s ec t i on of the h inge- l ines h, k, h ' , k ' with the 
plane X = o are denoted by Aj, Bj, Aj, B'j respect ively, the point 
K' i s the common point of the l ines AjB'j and AjBj. 

As h i s p a r a l l e l to the plane YOZ, the point of i n t e r s ec t i on 
AJ of h and t h i s plane i s the point a t i n f i n i t y of h. Therefore 
the l i n e AjBj i s the l i n e through Bj p a r a l l e l to h. S imi la r ly 
the l ine AjBj i s the l ine t h r o u ^ the point of in te rsec t ion Aj of 
h ' and the plane YOZ para l l e l to k. 

The plane t h r o u ^ B' normal to AB' contains k ' . As t h i s plane 
i s para l le l to h, i t contains also the point a t in f in i ty Aj of h. 
I t s l ine of in te rsec t ion with the plane YOZ i s therefore the l ine 
AjBj. S imi la r ly A'^B^ is the line of intersection of the plane 
through A' normal to BA' with the plane YOZ. 
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k. The d i rec t ion numbers of AL are (chapter IV, § 1,2): 

r cos v|; ; r sin v(/ cos a ; r sin vj/ sin a 

The equation of the plane t h r o u ^ B' normal to AB' i s : 

cos vj/ (X + a - r cos ^) + sin v(; cos a (y - r s in vjj cos a) + 
+ sin vj; sin a (z - r sin v|i sin a) = o 

The equations of the l i n e of in t e r sec t ion of t h i s plane with the 
plane YOZ are: 

X = o \ 
y cos a + z sin a = ~ a cot vj; + r cosec v); ) ^^' 

The d i rec t ion numbers of A'B are: 

r cos cp ; r sin cp cos a ; - r sin cp sin a 

The equation of the plane t h r o u ^ A' nonnal to A'B i s : 

cos cp (x - a - r cos cp) + sin cp cos a (y - r sin cp cos a) -
- s in cp s in a (z + r sin cp sin a) = o 

and the equations of the l ine of in te r sec t ion with the plane YOZ 
are: 

y cos a - z sin a = a cot cp + r cosec cp ^ ^ ' 

The two p a i r s of equations (1) and (2) give the point K'' in the 
plane YOZ, Reflection of this point K^ with regard to the l ine MN 
gives the nullpoint of the plane 5 t h r o u ^ the midpoint T of A'B' 
and normal to A ' B ' , 

5, Let 5J be a plane para l l e l to the plane 5 and l e t the equa­
t ion of the plane 8r,obtained by ref lec t ion of 6 j with regard to 
MNjbe X = p where p i s the distance between 5 and 8j , 

The equations analogous to (1) and (2) are: 

X = p ^ 

y cos a + z sin a = - (a + p) cot v); + r cosec vjy S ^ 

and X = p 
y cos a - z sin a = (a - p) cot cp + r cosec cp (2a) 
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These equa t ions give the r e f l e c t e d n u l l p o i n t of the plane 5 j . 
Elimination of p gives the locus u'' of the poin ts with a tangent 
pa ra l l e l to ( A ' B ' ) ^ We obtain: 

a cot vp + y cos a + z sin a = - a cot v|; + r cosec ^i i 
X cot cp + y cos a - z sin a = a cot cp + r cosec \]i S '• ' 

Reflection of the line given by these equations (3) gives the 
locus u of the points with a tangent parallel to A'B'. 

As the po in t s of u have the same d i r ec t ion of ve loc i ty , the 
conjugated l ine of u i s a l ine a t in f in i ty namely the l i n e a t in­
f in i ty of the plane 8 and hence, u i s an axis (chapter I, § 3.1). 
Consequently u i s p a r a l l e l to the screw-axis ( x - a x i s ) . As the 
X-axis i n t e r s e c t s the axis MN at a r igh t angle, the angle between 
u and MN i s a l s o a r i g h t angle . Hence the l i n e s u and u"' a re 
p a r a l l e l . As the x-axis i s normal to the plane OMIN we obta in : 
The locus of the points which have a tangent parallel to the line 
A'B' is a line u normal to the midplane OMTN of the quadrilateral. 

6. A l i n e m which I n t e r s e c t s the x-axis a t a r i gh t angle i s 
a self-conjugated l ine (chapter I, § 1.6). If m i s drawn perpen­
dicular to A ' B ' , i t i s possible to bring a plane throu^i m normal 
to A ' B ' . The l i n e m goes through the nul lpoin t of t h i s plane. As 
t h i s n u l l p o i n t i s a po in t of the locus u, m i n t e r s e c t s u. We 
obta in : The lines intersecting the x-axis at a right angle and 
dravn perpendicular to A'B' intersect u. 

§ 3. The po in t of A'B' in which the tangent c o i n c i d e s with 
A'B' 

If A ' B ' i s a tangent, i t s point of contac t i s denoted by C. 
This po in t C i s the nu l l po in t of the plane through C normal to 
A ' B ' . AS the locus of the nul lpoints of the planes normal to A ' B ' 
i s the l i n e u given by the equat ions (3 ) , C i s a po in t of u. 
Hence, C i s the common point of the l i n e u and A ' B ' . These l ines 
have a common po in t i f the l i n e s u"' and (A'B')"' i n t e r s e c t each 
other. 

The equations of u ' are: 

x cot v|; + y cos a + z sin a = - a cot v|> + r cosec v)/ \ 
X cot cp + y cos a - z sin a = a cot cp + r cosec cp S ^ ' 

and the equations of (A'B') ' ' are: 

y = o 
z • o S 

79 



Elimination of y and z out of these four equations gives: 

X cot v|j = - a cot vp + r cosec \\i 

and X cot cp = a cot cp + r cosec cp 

or: X » - a + r sec \\i 

and X = a + r sec cp 

These two equations have a solution if: 

- a + r sec vp = a + r sec cp 

or: 2a : 2r = (cos cp - cos vp) : 2 cos cp cos vp 

If we use the following subs t i tu t ions and re la t ions : 

14(9 - vp) = |x ; y2(cp + v|;) = X ; sin x = m sin y, 

(chapter IV, § 1 . 2 and 1.3), we obtain: 

a - 2 sin 'A(cp - vp) sin y2(cp + vp) - 2 sin y. sin X _ 

r cos (cp + vp) + cos (cp - vp) cos 2X + cos 2ix 

m sin^[x 

1 - (m^ + 1) sin^[x 

a 
or: sin ^̂x = 

a + am^ - mr 

If the denominator a + am^ - mr i s denoted by N we get: 

s i n -̂Lx = — 
^ N 

The poin t of contact C of ( A ' B ' ) ^ can be found by subs t i tu t ion 
of t h i s value into the equation: 

X = a + r sec cp 

r r 
We get: x = a + = a + = 

"̂  cos cp cos (X + (x) 
r 

= a + — = 
cos X cos (X - sin X sin y. 
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± / ( I - s in^X)(l - sin^[x)' - m sin ^y, 

r Nr 
a + / i ; = a + — / ? • 

± / ( l *" ^ ) (1 - ^) m ^ ± / ( a - m r ) ( a m ^ - m r ) - am 
N N N 

± a 

± 

/m(a - rar)(ajn -

Vm'{± / ( a -

a /m(a - mr)(am 

r) -

mr)(£ 

- r) 

a ^ + 

un - r) 

- (am • 

a r + am^r -

- a vm} 

- r ) ( a - mr) 

mv' 

Vra {± i/(a - mr) (am - r) - a vm} 

± / ( a - mr) (am - r) 

Vm 

Aa. - mr) (am - r) 
OK X = ± / • 

" m 
We obtain: 

The line A'B' is tangent in one of its points C if the posi­
tion of the quadrilateral is given by: sin^ y. = a : N, where N 
only depends on the data a, r and a of the isogram. The point of 
contact C i s given in i t s ref lected posi t ion C' as a point of the 
X-axis with 

/
(a - mr)(am - r) 

:. 
m 

«Aiidi also depends only on a, r and a. 
In chapter VI, § 5 we sha l l prove t h a t the re e x i s t s no rea l 

posi t ion of the isogram such tha t A'B' i s a tangent. 

