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A B S T R A C T

Wire Arc Additive Manufacturing (WAAM) is a metal Additive Manufacturing (AM) technique that can produce
fully dense metallic structures with virtually no porosity and at high productivity, compared to other currently
available AM techniques such as Laser Powder Bed Fusion (L-PBF). As development of the technique is still
ongoing, monitoring or post-fabrication inspection methods are under active investigation. In this work, we
apply Resonant Ultrasound Spectroscopy (RUS) to samples fabricated from two different wires (construction steel
and austenitic stainless steel) and quantitatively characterize isotropic and anisotropic elastic behaviour of the
obtained dense parts. We find that an isotropic elastic model fits the construction steel samples well. For the 316
L polycrystal however, the isotropic elastic model is unsatisfactory, and an effective orthotropic elastic model is
found to fit the resonance data. EBSD and XRD measurements are used to confirm and explain this difference in
elastic behaviour between steel grades by the presence of a strong texture in the 316 L samples. Additionally, the
texture data measured by EBSD are used to infer single crystal constants from the polycrystal resonance data
using the Hill averaging scheme for one of the 316 L samples. We end by discussing the differences between the
two elastic models used in the study (orthotropic and texture based) as well as the link between the measured
resonances and microstructural descriptions of the samples.

1. Introduction

Wire Arc Additive Manufacturing (WAAM) is a metal Additive
Manufacturing (AM) technique that can produce fully dense metallic
structures with virtually no porosity and at high productivity, compared
to other currently available AM techniques such as Laser Powder Bed
Fusion (L-PBF). As development of the technique is still ongoing,
monitoring or post-fabrication inspection methods are being actively
developed [1]. Resonant Ultrasound Spectroscopy (RUS) [2,3] is a non-
destructive characterization technique that enables the characterization
of elastic material properties based on the propagation of elastic waves
in the bulk of the object under examination. It is a good candidate for
post-fabrication inspection of samples, such as manufactured by WAAM,
as it is sensitive to a combination of density, elastic and geometric fac-
tors and can be used to detect defects [4].

RUS has already been widely applied to AM samples and parts. Some
authors have used RUS as a method for defect detection and classifica-
tion of samples. McGuigan et al. [5] fabricated lattice arches with

missing struts and compared experimental resonance frequencies to
simulated ones using finite element models. Obaton et al. [6] also used
RUS to sort complex as-built specimens into different classes depending
on process parameters and geometry parameters, showing the high
sensitivity of the method to the input parameters. Bozek et al. [7] used
nonlinear RUS to characterize 316 L-PBF samples after different heat
treatments, showing qualitative links between the evolution of the
microstructure and the RUS measurement. Manogharan et al. [8]
investigated the applicability of nonlinear RUS to configurations that
resemble in situ monitoring in AM machines. Le Bourdais et al. [9] used
RUS to characterize L-PBF aluminium samples and have shown
numerous correlations between porosity and elastic resonance
measurements.

Other authors have focused on applying the RUS methodology to
quantitative analysis of texture and its evolution. Rossin et al. [10]
investigated effects such as recrystallization after heat treatment and
grain structure evolution, documenting a reduction in the dominant
〈100〉 texture with RUS and EBSD measurements. Rossin et al. [11]
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performed RUS inversion using a tensorial texture representation of the
ODF-coefficients with known single crystal constants and obtained good
agreement with EBSD data. Rossin et al. [12] investigated how to
characterize single crystal coefficients from polycrystalline alloys using
RUS and EBSD, which helps avoiding the expense of growing single
crystals or synchrotron experiments.1

This short literature review suggests that RUS is well suited for
elastic analysis of AM samples and in particular for indirectly obtaining
information about texture through the determination of elastic con-
stants. In this work, we therefore propose to apply it to samples pro-
duced by the WAAM process with the aim to assess whether we can link
the resonant spectra to microstructural characteristics of the samples.
Our paper is organized as follows: we first describe the fabrication of the
four samples under study and the analysis methods (RUS, EBSD, XRD) in
section 2. We describe, in particular, the three inverse models used in
our RUS analysis: an elastic isotropic model, an effectively orthotropic
model, and a EBSD-texture model based on the Hill averaging scheme.
We then present the results from RUS, EBSD and XRD in section 3.
Finally, we discuss the differences between the RUS inverse models and
how they relate effective part-scale properties to microstructure in sec-
tion 4.

