Bachelor Graduation Thesis

p
TUDelft Y Viomo



Non-Invasive
Monitoring and

Prevention of RBD

TU Delft Supervisor:

Momo Medical Supervisor:

Project Duration:
Faculty:

Cover:

Episodes

by
Student Name Student Number
K.B. Dzhumageldyev 5274230
J.H. Kruize 5261961
T.R.J. Schram 5353175

Prof.dr. Paddy French

Ir. Thomas Bakker

April, 2023 - June, 2023

Faculty of Electrical Engineering, Mathematics & Computer Science, Delft

Storyset lllustrations

o]
TUDelft



Abstract

The goal of this project was to develop a sensor system that detects Rapid Eye Movement Sleep Be-
haviour Disorder (RBD) episodes in an early stage and brings the patient to a lighter sleep stage at the
episode onset. This project was completed in close collaboration with Momo Medical, a fast-growing
start-up and developer of the BedSense - a device placed under mattresses that tracks the bed posture
and restlessness of residents in nursing homes. To detect RBD episodes, the BedSense was used in
combination with a sock that houses the biosensors EDA, PPG and an accelerometer. The sock also
contains a vibrator module, that can bring the patient to a lighter sleep stage in case of an episode.

The outcomes of this project are promising, data has been recorded from both non-RBD test subjects
and an RBD patient, and the vibration module has been tested.

The results of this project were integrated with another project seeking to develop an algorithm to detect
RBD episodes in an early stage. This project used data from the Momo BedSense and from the sock
that has been created in this project.



Preface

Rapid Eye Movement Sleep Behavior Disorder (RBD) is a neurological parasomnia disorder caused
by the absence of muscle paralysis during REM sleep, leading to individuals acting out their dreams
and potentially causing harm to themselves and others. The goal of this project was to design a non-
invasive and user-friendly system capable of detecting episodes caused by RBD and bringing patients
to a lighter sleep stage.

In order to achieve this goal, two subgroups were formed; one was responsible for developing a hard-
ware system, and another focused on designing a software system. This thesis focuses on the design
process, method, and results of the hardware subgroup.

The goal of the hardware subgroup was to design and implement a hardware system capable of mea-
suring biosignals related to RBD episodes in an early stage and bringing the patient to a lighter sleep
stage in case of an episode. The designed hardware system is complementary to the Momo Bed-
Sense. On the other hand, the goal of the software subgroup was to develop an algorithm to detect a
RBD episode in an early stage, based on the data from the BedSense and the hardware system that
is designed in this thesis.

We would like to express our gratitude to the Momo Medical team: Thomas Bakker, Danny Eldering,
and Karen van der Werff. We are particularly grateful for Thomas Bakker’s input and guidance in
helping us realise a successful project. We would also like to extend our thanks to our supervisor,
Paddy French, for his mentorship and guidance.

A special thanks goes to Krishnan Kandiyoor, Jasper Post, and Pepijn Kremers, the members of the
software subgroup. It was a pleasure working with you to make this project a success.

Lastly, our sincerest thanks to Bert Verzijl, a patient diagnosed with RBD who graciously agreed to
collaborate with us. His invaluable insights and goodwill have been of great help in the success of this
project.

Delft, June 2023
Kerim Dzhumageldyev, Jan Kruize, and Tijn Schram

11



contents

1 Introduction 1
1.1 Rapid Eye Movement Sleep Behaviour Disorder . . . . . .. ... ... ... ...... 1
1.1.1 SleepStages . . . . . . . . e 1

1.1.2 REM Sleep BehaviourDisorder . . . . . . ... ... .. ... ... . ....... 2

1.1.3 Diagnosis . . . . . . . 2

114 TreatmentforRBD . . . . . . . . . . .. . . .. e 2

1.2 State-of-the-Art Analysis . . . . . . . . . .. 3

1.3 Goalofthe Project . . . . . . . . . . . 3
1.4 Structureof Thesis . . . . . . . . . . . e 4

2 Program of Requirements 5
2.1 Requirements for the Entire System . . . . . ... ... . oo oo 5
2.2 Requirements forthe Hardware Group . . . . . . . . . . . .. . ... .. .. .. ..., 5

3 Sensors 7
3.1 Possible Sensors . . . . ... 7
3.2 SensorChoices . . . . . . . . . . e 10

4 Sensor Readout 1"
4.1 I2C Communication . . . . . . . . . .. e 1
4.2 Sensor Structures . . . . . . . ... e e 11
4.3 Sampling . . . . .. e e 12
431 Ideal . . . . . . e 12

4.3.2 DataCollection . . . . . . . . . . . .. e 12

44 Implementation . . . . . . . . e 12

5 Waking Methods 15
5.1 Possible Waking Options . . . . . . . . . . . . .. e 15
5.2 Waking Choice . . . . . . . . . . e 16

6 Prototyping 17
6.1 Placement. . . . . . . e 17
6.2 SockDesign . . . .. ... e e 18
6.3 ESP32Housing. . . . . . . . . . 18
6.4 PowerUnit . . . . . . . . e e 19
6.5 Sock Prototype . . . . . . . . 20

7 Data Collection and Testing 22
7.1 Communication . . . . . . . . L e e e 22
711 BLE:SockandtheBedSense. ... ... .. ... ... . ... ... ...... 22

7.1.2 WiFi: Sockandthe PC. . . . . . . . . ... . . . . . 23

7.2 DataCollectionand Testing . . . . . . . . . ... 23

8 Conclusion and Discussion 27
8.1 DISCUSSION . . . . . . e 27
8.2 Conclusion . . . . . . . . e 27
8.3 FutureWork . . . . . . . e 28
References 30
A Data Collection on RBD Patient 33
B RBD Diagnostic Criteria 36
B.1 International Classification of Sleep Disorders, Third Edition . . . . . . . ... ... ... 36

11



Contents

v

B.2 The American Academy of Sleep Medicine Manual for the Scoring of Sleep and Associ-
ated Events . . . . . ..
B.3 Diagnostic and Statistical Manual of Mental Disorders . . . . .. ... ... .......

C Sensor Characteristics

D Sensor Readout
D.1 MAXB0102 . . . .
D.2 LIS3DH . . . .

Results

F Source Code
FA1 server UDP.no . . . . . . . . . e
F.2 server_Serial.ino . . . . . . . . . e
F.3 MAX30102.h . . . o e
F.A4 MAX30102.CPD - -« o o o o e e e
F.5 LIS3DHTR.h . . . o
F.6 LIS3DHTR.CPP . . . . o o e e e e e
F.7 EDA.h . . e
F.8 EDA.CPD . . . o o e e
F.O sensormonitor.h . . . . . L
F.10 sensormonitor.Cpp . . . . . . . . e e
F.11 Dataloggerpy . . . . . . e
F.12 SockReadSerial.py . . . . . . . . .
F13 SockReadUDP.py . . . . . . . . . e



Introduction

In this chapter, important concepts regarding Rapid Eye Movement Sleep Behaviour Disorder that are
applied in the project will be explained. After that, the goal of the entire project will be defined and
the task division of the subgroups will be presented. Lastly, the structure of this thesis will be briefly
described.

1.1. Rapid Eye Movement Sleep Behaviour Disorder

Rapid Eye Movement (REM) Sleep Behavior Disorder (RBD) is a neurological parasomnia disorder that
affects muscle atonia during REM sleep [1]. To gain a better understanding of RBD the sleep stages
of humans will briefly be explained.

1.1.1. Sleep Stages

Regular sleep consists of four stages: N1, N2, N3, and REM [2]. The N1, N2, and N3 stages are
considered non-rapid eye movement (NREM) sleep, and roughly 75% of sleep is spent in these stages.
During a typical 8 hours of sleep, there are roughly 4 to 5 sleep cycles, where a sleep cycle follows the
following sleep stage progression: N1, N2, N3, REM. One sleep cycle typically lasts around 90 to 110
minutes, with the majority of the time spent in the N2 stage.

The first sleep stage is 'N1’, commonly referred to as ’light sleep’. During this stage, there is some light
muscle tone in the skeletal muscles and breathing tends to occur at regular intervals [2]. Eye move-
ment, heart rate, and body temperature all decrease. This sleep stage lasts around 1 to 5 minutes,
accounting for approximately 5% of the total sleep time [2]. As the night progresses, an uninterrupted
sleeper may spend even less time in this stage [3]. The next stages are N2 and N3, which are deep
sleep, and usually, it is quite difficult to wake people up in these stages [2]. They account for 45%
and 25% of total sleep respectively [2]. In these stages, the body is the most relaxed. When a person
is woken up in one of these stages, they often feel groggy and they usually have diminished mental
performance for 30 minutes to an hour [2].

The last stage and the focus of this research is the REM stage. This is the stage where dreams occur
and brain waves are similar to those of a wakeful state. However, all skeletal muscles, except for the
eyes and breathing muscles, are atonic and without movement [2]. In fact, this is the reason this sleep
stage is called rapid eye movement, as the eyes may move much more during this stage compared
to the other stages. This stage initially lasts 10 minutes, but it gets longer in subsequent sleep cycles.
After this stage, the cycle starts again [2]. Figure 1.1 illustrates an average night of sleep.



1.1. Rapid Eye Movement Sleep Behaviour Disorder 2

Sleep Cycles Through the Night

ey
leep
Light
Sleep
Lightest
lee
1AM 2AM 3AM 4 AM 5AM 6AM

10 PM 1PM 12PM

8

SLEEP STAGE
e ©g
Z2 538 548

el
3
k]

TIME

Figure 1.1: An average night’s sleep with the sleep stages. [3]

1.1.2. REM Sleep Behaviour Disorder

People suffering from RBD do not experience any kind of muscle paralysis during the REM sleep stage.
This leads to people acting out their dreams, potentially resulting in dangerous situations causing them
to hurt themselves or their bed partners. The muscle movements of RBD patients during REM sleep
consist of jerky and rapid movements in contrast to a wakened state [4]. Injuries that have been doc-
umented include lacerations, dislocations, and hair pulling among many others [5]. The frequency of
episodes is highly variable, sometimes only occurring once every 2 weeks, but at other times occurring
multiple times a night for consecutive nights [5]. On top of that, RBD may be a precursor to neurode-
generative diseases, like Parkinson’s and Alzheimer’s Disease [6]. The time between RBD diagnosis
and the onset of such diseases is usually 5 to 15 years [4].

1.1.3. Diagnosis

There are currently three different standards used to diagnose RBD (see Appendix B). Diagnosis is pri-
marily done using a polysomnography (PSG), often accompanied by video recordings to visually verify
the results. A PSG is a sleep study used to diagnose many ilinesses and disorders and consists of
an extensive monitoring system that records electrical activity in the brain, muscles, retina, respiration,
and heart rate among other things [7]. The electrical activity is measured using electroencephalogram
(EEG), electromyography (EMG), and electrooculogram (EOG) techniques. With the information from
these sensors, the sleep stages can be determined, and combined with other data gathered during the
study, a diagnosis of RBD can be made.

Traditionally, it was thought that there was a gender disparity regarding the occurrence of RBD [6] [5].
However, a recent group study found that this was not the case [8]. Instead, males tend to experience
more issues from RBD because they usually have more aggressive dreams. This leads to males seek-
ing out medical help more often than females. Additionally, the same study found that approximately
1% of the general population has RBD [8]. The average age of patients suffering from RBD is typically
around 50 to 60 years old [1] [9].

1.1.4. Treatment for RBD

There are currently no treatments specific for RBD, but the symptoms can be controlled by medica-
tion [10]. Two commonly used medicines to suppress RBD symptoms are clonazepam and melatonin
[11], although the effectiveness of these medicines is based upon case series, small clinical trials, and
expert consensus [1]. These medicines may not work for every patient and may introduce unwanted
side effects. Another way to prevent injuries due to nightly movement is to use restraints or employ
safety measures such as a sleeping bag [10]. A simple albeit crude solution, it is the easiest and most
cost-effective way to alleviate some of the struggles of RBD.



1.2. State-of-the-Art Analysis 3

1.2. State-of-the-Art Analysis

A lot of research has been conducted on the diagnosis of RBD. For instance, one study explored di-
agnosing RBD based on wrist actigraphy alone [12]. This method is less intrusive and easier to use
compared to polysomnography. The outcomes of this research are supported by other studies [13].
Another less intrusive approach to diagnosing RBD involves measuring the muscle activity [14]. These
electromyography (EMG) signals are fed into a machine-learning algorithm with a random forest clas-
sifier. This algorithm can diagnose RBD with an accuracy of 92%. EMG is also a good measure for
RBD diagnosis without a machine learning algorithm [15].

EMG is not the only suitable biosignal to diagnose patients with RBD. The electrical activity of the heart
and the electrical activity of the retina are also promising measures for the diagnosing of RBD [16].
Another biosignal worth considering is electrodermal activity (EDA). An EDA sensor measures the skin
conductivity and can be used to detect sleep stages and convulsive seizures [17].

Less research has been done on the real-time detection of RBD episodes. Some studies have focused
on detecting episodes at a later stage when the patient has already left the bed [18]. In this research, a
pressure sensor is used to detect whether a patient has left the bed. When the pressure sensor detects
a sudden drop in pressure, indicating that the patient left the bed, a voice recording is played. This is a
voice recording of a family member that tells the patient to go back to bed. In addition to the pressure
sensor, one patient used a bed exit monitor that operates with a tethering cord. When the tethering
cord is pulled, the voice recording will play too. While this research is a step in the right direction, it
only measures the episodes at a later stage. The findings of this research demonstrated a decrease
in the number of episodes after using the system for some time.

A proven method for real time-time monitoring of RBD patients is the utilisation of radio-frequency sig-
nals [19]. This research enables continuous spatial monitoring of RBD patients. However, it may be
too late to intervene and wake the patient if they are already moving excessively. Nevertheless, this
approach is non-intrusive.

To ensure that the sensor data is only used during REM sleep, a REM sleep detector could be imple-
mented. During REM sleep, the eyes move rapidly. This can be detected by measuring the movement
of the eyes. The size of the pupil can be measured even with closed eyelids [20]. This research could
be used to develop a pupil tracker that works with closed eyelids. It is important to note that this ap-
proach may be quite intrusive and could potentially have long-term harmful effects on the eyes.

1.3. Goal of the Project

As mentioned previously, there are currently no specific treatments for RBD episodes. The State-of-
the-Art Analysis showed that there are well-functioning novel methods to diagnose patients and detect
episodes. However, these episodes can only be detected in a late stage, when the patients already
experience significant restlessness.

Therefore, the overall goal of this project is to design a complete system capable of detecting upcoming
episodes caused by RBD at an early stage and preventing them. The system to be designed must be
non-invasive, non-intrusive, and user-friendly.

To achieve the aforementioned goal, two subgroups were formed; one was responsible for developing
a hardware system, and the other focused on designing a software system. Figure 1.2 illustrates the
interconnection of the subsystems. The objective of the hardware group was to design and build a
device capable of gathering biomedical signals and bringing the patient to a lighter sleep stage.

This thesis focuses on the design process, methodology, and results related to the goal of the hardware
subgroup, which was: To design and implement a hardware system to measure signals related
to RBD episodes in an early stage, that can bring the patient to a lighter sleep stage in case of
an episode.



14.

Structure of Thesis

Entire Group

Goal

Non-invasive detection and prevention of episodes caused by RBD in an

early stage

{— Requirements

\
Hardware Subgroup

Subgoal
Develop a hardware system
to measure signals related
to RBD epsiodes and bring
the patient to a lighter sleep
stage in case of an
episode.

Program of
Requirements

||

Overall Program of

Subsystem Integration

\
Software Subgroup

Subgoal
Develop an algorithm to
detect restlessness and
make a decision whether to
bring the patient to a lighter
sleep stage

Program of
Requirements

Final Product

Figure 1.2: Overview of the project and subsystem goals

1.4. Structure of Thesis

This thesis is structured as follows: Chapter 2 presents the Program of Requirements for the entire
system and specifically for the hardware group. In Chapter 3 the possible sensors are explained and
eventually, a choice will be made for a sensor combination. Chapter 4 will elaborate on the reading
of the sensor data by the ESP32 microcontroller. Chapter 5 explores different waking methods and a
decision will be made on what waking method will be used in the prototype. Chapter 6 will describe
the process of designing and manufacturing the prototype. Chapter 7 discusses the collection and
testing of data on the prototype. Finally, Chapter 8, presents a conclusion and a discussion, along with
suggestions for future work.



Program of Requirements

The Program of Requirements describes the requirements for the system to be designed. These re-
quirements are categorised into two sets: requirements for the entire system and requirements specif-
ically for the hardware component of the system. These requirements are further divided into two
subsets: functional and non-functional requirements. Functional requirements outline the desired func-
tionalities and capabilities of the product, while the non-functional requirements describe the general
properties of the system, such as quality.

2.1. Requirements for the Entire System
The functional requirements for the entire system are defined as follows:

1.1 The system must be applicable to multiple patients.
1.2 The system should work continuously for at least 10 hours.
1.3 The system must facilitate real-time episode detection.

1.4 The time elapsed between an RBD episode onset and bringing a patient to a lighter sleep stage
should be less than 15 seconds.

The non-functional requirements are defined as follows:

2.1 The system should be non-invasive.

2.2 The system should be stand-alone. So it should work without any external products or applica-
tions.

2.3 The system should be user-friendly. Patients should be able to use the system without having
any prerequisite knowledge.

2.4 The system should be wireless.
The safety requirements describe how safe the system should be:

3.1 The system must not cause harm to the patient.

2.2. Requirements for the Hardware Group
The functional requirements that apply specifically to the hardware system are formulated as follows:

A.1 The system should measure signals related to an RBD episode in an early stage.
A.2 The measured signals should be complementary to the signals measured by the BedSense.

A.3 The system should be battery-powered, and the battery should be able to supply the system with
power for at least 10 hours.

A.4 The system should be wireless.
A.5 The system should get the patient out of REM sleep within two seconds after episode detection.



2.2. Requirements for the Hardware Group 6

A.6 The system should communicate with the software system on the Momo BedSense via Bluetooth
Low Energy.

A.7 The system should bring the patient effectively to a lighter sleep stage. This means that the
patient should not be fully woken up, but only moved out of REM sleep.

A.8 The system should wake the patient in a targeted manner (waking only the patient and not poten-
tial bed partners).

The non-functional requirements that apply to the hardware system are defined as follows:

B.1 The system should be non-invasive.

B.2 The system should be user-friendly.

B.3 The system should be comfortable to wear.

B.4 The system must not cause harm to the patient.