§ 4. Character i s t i cs of the planes through A'B' 

1. I f the penc i l of p lanes through A ' B ' i s r e f l e c t e d with 
regard to the axis MN, we obtain the pencil of planes t h r o u ^ the 
X-axis. The locus of the characteristics of the planes through 
A'B' is generated by the projections upon these planes of the 
line u which i s the l i n e conjugated to the l i n e a t i n f i n i t y of 
the planes normal to A'B' (chapter I , § 6 . 3 ) . In the r e f l ec t ed 
pos i t ion we obtain tha t the locus of the c h a r a c t e r i s t i c s of the 
planes t h r o u ^ the X-axis i s generated by the pro jec t ions of u*̂  
upon these planes . 
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2. The equations (3) of u ' can be reduced by means of addition 
and substract ion in the following way: 

( x(cot vp + cot cp) + 2y cos a = a(cot cp - cot vj/) + 
{ + r (cosec cp + cosec \p) 
' x(cot vp - cot cp) + 2z sin a = - a(cot cp + cot vp) + 

+ r (cosec \p - cosec cp) 

or: I mx cos X + y cos a s in (x (m^ - 1) = - cos ix (a - rar) 
( X cos JX + z sin a sin (X (m^ _ 1) = - cos X (am - r) 

The equation of the pencil of planes t h r o u ^ the l ine u"" i s : 

x(m cos X + P cos JX) + y sin (x cos a (m^ - l) + 
+ zP s in x̂ sin a (m^ - 1) + = o (5) 

where P i s the parameter. 
The equation of the pencil of planes through the X-axis i s : 

y + Qz = 0 (6) 

where Q i s the parameter. 
A plane of the f i r s t pencil i s normal to a plane of the second 

pencil if: 

s in [x cos a (m 2 _ 1) + p . Q . sin ix sin a (m^ _ i ) = o 

or: P . Q = - cot a (7) 

Figure 53 

If ( f ig. 53) y i s a plane of the f i r s t pencil and 8 a plane of 
the second pencil perpendicular to a, the l i n e of in te rsec t ion e 
of Y and 6 i s the p r o j e c t i o n of u ' upon 8 and hence e i s the 
c h a r a c t e r i s t i c of 6. Elimination of P and Q out of (5), (6) and 
(7) gives the locus of the c h a r a c t e r i s t i c s of the planes through 
the X-axis. 
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We obtain: 

m X cos X + y sin ix cos a (m^ - 1) + cos ix (a - mr) y 
. = - cot a 

X cos [X + z sin |x sin a (m^ - 1) + cos X (am - r) z 
or: m X y cos X sin a + y^ sin [x sin a cos a (m^ - 1) + 

y cos (X sin a (a - mr) = - x z cos a cos fx -
- z^ Sim |x cos a sin a (m ^ - 1) - z cos X cos a (am - r) 

or: (y ^ + z^) sin a cos a sin y. (m^ - 1) + ra x y cos X sin a + 
+ X z cos (X cos a+ y sin a cos [x (a - mr) + z cos a cos X (am - r)=o 

(8) 
The quadric given by th i s equation i s a hyperboloid. If this hy­
perboloid is reflected with regard to the axis MN, we obtain the 
locus of the points with a tangent which intersects the line 
A'B'. 

5. Equations of the instantaneous screw-axis 

1. The instantaneous screw-axis (x-axis) i s the common normal 
of two p a i r s of conjugated l i n e s . As noticed in § 1 the x-axis 
i s the common normal of the l inks AB' and A 'B and in t e r sec t s the 
ax is MN a t a r i g h t angle. Prom t h i s follows tha t the x-axis is 
invariable with regard to the reflection upon the axis MN. 

2. Let I j and 1 j be two l ines given by the equations: 

y - y . z - z. (k = 1.2) 

The equations of the common normal of I j and I j a re : 

X - X , 

where: 

y - y z - z. 
0 and 

z - z, 

A, 

and 

b„ c„ 
2 2 

3. The equations of AB' and A'B are: 

X + a y 

- a + r cos vp + a 

X - a 

^2 b j 

r sin vp cos a r sin vp sm a 

y z 
a + r cos cp - a r sm cp cos a - r sin cp sin a 
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If AB' and A'B are considered as the l ines I j and I j we obtain: 

AJ = ~ 2 sin a cos a sin cp sin vp 
AJ = sin a sin (cp + vp) 
A3 = cos a sin (cp - vp) 

Hence, the equations of the screw-axis are: 

X + a y z 
cos vp sin vp cos a sin vp sin a 

• 2 sin a cos a sin cp sin vp sin a s i n (cp+vp) cos asim (cp-vp) 
= o 

and 

X - a y z 
cos vp sin cp cos a - sin cp sin a 

- 2 sin a cos a sin cp sin vp sin a s i n (cp+vp) cos a s i n (cp-vp) 

Using the re la t ions : 

c p + v p = 2 X ; c p - v p = 2 ^ x ; sin X = m sin y. 
2a : r = k and cos^ a + m̂  sin^ a = k m 

these equations are reducible to: 

= o 

X cos x̂ + z sin a sin |x (m^ - 1) 

a cos X 

k (1 - k m sin ^ î) 

', m X cos X + y cos a sin y. (m^ - 1) 

a m cos JX 

(k^ m^ sin-' |x - 2 k m sin-' n + 1) 

k (1 - k m sin ^ y.) 
(k^ sin2 IX - 2 k m sin^ |x + 1) 

6. Points with a tangent through a given point of A'B' 

1. The locus of the po in t s with a tangent which i n t e r s e c t s 
the l i n e through a given po in t P p a r a l l e l to the x-axis i s the 
c i rcu la r cylinder C throu^i P and the x-axis such tha t the plane 
t h r o u ^ P and the x-axis passes through the axis of the cylinder 
C (chapter I , § 6 . 5 ) . The locus of the p o i n t s with a tangent 
which i n t e r s e c t s the l ine A'B' i s the locus of the cha rac te r i s ­
t i c s of the planes through A ' B ' . This locus i s the hyperboloid H 
given by the equation (8) of § 4. In chapter I , § 6 . 6 has been 
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shown tha t the locus of the points which have a tangent through 
the given point P is the curve of intersection of the cylinder C 
and the hyperboloid H. 

2. The equation of the cy l inder C can be obtained i f we re­
f l e c t the p o i n t P of A ' B ' with regard to the ax i s MN. I f the 
d i s t ance of P to the midpoint T of A'B' i s denoted by p, the 
coordinates of P*" are (p ; o ; o) . The x-axis is invariant with 
regard' to the axial reflection. 

The cy l i nde r C can be defined as the locus of the l i n e s of 
i n t e r sec t ion of the planes of the pencil t h r o u ^ the x-axis with 
the p l anes of the penc i l through the l i n e u drawn through P 
p a r a l l e l to the x-axis which planes are normal to the planes of 
the f i r s t penci l . 

