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Abstract

Formally verified programs can be embedded in larger non-verified code bases by
means of syntactically faithful source-to-source translation: systems like Agda2Hs make it
possible to translate verified code written in a dependently typed programming language
to a general-purpose functional programming language, Agda and Haskell in this case.
Such systems can enable verification for critical functionality while keeping wider ecosys-
tem access and easier to write code for peripheral functionality. However, this interfacing
leaves a gap in the formal guarantees of the verified code: preconditions that were only
expressible as a dependent type and have thus got erased upon translation might not be
met. We present runtime checking these preconditions as a way to close this gap and ensure
that computation does not continue on ill-formed input. As an extension to Agda2Hs, we
have implemented a solution to automatically insert runtime checks for the preconditions
and only make those definitions accessible in the output that are also checkable. The
runtime check insertions do not only cover functions, but also data types and non-class
records in the form of smart constructors; higher-order erased arguments are supported
as well. We make a formal completeness analysis of a simplified version of the checks we
generate for well- and ill-typed programs.

In our solution, class instances are not supported for runtime checking due to their
different nature, and capabilities for recovering from a failed runtime check are still rudi-
mentary. Despite these limitations, we conclude that a closure of the input precondition
verification gap is possible, and that the development time trade-off in comparison to
handwriting checks can be worthwhile.
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Chapter 1

Introduction

Today’s world has grown dependent on computer software in various aspects of modern
life. Many of these software applications exist not only for convenience, but for the economic
order of the world, humans’ safety in the built environment, and in transit. Software bugs
can lead to severe ramifications, so among other fields, formal or mechanised verification aims
to remove them before programs are run. Verification is a long-standing and active field of
computer science (Meyer 1986; Eremondi 2023).

The overhead of verifying software as opposed to merely writing it is often very large.
This has lead to approaches like Agda2Hs (Cockx et al. 2022), a way to integrate verified
software into a more mainstream, unverified programming language code base. As the name
implies, Agda2Hs translates between Agda, a dependently typed functional language, and
Haskell, a general functional programming language. However, this method leaves a gap
in the verification of the software written in Agda: preconditions to definitions that are
expressible at type level cannot be translated to Haskell, which can lead to errors without
obvious origin. We present an approach to insert runtime checks in these cases automatically.

1.1 Agda2Hs

Agda (Norell 2007) is a dependently typed programming language. In particular, this means
that arguments to a function can arbitrarily be quantified over in its type specification. Like
most languages of this kind, it is also a proof assistant: the Curry–Howard correspondence
(Howard 1980) shows that a function in such a language that type checks is simultaneously a
proof of its type. This type could represent a mathematical theorem based on some axiomatic
system, or e.g. an assertion about the behaviour of another function written in this language.
By default, Agda definitions are terminating (i.e. recurse only sub-structurally), total (i.e. be
defined on their entire domain), and type safe.

These properties frequently lead to a need to prove behaviours of functions, unlike (op-
tional) test cases: for example, array access at a particular index must be proven to be sound,
i.e. the indexmust be mathematically proven to be within the array’s bounds. Thus, languages
like Agda present one of the approaches to mechanised verification of software. Note that
these languages are functional programming languages and that this method of verification
is not to be confused with the verification of imperative programs, which is usually based on
Hoare logic.

Creating proofs in a proof assistant like Agda is often perceived as difficult (Juhošová 2024)
and can considerably overwhelm the time spent implementing functionality. Additionally, the
style in which proofs must be written is more formal thanwhat most mainstreammathematics
literature does on paper, although having much stronger guarantees. These difficulties have
hindered the more wide-spread adoption of such languages.

1



1. Introduction

This observation drove the introduction of the Agda2Hs source-to-source translation
system by Cockx et al. 2022. The target language, Haskell, is a pure functional programming
language: all side effects of functions are part of their type, which makes them easier to reason
about. These guarantees are a subset of those of dependently typed languages. Among
the (relatively) mainstream styles of programming, this is the one most closely related to
dependently typed programming. Agda2Hs then allows translating Agda programs into
Haskell while, unlike Agda’s existing Haskell backend, remaining close in syntax to the
original Agda source and maintaining readability. This enables embedding some logic that
has been formally verified in a larger, potentially preexisting project, with a richer ecosystem
access than would be available in native Agda.

1.2 Problem Illustration

As mentioned in the introducing words, this approach has a drawback: on the Agda side,
there can be a precondition on the input that was expressed as a dependent type, but was
then erased upon translation to Haskell. Such input would then unsafely be given to code
translated from Agda as an assumed truth.

In the following example, an Agda function intended to be compiled to a Haskell function
subtracts a natural number 𝑦 from a natural number 𝑥, yielding a natural number. With
non-modified subtraction, this is only possible when the result is not less than zero. This
means that 𝑥 must be greater than 𝑦. The proof is marked as erased with @0 because this data
cannot be supplied from Haskell as it is a dependent type. Thus, even when the function
would always produce correct output when called from Agda, this guarantee is lost when
calling from Haskell after passing the function through Agda2Hs.

subtractFromGreater : (x y : Nat) → @0 ⦃ IsFalse (x < y) ⦄ → Nat
subtractFromGreater x y = x - y
{-# COMPILE AGDA2HS subtractFromGreater #-}

Listing 1.1: Motivating example: subtracting numbers where one is greater than the other

This shortcoming has also been acknowledged by Cockx et al. 2022 under Future Work.
In these situations, they suggested to use runtime checks on the Haskell side instead. We
present a solution that adds checks for all such arguments.