B.5 The code should be well-crafted and structured in a manner that allows for easy future expansion.



Sensors

This chapter concerns the choices of the sensors. The sensors have to record the biosignals most
relevant to detecting RBD episodes. Therefore, biosignals related to RBD will be discussed. Moreover,
a decision will be made regarding the appropriate sensors to use for this project.

3.1. Possible Sensors

Momo BedSense

The sensor system that was used in the project, along with other sensors, is the Momo BedSense,
shown in Figure 3.1. The BedSense is a collection of sensors developed and produced by Momo Medi-
cal and commonly employed in nursing homes to provide a detailed overview of the patient’s sleep pat-
terns. It consists of six piezoelectric sensors, four force-sensing resistors, and a single accelerometer.
The piezoelectric sensors are sampled at 120 Hz, while the accelerometer and force-sensing resistors
are sampled at 10 Hz. The BedSense is placed beneath the mattress at chest height. Proprietary
data analysis on the BedSense data showed that movements of the arm are clearly distinguishable.
Leg movements, however, are not distinguishable from this data [21]. As RBD episodes do consist of
leg movements [22], relying solely on the BedSense would not suffice for effective detection of RBD
episodes.

Figure 3.1: Momo BedSense [23]



3.1. Possible Sensors 8

Electromyography (EMG)

Electromyography (EMG) is a physiological signal that captures muscle activity by detecting the electri-
cal signals generated during muscle contraction. EMG signals have been used as a valuable method
for detecting RBD episodes. Several studies have reported the utilization of EMG activity to diagnose
patients with RBD, as the patient’'s muscles exhibit movement during an RBD episode, which is de-
tected by the EMG sensor [24]. However, an EMG sensor requires electrodes with gel, which makes
the measurements more intrusive, uncomfortable, and non-user-friendly. Consequently, it does not
align with requirements B.1, B.2, and B.3.

Electrodermal Activity (EDA)

Electrodermal activity (EDA), also known as galvanic skin response (GSR), measures changes in the
conductance of the skin, caused by changes in sweat gland activity. EDA has been strongly associated
with emotional arousal, as emotional responses trigger changes in eccrine sweat gland activity [25].
Therefore, if a patient experiences a stressful dream before an RBD episode, there would be a change
in emotional response, which can be detected by the EDA sensor. An advantage of the EDA sensor
is its ability to provide data indicating the potential occurrence of an RBD episode before it happens.
However, an EDA sensor alone cannot adequately measure an RBD episode and needs to be used in
combination with other sensors. It can only provide an indication of a change in emotional response,
which may be attributed to a dream alone.

Electroencephalogram (EEG)

An EEG sensor senses the electrical activity of the brain. This is achieved by positioning electrodes on
the scalp to detect the electric signals originating from the brain. EEG is a biosignal strongly linked to
RBD episodes [26]. However, there are several issues when it comes to recording this signal. Firstly,
the signal is complex and requires extensive filtering before use. Secondly, EEG measurements involve
placing electrodes on the scalp using electrode gel, which can be uncomfortable to sleep with. As a
result, the EEG sensor does not conform with requirement B.3.

Electrocardiogram (ECG)

An electrocardiogram sensor consists of electrodes placed on specific locations on the skin to measure
the electrical activity of the heart. Preliminary studies have indicated a lower heart rate associated with
movement in sleep during an RBD episode [27], indicating that ECG could be a sensible sensor choice.
However, ECG is typically measured on the chest and the electrodes need to be applied with electrode
gel. This may cause discomfort for the person sleeping, thereby not meeting requirement B.3.

Radio-frequency (RF)

A non-intrusive way to possibly detect RBD episodes is using radio-frequency [19]. In this approach,
an RF signal is continuously transmitted to the patient. In normal sleeping conditions, when there is
no movement, the signals are mostly reflected back to the receiver without distortion. However, during
an RBD episode when the patient begins to move, the reflected signals become distorted. In principle,
this non-intrusive approach holds promise. However, it does not provide additional information beyond
the BedSense data. Therefore it does not fulfil requirement A.2.

Photoplethysmogram (PPG)

A PPG sensor is used to measure variations in blood volume within the bloodstream. The sensor
operates by emitting red light using an LED which penetrates human tissue and blood vessels. The
reflected light is then detected to measure the bloodstream [28]. This process is demonstrated in Figure
3.2. Changes in blood pressure can help infer changes in heart rate. In addition to measuring heart
rate using red light (A = 660 nm), the PPG sensor can measure oxygen saturation using infrared light
(A =~ 880 nm).



3.1. Possible Sensors 9

Optoelectronic sensor

:' Light emitting
diodes Photodetector:

.o

............................ ‘ Skin surface

Stratum o .
corneum | Hightin \ /L|ghtout

Epidermis

Y
Eryth t
Dermis */ rythrocytes

Capillary vessel

Figure 3.2: PPG sensor [28]

The PPG sensor is effective in measuring an RBD episode due to changes in heart rate, which occur
during such episodes. During REM sleep, the heart is more likely to fluctuate [27]. Additionally, as
mentioned before, preliminary studies have indicated a decreased heart rate associated with movement
during sleep in an RBD episode [27].

Accelerometer (ACC)

An accelerometer is a sensor that measures acceleration in one or more axes. The way it operates
varies depending on the specific accelerometer. However, it is an effective way to measure sudden
movement in a specific location of the body. During an RBD episode, the patient exhibits erratic and
significant movement in multiple body parts. Supporting this, a study reported that RBD episodes could
be detected by monitoring leg movement [29] [26].

Laser

Another non-intrusive method of measuring movements during sleep is through the use of a laser. In
this method, a laser beam is projected across the room, and a sensor is placed at the other end to
detect any interruptions in the light. For example, if a person moves their arm and interrupts the beam,
the system would detect a potential RBD episode. It is crucial to choose the appropriate height for the
sensor so that any movement above this threshold height would be considered a potential RBD episode.
However, this sensor also raises some concerns. For instance, distinguishing between normal sleep
movements and an RBD episode may be challenging. It had to be decided whether measurements
in the Z direction were sufficient, or that additional sensors in the X and Y directions were required
to improve detection accuracy. Due to this ambiguity, the sensor may potentially diagnose the RBD
episode at a later stage, failing to fulfil requirement A.1.

Camera

A camera can also be an effective sensor for detecting RBD episodes. This method involves recording
the patient during sleep and analyzing their movements to determine if they are experiencing an RBD
episode. However, there are some limitations to this approach. One of the main challenges is the time it
takes to process the recorded images and run them through an algorithm to make a decision. This delay
can be significant and may result in a situation where the patient has an RBD episode and gets hurt
before the system can detect and alert about the episode. This implies that the sensor would not fulfil
requirement A.5. Therefore, it is important to consider the speed and efficiency of the algorithm used
to process the recorded images. This is to minimize the delay and ensure timely detection of potential
RBD episodes. Nevertheless, a positive aspect of this sensor is, similar to the previous sensors, that
it is non-intrusive.



3.2. Sensor Choices 10

Infrared/Electrooculography (EOG) Eye Tracker

RBD only occurs during REM sleep, so an effective way to detect an RBD episode is to monitor if
the patient is in REM sleep. This can be done by tracking eye movement, as REM stands for Rapid
Eye Movement. Tracking eye movement during sleep, however, can be challenging since the patient’s
eyelids are closed. Nevertheless, using infrared or electrooculography (EOG) technology, it is possible
to track eye movement even when the patient is asleep. This could be implemented by using a sleeping
mask with the sensors attached. Infrared eye trackers shine infrared light close to the eye to detect the
position of the pupil [30]. On the other hand, an EOG sensor measures the biosignals of the eye [31].
However, both sensors would not meet requirements B.3 and B.4. Requirement B.3 would not be met
because shining an infrared signal into the eye could potentially be dangerous. Moreover, requirement
B.4 would not be met because sleeping with a mask that contains electronics could be uncomfortable.

Sensor Comparison

To compare the sensors and choose the optimal set of sensors, the requirements for sensors will be
used. The requirements are described in the Program of Requirements. In Table 3.1, a summary is pro-
vided for each sensor to determine if they meet the requirements. This table only lists the requirements
that are relevant to sensor choice.

Table 3.1: Sensor comparison with the appropriate requirements

A
[
2
>
-

Req. A.2 Req. A.5 Req. B.1 Req. B.3 Req. B.4

EMG

EDA

EEG

ECG

RF

PPG
Accelerometer
Laser

Camera
Infrared/EOG

X

X[ X| X[ X

X[ X[ X X| X| X| X
X[ X[ X X| X| X| X

X| X[ XX XX X| X

X| X[ X| X[ X

X X[ X| XXX XX X| X
x

x| X
X[ X X| X[ X

X

From Table 3.1, it can be concluded that the best sensors to use are the EDA sensor, PPG sensor, and
accelerometer.

3.2. Sensor Choices

From the sensor comparison, it was concluded that the sensors that an EDA sensor, a PPG sensor
and an accelerometer will be used. The following exact sensors were chosen for this project:

» EDA sensor: Grove GSR
* PPG sensor: Analog Devices MAX30102
» Accelerometer: STMicroelectronics LIS3DH

The Grove GSR sensor was chosen for the EDA sensor. There was not much choice in EDA sen-
sors, the only other choice was the CIMCU-6701 sensor. The availability of this sensor is worse and
the Grove GSR sensor is more commonly used with more documentation available, making it a better
choice for prototyping. It is also smaller than the CJMCU-6701, resulting in improved comfortability.

The MAX30102 PPG sensor was chosen as it came with both red and infrared light, enabling to mea-
sure heart rate and oxygen saturation alternately. Another advantage of this sensor is that it comes
with a built-in buffer and integrated sample averaging.

The LIS3DH accelerometer was chosen for its selectable scale of £2g/+4g/+8g/+16g and for its built-in
buffer. More detailed specifications of all the sensors can be found in Appendix C.



Sensor Readout

This chapter will describe how the data of the PPG sensor (MAX30102), EDA sensor, and accelerom-
eter (LIS3DH) are read out.

4.1. I?C Communication

In this section, a short overview of the I2C serial communication protocol will be given. I2C uses two
wires consisting of a data line (SDA) and a clock line (SCL). It is a multi-master multi-slave protocol with
the possibility to have up to 128 slaves (using an 8-bit format) and an unlimited amount of masters. The
least significant bit of this address specifies a read/write (R/W) operation. When the master initializes a
connection with a slave, it sends a start condition by pulling down the SDA. After a short delay, the SCL
line will be pulled down as well. Next, the master sends a frame consisting of the slave address to which
the master wants to write, together with an R/W bit that specifies the operation. After the slave receives
its own address it sends an ACK signal by pulling down the SDA line for one clock cycle. Depending
on the type of operation, the master sends or receives data from the slave. The recipient of the data
sends an ACK after receiving a frame. Following that, the master decides to stop the communication
and free the serial bus. It sends a stop condition by pulling up the SCL line and after a short delay also
pulling up the SDA line. Figure 4.1 provides a visual representation of a message being sent in the
I%C protocol.

I‘ Message ‘I
Read/ ACK/ ACK/ ACK/
Start . R . . Stop
NACK NACK NACK
Condition 7 or 10 bits WBr;tte BAE 8 bits QE 8 bits QE Condition

Address Frame Data Data
Frame 1 Frame 2

Figure 4.1: I2C Protocol

4.2. Sensor Structures

Both the MAX30102 [32] and the LIS3DH [33] sensor independently sample their respective biosignals
to ensure accurate sample timings and reduce the host processor’s workload. The analog output of
the EDA sensor is sampled using the ESP32’s built-in 12-bit analog-to-digital converter (ADC). The
microcontroller makes use of its two built-in 72C controllers to communicate with the MAX30102 and
LIS3DH sensors. To start the data collection with these sensors, they first have to be programmed
by writing to specific registers specified in their datasheets. After the initial programming, the sensors
start to independently sample and fill their buffers, waiting for the microcontroller to read their data.
Both sensor buffers are used as a first-in, first-out buffer (FIFO), in which for every new sample an old

11



4.3. Sampling 12

sample is overwritten in a cyclic order.

The MAX30102 and the LIS3DH sensors need to be communicated with in a specific way to program
the sensors and make sure the sensors operate in the way that is desired. Appendix D includes a
comprehensive explanation of the procedure employed and the specific registers that have been written
to in order to ensure accurate operation.

4.3. Sampling

This section will describe the frequencies at which the sensors should be sampled. Section 4.3.1
describes the ideal sampling frequencies, whereas Section 4.3.2 describes the sampling frequencies
that are used for data collection.

4.3.1. Ideal

The frequency spectrum of a heart rate is about 24 - 240 bpm, which is relatively wide considering the
average heart rate is between 60 - 100 bpm [34]. To accurately capture all possible heart rates and re-
move all other noise, the PPG data should at least be sampled at 8 Hz after filtering out high-frequency
noise with a low-pass filter with a cut-off frequency of 4 Hz.

Sampling the accelerometer at 50 Hz results in a maximum measurable frequency of 25 Hz, using
Nyquist sampling theorem. It was concluded that this sampling rate was capable of extracting small
rapid movements of the leg

The frequency spectra of electrodermal activity signals are not clearly defined, however, most research
shows that it is between 0 - 2 Hz [35] [36]. Using the Nyquist sampling theorem, the sampling frequency
should be chosen to be 4 Hz, while using a low-pass filter with a cut-off frequency of 2 Hz before
sampling. This ensures that high-frequency noise is filtered out and aliasing is avoided.

4.3.2. Data Collection

For data collection, higher sampling rates than the theoretical minimum are used to ensure that there
are no overlooked frequency components being discarded.

The sampling rates chosen for data collection are as follows:

 PPG: 50 Hz
» Accelerometer: 50 Hz
« EDA: 25 Hz

When using the sensor system together with the episode detection algorithm, the sampling frequencies
should approach the ideal sampling frequencies to limit the processing workload.

4.4. Implementation

The best way to program the ESP32 is to use Espressif’s official development framework (ESP-IDF).
This would give the most control over the hardware. However, due to the critical need to design an
early-stage prototype for data collection purposes, the decision was made to utilise the Arduino frame-
work instead. This framework has access to a wide range of built-in functionalities and libraries to
sufficiently control the hardware of the ESP32. This framework encapsulates a lot of functionality of
the ESP-IDF, but it adds an extra layer of abstraction. It is important to note that for future iterations it
is wise to switch to ESP-IDF before expanding the system further. This is to keep the number of layers
of abstraction as low as possible and ensure overall efficiency.

Using the Arduino IDE, the code for the ESP32 is written in C++. In the following subsections, functional
descriptions of the written code will be given.

General structure
A package has been created to have maximal control over the LIS3DH and MAX30102 settings, as
well as timings and communication. The package consists of a single base class and 3 of its derived



4.4. Implementation 13

classes, one for each sensor type used in this project. Specialized member functions have been created
for each of the derived classes, to collect their corresponding sensor data in a well-structured and
organised way. All the code is dependent on precise timing and is based on the system run-time timer,
which consists of a 32-bit counter that increments every millisecond. This means that about every 49
days, the counter rolls over and resets. Upon starting the system the sensors are programmed and
the system counter starts to count. For every loop in the program, the total run time is checked and
the difference is calculated between the last time the sensor information was pulled and the current
time. Upon reaching the desired difference new information is requested using the function getbata()
and the current time is stored. The sensor system makes use of 32-sample buffers for the PPGs and
the accelerometer, while only a 16-sample buffer for the EDA sensor is used. This is the case since
the PPGs and the accelerometer sample frequencies are twice as high as the sample rate of the EDA
sensor. Once the buffers are full, the samples in the buffer are stored and ready to be processed. The
buffers are freed and can be overwritten with new data. The buffer size of both of the PPG sensors
is 256 bytes, while the accelerometer and the EDA buffers are 192 and 32 bytes respectively. The
exact sizes of the buffers are rather arbitrary since every size which follows the following requirements
suffices:

1. The total size of each buffer divided by its sample frequency should be the same for each sensor.

2. The time it takes to fill all the buffers should not take more than 5 seconds, since having a larger
buffer results in a longer response time.

3. The total buffer size should not take too much space in memory since the ESP32 has a limited
memory size. The memory size of the used ESP32 is in the order of hundreds of kilobytes.
However, this could change due to potential changes after expanding the program.

Considering the current settings, the limit of the buffer size is set due to the maximum output delay of
5 seconds. This results in a buffer size of 250 samples for the PPGs and the accelerometer and in 125
samples for the EDA sensor.

MAX30102 read-out

Every polling period the sensor readout begins by a read operation, requesting the pointer to the start
of the FIFO buffer over the I2C bus. This pointer is being compared to the pointer to the end of the
FIFO buffer, which is being updated internally by the ESP32. From this information, the total number of
unread samples is calculated. This value is compared to the current level of the ESP32’s buffer and it
is then decided how many samples are to be extracted from the FIFO buffer. When the number of new
samples in the FIFO buffer is less than the space left in the ESP32 buffer, all the data in the FIFO buffer
is extracted. When there is limited space left in the buffer of the ESP32, it only requests the number
of samples necessary in order to completely fill the buffer. After deciding the number of samples to
request, the pointers are updated accordingly and the ESP32’s buffer is filled with the new data. This
process is implemented in the function Max30102: :getbata(), which can be found in Appendix F.3. More
detailed information about sensor readouts and the exact procedure can be found in Appendix D.

LIS3DH read-out

Every polling period the sensor readout begins with a read operation requesting FIFO_level over the
I%2C bus. FIFO_level represents the total number of unread samples in the FIFO buffer. When the total
number of unread samples is lower than the space left in the buffer of the ESP32, all the data from the
FIFO buffer is extracted. When there are more unread samples in the FIFO buffer than there is space
in the ESP32 buffer, the ESP32 only requests the number of samples to fill its buffer completely. The
implementation of this is done by the function r1s3pH: : getData(), which can be found in Appendix F.5.

EDA read-out

Sampling of the EDA sensor is done by tracking the time between each sample and using the built-in
12-bit ADC of the ESP32. This samples every 40 ms and saves the sample in the ESP32’s buffer. This
is implemented using the function epa: :getpata(), which can be found in Appendix F.7.



4.4. Implementation 14

Storage

Since sampling is done asynchronously with respect to the other sensor modules, not all the buffers
for the different sensors are filled at the same time. Saving the contents of the ESP32’s corresponding
sensor buffer in memory at the moment it is full prevents the overwriting of unread samples. This will
also ensure that there is no stalling of the new incoming data since the sensor buffer can freely refill
with new data without having read the old data in the buffer.

Diagram 4.2 illustrates the data flow between the data buffers in the sensor system for the PPG and
accelerometer.

