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Towards an Asymmetric Stall Model for the Fokker 100

E.H.P. De Meester∗
Delft University of Technology, Delft, 2629HS, the Netherlands

Nomenclature
01 Stall abruptness parameter [-]
08 Model parameter i
�! Lift coefficient [-]
�; Rolling moment coefficient [-]
�= Yawing moment coefficient [-]
�) Thrust Coefficient [-]
�. Yaw force coefficient [-]
�U0 Vane geometric coefficient [rad]
�UD? Vane upwash coefficient [-]
� Cost function
" Mach number [-]
# Number of data points
= Number of model terms
? Roll rate [rad/s]

? 9 Candidate model term
@ Pitch rate [rad/s]
A Yaw rate [rad/s]
- Flow separation point [-]
x0 State variables
U Angle of attack [rad]
U∗ Stall angle of attack [rad]
V Angle of sideslip [rad]
X0 Aileron deflection [rad]
X4 Elevator deflection [rad]
XA Rudder deflection [rad]
n Model error
g1 Time delay due to flow inertia [s]
g2 Hysteresis effect [s]
f2 Mean squared error (MSE)

I. Introduction
Loss of Control in Flight (LOC-I) accidents are the largest contributors to aviation fatalities [1, 2]. To enhance safety
and minimise the amount of accidents, new regulations about pilot training for upset awareness, prevention, recognition
and recovery have been established by the FAA and EASA [3, 4]. These regulations require training of pilots in flight
simulators to handle upsets and avoid fatal accidents. This is often referred to as Upset Prevention and Recovery Training
(UPRT)[3]. The aerodynamic models of current flight simulators are not sufficient to provide positive transfer of training
as their fidelity is lacking [5]. The need to extend the flight envelopes in simulator training towards upsets, and stalls in
specific, has therefore been receiving more attention lately. Improved extended aerodynamic flight envelopes will aid in
giving pilots a realistic feel of the upset, leading to improved skill training that can help pilots to recover from an actual
upset in real life [6].

Unlike the nominal angle of attack range for nominal flight conditions, high angles of attack close to and beyond
stall, exhibit high non-linear behaviour [7]. Regular modelling methods are no longer sufficient to create high fidelity
models to feed the simulators. Creating stall models for simulators therefore requires new approaches with respect to
data gathering, processing and model identification. Kirchhoff’s theory of flow separation has resulted into progress
in flight test data based modelling techniques [8–12]. This theory captures the non-linearities from stall in a single
flow separation variable that can be included in aerodynamic models [8]. The internal flow separation variable X
can be estimated by solving an ordinary differential equation [13]. The research and development towards improved
stall training for pilots is however far from completed. One of the current research gaps is the lack of high fidelity
lateral-directional stall models for simulator training. As stall can be accompanied by lateral-directional divergence,
requiring noticeable pilot input for safe recovery, there is a need to include this behaviour in the simulator stall models
[14]. TU Delft has access to its own research aircraft, the Cessna Citation II, as well as flight test data of the Fokker 100.

∗MSc Student, supervised by dr. ir. C.C. de Visser and dr.ir. D.M. Pool, Faculty of Aerospace Engineering, Control and Simulation Division,
Email: emmademeester@hotmail.com.
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The approach of using flight test data methodologies is therefore the most logic and feasible one.

This research intends to develop an asymmetric stall model from the certification flight test data of the Fokker 100
aircraft. The use of Kirchhoff’s theory of flow separation will be extended to include multiple separation points to
accommodate asymmetries in the flight data bymodelling different flow separation points, and thus lift force, on eachwing.

II. Flight Test Data
The Fokker 100 (F-28 MK-0100) is a regional twin jet aircraft. From 1986 till 1989, Fokker performed a series of flight
tests including numerous stalls in different configurations. These served to evaluate the stall characteristics and stall
speed. The data of these test flights will be used for the research into asymmetric stall behaviour. The selection of
useful stalls was based on the reporting of asymmetries such as wing drops in the test cards accompanying the data as
well as the presence of sufficient data to run the mass model and Kalman filter. The aircraft used for most stalls is the
prototype aircraft.

Dimensions

Wing Area 93.5 [m2]
Wingspan 27.1 [m]
MAC 3.83 [m]

Table 1 Dimensions of the
Fokker 100 prototype air-
craft.

Fig. 1 The Fokker 100 aircraft (Drawing from Fokker).
The stall tests have been performed within the framework of certification of the aircraft as well as to generate sup-
plementary aerodynamic data for simulation of aircraft behaviour. The supplementary data was used to improve and
complement data gathered in wind tunnel experiments. Due to the certification nature of the flight test data, the data
lacks deliberate excitation of the control surfaces in dedicated control manoeuvre sequences such as the doublet, 3-2-1-1,
etc. Sufficient excitation is necessary for proper stall model identification [15, 16]. This data is however not available
for the Fokker 100 aircraft. It therefore remains uncertain if a high fidelity stall model can be derived from the data. The
only control surface deflections found in the flight test data are those required to perform the stall manoeuvre as well as
to recover the aircraft if asymmetric behaviour occurs around the time of stall.

To identify an asymmetric stall model, some source of lateral-directional excitation should be present in the data. For
this reason, only stalls with reported wing drops or noticeable angles of bank as a result of the stall, were selected for
this research. This asymmetric behaviour and the use of control surface deflection by the pilot to recover the aircraft,
will provide some excitation in the data to aid the identification process. About 200 stalls were selected based on this
criterion. During the pre-processing phase, all stalls that had insufficient data to run the mass model or Kalman filter got
dropped. 79 stalls remained available. These stalls cover a range of configurations. An overview is given by Table 2.
In all stalls selected, aileron and rudder deflections are found related to the recovery of the aircraft after asymmetric

2



behaviour occurred during the stall manoeuvre. The data sets are divided into training and validation sets (75/25).

Configuration Stalls

Clean Configuration 29
6° Flaps 2
18° Flaps 23
25° Flaps and Gear Down 2
Landing Configuration 22

Table 2 Number of selected stalls for each configuration

III. Flight Path Reconstruction
Raw measurement data is subjected to sensor noise and bias. This will affect the fidelity of the stall identification
model as the error progresses in the entire identification routine. Furthermore, some crucial aircraft states required
for identification cannot be measured directly or lack accuracy. These issues can be limited by the application of the
two-step method. This method will divide the identification process into a state reconstruction, followed by a model
parameter estimation routine [16].

A. Iterated Extended Kalman Filter
A trade-off based on performance and computational expense resulted into the selection of the Iterated Extended Kalman
Filter (IEKF) over the Unscented Kalman Filter to perform the state reconstruction of the two-step method. The IEKF
reconstructs the aircraft states based on a weighted average between the predicted and measured state, with iterations to
improve the filter’s convergence. A necessary condition for convergence is full observability of the aircraft kinematics
which allows the determination of aircraft states based on the output measurements on a certain time interval. The rank
of the observability matrix needs to equal the number of states to be reconstructed. Lie derivatives are used to construct
the observability matrix for the nonlinear aircraft kinematics of the Fokker 100 [17–19].

B. Airflow Angle Corrections
Aircraft behaviour is modelled for its centre of gravity (CG). Not all signals are however measured in the CG and
their output is subjected to three-dimensional aircraft motions relative to the CG causing additional accelerations if
we assume a rigid aircraft. Note that more influences occur in reality due to bending, vibrations, wind, dynamic vane
response etc. These additional influences increase the complexity of the filter and can cause convergence issues as too
many parameters are present to estimate [20]. For this research, rigid aircraft kinematics will be assumed.

Flow angle vanes measure the local flow angles that are subjected to both the movement of the aircraft’s CG as well as
the 3D movement. They do not necessarily correspond with the flow angles at the CG. The velocity components at
the vane location are expressed in Equation 1. The velocity components at the CG, D,E and F receive an additional
component consisting of angular rates ?, @ and A multiplied with the position of the vane (GE , HE and IE ) with respect to
the CG [21]. The results are the velocity components DE , EE and FE at the location of the vane.


DE

EE

FE


=


D

E

F


+


0 −A @

A 0 −?
−@ ? 0



GE

HE

IE


(1)

Commonly, the flow angle corrections derived from Equation 1, are simplified under the assumption of small angle
approximation and neglection of (small) angular rates. Grauer derived the full nonlinear corrections in 2017, see
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Equation 2 and Equation 3[21]. Grauer concluded that these corrections improve identification results where the raw
data has high amounts of noise and high values for flow angles and angular rates. For this research, stall behaviour is
modelled and thus higher AoA’s are obtained in correspondence with asymmetric roll behaviour. These conditions favour
the use of Grauer’s exact corrections as the validity of small angle approximations and angular rates becomes less accurate.

The derived full nonlinear flow angle corrections express the correct kinematics of the local flow which matches the raw
measurements of the flow angle vanes. The kinematics are however expressed in body velocity components of the CG.
These kinematics are used in the IEKF in favour of the widely used simplified version. Note that V vanes measure the
flank angle ` rather than the side slip angle V. The AoS is obtained using Equation 4.

UE = arctan
(
FE
DE

)
= arctan

(
F − @GE + ?HE
D − AHE + @IE

)
(2)

`E = arctan
(
EE
DE

)
= arctan

(
E + AGE − ?IE
D − AHE + @IE

)
(3)

V = arctan (tan ` cosU) (4)

The flow angle corrections are also used to determine the local flow velocities and angles at a defined location with
respect to the CG. This opens the door to panel methods in which more than one flow separation location point is used
for the aircraft. In this research, a separate flow separation point for the left and right wing will be determined.

C. Flow Vane Coefficients
The Fokker 100 prototype aircraft is equipped with three different AoA vanes. Two of them are mounted on the fuselage.
Their measurements are corrupted due to the upwash of the airflow around the aircraft. The third vane is mounted on a
boom located further away from the fuselage and is therefore far less subjected to upwash of the flow. This vane is better
aligned with the free stream velocity. Differences up to 5° were noted when measuring the AoA with the fuselage-
mounted vanes compared to the boom-mounted vane. Boom measurement data is only available for a third of the stall
manoeuvres selected for this research. Due to the large discrepancy in AoA, all the other stall manoeuvres cannot be used.

To make the boomless stall manoeuvres useable for this research, corrections can be applied to the vane measurements.
A kalman filter can estimate the corrective coefficients together with the aircraft states if the aircraft kinematics system
remains observable. The basic IEKF estimates 12 aircraft states whilst having an observability matrix of rank 12. Two
vane corrective coefficients are required, an upwash coefficient �UD? and a geometric coefficient �U0 , which captures
misalignment of the vane’s zero AoA measurement. The observability matrix of the system must therefore increase to
rank 14. To do so, additional kinematic relationships are required.

The three different AoA measurements and their corresponding kinematics can achieve this increase in observability
rank. It is required to have three independent kinematic relationships for the vanes. Without using Grauer’s full
nonlinear vane corrections, this could not be achieved as both fuselage-mounted vanes would have the exact same
kinematic relationship. By including their y-location, the rank of the observability matrix reached 14 and the nec-
essary condition for convergence of the Kalman filter estimating the 12 states and both corrective vane coefficients, is met.

24 of the 79 stalls used in this research had measurements of all three vanes. The 14-state Kalman filter is applied to
all 24 stalls. For 8 stalls, the estimation of the flow vane coefficients did not converge. The other 16 stalls converged
to very similar values, see Figure 2. For each stall, a value was determined for both coefficients by taking the mean
of the converged part. Themean of all these 16 values was used as final value for�UD? and�U0 and can be found in Table 3.
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To validate the correctness and consistency of the found vane corrective coefficients, a comparison between the
U-measurements from the boom vane and the corrected U-measurements from the fuselage-mounted vanes was made.
The validation was performed on all 24 stalls of which measurement data of all three vanes was available, including the
stalls to which the IEKF did not converge for the estimation of the vane corrective coefficients. The mean and median
MSE are given in Table 3. A boxplot of the spread of the MSE of those 24 stalls is given by Figure 3. An order of
magnitude of the MSE of 10−8 is reached, with 3 outliers that have still an order of magnitude of 10−6. This order of
magnitude is very small in relation to the order of magnitude of U, less than 14−7%. It can be concluded that the vane
U-measurements can be corrected with high accuracy towards the measurements from the boom-mounted vane.

Table 3 Overview of the estimation results of the IEKF for the vane corrective coefficients �UD? and �U0 .

Coefficient Value mean MSE median MSE
�UD? [-] 0.4730 4.2379e-07 3.4838e-08
�U0 [rad] -0.1072

Fig. 2 Spread of the 16 estimates for the vane correc-
tive coefficients.

Fig. 3 Boxplot of the MSE between boom and vane
corrected AoAmeasurement for all 24 stalls with 3 AoA
vane measurements available.

D. Gramian Matrix for Determination Information Content
Observability of the aircraft kinematics is a necessary condition to guarantee convergence of the Kalman filter. It
gives us more information if the Kalman filter can actually reconstruct the states based on the information captured
in the kinematics describing the system. It is independent from the quality of measurements acquired during flight testing.

The Gramian observability matrix can be used to determine the minimum information content that should be present
in the measured trajectory in order to reconstruct all system parameters. This is described by the invertibility of the
nonlinear observability Gramian. The information content can be quantified by expressing how far the actual Gramian
is away from its singular form. Taking the Euclidean distance from the Gramian towards its singular matrix form can be
used to describe the information content present in the state trajectory. The minimum singular value or Eigenvalue is
used as metric. The higher this value, thus the further it is from the zero value, the more information content is encoded
in the flight measurement data of the trajectory. Higher accuracy for the parameter estimation can be obtained when the
information content is high.

The nonlinear observability Gramian is defined by Equation 5. mH
mx0

is the Jacobian matrix of the state trajectory H with
respect to the state variables x0. The derivation of this metric can be found in [22].

∫ )

0

(
mH

mx0

))
mH

mx0
3C (5)
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IV. Asymmetric Stall Model Identification

A. Kirchhoff’s Theory of Flow Separation
In 1992, Goman and Khrabrov introduced a new approach to stall modelling based on Kirchhoff’s zone of constant
pressure and linear cavitation theory assumptions. The state-space approach contains an internal variable, the flow
separation location - , that represents the point of flow separation on the wing. - has a value between 0 (fully detached
flow) and 1 (fully attached flow) [8]. This method has been further developed for aerodynamic model identification
based on flight test data and resulted into an expression to estimate the lift coefficient �! based on the chordwise
location of flow separation, Equation 6. This location is determined using the ordinary differential equation (ODE)
given by Equation 7. This has been referred to as Kirchhoff’s theory of flow separation [13]. One can also estimate
the flow separation location based on the �! model. However, the �! model parameter identification depends on the
identified values for the parameters of Kirchhoff’s ODE, whilst these parameters depend on their turn on the �! model.
An iterative process is required to identify both.

�! = �!U

(
1 + √-

2

)2

U (6)

g1
3-

3C
+ - = 1

2
(1 − tanh [01 (U − g2 ¤U − U∗)]) (7)

Kirchhoff’s ODE consists out of 4 parameters that need to be identified. g1 represents the time delay due to flow inertia,
g2 models the effects of hysteresis, 01 determines the abruptness of the stall and U∗ sets the stall AoA. Kirchhoff’s theory
has been used in fight test data identification [10][11][23] as well as CFD semi-empirical methods [24][25] and its
capability to model the nonlinear dynamics of stall has been validated in many scientific papers.

B. Multivariate Orthogonal Function modelling
Selecting a model structure can be done using thoughtful engineering judging. The aerodynamic coefficient models
have to be built up by model terms consisting of the variables that influence the magnitude of the coefficient under
consideration. A carefull selection is important, as adding too many terms leads to complex models prone to overfit. If
two terms are too closely correlated, identification issues can arise in which it is better to drop one of them.

Morelli et al. introduced a mathematical approach to determine model structures for global aerodynamic modelling.
The multivariate orthogonal function modelling technique starts from a pool of ordinary candidate regressor terms for
the aerodynamic coefficients. All the candidate terms are made mutually orthogonal and therefore become decoupled.
The multivariate orthogonal functions can now be individually assessed to quantify their contribution to the model fit.
Only the best terms are added to the final model structure.

The multivariate orthogonal function takes the form of a linear combination of all multivariate orthogonal model terms
?̃ 9 and their parameters 0 9 , Equation 8. This approaches the computed values for the aerodynamic coefficients based on
the measured signals Ĩ. The model terms are a function of the independent variables (IV).

Ĩ = 01 ?̃1 + 02 ?̃2 + ...0= ?̃= + ñ = %̃0̃ + ñ (8)

A good model approximates the computed coefficients closely, keeping the model error ñ as small as possible. ñ will be
minimised using a cost function that determines the values of model parameters 08 to achieve this minimisation. The
cost function � to be minimised is a least squares function, Equation 9, where %̃ is the vector constituting of the different
model terms ?̃ 9 and 0̃ the vector with corresponding model parameters. This function reaches a minimum where its first
derivative with respect to the model parameters 08 reaches 0, ˆ̃0. The resulting output H̃ of the identified model is given
by Equation 10.

� =
1
2
ñ) ñ =

1
2

(
Ĩ − %̃0̃)) (

Ĩ − %̃0̃) (9)
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H̃ = %̃ ˆ̃0 (10)

Under the assumption of orthogonality (Equation 11), the cost function �̃ can be written as Equation 12. The parameter
value to be estimated only depends on its corresponding model term ?̃ 9 and the measurement vector Ĩ, see Equation 13.

?̃8 ?̃ 9 = 0 5 >A 8 ≠ 9 , 8, 9 = 1, 2, .., = (11)

�̃ =
1
2


Ĩ) Ĩ −

=∑
9=1

(
?̃ 9 Ĩ

)2

?̃)9 ?̃ 9


(12)

0̂ 9 =
?̃ 9 Ĩ

?̃)9 ?̃ 9
(13)

The contribution of each term is quantified in the PSE metric, see Equation 14. This metric quantifies the improvement
in cost function �̃ minimisation whilst penalising the increased model complexity as a result of the additional term. The
PSE metric uses the decoupled cost function �̃.

%(� =

(
Ĩ − %̃ ˆ̃0

)) (
Ĩ − %̃ ˆ̃0

)
#

+ f2
<0G

=

#
=

2�̂
#
+ f2

<0G

=

#
(14)

f2
<0G =

1
# − 1

#∑
8=1
[I8 − Ī]2 (15)

Ī =
1
#

#∑
8=1

I8 (16)

f2
<0G is the upper-bound mean squared error, N the total number of data points for the data set under consideration, n

being the number of model terms. The PSE metric is evaluated each time a model term is added to the cost function �̃.
The order of addition must range from the most effective modelling term to the least effective one. Their effectiveness is
quantified by Equation 17. Adding terms to the cost function will improve the model fit and therefore decrease the value
of the cost function �̃. The model term is in fact subtracted from the measurement term Ĩ) Ĩ. Adding an additional term
will however increase the value of the model complexity penalty of the PSE. At a certain moment, the decrease in cost
function value will not weigh against the increase in the model complexity penalty. A global minimum of the PSE has
been reached. The corresponding model structure will become the final model structure as a result of the multivariate
orthogonal function modelling approach. This global minimum will only be achieved if model terms are added with
decreasing effectiveness [15]. The selection of terms will be counted for all manoeuvres in the data set and the most
chosen terms will be added to the general model structure.