1.3 Contributions and Limitations

We show how the rigour of pure Agda can be retrieved back, albeit at a performance cost,
by adding automatic runtime checks to Agda2Hs. We restrict the exposition of functions on
the Haskell side to those that have such a deciding function for all erased arguments. This
restriction guarantees that no unchecked input can be passed. These changes to Agda2Hs are
implemented as an optional feature since they are generally incompatible with existing code.
They align with the goals of Agda2Hs in that the source output remains human-readable.
Specifically:

• We extend Agda2Hs with a command line flag which, when enabled, uses instance search
to find deciding predicates:

– For erased arguments to functions, turning them into a human-readable, run-
time checked version that calls the unchecked function only if this check passes.
Otherwise, an error is thrown. The unchecked function is placed in a separate
“post-runtime checks” module and not exported otherwise. An exception is made

2



1.4. Overview

for callers that were also translated from Agda and thus will not call the function
with unverified input.

– For erased arguments in data type and record constructors, turning them into
an exposed smart constructor that performs the runtime check similarly, and an
internal unchecked constructor for other Agda functions to use.

– For erased arguments within other types, i.e. nested preconditions used inside a
lambda, turning them into checked functions inside the where block of functions
and smart constructors. This separation is made to avoid Haskell expressions with
very deep nesting.

Under this flag, functions and constructors that lack respective instances deciding their
erased arguments remain hidden in the respective post-runtime checks module. These
modules are not to be used by code written in Haskell natively. We could make the
unchecked definitions inaccessible altogether, but this would make it impossible to
continue calling the unchecked versions from code translated from Agda, which would
be inefficient.

• We show how it becomes impossible to compute on input that does not satisfy the condi-
tions expressed in Agda in the transpiled Haskell code without yielding an error when
this flag is enabled. This analysis is not mechanised and based on some assumptions
about Agda2Hs. Establishing a formal, let alone mechanical, analysis of the translation
guarantees of existing Agda2Hs itself and these new features remains future work.

Agda2Hs is meant to be a research vehicle for such checks here. We expect a similar
approach to be equally feasible in other systems, such as Coq’s program extraction. However,
Coq is not as focused on being a programming language and its program extraction has less
focus on a readable output than Agda2Hs. Our work covers our Agda2Hs implementation,
but intends to discuss the general concept of using additional runtime checks at the gap
between verified and pure functional programming.

We will re-address limitations in the discussion—for things we believe could only be built
at the cost of other drawbacks—and conclusion—for things considered future work, but for a
brief and limited introduction:

• Failure is expressed as an error. This provides an easy way of showing how gaps in
preconditions can be closed, but is not ideal from a software engineering perspective.
This could be extended to layered error handling (cf. section 8.1).

• Records compiled to classes cannot contain erased arguments because unlike with smart
constructors, for classes, there is no obvious way to compute a runtime check. It would,
however, be possible to compute runtime checks for at least the instances to classes
(section 6.2.1).

• Parametric undecidable data types and records that become decidable by their param-
eters are not checked. This can generally be worked around by rewriting functions
accordingly (section 6.2.2).

• We cannot maintain evaluation order and laziness of the arguments (section 6.3).

1.4 Overview

In this thesis, we begin by establishing preliminaries about Agda2Hs itself, specific concepts
used in this implementation, and runtime checks (chapter 2). We then present the feature
itself from a user’s perspective (chapter 3). Due to their complexity, we give a rundown of

3



1. Introduction

some more involved excerpts of our implementation (chapter 4). We provide a formal analysis
of a simplified version of our checks regarding their completeness (chapter 5). Following this,
we make a comparison of the automatic check generation to a handwritten checks approach,
discuss potential further features, their drawbacks, and a general drawback to this approach
with respect to lazy evaluation (chapter 6). At the end, related (chapter 7) and future work
(chapter 8) is discussed.

4



Chapter 2

Background

In this chapter, we briefly go over the fundamentals of the Agda language, and how its
dependent type system sets it apart from other languages. We explain the motivation and
general workings of the Agda2Hs translation system. Furthermore, we explain two important
challenges in creating automatic runtime checks for preconditions written in Agda, and
how we resolved them: finding a term that decides a precondition, and hiding unchecked
translated definitions from the user.

This chapter features both Agda and Haskell code, which can look similar at surface level.
To distinguish between them, Haskell code is shown with a tinted background. Syntax
highlighted Agda code depicted in code blocks has been type checked.