__________________________________ 1
|
|
FIFO :
= |
2 I
< 32 samples o
%} | g
| =
[
| a
| 1)
| £
—_———— e — 1 >
| o
| fa
Buffer : g
7w
|
32 samples :
|
-
I =
| S
S | b
o | §
ek : 3
Memory : S
<
| =
|
32 samples | 4
|
|
|
|
|
__________________________________ J

Figure 4.2: Samples in memory

Every time the ESP32 requests new data from the FIFO buffer of the accelerometer and PPG sensors,
which is done every polling period, several samples are stored in the ESP32 buffer. Once the ESP32
buffer is completely filled, the contents of this buffer get copied to memory, and new data can flow from
the FIFO buffer to the ESP32 buffer. Since the EDA sensor does not have a FIFO buffer, the ESP32
samples a single EDA sample every polling period. After this, the same process follows as for data
collection of the PPG sensor and accelerometer.

The source code can be found in Appendix D.



Waking Methods

A crucial part of this project is waking the patient when an RBD episode is detected. There are various
methods to accomplish this, and the following chapter will explore them. At the end of this chapter, a
waking method will be selected for this project.

5.1. Possible Waking Options

Sound

One of the most widely used ways to wake a person up is through sound. This could be an alarm that
would go off when an RBD episode is detected. Furthermore, it is not necessary to wake up the patient
completely but just move them from REM sleep to another lighter stage of sleep. Itis to be investigated
how long the sound would need to be played, and at what volume. Additionally, using sound as a
waking option does not meet the requirements for effective and targeted awakening (requirements A.7
and A.8). The reason is that the sound can potentially wake up the bed partner alongside the patient,
which is not ideal. A solution to the issue would be to use earbuds, yet this could be uncomfortable for
the patient. Another disadvantage is that people who suffer from RBD are likely to be older and may
have worsened hearing due to their age. Nevertheless, certain frequencies can still effectively wake
up older people [37]. However, the age of the patient and their hearing would need to be considered
when designing such an alarm.

Light

Light can be an effective way to wake up the patient during an episode. There are existing products
already that wake up people using light systems. This technology uses dawn simulation, also called
wake-up lights. They slowly simulate sunrise in order to gently wake a person up. Similar technology
has also been incorporated into a sleeping mask, which would fulfil the requirement of targeted awaken-
ing (requirement A.8). However, this would take too long. If the system incorporated light as a waking
method, it would need to be immediate and bright. Even though this would work, such a solution would
most likely be undesirable since it would not gently wake the patient out of REM sleep. Instead, it would
wake the patient entirely. This is not ideal since according to the requirements the patient has to be
brought to a lighter sleep stage, and not woken up completely (requirement A.7).

Heat

A more novel way to wake a patient up would be through the use of heat. If the sensor system would
be located on the body of the patient, it could wake them up. However, there are numerous concerns
about the reliability and safety of such a method to wake the patient. Sleep arousal with heat stimuli
(shifting from a deeper sleep stage to a lighter sleep stage) worked in below 50% of the cases [38].
This does not meet the requirement of effective awakening (requirement A.7). Moreover, using such a
system could potentially cause harm to the patient or could burn the patient and his surroundings. This
does not meet the requirement that the system should be safe to use (requirement B.3).

15



5.2. Waking Choice 16

Vibration

Another method of waking that is becoming increasingly popular is vibrating. This is caused by the
introduction of smartwatches that can be worn comfortably during the night. Patients do not have to be
bothered with sound anymore, but a vibration on the wrist can be enough to wake the patient up. The
method of vibration complies with all the requirements that are set in the Program of Requirements.

Electric Shocks

What could also be a potential method to wake the patient is the use of electric shocks. However,
similar to waking by heat, this method suffers from setbacks. Waking the patients by shocking them
might be too effective, they will be awoken immediately, and their sleep will be disturbed. Safety is a
factor that should be taken into account very seriously in case of using a shocking device.

5.2. Waking Choice

Similarly to Chapter 3, a comparison between the waking methods has been done and is summarised in
Table 5.1. This table only lists the requirements that are of interest when choosing the waking method.

Table 5.1: Waking method comparison with the appropriate requirements

Req. A.5 Req. A.7 Req. A.8 Req. B.1 Req. B.3 Req. B.4
Sound X X X* X X* X*
Light X X X* X X* X*
Heat X X
Vibration X X X X X X
Electric Shock | X X X

Where a ™*” means that this waking system can be either more intrusive or less targeted.

From Table 5.1, it can be concluded that sound, light, and vibration are good methods to wake the pa-
tient. However, light and sound have an asterisk on some of the requirements. For example, the light
system could either be a light that shines on both partners or a system that is in a mask concentrated
on the patient. Therefore, the choice of the waking system will be the vibration module. This is further
supported by the fact that our sensor system will not be placed at the head, meaning that there is a
need for wires or for an extra battery-powered system. In addition, having spoken to an RBD patient
that uses the vibrating alarm clock in a smartwatch, it was concluded to use a vibrating module to wake
the patient in case of an episode.

The chosen vibration module is the Adafruit 1201 mini vibrating disk. This is a small module that
measures 10 mm in diameter and is 2.7 mm thick. It is able to operate in the voltage range from 2 V to
5V, where increasing the voltage increases the rotational speed of the module. These characteristics
make it an ideal module for use in the system at hand; it is small and can directly operate at the GPIO
output of the ESP32.



Prototyping

This chapter will describe all the design choices and the implementation of the prototyping process,
including investigating the placement of the system, prototyping how the system comes together, and
lastly the power unit for the system.

6.1. Placement

Two positions for the placement of the sensor system were identified: at the wrist or at the foot. The
reason is that these are spots where accurate biosignal measurement can be achieved, and are more
likely to be comfortable since it should not bother the patient during sleep. This section will elaborate
on the placement of the sensor system.

As the Program of Requirements indicates, the sensor system should be complementary to the Momo
BedSense (requirement A.2). Proprietary data analysis on the BedSense data showed that movements
of the arm are clearly distinguishable in the data recorded from the BedSense. Leg movements, how-
ever, are not distinguishable from this data [21]. As RBD episodes do consist of leg movements [22], it
would be good to measure leg movements with the sensor system. If the PPG and EDA sensors did not
measure an episode, the accelerometer would be the last resort to detect the episode. To implement
this, the accelerometer could be placed somewhere on the leg.

PPG sensors are usually placed at the fingertip of the index finger or at the earlobe [39]. EDA sensors
are normally placed on the index finger and the middle finger [40]. As the movements of the legs should
be measured, it would be practical to place the PPG and the EDA sensors also somewhere on the leg
or foot.

Potential placements of EDA and PPG sensors on the foot are shown in Figure 6.1 [40] and in Figure
6.2 [41], respectively.

17



6.2. Sock Design 18

Figure 6.1: EDA sensor placement [40]

Testing was further done on all places that Figure 6.2 indicates, and the best signal-to-noise ratio was
indeed obtained at location 1. The placement of the PPG sensor was therefore chosen to be location
1 of Figure 6.2. Testing showed that a slight deviation in the sensor placement results in a large signal
drop, so two MAX30102 modules are used and placed beside each other in the final prototype. This
ensures a reliable measurement of blood volume and blood oxygen saturation.

1.2
s R Q D r = %
X
co08f 1 sl :
c 06} < ﬂ
o
§ 04r |
[ 1
o 1 1
02} 1 l & 1
1 1 1
o A e 1 A A A L 8B
1 2 4 5 6 7
Position

Figure 6.2: PPG sensor placement [41]

As described before, literature showed that PPG and EDA data can be measured accurately on the
foot, and the Momo BedSense does not accurately measure leg movement. Hence, it was decided to
create a sock that contains the PPG and EDA sensors, the accelerometer, the vibrator module, and
the ESP32.

6.2. Sock Design

The components mentioned above had to be placed within the sock. The initial idea was to implement
all the sensors and the ESP32 in a normal sock. After some preliminary testing with the PPG and
EDA sensors, it was found that for the sensors to work accurately, they had to sit tight around the body.
They should, however, not be too constrictive, to comply with requirement B.3. Therefore, a so-called
compression sock was used. This is a sock that applies constant pressure to the lower legs. This sock
was folded in half to make it easy to put on and improve comfort.

6.3. ESP32 Housing

To fit the ESP32 comfortably in the sock, a design of a housing box was made. This was then printed
using a 3D printer with PLE filament, which resulted in the box in Figure 6.3. The circuit boards of the



6.4. Power Unit 19

EDA sensor and the accelerometer are placed inside this box too.

Figure 6.3: The 3D-printed box to house the ESP32, the EDA sensor and the accelerometer

6.4. Power Unit

Designing a power unit is a crucial part of the project to ensure the sock works wirelessly. Before design-
ing the power unit, a power estimation needs to be made to know what kind of battery would be needed.

To make such an estimation the maximum power will be derived for all the sensors. For the accelerom-
eter (LIS3DH) the voltage input is 1.7 V to 3.6 V, while the current use at the highest operating mode
is 185 pA [33]. Therefore, the total energy consumption for LIS3D for 10 hours (requirement A.3) is
0.007 Wh. Similarly, for the PPG sensor (MAX30102) such a calculation can be made. With an input
voltage of 3.3 V and the current at the highest operating mode being 50 mA [32], for 10 hours, this
results in an energy consumption of 1.65 Wh. However, since there are 2 PPG sensors the energy
consumption is doubled, resulting in 3.3 Wh. The EDA sensor in the highest operating mode results in
a 10 mA current consumption at an input voltage of 3.3 V/5 V [42]. This means that for 10 hours, the
sensor will consume 0.5Wh. All the sensors together consume 3.807 Wh in 10 hours.

Besides calculating the power for the sensors, the energy consumption of the ESP32 and the vibrator
module have to be taken into account too. The ESP32 average current drawn is 130 mA with a voltage
input of 5 V. Therefore, the energy consumption for 10 hours is 6.5 Wh.

The energy consumption of the vibration module is negligible, as it is only powered for a few seconds
during an entire night. The vibration module draws 100 mA of current at a voltage of 5 V. The total
energy consumption of the system is 10.307 Wh for 10 hours.

As a result, for an input voltage of 5 V, the battery would need 2061.4 mAh to provide the system with
power for 10 hours. A standard Li-Po battery could cover that, so in theory, a power circuit could be
built to accommodate that energy demand. However, for prototyping in this case it was decided to
not implement a power circuit, but use a 5 V power bank. The above-mentioned approximation is of
course a worst-case estimate and changes can be made at later stages of development to significantly
improve the power consumption. Some design suggestions can be found in section 8.

The power bank that was chosen had a capacity of 5000 mAh. The reason for choosing a power bank
with such capacity is that it would cover requirement A.3 more than enough. This means that if the proto-
type was given to the patient and they forgot to recharge it, the system could still be used. Furthermore,
the round shape of the battery meant it could quite easily fit inside the sock and be comfortable around
the patient’s foot.



6.5. Sock Prototype

20

The energy consumption for 10 hours for all the components is summarised in Table 6.1.

Table 6.1: Energy consumption for 10 hours

Component Energy consumption for 10 hours (Wh)
Accelerometer | 0.007

2 PPGs 3.3

EDA 0.5

ESP32 6.5

Vibrator module | ~ 0

Total 10.3

6.5. Sock Prototype

Once everything was ready to be implemented in the sock, the sock, sensors, ESP32, and vibration

module were put together. This leads to the system shown in Figure 6.4.

Figure 6.4: Prototype system

The final prototype is shown in Figures 6.5 and 6.6.

i Sock

| T T T

| | 7T |_GPIO

| 2 : [

! ¢ ESP32 ; ADC

: Power

: bank

I

! . .

| L I%C L I2C o
! PPG ACC EDA Vibration
| module
|

|

|

|



6.5. Sock Prototype 21

JE= RS

Figure 6.5: The sock Figure 6.6: The sock attached to the power bank

Improvements Made

After performing initial tests with the socks, the PPG sensors showed a signal indicating a heart rate of
around 80 BPM. Initially, it was thought that this was fine, but it remained at 80 BPM after doing some
jumping jacks, while it was expected to increase. Investigating this problem, it turned out to be the case
that the two PPG sensors interfered with each other, resulting in a heart rate artefact of 80 BPM. The
solution to this was to switch off one PPG sensor, and only use one PPG sensor at a time.



Data Collection and Testing

An important part of the project is to collect data from patients. This collected data is used by the soft-
ware subgroup to develop an algorithm.

The methodology for data collection is as follows: the sock is powered by the power bank and sends
all the data wirelessly to a PC. The PC then stores the data in a CSV file. This methodology is different
than that of the desired final product, as the final product will not send a lot of data, but will process it
locally. The ESP32, however, does not have enough storage capacity to store all the sensor data for
one night. This is why the choice was made to send all the sensor data to a PC and store it there.

7.1. Communication

Bluetooth Low Energy was the first choice for the communication protocol between the ESP32 and the
PC as a first step in meeting requirement A.6. This protocol uses less power than classic Bluetooth,
but in return has a lower data rate. A more detailed comparison can be found in Table 7.1. The ESP32
microcontrollers on the Momo BedSense also use Bluetooth Low Energy. As it is the goal to com-
municate with the BedSense, the choice was made to implement wireless data communication using
Bluetooth Low Energy (BLE). For the final product, the ESP32 should only receive restlessness data
from BedSense which should fit in a single byte.

The following table compares some functional characteristics of both Bluetooth Classic and BLE [43]:

Table 7.1: Comparison between BLC and BLE [43]

Bluetooth Classic | Bluetooth Low Energy
Channel scheme | 79 channels 40 channels
Output power 100 mW 10 mW
Latency 100 ms 6 ms
Time to send data | 100 ms 3 ms
Raw data rate 1 Mb/s - 3 Mb/s 1 Mb/s
Throughput 0.7 Mb/s - 2.1 Mb/s | 0.27 Mb/s
Max range ~ 100 m ~ 100 m

7.1.1. BLE: Sock and the BedSense

The sock will act as a BLE client which controls the communication, while the BedSense will act as
a server which sends data to the client when requested. To communicate between the Sock and the
BedSense, a connection needs to be established. When the server is ready to connect, it broadcasts

22



7.2. Data Collection and Testing 23

packets over a wide frequency band to let clients know that they are ready to connect. An advertising
packet contains for example a service UUID, device name, and target address. A service is a collec-
tion of characteristics that can hold data and a descriptor that provides additional information about
the data. In the most basic setting, the BLE server (BedSense) will have a single service with a single
characteristic containing restlessness information. When the client receives an advertising packet, it
can request a connection with the server and ask the server to notify it when there is new data available
in a specific characteristic. Once the client connects with the server, the server will send the client an
update whenever the server has new data ready.

7.1.2. WiF1i: Sock and the PC

Since the throughput of BLE is too low for the amount of raw data that is gathered, it was decided to
use WiFi to collect measurement data of the sensors. Specifically, the UDP protocol was used, since
it prioritizes speed and efficiency, contrary to the TCP protocol which prioritizes reliability. For our pur-
poses, however, both methods would suffice.

Upon starting data collecting, the sock and PC initiate a connection with a specified network and request
an IP using the DNS protocol. After connecting to the local network, the PC sends a start packet
containing the IP address of the laptop to the sock, using the IP of the sock obtained at the connection
request. When the sock receives the start packet from the PC, it stores the PC’s IP and starts collecting
data from the sensors. When new data is available in the sock, it sends a packet containing the sensor
data to the PC. Upon the arrival of the packet, the PC sends a packet back again containing its own IP.
The continuous sending of packets ensures a stable connection between the sock and PC, even when
the PC or sock changes the IP address. The composition of the data section of the UDP packets is
shown in Figure 7.1.

PPG red PPG infrared ACC x ACCy ACCz EDA

0 128 256 320 384 448 480

Figure 7.1: Packet overview with the number of bytes

7.2. Data Collection and Testing

Data collection was first performed on the members of the hardware subgroup before an attempt was
made to collect data on an RBD patient. Figure 7.2 shows the entire data collection setup. The raw
collected data was sent to the PC, where it can be processed by the software subgroup.



7.2. Data Collection and Testing 24

______________

PPG ACC EDA

Figure 7.2: Data collection setup

The system was comfortable to wear according to the member of the hardware group. However, on
the first night, there were interruptions in the data collection. It seemed that these were interruptions in
the power supply from the power bank. After restarting the system the data collection worked again for
some time. On the second night, the power bank was replaced by a 5 V mobile phone charger. Once
again, there was an interruption in the data collection. This ruled out power supply problems as the
cause. The issue turned out to be that the PC changed its IP address. As a result, the ESP32 was
sending sensor data to the old IP address of the laptop, while the laptop had a new IP address. After
this problem had been identified, it was solved by adjusting the source code.

Figure 7.3 shows the data of the accelerometer in x-, y-, and z-direction during sleep. It can be con-

cluded from this figure that the person changed sides at around 7750 seconds after bedtime, and moved
a bit at around 7468 seconds. A close-up of this peak can be found in Figure E.4 in Appendix E.

ACC: During Sleep

1.0
Mm.‘r PR I R

0.81
— 0.61
2
© y-axis
9] j !
o 0.2 —— Z-aXIS
9]
Q
< 0.0

-0.2+

—-0.41 , , , , , ,

7400 7500 7600 7700 7800 7900 8000

Time since start of data collection [s]

Figure 7.3: Data from the accelerometer while sleeping

Figure 7.4 shows the raw data from the PPG sensor. The heart rate can be determined to be around
60 BPM.



7.2. Data Collection and Testing 25

PPG: During Sleep

254750 |
§ 254500 1
E§254250<
£ 254000

253750 1

6006 6008 6010 6012 6014 6016 6018 6020
Time since start of data collection [s]

Figure 7.4: Data from the PPG sensor while sleeping

Figure 7.5 shows the measured EDA signal. There is a lot of high-frequency noise present in the signal.
The peaks and troughs in this figure are the phasic components of the EDA signal, which is associated
with short-term events that are invoked by environmental stimuli, such as sound or smell [44].

EDA: During Sleep

2580

2560

Amplitude
N
w
B
o

2520 : : : : : : :
4600 4800 5000 5200 5400 5600 5800 6000
Time since start of data collection [s]

Figure 7.5: Data from the EDA sensor while sleeping

Data collection while moving

The quality of EDA and PPG signal is quite sensitive to the exact placement of the sensor, especially
for the PPG sensor. Moreover, if the sensor is not tightly secured on the body or if there is movement,
the sensor data may no longer display the heart rate. This subsection will explore the influence of a
moving foot on the sensor output.