2. Sample description and analysis methods

The following section describes the samples analysed in this study, as
well as the analysis methods used.

2.1. Sample fabrication

Our study involved two types of steel: stainless steel 316 L and
structural steel S620. Table 1 presents the chemical composition of the
wires used to print the coupons. The original blocks were printed at
Naval Group using a GMAW (Gas Metal Arc Welding) - CMT (cold metal
transfer) machine. Table 2 shows the deposition parameters. Two sam-
ples for each steel were extracted from the printed block using a cutting
machine. Fig. 1 displays the dimensions of the printed parts, the di-
mensions of the extracted samples (all 10 mm × 15 mm × 20 mm) and
the location of the sample extraction.

2.2. EBSD

We measured the crystallographic texture by electron backscattered
diffraction (EBSD) technique. To prepare for EBSD measurements,
samples were polished using standard mechanical polishing steps, fol-
lowed by polishing with colloidal silica suspension. The EBSD mea-
surements were conducted using a field emission scanning electron
microscope (FEI-Quanta 450) set to an accelerating voltage of 20 kV, a
working distance of 18 mm, and a tilt angle of 70◦. The measurements
were taken with a step size of 3 μm. The post-processing of EBSD data
was carried out using OIM software V 8. The ODFs, derived from the
EBSD maps, were obtained by superimposing Gaussian functions with a
scatter of 5◦ on each discrete pixel of the scan. The ODFs, derived from
the EBSD maps, were obtained by superimposing Gaussian functions
with a scatter of 5◦ on each discrete orientation corresponding to the
individual pixels of the scan. The texture was calculated using the
Generalized Spherical Harmonic Expansion (GSHE) method with a
maximum rank of 16.

Table 1
Chemical compositions for S620 and 316 L wires (wt%), taken from constructor datasheets.

Wire type C (%) Si (%) Mn (%) P (%) S (%) Cr (%) Ni (%) Mo (%) Cu (%) V (%) N (%)

S620 0.10 0.73 1.60 0.009 0.005 0.56 0.54 0.27 0.03 0.01 –
316 L 0.015 0.45 1.6 – – 18.5 12.0 2.6 – – 0.04

Table 2
Deposition parameters for samples in this study.

Wire type Size of wire (mm) Current (A) Voltage (V) Type of current Contact-tip to work-piece distance (CTWD)
(mm)

Travel speed (mm/
min)

Gas flow (l/
min)

S620 1.2 220 18.2 DC 15 650 16
316 L 1.2 195 13.5 DC 17 450 15

Fig. 1. (left) Metallic samples analysed in this study: austenitic 316 L samples (a) and (b), S620 samples (c) and (d). (right) Schematic depiction of S620 samples
original location within massive block with block reference frame (identical to sample reference frame).

1 Most of this work is summarized in Jeff Rossin’s thesis [13] and has been
published as open-source codes (CmdStan RUS [14] and Texture-Rus [15]).
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2.3. XRD

To carry out phase analysis, the conventional X-ray diffraction (XRD)
method was employed using a Bruker D8-Advanced diffractometer. A
copper Kα tube was used as the target, and the scan step size was 0.02
degrees over the 2θ range from 30 to 110◦. The XRD diffractometer was
operated using a current of 40 mA and a voltage of 40 kV. The XRD
patterns were then analysed using Xpert high-score software.

2.4. Resonant ultrasound spectroscopy

2.4.1. Fundamentals and experimental device
To perform resonant ultrasound spectroscopy measurements, an

experimental apparatus already described in [9] was used. The system
uses a network vector analyser and piezoelectric sensors to probe the
sample with sinusoidal ultrasonic waves at different frequencies to
produce a resonance spectrum. We measured each sample several times.
As is habitual for resonance measurements, the sample was remounted
each time, to avoid missing peaks [2]. The measurement setup is shown
in Fig. 3.

To accurately record geometry and density used in resonant ultra-
sound inversion, samples were weighed with a precision of 0.01 g and

the dimensions measured using a digital calliper with a precision of 0.1
mm.