2.1 Agda

Agda is a dependently typed programming language, which means that it can be used as a
proof assistant that checks proofs written in it, ensuring that they are correct. If Agda type
checked a definition that formulates an incorrect proof, this would be a bug in Agda. These
proofs can be about anything expressed in the language, e.g. mathematics or programs.

zeroLtSuc : (a : Nat) → IsTrue (0 < (a + 1))
zeroLtSuc zero = IsTrue.itsTrue
zeroLtSuc (suc _) = IsTrue.itsTrue

Listing 2.1: Proving in Agda: pattern matching is case distinction

Listing 2.1 displays a simple proof that was created as a lemma in the test suite to our
contributions. In mathematics, it would be expressed as ∀𝑎 ∈ ℕ ∶ 0 < (𝑎 + 1). The pattern
matching in this function is effectively a proof by case distinction on natural numbers (zero
and successor). IsTrue is a data type that has itsTrue as its sole constructor for decidably
true propositions. Agda is a total programming language, meaning that omitting one of the
cases would make the proof incomplete and prohibit the program from type checking.

The proof on the behaviour of a function is also a function; there is no border between
definitions that compute data and definitions that exist just to show a property. This non-
distinction is a manifestation of the Curry–Howard correspondence (Howard 1980): a depen-
dently typed program that type checks can be seen as a proof of its type.

To be sound, an Agda definition may require arguments that would typically not be found
in other programming languages. Listing 2.21 shows a function that retrieves a list item at a
given index, additionally requiring the precondition that the index does not exceed the list’s

1To avoid confusion: a : Set does not mean that a is a set in set theory, but is of a type in the universe of
small types which is called Set.
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2. Background

_!!ᴺ_ : {a : Set} (xs : List a) (n : Nat) → @0 ⦃ IsTrue (n < lengthNat xs) ⦄ → a
(x ∷ xs) !!ᴺ zero = x
(x ∷ xs) !!ᴺ suc n = xs !!ᴺ n

Listing 2.2: Preconditions in a total programming language: list lookup

bounds. Removing this precondition will result in the definition no longer type checking: the
left-hand side pattern matching will be incomplete because it does not include the case of
the empty list. In Agda, recursive definitions must also pass termination checking in order to
make type checking decidable (Norell 2007). A successful termination check can typically be
achieved by ensuring that a recursion call is sub-structural, e.g. operating only on the tail of a
list.

As a side note, in that definition, a is an implicit argument, which means that it can usually
be inferred from a dependent type in the definition type and does not generally need to be
specified upon calling.

2.2 Agda2Hs

Requirements such as mandatory proofs and termination checking are often perceived as
difficult to work with. This has contributed to the fact that dependently typed languages
like Agda have remained relatively niche. As a result, the ecosystem of libraries, tooling, and
interfacing with other languages is also lacking.

This observationwas a driving factor in the invention of one approach to gradual verification
that we use in this thesis, being the Agda2Hs source-to-source translation system (Cockx
et al. 2022). What makes this gradual is the fact that verified Agda code can be used inside
a larger unverified, although very strongly typed Haskell code base. This code base may
already exist, allowing for a verification retrofit, and/or correctness may be more important
to be guaranteed in some parts of the logic than in others. Despite native Agda code (i.e.
code not intended to be fed to Agda2Hs) also compiling to Haskell by default, Agda2Hs’s
approach is very different: it uses native Haskell data types as much as possible and creates
human-readable source output for better integration. Centrally, Agda2Hs is based on a
partial reimplementation of Haskell’s Prelude base library in Agda, treating it as its trusted
computing base (TCB).

Agda2Hs leverages the Agda feature of erased arguments to translate code. Only unerased
arguments are translated to Haskell. A definition’s type may include arguments that cannot
be translated, but are also required exclusively to make the program sound, not to compute
output. Agda’s type checker ensures that an erased argument is of no runtime relevance
(Agda Development Team 2024b, Run-time Irrelevance). The introductory listing 1.1 provided
a simple example of an erased argument: IsFalse (x < y) plays no role in the computation
and is marked erased. A use case of erased arguments beyond Agda2Hs is saving memory in
recursive calls.

Without our extension to Agda2Hs, listing 1.1 translates to what is shown in listing 2.3.
The COMPILE AGDA2HS pragma in the former listing is required to trigger translation. We omit
the pragma in subsequent examples except where its use is unclear.

import Numeric.Natural (Natural)

subtractFromGreater :: Natural -> Natural -> Natural
subtractFromGreater x y = x - y

Listing 2.3: Agda2Hs: non-runtime-checked output of listing 1.1

6



2.3. Finding terms that decide preconditions

Despite Haskell being not as popular for industry projects as many imperative languages,
it is a reasonable middle-ground to work in for a translation system like Agda2Hs. Like
Agda, Haskell has pattern matching, lazy evaluation, support for currying, and is overall
syntactically similar. Haskell is also a pure functional programming language that relies on
monads to exert side effects.

Agda2Hs’s approach has some drawbacks compared to nativeAgda programming. Agda’s
standard library (Agda Development Team 2024c), which implements many useful data
structures and proofs related to them, can be used in principle, but its data types do not align
with those of Agda2Hs. Only Agda’s Builtin modules have such implementations, making
e.g. rational numbers, finite numbers, trees or maps not natively available.

In this thesis, we consider a gap in the soundness of Agda2Hs: the correctness of the
definition of constructs like functions and data types can depend on a precondition expressed
in a dependent type, which cannot be translated due to a lack of dependent types in Haskell.
Consequently, functions can be called with input not satisfying the precondition.