In the re f l ec ted pos i t ion we get the pencil through the l i ne 
u ' throu^i P'' and p a r a l l e l to the x-axis and the pencil t h r o u ^ 

p 
the X-axis ( t h i s ax i s i s i n v a r i a n t with regard t o the r e f l e c ­
t ion ) . 

3. The equations of the x-axis are (see § 5). 

A X + B y = CJ 

P x + Q z = RJ 

where: A = m cos X ; B = sin y. cos a (m^ - 1) 

P = cos y, ; Q = sin y. sin a (m^ - 1) 
am cos M. 2 2 2 

CJ = ;— . (k sin |x - 2 km sin |x + 1) 

„ a cos X 2 2 2 2 
" i = = . (k m sin ix - 2 km sin u, + 1) 

k (1 - km sm ^ y) 

The equations of the l i n e Up which i s the l i n e through (p ; 
0 ; o) pa ra l l e l to the x-axis are: 

Ax + By = CJ 

Px + Qz = RJ 

where Cj = mp cos x and Rj = P cos y. 

Let the equation of the pencil of planes t h r o u ^ the x-axis be: 

(A + X'P)X + ^y + QX'z - CJ - x'Ri = o 
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and the equation of the pencil of planes t h r o u ^ the l ine u^: 

(A + |x'P)x + By + Q|i-'z - CJ - |x'Rj = o 

A plane of the f i r s t pencil i s perpendicular to a plane of the 
second one if: 

(A + X'P)(A + |x'P) + B^ + x'fx'Q^ = 0 

or: X'(x' (P2 + Q2) + ( ^ + n ' ) PQ + A^ + B^ = o 

Elimination of the parameters x' and y.' out of t h i s l a s t equa­
t ion and the equat ions of the two p e n c i l s gives the fol lowing 
equation of the cylinder C: 

A x + B y - c , Ax + B y - c . „ „ A x + B y - C , 
1 . ^ (P2 + Q2) _ A . P . ( !.+ 

Px + Qz - RJ Px + Qz - RJ PX + QZ - RJ 

A x + B y - c , , ,̂  
+ 2) + (A2 + B^) = 0 

Px + Qz - RJ 
4i, This equation can be reduced in the following form: 

{km + sin^ix (m^ - km - km3)} (x^ - px) + 
+ {l + sin 2|x ( - m^ - km + km^)} y 2 cos^a + 

+ {m^ + sin2^ ( - m^ + km - km-')} z^ s in^a + 
+ sin X cos X (1 - km)(- 2xy cos a + py cos a + az sin a) + 

+ m (k - m) sin y, cos y. ( - 2xz sin a + ay cos a + pz sin a) + 
+ m cos (X cos X (- 2yz sin a cos a - ax + ap) = o (9) 

5. Ihe locus of the points with a tangent through a given 
point P'(p ; o ; o) is the curve of intersection of the hyper­
boloid H and the cylinder C given by the equations (8) and (9) 
respectively. Reflection of t h i s curve with regard to the axis MN 
gives the locus of the po in t s with a tangent t h r o u ^ the point P 
on the l ine A ' B ' such tha t p i s the distance of P to the midpoint 
T of the l ink A'B'. 

6. As we showed in chapter I , § 6.7 the quadrics (8) and (9) 
have one generator in common. As the generators of the cylinder C 
are pa ra l l e l to the x-axis, the common generator i s also para l le l 
to t h i s a x i s . The hyperboloid H given by the equat ion (8) i s 
generated by the p ro jec t ions of the l i n e u (which i s the locus 
of the nu l lpo in t s of the planes normal to A'B') upon the planes 
through A ' B ' . Let y be the plane through A'B' p a r a l l e l to the 
X-axis, t ha t i s , to the l i n e u. The projection u ' of u upon t h i s 
plane y i s a generator of H para l le l t o the x-axis . The point of 
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i n t e r sec t ion of u' and A ' B ' i s denoted by R. I f we prove tha t R 
i s a point of the cylinder C, the line u' is the common generator 
of C and H. 

The direct ion numbers of the l ine u'̂  are given by (§4) 

m cos X sin |x cos a (m^ - 1) o 
cos y. 0 sin î sin a (m^ - 1) 

or: 

sin (X sin a cos a (m^ - 1) ; - m cos X sin a ; - cos y, cos a 

Figure 54 

The equation of the plane y"̂  through the X-axis p a r a l l e l to 
u"' (f ig. 54) i s : 

y cos a cos î - mz cos X sin a = o 

The penci l of p lanes through u ' i s given by the equation (5) 
namely: 

mx cos X + y cos a sin |x (m^ _ i) + cos fx (a - mr) + 
+ P{x cos (X + z sin a sin (x (m^ _ i) + cos X (am - r)} = o 

The plane h' of t h i s pencil normal to the plane y ' i s given by: 

cos a sin [X (m 2 - 1) cos |x cos a -
- P sin (X sin a (m 2 - 1) . m cos X sin a = o 

°^- P = cos^ a cos |x : ra sin^ a cos X 
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If we subs t i tu te t h i s value of P into the equation of the pencil 
through u'' and i f we take y = z = o, we obtain the equation which 
gives the position of R which i s the point of in tersect ion of the 
X-axis with the generator of the hyperboloid H p a r a l l e l to the 
l i ne u''. 

We get: 

mx cos X + cos (X (a - rar) + 
+ (cos2 cx cos y. : ra sin^ a cos X) {x cos y. + cos X (am - r)} = o 

(am - m^r) sin^a + (am - r) cos'^a 
or: X = . 

- ra sin -̂ a 

m cos X cos (X sin^a 

m̂  (1 - sin^X ) sin^a + (1 - sin2^)cos2a 

This expression i s reducible to: 

am cos X cos u, 
X = ' (10) 

km + sin 2|x ( - km^ + ra^ - km) 
7. If we subs t i tu te the values y = z = o into the equation (9) 

of the cylinder C, we obtain an equation which gives the points 
of in t e r sec t ion of C with the X-axis. One of these points i s the 
point P given by x = p. 

We get: 

{km + sin^ix (m^ - km - kra^)}(x2-xp) - raa cos x̂ cos X (x - p) = o 

Prom th i s equation follows x = p and the value of x corresponding 
to (10). As the generators of the cylinder C are pa ra l l e l to the 
X-axis, the l ine through R para l l e l to the x-axis i s a generator 
of C denoted by u' "•. This l ine u' •• i s the comraon generator of the 
quadrics (8) and (9) and consequently the curve of intersection 
is a twisted cubic. 

§ 7. Po int s with a tangent through a point anywhere in the 
space S ( c h a p t e r I , § 6.6) 

1. Let the coordinates of the ref lected point ?"• be (p ; q ; 
r ) . We draw the l i n e 1 through P p a r a l l e l to A ' B ' . Tlie l i n e u 
conjugated to the l ine a t i n f in i t y of the planes norraal to 1 i s 
ident ical with the l ine conjugated to the l ine at inf ini ty of the 
planes normal to A'B'. 

The equation of the hyperboloid generated by the charac te r i s ­
t i c s of the planes through l"" i s equal to the equation of the 
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locus generated by the l ines of in tersect ion of the normal planes 
of the penci ls t h r o u ^ u"' and 1 "• respectively. 