Figure 7.6 shows the accelerometer data when raising the foot. Around ¢ = 103.5 seconds, the test
subject started to raise their foot.

ACC: Raising the foot

Acceleration [g]

—— z-axis

100 102 104 106 108 110 112 114
Time since start of data collection [s]

Figure 7.6: Data from the accelerometer while raising the foot

Figure 7.7 shows the PPG data when raising the foot. From this figure, it can be concluded that the
desired signal is not present anymore. Heart rate extraction from this signal is not possible.



7.2. Data Collection and Testing 26

PPG: Raising the foot

225000+

tude

2200001

pl

€ 215000
<

210000+

100 102 104 106 108 110 112 114
Time since start of data collection [s]

Figure 7.7: Data from the PPG sensor while raising the foot

Figure 7.8 shows the EDA data when raising the foot. It can again be concluded that the desired signal
is not present in this data.

EDA: Raising the foot

= N
O o
9] o
o o

Amplitude

19001

100 102 104 106 108 110 112 114
Time since start of data collection [s]

Figure 7.8: Data from the EDA sensor while raising the foot

Furthermore, Appendix E includes the results of data collection while moving the toes. These results
again show heavily distorted EDA and PPG signals. This is however not an issue. The system should
detect an RBD episode in an early stage, and the movement of the legs is already a late stage of
an episode. The data that has been collected before the leg movement is more important than the
information on the leg movement.

RBD Patient Data Collection
Data has been collected on an RBD patient. These results are elaborated on in Appendix A.

Vibration module testing
The vibration module has been tested on the members of the hardware subgroup, and the vibration
module seems to vibrate hard enough to wake someone.



Conclusion and Discussion

8.1. Discussion

To collect data, the sock system was first applied to a member of the hardware group. While the hard-
ware group member is not an RBD patient, data was still obtained. This data is useful since it further
supports the proof of concept. Firstly, as mentioned before, Figure 7.3 shows the data of the accelerom-
eter in the x-, y-, and z-direction. This graph shows the hardware group member moving in the night
during sleep. This means that if the RBD patient were to move repeatedly and rapidly, the software
group would be able to detect a potential episode.

Moreover, Figure 7.4 shows the raw data from the PPG sensor. From the graph, it is possible to extract
the heart rate by observing peak-to-peak changes. Furthermore, a low-frequency amplitude change
can be observed from the raw data of the PPG sensors. However, this is possibly due to the change
in pressure between the sensor and the foot, which causes a change in the intensity of the reflected
light. This can be filtered out, where the remaining data results in the heart rate. Changes in heart rate
could indicate a possible early onset episode, thus fulfilling requirement A.1.

Furthermore, for the EDA sensor, the collected data can be seen in Figure 7.5. As explained, the
peaks in the graph are associated with short-term events that are invoked by environmental stimuli.
This means that if the patient experiences a stressful dream, those stimuli could be recognized by the
peaks. This would allow for possible early episode detection and would fulfil requirement A.1.

The output of the PPG and EDA sensors are heavily distorted by moving the foot, as can be seen in
Figure 7.7 and 7.8, respectively. This does not cause a problem, as the goal is to detect an episode in
an early stage, and leg movement is not considered to be an early stage in this research. This behavior
does therefore not conflict with requirements A.1 and A.2.

The vibration module that was attached can sufficiently vibrate since the power of vibration is more
than comparable to a smartwatch. However, experiments have not been performed to assess if the
vibration module can lift someone from REM sleep into a lighter sleep stage.

Lastly, data was obtained from an RBD patient, as shown in Appendix A. There was a minor RBD event
during the data collection, and data from this has been recorded.

8.2. Conclusion

In conclusion, the goal of this project was partly achieved, since a proof of concept for non-invasive
monitoring and prevention of RBD was demonstrated. This was accomplished by first selecting the
sensors that met requirements A.1, A.2, A.7, and A.8, which are EDA, PPG, and accelerometer. To
extract data from these sensors, the ESP32 microcontroller was selected, for which the 1?C protocol
was used to read out the PPG and accelerometer, while for the EDA sensor the ADC of the ESP32
was used. To complete the system, a battery module and vibration module were chosen to wake

27



8.3. Future Work 28

up the patient, in accordance with requirements A.4, A.5, and A.7. With the various components,
it was established that the system would fit inside a sock, making it comfortable and non-invasive
(requirements B.1 and B.3), and complementary to the BedSense (requirement A.2). Using this sock
system, a WiFi communication protocol was set up to transmit the information from the sensors to
the computer for processing, meeting requirement A.4. No Bluetooth Low Energy connection was
established with the Momo BedSense, and requirement A.6 is therefore not met. Testing this data
firstly on non-RBD patients allowed for measurements from which RBD episodes could potentially be
detected. Data was collected from the RBD patient. This was only data collection and the algorithm on
the sock was not running and hence, requirement A.5 has not been fulfilled. Therefore, more research
and data collection needs to be done with the sock to potentially further develop it for use on patients.
Moreover, the absence of testing the waking module on the patient is also the reason for the goal
not being fully fulfilled. Nevertheless, the sock system theoretically has shown capabilities of being a
non-invasive solution for patients suffering from RBD.

8.3. Future Work

The results of this designed hardware system seem promising, the sensor data is read out and wire-
lessly stored on a PC where the software group can process the data. A fully developed final product,
however, would need to have some improvements.

Data collection

Firstly, more data collection has to be performed on an RBD patient. To fully test the system, the
vibration module should be tested for bringing a patient to a lighter sleep stage. Moreover, for future
data collection, it would be better to store the data on an SD card, as the data collection via WiFi can
be a hassle to set up correctly.

EDA sensor

It would be wise to implement an EDA sensor that comes with a built-in sampler, as the PPG sensor and
the accelerometer do. Currently, the EDA sensor outputs an analog signal, that the analog-to-digital
converter of the ESP32 converts into a digital signal. Using an EDA sensor with a built-in sampler
would decrease the computational power that is needed in the microcontroller. It would leave more
computational power for the algorithm developed by the software subgroup. It would also improve the
flexibility and the readability of the code, as the sensor would be read out using the 72C' communication
protocol. This protocol is currently already used to read out the PPG sensor and the accelerometer.
Replacing the EDA sensor, which is sampled by the ESP32 ADC, with a sensor having its own built-in
sampler, eliminates the noise of the ESP32 ADC.

Automatic heartbeat screening

Another improvement that could be made is to implement an automatic screening for a good heartbeat
signal. The PPG sensors should be placed at a quite specific spot to obtain a proper PPG signal. An
algorithm could be implemented that automatically determines whether the PPG sensor is placed at the
correct spot or not. When the first PPG sensor is not at the right position, it switches to the second PPG
sensor and when that sensor also does not measure a correct PPG signal, it can give an indication
to the user to move the sock, by for instance turning on an LED. This would make the system more
user-friendly.

Sock Improvements

The PPG and EDA sensors in the current prototype are still able to move a bit. This results in distorted
signals when moving the foot. This could be improved by having a tighter sock, where the sensors are
not free to move anymore. This could however result in a less comfortable system.

Battery system

Currently, the system is powered by a power bank that is quite large and makes the sock not as com-
fortable to wear as without the power bank. This could be improved by implementing a rechargeable
battery with just a bit more capacity than needed to run the system for an entire night. Together with
this battery, a battery circuit can be implemented. This circuit then takes care of charging the battery
with an appropriate voltage and could implement adaptive charging, which will prolong the lifetime of
the battery.



8.3. Future Work 29

Space efficiency

In the current prototype, there is an ESP32 development board, which is not very space efficient. There
is a lot of functionality on the ESP32 development board that is not being used currently. The current
prototype also uses off-the-shelf sensor boards. When only the processor of the ESP32 is used and
the sensor circuits are placed, routed, and printed together on one single printed circuit board, this will
decrease the used space and make the entire system smaller and more comfortable to wear.

Hygiene

The present prototype is not washable, meaning that it is not very hygienic to wear for multiple nights.
It would be ideal to manufacture two socks, in which one set of sensors can be placed. After a few
nights, this set of sensors can be placed in the other sock and the other sock can be washed.

Communication with the BedSense

For the sensor system to work effectively together with the data collected from the Momo BedSense,
communication needs to be established between the sensor system and the BedSense. This commu-
nication will be based on the Bluetooth Low Energy communication protocol. The BedSense will send
data about restlessness to the sensor system. The sensor system will then combine the restlessness
data from the BedSense with its own data and make a decision about waking the patient. The sensor
system can, of course, also make a decision independent of the BedSense when this is needed.

Dynamic scaling

Currently, the PPG and accelerometer sensors have static scaling, however on-the-run sensor scaling,
and sensitivity settings can be implemented. To implement dynamic scaling, at the start, the measure-
ment scale should be as low as possible. When the sensor reading reaches its maximum value, the
scale should be lowered by one stage until the signal is lower than the maximum value. To implement
dynamic sensitivity for the PPG, a feedback loop could be implemented. When starting a measurement
the PPG sensitivity should be as low as possible. When the data is processed and the heart rate is not
found, the sensitivity should increase by a stage until a heart rate can be detected. When the peak-to-
peak detection is above a certain rate the sensitivity can be lowered again. It is important to limit the
sensitivity since it is directly proportional to the power consumption of the PPG sensor, so limiting it to
a minimum ensures efficient design.

Synchronous sampling

The PPG sensor and accelerometer are asynchronously sampled. Both sensors have their own clock
and sample independently of each other. This is not optimal since the sensor buffers can fill up at
slightly different times. Especially for the PPG sensors, asynchronous sampling is a problem since
this can cause light interference between multiple sensors. The light of one sensor can be sensed by
another sensor creating noise. This issue would be solved by using a single clock to synchronize all
sensors or using a dedicated signal to notify the sensors when to sample new data.



(1]
(2]
(3]
[4]
[3]
[6]

[7]

(8]
[9]
[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

References

C. H. Schenck, B. Hogl, and A. Videnovic, Rapid-Eye-Movement Sleep Behavior Disorder, 1st ed.
Cham: Springer, 2019.

A. K. Patel, V. Reddy, K. R. Shumway, and J. F. Araujo, Physiology, Sleep Stages. StatPearls
Publishing, 2022.

E. Suni and N. Vyas, Stages of sleep: What happens in a sleep cycle, May 2023. [Online]. Avail-
able: https://wuw.sleepfoundation.org/stages-of-sleep.

I. Arnulf, “REM sleep behavior disorder: Motor manifestations and pathophysiology,” Movement
Disorders, vol. 27, no. 6, pp. 677—689, May 2012.

“REM sleep behavior disorder,” Clinical Neurophysiology, vol. 111, S136—-S140, 2000, Sleep and
Epilepsy Supplement, ISSN: 1388-2457.

J. F. Gagnon et al., “REM sleep behavior disorder and REM sleep without atonia in Parkinson’s
disease,” Neurology, vol. 59, no. 4, pp. 585-589, 2002.

J. V. Rundo and R. Downey, “Chapter 25 - Polysomnography,” in Clinical Neurophysiology: Basis
and Technical Aspects, ser. Handbook of Clinical Neurology, K. H. Levin and P. Chauvel, Eds.,
vol. 160, Elsevier, 2019, pp. 381-392.

E. K. St Louis and B. F. Boeve, “REM Sleep Behavior Disorder: Diagnosis, Clinical Implications,
and Future Directions,” Mayo Clinic Proceedings, vol. 92, no. 11, pp. 1723-1736, 2017.

B. F. Boeve, “REM sleep behavior disorder,” Annals of the New York Academy of Sciences,
vol. 1184, no. 1, pp. 15-54, 2010.

R. N. Aurora et al., “Best Practice Guide for the Treatment of REM Sleep Behavior Disorder
(RBD),” Journal of Clinical Sleep Medicine, vol. 06, no. 01, pp. 85-95, 2010.

A. Roguski, D. Rayment, A. L. Whone, M. W. Jones, and M. Rolinski, “A Neurologist's Guide to
REM Sleep Behavior Disorder,” Frontiers in Neurology, vol. 11, Jul. 2020.

F. Raschella, S. Scafa, A. Puiatti, E. M. Moraud, and P.-L. Ratti, “RBDAct: Home screening of REM
sleep behaviour disorder based on wrist actigraphy in Parkinson’s patients,” Annals of Neurology,
Jan. 2022.

M. Louter, J. B. A. M. Arends, B. R. Bloem, and S. Overeem, “Actigraphy as a diagnostic aid for
REM sleep behavior disorder in Parkinson’s disease,” BMC Neurol, vol. 14, no. 76, Apr. 2014.

N. Cooray et al., “Enabling Automated REM Sleep Behaviour Disorder Detection,” The 40th In-
ternational Conference of the IEEE, EMBC, Jul. 2018.

A. B. Neikrug and S. Ancoli-Israel, “Diagnostic tools for REM sleep behavior disorder,” Sleep
Medicine Reviews, vol. 16, no. 5, pp. 415-429, Oct. 2012.

N. Cooray et al., “Proof of concept: Screening for REM sleep behaviour disorder with a minimal
set of sensors,” Clinical Neurophysiology, vol. 132, no. 4, pp. 904-913, Apr. 2021.

K. T. Johnson and R. W. Picard, “Advancing Neuroscience through Wearable Devices,” Neuron,
vol. 108, no. 1, pp. 8-12, Oct. 2020.

M. J. Howell, P. A. Arneson, and C. H. Schenck, “A Novel Therapy for REM Sleep Behavior
Disorder (RBD),” Journal of Clinical Sleep Medicine, vol. 7, no. 6, pp. 639-644, Dec. 2011.

X. Yang et al., “Monitoring of Patients Suffering From REM Sleep Behavior Disorder,” IEEE Jour-
nal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 2, no. 2, pp. 138—-143,
Jun. 2018.

Y. Farraj et al., “Measuring pupil size and light response through closed eyelids,” Biomedical
Optics Express, vol. 12, no. 10, pp. 6485-6495, Oct. 2021.

30


https://www.sleepfoundation.org/stages-of-sleep

References 31

[21]
[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]
[32]
[33]

[34]

[35]
[36]
[37]
[38]

[39]

[40]

[41]

K. Kandiyoor, P. Kremers, and J. R. Post, “Real-Time Detection of Restlessness Caused by Rapid
Eye Movement Sleep Behaviour Disorder,” 2023, The thesis of the software subgroup.

M. Manconi et al., “Time structure analysis of leg movements during sleep in REM sleep behavior
disorder,” Sleep, vol. 30, no. 12, pp. 1779-1785, Dec. 2007.

Zorggroep Oude en Nieuwe Land. “Slimme sensor verbetert de nachtrust bij bewoners ’t Kom-
pas.” (2019), [Online]. Available: https://zorggroep-onl.nl/slimme-sensor-verbetert-de-
nachtrust-bij-bewoners-t-kompas (visited on 06/01/2023)

B. Frauscher et al., “Normative EMG Values during REM Sleep for the Diagnosis of REM Sleep
Behavior Disorder,” Sleep, vol. 35, 6 Jun. 2012.

R. Zangréniz, A. Martinez-Rodrigo, J. M. Pastor, M. T. Lépez, and A. Fernandez-Caballero, “Elec-
trodermal Activity Sensor for Classification of Calm/Distress Condition,” Sensors, vol. 17, 10 Oct.
2017.

M. L. Fantini, M. Michaud, N. Gosselin, G. Lavigne, and J. Montplaisir, “Periodic leg movements
in REM sleep behavior disorder and related autonomic and EEG activation,” Neurology, vol. 59,
pp. 1889-1894, 12 Dec. 2002.

P. A. Lanfranchi, L. Fradette, J. F. Gagnon, R. Colombo, and J. Montplaisir, “Cardiac Autonomic
Regulation During Sleep in Idiopathic REM Sleep Behavior Disorder,” Sleep, vol. 30, 8 Aug. 2007.

J. de Moraes et al., “Advances in Photopletysmography Signal Analysis for Biomedical Applica-
tions,” Sensors, vol. 18, Jun. 2018.

M. Manconi et al., “Time structure analysis of leg movements during sleep in REM sleep behavior
disorder,” Sleep, vol. 30, pp. 1779-1785, 12 Dec. 2007.

Z. Zhu and Q. Ji, “Robust real-time eye detection and tracking under variable lighting conditions
and various face orientations,” Computer Vision and Image Understanding, vol. 98, pp. 124—-154,
1 Apr. 2005.

I. S. Gopal and G. G. Haddad, “Automatic detection of eye movements in REM sleep using the
electrooculogram,” The American journal of physiology, vol. 241, pp. 217-221, 3 1981.

MAX30102 datasheet, Maxim Integrated, Oct. 2018. [Online]. Available: https://www.analog.
com/media/en/technical-documentation/data-sheets/max30102.pdf.

LIS3DH datasheet, STMicroelectronics, Dec. 2016. [Online]. Available: https://www.st.com/
resource/en/datasheet/cd00274221.pdf.

British Heart Foundation. “What is a normal pulse rate?” (2021), [Online]. Available: https: //www.
bhf . org.uk/informationsupport/heart-matters-magazine/medical/ask-the-experts/

pulse-rate (visited on 05/24/2023).

H. F. Posada-Quintero and K. H. Chon, “Innovations in Electrodermal Activity Data Collection and
Signal Processing: A Systematic Review,” Sensors, vol. 20, no. 2, 2020, ISSN: 1424-8220.

A. Greco et al., “Acute Stress State Classification Based on Electrodermal Activity Modeling,”
IEEE Transactions on Affective Computing, vol. 14, no. 1, pp. 788-799, 2023.

D. Bruck and I. Thomas, “Comparison of the Effectiveness of Different Fire Notification Signals
in Sleeping Older Adults,” Fire Technology, vol. 44, Aug. 2007.

G. Lavigne et al., “Sleep arousal response to experimental thermal stimulation during sleep in
human subjects free of pain and sleep problems,” PAIN®, vol. 84, pp. 283-290, 2-3 Feb. 2000.

D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur, and H. Nazeran, “A review on wearable
photoplethysmography sensors and their potential future applications in health care,” Interna-
tional Journal of Biosensors and Bioelectronics, vol. 4, Aug. 2018.

M.-B. Hossain, Y. Kong, H. F. Posada-Quintero, and K. H. Chon, “Comparison of Electrodermal
Activity from Multiple Body Locations Based on Standard EDA Indices’ Quality and Robustness
against Motion Artifact,” Sensors, vol. 22, May 2022.