We present a novel optional Agda2Hs feature that generates runtime checks for violations
to any erased argument. These checks prevent errors from happening at a later point in
the computation where their cause may no longer be obvious, as well as prohibiting invalid
output of functions occurring due to invalid input. They also enable handling and recovering
from this violation, although these capabilities are extremely rudimentary as of now.

2.3 Finding terms that decide preconditions

To generate such checks, Agda types must be converted to Haskell terms in a correct way.
Consider subtractFromGreater from listing 1.1 again. It has IsFalse (x < y) as an erased
precondition. We must now find a way to decide this type and turn it into a term such as not
(x < y) which we can then use as a Haskell guard.

Generally, deciding a type means deciding whether it can be inhibited from context or not.
For our purposes, we can understand decidability as a Boolean, and a proof that this Boolean
reflects the type decided over, i.e. the type can be inhibited from context if and only if this
Boolean is true. Indeed, Agda2Hs defines the Dec type as a dependent pair consisting of these
elements. Our mechanism for finding a term that decides a precondition then is to wrap the
precondition in this Dec type, finding a suitable term with instance search, and compiling it to
Haskell.

Instance search is an Agda compiler technology that is normally used to resolve instance
arguments, which are marked by the double braces (⦃…⦄). Like implicit arguments ({…}),
instance arguments can be used to specify arguments that are expected to be able to be
inferred, and specified explicitly only when necessary. However, instance arguments are
more powerful than implicit arguments and can e.g. be used for type class constraints (Agda
Development Team 2024b, Instance Arguments).

The IsFalse (x < y) from above was also given as an instance argument, which means
that the program will only type check if, for every mention of this function, instance search
finds a proof of this condition. This proof can also be supplied explicitly, for example if an
additional lemma is required to show that this precondition holds. Listing 2.4 shows the
cases of implicit and explicit instance argument supply in action, requiring a small proof by
induction for the latter to show that 𝑥 + 1 ≰ 𝑥. Listing 2.5 has no syntax highlighting because
it also does not type check, it is an invalid call because 1 < 2.

Recall that we also use instance search in our approach to generating runtime checks, but
instead to turn e.g. IsFalse (x < y) into something resembling not (x < y). For this instance
search to have a result, it is necessary to have a Dec instance of IsFalse. We ship deciders
for all decidable predicates already existing in Agda2Hs’s Haskell-emulating Agda library

7



2. Background

haveInstance : Nat
haveInstance = subtractFromGreater 2 1

s≰ : (x : Nat) → IsFalse (suc x < x)
s≰ zero = IsFalse.itsFalse
s≰ (suc x) = s≰ x

provingInstance : Nat → Nat
provingInstance x = subtractFromGreater (suc x) x ⦃ s≰ x ⦄

Listing 2.4: Persuading the type checker: supplying an instance to subtractFromGreaterwhen
necessary

haveNoInstance : Nat
haveNoInstance = subtractFromGreater 1 2
-------------------
True != False of type Bool
when checking that 2 is a valid argument to a function of type
(y : Nat) ⦃ @0 _ : IsFalse ((iOrdNat Ord.< 1) y) ⦄ → Nat

Listing 2.5: Counterexample: non-type-checking program due to lack of appropriate instance

including IsFalse2. Here, we show a slightly more interesting instance: the one for NonEmpty.
Listing 2.6 shows the definition of NonEmpty itself. It has a constructor for lists with a cons (∷),
but not for empty lists.

data NonEmpty {a : Set} : List a → Set where
itsNonEmpty : ∀ {x xs} → NonEmpty (x ∷ xs)

Listing 2.6: Predicates by construction: non-empty list

The decidable instance is shown in listing 2.7. The reflection proof is given in the ⟨⟩

brackets on the right-hand side of the definition, showing that the decider yields true if and
only if a proof for the type exists. Thus, for the empty list case, the reflection proof is the
absurd lambda: there is nothing to show because the empty list is not an instance. For the
cons case, the instance defined in listing 2.6 proves the correspondence.

instance
decNonEmpty : {xs : List a} → Dec (NonEmpty xs)
decNonEmpty {xs = []} = False ⟨ (λ ()) ⟩

decNonEmpty {xs = _ ∷ _} = True ⟨ NonEmpty.itsNonEmpty ⟩

Listing 2.7: Reflection proof: decidable instance for non-empty list

To get back to the example, instance search for Dec (IsFalse (x < y)) will not precisely
give not (x < y), but decIsFalse (x < y), where decIsFalse is equivalent to not.

It should be noted that in some cases, the most useful way to phrase a precondition with
respect to proving may not be one that has a decidable instance. For example, when requiring
equality of two terms a and b, the precondition a ≡ b uses Agda’s ≡ operator, denoting
propositional equality. This equality is a property that can be used in proofs directly, but is
not decidable for all types, such as Nat → Nat (cf. Rice’s theorem). To have decidable equality,

2IsTrue, IsFalse, NonEmpty, All, Any. The IsTrue decider could be compiled transparent in theory, but this
does not work with the insertion of instances that we do.
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2.4. Effective hiding of unchecked definitions

it would be necessary to e.g. have IsTrue (a == b) as a precondition instead, using the ==
operator for Boolean equality.