(
2
#

) (
?̃ 9 Ĩ

)2

?̃ 9
) ?̃ 9

(17)

The ordinary model terms used to build up the pool of candidate regressor terms are the following: a bias term, U,
¤U, V, ¤V, ?, @, A, X4, X0, XA , ", �) and a series of terms related to Kirchhoff’s point of flow separation - . The terms
included depend on the model structure under consideration. The bias term is set as a fixed parameter and will always
be included in each model structure.
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C. Nonlinear Parameter Estimation of the Parameters of Kirchhoff’s ODE
Kirchhoff’s ODE, Equation 7, has 4 parameters that need to be identified for the Fokker 100 aircraft. Those parameters
are g1, g2, 01 and U∗ . Nonlinear estimation techniques are required to identify their value. With the parameter values
determined, the flow separation point X can be calculated by inputting the current angle of attack U and its derivative, ¤U,
and solving the ODE.

To identify the parameters of Kirchhoff’s ODE (Equation 7), a nonlinear optimisation to a measured quantity needs to
be performed. As the relation between - and �! is widely documented in literature, Equation 6, this optimisation is
performed to minimise the error between the measured and modelled �! .

The modelled �! structure will include one X-related term. The minimisation problem needs to estimate both the
aerodynamic �!8 parameters of the �! model as the 4 parameters of Kirchhoff’s ODE required to compute Kirchhoff’s
point of flow separation. To start the procedure, an initial �! model structure with initial values for all parameters will
need to be set up. From this point, multiple iterations will be required to improve the selection of the model structure,
aerodynamic and Kirchhoff’s ODE parameters.

Initial model structures and parameter values are iterated to improve the model fit. First, the model structure selection
algorithm as proposed by Morelli et al. is applied to update the current model structure. A linear optimisation is
run to estimate the aerodynamic parameters. Using linear optimisation is preferred wherever applicable due to the
reduction in computational time as well as the guarantee towards convergence to the global minimum value. If the
four parameters of Kirchhoff’s ODE (Equation 7) are kept fixed during the estimation of the aerodynamic parameters,
linear estimators such as the ordinary least squares method can be used. The last step of the iteration is to identify the
Kirchhoff’s ODE parameters using nonlinear optimisation techniques whilst conserving the previously identified model
structure and aerodynamic parameters. Both optimisation routines can be iterated multiple times before reconsidering
the model structure. Once the final �! model and Kirchhoff’s ODE parameters values are decided upon, all other model
structures can be determined using the multivariate orthogonal function modelling algorithm and the parameters esti-
mation can be performed using efficient linear solvers. An overview of the entire identification process is given in Figure 4.

Fig. 4 Identification process of all model structures.

The nonlinear optimisation of Kirchhoff’s ODE parameters is performed using the fmincon toolbox of Matlab [26].
The active set algorithm was selected on a trial-by-error base due to its relatively low computational time and optimi-
sation results. The cost function used by the nonlinear optimisation procedure is a well-knownmean squared error (MSE).

Nonlinear optimisation does not offer the guarantee of convergence to the global minimum of the cost function. The
algorithm can converge to a local minimum instead. It is therefore advised to create a set of initial values within the
physical and expected range of parameter values and run the optimisation for all these values. The lowest value will be
taken as the optimal value, even though no certainty arises if this is the global optimum. Due to the computational
expense and the lack of guarantee for global convergence, nonlinear parameter estimation should be avoided. Kirchhoff’s
ODE cannot be solved without nonlinear parameter estimation techniques.
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V. Results

A. Lift Coefficient �! model
A range of model terms related to the Kirchhoff point of flow separation X were tested as candidate regressor

terms:
(

1+√-
2

)2
, (1 − -), - and <0G(0.5, -). Running the multivariate orthogonal function modelling algorithm

for the first time showed a strong dependence on different X-related terms. As
(

1+√-
2

)2
came out as the strongest

dependent term, all other X-related terms were removed for the second run of the algorithm. The outcome of this
second run is given by Figure 5. A dependence on pitch rate @, elevator deflection X4, aileron deflection X0, angle

of sideslip V, angle of attack U and the Kirchhoff term
(

1+√-
2

)2
U is now observed. The latter combines the de-

pendence on U and
(

1+√-
2

)2
and is widely used in literature. The Kirchhoff term is therefore added to the model structure.

Including the elevator deflection X4 in the model structure caused problems in the identification of the Kirchhoff’s ODE
parameter U∗ (Equation 7), even though this is generally considered as the easiest term to identify. An underestimation of
its value was detected. The identified model flattened out to a steady �! value when the AoA further increased towards
a stall. The identified values did not vary noticeably for the different flap settings. It is a known fact that the stall angle
of attack decreases with increasing flap setting. This fact was not observed if X4 is included in the model. All values
tended towards the lower bound of 0.3 rad, even though a value between 0.35 and 0.45 rad is expected.The elevator de-
flectionwas therefore not used in themodel structure. The angle of side slip was removed based on engineering judgement.

The asymmetric aileron deflection term X0 is an unexpected variable to occur in a symmetric model structure. The
measured �! curves however showed a ’wavy’ behaviour that was only found in the asymmetric roll-related terms.
X0 captures this behaviour with the best model fit compared to the roll rate and roll angle and scores highest in the
multivariate orthogonal function modelling algorithm. It is therefore included in the model structure by its absolute
value. This is necessary to transform it into a symmetric variable. An aircraft rolling to the right or left both causes
a decrease in lift due to the decrease in vertical component of the lift vector that stands perpendicular on the banked wings.

Fig. 5 Outcome of the 2nd run of the multivariate orthogonal function modelling algorithm for �! of Fokker
100.

The model structure selected for �! is

�! = �!0 + �!U
(

1 + √-
2

)2

U + �!X0 |X0 | + �!@@. (18)
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The identification process of the parameters of Kirchhoff’s ODE showed that g2 had no visual influence on the �! curve,
see Figure 6. Too little dynamic stall information is present in the Fokker 100 stall data set to identify this value. It was
therefore left out from Kirchhoff’s ODE. The other three parameters, especially 01 and U∗ have an influence on the
behaviour of the model for �! . There is no correlation between the parameters that could cause bad identification,
Figure 7. Similar behaviour is obtained for the different flap settings investigated.

Fig. 6 Influence of varying the parameters ofKirchhoff’sODEon the�!model, compared to themeasured/true
�! , flaps = 0°, Fokker 100

Fig. 7 Spread and correlation of the different pa-
rameters of Kirchhoff’s ODE (Equation 7), flaps =
42°

Fig. 8 Spread and correlation of the�! parameters,
flaps = 0°, Fokker 100

Fixing the identified parameters of Kirchhoff’s ODE (Equation 7), allows linear optimisation of the aerodynamic
�!-model parameters. An overview of the outcome of this optimisation for all flap settings can be found in Table 5. As
the lift curve shifts towards the origin with increasing flap setting, the �!0 value should increase as well. This behaviour
is observed in the results. Values of−0.0218, 0.1980 and 0.9870 are estimated for 0°, 18° and 42° flap setting, respectively.

The model fit is not very accurate. Different phenomena are observed when comparing the flight data with the identified
�! model. For certain stalls, an underestimation of the maximum �! value is noticeable, Figure 9. The model flattens
out even though the AoA is still rising. A too low value for U∗ causes this behaviour, as the effect of higher U∗, as seen
in Figure 6, is desirable in this case. Figure 7 shows that the identified U∗ values for each stall manoeuvre are quite
evenly spread between 0.30 and 0.37. Taking the median value inherently implies that for some stalls, the value will be
too low, leading to the flattening out phenomenon observed in Figure 9. For 01 and g1, Figure 7 shows a lower variation
around the median value with a few outliers.

The stall with the best mean squared error (MSE) from the 18° flaps (MSE= 0.0016) set is given by Figure 10. The
effect of adding the absolute value of the aileron deflection is especially visible from time = 7-11 s. The drop in �! is
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Table 4 Results of identifying the parameters of Kirchhoff’s ODE.

Parameter Results
Name Unit \̂ \lb \ub

B ( \̂ )
\̂

Flaps = 0°
g1 [s] 0.7098 0.001 0.80 0.3528
01 [-] 5.0 5.000 80.00 0.1689
U∗ [rad] 0.3359 0.30 0.45 0.0426
Flaps = 18°
g1 [s] 0.198 0.001 0.80 1.5270
01 [-] 5.8971 5.000 80.00 0.6389
U∗ [rad] 0.3734 0.300 0.45 0.1208
Flaps = 42°
g1 [s] 0.6989 0.001 0.80 0.4248
01 [-] 18.106 5.000 80.00 0.6237
U∗ [rad] 0.3165 0.300 0.45 0.0806

followed by the model and is only observed clearly in the graph of X0. Without adding the term, the model would go
linearly from peak to peak in that time frame. An overview of the MSE, relative MSE (percentage of mean �!) and
Root Mean Squared (RMS) are given in Table 5.

Figure 9 and Figure 10 should have been almost identical manoeuvres for their certification purpose. Different flap
settings and configurations are however used. Figure 9 is performed in landing configuration (gear down and flaps =
42°). Figure 10 is performed with gear up and flaps = 18°. The manoeuvres are performed by human pilots, making
them prone to differences in execution. Furthermore, only stalls were selected with asymmetric behaviour during
the stall manoeuvre. This behaviour is widely considered as unpredictable due to its nonlinear nature and reduced
lateral-directional stability. None of the stall manoeuvres considered is therefore alike and large differences can be
observed[27].

In general, the model follows the trend of the flight data quite well. This is confirmed by inspecting the Variance
Accounted For (VAF) of the different stalls. Each stall, both training and validation data sets, has a VAF higher than
99%, except for two stalls that have a VAF of 98.75% and 98.80%.

The model has especially difficulties to follow the flight data if the data contains more dynamical behaviour. Insufficient
information content is present in the flight data to achieve high levels of accuracy. This is a consequence of the
nature of the flight tests. They were performed with certification purposes and therefore lack any source of deliberate
control surface excitation. The limits of this data gathering method has become visible. Simulation models built from
certification data will not reach the level of fidelity compared to those where excitation of control surfaces has been
applied meticulously [10]. It remains yet to be investigated what level of fidelity is required for pilot training.

A metric to express the information content in flight test data is the Gramian matrix [22]. The minimum Eigenvalues
obtained for the different stall manoeuvres range in the order of magnitude of 10−9 − 10−11. Values as high as 113
are reached for the wind box calibration manoeuvre by Moszczynski et al.[22]. The wind box calibration manoeuvre
is dedicated towards acquiring data which allows accurate parameter identification and is therefore known to have
a very high information content. Simple straight stall manoeuvres (Moszczynski et al.) reached Gramian minimum
Eigenvalues of 0.04, which are still much higher than those obtained from the Fokker 100 data.

B. Rolling moment �; model
To select the asymmetric rolling moment model 2; , a set of X-related parameters has been selected as candidate regressor
terms for the multivariate orthogonal function modelling algorithm. Asymmetric terms were chosen, based on a different
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Fig. 9 Stall with the worst MSE of the �! model for flaps = 42°, MSE = 0.0344.

Fig. 10 Stall with the best MSE of the �! model for flaps = 18°, MSE = 0.0016.
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Table 5 Results of identifying the �!-parameters and some performance evaluating metrics. The relative
MSE is expressed in function of the average value of �! during the flight tests for the flapping setting under
consideration. The RMS (0 % for perfect fit) is averaged for all stall manoeuvres in the training or validation
data set.

Parameter Results Verification data set Validation data set
Name Unit \̂ B ( \̂ )

\̂
�'!� MSE rel.

MSE
RMS MSE rel.

MSE
RMS

Flaps = 0°
�!0 [-] -0.0218 -15.1065 5.3e-04

0.0049 1.78 % 15 % 0.0051 1.85 % 10 %�!U [-] 6.2771 0.2428 0.0103
�!X0 [-] -0.6189 -0.5983 0.3803
�!@ [-] 19.7334 0.9609 4.2945
Flaps = 18°
�!0 [-] 0.1980 0.5301 7.2e-04

0.0092 3.5 % 15 % 0.0052 2.14 % 22 %�!U [-] 5.0102 0.2446 0.0131
�!X0 [-] -0.6779 -0.7228 0.3837
�!@ [-] 24.7203 0.5321 5.1844
Flaps = 42°
�!0 [-] 0.9870 0.1582 3.6e-04

0.012 4.6 % 14 % 0.024 9.2 % 13 %�!U [-] 4.4580 0.1919 0.007
�!X0 [-] -0.5377 -0.7375 0.2113
�!@ [-] 20.3092 3.5366 18.8847

flow separation point or angle of attack on both wings. This difference is indicated by the subscripts A (right) and
; (left). The terms are the differential flow separation point / differential X-term (-A − -;), the differential angle of
attack (UA − U;) and the differential Kirchhoff term

((
1+√-A

2

)2
UA −

(
1+√-;

2

)2
U;

)
, as well as the symmetric terms -

and (1 − -). Applying the algorithm for model structure selection combined with a check of minimum MSE resulted
into three different model structures, depending on the flap setting, Equation 19 - Equation 21. Besides the outcome of
the selection algorithm, Figure 11 and Figure 12, the MSE and correlation between the different measured signals were
taken into account to fine-tune the models.

The �; data shows to be dependent on the aileron deflection, difference in left and right flow separation point and the

differential Kirchhoff term
((

1+√-A
2

)2
UA −

(
1+√-;

2

)2
U;

)
. Even though the last two might seem very similar terms, no

correlation was found between them. Between the flap settings, the difference in flow separation is either multiplied
by the pitch rate @ or the overall flow separation point - , the selection was based on the outcome of the multivariate
orthogonal function modelling algorithm and verified by computing the MSE. The differential lift and roll rate ? can be
seen to exhibit very similar trends (Figure 13) as they are correlated, d = 0.94. Only for the 18° flaps case, the roll rate
performed better as a regressor term. For the other flap settings, the differential lift term was selected. Adding at least
two separate flow separation points as a term for asymmetric modelling as well as a differential Kirchhoff term, show
their importance in improving the model quality.

Table 6 gives an overview of the found parameter values combined with some performance evaluating metrics. Low
values for the MSE error and RMS are found for all data sets, but the low values for the VAF ( 0.10 - 0.57) indicate that
the model is not capturing the trend of the flight data. Compared to the order of magnitude of �; , the Cramèr-Rao Lower
Bounds (CRLB) indicate a parameter variance that is rather high. As the CRLB indicate the theoretical lower boundary
for this parameter variance, it can be concluded that the data cannot reconstruct the flight data with very high accuracy.
The ratio between the standard deviation and parameter estimate, B ( \̂)

\̂
, shows the parameters where difficulties can arise

to estimate an accurate value, such as X0.
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�;�0 = �;0 + �;X0 X0 + �;XA XA + �;Δ- (-A − -;) - + �;Δ!
((

1 + √-A
2

)2

UA −
(

1 + √-;
2

)2

U;

)
(19)

�;�18 = �;0 + �;? ? + �; ¤V ¤V + �;X0 X0 + �;Δ- (-A − -;) - (20)

�;�42 = �;0 + �;X0 X0 + �;XA XA + �;Δ- (-A − -;) @ + �;Δ!
((

1 + √-A
2

)2

UA −
(

1 + √-;
2

)2

U;

)
(21)

Fig. 11 �; model structure selection algorithm out-
come, Flaps = 18°

Fig. 12 �; model structure selection algorithm out-
come, Flaps = 42°

Fig. 13 Example of �; flight data and model for the Fokker 100, flaps = 18°.

C. Yawing moment �= model
The set of the X-related parameters for the yawing moment �= model is the same as for the rolling moment model. The
results of the algorithm proposed by Morelli (Figure 14 and Figure 15) in combination with a correlation and MSE
analysis were used to determine the final model structure per flap setting, Equation 22 - Equation 24.
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Table 6 Results of estimating the �;-parameters and some performance evaluating metrics. The relative MSE
is expressed in function of the maximum value obtained for 2; during the flight tests for the flap setting under
consideration. The RMS (0 % for perfect fit) is averaged for all stall manoeuvres in the data set.

Parameter Results Training Validation
Name Unit \̂ B ( \̂ )

\̂
CRLB MSE rel.

MSE
VAF RMS MSE rel.

MSE
VAF RMS

Flaps = 0°
�;0 [-] -4.4e-04 -1.1608 -

1.179e-05 0.05% 0.48 11 % 1.425e-05 0.05% 0.38 12 %
�;X0 [-] -0.0126 -4.1806 0.0278
�;XA [-] 0.0182 5.0055 0
�;Δ- ·- [-] 0.5699 0.3437 0.0016
�;Δ! [-] 3.111 0.3797 0.0016
Flaps = 18°
�;0 [-] -6e-04 -3.9987 -

4.537e-05 0.08% 0.10 14 % 1.585e-05 0.03% 0.57 13 %
�;X0 [-] -0.0636 -10.0721 0.0394
�;V [-] -0.0108 -3.9617 0
�;Δ- ·- [-] 0.7595 0.8967 0.0058
�;? [-] 0.8966 1.0603 0.3289
Flaps = 42°
�;0 [-] -8.2e-04 -8e-04 -

6.164e-05 0.1% 0.33 13 % 4.842e-05 0.08% 0.37 12 %
�;X0 [-] -0.0379 -0.0379 0
�;XA [-] 0.0612 0.0612 0.001
�;Δ- ·@ [-] -12.1077 -12.1077 4.9979
�;Δ! [-] 0.1061 0.1061 0.0295

�=�0 = �=0 + �=V V + �=X0 X0 + �=Δ ¤U ( ¤UA − ¤U;) + �=ΔU (UA − U;) (22)

�=�18 = �=0 + �=V V + �= ¤V ¤V + �=ΔU (UA − U;) (23)

�=�42 = �=0 +�=V V+�=X0 X0+�=ΔU (UA − U;) +�=Δ- (1−- ) (-A − -;) (1 − -) +�=Δ!
((

1 + √-A
2

)2

UA −
(

1 + √-;
2

)2

U;

)

(24)

Fig. 14 �= model structure selection algorithm out-
come, Flaps = 0°

Fig. 15 �= model structure selection algorithm out-
come, Flaps = 42°

Except for some returning model terms, the structures selected show a wide variety over the flap settings. The yawing
moment showed a mutual dependence on the side slip angle and difference in local AoA for all flap settings. For the
case where the flaps = 42° (landing configuration), a rather lengthy model is found where three differential terms are
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chosen: differential Kirchhoff, AoA and X. None of the terms are correlated to each other in this data set, even though
this is the case for the other flap settings (d = 0.95 for ΔU and Δ! for flaps = 0° and 18°, d = 0.58 for flaps 42° ).