A. M. Carek and O. T. Inan, “Robust Sensing of Distal Pulse Waveforms on a Modified Weighing
Scale for Ubiquitous Pulse Transit Time Measurement,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 11, Aug. 2017.


https://zorggroep-onl.nl/slimme-sensor-verbetert-de-nachtrust-bij-bewoners-t-kompas
https://zorggroep-onl.nl/slimme-sensor-verbetert-de-nachtrust-bij-bewoners-t-kompas
https://www.analog.com/media/en/technical-documentation/data-sheets/max30102.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/max30102.pdf
https://www.st.com/resource/en/datasheet/cd00274221.pdf
https://www.st.com/resource/en/datasheet/cd00274221.pdf
https://www.bhf.org.uk/informationsupport/heart-matters-magazine/medical/ask-the-experts/pulse-rate
https://www.bhf.org.uk/informationsupport/heart-matters-magazine/medical/ask-the-experts/pulse-rate
https://www.bhf.org.uk/informationsupport/heart-matters-magazine/medical/ask-the-experts/pulse-rate

References 32

[42] GSR Sensor datasheet, Grove, Oct. 2018. [Online]. Available: https: //wiki . seeedstudio .
com/Grove-GSR_Sensor/.

[43] Bestwireless, Bluetooth Low Energy, https://bestwirelessbluetoothheadphones.com/wiki/
bluetooth-low-energy/, Accessed June 8, 2023.

[44] H.F.Posada-Quintero and K. H. Chon, “Innovations in Electrodermal Activity Data Collection and
Signal Processing: A Systematic Review,” Sensors, vol. 20, Jan. 2020.


https://wiki.seeedstudio.com/Grove-GSR_Sensor/
https://wiki.seeedstudio.com/Grove-GSR_Sensor/
https://bestwirelessbluetoothheadphones.com/wiki/bluetooth-low-energy/
https://bestwirelessbluetoothheadphones.com/wiki/bluetooth-low-energy/

Data Collection on RBD Patient

Measurements have been taken with the sock on an RBD patient. This appendix consists of the result-
ing sock and BedSense measurements. The period from 02:25 to 02:40 will be discussed, because the
patient noticed some slight arm movements at 02:29 and leg movements at 02:35. The PE measure-
ments seen in Figure A.1 show vibrations around 02:29, which can be explained as the arm movements.
The vibrations after 02:35 could be caused by the leg movements. The FSR data, shown in Figure A.2,
indicates a fluctuating pressure around 02:36.

Average PE: Episode

15000
10000
5000

0
-5000
—10000
—15000

18 02:25 18 02:30 18 02:35 18 02:40
Time [D:H:M]

Amplitude

Figure A.1: PE data from the BedSense

Average FSR: Episode

5501
o 5001
£ 4501
£
<4001

3501

18 02:25 18 02:30 18 02:35 18 02:40

Time [D:H:M]
Figure A.2: FSR data from the BedSense

Looking at the accelerometer data from the sock in Figure A.3, both the leg and arm movements can
be seen. There is a small peak around 02:29, concurrent with the arm movements. After 02:35 a
bigger peak occurs, which shows leg movement. When comparing the accelerometer data with the
BedSense data seen in Figures A.1 and A.2, it can be concluded that the sock does indeed provide
more information on leg movement.

33



34

ACC: Episode
— X-axis
1.01 .
—— y-axis
—_ —— Z-axis
2 0.5 — 4.,1.
C
o
©
S 007
o
(@}
g
—0.5-
1.0
18 02:25 18 02:30 18 02:35 18 02:40

Time [D:H:M]
Figure A.3: Data from the accelerometer

In Figure A.4, the raw PPG data is presented. This has been processed and turned into an estimated
heart rate, shown in Figure A.5. It shows no abnormalities around the time of the arm movements, but
at the same time of the leg movement the heart rate does seem to be higher for a while. After the leg
movements the estimated heart rate reaches around 140 bpm, this is likely to be a false outlier.

PPG: Episode

180000
o
5 160000 -
=
€ 140000 1
<

120000 +— : : :

18 02:25 18 02:30 18 02:35 18 02:40
Time [D:H:M]
Figure A.4: Data from the PPG sensor
Heart Rate: Episode

— 140 -
€
2120
9 100
©
o 801
o 60
T

18 02:25 18 02:30 18 02:35 18 02:40

Time [D:H:M]
Figure A.5: Extracted heart rate
The EDA data can be seen in Figure A.6. At the same time of the leg movement the value of the raw

EDA data drops suddenly, this could be caused by the sensors being moved. But after EDA values
gradually start increasing, which could be an indicator of stress.



35

EDA: Episode

» 1600
©
= 1500
£ 1400
<

1300

18 02:25 18 02:30 18 02:35 18 02:40
Time [D:H:M]

Figure A.6: Data from the EDA sensor



RBD Diagnostic Criteria

B.1. International Classification of Sleep Disorders, Third Edition

Table B.1: International Classification of Sleep Disorders, Third Edition (ICSD-3). REM Sleep Behavior Disorder Diagnostic
Criteria [1].

Criteria A-D must be met

A. Repeated episodes of sleep-related vocalization and/or complex motor behaviors

B. These behaviors are documented by polysomnography to occur during REM sleep or, based
on clinical history of dream enactment, are presumed to occur during REM sleep

C. Polysomnographic recording demonstrates REM sleep without atonia (RWA)

D. The disturbance is not better explained by another sleep disorder, mental disorder, medication
or substance use

B.2. The American Academy of Sleep Medicine Manual for the Scor-
ing of Sleep and Associated Events

Table B.2: The American Academy of Sleep Medicine (AASM) Manual for the Scoring of Sleep and Associated Events.
Scoring Polysomnographic Features of REM Sleep Behavior Disorder (RBD) [1].

1. Score in accordance with the following definitions

Sustained muscle activity (tonic activity) in REM sleep:
An epoch of REM sleep with at least 50% of the duration of the epoch having a chin EMG
amplitude greater than the minimum amplitude demonstrated in NREM sleep

Excessive transient muscle activity (phasic activity) in REM sleep:

In a 30 s epoch of REM sleep divided into ten sequential 3 s mini-epochs, at least five
(50%) of the mini-epochs contain bursts of transient muscle activity. In RBD, excessive
transient muscle activity bursts are 0.1-5.0 s in duration and at least four times as high in
amplitude as the background EMG activity

2. The polysomnographic characteristics of RBD are characterized by EITHER or BOTH of
the following features:

(a) Sustained muscle activity in REM sleep in the chin EMG

(b) Excessive transient muscle activity during REM in the chin or limb EMG

36



B.3. Diagnostic and Statistical Manual of Mental Disorders 37

B.3. Diagnostic and Statistical Manual of Mental Disorders

Table B.3: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Rapid Eye Movement sleep Behavior
Disorder Diagnostic Criteria (Only the Core Features are Reported) [1].

A. Repeated episodes of arousal during sleep associated with vocalization and/or complex
motor behaviors

B. These behaviors arise during rapid eye movement (REM) sleep and therefore usually occur
more than 90 min after sleep onset, are more frequent during the later portions of the sleep
period and uncommonly occur during daytime naps

C. Upon awakening from these periods, the individual is completely awake, alert and not
confused or disoriented

D. Either of the following:
1. REM sleep without atonia in polysomnographic recording

2. A history suggestive of REM sleep behavior disorder and established synucleinopathy di-
agnosis (e.g. Parkinson’s disease, multiple system atrophy)




Sensor Characteristics

From the sensor comparison, it was concluded that the following sensors will be used: EDA sensor,
PPG sensor, and an accelerometer.

EDA Sensor

The exact choice of sensor for EDA was chosen to be Grove (galvanic skin response) GSR. It measures
the resistance of the skin which has a strong correlation to emotional stress end can cause stimulation
to the sympathetic nervous system which is made visible by low-varying AC components of the sweat
response. The sensor has the following key specifications [42]:

» Operating voltage 3.3V/5V
* Analog Output Signal
» 2 Electrodes

PPG Sensor
For the PPG sensor, the MAX30102 from Analog Devices was chosen. The sensor has the following
key specifications [32]:

* Programmable Sample Rate and LED Current for Power Savings
* Low-Power Heart-Rate Monitor (< 1mW)

+ Embedded 32 levels of 18-bit data output FIFO

* Integrated sample averaging

» 18 bit ADCs

» 2 LED channels: 1 x red-light & 1x IR-light

* Dynamic scaling capabilities

The MAX30102 module is able to measure both pulse oximetry and heart rate. It mainly consists of
LED and photodetectors. The sensor can be read out using an I2C interface.

Accelerometer
The accelerometer that was chosen is the STMicroelectronics LIS3DH. The sensor has the following
key specifications [33]:

» +2g/+49/+8g/+16g dynamically selectable scale

* Ultra-low-power mode consumption down to 2 pA
» Embedded 32 levels of 16-bit data output FIFO

+ 8 to 12-bit ADCs

38



39

The LIS3DH is a low-power three-axis linear accelerometer with a digital 72C serial interface standard
output. The LIS3DH has dynamically user-selectable full scales of +2g/+4g/+8g/+16g and is capable
of measuring accelerations with output data rates from 1 Hz to 5.3 kHz. It has an integrated 32-level
first-in, first-out (FIFO) buffer allowing to store data in order to limit intervention by the host processor.

The following operating settings are used for this sensor:

» Sample frequency: 50 Hz
» Operatingrange: +2g¢

» Sample size: 12 bit

* Resolution: 1 mg/bit



Sensor Readout

D.1. MAX30102

Programming

To control how the MAX30102 operates, it is necessary to program it by writing to a number of registers
that store the operating settings of the device. Each register of the MAX30102 consists of an 8-bit
word in memory. To write to those registers a series of I2C operations need to be performed. These
operations are specified later in this section. The registers written to at restart are listed in Table D.1.

Table D.1: Register settings for MAX30102

Name Address | Data | Default
FIFO_CONFIG 0x08 0x70 | 0x00
MODE_CONFIG | 0x09 0x03 | 0x00
SPO2_CONFIG | 0x0A Ox4F | 0x00
LED1_PA 0x0C 0x5A | 0x00
LED2_PA 0x0D O0x5A | 0x00

FIFO_CONFIG
» Sets sample averaging to 8 samples.
» Enable FIFO.
» Enables FIFO rollover.

MODE_CONFIG
» Enables SPO2 mode (enable both the IR-LED and RED-LED).

SPO2_CONFIG
» Sets ADC scale to 8192 nA.

» Sets sample rate to 400 Hz.
» Sets LED pulse with to 411 us (18 bit resolution).

LEDI_PA
» Sets RED-LED current level to 18 mA.

40



D.2. LIS3DH 41

LED2_PA
» Sets IR-LED current level to 18 mA.

Register writing

To write to a specific register of the MAX30102, the microcontroller (master) performs the following
operations. The master establishes a connection by sending a start condition, followed by the slave
address of the MAX30102 (slave) appended with a 1 to specify a write operation (0b10101110 | 0b0).
Upon obtaining its slave address, the MAX30102 (slave) emits an ACK signal. Consequently, the
master sends a byte frame that consists of the registered address to write to and waits again for an
ACK from the slave. After receiving the ACK from the slave, the master sends the data to be stored in
the register. Once again, the slave sends an ACK upon receiving the new register data and the master
responds with a stop condition, after which the bus is freed.

Register reading

To read the contents of specific registers of the MAX30102, the microcontroller (master) performs the
following operations. The master establishes a connection by sending a start condition followed by the
slave address of the MAX30102 (slave), appended with a 1 to specify a write operation (0b10101110
| Ob0). Following the receipt of its slave address, the MAX30102 (slave) emits an ACK signal. Next,
the master sends a byte frame which consists of the register address to read from, and waits again for
an ACK from the slave. Upon receiving the ACK from the slave, the master sends a restart condition
followed by the slave address together with a read bit (Ob10101110 | Ob1), to specify a read operation.
Following this, the slave sends an ACK signal followed by the contents of the register specified. After
the master receives the data from the slave, and the master decides to end the communication, it sends
a NACK followed by a stop condition. However, by sending an ACK instead of a NACK, the slave sends
the contents of the next register in memory to the master. The slave continues this process until the
master sends a NACK followed by a stop condition after receiving the data.

FIFO-readout

The MAX30102 has a built-in FIFO (first-in-first-out) buffer. It has space for 32 samples per LED channel.
When a new sample is ready, the sample is transferred to the buffer at the location of the value specified
in the FIFO_WR register (0x04) and is automatically incremented by 1. Reading from the FIFO buffer
is done by reading register FIFO_DATA (0x07) 6 times using the multi-read mode, retrieving 6 bytes
consisting of the 3-byte data for each LED channel. Once a sample is read, the value in the FIFO_RD
register (0x06) is automatically incremented by one. This sets the data in register FIFO_DATA to be
the value located at the location of the FIFO write pointer in FIFO_WR. Once the write pointer reaches
the end of the buffer, which is at address 31, it rolls back to 0 and overwrites the old data. The structure
of the FIFO buffer is shown in Figure D.1.

It is important that the FIFO is read before it overwrites unread data to prevent data loss. This is done
by at least reading all the data in the buffer with a frequency f,..q, which is specified in Equation D.1.

fs

i — =~ 1.56H DA
f7ead> f’ifO_SiZ@ 56H z ( )

Where f,..q is the frequency of reading all the data stored in the FIFO buffer, f, is the frequency to
which new data is generated and fifo_size is the size of the FIFO buffer.

D.2. LIS3DH

Programming

To control how the LIS3DH operates it is necessary to program it by writing to a number of registers that
store the operating settings of the device. Like the MAX30102, each register of the LIS3DH consists of
an 8-bit word in memory. To write to those registers, a series of I2C operations need to be performed
which are specified later in this chapter. The registers written to at restart are listed in Table D.2.

CTRL_REGI
» Sets sample frequency to 50 Hz.



D.2. LIS3DH 42

Table D.2: Register settings for LIS3DH

Name Address | Data | Default
CTRL_REG1_MASK | 0x20 0x47 | 0x00
CTRL_REG4 0x23 0x08 | 0x00
CTRL_REG5 0x24 0x40 | 0x00
FIFO_CTRL_REG Ox2E 0x94 | 0x00

» Disables low power mode.
» Enable x, y, z data collection.

CTRL_REG4
* Measuring scale is +2g.

» Enable High resolution (12-bit).

CTRL_REGS5
* Enable FIFO.

FIFO_CTRL_REG
* FIFO mode (stream).

Register Writing

To write to a specific register for the LIS3DH the microcontroller (master) performs the following opera-
tions. The master establishes a connection by sending a start condition followed by the slave address
of the LIS3DH (slave) append with a 1 to specify a write operation (0b00110010 | 0b0). Following the
slave’s receipt of its slave address, it sends an ACK signal. Next, the master sends the byte frame
which consists of the register address to write to and waits again for an ACK from the slave. After
the slave sends the ACK, the master sends the data to be stored in the register. Furthermore, the
slave sends again an ACK upon receiving the new register data and the master responds with a stop
condition to end free the bus.

Register Reading

To read the contents of specific registers for the LIS3DH the microcontroller (master) performs the
following operations. The master establishes a connection by sending a start condition followed by the
slave address of the LIS3DH (slave) appended with a 1 to specify a write operation (0b00110010 | 0b0).
Subsequently, the slave receives its slave address and it sends an ACK signal. Next, the master sends
the byte frame which consists of the register address to read from. The address is appended with a
bit that enables or disables address auto-increment mode (EN/DIS) and waits again for an ACK from
the slave. Subsequently the slave sends the ACK, the master sends a restart condition followed by
the slave address together with a read bit (0b00110010 | Ob1), to specify a read operation. The slave
sends an ACK signal followed by the contents of the register specified. After the master receives the
data from the slave it sends an ACK or NACK. When the master decides to end the communication it
sends a NACK followed by a stop condition. However, if address auto-increment mode was enabled
and an ACK was sent instead of a NACK, the slave sends the contents of the next register in memory
to the master until the master sends a NACK followed by a stop condition after receiving the data.
When instead burst read mode is disabled, the slave will not auto-increment the register and resends
its contents until the master initiates a stop sequence. After receiving the ACK from the slave, the
master sends a restart condition, followed by the slave address and a read bit (Ob00110010 followed
by 0b1), to specify a read operation.



D.2. LIS3DH 43

FIFO-readout

The LIS3DH also has a FIFO buffer of 32 samples. Each sample consists of 3x16-bit values corre-
sponding to the measured acceleration in each of the axis. When a new sample is ready, the sample
is transferred to the buffer and the data in FSS[4:0], located in register FIFO_SRC_REG (0x2f) is au-
tomatically incremented by one. FSS[4:0] resembles the number of unread samples inside the buffer.
Reading from the FIFO is done by enabling address auto-increment mode, and then reading 6 bytes
starting from address 0x28 and ending at address Ox2D. This results in reading the 2 bytes of ac-
celeration data for each of the axes: once a sample is read, the value of FSS[4:0] is automatically
decremented by one. The next oldest sample in the FIFO is then forwarded to the registers 0x28 to
0x2D, such that the next sample can be read. The structure of the FIFO buffer is shown in Figure D.2.
Equation D.1 holds for reading out the FIFO data.

FIFO FIFO

- Unread data
0x00

. Read data
0x01

0x02

. Unread data
. Read data

0x00

0x01

0x02

003 —
0x04
0x05
0x06
0x07

— [rro_wn |

0x08

0x30

0x31

Figure D.1: Structure of the MAX30102 FIFO buffer

0x03

0x04
FSS[4:0]

0x05

0x06

0x07

0x08

0x30

0x31

Figure D.2: Structure of the LIS3DH FIFO buffer



Results

Figure E.1 shows the accelerometer data when moving the toes.

ACC: Toe movement

1.00
0.751
0.501
)
- 0.251
S
® 0.001 :
9 i
g _0'25< : N /\M
< _ I
~0.504 i X ax!s
i y-axis
=0.751 i —— z-axis
-1.00 . — ! } I
22 24 26 28 30

Time since start of data collection [s]

Figure E.1: Data from the accelerometer while moving the toes
Figure E.2 shows the PPG data when moving the toes.

PPG: Toe movement

2500001
2400001
2300001
< 2200001
2100001 : : : : : : : :
21 22 23 24 25 26 27 28 29 30

Time since start of data collection [s]

mplitude

Figure E.2: Data from the PPG sensor while moving the toes

Figure E.3 shows the EDA data when moving the toes.

44



45

EDA: Toe movement

21 22 23 24 25 26 27 28 29 30
Time since start of data collection [s]

Figure E.3: Data from the EDA sensor while moving the toes

Figure E.4 shows a close-up of the peak discussed in Section 7.2.