The equation of the pencil of planes t h r o u ^ u ' i s : 

mx cos X + y sin fx cos a (ra^ - i) + cos y. (a, - rar) + 
+ P{x cos y, + z sin y. sin a (m^ - i) + cos X (am - r)} = o (5) 

and of the pencil t h r o u ^ 1 ••: 

y - q + Q(z - r) = 0 

The condit ion of the norraal pos i t ion of any plane of the f i r s t 
pencil to a plane of the second one i s : 

P . Q = - cot a 

Elimination of the parameters P and Q out of t h i s equation and 
the equations of the two penci ls gives the following equation of 
a hyperboloid: 

mx cos X + y sin ix cos a (ra" - 1) + cos u, (a -mr) y - q 
Ï- !- X = _ cot a 

X cos fx + z sin y. sin a (m ^ - 1) + cos X (am - r) z - r 

or: (y^+ z^ - qy - rz) sin a cos a sin [x (m^ - i) + 
x(y - q) m sin a cos X + x(z - r) cos a cos [x + 

(y - q) sin a cos î (a - mr) + (z - r) cos a cos X (am - r) » o 
(11) 

2. The locus of the points with a tangent which in t e r sec t s the 
l i n e u drawn through P p a r a l l e l to the x-axis i s a c i r c u l a r 

p , 
cylinder C' through the x-axis and through u such tha t the plane 
through P and the x-axis contains the axis of the cylinder. 

The equations of the l ine u ' are: (cf. § 6.3) 

Ax + By = mp cos X + Bq 
Px + Qz = p cos JX + Qr 

The equation of the cylinder C' follows from the equation (9) 
of the cylinder C i f Cj i s replaced by Cj + Bq and Rj by Rj + Qr. 

Therefore the equation of the cylinder C' is reducible to: 

{km + sin 2jx (ra^ ,. km - km^)} x(x - p) + 
+ {l + sin 2[x ( - m^ - km + kra^)} y(y - q) cos^a + 

+ {m^ + sin^ix (-m^ + kra-km^)} z(z -r r) s in^a + 
+ sin X cos X (1 - km) {- x(y - q) cos a - y(x - p) cos a + 

+ a(z - r) sin a} + sin y, cos y. m(k - m) {- x(z - r) sin a -
- z(x - p) sin a + a(y - q) cos a} + m cos |x cos X [{ - y(z - r) -

- z(y - q)} sin a cos a - a(x - p)] = o (12) 
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3. The locus of the points with a tangent through a given 
point P in the moving space S is obtained by reflection of the 
curve of intersection of the quadrics (11) and (12) with regard 
to the axis MN. As these quadrics have one generator in common, 
the curve i s a twis ted cubic. The po in t P has been chosen such 
tha t the coordinates of the ref lected point P' are (p ; q ; r ) . 
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C h a p t e r VI 

T H E S U R F A C E G E N E R A T E D BY T H E 
C O N N E C T I N G - R O D A ' B ' 

§ 1. Double - l ines of the surface n generated by A ' B ' 

i . In chapter IV, § 1 we stated that the coordinates of A' and 
B' are: 

A'( a + r cos cp ; r sin cp cos a ; - r s in cp sin a) 
B' ( - a + r cos vp ; r sin vp cos a ; r sin vp sin a) 

The equations of the line A'B' are: 

x + a - r cos vp y -r r sin vp cos a 

2a + r(cos cp - cos vp) r cos a (sin cp - s in vp) 

z - r sin vp sin a 

- r sin a (sin cp + sin vp) 

or, i f we wri te y2(cp + vp) = X and 'A(cp - vp) = |x, 

2xr cos a sin (x cxis X + 2 a r cos a sin X cos |x = 
= 2ay - 2yr sin x̂ sin X + r^ cos a sin 2y, 

and: - 2xr sin a sin X cos y. - 2ar sin a sin y, cos X = 

= 2az - 2zr sin |x sin X - r^ sin a sin 2 X 

or, wri t ing y and z as functions of x: 

2y(a - r sin |x sin X) = 
= r cos a (2x sin pi cos X + 2a sin X cos (x - r sin 2 y.) 

and: 2z(a - r sin |x sin X) = 

= - r cos a (2x sin X cos (x + 2a sin y. cos X - r sin 2 X) 

Prom these equations we reduce: 

-2x sin X cos X + 2am sin u, cos ix - r sin 2 N, 

y m r r r 
— = - cot a 

z 2a 2xm sin ix cos u, + — sin X cos X - r sin 2 X '^ '̂  m 
2L sin 2 X + (am - r) sin 2 ix 
ro 

= - cot a—^ 
(^ - r) sin 2 X + m X sin 2(x 
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2. This expression i s independent of X and y. if: 

i : ( •^- r) = (am - r) : xm 
ra m 

or: x^ = (am - r) (—- r) 
ra 

or: X = ± /(ara - r) (— - r) 

The values of- |-corresponding to these values are: 

y - cot a / a 
— =« + -̂  — V (am - r) ( 

Briefly we write: 

r) 
z a - mr ra 

/ T^a ' , a - mr 
v(am - r ) ( r) = p and = q 

I" p cot a 
where p and q are functions of a, r and a only because m only 
depends on a, r and cx, 

Consequently we get: 

The l ines : 

y - 1 
X = ± p ; — = +-i-

z q 
x = p x = - p 

qy + z = o - ^ ^'^ q y - z = o > 

denoted by dj and dj respectively are l ines of the surface IT gen­
erated by A ' B ' . They are the l ines of in tersec t ion of the planes 
X = ± p with the surface IL 

3. Between the po in t s of the c i r c l e s described by A' and B ' 
there ex i s t s a one-to-one correspondence. As these c i r c l e s have 
no self-corresponding po in t s in comraon, the surface n described 
by A ' B ' i s a surface of the fourth degree. A surface of the fourth 
degree i s not a doubly ruled surface for the quadrics are the 
only doubly ruled surfaces * ) . As A' and B' move in d i f f e r e n t 
planes through the X-axis, the l i n e A ' B ' has a point in comraon 
with t h i s axis only i f A ' B ' coincides with i t . The l ines dj and 
d in te r sec t the X-axis a t a r i ^ t angle and hence, dj and dj are 
no generators of n, 

n can be considered as a ruled surface with dj and dj and the 
c i r c l e described by A' as i t s d i rec t r i ces . Consequently dj and d^ 
are double-lines of the surface IT **) . 

•) Eisenhart, Differential Geometry, 224 (Boston 1909) 
**) H. J.van Veen, Beknopt Leerboek der Beschrijvende Meetkunde, 

228 (Groningen 1946). 
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§ 2. The equation of the surface n 

1. The surface IT can be considered as the surface generated 
by the l i ne s \i*iich i n t e r s e c t the l ines dj and dj and the c i r c l e 
described by A' (f ig. 55), 

The equations of d and dj are: 

(1) 

Figure 55 

and the equations of the c i rc le described by A' are: 

z = -y tan a 
( x - a ) 2 + y 2 + 2 ; 2 = r 2 j (2) 

The l ines which in te r sec t dj and dj are the l ines of intersect ion 
of the planes of the pencils: 

(z - qy) + X(x + p) = 0 

and ^(z + qy) + x̂(x - p) = o 

(3) 

(4) 

These l i ne s i n t e r s e c t the c i r c l e given by the equations (2) i f 
the equations (2) ; (3) ; (4) have a solut ion. Elimination of x, 
y and z out of these equations gives the condition for the coramon 
solution. 