Terms found for a specific flap setting were also tested for improvement in MSE for the other settings. (-A − -;) (1 − -)
showed up in the algorithm for flaps = 0°, but was only used for the flaps = 42° as it did contribute to a reduction in MSE.
The multivariate orthogonal function modelling algorithm can serve as an indication, but its outcome is dependent on
which model terms are in the pool, the value of the model complexity penalty, matrices close to singular values, etc.
Adding model terms based on engineering judgement or even trial and error, could aid to improve the model structures
quality by adapting the results of the algorithm.

Table 7 shows better results for the CRLB compared to the model for �; . Good values for the MSE and relative MSE
are again observed, but the VAF again indicates that the flight data trend is not followed by the model, as shown in
Figure 16. In fact, the selection of three totally different model structures for the different flap settings indicates that
the information content in the flight test data is lacking to identify an accurate stall model, valid for all flap settings.
TheVAF andRMS show less good results for the�=models compared to themore consistentmodel structures found for�; .

Fig. 16 Example of 2= flight data andmodel for the Fokker 100, flaps = 18°. Same stall manoeuvre as Figure 13

D. Yaw Force �. model
The same candidate regressor pool is used as for all other asymmetric model terms. The results of the multivariate
orthogonal function algorithm are shown in Figure 17 and Figure 18. The chosen model structures are given by
Equation 25-Equation 27.
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Table 7 Results of estimating the �=-parameters and some performance evaluating metrics. The relative MSE
is expressed in function of the maximum value obtained for �= during the flight tests for the flap setting under
consideration. The RMS (0 % for perfect fit) is averaged for all stall manoeuvres in the data set.

Parameter Results Training Validation
Name Unit \̂ B ( \̂ )

\̂
CRLB MSE rel.

MSE
VAF MSE rel. MSE VAF

Flaps = 0°
�=0 [-] -4e-05 -22.0605 -

8.223e-06 0.09% 0.30 15 % 1.496e-05 0.16% 0.26 15 %
�=V [-] 0.0965 0.6942 0.0002
�=X0 [-] -0.0141 -1.3199 0
�=Δ ¤U [-] 0.9160 1.9334 0.0460
�=ΔU [-] -0.0855 -2.2676 0.0003
Flaps = 18°

�=0 [-] 6e-04 2.3412 -

1.403e-05 0.12% 0.27 16 % 1.625e-05 0.14% 0.23 17 %�=V [-] 0.0382 1.3981 0.0002
�= ¤14C0 [-] 0.5516 0.7301 0.0357
�=ΔU [-] -0.2326 -0.5828 0.0045
Flaps = 42°

�=0 [-] 3.05e-05 -8e-04 -

3.352e-05 0.19% 0.33 16 % 3.542e-05 0.2% 0.08 17 %

�=V [-] 0.0480 -0.0379 0.0029
�=X0 [-] -0.0289 0.0612 0.004
�=Δ- · (1−- ) [-] 0.2291 -12.1077 0.2877
�=ΔU [-] 0.5782 0.1061 1.0654
�=Δ! [-] -3.4910 0.1061 31.0265

Fig. 17 �. model structure selection algorithm out-
come, Flaps = 0°

Fig. 18 �. model structure selection algorithm out-
come, Flaps = 42°

�.�0 = �.0 + �.V V + �.X0 X0 + �.ΔU (UA − U;) (25)

�.�18 = �.0 + �.V V + �.X0 X0 + �.Δ- (-A − -;) (26)

�.�42 = �.0 + �.V V + �.X0 X0 + �.Δ- (-A − -;) (27)

The yaw force model �. has three very similar models for the three different flap settings. Only for flaps = 0°, the
difference in AoA is preferred over the difference in flow separation location. Furthermore, V was selected for all three
flap settings by the multivariate orthogonal function modelling algorithm, the aileron deflection was selected for flaps =
0° and 18°, but also improved model fit for flaps = 42°. Adding the differential Kirchhoff term, as suggested by the
model structure selection algorithm, did not improve the VAF nor the MSE.

Analysing the performance of the models for �. indicates improved results compared to the other asymmetric models.
Lower CRLB values are found and the VAF shows improved capabilities to model the trend of the flight data. Figure 19
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Table 8 Results of estimating the�. -parameters and some performance evaluating metrics. The relative MSE
is expressed in function of the maximum value obtained for �. during the flight tests for the flap setting under
consideration. The RMS (0 % for perfect fit) is averaged for all stall manoeuvres in the data set.

Parameter Results Training Validation
Name Unit \̂ B ( \̂ )

\̂
CRLB MSE rel.

MSE
VAF RMS MSE rel.

MSE
VAF RMS

Flaps = 0°
�.0 [-] -0.0032 -0.8465 -

5.692e-05 0.20% 0.56 14 % 8.108e-05 0.28% 0.17 15 %�.V [-] -0.5566 -0.3521 0.0002
�.X0 [-] 0.0053 10.0566 0
�.ΔU [-] 0.2009 1.8090 0.0460
Flaps = 18°
�.0 [-] -0.0035 -1.1399 -

1.902e-04 0.34% 0.63 15 % 3.026e-04 0.54% 0.58 16 %�.V [-] -0.4961 -0.6171 0.0030
�.X0 [-] -0.0191 -5.6077 0.0002
�.Δ- [-] 0.0054 49.5843 0.0012
Flaps = 42°
�.0 [-] 2.772e-04 18.7954 -

4.96e-04 0.51% 0.61 23 % 5.23e-04 0.53% 0.29 16 %�.V [-] -0.4720 -0.5934 5.196e-04
�.X0 [-] -0.0092 -19.1434 2.614e-04
�.Δ- [-] 0.0768 2.3173 4.841e-04

suggest that the peak in �. model is related to the peak found in (-A − -;). Its coefficient is however too low to
sufficiently scale up the differential X peak. Taking a closer look shows an apparent time lag between the peaks, which
was also found in other data sets and models. The filters applied on certain time signals to remove high frequency
components caused by the stall buffet, were chosen carefully to not alter or lag the trend of the data. A more detailed
investigation might offer insight to improve the model fit.

Fig. 19 Example of �. flight data and model for the Fokker 100, flaps = 42°
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VI. Conclusion
The Fokker 100 data set originates from a flight characteristics certification campaign. As a result, the stalls performed
for that campaign lack any sort of deliberate pilot excitation of the control surfaces. Only control deflections to recover
the aircraft from the stall and resulting asymmetric responses are applied. The necessity of control surface excitation for
proper stall model parameter identification has been widely suggested in literature ([11, 15]). This research intended to
investigate the use of multiple Kirchhoff separation points to model asymmetric aircraft behaviour. Stalls exhibiting
noticeable roll-off during stall, as reported in the flight test cards of Fokker 100, were selected to test whether enough
information was present in this data to perform proper stall model identification.

The nonlinear identification of Kirchhoff’s ODE parameters showed that the dynamic parameter g2 had no effect on
the model structure of �! . Furthermore, the identification of the most predictable parameter U∗ did not meet with the
expectations based on knowledge of the stall angle of attack, visual inspection of the �! model and flight data and the
behaviour in function of flap setting. The data set contains not enough information to identify the Kirchhoff’s ODE
parameters for a high fidelity simulation model. The Gramian matrix, a metric to quantify this information content, did
output very small values compared to those obtained in dedicated identification flight manoeuvres.

The information content of the Fokker 100 stall data set is insufficient to accurately model its stall behaviour. For the �=
model three different model structures were identified, not showing clear consistency between the different flap settings.
This can be an indication that not enough information content is present in the data sets to properly identify a good
model. It might also indicate non-linearities in the aerodynamic behaviour attributed to the flap setting. More dedicated
data sets including control surface excitation in specific sequences (doublet, 3-2-1-1, etc.) are required to build high
fidelity stall models for pilot training in flight simulators. The Fokker 100 data set is not suited for those high fidelity
models. It is yet unknown what level of fidelity the simulators models should achieve. The Fokker 100 data set should
therefore not be discarded.

Including differential flow separation points and related terms into the asymmetric stall model structures can increase
the model fit to the flight data. The selection of such terms by the multivariate orthogonal function modelling
algorithm, combined with an improvement of MSE and VAF of the model fit show their importance in asymmetric stall
modelling. Kirchhoff’s theory includes more possibilities than just modelling the lift coefficient. Extending this method-
ology tomultiple separation points for each wing could even further improve the stall modelling for asymmetric behaviour.
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1
Literature Review

1.1. Introduction
Loss of Control in Flight (LOC-I) accidents are the largest contributors to aviation fatalities [8]. To enhance
safety and minimise these accidents, new regulations about pilot training for upset awareness, prevention,
recognition and recovery have been established by the Federal Aviation Authority (FAA) and European Union
Aviation Safety Agency (EASA)[42][39]. These regulations require training of pilots in flight simulator to han-
dle upsets and avoid fatal accidents. This is often referred to as Upset Prevention and Recovery Training
(UPRT). The aerodynamic models of current flight simulators are not sufficient to provide positive transfer of
training as their fidelity is lacking [5]. The need to extend the flight envelopes in simulator training towards
upset, and stalls in specific, has therefore been receiving more attention lately.

Significant progress in modeling techniques based on actual flight test data has been made already using
Kirchhoff’s theory of flow separation. There is however still work to do to provide improved stall training to
the pilots. One of the current research gaps is the lack of high fidelity lateral-directional stall models. Up
until today, the existing lateral stall models are not very accurate and are often estimated together with the
longitudinal model [46, 87]. No specific approaches have been applied with focus on the lateral-directional
characteristics. As a stall can be accompanied by lateral-directional divergence, requiring noticeable pilot
input for safe recovery, there is a need to include this behaviour in the simulator stall models. TU Delft has
access to its own research aircraft, the Cessna Citation II, as well as flight test data of the Fokker 100. The
approach of using flight test data methodologies is therefore the most logic and feasible one.

Chapter 1.2 provides background information to this problem statement, whilst section 1.3 provides an overview
of the early efforts made to create high angle of attack stall models for fighters and airliners. Chapter 1.4 dis-
cusses the state-of-the-art modeling approaches towards aerodynamic stall modeling. The chapter ends with
the research objective and questions to be answered during the MSc thesis.

1.2. Background
This chapter gives a background towards the performed literature review. In subsection 1.2.1 and subsec-
tion 1.2.2, the phenomenon of aerodynamic stall and corresponding aircraft characteristics will be discussed.
Section 1.2.4 gives insight in aviation accidents and how to improve safety, followed by subsection 1.2.5 where
analysis and recommendations are given to enhance safety by pilot simulator training for aircraft upset con-
ditions.

1.2.1. Aerodynamic Stall
An aircraft produces lift to overcome the gravitational force directed towards the center of the earth. A com-
bination of Bernoulli’s law and Newton’s third law of motion, action-reaction, allow a wing to generate lift.
The amount of lift is linearly related to the angle of attack (AoA) of the wing chord with respect to the relative
wind. This linear relationship only holds to a certain AoA, after which it becomes non-linear and a stall is
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entered. A stall occurs when the maximum AoA with corresponding CL , is exceeded. No matter what flight
condition the aircraft is in, descending or climbing, low or high altitude, etc. If this AoA is exceeded, a stall
will occur. The stall will cause a sudden decrease of lift and the aircraft will lose altitude. A typical lift curve
slope is represented by the solid black line on the left image in Figure 1.1.

A distinction must be made between static and dynamic stall. Static stall can be investigated using wind
tunnel tests in which the AoA is varied slowly and measurements are only taken after the change in AoA has
stabilised. If an aircraft has a positive increasing rate in AoA, α̇, higher CL values can be obtained compared
to static stalls as the flow separation lags the increase in AoA [3][14][86]. We speak of dynamic stall due to
the additional effects of stall hysteresis [83]. Quasi-steady stall is a dynamic stall in which the increase in AoA
is small enough to neglect the dynamic effects. This depends on the rate of change of the AoA. If this rate
is low, the flow field can follow these changes without noticeable time lags. Making this assumption, is case
dependent.

1.2.2. High Angle of Attack Flight Characteristics
The aerodynamics of aircraft at high AoA close to the stall angle is different compared to the nominal AoA
flight regime. Stability derivatives change, leading to different aircraft behaviour at these AoAs. A short
overview of the altered stability derivatives and aircraft behaviour is given below.

Stability Derivatives
Generally speaking, aircraft at high AoAs experience reduced lateral and directional stability as well as re-
duced control effectiveness. This is due to the flow separation that occurs in the stall flight regime [90]. The
stability derivatives exhibit nonlinear behaviour as the AoA approaches the critical AoA. Furthermore, differ-
ent values for stability derivatives occur for static and dynamic stall, making it hard to have a single model
covering both stall types [82].

As flow separation starts to occur, it covers (parts) of the vertical tail with its wake, making the vertical tail
less effective due to this adverse side wash. This affects the static directional stability derivative (Cnβ ), also
known as weathercock stability. Furthermore, we see a decrease in effective dihedral and roll damping. The
desired behaviour of both derivatives is based on restoring moments if differential lift on both wings occurs
caused by side slipping and rolling respectively. However, this restoring lift increase can in fact cause the
exceedance of the critical AoA of that wing, causing the wing to drop rather than restoring the equilibrium.
Aircraft in stall experience altered pitching behaviour. If this is an increase or decrease depends on the aircraft
configuration[21][82][50].

Aircraft Behaviour
The changing stability derivatives cause the aircraft to behave and fly differently near stall than in the low
AoA regime. The exhibited behaviour is nonlinear and impossible to predict using just theory [21]. The first
undesired reaction is a pitch-up due the changed pitch stability. The pitch-up does not happen for all aircraft
and is mainly dependent on the sweep and aspect ratio of the wing and the location of the horizontal tail with
respect to the wing wake. This pitch-up can lead to a deep stall if not countered in time. Once in a deep stall,
insufficient nose-down authority is present to recover the aircraft.

The reduced lateral-directional stability can cause asymmetric stalls, with rolling and yawing moments upon
stall as a consequence. The asymmetry starts from differential lift on both wings and instability in roll damp-
ing. This can cause the aircraft to auto-rotate, if not stopped in time, leads to a developed spin with unstable
roll damping [21][90].

At stall, flow separation causes buffet of the aircraft. The intensity and frequency of this buffet depends on the
aircraft configuration. Buffet onset does provide a good initial cue for pilots to recognise a stall, just like the
sudden asymmetric behaviour like roll-off. It is therefore important to include buffet in future stall models as
well. Knowledge of the buffet frequency also allows to filter its influence on the instrumentation before the
system identification algorithm is thrown on the data [67].

1.2.3. Icing effects
An aircraft always stall at its critical AoA. This is however only the case if the wing is free of any substance
or particles that alter the smoothness and/or shape of the airfoil profile like dust, rain or insects. A major
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concern is icing. The presence of icing on the wing can severely alter its capability to produce lift. The wing
stalls at lower AoAs and has increased drag. Iced wings can in fact stall at AoAs far lower than clean wings.
Pilots are thrown off as the stall warning system based on AoA do not go off and they do not expect stall
in these attitudes. The startle factor is present and pilots do not always recognise in time for a successful
recovery. Furthermore, asymmetric icing is easily achieved, causing uncommanded roll-offs [29].

The type of icing has an influence on the change of dynamic behaviour. Leading edge icing causes much
more severe premature stalling and increased drag. This is represented in Figure 1.1.

Figure 1.1: Lift and drag curves under influence of icing [29]

1.2.4. LOC-I accidents
Aviation is a fast-growing industry, doubling in magnitude about every 15 years. Safety is a key aspect and
much attention is paid towards improving aviation safety and minimising fatalities. The amount of incidents
and accidents does not follow the growing trend, rather it is slowly decreasing . This is the result of many ef-
forts to increase safety and technological advances aiding in their prevention. The introduction of the Terrain
Awareness and Warning System (TAWS) and its widespread use resulted into a reduction of Controlled Flight
into Terrain (CFIT) accidents by a factor 7 over the last 2 decades. The most fatal cause of accidents,LOC-I,
did only reduce by a factor 2 in the same time span. It therefore remains the largest contributor towards fa-
talities. From 2008 till 2017, LOC-I caused 1,131 fatalities, CFIT 636 being the second largest contributor. All
other causes resulted into another 619 fatalities [8] [11] [55].

The question remains on how LOC-I incidents and accidents can in fact be effectively reduced. The major
technological advance that already contributed to this is the fly-by-wire system which allowed the develop-
ment of flight envelope protection systems. However, this is not sufficient. LOC-I is a general term for all sorts
of lost of control events. Further investigation of the specific causes of these LOC-I accidents shows that from
1993 - 2007, a total of 74 LOC-I accidents occurred. 27 of them were due to stalling, 20 due to icing of which 9
ended up in a stall and 8 due to spatial disorientation, those three being the major causes. In total, 3241 peo-
ple died in those 74 accidents. In 10 accidents, incorrect recovery techniques performed by the pilots actually
worsened the situation. It must be said that none of the aircraft involved in those 74 accidents was equipped
with flight envelope protection [61]. This system is only present in 4th generation jets, which perform about
50 % of all flights nowadays [8].

Technological advances are currently not sufficient for LOC-I prevention and recovery. Improved pilot train-
ing can aid towards a safer aviation industry. In-flight training has risks and is expensive [49]. This is where
ground-based flight simulator come into play. Pilots of aircraft without envelope protection have access to
this mean of safety enhancement, but all pilots can benefit from this[16]. Besides simulator training, aware-
ness of conditions and situations that can lead to upsets should be improved. In this research, the focus will
be on the prevention, recognition and recovery of stalls by means of ground-based simulator training.

Regulatory frameworks were set-up based on recommendations published by specialised working groups.
ICATEE [1] and Loss of Control Avoidance and Recovery Training (LOCART) were founded specifically to
tackle this problem and investigate new ways of training pilots in order to reduce the amount of LOC-I acci-
dents. The result is an advisory circular that was published by the FAA based on the recommendations of the
working groups [42]. Same holds for EASA, who have incorporated the recommendations in their aviation
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rules [39]. As by March 2019, air carriers must provide stall training to all their pilots. The need for improved
high fidelity stall training in simulators has therefore notably been receiving more attention all around the
world.