The obtained spectra were then processed, and peaks were extracted.
This was done by manually defining peak locations and fitting a Lor-
entzian model to the recorded magnitude data using the lmfit software
library [16]. To obtain elastic constants that fit the extracted peaks, the
RUS inverse problem was solved using an in-house code. The inverse
problem was solved using the Bayesian RUS methodology described in
[14]. This involves two main components: the forward model and
defining a posterior probability data model.

The forward model used in this work is based on the XYZ algorithm
[17] that involves solving the elastic free vibration equations of motion
using a high-order polynomial Rayleigh-Ritz approximation. In practice,
the method inputs are density ρ, elastic constants cij and cube geometry
defined by side lengths l1, l2, l3. The method assembles a mass matrix M
and a stiffness matrix K and yields eigenvalues ω2

i and eigenvectors a
that satisfy ω2

i Mai = Kai(with i = 1, …, 3).
The posterior probability used in the inverse problem is:

P(θ|M)∝P(M|θ)P(θ), (1)

where P(θ) is the a priori probability of the unknown parameter set θ

Fig. 2. XRD pattern of one of the WAAM processed 316 L stainless steel, showing intensity of selected austenite peaks.

Fig. 3. Experimental setup used for resonance frequency measurement and example magnitude spectrum.

F. Le Bourdais et al. Materials Characterization 220 (2025) 114603 

3 



(in our study, this set is the relevant elastic constants defining the cij)
and P(M|θ) is the likelihood of the measured frequencies given the fre-
quencies computed by the parameter set θ. The a priori probability in-
corporates prior information on the elastic constants. The likelihood is
defined as

P(M|θ) =
∏N

k=1

1
σ
̅̅̅̅̅̅̅
2 π

√ exp
{

−
1

2σ2

(
f expk − fmodel

k

)2
}

, (2)

where the subscript k is used to indicate corresponding experimental f expk

and computed frequencies fmodel
k (where fmodel

k = ωk
2π, with ωk solution of

the above equations for a given cij
)
. The σ parameter quantifies the

overall experimental variability that is not accounted for by the pa-
rameters of the model (e.g. sensitivity to sample positioning, mass
loading effects). To find the true posterior distribution, we use a Python
implementation, called emcee, of the affine-invariant ensemble sampler
for Markov Chain Monte Carlo (MCMC) proposed by Goodman&Weare
[18]. This method allows solving the inverse problem as a distribution of
samples converging to the true underlying posterior probability. As is
usual with MCMC methods, we carefully monitored convergence of the
sampler and discarded burn-in samples.

Regarding the elastic model parameters, i.e. the way the cij are
defined, we use three models described in the next sections. First, an
isotropic model is used for the elastic description of the S620 samples.
Second, two elastic anisotropic models are used for the 316 L samples:
the effective orthotropic elastic model and the EBSD measurement-
based model.

2.4.2. S620 sample inversion: Isotropic elastic model
The S620 samples were described by an isotropic elastic model, i.e.

elasticity that is invariant with the rotation of the crystallographic frame
of reference. Modelling a metallic polycrystalline sample as isotropic is
usually justified when the sample is an aggregate of many small grains
with random crystal orientations. Two elastic constants are necessary in
this case. We used constants c11 and c44 for this, although other choices
are possible. Using Voigt notation for the elastic constant matrix, this
class of elasticity leads to the following cij tensor:

cisotropic
ij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c11 − 2c44 c11 − 2c44 0 0 0
c11 − 2c44 c11 c11 − 2c44 0 0 0
c11 − 2c44 c11 − 2c44 c11 0 0 0

0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

2.4.3. 316 L sample inversion: effective orthotropic elastic model
When the sample exhibits crystallographic texture, i.e. when crystal

orientations are not randomly distributed, elastic behaviour becomes
more complex. To model the elasticity of the 316 L austenitic steel
samples, we used an orthotropic model. This describes its elasticity using
nine coefficients. The resulting cij matrix reads:

corthotropic
ij =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

This choice of elastic tensor rests on the hypothesis that the elasticity
can effectively be represented by a medium that possesses three mutu-
ally orthogonal planes of symmetry, such as is e.g. the case for a rolled
metal sheet. A similar model has already been used as the effective
elastic constants of a an additively manufactured nickel-based poly-
crystal in [10]. To justify this assumption, we have to consider how the
effective elastic properties at the sample scale are related to the elastic
properties at the crystallite level. One of the simplest ways to do this is to
use the Voigt, Reuss and Hill (VRH) models of aggregate elasticity [10].
The Voigt model assumes constant strain in all crystallites, while the
Reuss model assumes constant stress. These assumptions lead to aggre-
gate elastic constants computed as volume weighted stiffness of grains
(Voigt case) or volume weighted compliances of grains (Reuss case)
[19]. The Hill averaged tensor is the average of the elastic tensor ob-
tained by the two previous methods. Without going further, we can then
say that the orthotropic model is the hypothetic elastic Hill average
model corresponding to the metallic 316 L polycrystal. The resonant
ultrasound model can then determine the best fitting elastic module
within this class of models based on the measured resonant peaks.

A different model, that relies on the already described VRH models of
elastic homogenization, is the texture-based model described in the next
section.

2.4.4. EBSD texture-based elastic model using the Hill averaging scheme
As described above, the Voigt and Reuss models lead to volume-

weighted averages of elastic constants. The elastic tensor within a
grain can be modelled by single crystal elastic constants that are
“rotated” within each grain, taking into account the geometrical trans-
formation relating the crystal to the sample reference frame. This is
usually written Crotated

ij = M⋅cSCij ⋅MT, where Crotated
ij is the single crystal

elastic tensor in sample reference frame, cSCij is the single crystal elastic
tensor in crystal aligned reference frame and M the matrix representing
the change of coordinate for the fourth order tensor in Voigt notation
[20]. Using the Bunge Euler angles convention φ1,Φ,φ2 and using the
fact that austenite is cubic [21,23], we compute the Voigt and Reuss
elastic constants and then take the Hill average cHill

ij = 1
2c

Voigt
ij + 1

2c
Reuss
ij

based on the single crystal values for the whole material, as in
[22,24,25]. We use the texture data measured by EBSD as input for the
Bunge Euler angles at each pixel and average over each pixel of the
region of interest, to be representative of the volume. These elastic
constants are used to solve the RUS inverse problem and fit the single
crystal elastic constants to the recorded data. This model is depicted
schematically in Fig. 4.

Due to the grid-like nature of the EBSD image, the Voigt elastic tensor

Fig. 4. Schematic description of the model based on measured texture and single crystal elastic constants.
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becomes an average over the N valid pixels in the image: cVoigtij =

1
N
∑N

i=1 Mi⋅cSCij ⋅MT
i , cSCij is the single crystal elastic tensor and M the matrix

representing the change of coordinate for the fourth order tensor in
Voigt notation [20]. In order to avoid repeating this computation for
varying single-crystal parameters c11,c12,c44, we linearly decompose the
cubic single-crystal matrix in the form cSCij = c11Kc11 + c12Kc12 + c44Kc44

where Kc11 ,Kc12 ,Kc44 are 6 × 6 Voigt matrices containing only ones and
zeros. Factoring out the scalar constants leads to the following expres-
sion:

In the above formula, the parenthesized expressions can be
computed once and then reused for fast evaluation of the Voigt elastic
tensor when the single crystal parameters are varied.

A similar expression can be derived in terms of stiffnesses s11, s12, s44

for the Reuss average cReussij =

[
1
N
∑N

i=1

(
Mi⋅cSCij ⋅MT

i

)− 1
]− 1

:

where s11 = c11+c12
c2

11+c11c12 − 2c2
12

, s12 = − c12
c2

11+c11c12 − 2c2
12

, s44 = 1
c44

. As with the

formula for the Voigt average, the expressions in parentheses can be
computed once and reused for multiple evaluations while varying the
input values of c11,c12,c44, which are unknown and hence can be set to

Fig. 5. (a) and (b): BD-IPF maps of 316 L and S620 steels respectively, (c) and (d) The pole figures of 316 L and S620 steels, respectively.

cVoigt
ij = c11

(
1
N
∑N

i=1
Mi⋅Kc11 ⋅MT

i

)

+ c12

(
1
N
∑N

i=1
Mi⋅Kc12 ⋅MT

i

)

+ c44

(
1
N
∑N

i=1
Mi⋅Kc44 ⋅MT

i

)

. (5)

cReuss
ij = s11

(
1
N
∑N

i=1

(
MT

i
)− 1⋅Kc11 ⋅M− 1

i

)

+ s12

(
1
N
∑N

i=1

(
MT

i
)− 1⋅Kc12 ⋅M− 1

i

)

+ s44

(
1
N
∑N

i=1

(
MT

i
)− 1⋅Kc44 ⋅M− 1

i

)

. (6)
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“optimal” values inferred from the resonance frequency measurement.
The obtained Hill elastic constants cHill

ij are then used as inputs within
the Bayesian inversion algorithm described in subsection 2.4.1.