Such a == operator must be implemented first, usually as an instance of the Eq type class.
This type class requires a proof that the Boolean equality check returns true if and only if
the two inputs are propositionally equal. This proof can outgrow the definition itself in
complexity by a large margin, which is a drawback to our approach compared to writing
entire projects in Agda. Listing 2.8 shows an equality instance to a simple binary tree, with
the lawfulness proof in appendix A for brevity.

data Tree (a : Set) : Set where
Leaf : a → Tree a
Branch : a → Tree a → Tree a → Tree a

instance
iEqTree : ∀ {a} → ⦃ Eq a ⦄ → Eq (Tree a)
iEqTree ._==_ (Leaf x) (Leaf y) = x == y
iEqTree ._==_ (Branch x xl xr) (Branch y yl yr) = x == y && xl == yl && xr == yr
iEqTree ._==_ (Leaf _) (Branch _ _ _) = False
iEqTree ._==_ (Branch _ _ _) (Leaf _) = False

iLawfulEqTree : ⦃ iEqA : Eq a ⦄ → ⦃ iLEqA : IsLawfulEq a ⦄ → IsLawfulEq (Tree a)
-- definition of iLawfulEqTree was another 24 LOC in our implementation

Listing 2.8: Interoperating between equality and congruence: defining Eq on a simple tree

2.4 Effective hiding of unchecked definitions
Having established a way to generate checks, we also want to ensure that they are not
bypassed. We only want to make those definitions available in the Haskell transpilation target
that have runtime checkability for all their preconditions. All definitions that were marked for
transpilation should still be transpiled because other definitions might depend on them. We
solve this by emitting two versions of each definition that requires checking. One is the regular,
existing Agda2Hs transpilation, and one is the checked version, which passes the arguments
on to the former if the checks pass. For definitions that are not completely checkable, only
the former exists; for definitions that require no checking, the name is re-exported directly
instead of creating the latter, which would only be the identity function. Because performing
the runtime check is potentially expensive, we only do so when necessary, i.e. the former,
“post-check” definition will only call other post-check definitions.

Listing 2.9 illustrates the output before and after using our flag for enabling runtime
checks. In the export list of the pre-check file, checkable definitions must be disambiguated
to be the pre-check version by a qualifier.

This does not make it impossible to call unchecked code from Haskell, which has no
infrastructure to make a name available to only some other modules. However, it is only
possible to do so when importing a module with PostRtc in its qualifier. We suggest making
this string a forbidden word in any code not ignored by version control on a test/continuous
integration (CI)-level or any similar measure to ensure it is not used.

Stronger shielding could have been provided by using a build system like Cabal and its
exposed-modules restrictor. We did not go this way because Agda2Hs does not create multi-
package output. Doing so would also conflict with Agda2Hs’s goal of readably integrating
Agda2Hs code in Haskell code bases, as IDE support for jumping to definitions outside the
current module is still poor (The Haskell IDE Team 2019).
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2. Background

.
└── Module.hs
###################
.
├── Module
│ └── PostRtc.hs # verbatim contents of Module.hs when compiled without checks
└── Module.hs # checks, exporting the checked versions

# and those that need no checking

Listing 2.9: Separating checked and unchecked compilation: file output without and with
runtime checks
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Chapter 3

Usage

In this chapter, we present our Agda2Hs extension from a user perspective. Basic usage is
straightforward, and revolves around the concepts introduced in sections 2.3 and 2.4. We also
cover advanced concepts, like what happens to data types, records and nested dependent
types. We conclude with further remarks on which compilation targets are unsupported
and why, and why some types are considered erased types when they might not seem so at
surface level and vice versa.

3.1 General usage

Our feature is enabled by calling agda2hs --runtime-check. The introductory example from
listing 1.1, subtractFromGreater, becomes what is shown in listing 3.1: the call of the actual
function is guarded by a check reflecting the erased precondition from the Agda type. If the
check fails, an error is raised.

To skip checking when calling from within Agda, references to other modules from Agda
modules will contain the same PostRtc qualifier in the Haskell transpilation target. Putting
the definition of haveInstance from listing 2.4 in a separate module HaveInstance yields the
compilation shown in listing 3.2. This is done to avoid potentially costly runtime checks
where they are not necessary. The example showcases another feature: if a definition has no
erased arguments, it is written to the export list in the module declaration directly, employing
a “fall-through” approach.

3.2 Data types, records, and nested dependent types

For data types, a similar approach is employed, treating each constructor as a smart constructor,
but still exporting the constructor directly if it has no erased arguments. This has the negative
side effect of making pattern matching unavailable in Haskell. A workaround is to create a
deconstructor in Agda and compile it with Agda2Hs.

Listing 3.3 shows a simple data type defined for Agda2Hs compilation, a list together with
a predicate that the list is not empty, and its runtime checked compilation. In the export list,
the data type is exported, but not its constructor; only the smart constructor is exported. If
we defined the type without its erased precondition, the constructor would appear in the
parentheses of NonEmptyList().