1.2.5. Stall Mitigation and Recovery Training in Flight Simulators
Part of the solution to reduce the amount of LOC-I accidents, is dedicated training for stall recognition, pre-
vention and recovery in flight simulators. Pilots should be trained to prevent the aircraft diverging from its
intended flight path. If the aircraft does so anyways, pilots should be able to timely recognise this divergence
and restore the intended flight path before the situation unfolds to an actual upset condition. In case an ac-
tual upset is encountered, pilots should of course be able to take manual control of the aircraft to resolve the
upset condition in a safely manner, without damaging the aircraft [42].

For stall upsets, the aircraft is however partly flying outside the aerodynamic flight envelope with which the
simulator is equipped. In order to allow pilots to actually benefit from simulator stall training and improving
their manual flying skills restoring from upset conditions, accurate extended flight envelopes have to be de-
veloped. The fidelity of current aerodynamic flight envelopes for stall is too low to provide positive transfer of
training [5]. If the fidelity of the simulation is too low for accurate and realistic training, a suggestion would
be to change the color of the visual outside view, to warn pilots that the simulation will differ from real life
behaviour of the aircraft. This makes pilots aware that they cannot fully rely on their simulator experience if
they encounter a similar situation in actual flight. It thus avoids giving pilots a false sense of security. If pilots
are not aware of the limited fidelity, negative transfer of training occurs, which can actually lead to accidents
rather than preventing them [23]. The ideal case however still remains having high fidelity simulators to train
with.

Simulators can provide all sorts of cues helping pilots recognise an upset condition. Those cues can come
from the visual system, including instrumentation, motion or sound (stall warning for example). A good
mathematical model of the aircraft is required to be able to provide these cues accurately. Some notes must
be made with respect to motion cueing. Upsets usually involve unusual attitude of the aircraft, including high
pitch and roll attitudes. Motion systems such as hexapods are however limited in their motion and cannot
always provide motion cues that large for upset recovery training. Rather, incorrect or insufficient motion
cueing can lead to a negative transfer of training, possibly causing accidents rather than mitigating them due
to the introduction of false information. Contradicting statements about motion cueing relevance are found
in literature. Some claim that motion cueing does not necessarily add to a positive transfer of training [63]
[23], whilst others claim the opposite [49]. If motion could be left out, it would be beneficial for stall training,
as less complex simulators could be used for this purpose, making this training more accessible.

Another important consideration in stall mitigation in flight simulators is icing. Icing of the aircraft wings
changes it aerodynamic shape and can cause abrupt stalls at angles of attack much lower than those for clean
wings. If an aircraft is equipped with a stall warning system based on angle of attack, those will not go off,
while pilots might consider this as the most important cue for stalling. It is therefore very important that
pilots learn to recognise other aircraft specific cues such as roll off as well. Simulator training should therefor
include these scenarios as well, as well as degraded flight controls [57][23].

ICATEE published a list of stall characteristics that should be present in extended aerodynamic stall models
for simulator training [82]. This covers the high AoA effects described in subsection 1.2.2 and subsection 1.2.2
with some additional requirements.

• Degradation of lateral-directional stability, both in static as dynamic stall

• Degraded control effectiveness for all aircraft axes

• Uncommanded roll-off, requiring significant control deflection to counteract

• Randomness and non-repeatably

• Changing pitch stability

• Effects of Mach number
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• Effects of buffeting

The manoeuvres that should be included in the qualification procedure of the FSTD are listed below [82].

• Wings level stall

• Turning stall with an angle of bank (AoB) of at least 25°

• Power-on stall

• Stall at cruise altitude

• Demonstration of at least two flap settings during stall

Figure 1.2: ICATEE variable fidelity requirements for proof of match of FSTD [82]

As stall incidents most often occur in the approach and landing phases, as well as take-off and initial climb,
special attention should be paid to these conditions in pilot training[36] [8]. It is therefore also important to
model stall behaviour in take-off and landing configuration. The CG location also has an influence on the stall
behaviour. Aft CG often leads to lateral departures, pitch-up manoeuvres exceeding the nose down authority
of the horizontal tail, etc. Forward CG puts the tail at high down force creating angles to keep the nose up,
increasing the risk of tail plane stall, especially with full flaps [12].

Another important consideration is the surprise or startle factor [5]. Training results into rote-memorising
of skills, learning through the act of repetition. If a similar situation occurs as the one that has been trained,
pilots exhibit correct responses in the recovery of the familiar upset. If an unexpected event occurs, pilots
seem to forget what they learned or cannot apply it to the new situation, although the response should be
the same [17]. Including surprise factors in the training will help pilots apply the correct recovery techniques
in all circumstances, not only in those they recognise from training. Simulation of icing conditions is a good
example of how this surprise factor can be incorporated. No stall warnings will go off, as the stall happens at
a lower AoA than expected. Not all expected stall cues will thus be present, even though the aircraft is in fact
stalling.

1.3. Early Stall Modeling Efforts
This chapter gives a historical perspective on the evolution of stall modeling in the history of aviation. The
early methods were used for fighter design and are elaborated upon insubsection 1.3.1. The application of
these methods on commercial aviation is found in subsection 1.3.2, followed by a comparison of data sources
for modeling in subsection 1.3.3.
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1.3.1. Research: Fighter Methods
Research into high angle of attack aerodynamics and the corresponding phenomena such as stall and spin,
has started already in the early days of aviation in the beginning of the 20th century. Little was known about
these complex, nonlinear aerodynamic motions. The fundamental research was however halted during the
second world war. The war took most resources and the emphasis was on creating new designs to beat the
enemy, rather than on fundamental research. It was only during the sixties that interest in this research field
took a leap again [18]. The Vietnam war showed to need for highly manoeuvrable aircraft, including in the
stall flight regime [13]. Most research during the following decades focused on military fighter jets. The
modeling methods developed are therefor referred to as fighter methods.

The main reasons for the research and development for fighter methods is from a design point of view. Engi-
neers benefit from predicting control and stability behaviour in all flight regimes in early design phases [13],
as well as preventing unwanted high angle of attack phenomena such as wing rock, nose slice, etc. by making
adjustment to the aircraft design. Therefore, safety can be improved [20] [22].

The fighter methods in the 60s and 70s mainly rely on data gathered during various kinds of wind tunnel
experiments on scale models of the aircraft under consideration. The experiments serve to determine the
control and stability derivatives as input values for the selected aerodynamic model structure. The experi-
ments also allow identification of the aerodynamic phenomena near and in the stall flight regime[50] [21].
From the 90s onward, parameter estimation based on flight data entered the research field [59] [13], wind
tunnel experiments remained to major source of stall data and was used in comparison with flight data mod-
els [58] [35]. A final applied method in this research field for fighter aircraft is piloted simulation. Existing
models are flown by pilots to include their input in flying combat maneuvers and reflect upon the results of
the actual flight tests [68][21] [13]. Fighter methods focus on the avoidance of unwanted behaviour in the
stall flight regime through design and not so much on the creation of an accurate stall model for simulation
purposes. Furthermore, the fact that they rely strongly on wind tunnel data, makes this methodology rather
expensive and subjected to scaling effects, as is further elaborated upon in 1.3.3.

1.3.2. Research: Commercial Aviation
Recently, the developed fighter methods have also been applied to commercial aircraft to enhance safety [4].
Wind tunnel test data in combination with Computational Fluid Dynamics (CFD) generated data are used
to create aerodynamic models of commercial aircraft in the stall flight regime to build simulations for pilot
training. The Simulation of Upset Recovery in Aviation (SUPRA) project, based on recommendations of the
ICATEE, is an example of this [49]. The SUPRA aerodynamic model combines data from different wind tunnel
set-ups and CFD towards a model extending the normal flight envelope.

1.3.3. Overview of High AoA Modeling Data Sources
As discussed in subsection 1.3.1 and subsection 1.3.2, many different methods to gather data for modeling
are out there. Three major groups can be considered: wind tunnel experiments, CFD simulations and flight
tests. Each data gathering method has its advantages and disadvantages and will be discussed here.

Wind Tunnel
Wind tunnels allow data gathering for extremely large AoA and angle of sideslip (AoS) ranges [35]. They also
allow the investigation of individual contributions of aircraft parts, as well as static and dynamic motions.
This however requires many different test set-ups, often requiring a range of different wind tunnels to com-
plete the large test matrix to have a comprehensive data picture. Wind tunnel testing also requires down-
scaling, which causes Reynolds and Mach number discrepancies. This affects the results and corrections
need to be applied. The scaling issues form an important limitation for this data gathering method. Wind
tunnel testing is on top of that an expensive option [82].

CFD
Using the advanced CFD methods to solve the Navier-Stokes equation could result into models with high
predictive capability. It is a promising method, but current application methods and computational power
capabilities simply aren’t there yet [82]. Simpler semi-analytical CFD methods can be solved now, but lack
predictive power and cannot create full stall models. For accurate stall models, CFD methods can only be
used to polish the models based on wind tunnel and flight testing techniques, rather than creating them from
scratch [90]. The strength of CFD is its endless experimental possibilities. Any manoeuvre can be flown, all
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Reynolds number, Mach number, AoA ranges etc. can be investigated once the right methods and sufficient
computational power are available [44]. As this is not the case at time of this research, CFD methods are not
considered for this research.

Flight Test
Flight test data is gathered using the actual aircraft. There are no down-scaling issues with Reynolds number
and it is in fact cheaper than wind tunnel experiments. There are however human lives at stake, limiting the
range of AoA and AoS that can be investigated due to unacceptable risks [74]. This is especially the case for
commercial aircraft, less for fighters. Working with (down-scaled) unmanned vehicles can be a solution, jet
you still do not want to crash your test vehicle. For down-scaled vehicles, the same scaling issues arise as
for wind tunnel testing. Flight testing requires lots of data to create accurate and complete models and must
therefore be handled with care [45].

Aerodynamic Stall Model
Creating an accurate aerodynamic model with high predictive power, requires the complementary use of the
methods described above. Accurate flight test data in the pre-stall to stall regime can be complemented with
wind tunnel data in the post-stall regime, whilst the entire model can be polished with CFD results. CFD and
wind tunnel data can also make generic models type specific, as is proposed in [90]. This poses challenges in
how all this data can correctly be blended to create the best possible stall model for pilot stall training. Other
fields of research can also benefit from these modeling techniques.

1.4. Stall Model Identification
This chapter discusses the idea behind flight path reconstruction to correct for process and measurement
noise in flight test data is introduced, subsection 1.4.1, followed by a discussion on proper flight test ma-
noeuvres to aid in this flight path reconstruction and model identification, see subsection 1.4.2. Different
aerodynamic model structures for identification from flight test data are discussed in subsection 1.4.3. This
section includes Kirchhoff’s theory of flow separation, a new methodology of including the nonlinearities of
flow separtion and stall in aircraft models, 1.4.3.The chapter ends with the research gap of lateral stall models
and the corresponding research objective and questions for this thesis research, in section 1.5 and subsec-
tion 1.5.1.

1.4.1. Flight Path Reconstruction
Flight test data is both subjected to process and measurement noise. For accurate model identification, both
sources of noise should be addressed. Parameter estimation techniques used for identification can usually
only handle one of the two sources. Equation-error methods are based on the assumption that no measure-
ment noise is present, whilst output error methods assume the absence of process noise [47].

Mulder et al. elaborates on the successful technique of decomposition of the problem in a nonlinear state es-
timation routine, followed by a linear parameter estimation of the identification model. This is the so-called
two-step method. The first step, nonlinear state estimation/reconstruction is called flight path reconstruc-
tion (FPR). Many FPRs methods exist, each one with their own advantages and disadvantages and areas of
application. For the purpose of aircraft model identification from flight data, Kalman filters and maximum
likelihood methods are the most popular. Kalman filtering and smoothing can deal with both measurement
and process noise and exhibits improvement by smoothing in reverse direction as well, which is only possible
if the application is not in real-time.

Successful FPR depends on the tests that have been performed. For nonsteady test data of a dynamic object
such as an aircraft, sufficient excitation signals must be fed to the aircraft [73]. The importance is further
discussed in subsection 1.4.2. FPR has been used and advised in many recent stall identification research
based on flight test data [93][32][30][47][71].

1.4.2. Flight Test Manoeuvres
Good design of flight tests and the manoeuvres to be flown is essential for obtaining accurate stall models.
Safety and financial considerations limit the amount of flight conditions to be flown as well as their location
within the aircraft’s flight envelope. It is therefore important to determine the best way to spend the available
flight hours, whilst not taking unnecessary risks. Furthermore, the manoeuvres should be performed in a way
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to obtain high quality data to create high fidelity models.

A key element for aircraft identification through flight tests is proper excitation of all aircraft axes. This aids
in proper reconstruction of the measured aircraft states [70]. Dias recognises the importance of proper exci-
tation. He suggests performing doublets before stall entry on both the elevator and ailerons. The oscillations
of this action should be completely disappeared before the actual stall has commenced. The excitation helps
in FPR but does not influence the gathered stall data. Many simulator requirements talk about a stall speed
reduction of 1 kts. Dias argues that this is in fact too steady for proper FPR. This can be overcome by taking
the entire stall manoeuvre into account for stall identification.

Morelli et al. suggest both excitation in and outside the stall flight regime, with input on all axis at the same
time in a non-correlated fashion with varying frequency. In addition, non-excited stalls are added to the data
to capture clean stall behaviour. Van Ingen recommends the use of doublets or 3-2-1-1 manoeuvres before
and during stall for dynamic stall identification as well as control effectiveness degradation. Excitation during
the stall manoeuvre makes the stall dynamic, making the identified model less suitable for quasi-steady stall
estimation [32].

Moszczynski et al. has investigated the use of the Gramian matrix to assess observability of different flight
test manoeuvres. This observability metric has been well proven in different research fields, but is new in
FPR. It provides insight in the information content contained in the dynamics of the manoeuvre flown. Good
information content allows FPR with high fidelity. Moszczynski et al. showed that turning stalls have higher
information content than straight, dynamic or accelerated stalls. Combining information of different stall
manoeuvres creates an information content close the that of the wind box manoeuvre, a manoeuvre known
to contain lots of information and ideal for sensor calibration.

1.4.3. Stall Identification Models based on Flight Test Data
The use of Kirchhoff’s theory for modeling stall behaviour based on flight test data is widely spread in state-
of-the-art research. It is a simple way of presenting the nonlinear behaviour of flow separation in a compre-
hensive way. Variations in aerodynamic model structure and parameter estimation techniques are however
found in the approaches of the different research institutions working on this topic.

Kirchhoff’s Theory
In 1992, Goman and Khrabrov introduced a new approach to stall modeling based on Kirchhoff’s zone of
constant pressure and linear cavitation theory assumptions. They used a state-space approach instead of
the common Taylor series expansion approach for aerodynamic aircraft modeling. The state-space contains
an internal variable, the X , that represents the point of flow separation on the wing. X has a value between
0 (fully detached flow) and 1 (fully attached flow) [46]. This method has been further developed for aero-
dynamic model identification based on flight test data and resulted into an expression to estimate the lift
coefficient CL based on the chordwise location of flow separation, Equation 1.1. This location is determined
using the ODE given by Equation 1.2. This has been referred to as Kirchhoff’s theory of flow separation [87].
Due to the made assumptions, this theory is only applicable to trailing edge flow separation.

CL =CLα
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The ODE consists out of 4 parameters that need to be identified. τ1 represents the time delay due to flow
inertia, τ2 models the effects of hysteresis, a1 determines the abruptness of the stall and α∗ sets the stall AoA.
The effect of varying the last two parameters is visualised in Figure 1.3. Kirchhoff’s theory has been used in
fight test data identification [93][32][43] as well as CFD semi-emperical methods [77][64] and its capability to
model the nonlinear dynamics of stall has been validated in many scientific papers.

Equation 1.2 is the expression to find the flow separation point based on data from flight tests. It can model
unsteady flow separation and stalls. In case of steady stall, the rate of change of AoA, α̇, equals zero. Both
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Figure 1.3: Influence of varying a1 and α∗ in the Kirchhoff ODE on the lift curve slope and internal separation variable X [32][43]

time related parameters, τ1 and τ2 drop out of the equation. This also implies that the identification of those
two parameters can only be done using dynamic stall manoeuvres [43]. Identifying a single stall model for
both quasi-steady and dynamic stall is therefore difficult [87].

Smets et al. investigated the influence of the 4 parameters of Kirchhoff’s ODE on stall perception by pilots
in a simulator. The stall model developed by Van Ingen was tested in the Simona research simulator of TU
Delft using a staircase data approach. Only symmetric degree of freedom (DoF) were taken into account. As
τ2 has little effect on the model output and α∗ is easy to determine as it is not a dynamic parameter, only
τ1 and a1 were considered in the experiment. Smets et al. concluded that emphasis should be put on the
determination of a1. The experiment took only a few factors into account, further investigation including
an improved buffet model, asymmetric stall, work load for the pilots, different stall models, etc. should be
performed to make stronger statements about this result.

Global Model Structures
The basic idea for aerodynamic model structures is to represent aircraft behaviour in 6 DoF using 6 non-
dimensional coefficients for the 3 forces and 3 moments models (CL ,CD ,CY ,Cl ,Cm ,Cn). This is a common
approach in aerodynamic modeling. The 6 equations are constituted of stability and control derivatives mul-
tiplied with common aircraft states such as velocities, flow angles and angular accelerations. If limited to
linear aircraft estimation, only first order terms of the aircraft states are present. For global aerodynamic
models, the values of the identified derivatives remain constant throughout a large range of aircraft states
values.

Van Ingen and Dias use this idea to identify the components constituting each coefficient. As the stall flight
regime can no longer be assumed linear, modifications to the common structure of aerodynamic equations
have to be performed. Aircraft states can be present in higher order versions, as well as cross-coupled. Fur-
thermore, the Kirchhoff term X will pop-up to capture the non-linearities accompanying flow separation in
stall. An example including Kirchhoff is given by Equation 1.3, Equation 1.4 and Equation 1.5, which is the
model structure for a 3 DoF longitudinal model by Dias. Both models lack estimation of lateral behaviour and
loss of control effectiveness, but exhibit clear information about data gathering, pre-processing and model
identification as well as thorough validation.
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Model structures can be selected based on literature and common sense. Morelli et al. suggest the use of mul-
tivariate orthogonal function to create the model structure. This structure is suited for nonlinear modeling,
whilst providing a comprehensive physical meaning. Yet it is complex enough to accurately describe func-
tional dependencies within the model. Working with mutually orthogonal functions rather than polynomials,
allows evaluation of the contribution of each individual function to the model fit with the data sets.