The next section discusses the results obtained by the measurement
techniques described in this section.

3. Results

3.1. Texture and physical analysis

Figure 5 displays the EBSD results, including the orientation maps,
the pole figures and the inverse pole figures (using the build direction,

Fig. 6. RUS inversion result for S620 sample 1. The measured spectrum is shown along with extracted peaks as crosses, and the fitted model shown as vertical bars.

Fig. 7. Effective orthotropic RUS inversion result for 316 L sample 1. The measured spectrum is shown along with extracted peaks as crosses, and the fitted model
shown as vertical bars.

Fig. 8. EBSD texture-based elastic model inversion result for 316 L sample 1. The measured spectrum is shown along with extracted peaks as crosses, and the fitted
model shown as vertical bars.
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BD, as reference direction). This sample shows an austenitic micro-
structure consisting of grains that are mostly elongated in the build di-
rection, as shown on Fig. 5a. The XRD measurement also confirmed the
formation of a single austenitic structure during WAAM processing of
316 L stainless steel (see Fig. 2). The red colour predominance in the IPF
map indicates that most austenite grains have a 〈001〉 direction aligned
parallel to the building direction. The texture results of 316 L steel are
also presented as pole figs. (PF) in Fig. 5c. The maximum intensity of
~18.4 MRD (multiples of a random density) in the PFs indicates the
formation of a highly textured microstructure during 3D printing.
Inspecting the (001) PF it shows that the 〈001〉 II BD fibre texture is the
main texture component of the 316 L steel. Other studies have also re-
ported the formation of a highly textured microstructure during additive
manufacturing of 316 L steel [26,27].

Figure 5b shows the IPF map of S620 steel consisting of a micro-
structure of equiaxed grains. The deposited S620 steel exhibited a
ferritic microstructure with a body-centred cubic (BCC) crystallographic
structure. The PFs of steel S620, shown in Fig. 5d, reveal a maximum
intensity of ~1.2MRD, indicating that the deposited S620 steel has a
near-randomly textured microstructure. The solid-state phase trans-
formations from austenite to ferrite can be considered the main factor
responsible for the weak texture of S620 steel.

3.2. Elastic constants obtained by RUS

3.2.1. S620 isotropic elastic model
The results obtained using the isotropic model fit on S620 samples

are shown in Table 3. The obtained RMS error, typically used in eval-
uating a RUS fit, is 0.2 %, well below the 0.8 % indicating a good fit [28],
even though only seven peaks were used. This is further confirmed by
the visual match between the recorded spectrum and the model for S620
sample 1, shown in Fig. 6. The Bayesian inverse model also provides
error bars for the elastic constants, based on the noise model fit using the
σ parameter. In this case, the errors σ and RMS are of a magnitude
comparable to those found in the isotropic inversion in [14].

3.2.2. Effective orthotropic model applied to 316 L samples
The results obtained by applying the effective orthotropic model to

the 316 L samples are shown in Table 4, along with the error estimates
from the Bayesian model. The first fifty frequencies picked from the
resonance spectra were used in these inversions. The obtained RMS error
is below 0.8 % and no resonance frequencies have been missed, again
suggesting this is a good fit [28], although the error figures are larger
than in the previous S620 case.

As seen in Table 4, the 316 L samples exhibit a strong elastic
anisotropy. While axes 1 and 3 have similar effective elastic constants,
axis 2 stands out as having a significantly lower shear constant c55. With
our modelling choices, axis 2 is parallel to the build direction of the 316
L samples. Fig. 7 shows the comparison between the measured spectrum
and the model peaks predicted by the best-fit parameters for 316 L
sample 1.