Records receive a single smart constructor for all their fields if any are erased or contain
erased types. Listing 3.4 shows input and output for a record that essentially amounts to a de-
pendent pair with a proof and a value. Because it only has one non-erased field, it can be com-
piled to a newtype. Note that the export list on the Haskell side specifies ErasedField(value),
which includes the type and field, but not the constructor.
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3. Usage

-- Haskell/Extra/Dec/Instances.hs
module Haskell.Extra.Dec.Instances where

...

decIsFalse :: Bool -> Bool
decIsFalse False = True
decIsFalse True = False

...
-- Subtract/PostRtc.hs
module Subtract.PostRtc where

import Haskell.Extra.Dec.Instances (decIsFalse)
import Numeric.Natural (Natural)

subtractFromGreater :: Natural -> Natural -> Natural
subtractFromGreater x y = x - y

-- Subtract.hs
module Subtract (Subtract.subtractFromGreater) where

import Haskell.Extra.Dec.Instances (decIsFalse)
import Numeric.Natural (Natural)

import Subtract.PostRtc

subtractFromGreater :: Natural -> Natural -> Natural
subtractFromGreater x y
| decIsFalse (x < y) = Subtract.PostRtc.subtractFromGreater x y
| otherwise = error "Runtime check failed: decIsFalse (x < y)"

Listing 3.1: Basic checking: runtime checked output of listing 1.1

Finally, we show an example that is less useful for real-world programming but is still
important for the completeness of our emissions: we also generate according checks for nested
function types. In most cases, we would consider examples to this poor software engineering,
although under the employment of continuation-passing style, functions of very high orders
can occur (e.g. six in Okasaki 1998). In any case, support for higher-order types is included
because we want to show how complete shielding can be achieved.

The silly function in listing 3.5 takes a function with a precondition, a precondition on
the function, and a named and an unnamed number. Its runtime-checked output showcases
how this input is treated. For a precondition in a nested type, runtime checking is executed
by creating a numbered go function in the where-declarations. On check success, control is
returned to the caller, marked by the up function.

The type is so large because it demonstrates two specific features:

• The go and a prefixes receive running numbering with definition-level uniqueness. This
is implemented in the simplest way possible, which leads to the somewhat odd scheme
where go prefixes and those a prefixes on the left-hand side of these go definitions are
numbered bottom-up, but arguments to deeper go functions are numbered top-down.
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3.2. Data types, records, and nested dependent types

-- HaveInstance/PostRtc.hs
module HaveInstance.PostRtc where

import Numeric.Natural (Natural)
import Subtract.PostRtc (subtractFromGreater)

haveInstance :: Natural
haveInstance = subtractFromGreater 2 1

-- HaveInstance.hs
module HaveInstance (haveInstance) where

import Numeric.Natural (Natural)
import Subtract.PostRtc (subtractFromGreater)

import HaveInstance.PostRtc

Listing 3.2: Calling post-runtime check versions from within Agda

data NonEmptyList {a : Set} : Set where
NE : (xs : List a) → @0 ⦃ NonEmpty xs ⦄ → NonEmptyList

{-# COMPILE AGDA2HS NonEmptyList newtype #-}

-- Datatype/PostRtc.hs
module Datatype.PostRtc where

import Haskell.Extra.Dec.Instances (decNonEmpty)

newtype NonEmptyList a = NE [a]

-- Datatype.hs
module Datatype (NonEmptyList(), Datatype.scNE) where

import Haskell.Extra.Dec.Instances (decNonEmpty)

import Datatype.PostRtc

scNE :: [a] -> NonEmptyList a
scNE xs

| decNonEmpty xs = NE xs
| otherwise = error "Runtime check failed: decNonEmpty xs"

Listing 3.3: Runtime checking data types: generating a smart constructor

13
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record ErasedField : Set where
field

value : Nat
@0 proof : IsTrue (value > 0)

open ErasedField public
{-# COMPILE AGDA2HS ErasedField newtype #-}

-- Record/PostRtc.hs
module ErasedField.PostRtc where

import Haskell.Extra.Dec.Instances (decIsTrue)
import Numeric.Natural (Natural)

newtype ErasedField = ErasedField{value :: Natural}

-- Record.hs
module Record (ErasedField(value), Record.scErasedField) where

import Haskell.Extra.Dec.Instances (decIsTrue)
import Numeric.Natural (Natural)

import Record.PostRtc

scErasedField :: Natural -> ErasedField
scErasedField value
| decIsTrue (value > 0) = ErasedField value
| otherwise = error "Runtime check failed: decIsTrue (value > 0)"

Listing 3.4: Runtime checking records

Other numbering schemes, such as top-down for everything, would require a more
complex symbol replacement algorithm deemed not worth the code overhead for this
already niche feature.

• Checks descending two or more levels without any checks at the higher-up level are
inlined (seen in a0 -> f (go0 a0)). The alternative is a pass-through function without
guards, increasing verbosity.

Because the definition has two erased arguments, it has two checks, and can go wrong in
two different places. Listing 3.6 shows how to trigger both of them, using catch to continue
after error. The listing also shows the output. Because of Haskell’s lazy evaluation, printing
the variables is necessary to trigger the checks.