Eliraination of z gives: 

(X - a)2 + y2 sec 2 a = r- (5a) 
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XX + >p - y ( t a n a - q) = o (5b) 
[xx - jxp - y ( t a n a + q) = o (5c) 

I f we w r i t e : q + t a n a = f and q - t an a = g t h e e q u a t i o n s (5b) 
and (5c) become: 

Xx - fy = - Xp and yjx + gy = yp 

- Xgp + y.fp _, 2ixXp 
or : X = and y -gX + pif gX + (xf 

The e l i r a i n a t i o n of x and y i s o b t a i n e d by s u b s t i t u t i o n of t h e s e 
e x p r e s s i o n s i n t o ( 5 a ) . We get : 

^ y.f - gX 2 4 i x \ ^ p ^ 2 
(p i - - a) + - "-' 

uf + gX c o s ^ a (pif + gX) ^ 

The equat ion of t he su r f ace n fo l lows by s u b s t i t u t i o n of 

qy - z qy + z 
X = and y. = 

p + X p - X 

( t h e s e e x p r e s s i o n s fo l low from (3) and ( 4 ) ) i n t o t h i s r e l a t i o n 
between X and x̂. 

We o b t a i n : 

p2 {f (p + x) (qy + z) - g (p - x) (qy - z ) } ^ -
- 2ap {(p + X) 2 (qy + z) 2 f 2 _ (p _ x) 2 (qy _ z) 2 g2} + 
+ (a2 - r^) {f (p + x) (qy + z) + g (p - x) (qy - z )}2 + 

+ 4 {q2 y2 _ z2}2 p2 ggc.2 a = o (6) 

2. The equat ion (6) i s r e d u c i b l e i n t h e fo l lowing way: 
As f = q + tan a and g = q - tan a we have: 

f - (p + x)(gy + z) = (pqV + qxz + pz tan a + qxy tan a) + 

+ (pqz + q^xy + pqy tan a + xz tan a) 

I f we w r i t e t h i s express ion as A + B, we find 

g(P - x ) (qy - z) = A - B 

S u b s t i t u t i o n i n t o (6) g ives : 

p^B^ - 2apAB + (a2 - r^) A^ + ( q ^ 2 _ ^2) 2 p2 sgj.2 ^ _ ^ 

or : (pB - aA) 2 + ( q ^ 2 _ 22) 2 p2 ggg2 ^ ^ j.2^2 • (-j) 
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Prom the equation (7a) (chapter IV) namely: 

^̂  cos^ a + m^ sin2 a 
r 

follows: 2am cos^ a + 2am sin^ a = r cos^ a + m^ r sin^ a 

or: tan2 a = ( r - 2am) : m(2a - rm) 

and sec 2 a = 1 + tan^ a = r(m2 - 1) : m(rm - 2a) 

Purthermore we have: p.q = tan a (a - mr) (§ 1.2) 

The expression (pB - aA) in (7) becomes: 

p2qz + pq^xy + p^qy tan a + pxz tan a - a p q ^ - aqxz -
- apz tan a - aqxy tan a = (pz + qxy) (pq - a tan a) + 

+ (pqy + xz) (p tan a - aq) 

where pq - a tan a = tan a (a - mr) - a tan a = - mr tan a 

, . tan a . , apq ^ 
and p tan a - aq = (p -̂  ) = 

p tan a 

_ tan a ƒ.„„ _ N̂ /a {(am - r) (- - r) - a(a - mr)} = 
p fn 

^^" "• (a - mr) {(am - r) - am} = - rq : m 
mp 

This gives: 

ro 
pB - aA = - rar tan a (pz + qxy) — (pqy + xz) 

m 
= - — {ra 2pz tan a + m ^qxy tan a + pq ^ + qxz} 

ra 

If we write: 

P = rpz tan a +rqxy tan a and G = r p q ^ + rqxz 

we get: pB - aA = - mP - G : m 

The expression rA from (7) becomes: 

rA = G + P 
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Subst i tut ion of (pB - aA) and rA into (7) gives: 

( - m'p - G : m) 2 + (q3y2 _ ^2)2 p 2 £ . n i ^ - 1 ^ ^ ^ 2 
m rm — 2a 

°^ ' 1 r m2 - 1 
(m2 - 1) p2 + ( ± _ 1) (j2 + (q2y2 _ ^2)2 p 2 £ . i 5 i_ ^ ^ 

or, a f t e r dividing by 

m 2 m rm — 2a 
m2 - 1 

ra2F2 „ G2 + (q2y2 _ z2 )2 i> •̂" = Q 

rm - 2a 

The equation of the surface IT generated by A'B' becomes: 
m2r2p2z2 tan^ a + m2r2q2x2y2 tan^ a - p ^ q ^ r ^ ^ _ 2 q'^T-^X'^z^ + 

2 
+ 2xyzr ^pq (m ̂  tan ^ a - q ^ ) + ( q ^ 2 _ z 2 ) 2 _ Q 

rra - ^a 
where: l . r, a and a are data of the quadr i la te ra l , 

2. m i s given by the equation 2am : r = cos^ a + m^ sin^o, 

3. p = /(am - r ) ( ^ - r ) ' and q = (^ " ^^^ tan a 
ra p 

§ 3. Real i ty of the doub le - l ine s 

1. The equation (7a) frora chapter IV: 

2am : r = c o s 2 a + r a 2 sin 2 a 

or, i f we write 2a : r = k, 

, cos^ a • 2 
k = + m sm ^ a 

m 
gives k as a function of a and ra. If k and m are taken as current 
coordinates and a as a parameter, the equation gives a s e r i e s of 
curves ( f ig . 56). The l imi t ing values of a are 0 and •n/2 in which 
cases the equation becomes k = 1/m and k = ra respect ively. 

Each value of o < a < 71/2 gives a curve (hyperbola) through 
the point S(l ; 1). The k-axis i s one of the asymptotic l i ne s of 
the curves. All curves l i e in the shaded area of the graph. 

2 

2. The equation k = £2S—a + m sin2 a i s reducible to: 
m 

V '—' CO S a'̂  ra sin a 7=5—} + 2 sin a cos a 
vm 
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or 

m 

Figure 56 

Hence, k__̂ .̂  = 2 sin a cos a = sin 2 a i f m = cot a 

2 sin a c o s a 2 c o t a 2n 

The curve corresponding to k 

cos 2 a + sin 2 a c o t 2 a + l m 2 + i 
2m 

goes through the origin "" m2 + 1 

and through S. The greates t value of k . i s 1 namely i f m = 1. 
m 1 n 

3. The surface n has two real double-l ines dj and dj i f 

p = /(am - r)(— - r) i s rea l . This gives the condition: 

or, as m > o, 

or: 

(am - r) ( r) > o 
m 

(2am - 2r)(2a - 2mr) > o 

(km - 2) (k - 2m) > o 

The points of the shaded 
area only (fig. 57) limited by 
the l ine k » an and the curve 
k = 2/m have coordinates which 
satisfy the inequation: 

(km - 2)(k - 2n) > o 

Figure 57 
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4a. Combination of the conditions given in 1 and 3 gives tha t 
the values of k and m are only the values of the coordinates of 
the points in the areas SjOS and A^SSjB ĵ, ( f ig . 58), where Â^ and 
B^ are the po in t s a t i n f i n i t y of the curves km = 1 and km = 2 
r e spec t i ve ly which coincide with the po in t a t i n f i n i t y of the 
m-axis. 