Acceleration [g]

ACC: During Sleep

1.09
0.8
0.6
Wﬁ—*wm—-‘
0.41 —— X-axis
y-axis

0.21 —— Zz-axXis
0.0
—-0.21
—0.4+1— ; ; ; ; -

7465 7466 7467 7468 7469 7470

Time since start of data collection [s]

Figure E.4: Close-up of peak



F.1. server_UDPino

Code for data collection using WiFi.

#include <WebServer.h>
#include <WiFi.h>
#include <WiFiUdp.h>
#include "LIS3DHTR.h"
#include "MAX30102.h"
#include "EDA.h"

//Connection status
#define DISCONNECTED O
#define ADVERTISING 1
#define CONNECTED 2

//Wifi login
const char*x ssid = "1234";
const char* password = "5678";

//I2c slave addresses
uint8_t acc_addr = 0b0011001;
uint8_t ppg_addr = 0x57;

//Specify pin connections
int eda_pin = 14;

int sdal = 21;

int sda2 = 8;

int scll = 12;

int scl2 = 9;

int vibrator 37;

//Specifi sensor buffer sizes

const int ppg_buffer_size = 32;
const int acc_buffer_size = 32;
const int eda_buffer_size 16;

//new data request timings
int ppgl_ppull = 40;
int ppg2_ppull 40;
int acc_ppull = 40;
int eda_ppull = 40;

//state initializations

int wifi_state = DISCONNECTED;
bool ppgl_full = false;

bool ppg2_full = false;

bool acc_full = false;

bool eda_full = false;

//creating sensor instances

46

T 1

Source Code



48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

7
72
73
74
75
76
77
78

97
98
99
100
101
102

104
105
106
107
108
109
110
1
112
113
114
115

F1. server_UDPino 47

EDA eda(eda_pin, eda_buffer_size, eda_ppull, true);

MAX30102 ppgl(ppg_addr, Wire, sdal, scll, ppg_buffer_size, ppgl_ppull, true);
MAX30102 ppg2(ppg_addr, Wirel, sda2, scl2, ppg_buffer_size, ppg2_ppull, false);
LIS3DHTR acc(acc_addr, Wire, sdal, scll, acc_buffer_size, acc_ppull, true);

//creating Wifi instance

WiFiUDP Udp;

unsigned int localUdpPort = 4210;
char incomingPacket [16];

int packetSize;

uint8_t* UDPpacket;

void connectToWifi() {
// Wait for connection
neopixelWrite (RGB_BUILTIN, O, 50, 0);
int status = WL_IDLE_STATUS;
while (WiFi.status() != WL_CONNECTED) {
delay (500) ;
Serial.print(".");
}
Serial.println("Connected to wifi");
Udp.begin(localUdpPort) ;
Serial.printf("Now listening at IP Y%s, UDP port %d\n", WiFi.localIP().toString().c_str(),
localUdpPort) ;

//wait for client connection
bool readPacket = false;
while (!readPacket) {
int packetSize = Udp.parsePacket();
if (packetSize) {
// receive incoming UDP packets
Serial.printf ("Received %d bytes from %s, port %d\n", packetSize, Udp.remoteIP().
toString().c_str(), Udp.remotePort());
int len = Udp.read(incomingPacket, 16);
if (len > 0) {
incomingPacket [len] = 0;
}
neopixelWrite (RGB_BUILTIN, O, 0, 50);
Serial.printf ("UDP packet contents: %s\n", incomingPacket);
readPacket = true;
}
}
I

//addapt to new ip
void checkToReconnect () {
bool readPacket = false;
int packetSize = Udp.parsePacket();
if (packetSize) {
// receive incoming UDP packets
Serial.printf ("Received %d bytes from %s, port %d\n", packetSize, Udp.remoteIP().
toString () .c_str(), Udp.remotePort());
int len = Udp.read(incomingPacket, 16);
if (len > 0) {
incomingPacket [len] = 0;
}
}
}

void setup() {
Serial.begin(115200) ;
WiFi.begin(ssid, password);
Wire.begin(sdal, scll);
Serial.println("");

packetSize = 0;

packetSize += ppgl.getByteArraySize();
packetSize += acc.getByteArraySize();
packetSize += eda.getByteArraySize();

//pair with pc



F1. server_UDPino

116 connectToWifi();

17

118 //programm sensors

119 ppgl.programm(false);

120 ppg2.programm(false);

121 acc.programm(false);

122 }

123

124 //This function gathers all the sensor information and sends it to an specified ip
125 void sendUDPData() {

126 UDPpacket = new uint8_t[packetSize];

127 int offset = 0;

128 memcpy (UDPpacket + offset, ppgl.toBytes(), ppgl.getByteArraySize());
129 offset += ppgl.getByteArraySize();

130 memcpy (UDPpacket + offset, acc.toBytes(), acc.getByteArraySize());
131 offset += acc.getByteArraySize();

132 memcpy (UDPpacket + offset, eda.toBytes(), eda.getByteArraySize());
133

134 uint8_t* ptr = ppgl.toBytes();

135 Serial.println();

136 Udp.beginPacket (Udp.remoteIP (), Udp.remotePort());

137 Udp.write (UDPpacket, packetSize);

138 Udp . endPacket () ;

139 delete[] UDPpacket;

140}

141

142 void loop() {

143 switch (WiFi.status()) {

144 case WL_CONNECTED:

145 checkToReconnect () ;

146 ppgl_full = ppgl.bufferFull(false);

147 acc_full = acc.bufferFull(false);

148 eda_full = eda.bufferFull(false);

149 if (acc_full && ppgl_full && eda_full) {

150 sendUDPData () ;

151 eda.resetNew();

152 ppgl.resetNew () ;

153 acc.resetNew();

154 ¥

155 break;

156

157 case !WL_CONNECTED:

158 Serial.println("wifi connection: disconnected, restarting connection protocol");
159 neopixelWrite (RGB_BUILTIN, 50, 0, 0);

160 connectToWifi();

161 break;

162 }

163 }



F2. server_Serial.ino

F.2. server_Serial.ino
Code for data collection using the serial communication port.

#define SERIAL_TX_BUFFER_SIZE 2000
#include "LIS3DHTR.h"

#include "MAX30102.h"

#include "EDA.h"

//Connection status
#define DISCONNECTED O
#define ADVERTISING 1
#define CONNECTED 2

11 //I2c slave addresses
12 uint8_t acc_addr = 0b0011001;
13 uint8_t ppg_addr = 0x57;

15 //Specify pin connections
16 int eda_pin = 14;

17 int sdal = 21;

18 int sda2 = 8;

19 int scll = 12;

20 int scl2 = 9;

21 int vibrator = 37;

22 bool vibrator_on = 0;

24 //Specifi sensor buffer sizes

25 const int ppg_buffer_size = 32;
26 const int acc_buffer_size = 32;
27 const int eda_buffer_size = 16;

29 //new data request timings
30 int ppgl_ppull = 40;
31 int ppg2_ppull 40;
32 int acc_ppull = 40;
33 int eda_ppull = 40;

35 //state initializations

3 int wifi_state = DISCONNECTED;
37 bool ppgl_full = false;

38 bool ppg2_full = false;

39 bool acc_full = false;

40 bool eda_full = false;

42 //creating sensor instances

43 EDA eda(eda_pin, eda_buffer_size, eda_ppull, true);

44 MAX30102 ppgl(ppg_addr, Wire, sdal, scll, ppg_buffer_size, ppgl_ppull, true);
45 MAX30102 ppg2(ppg_addr, Wirel, sda2, scl2, ppg_buffer_size, ppg2_ppull, false);
46 LIS3DHTR acc(acc_addr, Wire, sdal, scll, acc_buffer_size, acc_ppull, true);

47 int packetSize;

48 uint8_t* packet;

50 void setup() {

51 Serial.begin(115200) ;

52 packetSize = 0;

53 packetSize += ppgl.getByteArraySize();
54 packetSize += acc.getByteArraySize();
55 packetSize += eda.getByteArraySize();

57 //vibrator pinselect
58 pinMode (vibrator, OUTPUT);

60 //programm sensors
61 ppgl.programm(false);
62 ppg2.programm(false);

63 acc.programm(false);
64 neopixelWrite (RGB_BUILTIN, O, O, 50);
65 }

67 //This function gathers all the sensor information and sends it to an specified ip



F2. server_Serial.ino

50

68 void sendData() {

69
70
7
72
73
74
75
76
77
78
79

80 }

packet = new uint8_t [packetSize];

int offset = 0;

memcpy (packet + offset, ppgl.toBytes(), ppgl.getByteArraySize());
offset += ppgl.getByteArraySize();

memcpy (packet + offset, acc.toBytes(), acc.getByteArraySize());
offset += acc.getByteArraySize();

memcpy (packet + offset, eda.toBytes(), eda.getByteArraySize());

Serial.write(packet, packetSize);
Serial.flush();
delete[] packet;

g2 void vibrateToggle() {

85 }

digitalWrite(vibrator, vibrator_on);
vibrator_on = !vibrator_on;

87 void loop() {

ppgl_full = ppgl.bufferFull(false);
acc_full = acc.bufferFull(false);
eda_full = eda.bufferFull(false);

if (acc_full && ppgl_full && eda_full) {
sendData () ;
eda.resetNew () ;
ppgl.resetNew () ;
acc.resetNew () ;



39

49
50
51

F3. MAX30102.h 51

F.3. MAX30102.h
Header file for the MAX30102 class.

#ifndef _MAX30102_H
#define _MAX30102_H

#include <stdint.h>
#include <Wire.h>

#include <HardwareSerial.h>
#include <string.h>
#include "sensormonitor.h"

class MAX30102 : public sensor {
public:

MAX30102(uint8_t addr, TwoWire& _I2c, int sda, int scl, int buffer_size, int ppulltime,
bool enable);

void IN_STATUS1_MASK();

void IN_STATUS2_MASK();

void INT_EN1_MASKQ);

void INT_EN2_MASK();

void FIFO_WR_PTR_MASK();

void OVERFLOW_COUNTER_MASK();

void FIFO_RD_PTR_MASKQ);

void FIFO_DATA_MASKQ);

void FIFO_CONFIG_MASK();

void MODE_CONFIG_MASKQ);

void SP02_CONFIG_MASKQ);

void LED1_PA_MASK();

void LED2_PA_MASK();

void MULTI_LED_CONTROL_REG1_MASK();

void MULTI_LED_CONTROL_REG2_MASK();

int32_t* getRedDataPtr();

int32_t* getIrDataPtr();

void writeRegister(uint8_t reg, uint8_t data);

uint8_t readRegister (uint8_t reg);

void getData();

void initiateRegisters();

uint8_t* toBytes();

void storeData();

void printData();

void begin();

private:
int32_t* red_data;
int32_t* ir_data;
int32_t* red_data_stored;
int32_t* ir_data_stored;
uint8_t addr;
uint8_t fifo_rd;
uint8_t fifo_wr;
TwoWire*x _I2c;
int sda;
int scl;

iE

#endif



59
60

F.4. MAX30102.cpp

52

F.4. MAX30102.cpp
Member functions of class MAX30102.

#include "MAX30102.h"
#include "sensormonitor.h"

//constructor of MAX30102
MAX30102::MAX30102(uint8_t addr, TwoWire& _I2c, int sda,
ppulltime, bool enable)
sensor (buffer_size, ppulltime, enable),
addr (addr),
sda(sda),
scl(scl),
fifo_rd (0),
fifo_wr (0),
_I2c(&_I2c) {

dataByteArray_size = buffer_size * 8;

red_data = new int32_t[buffer_size];

ir_data = new int32_t[buffer_size];

red_data_stored = new int32_t[buffer_sizel;

ir_data_stored = new int32_t[buffer_size];

dataByteArray = new uint8_t[dataByteArray_size];
g

//Initiates I2c object and specifies pins
void MAX30102::begin() {

_I2c->begin(sda, scl);
}

//prints the sensor data to the serial port
void MAX30102::printData() {
for (int i = 0; i < buffer_size; i++) {
Serial.println(red_data_stored[i]);
//Serial.print (" ");
//Serial .println(ir_data_stored[i]);
}
}

//executes sensor settings
void MAX30102::initiateRegisters() {

num_register = 15;

register_addr = new uint8_t[num_register];
register_data = new uint8_t[num_register];
register_couter = 0;

IN_STATUS1_MASK() ;
IN_STATUS2_MASK () ;
INT_EN1_MASK () ;
INT_EN2_MASKQ) ;
FIFO_WR_PTR_MASK Q) ;
OVERFLOW_COUNTER_MASK () ;
FIFO_RD_PTR_MASK();
FIFO_DATA_MASK();
FIFO_CONFIG_MASK();
MODE_CONFIG_MASK () ;
SP02_CONFIG_MASKQ);
LED1_PA_MASK();
LED2_PA_MASK () ;
MULTI_LED_CONTROL_REG1_MASK();
MULTI_LED_CONTROL_REG2_MASK() ;
}

//returns ptr to red_ data
int32_t* MAX30102::getRedDataPtr () {
return red_data_stored;

}

//returns ptr to ir_ data
int32_t* MAX30102::getIrDataPtr() {
return ir_data_stored;

int scl,

int buffer_size,

int



F.4. MAX30102.cpp 53

67 T

68

69 //function for writing a single byte to a specifier address
70 void MAX30102::writeRegister (uint8_t reg, uint8_t data) {

71 _I2c->beginTransmission (addr) ;
72 _I2c->write(reg);

73 _I2c->write(data);

74 _I2c->endTransmission(true);
75}

76
77 //function for reading a single byte to a specifier address
78 uint8_t MAX30102::readRegister(uint8_t reg) {

79 uint8_t data;

80 _I2c->beginTransmission (addr) ;
81 _I2c->write(reg);

82 _I2c->endTransmission(false);
83

84 _I2c->requestFrom((int)addr, 1);
85 while (_I2c->available()) {

86 data = _I2c->read();

87 }

88 _I2c->endTransmission(true) ;
89 return data;

90 }

91
92 //function for wextracting data from the MAX30102's FIFO
93 void MAX30102::getData() {

94 int get_num;

95 //retreive fifo write ponter

96 fifo_wr = MAX30102::readRegister (0x04);

o7

98 //Specify address to read from

99 _I2c->beginTransmission(addr) ;

100 _I2c->write (0x07);

101 _I2c->endTransmission(false);

102

103 //calculate the number of new samples to retreive
104 if (fifo_wr > fifo_rd) {

105 get_num = fifo_wr - fifo_rd;

106 } else {

107 get_num = buffer_size - fifo_rd + fifo_wr;

108 }

109

110 //dont overflow the buffer

11 if (buffer_level + get_num > buffer_size - 1) {
12 get_num = buffer_size - buffer_level;

13 }

114 fifo_rd = (get_num + fifo_rd) % buffer_size;

15

116 //request the number of samples

17 for (int j = 0; j < get_num; j++) {

118 uint8_t temp[6];

119 _I2c->requestFrom((int)addr, 6);

120 int 1 = 0;

121 while (_I2c->available() && i < 6) {

122 temp[i++] = _I2c->read();

123 }

124 red_data[buffer_level] = ((temp[0] << 16) + (temp[1l] << 8) + temp[2]) & Ox3ffff;
125 ir_data[buffer_level++] = ((temp[3] << 16) + (temp[4] << 8) + temp[5]) & Ox3ffff;
126 _I2c->endTransmission(false);

127 }

128 _I2c->endTransmission(true);

129 }

130
131 //copys data array to a byte array
132 uint8_t* MAX30102::toBytes() {

133 int index = O0;

134 memcpy (dataByteArray + index, red_data_stored, buffer_size * 4);
135 index += buffer_size * 4;

136 memcpy (dataByteArray + index, ir_data_stored, buffer_size * 4);

137 return dataByteArray;



138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

190
191
192
193
194
195

197
198
199
200
201
202
203
204
205
206
207
208

F.4. MAX30102.cpp

}

//saves a copy of the data buffer
void MAX30102::storeData() {

memcpy (red_data_stored, red_data, buffer_size * 4);
memcpy (ir_data_stored, ir_data, buffer_size * 4);

}

//The following function specify the resgister settings to apply when programming

void MAX30102::IN_STATUS1_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x00;
register_datal[register_couter++] = mask;

}

void MAX30102::IN_STATUS2_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x01;
register_datal[register_couter++] = mask;

}

void MAX30102::INT_EN1_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x02;
register_datal[register_couter++] = mask;

}

void MAX30102::INT_EN2_MASK() {
uint8_t mask = 0;
register_addr [register_couter] = 0x03;
register_datal[register_couter++] = mask;

}

void MAX30102::FIFO_WR_PTR_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x04;
register_data[register_couter++] = mask;

Ik

void MAX30102::0VERFLOW_COUNTER_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x05;
register_datal[register_couter++] = mask;

}

void MAX30102::FIFO_RD_PTR_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x06;
register_datal[register_couter++] = mask;

}

void MAX30102::FIFO_DATA_MASK() {
uint8_t mask = 0;

register_addr[register_couter] = 0x07;
register_data[register_couter++] = mask;
}
void MAX30102::FIFO_CONFIG_MASK() {
int samples_averaged = 8;
int rollover_en = 1;

uint8_t FIFO_ROLLOVER_EN = (uint8_t)rollover_en << 4;

uint8_t SMP_AVE;
switch (samples_averaged) {
case 1:
SMP_AVE
break;
case 2:
SMP_AVE = 0b001 << 5;
break;
case 4:

0b000 << 5;



F.4. MAX30102.cpp

209 SMP_AVE = 0b010 << 5;
210 break;

211 case 8:

212 SMP_AVE = 0b011 << 5;
213 break;

214 case 16:

215 SMP_AVE = 0b100 << 5;
216 break;

217 case 32:

218 SMP_AVE = 0Ob111l << 5;
219 break;

220 }

221 uint8_t mask = 0;

222 register_addr [register_couter] = 0x08;

223 register_datal[register_couter++] = mask | SMP_AVE | FIFO_ROLLOVER_EN;
224 }

225

226 void MAX30102::MODE_CONFIG_MASK() {

227 int mode = 1;
228 if ('enable) {
229 mode = 3;

230 }

231
232 uint8_t MODE;

233 switch (mode) {

234 case 0: //hr

235 MODE = 0b010 << O0;

236 break;

237 case 1: //spo2

238 MODE = 0b011 << 0;

239 break;

240 case 2: //multi

241 MODE = 0Ob111l << 0;

242 break;

243 case 3: //disable

244 MODE = 0b000 << O0;

245 break;

246 }

247

248 uint8_t mask = 0;