This approach has been used by Van Ingen to select a model structure from a pool of candidate regressor
terms. The terms were first orthogonalised to decouple the problem and investigate which terms improved
the quality of fit of the aerodynamic model. As higher order terms can capture the variations of a specific data
set, tailoring the model to that specific set only, these terms are penalised in the selection procedure to avoid
over-fit.

Data Partitioning
Global models can lead to compromises as fitting non-linearities affects the entire data range [34]. Adding
spline terms allows tailoring the model in the regions where increased model fit is required. Global models
often require complex model structures, which can result into problems to identify all parameters, especially
if no data with a high information content is available.

Data partitioning will divide the data range domain into several smaller parts. Each subdomain will have
its own estimated parameter values. The main advantage is that more simple model structures can be used,
solving the identifiability issue. Grant et al. opted for this method as the usability of certification data is in-
vestigated. This data has not been specifically gathered for identification purposes and thus lacks excitation.
The idea behind this paper is interesting as stall models could be build using data available for every type of
aircraft from certification. However, many of the proposed methods to increase the fidelity of the resulting
model have not been incorporated in the actual model due to time constraints. Data partitioning also poses
some issues. Sufficient data in each intervals must be present whilst the intervals must be small enough to
eliminate dependencies on the parameter upon which the division is made [47].

∆ add-on modeling
The ∆ add-on modeling method has many interesting (possible) applications. The method allows extending
or adjusting existing aerodynamic models. The original parameter coefficients are linearly adjusted by sim-
ple addition of the ∆ terms. There’s no need to develop the new model from scratch. The methodology is
visualised in Figure 1.4 and its general mathematical expression is given by Equation 1.6 [26].

Deiler et al. apply this methodology to add the effects of icing to a pre-identified aircraft model for the lon-
gitudinal DoF [28]. The added model for icing is based on altered parameter of Kirchhoff’s theory (α∗ and
a1). Aircraft with similar degradation due to icing could benefit from this add-on model as it could simply be
added to those aircraft models as well. This has however not been tested nor validated. Teng et al. use this
methodology to create representative aircraft models from a single baseline model. The ∆ terms serve to add
the effects of specific aircraft configuration changes compared to the baseline model. An accurate baseline
model could like this be easily and cost-effectively extended to several representative models for pilot stall
training.

C(·)(P ) =C(·)(Pbase +∆Padd−on) = (
C(·) (Pbase )
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The ∆ add-on terms can be generated from wind tunnel testing, flight testing or CFD, which makes it an
interdisciplinary tool that can contribute to combining the best of all worlds into a single model. It can help
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Figure 1.4: The ∆ add-on modeling principle [26]

improving existing simulation models, without altering the original and underlying aerodynamic data. It can
just be incorporated as an additional module in the simulation. Other applications can include the effects
of damaged aircraft, reduced control effectiveness, etc. As generating a complete aircraft model based on
flight test can require quite some flight hours, it must also be investigated if generic model can be sufficient
for pilot stall training [45][56]. The ∆ add-on principle can then also be used to make these generic models
type-specific if necessary.

Two-point model
The basic models based on Kirchhoff model stall of the entire aircraft. Another approach, still using Kirchhoff,
is to model both the wing-body contribution and the horizontal tail separately. The AoA of the horizontal tail
is in function of the downwash from the main wing. It is proposed by Dias to deal with the identifiability issues
for α̇ and pitch rate q . Both parameters are correlated, often leading to neglecting one of them although both
have an important influence on the stall behaviour of aircraft. Proper excitation of the longitudinal axis is
one way to improve, the two-point model is suggested to be another one. This modeling methodology is also
used by Deiler to deal with the nonlinearities in downwash and flow transit time between the main wing and
the horizontal tail.

Neural Networks
Neural networks can also be used as a model structure. These structures do not use any of the a priori in-
formation about the system, even if it is available. Saderla et al. use this approach and claim equivalent be-
haviour to a classic maximum likelihood estimation technique. They recognise the need for additional data
for a more complete validation with regards to consistency. The paper exhibits low quality validation graphs.
As more data is in fact required to validate consistency of the neural network method, it might not be suited
for this stall modeling application, as focus is put on cost-efficient generation of high fidelity models.

Parameter Estimation
To perform the actual parameter estimation step with the carefully gathered and reconstructed flight mea-
surements, a model structure must be selected, followed by the parameter estimation. A cost function is to
be minimised by changing the parameter values. Many different structures and estimation techniques exist.
Kirchhoff introduces nonlinearity in the model, requiring nonlinear estimation techniques. These techniques
are complicated and challenging. For linear model structures, many efficient estimation methods are avail-
able. Van Ingen only uses a gradient based nonlinear estimation methods to solve Kirchhoff’s ODE and once
those parameters are known, linear estimation of all other aerodynamic parameters take place to estimate
the entire model.

1.5. Lateral Stall Modeling
Identification of lateral stall models remains a rather unexplored area of the research field. In the works of
Goman and Khrabrov, Fischenberg and Jategaonkar, Singh and Jategaonkar, lateral models based on Kirch-
hoff’s theory are proposed. The models assume a different separation point on the left and right wing due to
sideslip. This leads to a normal force difference resulting in rolling and yawing moments. The moments due
to differential lift are added to the dimensionless roll and yaw moment coefficient through the moment arm
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between the mean aerodynamic chord (MAC) and the CG. These works are however outdated (’90s), lack in-
formation about how the data was gathered and pre-processed, how identification was done and have limited
validation. These works introduce interesting ideas and methodologies, but are rather vague in supporting
their claims. New research into to the possibilities of this reasoning and adapting the current models with
more recent findings should be done in order to further explore this methodology for lateral modelling whilst
providing improved and more transparent validation.

Suggestions have been made to increase the accuracy of lateral-directional stall models. The derivatives
based on rate of change in sideslip (β̇) are negligible in the nominal AoA range, but become important
near stall [75][22]. Furthermore, cross and cross-coupling derivatives also have an increased influence in
the higher AoA range and their importance should therefore also be investigated [87].

Deiler and Kilian uses the ∆ add-on principle to include degradation due to icing on existing models. The
approach includes asymmetric modeling due to asymmetric degradation on both wings. It also includes the
use of segment-wise estimation of all relevant parameters, including Kirchhoff, using the division of the wing
into 20 segments. This approach is only used for icing effects, but shows potential to improve the current use
of Kirchhoff in which a single separation point is used for the entire aircraft. Asymmetric modeling requires
at least two separation points.

1.5.1. Research Objective and Questions
Based on the performed literature review, research towards to development of a high fidelity lateral model
will be performed. It is clear that many work is yet to be done in this part of the research field to create high
fidelity stall models for pilot simulator training, minimising the number of LOC-I accidents.

The research objective is therefore formulated as follows: Identify, verify and validate a lateral-directional
stall model for the Fokker 100 by using flight test data and Kirchhoff’s theory of flow separation.

Several sub-goals are also formulated:

• Investigate possible ways to obtain differential flow angle estimates on at least two wing sections by
using the available measurements of aircraft states.

• Extend the use of Kirchhoff to identify an asymmetric stall model by using multiple Kirchhoff separation
points.

• Evaluate the usefulness of different flight test manoeuvres for asymmetric stall identification by assess-
ing their information content using available metrics.

• Select a suitable model structure for asymmetric stall modeling for the available stall data by extending
state-of-the-art model structures towards lateral-directional stall.

• Validate the generalisation of the developed asymmetric stall model by applying it to stall data of the
Cessna Citation II.

The main research question is stated as follows: How can Kirchhoff be used to create a high fidelity lateral-
directional stall model based on flight test data?

• Which available aircraft states measurements can contribute to the reconstruction of the flow angles at
the different span-wise wing locations?

• Which flight test manoeuvres are especially suitable for proper asymmetric stall identification?

• Which model structure can incorporated lateral-directional characteristics of asymmetric stalls?

• Can the developed model by generalised for other aircraft such as the Cessna Citation II?

1.5.2. Methodology
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Theoretical Content/Methodology
Kirchhoff’s theory of flow separation will be used as central methodology within this research, see Equa-
tion 1.1 and Equation 1.2. The identification methodology of van Ingen [93] will be further developed to
create a lateral-directional stall model structure using multivariate orthogonal functions. The parameter es-
timation will be done using a Matlab build-in non-linear solver for the ODE and an efficient OLS linear solver
for the remainder of the parameters.

The novelty in this research will be the extension of the available methodologies towards an asymmetric stall
model. The Fokker 100 test aircraft was equipped with two angle of attack vanes. This data will be exploited
to help reconstruct differential lift on both wings using Kirchhoff.

Results, Outcome and Relevance
The available data from flight test measurements consists out of GPS data for position determination, includ-
ing the rate of change of location. Furthermore, air flow angle data on angle of attack and sideslip will be
used. Inertial measurements and accelerometers will provide the aircraft’s Euler angles, accelerations and
roll, yaw and pitch rates. Finally, airspeed measurements are also present. This data will be used to identify
an aerodynamic model in terms of 6 dimensionless force and moment equations. An example of such an
equation for the lift coefficient can be found in Equation 1.7[32]. The parameters are the coefficients C..

CL =CL0 +CLα

(
1+p

X

2

)2

α+CLα̇
α̇c̄

2V0
+CLq

qc̄

2V0
+CLδeδe (1.7)

Identification of the parameters will lead to a stall model. Focus will be put on the asymmetric force and mo-
ments coefficients, namely CY , Cm and Cn . Verification of the basic scripts for Kalman filtering will be done
as follows. Metrics are available to assess the convergence of Kalman filters such as innovation, covariance
matrix, etc. These will be assessed. Furthermore, the basic coding verification procedures will be applied
(debugging, unit and system tests). Adaptions of an already existing and verified Kalman filter will be done.
These adaptions should not lead to significantly different results, unless clear and thorough explanations are
available. Comparison towards the verified Kalman filter is seen as verification.

Not all data of the Fokker 100 will be used for identification. Some of it will be kept asides to perform the
validation of the identified model. The validation can consider model-error based and statistical approaches
such as auto-correlation of the resulting variables, (co)variance plots of the estimated parameter showing
areas with lacking information content or the correlation between the different parameters.

The resulting model will give answers about the theoretical level of fidelity that can be reached using the
applied methodology. Further research will however be necessary in which the model is actually tested in a
simulator and evaluated by pilots, but this is outside the scope of this thesis and is in fact a thesis subject on
its own. It will contribute to the knowledge about stall modeling and aid towards the creation of many high
fidelity stall models used to train pilots. In the future, these models should help in the avoidance of LOC-I
incidents and accidents and hopefully save human lives.



2
Flight Test Data

The Fokker 100 (F-28 MK-0100) is a regional twin jet aircraft. From 1986 till 1989, Fokker performed a series
of flights test including numerous stalls in different configurations. These served to evaluate the stall char-
acteristics and stall speed. The data of these test flights will be used for the research into asymmetric stall
behaviour. The selection of useful stalls was based on the reporting of asymmetries such as wing drops in the
test cards accompanying the data as well as the presence of sufficient data to run the mass model and Kalman
filter. The aircraft used for most stalls is the prototype aircraft.

Dimensions
Wing Area 93.5 [m2]
Wing Span 27.1 [m]
MAC 3.83 [m]

Table 2.1: Dimensions of the Fokker 100 prototype aircraft.

2.1. Stall Test Data of the Fokker 100
The stall tests have been performed within the framework of certification of the aircraft as well as to generate
supplementary aerodynamic data for simulation of aircraft behaviour. The supplementary data was used to
improve and complement data gathered in wind tunnel experiments. Due to the certification nature of the
flight test data, the data lacks excitation of the control surfaces. Sufficient excitation is necessary for proper
stall model identification [70, 73]. This data is however not available for the Fokker 100 aircraft. It therefore
remains uncertain if a high fidelity stall model can be derived from the data.

In order to still be able to identify a lateral stall model, only stalls were selected where the flight test card ex-
plicitly mentioned a wing drop or noticeable angle of bank caused by the stall. About 200 stalls were selected
based on this criterion. During the pre-processing phase, all stalls that had insufficient data to run the mass
model or Kalman filter got dropped. 79 stalls remained available. These stalls cover a range of configurations.
An overview is given by Table 2.2.

Configuration Stalls
Clean Configuration 24
6° Flaps 2
18° Flaps 23
25° Flaps and Gear Down 2
Landing Configuration 22

Table 2.2: Number of selected stalls for each configuration

36
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2.2. Mass Model
To create a high fidelity aircraft model, accurate data is required. The more accurate the data is, the better
the aircraft model will become. This holds for all measured variables, but also for the mass and balance and
inertial data of the aircraft at the moment of stall. The Fokker database does contains some information
regarding these properties, but insufficient to calculate the CG and inertial tensor accurately. No existing
algorithms or models have been found for this purpose. Luteijn therefore created an accurate mass model
for the prototype aircraft of the Fokker 100. Most stall test available in the extensive database have been
performed using this specific prototype aircraft. The mass model has only been validated for the prototype.
Only stalls performed using this aircraft are therefore used for this research.

The mass model has three major contributors: the Operating Empty Weight (OEW), fuel and water ballast.
The OEW is build up from all structural elements (engines, fuselage, empennage, undercarriage,etc.), the
flight instrumentation, all wiring, unusable fuel and oil, cabin items, crew and crew related items, etc. The
mass model is build up by discretising separate aircraft elements as points masses (see Figure 2.1) and de-
termine their relative CG location within a fixed reference frame. The overall CG can be calculated within
this frame and becomes the origin of the conventional body reference frame. The relative location of each
element can now be expressed in terms of the body reference frame to determine the inertial data. Figure 2.2
gives a schematic overview of the different steps undertaken by the mass model to calculate the required data.

Figure 2.1: Overview of the discretised mass distribution of the Fokker 100 prototype aircraft by Luteijn[65]. The pink dots represent the
filled water ballast tanks, the grey dots filled fuel tanks.

Detailed information is available for all aircraft elements. Their location is given with respect to an origin for
the aircraft section to which the element belongs. To calculate the overall CG, the mass model algorithm starts
by determining the local CG data of each section including all elements.The mass and arm of each element
within the local reference frame, are multiplied and summed together. Next, this term gets divided by the
total mass of all elements of the specific section (Equation 2.1, N being the total number of elements for the
section). The result is the CG location of each section. The arm to the sectional CG within the fixed vehicle-
nose reference frame is determined. The datum point of the vehicle-nose reference frame is located at the
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Figure 2.2: Different steps taken by the mass model to calculate the CG and inertial tensor, figure by Luteijn[65]

front of the aircraft, Table B.1 in Appendix B. The same procedure is applied to find the overall CG within the
vehicle-nose reference frame. The mass of each section is multiplied with the corresponding arm from the
origin of the vehicle-nose reference frame to the sectional CG and summed for all sections. This sum is then
divided by the sum of all sectional masses. The overall CG is now determined.

r̄cg =
∑N

i=1 r̄i mi∑N
i=1 mi

, r̄ =
 x

y
z

 (2.1)

With the CG defined, the inertial terms of the Fokker 100 aircraft can be computed. Their value depends on
the CG location and the mass division of the aircraft at the moment of stall. Each aircraft element has its
own inertial moments (six in total per element). The inertial values per (cross-)axis must be summed for all
elements. Besides the sum of inertial moments, the parallel axis theorem is applied. This theorem quantifies
inertia due to the presence of a mass element located at a certain distance away from the aircraft’s CG. The
arms from the center of the element to the aircraft’s CG are computed in order to calculate the value for the
parallel axis theorem. This is done for all elements and for each (cross-)axis. An example of inertial moment
calculation around the x-axis is given by Equation 2.2. Note that the same procedure applies as for the CG.
First, the total inertial moments per section are calculated. Then the sections are combined to yield the overall
inertial moments. The inertial tensor can be created from these six inertial moments, see Equation 2.3.
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The weight distribution for the main components have been listed in Table 2.3. Figure 2.3 shows the division
of the three major mass components as part of the total aircraft mass in case of fully filled water ballast and
fuel tanks.

2.2.1. Fuel Tanks
The fuel tanks can contribute to almost 1

4 of the total aircraft weight. During flight, fuel is consumed making
the fuel tanks a dynamic component of the aircraft mass and balance. The inertial values are also dynami-
cally influenced by the fuel burn. Accurately modeling the dynamic fuel weights, moment arms and inertial
tensors has received special attention in the creation of the mass model for the Fokker 100 [65].

The fuel distribution system consists out of three major fuel tanks: two main wing tanks, one in each aircraft
wing and a center tank in the fuselage. All three tanks are bottom-draining. Each main wing tanks is further
divided into 17 smaller sub-tanks, divided by the wing’s rib-stations. The two sub-tanks located closest to
the fuselage are the so-called collector tanks. All fuel will first pass by the collector tanks before proceeding
the the aircraft engines.The collector tanks are therefore always fully filled as long as there is still fuel left in
the remaining wing sub-tanks and the center wing tank. The center tank is always the first tank that gets
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Section Mass [kg]

Fuselage 16954.8
Wings (2x) 4369.0
Vertical Stabilizer 506.5
Horizontal Stabilizer (2x) 630.8
Engines (2x) 5149.9
Nose Undercarriage 124.0
Main Undercarriage (2x) 955.6

Operating Empty Weight (OEW) 28690.5
Fuel Tanks (left, right & center) 10306.0
Water Ballast Tanks (8x) 5300.0

Total 44296.5

Table 2.3: Fokker 100 prototype maximum section masses,
based on the Fokker prototype load case documentation.

Figure 2.3: Division of aircraft weight components in case of
fully filled water ballast tanks and fuel tanks.

emptied, followed by the main wing tanks and finally the collector tanks. Fuel pumping from tank to tank is
always done such that the fuel is symmetrically distributed along the aircraft’s lateral axis.

Fuel loading data is available from Fokker. A combination of their supplied emperical method combined with
the derived tank dimensions lead to an interpolation of available data points towards functions expressing
the CG data in terms of fuel level. This data is represented by Figure 2.4. The figure shows how the fuel tanks
are emptied during flight. A color scheme shows where the fuel is located if a certain amount of fuel is still
available.

Figure 2.4: Fuel distribution as function of the amount of fuel available for the Fokker 100 prototype aircraft. The data is shown for a
single main wing tank, where 1 and 2 are the collector tanks, 3-17 are the other 15 sub-tanks.

The center fuel tank inside the fuselage is a simple rectangular box. Interpolation between given datapoints
is again performed to create a CG as function of the fuel level within the center tank. Appendix B contains
figures of the distribution and location of the fuel tanks within the aircraft’s wings.