km=2 

Figure 58 

-46. The left-hand figure gives k as function of a. The l imi t ­
ing curve corresponding to the l i ne OSj (k = 2n) i s given by: 

1 k . 2 k = — sm -" a + 2 
2 cos a 

k2 = 
4 cos a 

1 + cos 2 a 

or: k = 
2 cos a 

/T + C O S ' 

\rtiich gives the l ine CSj. 
The l ine corresponding to OS (k ra or a = 7i/2) i s the l i ne CD 

and the l i n e corresponding to SSj (a = o) i s the l i n e ES^. The 
point S in «hich k =1 , ra =1 and a i s undeterrained corresponds to 
the l ine DE. Hence, the " t r iangle" SjOS corresponds to the figure 
S3CDES3. 
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4c. The l i n e corresponding to SjB;,, (km = 2) i s given by: 

2 . 2 k 2 
k = — sin -̂  a + -r- cos '• a 

k 2 

2 sin a 
or: 

/ l + sin 2 a 

which gives the l ine Ŝ O (o < a < 7i/2). 
The curves Ŝ O and Ŝ C are symmetrical with regard to the l i ne 

a = 7i/4. The l ine SSj (a = -nJ'Z) corresponds to DS^ and the curve 
SA (km = 1 ; a = o) corresponds to the l ine BO. Hence, the figure 
A^SSjBgj corresponds to the f igure OEDS^O. The l i n e CPO in the 
l e f t pa r t of the graph i s the curve given by the equation: 

k , = sin 2 a 
m 1 n 

2 cos a 2 s in a 
As sin 2a < , ==^ and sin 2 a < ,• _ ===, the curve CPO 

/ I + cos 2 a / I + s in 2 a 

i s drawn beneath the curves CS^ and OS^. 
If we follow the curve a = -nJZ in the r igh t -hand graph, we 

meet the spec ia l po in t s 1, 2 and 3. These po in t s correspond to 
the points 1, 2 and 3 in the left-hand graph on the l ine a = n /3 . 
Similarly we get the poin ts 1, 2 and 3 on the l i ne a = 7i/6. Con­
sequently each point of the area in the l e f t f igure between the 
curve CPO and the curves CG and GO corresponds to two points of 
the shaded areas of the r ight figure. 

5. The surface TT generated by A ' B ' has two real double- l ines 
if: 

2 COS ex. 

I sin 2a < k < , ==; i f o < a < -n/4. ^ + cos 2 a 

2 sin a ,, ,„ 
I I sin 2a < k < , =; i f 7i/4 < a < -n/2. 

v l + sin 2 a 
Let P^ be a poin t of the double-area of the le f t -hand graph 

and l e t i t s coordinates be d and k . There ex i s t two values of 
o o 

m, mj and mj say, corresponding to a = a^ and k = k^. So we ob­
ta in : If we have an isogram with a = a and k = k , there ex i s t 

o o 

two surfaces It and ITj irtiich can be generated ty A'B' and each of 
them has two real double-lines (chapter IV, § 1.4). 
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§ 4. Special cases given by the l i m i t i n g va lues of k 

1. I f k ;s s in 2a the equation 

cos2 a + m2 sin2 a = km 

becomes: cos2 a + m2 sin2 a = ra sin 2a 

or: (m sin a - cos a) 2 = o 

or: ra = cot a 

The value p = /(am - r ) ( r) given in § 1 . 2 becoraes: 
m 

/km - 2) (k - 2m) / s i n 2a cot a - 2) (sin 2a- 2 cot a) 
p = 14 r / - Vi r V 

m cot a 

= r sin a cos a 

y 
and the value of— given in 6 1.2 becomes: 

z 
Z = - cot a P = - cot a r sin a cos a , 
z a - mr a - r cot a 

2 sin a cos a 
= - cot a = tan a 

s in 2a - 2 c o t a 

The equations of the double-l ines d j and dj are in t h i s case: 

X = ± r sin a cos a 

y = ± z tan a 

2. If k = 2 s m a ^ ^ ^jj^ equation 
/ l + sin 2 a 

cos2 a + ra2 sin2 a = kra 

becomes: cos 2 a + m2 sin 2 a = 2m sin a : / l + sin 2 a ' 

or : m2 sin 2 a - 2ra sin a : / l + s in 2 a + cos 2 a = 0 
2 sin g A sin^ a ^ _ . _ j ^_^j 

1 + sin2 a * 1 + sin 2 a ~ " / l + sin2 a ± ' / l + sin2 a - 4 ^in a cos a 
or: m , , = 

'^ 2 sin 2 a 

1 ± v l - cos 2 a - sin 2 a cqs^o, 

sin a / l + sin 2 a 
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1 J: sin ^ a 

sin a / l + sin 2 a 

or: / 2 2 
vl + sin a 2 cos a 

m, = = — and m sin a k 2 gjjj ^ / l + sin 2 a' 

If we talie m = m, = —, we notice that p = o and— = o. The two 
' k z 

double-lines coincide with the z-axis. In every posit ion the l ine 
A ' B ' i n t e r s e c t s the z -axis . Hence, in every posit ion the projec­
t ions of A' and B' upon the plane XOY l i e on a l i n e t h r o u ^ the 
or igin . 

2 cos a 
3. If k = , = = , t h e equation 

vl + cos2 a 
cos2 a + m2 sin2 a = km 

becomes: m2. sin2 a - 2n cos a : / l + cos2 a + cos2 a = 

Prom th i s equation follows: 

cos a r z—' , cos a 
m = VI + cos 2 a and "ij = r- = !4 k 

sin 2 a / l + cos 2 a 
y 

If m = m = J^ we obtain p = 0 and—= o and again the double-
lines coincide with the z-axis. 

§ 5. The value x^ of chapter V § 3 

In chapter V we found tha t the point of the l i n e A ' B ' with a 
tangent «hich coincides with A ' B ' i s given in i t s reflected posi­
tion with regard to the axis MN of the Isogram by: 

X = ± /(am - r ) ( — - r) ; ' 
m 

i f the posit ion of the quadri lateral follows from: 

y = o ; z = 0 
m 

I • I Aa" J I ,1 / a - mr' s m ix = V— and cos X = v 
•̂  N ' ' N 

where N = a + am 2 - mr. 
The considered point i s a real point if: 

(am - r ) ( r) > o 
m 

or, as m > o (km - 2) (k - an) > o 
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Prom sin ix = v — follows: N > o and from cos X = / 

follows: 

a - mr > o or; k - 2m > o 

Hence, the condition (km - 2)(k - an) > o i s only fu l f i l l ed if: 

km - 2 > o and k - 2m > o 

Pig. 56 shows tha t i f we draw the curve km = 2 and the l i ne 
k = 2n there are no values of k and m which hold to the inequa­
t ions 

km - 2 > o and k - 2m > o 

and to the equation: km = cos 2 a + m2 sin 2 a 

Consequently we obtain the theorem: There exist no position of 
the isogram ABA'B' such that a real point of A'B' has a tangent 
that coincides with A'B', 

§ 6. Distance of the po int of i n t e r s e c t i o n of the double-
l i n e dj with A ' B ' to the X-axis 

1. Let PG ( f ig . 59) be the double-line dj through (p ; o ; o) 
and W i t s projection on the plane XOY. P i s the point of in t e r ­
sect ion of dj and the l i n e A'B', t h a t i s , the comraon po in t of 
A'B' and the plane x = p. 