3.3 Further usage remarks

The pre-supplied decidable instances, such as decNonEmpty from listing 2.7 or decIsFalse, are
imported automaticallywhen runtime checking is enabled. However, because theywill appear
with full qualifiers in the Agda2Hs output (Haskell.Extra.Dec.Instances.decIsFalse), it is
recommended to import Haskell.Extra.Dec.Instances from Agda anyhow.
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silly : (f : ((x : Nat) → @0 ⦃ IsTrue (x < 2) ⦄ → Nat) → Nat)
→ @0 ⦃ IsTrue (f (λ x → x) > 0) ⦄ → Nat → Nat

silly f y = f (λ x → x + y)

module Silly (Silly.silly) where

import Haskell.Extra.Dec.Instances (decIsTrue)
import Numeric.Natural (Natural)

import Silly.PostRtc

silly :: ((Natural -> Natural) -> Natural) -> Natural -> Natural
silly f a1

| decIsTrue (f (\ x -> x) > 0) =
Silly.PostRtc.silly (\ a0 -> f (go0 a0)) a1

| otherwise =
error "Runtime check failed: decIsTrue (f (\\ x -> x) > 0)"

where
go0 up x
| decIsTrue (x < 2) = up x
| otherwise = error "Runtime check failed: decIsTrue (x < 2)"

Listing 3.5: Erased lambdas in types: generation of nested runtime checks

module Main where

import Control.Exception (catch, SomeException)
import Silly (silly)

tryPrint :: Show a => a -> IO ()
tryPrint f = print f `catch` \e -> print (e::SomeException)

main :: IO ()
main = do

tryPrint $ silly (const 0) 0
tryPrint $ silly ($ 2) 0

Runtime check failed: decIsTrue (f (\ x -> x) > 0)
CallStack (from HasCallStack):

error, called at ./Silly.hs:13:5 in main:Silly
Runtime check failed: decIsTrue (x < 2)
CallStack (from HasCallStack):

error, called at ./Silly.hs:17:21 in main:Silly

Listing 3.6: Triggering both checks from listing 3.5
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3. Usage

Some constructs are prohibited from runtime checks, generally because there is no obvious
way to insert checks for them. Attempting to do so with a type that contains erased arguments
will result in an error.

• Functions marked for inlining. Checking them would be possible, but create very long
lines, and undermine the separation into pre- and post-check definitions that we keep.

• Functions marked for transparent compilation. Transparent compilation is an Agda2Hs
feature for Agda functions that, after erasure, collapse to the identity function, and calls
to them are consequently stripped away in the output. This makes checking impossible.

• Records marked for unboxed compilation. These are analoguous to transparent func-
tions, having a single unerased field and their constructors stripped away in the output.

• Records to be compiled to type classes, cf. section 6.2.1.

Not only the types that are marked erased at top level are considered to require runtime
checking. Consider a precondition embedded in a nonempty list1; then, it could be used by
Agda to complete a proof, but would also require checking. Thus, data types and records
are recursed into upon deciding whether a type should be checked. Generally, no decidable
instance will exist, and it is recommended to refactor code to not use such structures. While
we do not see an immediate use case for the list of preconditions, a notable example to this is
the ∃ record from the Agda2Hs library. It is also used by Dec and poses a value-proof pair like
ErasedField, but with parametric types for its fields. The according recommendation in this
case is to use a regular argument paired with the precondition instead. Note that structures
that compile to an existing class, such as Functor, can still be used in the ordinary way, as
none of these structures would induce a check in any case.

Regardless, definitions from the Agda2Hs TCB are exempt from runtime checking because
many definitions would be no longer available due to a lack of instances. This is different
from the checking described in the paragraph above, as it concerns definitions imported and
marked with the AGDA2HS pragma in the TCB. This exemption does not interfere with our goal,
which is to block input to Agda2Hs definitions that does not pass preconditions, but any such
definition using native Agda2Hs definitions would still provide proof to their preconditions
based on its checked input. However, this non-checking does make it possible to bypass
checks by writing out-of-spec functions in a module named Haskell, but this can be mitigated
likewise by prohibiting such code on a CI level. Caution is advised if this is not possible.

1More specifically, e.g. a precondition wrapped in the Haskell.Extra.Erased record; just a data type ranging
over erased types is not valid Agda.
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Chapter 4

Implementation

This chapter exists mostly for reference and is not necessary for understanding the remainder of this
thesis.

In this chapter, we give a brief rundown of our approach to the implementation of the
features shown in chapter 3 with respect to the existing Agda2Hs code base. We also explain
some intricacies of this implementation. Additionally, we provide amore detailed explanation
of the relatively complex process of generating a runtime check for a given type. This process
was built independent of the kind of the definition, be it a function, data type, or record.
The code is available at https://github.com/naucke/agda2hs/tree/strict-runtime-check for
reference.

4.1 Agda2Hs architecture background

Agda2Hs is implemented as an Agda backend and, like the Agda compiler, is written in Haskell.
In the architecture of Agda, this means that Agda2Hs produces a separate binary, but relies
on Agda as a library for type checking. Centrally, it implements its own compile functionality,
receiving type checked definitions and writing Haskell files. For Agda2Hs, compiling is based
on pattern matching on the type of Agda definition and pragma, and producing a Haskell
definition accordingly: e.g. compiling a function, a data type, a record, a record marked to
be compiled to a class, or a class instance. Some combinations will not yield any definition,
such as transparent functions and unboxed records, definitions marked as reimplementing
an existing Haskell definition (primarily found in the Agda2Hs TCB), or records compiled to
a tuple. The compilation definitions for functions, data types, etc. use common functionality
for compiling types and terms.