2.2.2. Water Ballast Tanks
Detailed information about the water ballast tank location within the aircraft as well as their CG as function
of the amount of water, has been made available by Fokker. This data was again interpolated with a least
squares method to create a smooth function. For both fuel and water ballast tanks, the assumption has been
made that the water or fuel is seen as a solid object within the tank. The moving of fuel and water due to
aircraft movement has not been taken into account. Water ballast is seen as a static quantity. Some flight test
report pumping fuel from one tank to another or dumping it. This is taken into account by the mass model
as it calculates all aircraft mass and inertia related data for each stall again.
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Flight Path Reconstruction

Raw measurement data is subjected to sensor noise and bias. This will affect the fidelity of the stall identifi-
cation model as the error progresses in the entire identification routine. Furthermore, some crucial aircraft
states required for identification can not be measured directly or lack accuracy. These issues can be limited
by the application of the two step method. This method will divide our identification process into a state
reconstruction, followed by a model parameter estimation routine [73]. In this chapter, the first part, also
known as flight path reconstruction (FPR), will be discussed. The research performed in the context of stall
model identification at the TU Delft has served as a basis for the FPR of the current research.

3.1. Iterated Extended Kalman Filter
Kalman filters are widely used as a tool for FPR. Kalman filters can filter out sensor noise and estimate sensor
bias of the aircraft states. Futhermore, they can reconstruct system states that cannot be measured directly
based on available measurement data and their known kinematics in relation to the system states and inputs
[73].

Many different Kalman filters exist. As the kinematic system used to describe the aircraft behaviour is non-
linear, the linear kalman filter cannot be used. Both the IEKF and unscented kalman filter (UKF) have been
tested before on both the Fokker 100 and the Cessna Citation II data [93]. Their performance was very similar,
but the UKF has a much higher computational cost. As the benefit is negligible, the choice was made to stay
with the IEKF.

3.1.1. Methodology
The IEKF will reconstruct the aircraft state based on a weighted average between the predicted and the mea-
sured state. It exhibits an iteration part to improve convergence of the filter compared to a simple extended
kalman filter.

Based on the selected aircraft kinematics, the IEKF process will make a prediction of the next state x̂k+1,k
by implementing the previous optimal state estimate x̂k,k in the kinematics equation, Equation 3.1. For non-
linear systems, this often involves solving an integral of the state equation. The Runge Kutta 4th order scheme
is used to perform this calculation within the Matlab environment.

x̂k+1,k = x̂k,k +
∫ tk+1

tk

f (x̂k,k ,u∗
h , t )d t (3.1)

The weighted average is determined based on the certainty we have about the correctness of our measure-
ments and predictions. This part is iterated to improve convergence of the Kalman filter. Therefore, the state
prediction covariance matrix Pk+1,k (•) is created as the expectancy of the state prediction error. As the system
is nonlinear, this error comes as a linearised pertubation equation, requiring the calculation and discretisa-
tion of the Jacobians of both the state and observation equations of the aircraft kinematics. The Kalman gain
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matrix, Equation 3.2 quantifies the (un)certainty. If Pk+1,k (•) goes towards zero during the Kalman filtering,
this indicates that the filter becomes more certain about the correctness of the predicted output. This influ-
ences the Kalman gain such that it favors the predicted output over the actual measured output.

The Kalman gain matrix is built using the state prediction covariance matrix Pk+1,k (•) and the measurement
noise matrix Rk+1. Rk+1 represents how certain we are about the correct output of our measuring devices.
Furthermore, the Jacobian of the state equation H T

x (η̄i ) is also required. It is calculated for η̄i , which is the
current state estimate in the iteration of the IEKF. The Kalman gain is recalculated in every local iteration.

Kk+1(η̄i ) = Pk+1,k (•)H T
x (η̄i )[Hx (η̄i )Pk+1,k (•)H T

x (η̄i )+Rk+1]−1 (3.2)

With the Kalman gain known, the weighted average is obtained using Equation 3.3. This state estimation up-
date is put in the state equation jacobian to recalculate the Kalman gain to obtain an improved measurement.
The iteration process is halted when the number of iterations exceeds 25 or the difference between the last
two measurement updates is less than 1e−10.

η̄i+1 = ˆ̄xk+1,k +Kk+1(η̄i )(z̄k+1 − h̄(η̄i , ūk+1)−Hx (η̄i )( ˆ̄xk+1,k − η̄i )) (3.3)

The final state estimation update ˆ̄xk+1,k+1 becomes the initial value for the next measurement point that will
be evaluated by the filter. The correspoding covariance matrix of this state estimate, Pk+1,k+1(•) becomes the
initial covariance matrix for the next point [95].

3.1.2. Kinematic Relations
The IEKF requires knowledge about the aircraft kinematics to produce state predictions. The more knowl-
edge, the greater the accuracy of the Kalman filter will be.

The nonlinear kinematics of the state equations are given by Equation 3.4. The kinematics are described in
terms of measured accelerations and angular rates and the system states to be estimated, namely the body
velocities, body rates and the biases λ. The nonlinear system observation equations can be found in Equa-
tion 3.5. These are expressed in terms of state (Equation 3.6) and input (Equation 3.7) variables as well as
constants.

Not all states can be measured directly. Therefore, the observation equation for true airspeed VT AS is ex-
pressed in terms of body velocities that are incorporated into the aircraft state vector. Same holds for the flow
angles. The angle of sideslip (AoS) is only measured when the aircraft was equipped with a boom during the
specified flight test. The vane does not measure angle of sideslip (β), but the flank angle (µ f ). The corre-

sponding kinematics arctan
(

vb+rm xβ,boom−pm zβ,boom

ub−rm yβ,boom+qm zβ,boom

)
are used in that case. However, not all stalls have boom

data. The Fokker 100 data therefore contains reconstructed β data. The kinematics are found in the last row
of the observability equation given by Equation 3.5.

f (x(t ),u(t )) =



(rm −λr )vb + (λq −qm)wb + Axm −λx − g0 sin(θ)
(λr − rm)ub + (pm −λp )wb + g0 cos(θ)sin(φ)+ Aym −λy

(qm −λq )ub + (λp −pm)vb + g0 cos(θ)cos(φ)+ Azm −λz

(qm −λq )sin(φ) tan(θ)+ (rm −λr )cos(φ) tan(θ)+pm −λp

(λr − rm)sin(φ)+ (qm −λq )cos(φ)
((qm −λq )sin(φ))/cos(θ)+ (rm −λr )cos(φ)/cos(θ)

0
0
0
0
0
0



(3.4)
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h(x(t ),u(t )) =
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(3.5)

x = [
ub vb wb φ θ ψ λx λy λz λp λq λr

]
(3.6)

u = [
Axm Aym Azm pm qm rm

]
(3.7)

z = [
φ θ ψ VT AS α β

]
(3.8)

3.1.3. Observability
Kalman filters reconstruct system states based on kinematics and system output knowledge. A necessary
requirement for convergence of the Kalman filter is that the kinematics are fully observable and that the
states can thus be determined from the output on a certain time interval. Determining the observability of
the system is therefore an essential step in the Kalman filter process. As the aircraft kinematics of this research
exhibits nonlinear behaviour, the observability analysis cannot be performed globally. Local observability
analysis using the Lie derivative, defined in Equation 3.9, has therefore been performed. The Lie derivative of
the observation equation h(x) is defined as its Jacobian multiplied with the state equation f (x), both of them
evaluated at a specified state [51, 94].

L f h(x) = ∂h(x)

∂x
f (x) (3.9)

For analysis, a recursive matrix of n Lie derivatives is constructed for n states. The result is the observability
matrix O (x), see Equation 3.10. If the rank of this matrix corresponds to the number of states, the system is
said to be locally observable around the combination of states values entered in h(x).

O (x) =



L0
f h(x)

L1
f h(x)

L2
f h(x)

...
Ln−1

f h(x)

=



∂h(x)
∂x

L f h(x)
L f L f h(x)

...

L f

(
Ln−2

f h(x)
)

 (3.10)

The full observability of the system is a necessary condition for convergence. It does not guarantee actual
convergence. This convergence will need to be assessed by different metrics that are determined after the
completion of the Kalman filtering process.

3.1.4. Results
The outcome of the IEKF on the 6 states and 6 bias terms can be found in Figure 3.1. The local observability
was assessed for each measurement point and showed full rank (12) at each point. This is no proof of global
observability, rather it is a good indication. The Kalman filter can converge. The corresponding innovation
is shown in Figure 3.2. Innovation is a metric that shows the difference between the predicted measurement
and the actual measurement. The innovation values are small and show that the predicted and actual mea-
surements are not very different, therefore indicating convergence of the Kalman filter as the prediction does
not diverge from the actual measurements [95].
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The covariance matrix of the state estimates error is displayed in Figure 3.3. The covariances of all states
converge during the estimation process of the Kalman filter. This indicates that each new step (data point) of
the IEKF, more certainty arises about our predicted measurement. Furthermore, the bias terms also converge
fairly quickly to a steady value, indicating that the Kalman filter has quickly identified those values. This is
visible in Figure 3.1.
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Figure 3.1: Results of the IEKF on the measurement data of the F100.
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Figure 3.2: Innovation of the state estimation of the F100 using the IEKF.

Figure 3.3: covariance matrix of the state estimate error.
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3.2. Flow Measurement Corrections
Aircraft behaviour is modelled for its center of gravity (CG). Not all signals are however measured in the CG
and their output is subjected to three dimensional aircraft behaviour if we assume a rigid aircraft. Note that
more influences occur in reality due to bending, vibrations, wind, dynamic vane response etc. These addi-
tional influences increase the complexity of the filter and can cause convergence issues as too many param-
eters are present to estimate [60]. For this research, rigid aircraft kinematics will be assumed. Only the effects
of location outside the CG will therefore be taken into account for now.

The angular accelerations cause an offset in the measured signals not located in the CG. For the flow angles
AoA and AoS, corrections are applied to remove these influences and estimate their values at the CG. The
common simplified corrections have been used in the kinematics found in subsection 3.1.2. These correc-
tions incorporate small angle approximations and neglection of small angular rates. Grauer derived to full
nonlinear corrections in 2017. Grauer concluded that these corrections improve identification results with
high amounts of noise and at high values for flow angles and angular rates. For this research, stall behaviour
is modelled and thus higher AoA are obtained in correspondence with asymmetric roll behaviour. These con-
ditions favour the use of Grauer’s exact corrections as the validity of small angle approximations and angular
rates becomes less accurate. The proposed idea was implemented in the IEKF and will be discussed in this
section.

3.2.1. Grauer’s Exact Position Corrections
Flow angles vanes measure the local flow angles that are subjected to both the movement of the aircraft’s
CG as well as the 3D movement. The velocity components experienced at the vane location are expressed in
Equation 3.11. The velocity components at the CG, u,v and w receive an additional component consisting of
angular rates multiplied with the position of the vane with respect to the CG [48].

 uv
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+
 0 −r q

r 0 −p
−q p 0

 xv

yv
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 (3.11)

Flow angles can be expressed in terms of velocity components in the body reference system. The vanes mea-
sure local flow angles and thus require local velocity components to have the correct kinematic expression
in our system. Using Equation 3.11, these local velocity components can be replaced by the velocity compo-
nents in the CG with corrections for the position of the vanes. These expressions (Equation 3.12,Equation 3.13)
capture the kinematics at the vane location, matching the raw measurement data, but expressed in body ve-
locity components of the CG. These components are referred to in the complete kinematics and are used
in the IEKF. Note that beta vanes measure the flank angle rather than the side slip angle. The AoS is then
obtained using Equation 3.14.

αv = arctan

(
wv

uv

)
= arctan

(
w −qxv +pyv

u − r yv +qzv

)
(3.12)

µ f = arctan

(
v f

u f

)
= arctan

(
v + r x f −pz f

u − r y f +qz f

)
(3.13)

β= arctan
(
tanµcosα

)
(3.14)

Conventionally, these expressions are simplified by small angle approximations and low angular rates result-
ing in some terms dropping out. For this work, it was however decided to work with the full expressions rather
than the simplified ones.

3.2.2. Results
Applying the full flow vane measurement corrections has only a slight effect on the outcome of the Kalman fil-
ter. In Figure 3.4 the results of the IEKF for the simplified and full corrections in the observation equations are
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represented together with the decomposed raw measurement data. The bottom 6 graphs show the difference
between both kinematic systems. The largest difference can in fact be found in vb . The deviation increases
near the stall angle of attack (represented by the black dotted line) and decreases again once the stall is more
or less recovered. As Grauer claimed, the simplification error gets more pronounced at higher AoA, thus near
stall and for larger angular rates as observed in the recovery of the stall manoeuvre. For this thesis research,
special attention is paid towards the accurate filtering and estimating of the AoA related measurements due
to the importance of this variable for the research objective. Figure 3.5 and Figure 3.6 show the behaviour of
the AoA for both kinematic system. It is visible in Figure 3.6 that the largest deviation is again located at and
beyond the actual stall.

As the exact position corrections are only applied to the flow angles, only the innovation of angle of attack
(α) and angle of sideslip (β) is affected the most by the adapted kinematics. The magnitude of the innovation
remains largely within the 2 σ bounds and is zero-mean. Both covariance matrices show convergence of the
system. The rate of convergence is slightly different though. In general, all parameters indicate convergence
for the IEKF with exact position corrections.
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Figure 3.4: Comparison of the IEKF performances using conventional flow angle correction kinematics and those using Grauer’s full
nonlinear corrections.
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Figure 3.5: Angle of attack estimation from the IEKF for the
conventional and Grauer flow corrections.

Figure 3.6: Deviation from Grauer flow angle kinematics from the
conventional kinematics.

Figure 3.7: Innovation of the IEKF with simplified position correction kinematics

Figure 3.8: Innovation of the IEKF with exact position correction kinematics
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[h!]

Figure 3.9: Covariance matrix of the state
estimation error for the simplified position

corrections.

Figure 3.10: Covariance matrix of the state
estimation error for the exact position

corrections.

3.3. Upwash and Geometry Offset Coefficients for the Alpha Vanes
Upon investigation of the different stalls selected for this research, a large discrepancy was discovered on the
measurement of the AoA. For some stalls, the test aircraft was equipped with a boom located below and in
front of the aircraft measuring both α and β. The α measurements resulted into different values compared
to those measured by the fuselage mounted vanes. The difference went up to 5° at the moment of stall. As
not all stall manoeuvres recorded contain boom data (only a third of the stalls selected for this research), this
discrepancy in AoA poses problems to identify an accurate and generic model using all the available data.
In this section, two constant coefficients will be estimated to correct the vane AoA data and minimise the
difference with respect to the boom data.

3.3.1. Boom AoA versus Vane AoA
The AoA vanes are located next to the cockpit of the aircraft. As they are mounted on the fuselage, they are
subjected to the upwash around this fuselage and the measurement data is therefore corrupted. The boom is
located in front of the aircraft and its vane measurements are far less influenced by the presence of the aircraft
and the boom itself. If both measurements are available, preference goes to using the boom data rather than
the fuselage mounted vanes. In order to be able to also use stall data where no boom measurements are
available, the fuselage mounted vanes measurements can be corrected by estimating their upwash coefficient
Cαup and Cα0 . Cα0 takes into account that the vane’s zero α measurement is not aligned with the aircraft’s
longitudinal axis. A kalman filter can be used to estimate these coefficients together with the other states.

These adapted kinematics have to be fully observable in order to estimate the vane coefficients. If this is not
the case, the Kalman filter will not converge. The regular kinematic system described in subsection 3.1.2 does
not allow this. The rank of its observability matrix is 12, only allowing the estimation of the regular 12 states.
In order to estimate both coefficients, the observability rank must go up to 14.
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3.3.2. Increasing Observability for Estimation of Cαup and Cα0
Increasing the rank of the observability matrix can be done by including more measurement signals. Up until
now, only a single AoA measurement signal has been included in the aircraft observation equations. For the
Fokker 100 aircraft equipped with a flow measurement boom, up to 3 signals are available: 2 vanes near the
cockpit and 1 vane on the boom. Instead of using the boom measurement or the average of the two regular
vanes, all three signals and their corresponding kinematics were included into the observation equation. The
result is an increase of observability rank by 2 towards a total of 14. Next to the 12 regular states, 2 more
coefficients can be estimated whilst the necessary condition for convergence is met.

The application of Grauer’s full nonlinear flow measurement corrections is essential for increased observabil-
ity. The simplified corrections exhibit the same kinematics for the left and right fuselage mounted α vanes.
This causes both fuselage vanes entries into the matrix to be linearly dependent and thus not contributing
to an additional increase in the dimension of the vector space spanned by the matrix columns. The rank of
the observability matrix is only 13 in this case. Using the exact flow measurement corrections distinguishes
the y-location of the vane making the kinematic relations linearly independent. This results into a rank of 14
allowing the estimation of both the Cαup and Cα0 coefficient.

New kinematics can now be set up to estimate both coefficients. Both coefficients are added to the state vec-
tor, Equation 3.17. Just like the bias terms, a zero pop-ups in the state equation for these coefficients. The new
observation equation and measurement vector are given by Equation 3.15 and Equation 3.16 respectively.
Grauer’s exact flow measurement corrections are applied to both vane and boom flow angles, including the
flank angle. This kinematics system will only be used to estimate the value for both coefficients.
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z = [
φ θ ψ VT AS αvane,r αvane,l αboom µ f

]
(3.16)

x = [
ub vb wb φ θ ψ Cα,up Cα,0 λx λy λz λp λq λr

]
(3.17)

The IEKF including the coefficient estimation kinematics have been applied on all selected stalls that include
boom data. A total of 28 stalls were included, 4 of them were removed due to unreliable data. Of the 24
remaining stall data sets, 8 did not converge to constant values for Cαup and Cα0 . However, the 16 converging
data sets, did converge to about the same values. A bump however shows up at the moment of stall, disturbing
the convergence of the coefficients. It was decided to average this out in the determination of the coefficient
values.

Each data set did require some time to converge, see Figure 3.11. The average value of each data set was
determined. Only the converged part was included. All these values were then averaged out for all data set
resulting into the following two values for Cαup and Cα0 :

Cαup [-] Cα0 [rad]
0.4730 -0.1072

On an average value for the AoA of 0.23 rad, an average mean squared error (MSE) of 4.23e−7 was reached.
All MSE had a similar order of magnitude, with 3 outliers going towards 7e−6 as the largest MSE of the set of
stalls with boom measurements.
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Figure 3.11: Convergence of Cαup and Cα0 for a F100 stall data set.

3.4. Fokker 100 Kalman Filter
The insides gained regarding the use of the full nonlinear flow measurement corrections as derived by Grauer
[48] has lead to the identification of the fuselage mounted vanes upwash coefficient Cαup and Cα0 . The final
kinematics system for the iterated extended kalman filter (IEKF) for the F100 aircraft stall data can now be
constructed and evaluated.