249 register_addr[register_couter] = 0x09;
250 register_datal[register_couter++] = mask | MODE;
251 }

252
253 void MAX30102::SP02_CONFIG_MASK() {

254 int scale = 8192;
255 int fsample = 400;
256 int adc_resolution = 18;

257
258 uint8_t SP02_ADC_RGE;
259 uint8_t SP02_SR;
260 uint8_t LED_PW;

261 switch (scale) {

262 case 2048:

263 SPO2_ADC_RGE = 0b00 << 5;
264 break;

265 case 4096:

266 SPO2_ADC_RGE = 0b01 << 5;
267 break;

268 case 8192:

269 SPO2_ADC_RGE = 0bl10 << 5;
270 break;

271 case 16384:

272 SPO2_ADC_RGE = Obl1l << 5;
273 break;

274 }

275
276 switch (fsample) {

277 case 50:

278 SP02_SR = 0b000 << 2;
279 break;



F.4. MAX30102.cpp

280 case 100:

281 SPO02_SR = 0b001 << 2;
282 break;

283 case 200:

284 SP02_SR = 0b010 << 2;
285 break;

286 case 400:

287 SP02_SR = 0b011 << 2;
288 break;

289 case 800:

290 SPO02_SR = 0b100 << 2;
291 break;

292 case 1000:

293 SPO02_SR = 0b101 << 2;
294 break;

295 case 1600:

296 SP02_SR = 0b110 << 2;
297 break;

298 case 3200:

299 SPO2_SR = Obl11l << 2;
300 break;

301 }

302

303 switch (adc_resolution) {
304 case 15:

305 LED_PW = 0b00 << 0;
306 break;

307 case 16:

308 LED_PW = 0b01 << 0;
309 break;

310 case 17:

311 LED_PW = 0b10 << 0;
312 break;

313 case 18:

314 LED_PW = Obl1l << 0;
315 break;

316 }

317 uint8_t mask = 0;

318 register_addr [register_couter] = 0x0A;

319 register_datal[register_couter++] = mask | SPO2_ADC_RGE | SP02_SR | LED_PW;
320 }

321

322 void MAX30102::LED1_PA_MASK() {

323 float led_current = 18;

324 uint8_t LED_PA = led_current / 0.2;

325 uint8_t mask = 0;

326 register_addr[register_couter] = 0x0C;

327 register_datal[register_couter++] = mask | LED_PA;
328 }

329
330 void MAX30102::LED2_PA_MASK() {

331 float led_current = 18;

332 uint8_t LED_PA = led_current / 0.2;
333 uint8_t mask = 0;

334 register_addr [register_couter] = 0x0D;
335 register_datal[register_couter++] = mask | LED_PA;
336 }

337
338 void MAX30102::MULTI_LED_CONTROL_REG1_MASK() {

339 uint8_t mask = 0;

340 register_addr[register_couter] = Ox11;
341 register_data[register_couter++] = mask;
342 }

343
344 void MAX30102::MULTI_LED_CONTROL_REG2_MASK() {

345 uint8_t mask = 0;
346 register_addr [register_couter] = 0x12;
347 register_datal[register_couter++] = mask;

348 }



53
54
55

F5. LIS3DHTR.h 57

F5. LIS3DHTR.h
Header file for the LIS3DHTR class.

#ifndef _LIS3DHTR_H
#define _LIS3DHTR_H

#include <stdint.h>
#include <Wire.h>

#include <HardwareSerial.h>
#include <string.h>
#include "sensormonitor.h"

class LIS3DHTR : public sensor {
public:
LIS3DHTR(uint8_t addr, TwoWire& _I2c, int sda, int scl, int buffer_size, int ppulltime,
bool enable);
void TEMP_CFG_REG_MAKS();
void CTRL_REG1_MASK(Q);
void CTRL_REG2_MASKQ) ;
void CTRL_REG3_MASK();
void CTRL_REG4_MASK();
void CTRL_REG5_MASK();
void CTRL_REG6_MASK();
void REVERENCE_MASK () ;
void FIFO_CTRL_REG_MASK();
void INT1_CFG_MASKQ);
void NT1_THS_MASK();
void INT1_DURATION_MASK();
void CLICK_CFG_MASK();
void CLICK_THS_MASK();
void TIME_LIMIT_MASKQ);
void TIME_LATENCY_MASK();
void TIME_WINDOW_MASKQ() ;

int16_t* getxDataPtr();
int16_t* getyDataPtr();
int16_t* getzDataPtr();
void writeRegister(uint8_t reg, uint8_t data);
uint8_t readRegister (uint8_t reg);
void getData();
uint8_t* toBytes();
void storeData();
void initiateRegisters();
void printData();
void begin();

private:
intl6_t* x_data;
intl6_t* y_data;
intl6_t* z_data;
intl6_t* x_data_stored;
intl6_t* y_data_stored;
intl6_t* z_data_stored;
bool x_en, y_en, z_en;
uint8_t addr;
TwoWirex _I2c;
int sda;
int scl;

i

#endif



F6. LISSDHTR.cpp

F.6. LIS3SDHTR.cpp
Member functions of class LIS3SDHTR.

#include "LIS3DHTR.h"

4

2 #include "sensormonitor.h"

3

4 //constructor of LIS3DHTR

5 LIS3DHTR::LIS3DHTR(uint8_t addr, TwoWire& _I2c, int sda, int scl, int buffer_size, int
ppulltime, bool enable)

6 sensor (buffer_size, ppulltime, enable),

7 sda(sda),

8 scl(scl),

9 addr (addr),

10 _I2c(&_I2¢c) {

1

12 dataByteArray_size = buffer_size * 6;

13 x_data = new int16_t[buffer_sizel;

14 y_data = new int16_t[buffer_size];

15 z_data = new intl16_t[buffer_size];

16 x_data_stored = new intl16_t[buffer_sizel;

17 y_data_stored = new intl6_t[buffer_size];

18 z_data_stored = new intl16_t[buffer_size];

19 dataByteArray = new uint8_t[dataByteArray_size];

20 }

22 //Initiates I2c object and specifies pins
23 void LIS3DHTR::begin() {

24 _I2c->begin(sda, scl);

25 }

27 //prints the sensor data to the serial port
28 void LIS3DHTR::printData() {

29 for (int i = 0; i < buffer_size; i++) {
30 Serial.print(x_data_stored[i]);

31 Serial.print (" ");

32 Serial.print(y_data_stored[il]);

33 Serial.print(" ");

34 Serial.println(z_data_stored[i]);

35 }

36 }

38 //executes sensor settings
39 void LIS3DHTR::initiateRegisters() {

40 num_register = 17;

41 register_addr = new uint8_t[num_register];
42 register_data = new uint8_t[num_register];
43 register_couter = 0;

44  TEMP_CFG_REG_MAKS () ;
45  CTRL_REG1_MASKQ);

46  CTRL_REG2_MASK();

47 CTRL_REG3_MASK();

48 CTRL_REG4_MASK() ;

49 CTRL_REG5_MASK();

50  CTRL_REG6_MASK () ;

51 REVERENCE_MASK () ;

52 FIFO_CTRL_REG_MASK();
53 INT1_CFG_MASKQ);

54 NT1_THS_MASKQ);

55 INT1_DURATION_MASKQ);
s6  CLICK_CFG_MASKQ);

57 CLICK_THS_MASK();

58 TIME_LIMIT_MASK();

s9  TIME_LATENCY_MASK() ;
60 TIME_WINDOW_MASKQ);

61 }

63 //returns ptr to x_ data
64 int16_t* LIS3DHTR::getxDataPtr() {
65 return x_data_stored;

66 }



67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
9
94
95
9%
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

12

13

14

15

116

17

18

19

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

F6. LISSDHTR.cpp 59

//returns ptr to y_ data
int16_t* LIS3DHTR::getyDataPtr() {
return y_data_stored;

}

//returns ptr to z_ data
int16_t* LIS3DHTR::getzDataPtr () {
return z_data_stored;

}

//function for writing a single byte to a specifier address
void LIS3DHTR::writeRegister(uint8_t reg, uint8_t data) {
_I2c->beginTransmission (addr) ;
_I2c->write(reg);
_I2c->write(data);
_I2c->endTransmission(true);

}

//function for reading a single byte to a specifier address
uint8_t LIS3DHTR::readRegister(uint8_t reg) {

uint8_t data;

_I2c->beginTransmission (addr) ;

_I2c->write(reg | 0x80);

_I2c->endTransmission(false);

_I2c->requestFrom((int)addr, 1);

while (_I2c->available()) {
data = _I2c->read();

}

_I2c->endTransmission(true);

return data;

}

//function for wextracting data from the LIS3DHTR's FIFO
void LIS3DHTR::getData() {
int get_num;
fifo_level = this->readRegister(0x2f) & Oxf;
_I2c->beginTransmission (addr) ;
_I2c->write(0x28 | 0x80);
_I2c->endTransmission(false);

//calculate the number of new samples to retreive
if (fifo_level > buffer_size - buffer_level) {

get_num = buffer_size - buffer_level;
} else {
get_num = fifo_level;

}

//request the number of samples
if (x_en && y_en && z_en) {
for (int j = 0; j < get_num; j++) {
uint8_t temp[6];
_I2c->requestFrom((int)addr, 6);

int i = 0;

while (_I2c->available() && i < 6) {
temp [i++] = _I2c->read();

}

x_data[buffer_levell] (int16_t) ((temp[1] << 8) | temp[0]);
y_data[buffer_level] = (int16_t) ((temp[3] << 8) | temp[2]);
z_data[buffer_level++] = (int16_t) ((temp[5] << 8) | templ[4]);
_I2c->endTransmission(false);
}
}
_I2c->endTransmission(true);

}

//copys data array to a byte array
uint8_t* LIS3DHTR::toBytes() {
int index = 0;



F6. LISSDHTR.cpp

138 memcpy (dataByteArray + index, x_data_stored, buffer_size * 2);
139 index += buffer_size * 2;

140 memcpy (dataByteArray + index, y_data_stored, buffer_size * 2);
141 index += buffer_size * 2;

142 memcpy (dataByteArray + index, z_data_stored, buffer_size * 2);
143 return dataByteArray;

144 }

145
146 //saves a copy of the data buffer

147 void LIS3DHTR::storeData() {

148 memcpy (x_data_stored, x_data, buffer_size * 2);

149 memcpy (y_data_stored, y_data, buffer_size * 2);

150 memcpy (z_data_stored, z_data, buffer_size * 2);

151 }

152

153 //The following function specify the resgister settings to apply when programming
154 void LIS3DHTR::TEMP_CFG_REG_MAKS () {

155 int adc_en = 0;

156 int temp_en = 0;

157

158 uint8_t ADC_PD = adc_en << 7;

159 uint8_t TEMP_EN = temp_en << 6;

160 uint8_t mask = 0;

161

162 register_addr[register_couter] = Ox1f;

163 register_datal[register_couter++] = mask | ADC_PD | TEMP_EN;
164 }

165
166 void LIS3DHTR::CTRL_REG1_MASK() {
167 int fsample = 50;

168 int low_power_mode = O;
169

170 x_en = 1;

171 y_en = 1;

172 Zz_en = 1;

173
174 if ('enable) {

175 x_en = 0;
176 y_en = 0;
177 z_en = 0;
178 }

179
180 uint8_t Xen = x_en << 0;
181 uint8_t Yen y_en << 1;
182 uint8_t Zen = z_en << 2;
183 uint8_t O0DR;

184 uint8_t LPen = low_power_mode << 3;
185 switch (fsample) {

186 case 0:

187 ODR = 0b0000 << 4;
188 break;

189 case 1:

190 break;

191 case 10:

192 ODR = 0b0010 << 4;
193 break;

194 case 25:

195 ODR = 0b0011 << 4;
196 break;

197 case 50:

198 ODR = 0b0100 << 4;
199 break;

200 case 100:

201 ODR = 0b0101 << 4;
202 break;

203 case 200:

204 ODR = 0b0110 << 4;
205 break;

206 case 400:

207 ODR = 0b0111 << 4;

208 break;



F6. LISSDHTR.cpp

209 case 1250:

210 LPen = 0 << 3;

211 ODR = 0b1000 << 4;

212 break;

213 case 1600:

214 LPen = 1 << 3;

215 ODR = 0b1000 << 4;

216 break;

217 case 5000:

218 LPen = 1 << 3;

219 ODR = 0b1001 << 4;

220 break;

221 }

222 uint8_t mask = 0;

223 register_addr[register_couter] = 0x20;
224 register_datal[register_couter++] = mask | ODR | LPen | Xen | Yen | Zen;
225 }

226
227 void LIS3DHTR::CTRL_REG2_MASK() {
228 int highpass_filter_mode = O0;

229 int highpass_filter_cutoff = 0;

230 int filter_en = O0;

231 int highpass_en_click = O0;
232 int highpass_en_aoi2 = 0;
233 int highpass_en_aoil = 0;

234
235 uint8_t HPM = highpass_filter_mode << 6;

236 uint8_t HPCF = highpass_filter_cutoff << 4;

237 uint8_t FDS = filter_en << 3;

238 uint8_t HPCLICK = highpass_en_click << 2;

239 uint8_t HPIS2 = highpass_en_aoi2 << 1;

240 uint8_t HPIS1 = highpass_en_aoil << 0;

241 uint8_t mask = 0;

242 register_addr[register_couter] = 0x21;

243 register_datal[register_couter++] = mask | HPM | HPCF | FDS | HPCLICK | HPIS2 | HPIS1;
244 }

245

246 void LIS3DHTR::CTRL_REG3_MASK() {

247 int watermark_interupt_en = 0;

248 uint8_t I1_WTM = watermark_interupt_en << 2;

249 uint8_t mask = 0;

250 register_addr[register_couter] = 0x22;

251 register_datal[register_couter++] = mask | I1_WTM;
252 }

254 void LIS3DHTR::CTRL_REG4_MASK() {

255 int rollover_en = 0;
256 int ble = 0;

257 int scale = 2;

258 int high_res = 1;

259 int self_test = 0;

261 uint8_t BDU = rollover_en << 7;
262 uint8_t BLE = ble << 6;

263 uint8_t FS;

264 uint8_t HR = high_res << 3;

265 uint8_t ST;

266

267 switch (scale) {

268 case 2:

269 FS = 0b00 << 4;
270 break;

271 case 4:

272 FS = 0b01 << 4;
273 break;

274 case 8:

275 FS = 0b10 << 4;
276 break;

277 case 16:

278 FS = 0Obll << 4;

279 break;



F6. LISSDHTR.cpp

62

280 }
281
282 switch (self_test) {

283 case O:

284 ST = 0b00 << 1;

285 break;

286 case 1:

287 ST = 0b01 << 1;

288 break;

289 case 2:

290 ST = 0b10 << 1;

291 break;

292 }

293 uint8_t mask = 0;

204 register_addr[register_couter] = 0x23;
295 register_data[register_couter++] = mask | BDU | BLE | FS | HR ST;
206 }

207

208 void LIS3DHTR::CTRL_REGS5_MASK() {

299 int boot = 0;

300 int fifo_en = 1;

301 int fourd_en = O0;

302

303 uint8_t BOOT = boot << 7;

304 uint8_t FIFO_EN = fifo_en << 6;

305 uint8_t D4D_INT1 = fourd_en << 2;

306 uint8_t mask = 0;

307 register_addr[register_couter] = 0x24;

308 register_datal[register_couter++] = mask | BOOT | FIFO_EN | D4D_INT1;
309 }

310

311 void LIS3DHTR::CTRL_REG6_MASK() {

312 uint8_t mask = 0;

313 register_addr[register_couter] = 0x25;
314 register_datal[register_couter++] = mask;
315 }

316
317 void LIS3DHTR::REVERENCE_MASK() {

318 uint8_t mask = 0;

319 register_addr[register_couter] = 0x26;
320 register_datal[register_couter++] = mask;
321 }

322
323 void LIS3DHTR::FIFO_CTRL_REG_MASK() {
324 int fifo_mode = 2;

325 int trigger_select = O;

326 int fifo_th = 20;

327

328 uint8_t FM;

329 uint8_t TR = trigger_select << 5;
330 uint8_t FTH = fifo_th & Oxif;

331 switch (fifo_mode) {

332 case 0:

333 FM = 0b00 << 6;

334 break;

335 case 1:

336 FM = 0b01 << 6;

337 break;

338 case 2:

339 FM = 0b10 << 6;

340 break;

341 case 3:

342 FM = Obll << 6;

343 break;

344 }

345 uint8_t mask = 0;

346 register_addr [register_couter] = 0x2e;
347 register_datal[register_couter++] = mask | FM | TR | FTH;
348 }

349
350 void LIS3DHTR::INT1_CFG_MASK() {



351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

F6. LISSDHTR.cpp

63

uint8_t mask = 0;
register_addr[register_couter] = 0x30;
register_datal[register_couter++] = mask;

}

void LIS3DHTR::NT1_THS_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x32;
register_data[register_couter++] = mask;

}

void LIS3DHTR::INT1_DURATION_MASK() {
uint8_t mask = 0;
register_addr [register_couter] = 0x33;
register_datal[register_couter++] = mask;

}

void LIS3DHTR::CLICK_CFG_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x38;
register_datal[register_couter++] = mask;

Ik

void LIS3DHTR::CLICK_THS_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x3A;
register_datal[register_couter++] = mask;

}

void LIS3DHTR::TIME_LIMIT_MASK() {
uint8_t mask = 0;
register_addr [register_couter] = 0x3B;
register_datal[register_couter++] = mask;

}

void LIS3DHTR::TIME_LATENCY_MASK() {
uint8_t mask = 0;
register_addr[register_couter] = 0x3C;
register_data[register_couter++] = mask;

}

void LIS3DHTR::TIME_WINDOW_MASK() {
uint8_t mask = 0;
register_addr [register_couter] = 0x3D;
register_datal[register_couter++] = mask;

}



F7. EDAh

64

F7. EDAh
Header file for the EDA class.

#ifndef
#define

#include
#include
#include
#include

_EDA_H
_EDA_H

<stdint.h>
<Arduino.h>
<string.h>
"sensormonitor.h"

class EDA : public sensor {

public:

EDA(int analogpin, int buffer_size,

uint8_t* toBytes();
void storeData();
void getData();

void writeRegister(uint8_t reg, uint8_t data);

uint8_t readRegister (uint8_t reg);
void initiateRegisters();
void printData();

uint16

_t* getEDADataPtr ();

void begin();

private:

int analogpin;

uint16

uint16
i
#endif

_t* edaData;
_t* edaData_stored;

int ppull,

bool

enable) ;



F.8. EDA.cpp

F.8. EDA.cpp

Member functions of class EDA.