3.2.3. EBSD texture-based elastic model
The EBSD texture-based model described in the previous sections

leads to two sets of results. The Bayesian inversion infers the best single
crystal constants from the resonance data, shown in Table 5. The first
fifty frequencies picked from the resonance spectra of 316 L sample 1
were used in this inversion. In a subsequent step, the same constants of
the elastic tensor already shown in Table 4 are also computed and shown
in Table 6. Fig. 8 shows the obtained model along with the measured
resonance data.

4. Discussion

This study dealt with the characterization of elastic and crystallo-
graphic properties of four samples, cut from walls that were manufac-
tured by the WAAM technique. Two different wires were used, one
composed of a low-alloy construction steel (S620), and the other one
composed of an austenitic stainless steel (316 L). Resonant ultrasound
spectroscopy was used as the primary analysis tool to probe the elastic
behaviour of these samples, since it is particularly sensitive to elastic
anisotropy because it measures all elastic constants simultaneously [29].

Fig. 9. Comparison of elastic constants for 316 L sample 1 obtained by effective model (a) and EBSD texture based model (b).

Table 3
Inversion results for S620 samples obtained using the isotropic elastic RUS
model.

Sample c11 (GPa) c44(GPa) σ (kHz) RMS (%)

S620 sample 1 267.15 ± 4.00 81.91 ± 0.25 0.25 ± 0.10 0.17
S620 sample 2 266.39 ± 5.70 81.92 ± 0.44 0.34 ± 0.20 0.19

Table 4
Inversion results for 316 L samples obtained using the effective orthotropic RUS model. The value indicated as ± is the standard deviation (i.e. the 16–84 % quartile).

Sample c11(GPa) c22(GPa) c33(GPa) c44(GPa) c55(GPa) c66(GPa) c23(GPa) c13(GPa) c12(GPa) σ (kHz) RMS
(%)

316 L
sample 1

258.48 ±

10.24
219.78 ±

6.61
216.81 ±

7.56
119.64 ±

3.37
65.50 ±

0.88
109.19 ±

1.56
120.97 ±

7.45
106.13 ±

6.53
143.15 ±

8.78
1.07 ±

0.15
0.53

316 L
sample 2

249.70 ±

9.71
221.44 ±

9.53
228.97 ±

10.64
115.44 ±

3.10
66.51 ±

1.02
112.49 ±

1.88
130.06 ±

10.06
110.15 ±

9.29
141.61 ±

10.20
1.24 ±

0.11
0.72

Table 5
Texture based model: single crystal elastic constants computed using Bayesian
inversion and model error estimates σ and RMS.

Sample c11 (GPa) c12 (GPa) c44(GPa) σ (kHz) RMS
(%)

31 6 L
sample 1

211.94 ±

6.37
143.73 ±

6.68
123.85 ±

2.11
2.13 ±

0.22
1.32
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EBSD imaging was used to confirm the RUS conclusions.
The S620 samples resonant spectrums were found to be a good fit

with an isotropic elastic model. Additional EBSD data gave a good
explanation for this result, as the microstructure consisted of small
grains with a nearly random crystallographic texture. This explained the
observed elastic isotropy [30].

However, the isotropic model could not be applied satisfactorily to
the 316 L samples (i.e. the resonance frequencies could not be fitted with
error below 0.8 % using this two independant elastic constants model).
Therefore, we have used two different models with a larger number of
elastic constants to fit the 316 L resonance data. The effective model
assumes orthotropic elastic behaviour of the sample, described by nine
independant elastic constants. The EBSD texture based model assumes
that the orientation statistics observed by EBSD can be used within the
Hill homogenization procedure, in combination with a cubic description
of the 316 L single crystal elasticity (three independent elastic con-
stants). These two models have been used to infer elastic constants from
the resonant spectra that were measured on 316 L sample 1. As shown in
the results section, both models give different elastic constants of the
same order of magnitude. In particular, both models show that the c55
modulus, which is the shear constant related to axis 2, corresponding to
the grain elongation axis and build direction, is softer than the c44 and
c66 (respectively the transverse and weld direction). Fig. 9 shows the
elastic tensors corresponding to one of the polycrystalline 316 L samples
using the two models. There is a satisfactory agreement between the two
methods for almost all elastic constants, differences being usually less
than 10 GPa and often less than 5 GPa.