3.4.1. Kinematics
Adding the vane coefficients Cαup and Cα0 , together with the exact flow measurement corrections to the IEKF
results into the final kinematics system. The state equation, Equation 3.18 is the same as the first system
represented in this chapter. For the observation equation, a distinction has to be made between stall data
sets without boom data, Equation 3.20, and stall data sets that do have boom measurements available, Equa-
tion 3.21. The process and measurement noise has also been included in the equations.
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with
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with

ν̄= [
wφ wθ wψ wVT AS wα wβ

]
(3.22)

3.4.2. Results
The estimation of the vane coefficients aimed at correcting the measurements for the presence of the fuse-
lage, influencing the airflow measured at the vanes. Without corrections, the discrepancy between these
measurements and those from the more reliable boom were simply too large, reducing the accuracy of the
next step in the system identification process, namely the model parameter identification. One could choose
to only use stall data sets containing boom measurements, seriously limiting the number of data sets that
are useable. Two correcting coefficients have been identified and their influence on the vane measurements
can now be assessed. The assessment will be done based on the reconstructed AoA. The output states of the
kalman filter can be used to reconstruct the AoA from that specific IEKF, as by Equation 3.23.

α= at an
( w

u

)
(3.23)

Adding both Cαup and Cα0 to the observation equation, as in Equation 3.20, results into a very clear improve-
ment on the estimation of the AoA if only fuselage mounted vane measurements are used. Figure 3.12 shows
this. The upper two lines represent the raw vane measurement plot ofα as well as the outcome of the Kalman
filter if the boom data is left out and no vane coefficients are included. The Kalman filter models the raw vane
data. For this data set, boom data of α is however available, represented by the noisy line. This is the result
of stall buffet related vibrations on the boom. Note that they only occur after stall and disappear when the
aircraft is recovered. If the Kalman filter gets this boom α data as single input, it filters out the vibrations and
reconstructs the AoA following the trend of the raw boom data. Finally, a third Kalman filter is applied using
only vane data, but adding the determined vane coefficients. The result is an AoA that follows the trend of
the boom and the boom-based Kalman filter output. This is the case even though not a single boom mea-
surement is used in this filter. This proofs that the upwash coefficient Cαup and Cα0 determining IEKF has
converged to the actual coefficient values for the fuselage mounted vanes on the Fokker 100.

A similar analysis is applied to a stall with boom for which the estimation of the vane coefficients did not
converge. The results are given by Figure 3.13. In the process of estimating the vane coefficients Cαup and Cα0 ,
the IEKF diverges, negatively affecting the estimation of the body velocities and therefore the corresponding
AoA. The AoA does not follow the trend of the boom nor the vanes. No reason has been found why some
stall data sets did not converge. Local observability analysis showed full rank for at all data points. If the
final vane coefficients are however included in the observation equation and the diverging data set enters
this altered kalman filter, the results are very similar as the case discussed above. For α measurement data
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Figure 3.12: Result of the Kalman filter for boom data and vane data, both with and without vane coefficients.

coming only from the fuselage mounted vanes, corrected with the coefficients, the trend of the boom data
and boom filtered IEKF is again closely followed. All stalls including boom data have been evaluated and not
a single stall exhibited different behaviour. This confirms the correctness of the vane coefficient values.

Figure 3.13: Result of the Kalman filter for boom data and vane data, both with and without vane coefficients. Coefficient estimation
process diverted for this stall.

With the determined values for Cαup and Cα0 , all stalls without boom AoA data can now be corrected. The
less reliable output from the fuselage mounted vanes can be corrected to closely resemble the more reliable
boom output. This saves more than two thirds of the stalls selected for the next part of the research. Without
corrections, having only vane data would have made the filtered data not accurate enough to enter the model
parameter estimation process. The result of using the IEKF including the determined vane coefficients is
shown in Figure 3.14.

Based on the investigation of the behaviour of the AoA, the final IEKF kinematics system with Cαup and Cα0

shows very promising behaviour. It remains to further assess its observability and convergence. The rank
of the observability matrix remains 12, thus the necessary condition for observability is matched for all data
points. The innovation of all outputs remains small, Figure 3.16. An offset from zero-mean is observed for the
AoA’s. The offset can be explained by the fact that two separate AoA signals are measured, one by each vane.
As the vanes are located on opposite sides of the fuselage, different values forα are recorded. Both signals are
used in the IEKF to reconstruct u and w , which are the velocity components building up the angle of attack.
This means that a single AoA is reconstructed by the filter. This value will lay in the middle of both measured
signals. The innovation detects this as a bias. One vane will be located below the estimated average, the other
one above. The innovation of the β is influenced by the fact that β is not measured directly as no boom data
is available for this stall. It has been reconstructed by Fokker itself.

The covariance matrix of the state estimation error converges as well, Figure 3.17. All observed metrics indi-
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Figure 3.14: Result of the Kalman filter for vane data only, with and without vane coefficients.

cate that the Kalman filter converges for the newly introduced kinematics.
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Figure 3.15: Result of the states estimation for a stall without boom, using kinematics including Cαup and Cα0
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Figure 3.16: Innovation of the output of a stall without boom, prediction model using kinematic including Cαup and Cα0

Figure 3.17: Covariance matrix of the state estimation error for a stall without boom, prediction model using kinematic including Cαup
and Cα0



4
Model Structure

Due to the nonlinear behaviour and characteristics of aircraft motion near and during stall, the conventional
model structures do not suffice to accurately model aircraft stalls. For this research, a new model structure
will be derived to fit the training data as good as possible, while attempting to keep the structure simple. This
chapter will introduce the theoretical background on the creation of the stall adjusted model structure for the
Fokker 100.

4.1. Aircraft Equations of Motion
To model aircraft behaviour, its equations of motion (EOM) have to be solved. In most cases, Equation 4.1
and Equation 4.2 are used to represent the aircraft. These equations have been derived under the following
assumptions:

• The aircraft is a rigid body

• The aircraft mass remains constant throughout the stall manoeuvre under consideration

• Flat and non-rotating Earth

• Body fixed reference frame with Xb Zb plane being a plane of symmetry

• No rotating masses

m
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To solve Equation 4.1 and Equation 4.2, the aerodynamic forces X ,Y , Z and aerodynamic moments l ,m,n
have to be available. Once these are known, the aircraft behaviour can be calculated using the EOM. The
magnitude of these forces and moments strongly dependent on the aircraft type, speed, weight, etc. To make
comparisons more straightforward, the forces and moments are non-dimensionalised, removing their de-
pendence on aircraft velocity and size. What remains are 6 aerodynamic coefficients. Their values will be
determined in a system identification process. Their model structure needs to be selected for proper fitting
to create stall models with high fidelity.
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4.2. Conventional Model Structure
For the identification of aircraft models in normal flight conditions, the model structures for the 6 aerody-
namic coefficients are formulated as first order expansions of the Taylor’s series. These expansions are cen-
tered around a specified trim condition. Common parameters to build up the model are the flow angles α
and β and their time derivatives, the non-dimensionalised angular velocities p̃, q̃ , r̃ and the control surface
deflections δ. These variables are also known as independent variables (IV). An example of this conventional
model structure is given by Equation 4.3.

CL =CL0 +CLαα+CLq q̃ +CLα̇ α̇

CD =CD0 +CDαα+CDq q̃ +CDα̇ α̇

CY =CY0 +CYββ+CYp p̃ +CYr r̃ +CYβ̇
β̇

Cl =Cl0 +Clββ+Clp p̃ +Clr r̃ +Clβ̇
β̇+Clδa

δa +Clδr
δr

Cm =Cm0 +Cmαα+Cmq q̃ +Cmα̇ α̇+Cmδe
δe

Cn =Cn0 +Cnββ+Cnp p̃ +Cnr r̃ +Cnβ̇
β̇+Cnδa

δa +Cnδr
δr

(4.3)

The notation is specific to aerodynamic model structures. The IV are given as deviation from the trimmed
condition as they come from a first order Taylor’s series expansion. Their conventional notation is however
leaving out the ∆ sign in front of them that represents this fact. The Ci j coefficients are partial derivatives
from the aerodynamic force or moment i to the IV j . These are the so called control and stability derivatives.

4.3. Kirchhoff Model Terms
The conventional model structure is applied for normal flight conditions, in which linearity is assumed and
the model starts from a trimmed condition. These assumptions do not hold for stalls, as they are subjected
to nonlinear behaviour and the region of validity around the trimmed condition is small compared to normal
flight. The model would only be valid for small regions of the flight envelope. It would therefore require the
creation of many models to cover the entire flight envelope, making it a very expensive and lengthy process.
This approach is simply not sufficient to create stall models.

One can however extend these models with terms that can capture the nonlinear characteristics and ex-
tend the area of applicability within the flight envelope. The use of Kirchhoff’s theory of flow separation
has proven to be able to do so and has been widely applied in the research towards the creation of stall mod-
els [27, 32, 47, 87, 93]. Goman and Khrabrov introduced this theory in 1992. Four Kirchhoff parameters have
to be estimated to solve an ODE. This ODE solves for the internal flow separation point (X ), which is a num-
ber between 0 and 1 representing the location of flow separation along the wing’s chord. The four Kirchhoff
parameters (τ1, τ2,a1 and α∗) have to be identified for the specific aircraft under consideration and allow the
modeling of the specific stall behaviour as function of the AoA. For a given AoA α, the ODE can be solved for
X . Equation 4.5 can now be solved to achieve lift coefficient (CL) based on the AoA, CLα and X [46].

τ1
d X

d t
+X = 1

2

(
1− tanh[a1(α−τ2α̇−α∗)]

)
(4.4)

CL =CLα

(
1+p

X

2

)2

α (4.5)

τ1 represents the time delay due to flow inertia, τ2 models the effects of hysteresis, a1 determines the abrupt-
ness of the stall andα∗ sets the stall AoA. Smets et al. investigated the influence of varying all four parameters
on the subjective noticeability of pilots in the simulator. Some parameters are easy to determine accurately
whilst others have little influence on how pilots experience the stall. Smets et al. therefore suggested to put
the emphasis on correct estimation of a1 [89]. The effect of varying the four parameters on the lift coefficient
(CL) is given by Figure 4.1-Figure 4.4. The effect on X is given by Figure 4.5-Figure 4.8.
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Figure 4.1: Effect of varying τ1 on the lift coefficient curve [93] Figure 4.2: Effect of varying τ2 on the lift coefficient curve [93]

Figure 4.3: Effect of varying a1 on the lift coefficient curve [93] Figure 4.4: Effect of varying α∗ on the lift coefficient curve [93]

Figure 4.5: Effect of varying τ1 on the point of flow separation X
[93]

Figure 4.6: Effect of varying τ2 on the point of flow separation X
[93]
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Figure 4.7: Effect of varying a1 on the point of flow separation X
[93]

Figure 4.8: Effect of varying α∗ on the point of flow separation X
[93]

4.4. Local Model Terms
The disadvantage of using global model structures is that capturing a severe local nonlinearity affects the
entire domain. One can therefore choose to split the domain in several subdomains and estimate a separate
model on that subdomain. To identify a model, sufficient data is required. Splitting the domain in multiple
subdomains increases the amount of data required. This amount of data is not always available and acquiring
it requires additional flight test that can be very expensive and time consuming. It is not an ideal solution for
aerodynamic model identification using flight test data.

Spline terms offer a better alternative. Spline terms are terms that are only defined on a part of the domain,
as shown by Equation 4.6. They complement the global model structure in a specific domain to assist in
capturing severe local nonlinearities, without affecting the remainder of the domain. No additional flight test
data is required to identify its parameters.

(x −xi )m
+ =

{
0 when x < xi

(x −xi )m when x > xi .
(4.6)

4.5. Multivariate Orthogonal Function Modeling
Selecting a model structure can be done using thoughtful engineering judging. The aerodynamic coefficient
models have to be build up by model terms consisting of the variables that influence the magnitude of the
coefficient under consideration. The selection must be wise, as adding too many terms leads to complex
models prone to overfit. If two terms are too closely correlated, identification issues can arise in which it is
better to drop one of them.

Morelli et al. introduced a mathematical approach to determine model structures for global aerodynamic
modeling. The multivariate orthogonal function modeling technique will start from a pool of candidate re-
gressor terms for the aerodynamic coefficients. All the candidate terms are orthogonalised and therefore they
become decoupled. The multivariate orthogonal functions can now be individually assessed to quantify their
contribution to the model fit. Only the best terms are added to the final model structure.

4.5.1. Theory behind Multivariate Orthogonal Function Modeling
For all 6 aerodynamic coefficients, the multivariate orthogonal function takes the form of a linear combina-
tion of all multivariate orthogonal model terms, Equation 4.7. This approaches the computed values for the
aerodynamic coefficients based on the measured signals. The model terms are a function of the independent
variables (IV).

z̃ = a1p̃1 +a2p̃2 + ...an p̃n + ε̃= P̃ ã + ε̃ (4.7)
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A good model approximates the computed coefficients closely, keeping the model error ε̃ as small as possible.
ε̃ will be minimised using a cost function that determines the values of model parameters ai to achieve this
minimisation. The cost function to be minimised is a least squares function, Equation 4.8. This function
reaches a minimum where its first derivative with respect to the model parameters ai reaches 0. The values
that correspond with the lowest model error, ˆ̃a, can be found by rewriting the derivative to Equation 4.9. The
resulting output y of the identified model is given by Equation 4.10.

J = 1

2
ε̃T ε̃= 1

2

(
z̃ − P̃ ã

)T (
z̃ − P̃ ã

)
(4.8)

ˆ̃a = [
P̃ T P̃

]−1
P̃ T z̃ (4.9)

ỹ = P̃ ˆ̃a (4.10)

The corresponding estimated covariance matrix is given by

Σ̃ ˆ̃a = E
[(

ˆ̃a − ã
)(

ˆ̃a − ã
)T

]
=σ2 (

P̃ T P̃
)−1

(4.11)

where σ2 represents the fit error covariance. This covariance can be estimated based on the computation of
the residuals between each measurement and the corresponding model prediction as below

ṽ = z̃ − P̃ ˆ̃a (4.12)

The estimation of the fit error covariance is done as follows

σ̂2 = 1

N −n

[(
z̃ − P̃ ˆ̃a

)T (
z̃ − P̃ ˆ̃a

)]= ṽT ṽ

N −n
(4.13)

With this equation, the standard errors of the parameters can be assessed by taking the square root of the
corresponding diagonal elements of the fit error covariance matrix.

The multivariate orthogonal function modeling differs from conventional function modeling. The conven-
tional approach uses ordinary multivariate polynomials or spline terms to build up the model structure. The
multivariate orthogonal function modeling only uses multivariate polynomials or spline terms that are mu-
tually orthogonal to each other. The main advantage of using this method is the individual evaluation of
adding each term to the model. Due to the mutual orthogonality, the contribution of each single model term
towards improvement of model fit can be assessed. The modeling process is decoupled. Under the assump-
tion of orthogonality (Equation 4.14), the cost function J̃ can now be written as Equation 4.15. The parameter
value to be estimated only depends on its corresponding model term and the measurement vector z̃, see
Equation 4.16.

p̃i p̃ j = 0 f or i 6= j , i , j = 1,2, ..,n (4.14)

J̃ = 1

2

[
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p̃ j z̃
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p̃ j
T p̃ j

]
(4.15)

â j =
p̃ j z̃

p̃ j
T p̃ j

(4.16)
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The contribution of each term is quantified in the predicted squared error (PSE) metric, see Equation 4.17.
This metric quantifies the improvement in minimising the cost function J̃ whilst penalising the increased
model complexity as a result of the additional term. The PSE metric uses the decoupled cost function J̃ .

PSE =
(
z̃ − P̃ ˆ̃a

)T (
z̃ − P̃ ˆ̃a

)
N

+σ2
max

n

N
= 2 Ĵ

N
+σ2

max
n

N
(4.17)

σ2
max = 1

N −1

N∑
i=1

[zi − z̄]2 (4.18)

z̄ = 1

N

N∑
i=1

zi (4.19)

Here, σ2
max is the upper-bound mean squared error, N the total number of data points for the data set under

consideration, n being the number of model terms. The PSE metric is evaluated each time a model term is
added to the cost function J̃ . The order of addition must range from the most effective modeling term to
the least effective one. Their effectiveness is quantified by Equation 4.20. Adding terms to the cost function
will improve the model fit and therefore decrease the value of the cost function J̃ . The model term is in fact
subtracted from the measurement term z̃T z̃. Adding an additional term will however increase the value of
the model complexity part of the PSE. At a certain moment, the decrease in cost function value will not weigh
against the increase in the model complexity penalty. A global minimum of the PSE has been reached. The
corresponding model structure will become the final model structure as a result of the multivariate orthogo-
nal function modeling approach. This global minimum will only be achieved if model terms are added with
decreasing effectiveness [70].

(
2

N

) (
p̃ j z̃

)2

p̃ j
T p̃ j

(4.20)

Figure 4.9: predicted squared error (PSE) metric exhibiting a global minimum as a result of decreasing cost function value and
increasing model complexity penalty

4.5.2. Gram-Schmidt Orthogonalising of Ordinary Polynomial Functions
The procedure to create mutually orthogonal functions is according to Gram-Schmidt.The initial set of candi-
date regressor terms are ordinary multivariate polynomials and splines. All of them need to be orthogonalised
with respect to all other functions. To start the procedure, a first ordinary multivariate model term is selected.
A second term gets selected. The selection can be random. This second term needs to be orthogonalised
with respect to the first term. The orthogonalisation is done according to Equation 4.21. From the ordinary
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multivariate model term ξ̃ j , the sum from the previously added mutual orthogonal multivariate terms pk

gets subtracted. Each previous orthogonal functions gets a specific scalar factor γ jk . This scalar invokes the
mutual orthogonality by definition, see Equation 4.22.

p̃ j = ξ̃ j −
j−1∑
k=1

γk j p̃k j = 2,3, ...,n (4.21)

γk j =
p̃k

T ξ̃ j

p̃k
T p̃k

(4.22)

The procedure is repeated for all model terms. The summation however grows as it contains all previously
orthogonalised functions to make sure the current function becomes mutually orthogonal to all model terms
added before. The orthogonalised function p̃ j is expressed as a linear expansion of the original ordinary
multivariate function. No information or characteristics have been lost in the Gram-Schmidt orthogonali-
sation procedure. The orthogonalised function can also be de-orthogonalised towards the original ordinary
function. After the model structure selection, the functions can be decomposed again to their ordinary form
restoring the physical meaning to our model structure [70].