In § 1.1 we found as one of the equations of A'B': 

2y(a - r sin pi sin X) = 
= r cos a (2x sin pi cos X + 2a sin X cos pi - r sin 2 |x) 

Figure 59 
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Substi tut ion of x = p gives: 

2p sin IX cos X+2a sin X cos u - 2r sin ix cos ix 
y _ = HG = r cos a !- = 

•• 2(a - r sin y. sin X) 

sin Lx {p cos X + (am - r) cos ix} 
= r cos a — 

a - rm sin 2 y, 
As cos X i s a function of y., y^ i s also a function of y.. 

We write yj^ = r cos a f (^x). The extreme value of y^ can be 
calculated by taking the derivative of y^ or of f (y.). We obtain: 

f' (y.) * E(a - rm sin 2 x̂) [cos pi {p cos X + 
(a - rm sin 2 y,) 2 

+ (am - r) cos y} + sin u, {- p sin X ^ (am - r) sin u,}] -
dpi 

- sin pi {p cos X + (am - r) cos pi} ( - 2 rm sin pi cos |x)] 

We suppose: a - r sin |x sin X ^ o 

that i s , a - rm sin 2 ^ / o 

As sin X = m sin |x, we get: cos X . dX = m cos pi dpi and we obtain 
i f f'(pi) = o: 

(a - rm sin 2 y) [cos p, {p cos X + (am - r) cos pi} + 

+ sin Ll {- p sin X "* ^°^ P - (am - r) sin ix}] + 
cos X 

+ 2rm sin 2 y, cos pi {p cos X + (am - r) cos pi} = o 

This equation i s reducible to: 

{(am 2 + a - rar) sin 2 pi - a} (rar sin2 pi - a) 2 = 0 

or: 

as 

or 

sin 2 
M-

mr 

Isl 

a 

sin 2 

n pi 

+ 

V-

s: 

a, 

am2 -

- a j i 

N 

mr 

0 

2. If sin y, = V—-, we obtain 
N 
r cos a , /am - r ) ( a - rm) / a - rm 

y 
" * ' 1 - rm 

N 
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, /ra(am - r) i / a 
+ (am - r) /—^-^5 > / ^ 

This expression i s reducible to: 

/ am - r y = r cos a 
' ' e x t r am 

y cot a r ~~^ ? 
As — = V (am - r) ( r) 

z a - mr ra 
(a - rar) /m 

we get: z ^ = - y .. tan a , =; 
^''*^ ^'^^' v/(a - mr)(ara - r) 

/ a - mr' - r sin a v 
a 

The extreme value of PG becoraes: 

, , ., , f , a r a - r . , a - mr-, 
PG2 « y 2 + z - ' ^ = r^icos-' a + sin ' ' a ] 

e x t r e x t r e x t r «-. ^ 

= r2{cos2 a + sin2 a. (cos-2 a + m2 -sin2 a)} 
am 

2_ r 2am, 
= r (1 ) 

am r 

or PG i s imaginary namely: 

PG , = i r 
e x t r 

3. If T i s the raidpoint of A'B' we sha l l ca lcu la te the d is ­
tance TP i f GP has i t s extreme value. 

The coordinates of T are: 

{r cos X cos [X ; r cos a sin X cos pi ; - r sin a sin pi cos x} 

and the coordinates of P are: 

{p ; r COS a / ^ ^ ^ : - r sin a / I ^ ^ } 
am a 

where : 

/ a • /H' r^ 
p = v/(am - r ) ( — - r) ; sinu, = v — ; s in X = m v — 

m N N 
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^ ^ /m(am - rT . ^^ ^ ^ / I ^ ^ d N = . a + a m 2 - m r 

The coordinates of T are reducible to: 

{i2!L ; r cos a - ^ / am(am - r)' ; - r sin a ^ / a ( a - mr)'} 

We obtain: 

Tp2 = (p - iEH) % r2cos2 a am(am - r ) ( - ï - -—) + 
N am N 

+ r 2 sin 2 a a( a - mr) ( —) 
a N 

This expression i s reducible by aid of the re la t ion r cos2 a + 
+ r m2 sin2 a = 2am to: TP2 = p2 

or TP = p 
We obtain the theorem: 

If A'B' is tangent in one of its points F, this point F is a 
point of one of the double-lines d. of the surface IT generated by 
A'B'. The distance of F to the midpoint T of A'B' is equal to the 
distance of ofj to the midpoint 0 of AB. The corresponding posi ­
tion of the quadr i la tera l , however, i s not real , 

§ 7. The case in which A'B' i s c h a r a c t e r i s t i c 

The tangent in A' i s perpendicular to A'B and i n t e r s e c t s the 
X-axis in the point D ( f ig . 60). Similarly the tangent in B' i s 
perpendicular to AB' and in t e r sec t s the X-axis in E. A ' B ' i s the 
cha rac t e r i s t i c of a plane through A ' B ' i f the tar.gents in A' and 
B' lie in one plane. Therefore i t i s necessary tha t the points E 
and D coincide. 
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We get: OE » AE - a = r sec vp - a 

OD = BD + a = r sec cp + a 

The points E and P coincide i f OE =• OD. 

or: r sec \p - a = r sec cp + a 
cos cp - cos vy 

or: r = 2a 
cos cp cos vp 

2 sin X sin ix 
or: - r = 2a 

!4 (cos 2 X + cos 2 pi) 

or: s i n 2 JX = — ; 
am-' + a - rm 

which i s in accordance with the condition that A'B' is a tangent. 

§ 8. The l i n e conjugated to A'B' 

1. The l ine ( A ' B ' ) P i s defined as the l ine of in te rsec t ion of 
the planes a and |3 t h r o u ^ A' and B' respect ively and normal to 
the tangents a t these points . 

The plane a i s the plane througi A' and k or through A'B and k 
and the plane |3 i s the plane through B' and h or th rou^i AB' 
and h. 

The pencil of planes t h r o u ^ the hinge-axis h i s : 

y + z tan a + X(x + a) = o 

Substi tut ion of the coordinates of B' namely 

{- a + r cos vp ; r sin vp cos a ; r sin vp sin a} 

gives: X = - tan vp : cos a 

The equation of the plane p becoraes: 

y cos a + z sin a = (x + a) tan vp 

Similarly the equation of the plane a i s : 

y cos a - z sin a = (x - a) tan cp 

The l i n e (A'B')*" conjugated to A'B' i s given by these two 
equations. 

106 



2. The direct ion numbers of A ' B ' are (§ 1): 

2a + r (cos cp - cos vp) ; r cos a (sin cp - sin vp) ; 
- r sin a (sin cp + sin vp) 

or: a - r sin X sin pi ; r cos a sin pi cos X ; 

- r sin a sin X cos pi 

The direct ion numbers of (A'B') are given by: 

- tan vp cos a sin a 

- tan cp cos a - sin a 

or: - 2 sin a cos a ; - sin a (tancp+ tan vp) ; cos a (tancp- tan vp) 

or: - 2 sin a cos a cos cp cos vp ; - sin a sin (cp + vp) ; 
cos a sin (cp - vp) 

or: - sin a cos a (cos 2 X + cos 2 pi) ; - sin a sin 2 X ; 

cos a sin 2 pi 

The l ine A ' B ' i s perpendicular to its conjugated line ( A ' B ' ) P if: 

- (a - r sin X sin pi) sin a cos a (cos 2X + cos 2pi) -
- r sin a cos a sin pi cos X sin 2X -

- r sin a cos a sin X cos pi sin 2pi = o 
The equation i s reducible to: 

• 2 ^ 

s i n 2 JX = 
a + ara2 - rm 

urtiich i s the same equation as given in § 7. Consequently the con­
ditions that A'B' is a tangent and that (A'B') is perpendicular 
to A'B' are identically equal. This i s In accordance with theorem 
XIV (chapter I , § 5): If a l ine 1 i s perpendicular to i t s conju­
gated l ine IP, 1 i s a tangent. 