However, there were remaining differences between the models and
the question arose whether or not one model is better than the other.
Fig. 9 particularly shows that the effective model has many elastic
constants that are zero where the texture-based model has small values,
almost all below 10 GPa (if these constants are set to 0 GPa, the average
error incurred on the first 50 frequencies is just 0.7 %). The zero values
are a consequence of the hypothesis that the effective microstructure is
orthotropic with orthotropic axes being aligned with the sample di-
rections, but is difficult to justify theoretically. Other authors have used
similar hypotheses for Inconel 625, including further free parameters in
the form of Euler angles that rotate the effective microstructure refer-
ence frame [10].

The EBSD-measured texture model should be a better model in the
sense that it takes into account the true effects of crystallographic
anisotropy but as results have shown, it performs worse in terms of σ and
RMS error. One reason for this could be that the “true” material texture
is less accurately represented by the texture-based model than by the
effective model. This could be either due to the cubic elasticity hy-
pothesis of the 316 L single crystal, but this seems unlikely in the light of
previous work [31]. Another possibility would be that the measured
texture is a biased sampling of the average texture of the sample, for
example due to measuring only a few dozens of grains on the surface out
of the millions in the sample bulk. This situation could be similar to the
one encountered by Rossin et al. [12] when comparing EBSD-measured
texture to neutron diffraction data and finding partial disagreement.
Reasoning purely in terms of model parameters, another explanation
could be that the texture model has only three free parameters, the cubic
single crystal constants, while the effective model has nine, allowing
greater flexibility and thus lower mismatches.

The present work also allowed the characterization of the single
crystal constants from the bulk data in a similar framework than the one
introduced by Rossin et al. [12]. Our results are in good agreement with
the values from Ledbetter [31], who mentions values of 207, 133 and

117 GPa for c11, c12, c44, while we find 211.94, 143.73 and 123.85. Of
course, our approach does not give significant insights into this partic-
ular material, but could be applied to novel materials that exhibit sig-
nificant anisotropy and cannot be easily grown as single crystals, as
mentioned in [12].

The elastic constants found using RUS reflect the underlying crys-
tallographic texture of the samples used in the study. Since the 316 L
sample is highly anisotropic, we could actually go even further and try
transforming the elastic constants to a texture representation. This could
be done using either the 2nd order Hashin-Shtrikman tensorial ODF
representation such as done in Rossin et al. [11] or the spherical
convolution model of wave velocities proposed by Lan et al. [32].

5. Conclusions

In this article, we have investigated rectangular samples machined
from walls of 316 L and S620 steel wires fabricated with the WAAM
process. Several analysis techniques were applied to the samples to
reveal their elastic and structural characteristics. Resonant ultrasound
spectroscopy was used to measure the vibrational spectrum of samples
and fit elastic constants to it, EBSD to characterize its texture and XRD its
crystal structure. The RUS method led us to conclude the S620 con-
struction steel exhibits isotropic elastic behaviour, which was confirmed
by the random texture as observed by EBSD. The elastic behaviour of the
316 L polycrystals, however, was found to be strongly anisotropic. We
used two RUS inverse models to analyse the elastic anisotropy: first, an
effective model supposing orthotropic elastic symmetry, and second, a
texture-based model applying the Hill average scheme to compute
elastic constants based on a cubic single crystal elasticity hypothesis.
The RUS inverse model based on EBSD texture fit was of less quality than
the one of the effective orthotropic model, but provided a physical un-
derstanding of the loss of elastic stiffness along the build axis direction.
EBSD confirmed that the elastic anisotropy was linked to the strong
texture due to <001> directions aligned parallel to the building direc-
tion. This particular conclusion has already been well documented for
austenitic welds with fibre-like texture [31], however we show that it
also applies to this WAAM fabricated sample. This study also suggests
that RUS is well suited for characterizing anisotropy in additively
manufactured samples.
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Table 6
Texture-based model: elastic constants computed from the single crystal fit with associated uncertainties.

Sample c11(GPa) c22(GPa) c33(GPa) c44(GPa) c55(GPa) c66(GPa) c23(GPa) c13(GPa) c12(GPa)

316 L sample 1 256.14 ± 6.68 223.23 ± 6.93 253.51 ± 6.71 113.00 ± 1.69 62.85 ± 0.21 106.99 ± 1.40 140.38 ± 6.62 107.54 ± 7.15 137.75 ± 6.66
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