4.6. Evaluation of Multivariate Orthogonal Function Modeling
The procedure described above has been implemented applied to all individual stall manoeuvres of the
Fokker 100 data set under consideration. The selected terms differed from stall to stall. The terms that got
selected the most were included in the specific model. Some observations were made during the application
of the procedure.

The outcome of the algorithm is subjected to the model terms included in the pool. Adding or removing can-
didate regressor terms altered the count of previously present terms and could therefore alter the ranking of
model terms. The algorithm used by Van Ingen was slightly altered, reducing the subjectivity of the algorithm
to the candidate pool. All candidate regressor terms are made mutually orthogonal to the entire set of candi-
date terms before the PSE metric is computed. Van Ingen used a stepwise orthogonalisation method instead,
adding one term at a time.

Full decoupling of the model terms was however not achieved. The rank of the matrix containing all orthog-
onalised terms is slightly lower than full rank, indicating that there is still some dependence between a few
orthogonalised model terms. This denies one of the assumptions of the multivariate orthogonal modelling
algorithm. Yet, the outcome of the algorithm can serve as a good starting point. The algorithm was further-
more extended with a check to see if the term actually contributed to reducing the RMS of the model. If that
was not the case, the term will be removed even though initially being selected.

During the quest to select the best possible model structure, it turned out that the multivariate orthogonal
function modelling is not the ’holy grail’. A good sense of engineering judgement, evaluations of the RMS
values, etc. is still required to tune the model structure towards the desired results.

4.7. Model Structure Selection
Using a pool of candidate regressor terms, a model structure for the 6 force and moment coefficients is se-
lected. All 6 models for the Fokker 100 are discussed below.

4.7.1. Lift Coefficient CL

The pool of candidate regressor terms for the lift coefficient (CL) consists out of a bias term, α, α̇,
(

1+pX
2

)2
,

(1−X ), X , max(0.5, X ), p,q ,r , δe , δa , δr , β and the second order combinations of the terms. Some unrealistic
second order terms were manually removed based on engineering judgement. The bias term is set as a fixed
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parameter and will always be included in the model structure. A strong dependence on different X-related
parameters is observed, Figure 4.10 .

Figure 4.10: Result of the Multivariate Orthogonal Function Modeling Algorithm for the data set with flaps = 0° and different X-terms
included in the pool.

Only one X-related term should be included in the model structure. As the Kirchhoff term
(

1+pX
2

)2
comes

out as the highest ranked X-related term, combined with the extensive use found in literature, it was selected
for the model structure. The other X-related terms are removed from the pool. Their presence influences the
visibility of other good candidate regressor terms within the algorithm.

Figure 4.11: Result of the Multivariate Orthogonal Function Modeling Algorithm for the data set with flaps = 0° where only one X-related
term (Kirchhoff term) is left in the pool.

The Fokker 100 data set intended certification of the aircraft. No specific excitation has been applied dur-
ing stall. The information content of the data sets is therefore considered low. visual inspection of several
measured CL graphs, showed some wavy behaviour Looking further into the different measured signals also
shows this behaviour in the aileron input and therefore also in the roll. As the data set has been selected for
asymmetric behaviour at stall, this is a logic fact. It was therefore decided to include one of the two parame-
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ters in the model to capture this wavy behaviour. The multivariate orthogonal modeling algorithm favoured
the inclusion of the aileron deflection δa . As lift coefficient (CL) is a symmetric model, whilst δa is an asym-
metric term, the absolute value of δa was used. If the aircraft wings are banked, the lift vector banks as well
causing a decrease in vertical lift component, independent to which side the aircraft banks.

The insight delivered by the multivariate orthogonal function modeling algorithm created a starting point for
the further derivation of the aircraft lift coefficient model and the identification of the model parameters.
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Parameter Estimation

5.1. Kirchhoff Parameter Estimation
Kirchhoff’s ODE, Equation 4.4, has 4 parameters that need to be estimated for the Fokker 100 aircraft. Those
parameters are τ1, τ2, α∗ and a1. As they are part of the ODE, nonlinear estimation techniques are required
to estimate their value. With their estimated value, the ODE can be solved with input of α to obtain the flow
separation point X . X is part of a few model terms in the pool of candidate regressor terms for the final
model structure. The four Kirchhoff parameters will therefore need to be estimated before the multivariate
orthogonal function modelling algorithm is applied to select a model structure for the stall model of the F100.

The flow separation point X is closely related to the amount of lift produced and its relation to the lift coeffi-
cient CL is well described by Equation 4.5. The estimation of X will therefore be done through the model for
CL . A model structure for CL will therefore have to be assumed first and adapted by means of iterations later
on if this is required to improve the model fit. Van Ingen performed a similar method for a longitudinal stall
model of the Cessna Citation II. His identified CL model structure will be used as initial model structure. The
focus in this work will be put on the identification of the asymmetric stall model.

Nonlinear parameter estimation is a complex and challenging procedure. It is beyond the scope of this re-
search to develop an estimation routine. Matlab contains an extensive nonlinear optimisation toolbox fmin-
con that will be used for the parameter estimation of the four kirchhoff terms. Nonlinear parameter estima-
tion comes down on an optimisation routine minimising a cost function. This is exactly what the fmincon
toolbox does. It computes a minimum for a constrained nonlinear multivariate function [91]. For this re-
search, the mean squared error between the measured CL and estimated CL will be minimised. The estimated
CL must depend on Kirchhoff’s X parameter in order to estimate the four Kirchhoff ODE parameters.

Nonlinear optimisation unfortunately does not offer the guarantee of convergence to the global minimum
of the cost function. Chances are that a local minimum will be found. It is therefore advised to create a set
of initial values within the physical and expected range of parameter values and run the optimisation for all
these initial values. The lowest value will be taken as the optimal value, even though no certainty arises if
this is actually the global optimum. Due to the computational expense and the lack of guarantee for global
optimum convergence, nonlinear parameter estimation should be avoided. Only where absolutely necessary,
it should be used. Kirchhoff’s ODE cannot be solved without nonlinear parameter estimation techniques.

The Matlab fmincon has a series of algorithms to perform the minimisation. Further research has to be per-
formed to select the best option. Van Ingen used trial-and-error to select the active set algorithm. All possible
algorithms are listed below. The active set algorithm is also selected as algorithm for the Fokker 100 Kirchhoff
parameter identification.

• Interior Point

• Thrust Region Reflection
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• Sequential Quadratic Programming

• Sequential Quadratic Programming Legacy

• Active Set

The algorithms use the function gradient at each iteration to improve their estimate and move towards the
(local) minimum. Computing gradients can be expensive. If the gradient of the function is known, it should be
given as an input to the nonlinear solver toolbox of Matlab to increase the computational speed and reliability.
If no gradient is supplied, Matlab will use the finite difference method to compute it.

5.2. Aerodynamic Model Parameter Estimation
Once τ1, τ2, a1 and α∗ have been set, the six models for the aerodynamic force and moment equation can
be determined. Note that changes in the model structure for CL requires re-estimation of τ1, τ2, a1 and
α∗. The multivariate orthogonal function modeling explained in section 4.5 must be applied to determine
the five other aerodynamic force and moment coefficient model structures. As the Kirchhoff parameters are
assigned a fixed value eventually, the non-linearity in the model structure dissolves and the remainder of the
parameter estimation routine can be solved using efficient linear solvers. convergence to global minima is
guaranteed.

The stall model can schematically be written as

ŷ(θ) = Aθ (5.1)

where ŷ(θ) is the estimated model output, A the matrix with regressor terms that have been selected using the
multivariate orthogonal function modeling and θ the vector of parameters to be estimated. A cost function
must be selected to determine the parameter vector θ̂ that minimises the error between the measured output
and the model output. The well-known ordinary least squares (OLS) method will be used here, Equation 5.2.

J (θ) = 1
2

(
y − ŷ(θ)

)T (
y − ŷ(θ)

)= 1
2

(
y − Aθ

)T (
y − Aθ

)
(5.2)

Taking the derivative of the cost function J (θ) towards the parameters θ and setting it to zero results in the
minimum values for θ̂. The equation to be solved is given by Equation 5.4.

∂J (θ̂)
∂θ = 0 (5.3)

θ̂ = [
AT A

]−1
AT y (5.4)

The OLS method is derived under the assumption that errors between the actual and modeled output are
normally distributed. This assumption may become invalid for significant modeling errors above the sensor
noise.

5.3. Evaluating Model Quality
Once the optimisation routine has been performed on the selected model structure, the results will be val-
idated. Only a part of the 79 stalls selected will be used for identification. For each configuration, with the
exception of 6° and 25° flap setting, a division will be made between identification data sets and validation
data set. The input data of the validation data sets will be fed to the identified model structure and the output
of the model will be compared with the measured output of the validation set. The quality of the model can
be evaluated using mean squared error (MSE) as well as looking into the parameter covariance to discover
parameters that are too tightly coupled to each other and therefore cause identification issues. In such cases,
it might be better to leave out one term to improve the model fit. Further research is to be performed to find
other metrics that are useful in quantification of the validation.
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The identification of parameter values is again performed separately for each data set. This will lead to vari-
ances in their value. For the identification of the X-parameters, several runs with varying initial conditions
will be done for each data set. This is required as nonlinear optimisation does not guarantee the convergence
to the global minimum. Statistical tests will be used to evaluate the distribution and deviation from normal
distribution of parameter value outcomes for the different data sets used for identification. Further research
is yet to be performed to determine which statistical tests will be used and how to interpret their results and
possibly use them to improve the model quality.

5.4. Model Parameter Identification
5.4.1. Kirchoff Parameters Identification
The identification of the Kirchhoff parameters was performed synchronously with the selection and param-
eter identification of the CL model. Starting from a initial model structure and parameter values, an iter-
ation is started in which the X-parameters and aerodynamic CL parameters are identified separately. The
X-parameters are identified using the fmincon nonlinear optimisation toolbox and the active set algorithm
of Matlab. The identified values are kept fixed to allow a linear optimisation of the aerodynamic parameters
with global minimum convergence guarantees. These found parameters are kept fixed to iterate over the X-
parameters again. This iteration holds until no visual improvements in model fit are observed.

Many attempts have been made to find a suitable model for CL . A dozen of model structure have been tested.
The structures were based on the outcome of the multivariate orthogonal function modeling, engineering
judging, visual comparison between curve behaviour of CL and different measured parameters and compar-
ison to model structures found in literature. The limits of the information content of the Fokker 100 stall
database were however encountered. The certification data contains too little excitation and information to
identify a proper model.

The initial selected model included the elevator deflection. This caused problems in the identification of α∗,
although being generally considered as an easy-to-identify parameter. α∗ determines the stall angle of attack
and therefore can be easily related to the maximum CL value observed. It is furthermore known that the stall
angle of attack decreases for increasing flap setting. The lift curve shifts to the origin for simple flap systems.
For complex slotted flap system, the curve tilts backwards as well, further decreasing the stall angle of attack,
Figure 5.1. As the Fokker 100 database contains stalls at different flap settings, a decrease in α∗ is expected
for increasing flap settings.

CL =CL0 +CLα

(
1+p

X

2

)2

α+CLδa
|δa |+CLδe

δe (5.5)

The inclusion of elevator deflection δe resulted into underestimation of α∗, whilst having very similar values
for the range of flap settings. The underestimation of α∗ is visible in Figure 5.2. The bottom graph shows the
effect of varyingα∗ values on the baseline CL model. The black line is the identified model, whilst the full ma-
genta line is the measured baseline model. To capture the peak in CL , occurring at maximum AoA, the value
of α∗ should go towards 0.35 rad (about 20°). Inspecting raw AoA plots also indicates that the maximum AoA
reached lies somewhere between 20 - 25°. The identified value of α∗ is however just above the lower bound
of 0.3 rad set in the fmincon toolbox. Values slightly above 0.3 rad are found for all flap settings.

From Figure 5.2, it is also visible that τ2 has no visual effect on the CL curve. Identifying the correct value is
therefore unimportant as the value does not affect the CL curve. It is therefore decided to set its value to 0 and
thus leave out the τ2-related term from the Kirchhoff ODE.

The spread of the parameters estimated for the data set with flaps = 0°, is given by Figure 5.3. There is a strong
correlation between CL0 and CLα , ρ =−0.98. As both parameter are essential parts of the model, none of both
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Figure 5.1: Effect of flap setting on lift curve slope, DATCOM 1978

can be removed due to their correlated behaviour. Furthermore, a less strong correlation can be observed
between CLα and CLδe

, ρ = 0.82.

Removing the δe term from the CL model improved the identification of α∗, its behaviour over ranging flap
settings as well as the RMS value of both training and validation data set. Replacing the δe -term by the pitch-
ing moment q improved the RMS values again. The final model used is given by Equation 5.6.

CL =CL0 +CLα

(
1+p

X

2

)2

α+CLδa
|δa |+CLq q (5.6)
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Figure 5.2: Effect of ranging value of the X-parameters on the baseline CL curve (thin full magenta line) for Equation 5.5, flaps = 0°.

Figure 5.3: Correlation and spread of the identified aerodynamic parameters for Equation 5.5, flaps = 0°.
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A.3. 18° Flaps
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B
Fokker 100 Reference Frames and Mass

Model Data

Figure B.1: Schematic overview of the Fokker 100 and the aircraft reference axis system.

148



149

Table B.1: Frames of reference regarding the Fokker 100 (Proto/Series) aircraft.

Frame Name Origin X-Axis Y-Axis Z-Axis
XW [mm] YW [mm] ZW [mm]

FW Vehicle-Nose 0 0 0 AFT RIGHT UP
Fr Vehicle (0% MAC) 15799 0 0 AFT RIGHT UP
Fr,40 Vehicle-40 (40% MAC) 17332 0 0 AFT RIGHT UP
FFUS Fuselage 17332 0 0 AFT LEFT DOWN
FWNG-R Wing (Right) 16334 0 -965 AFT LEFT DOWN
FWNG-L Wing (Left) 16334 0 -965 AFT LEFT DOWN
FVSB Vertical Stabilizer 29957 0 1575 AFT LEFT DOWN
FHSB-R Horizontal Stabilizer (Right) 32801 0 4461 AFT LEFT DOWN
FHSB-L Horizontal Stabilizer (Left) 32801 0 4461 AFT LEFT DOWN
FENG-R Engine (Right) 23607 2681 400 AFT LEFT DOWN
FENG-L Engine (Left) 23607 -2681 400 AFT LEFT DOWN
FNUC Nose Under Carriage 3770 0 -1540 AFT LEFT DOWN
FMUC -R Main Under Carriage (Right) 17649 0 -965 AFT LEFT DOWN
FMUC -L Main Under Carriage (Left) 17649 0 -965 AFT LEFT DOWN

Figure B.2: Top view of the wing tank division into 2 collector tanks and 15 subtanks.

Figure B.3: Front view of the wing tank division into 2 collector tanks and 15 subtanks



C
Model Structures Drag Coefficient CD and

Pitching Moment Coefficient Cm

This appendix gives the results of the multivariate orthogonal function modelling algorithm as proposed by
Morellie [70] for the two symmetric force and moment coefficients: the drag force and pitching moment. No
detailed analysis and model structure determination has been further performed.

C.1. Drag Force Coefficient CD

Figure C.1: Outcome of Morelli’s algorithm for the drag coefficient CD , 1st order terms and flaps = 0°
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Figure C.2: Outcome of Morelli’s algorithm for the drag coefficient CD , 1st and 2nd order terms and flaps = 0°

Figure C.3: Outcome of Morelli’s algorithm for the drag coefficient CD , 1st order terms and flaps = 18°
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Figure C.4: Outcome of Morelli’s algorithm for the drag coefficient CD , 1st and 2nd order terms and flaps = 18°

Figure C.5: Outcome of Morelli’s algorithm for the drag coefficient CD , 1st order terms and flaps = 42°
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Figure C.6: Outcome of Morelli’s algorithm for the drag coefficient CD , 1st and 2nd order terms and flaps = 42°

C.2. Drag Force Coefficient Cm

Figure C.7: Outcome of Morelli’s algorithm for the drag coefficient Cm , 1st order terms and flaps = 0°
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Figure C.8: Outcome of Morelli’s algorithm for the drag coefficient Cm , 1st and 2nd order terms and flaps = 0°

Figure C.9: Outcome of Morelli’s algorithm for the drag coefficient Cm , 1st order terms and flaps = 18°
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Figure C.10: Outcome of Morelli’s algorithm for the drag coefficient Cm , 1st and 2nd order terms and flaps = 18°

Figure C.11: Outcome of Morelli’s algorithm for the drag coefficient Cm , 1st order terms and flaps = 42°
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Figure C.12: Outcome of Morelli’s algorithm for the drag coefficient Cm , 1st and 2nd order terms and flaps = 42°



D
Recommendations for Future Research

The Fokker 100 data set has shown its limitations. It does contain however still possibilities for more funda-
mental research towards the creation of stall models.

• Current research for differential Kirchhoff terms was limited to a single separation point on both the
right and left wing. The use of multiple separation points per wing (panel-like method) could offer
further improvements in model fit.

• Many suggestions made by authorities for pilot training is to include the startle factor. Iced wings ex-
hibit decreased aerodynamic properties. Creating stall models of iced wings is an interesting research
to work on the startle factor.

• Model and include control surface effectiveness as this decreased during stalls.

• Morelli’s multivariate orthogonal function modeling algorithm showed behaviour not corresponding
to Morelli’s statements. More insight into the decoupling of orthogonal model terms to truly show their
individual contribution could aid this model structure selection method to become more efficient. It is
now still necessary to check MSE, VAF, ... by trial and error to come up with the best model fit.

• Sufficiently excite control surfaces during new flight test with the Cessna Citation II PH-LAB.

• Pilots have troubles to perform the flight manoeuvres whilst sufficiently exciting their aircraft. Design-
ing a controller that provides dedicated excitation on top of the pilot input is an interesting subject to
investigate.

• Construct a Fokker 100 buffet model to more accurately filter out buffet in measurement signals.

• With data set that have a sufficient information content, it is worth investigating if a relationship can
be described between Kirchhoff’s ODE and/or parameters that expresses its values as function of flap
setting.

• The idea above can also be extended to aileron deflection as this changes the airfoil profile and thus its
aerodynamic characteristics determining the Kirchhoff parameters.

• So far, we’ve used the Gramian matrix to investigate the information content in an existing data set.
Turning the logic around: Can we design a proper stall flight identification manoeuvre that has a high
information content based on predictions of the Gramian matrix?

• The Fokker 100 data exhibits ’wavy’ behaviour in its flight data for the six aerodynamic coefficients. This
is not perfectly followed by the current model structures and is not clearly observed in the measured
parameters. An investigation towards identifying the cause of this behavior can provide additional and
important insights.
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• Investigate whether non-stationary model terms can capture the behaviour described above.
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