#include

"EDA.h"

//EDA constructor

EDA::EDA(int analogpin,
sensor (buffer_size,

analogpin(analogpin) {

dataByteArray_size = buffer_size * 2;

edaData = new uintil16_t[buffer_sizel;
edaData_stored = new uintl6_t[buffer_size];
dataByteArray = new uint8_t[dataByteArray_sizel;

}

//sample
void EDA

data
::getData() {

if (enable) {

edaData[buffer_level++] = analogRead(analogpin);

}
}

//returns ptr to data
uint16_t* EDA::getEDADataPtr () {

return

}

edaData_stored;

//print data in serial port

void EDA

for (int i = 0; i < buffer_size;
Serial.println(edaData_stored[i]);

}
}

//copys data erray to a byte array

uint8_tx*

memcpy (dataByteArray,

return

}

//saves a copy of the data buffer

void EDA

memcpy (edaData_stored, edaData, buffer_size * 2);

}

//empty
void EDA

b

//empty

uint8_t EDA::readRegister(uint8_t reg) {

return

i

//empty
void EDA
}

//empty
void EDA
}

::printData() {

EDA::toBytes () {
edaData,
dataByteArray;

::storeData() {

::writeRegister(uint8_t reg, uint8_t data){

0;

::initiateRegisters() {

t:begin() {

int buffer_size, bool enable)

ppulltime,

int ppulltime,

buffer_size * 2);



43
44
45

F9. sensormonitorh

66

F.9. sensormonitor.h
Header file for the sensor monitor base class.

#ifndef _SENSOR_H
#define _SENSOR_H

//#include <stdint.h>
#include <Wire.h>
#include <HardwareSerial.h>

class sensor {

protected:
int addr;
uint8_t fifo_level;
int buffer_size;
int buffer_level;
int pull_timer_old;
int pull_timer;
int ppulltime;
uint8_t* dataByteArray;
uint8_t* register_addr;
uint8_t* register_data;
int register_couter;
int num_register;
bool new_data;
int dataByteArray_size;
int fpullCheck;
bool enable;

public:
sensor (int buffer_size, int ppulltime, bool enable);
virtual void writeRegister(uint8_t reg, uint8_t data)
virtual uint8_t readRegister (uint8_t reg) = 0;
virtual void initiateRegisters() = 0;
virtual uint8_t* toBytes() = 0;
virtual void storeData() = 0;
virtual void getData() = 0;
virtual void begin() = 0;

void programm(bool check);
void resetNew();
bool checkNew() ;
bool bufferFull(bool reset);
bool checkPull();
uint8_t* getByteArray();
int getByteArraySize();
g
#endif



F.10. sensormonitor.cpp

F.10. sensormonitor.cpp
Member functions of base class sensor monitor.

#include "sensormonitor.h"

4
2
3 //constructor of base-class sensor
4 sensor::sensor (int buffer_size, int ppulltime, bool enable)
5 : buffer_size(buffer_size),
6 ppulltime (ppulltime),
7 enable (enable),

8 fifo_level(0),

9 buffer_level (0),

10 pull_timer_old (0){};

12 //When called, the settings specified in initiateRegisters() are applied
13 void sensor::programm(bool check = true) {

14 //initialize I2c obj

15 this->begin();

17 //retrieve sensor settings
18 this->initiateRegisters();

20 //write settings to sensor

21 for (int i = 0; i < num_register; i++) {

22 this->writeRegister (register_addr[i], register_datal[il);
23 }

25 //check if the settings are applied correctly
26 if (check) {

27 Serial.println("Registers to write...");
28 Semidal ; pringdn (U ecoooooosossss== ) 8

29 for (int i = 0; i < num_register; i++) {
30 Serial .print(register_addr[i], HEX);

31 Serial.print(": ");

32 Serial.println(register_datal[i], BIN);
33 }

34 Serial.println("---------------- 0 g

35 Serial.println("Registers read...: ");

36 for (int i = 0; i < num_register; i++) {
37

38 Serial.print(register_addr[i], HEX);

39 Serial.print(": ");

40 Serial.println(this->readRegister(register_addr[i]), BIN);
41 }

42 Serial.println("---------------- ) g

43 }

44 delete[] register_addr;

45 delete[] register_data;

46 )

47
48 //returns ptr to the byte array of the sensor

49 uint8_t* sensor::getByteArray() {

50 return dataByteArray;

51 }

52

53 //returns true when the buffer is full and unread
54 bool sensor::checkNew() {

55 return new_data;

56 }

57

58 //mark saved data as read

59 void sensor::resetNew() {

60 new_data = false;

61 }

62

63 //when its time to extract new data; extract new data
64 bool sensor::bufferFull(bool reset = true) {

65 if (this->checkPull()) {

66 this->getData();

67 }



68
69
70
7
72
73
74
75
76
7
78
79
80

F.10. sensormonitor.cpp

68

}

//when the buffer is full save buffer content, mark contend as unread,
if (buffer_level == buffer_size) {

new_data = true;

buffer_level = 0;

this->storeData();
}

return new_data;

//checks it it is time to extract new data
bool sensor::checkPull() {

}

pull_timer = millis();

fpullCheck = pull_timer - pull_timer_old;

if (fpullCheck >= ppulltime && buffer_level < buffer_size) {
pull_timer_old = pull_timer;
return true;

}

return false;

//returns the size of the byte array
int sensor::getByteArraySize() {

}

return dataByteArray_size;

and emptys buffer



20

F11. Datalogger.py 69

F.11. DataLogger.py

Python code for data collection.

import csv

import os

import serial

from datetime import datetime, date
import time

import serial.tools.list_ports as ports
import struct

import numpy as np

from SockReadSerial import x*

from SockReadUDP import x*

sensorIP = "192.168.2.12" # The IP that is printed in the serial monitor from the ESP32
port = 4210

def main():

# use this for reading the sensor data using serial communication
# sock = SockReadSerial(["ppgl", "acc", "eda"])
# sock.begin(collect=True)

# use this for reading the sensor data using Wifi
sock = SockReadUDP(["ppgl", "acc", "eda"])
sock.begin (UDP_IP, SHARED_UDP_PORT, collect=True)

try:
while True:
if sock.readData():
#(Here put code for when sock.sensor_data is updated)
pass
except KeyboardInterrupt:
# Close the CSV file and serial connection when the program is terminated
print ("Data collection has stopped at ", datetime.now().strftime("%d/%m/%Y %H:%M:%S")
,nn)
time.sleep(5)

if __name__ == " D g

main ()

__main__



F12. SockReadSerial.py 70

F.12. SockReadSerial.py

Python class for data collection using serial communication.

1 import csv

2 import os

3 import serial

4 from datetime import datetime, date

5 import time

6 import serial.tools.list_ports as ports
7 import struct

8 import numpy as np

9

10 class SockReadSerial:

1 def __init__(self ,sensor_keys=["ppgl", "acc", "eda"], sensor_sizes=Nomne):

12 self.sensor_keys = sensor_keys

13 self.filename = None

14 self.sensors_used = {}

15 self.sensor_data = {}

16 self.collect = False

17 self.serialPort = None

18 self.dataSize = 0

19 if sensor_sizes is None:

20 self.sensors_used = {"ppgl": 256, "ppg2": 256, "acc": 192, "eda": 32}

21 else:

22 for i, key in enumerate(sensor_keys):

23 self.sensors_used[key] = sensor_sizes[i]

24

25 # calculate receiving byte array size

26 for sensor in sensor_keys:

27 self.dataSize += self.sensors_used[sensor]

28

29 # Initialize Serial obj to start data collection

30 # collect: save sensor data

31 def begin(self, port=None, baudrate=115200, collect=False):

32 if port is None:

33 print ('Available COM-ports:')

34 com_ports = list(ports.comports())

35 for i in com_ports:

36 print(i.device) # returns 'COMx'

37 print ('What COM-port is the ESP32 connected to? Enter the number and press enter.

D)

38 port = "COM" + input()

39

40 print ("Selected COM port: "+port)

41 self.serialPort = serial.Serial(port=port, baudrate=115200)

42 self.serialPort.reset_input_buffer ()

43 self.collect = collect

44

45 if collect:

46 if not (os.path.isdir("DATA")):

47 os.mkdir ('DATA"')

48

49 # Open a CSV file for writing

50 self.filename = "DATA/" + str(datetime.now().strftime ("%d-%m-%Y-%H-%M-%S")) + ".

csv"

51 row = ["timestamp"]

52 for sensor in self.sensor_keys:

53 match sensor:

54 case "ppgl":

55 row.extend([sensor+"r_s"+str(i) for i in range(int(self.sensors_used[
sensor]/8))1)

56 row.extend ([sensor + "ir_s" + str(i) for i in range(int(self.

sensors_used[sensor] / 8))1)
57

58 case '"ppg2":

59 row.extend([sensor + "r_s" + str(i) for i in range(int(self.
sensors_used [sensor] / 8))1)

60 row.extend ([sensor + "ir_s" + str(i) for i in range(int(self.

sensors_used[sensor] / 8))1)
61



62
63

64

65

66
67

68
69
70
7
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
12
13
14
115
116
17
118
19
120
121

Fl12.

SockReadSerial.py 71

case "acc":
row.extend([sensor + "x_s" + str(i) for i in range(int(self.
sensors_used[sensor] / 6))])
row.extend([sensor + "y_s" + str(i) for i in range(int(self.
sensors_used[sensor] / 6))])
row.extend ([sensor + "z_s" + str(i) for i in range(int(self.
sensors_used[sensor] / 6))])

case "eda":
row.extend([sensor + "_s" + str(i) for i in range(int(self.
sensors_used[sensor] / 2))1)
with open(self.filename, 'a', newline='"') as file:
writer = csv.writer(file)

writer.writerow (row)
file.close()

# when new data; read from buffer
# return O0: no new data
# return 1: new data avalible in self.sensor_data
def readData(self):
if self.serialPort.in_waiting >= self.dataSize:

offset = 0

data = self.serialPort.read(self.dataSize)

for sensor in self.sensor_keys:

temp = datal[offset:offset+self.sensors_used[sensor]]

offset += self.sensors_used[sensor]
match sensor:
case '"ppgl":
temp = np.frombuffer (bytes(temp), dtype=np.uint32).newbyteorder('<"')
red = temp[:int(temp.size/2)]

ir = temp[int(temp.size/2) :temp.sizel
self.sensor_datal[sensor] = {"red": red, "ir": ir}
case "ppg2":

temp = np.frombuffer (bytes(temp), dtype=np.uint32).newbyteorder('<')
red = temp[:int(temp.size / 2)]

ir = temp[int(temp.size / 2):temp.size]

self.sensor_datal[sensor] = {"red": red, "ir": ir}

case "acc":
temp = np.frombuffer (bytes(temp), dtype=np.intl16).newbyteorder('<"')
x = temp[:int(temp.size / 3)]
y temp[int (temp.size / 3):int((temp.sizex*2)/ 3)]
z = temp[int ((temp.size * 2) / 3):temp.size]
self.sensor_datal[sensor] = {"x": x, "y": y, "z": z}

case "eda":
temp = np.frombuffer (bytes(temp), dtype=np.uintl6).newbyteorder('<')
self.sensor_data[sensor] = {"sensor": temp}

if self.collect:
newrow = [time.time ()]
for sensor in self.sensor_data:
for type in self.sensor_datal[sensor]:
newrow.extend(self.sensor_datal[sensor] [typel)

with open(self.filename, 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow(newrow)
file.close ()
return 1
else:
return O



30

47
48
49
50
51
52

53
54
55
56
57
58

59

60

61
62

F13. SockReadUDPpy

F.13. SockReadUDP.py

Python class for data collection using WiFi.

import csv

import os

from datetime import datetime, date
import time

import socket

import numpy as np

import errno

class SockReadUDP:

def __init__(self, sensor_keys=["ppgl", "acc", "eda"], sensor_sizes=Nomne):
self.sensor_keys = sensor_keys
self.filename = None
self .sensorIP = None
self .port = None
self.sensors_used = {}
self.sensor_data = {}
self.collect = False
self.sock = None

self.dataSize = 0
if sensor_sizes is None:
self.sensors_used = {"ppgl": 256, "ppg2": 256, "acc": 192,
else:
for i, key in enumerate(sensor_keys):
self.sensors_used[key] = sensor_sizes[i]

# calculate receiving byte array size
for sensor in sensor_keys:
self.dataSize += self.sensors_used[sensor]

# Initialize Serial obj to start data collection
# collect: save sensor data
def begin(self, sensorIP, port, collect=False):
self.sensorIP = sensorIP
self .port = port
self.collect = collect
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.connect ((self.sensorIP, self.port))

print ("Current sensor ip: " + self.sensorIP)
print ("Type \"start\" to start data collection.")
while input() != "start":

print ("Type \"start\" to start data collection.")
self.sock.send('START!'.encode())

if collect:

"eda": 32}

# Internet # UDP

print ("Data collection has started at ", datetime.now().strftime("%d/%m/%Y %H:%M

:hS"))
print ("Press CTRL+C to stop data collection")
if not (os.path.isdir ("DATA")):

os.mkdir ('DATA')

# Open a CSV file for writing

self.filename = "DATA/" + str(datetime.now().strftime("%d-%m-%Y-%H-%M-%S")) + ".
csv"
row = ["timestamp"]

for sensor in self.sensor_keys:
match sensor:
case '"ppgl":

row.extend ([sensor+"r_s"+str(i) for i in range(int(self.sensors_used[

sensor]/8))1)

row.extend ([sensor + "ir_s" + str(i) for i in range(int(self.

sensors_used[sensor] / 8))1)

case "ppg2":

row.extend ([sensor + "r_s" + str(i) for i in range(int(self.

sensors_used[sensor] / 8))1)



63

64
65
66

67

68

69
70

7
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99
100
101

102
103
104
105
106
107

108
109
10
111
12
13
14

115
116
17
118
119
120
121
122
123
124

F13.

SockReadUDPpy 73

row.extend([sensor + "ir_s" + str(i) for i in range(int(self.
sensors_used [sensor] / 8))])

case "acc":
row.extend ([sensor + "x_s" + str(i) for i in range(int(self.
sensors_used[sensor] / 6))1)
row.extend ([sensor + "y_s" + str(i) for i in range(int(self.
sensors_used[sensor] / 6))1])
row.extend([sensor + "z_s" + str(i) for i in range(int(self.
sensors_used[sensor] / 6))1])
eda":
row.extend ([sensor + "_s" + str(i) for i in range(int(self.
sensors_used[sensor] / 2))])

case

with open(self.filename, 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow(row)

file.close ()

# when new data; read from buffer
# return O: no new data
# return 1: new data avalible in self.sensor_data
def readData(self):
offset = 0
self.sock.setblocking(False)
try:
if len(self.sock.recv(2048, socket.MSG_PEEK)) >= self.dataSize:
data, newIP = self.sock.recvfrom(2048)
self.sock.connect ((newIP[0], self.port))
self.sock.send(b'ACK')

for sensor in self.sensor_keys:
temp = datal[offset:offset+self.sensors_used[sensor]]

offset += self.sensors_used[sensor]

match sensor:

case "ppgl":
temp = np.frombuffer(bytes(temp), dtype=np.uint32).newbyteorder ('
<")
red = temp[:int(temp.size/2)]
ir = temp[int(temp.size/2):temp.sizel
self.sensor_datal[sensor] = {"red": red, "ir": ir}
case "ppg2":
temp = np.frombuffer(bytes(temp), dtype=np.uint32).newbyteorder ('
<")
red = templ[:int(temp.size / 2)]
ir = temp[int(temp.size / 2):temp.size]
self.sensor_datal[sensor] = {"red": red, "ir": ir}

case "acc":
temp = np.frombuffer(bytes(temp), dtype=np.int16).newbyteorder ('<
1
)

x = temp[:int(temp.size / 3)]
y = temp[int(temp.size / 3):int((temp.sizex*2)/ 3)]
z = temp[int((temp.size * 2) / 3):temp.size]
self.sensor_data[sensor] = {"x": x, "y": y, "z": z}
case "eda":
temp = np.frombuffer (bytes(temp), dtype=np.uintl6) .newbyteorder ('
<")
self.sensor_datal[sensor] = {"sensor": temp}

if self.collect:
newrow = [time.time ()]
for sensor in self.sensor_data:
for type in self.sensor_datal[sensor]:
newrow.extend(self.sensor_datal[sensor] [typel)

0z 0

with open(self.filename, 'a', newline='"') as file:
writer = csv.writer(file)



125
126
127
128
129
130
131
132
133
134
135

F13.

SockReadUDPpy

74

writer.writerow(newrow)
file.close ()

return 1

else:

return O
except socket.error as e:
if isinstance(e.args, tuple):
if e.errno == errno.EWOULDBLOCK or e.errno == errno.EAGAIN:

raise

# If the socket would block,
return O

return O (no data available)



	Introduction
	Rapid Eye Movement Sleep Behaviour Disorder
	Sleep Stages
	REM Sleep Behaviour Disorder
	Diagnosis
	Treatment for RBD

	State-of-the-Art Analysis
	Goal of the Project
	Structure of Thesis

	Program of Requirements
	Requirements for the Entire System
	Requirements for the Hardware Group

	Sensors
	Possible Sensors
	Sensor Choices

	Sensor Readout
	I2C Communication
	Sensor Structures
	Sampling
	Ideal
	Data Collection

	Implementation

	Waking Methods
	Possible Waking Options
	Waking Choice

	Prototyping
	Placement
	Sock Design
	ESP32 Housing
	Power Unit
	Sock Prototype

	Data Collection and Testing
	Communication
	BLE: Sock and the BedSense
	WiFi: Sock and the PC

	Data Collection and Testing

	Conclusion and Discussion
	Discussion
	Conclusion
	Future Work

	References
	Data Collection on RBD Patient
	RBD Diagnostic Criteria
	International Classification of Sleep Disorders, Third Edition
	The American Academy of Sleep Medicine Manual for the Scoring of Sleep and Associated Events
	Diagnostic and Statistical Manual of Mental Disorders

	Sensor Characteristics
	Sensor Readout
	MAX30102
	LIS3DH

	Results
	Source Code
	server_UDP.ino
	server_Serial.ino
	MAX30102.h
	MAX30102.cpp
	LIS3DHTR.h
	LIS3DHTR.cpp
	EDA.h
	EDA.cpp
	sensormonitor.h
	sensormonitor.cpp
	DataLogger.py
	SockReadSerial.py
	SockReadUDP.py