§ 9. Crossed and not-crossed quadri laterals 

1. The or ienta t ion of the angles cp and vp, tha t I s , the angles 
between the ro t a t ing sides and the pos i t ive X-axis, i s given in 
fig. 61. 

Prom s in X = m sin pi where X = !4(cp + vp) and pi = ^ (cp - vp) 
follows: 
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Figure 61 

sin 'A(cp + vp) = ra sin 54(cp - vp) 

or: (ra + 1) tan ^ vp = (ra - 1) tan ^ cp 

where ra i s given by the equation: 

m2 sin 2 a - kra + cos2 a = o 

(1) 

(2) 

Let raj be one of the roots of t h i s equation and vpj any value 
of vp. We get: 

tan 'Acp = — tan 'A vpj 
ra . — 1 

This equation gives only one value of cp(± n . 2n). Consequently 
i f fflj and raj are the roots of (2), a surface ITj generated by A ' B ' 
corresponds to m = m j and a surface 112 corresponds to m = raj. 
Only i f fflj = raj the surfaces n and TTj are ident ical (chapter IV, 
§ 1.4). 

2. The isograra i s ca l l ed a crossed q u a d r i l a t e r a l i f an in ­
crease of cp corresponds to a decrease of vp. If an increase of cp 
corresponds to an increase of vp, the quadri lateral i s called not-
crossed. 

We consider cp and vp as functions of the time t . If we take the 
der ivat ive witli respect to t in the equation (1), we obtain: 

m + 1 m- 1 
2 cos 2 54 "V 2 cos 2 2̂ cp 9 

The mechanism i s crossed i f vp : cp < o and not-crossed i f vp : cp>o 

or — < 0 and-2! — > o respectively 
m + 1 ' '" m + 1 
Prom mj + mj = k : sin2 a and W j . mj = c o t 2 a follows tha t 
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i f mj and mj a r e rea l (k > s i n 2a) , they a r e p o s i t i v e . Therefore 
the condition of the crossed mechanism i s m - l < o o r m < l and 
of the not-crossed mechanism m > 1. 

The raechanisra cor responding to m = raj i s denoted by Mj and the 
one cor responding to ra = mj by Mj. 

I f we de f ine m > mj we d i s t i n g u i s h the fo l lowing cases : 
A. m > 1 and ra, > 1 ; Mj and M a r e both n o t - c r o s s e d . 
B. ra > 1 and ra < 1 ; Mj i s n o t - c r o s s e d and M^ i s c rossed . 
C. fflj < 1 and raj < 1 ; Mj and Mj a r e both c r o s s e d . 
and f u r t h e r we have the l i m i t i n g cases : 

D. fflj > 1 and raj = 1 
E. ra J = 1 and m j < 1 
P. m J = 1 and ra j = 1 

3. A. raj and raj a r e both > 1 i f : 
a) raj and ra a r e r e a l , t h a t i s , k > s i n 2a 
b) raj -I- mj > 2, t h a t i s , k > 2 s i n 2 a 
c) (raj - l ) ( m j - 1) > o or mj . TOJ - (mj + mj) + 1 > o , 

t h a t i s , k < 1 

Hence; V 2 s i n 2 a < k < 1 
' s in 2a < k < 1 

The f i r s t c o n d i t i o n i s only s a t i s f i e d i f o < a < n/i and fo r 
t hese va lue s of a we have 2 s i n 2 a < s i n 2a. 

We o b t a i n : The two mechanisms M and M are not-crossed i f 

s i n 2a < k < 1 and 0 < a < 7i/4 

B. raj > 1 and raj < 1 i f : 

(mj - l )(m2 - 1) < o 

o r : m jffl J - (ra J + m j) + 1 < 0 o r k > 1 or 2a > r 

We o b t a i n : If the fixed link AB is longer than the links AB' 
and A'B the mechanisms M ^ and M. are not-crossed and crossed 
respectively. 

C. fflj and raj a r e both < 1 i f : 
a) mj and raj a r e r e a l , t h a t i s , k > s in 2a 
b) mj + mj < 2, t h a t i s , k < 2 s i n 2 a 
c) (fflj - l ) ( m j - 1) > 0, t h a t i s , k < 1 

Hence: \^ s i n 2a < k < 1 

? s in 2a < k < 2 s i n 2 a 
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The second condit ion i s only f u l f i l l e d i f a > 7i/4. Por the 
values of a between 71/4 and 7i/2 we have 2 sin2 a > 1 and there­
fore we obtain: 

The two mechanisms M^ and M^ are crossed i f 

sin 2a < k < 1 and 7/4 < a < 7/2 

D. mj - 1. Subsitution in to the equation (2) gives: 

sin 2 a - k + cos 2 a = o or 

As mj . fflj = cot 2 a we get mj = cot 2 ex. As we supposed m j -̂  m„ 
we conclude cot 2 a > l o r o < a < 7i/4 and from m > 1 follows 
tha t the mechanism Mj i s not-crossed. The mechanism Mj with ra 
= 1 i s a degenerated mechanism which follows frora the equation 
(1): tan 'A vp = 0 or vp = o (± n . 271) and cp i s undetermined, 
As vp = o the point B' coincides with B (fig. 62) . The surface ITj 
generated by A'B' i f m 
described by A'. 

= 1 is the plane through the circles 

Figure 62 

E. mj = 1 . Substitution into (2) gives again k = 1. Purther we 
get mj »: cot^ a and as we supposed mj = mj we have c o t ' a < o or 
Ti/4 < a ^ 71/2. 

As mj < 1, the mechanism Mj i s crossed. The value m = 1 gives 
the same degenerated mechanism M as mentioned in D. 

P. mj = mj = 1. 
Hence we obtain: k - sin 2a ; k = 1 
mechanisms M. and M. are degenerated. 

a. = Ti/4, that i s , the two 
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Koppelt men twee n ie t -evenwi jd ige assen door middel van de 

ru imte l i jke stangenvierhoek van Bennett, dan v e r k r i j g t men een 
overbrenging zonder dood punt . De nadelen van deze koppeling 
zijn: 
1. het verschil in momentane omwentelingssnelheid van de assen; 
2. de wringing in de koppel ingsstang. 

Diss. pag. 46. 
Bennett, A new mechanism. Engineering 4, 12, 777 (1903). 

I I 
Zij van een orthogonale paraboloïde a een der beschrijvenden 

door de top en b een beschrijvende die a sn i j d t in een punt P, 
dat n ie t met de top samenvalt, dan kan men vier punten A, B, C en 
D op b aannemen, zodanig dat AB » CD en S* = PC, terwij l de pun­
ten de volgorde A, B, C, D hebben. Noemt men de beschrijvenden 
door deze punten respect ievel i jk a j , a j , a^, a^ en de normalen in 
deze punten n . , n„, n„, n„, dan geeft spiegeling van A met n , ten 
opzichte van aj en van C met n^ ten opzichte van a^, de punten,A' 
met n^i , en C' met n^,!. De vierhoek A'BDC' b l i j k t dan een v ie r ­
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