4.2 Overall structure

Our extension requires changes to the Agda2Hs code base in several places, but usually,
the changes to the existing structure are not fundamental. The actual check insertion is
very similar regardless of the type of definition it checks, and is thus common functionality.
Many of the Haskell outputs computed and passed around in the Agda2Hs compiler become
two outputs with our feature, one with the translated definition and one with its respective
runtime check. For better legibility, this double-tracking is solved using an abstract data type
WithRtc, so that it can be used for all compilation stages, which are not all the same type.
Some refactoring is induced by this change in any case, but can be made minimal by giving
WithRtc a functor instance.

Agda2Hs’s read-write-state monad C, a wrapper monad to Agda’s type checking monad
(TCM), receives some extensions:
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4. Implementation

• whether runtime checks should be emitted, as set by the --runtime-check option, which
is defined as an additional Agda2Hs backend option

• the definition names that had no erased arguments and can thus be passed on upon
export

• the definition names that a valid runtime check was found for and whose pre-runtime
check names can be exported

For the consideration of the different kinds of Agda definitions, different outcomes are
possible:

• To some definition kinds, runtime checks are not applicable because they emit no output:

– definitions that are compiled to no output at all
– definitions marked to represent an existing Haskell class

• To other definition kinds, runtime checks are also not applicable, but we must still mark
the emitted names for export (see chapter 3):

– definitions of class instances (see section 6.2.1)
– postulated definitions, as they are unsafe independent of runtime checking

• The same applies to some other definition kinds that we also prohibit to contain erased
arguments when runtime checking is enabled:

– definitions of records marked for unboxing, meaning that their sole non-erased
field is unboxed

– definitions of records marked for compilation to a tuple
– definitions of records marked for compiling to a type class
– definitions of functions marked transparent, meaning that they compile to the

identity function
– definitions of functions marked for inlining

• Finally, we do apply runtime checks to the definitions as described in chapter 3. We
cover the process of generating a runtime-checking function based on the type to check
and expression on success in section 4.3.

– For functions, we simply insert PostRtc to the function’s qualified name in the
successful case. The function name is exposed in the module declaration when
runtime checks can be found for all erased arguments, or when there were no
erased arguments.

– For data types, we attempt to generate a smart constructor for each constructor.
The data type itself is always exposed, but only those constructors that have no
erased arguments are exposed, alongside the smart constructors.

– For those records to be compiled to a Haskell record instead of a class, we also
generate the respective smart constructor similarly. The field names to a record are
always exposed.

Besides the check determination, it is also necessary to insert the PostRtc deviation into
Agda2Hs’s name resolution logic. Furthermore, the automatic import of the decider instances
is based on an existing function in the Agda compiler code base (Agda Development Team
2024a, ConcreteToAbstract). Before check generation, it is tested whether the name to be
checked is not part of the TCB by testing if its top-level qualifier is Agda or Haskell.
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4.3. Check insertion

4.3 Check insertion

As mentioned, the logic for creating a runtime check with respect to the type to be checked
is the same for all structures we consider. We cover this part in more detail because it is the
most involved part of our solution.

The central functionality of finding a deciding term for a precondition is based on instance
search (cf. section 2.3). For a given erased type, e.g. the one from the introductory listing 1.1,
instance search is run upon that type wrapped in the Dec type. Compiling its result gives a
Haskell term that can be used for guarding. The associated steps are shown in listing 4.1.

type: IsFalse ((iOrdNat Ord.< x) y)
dec type: Haskell.Extra.Dec.Dec (IsFalse ((iOrdNat Ord.< x) y))
instance: decIsFalse
term: Just "decIsFalse (x < y)"

Listing 4.1: Steps to finding a decidable instance

However, upon receiving the type telescope, it is insufficient to run through it and generate
a check for each erased argument. Consider the post-check code from listing 4.2 being called
with \f -> f 0. The check for such nested preconditions is shown in the same listing below,
using a where declaration that returns control to the caller if the check passes. Note that
for checks necessary on multiple levels of nesting, it would not be possible to flatten all the
where-declarations to one level as a deeper check might depend on an argument introduced
in a shallower check.

doubleOdd : (((n : Nat) → @0 ⦃ IsFalse (n < 1) ⦄ → Nat) → Nat) → Nat
doubleOdd f = f (λ n → n - 1)

-- DoubleOdd/PostRtc.hs
module DoubleOdd.PostRtc where

import Haskell.Extra.Dec.Instances (decIsFalse)
import Numeric.Natural (Natural)

doubleOdd :: ((Natural -> Natural) -> Natural) -> Natural
doubleOdd f = f (\ n -> n - 1)

-- DoubleOdd.hs
module DoubleOdd (DoubleOdd.doubleOdd) where

import Haskell.Extra.Dec.Instances (decIsFalse)
import Numeric.Natural (Natural)

import DoubleOdd.PostRtc

doubleOdd :: ((Natural -> Natural) -> Natural) -> Natural
doubleOdd a0 = DoubleOdd.PostRtc.doubleOdd (\ a1 -> a0 (go0 a1))

where
go0 up n
| decIsFalse (n < 1) = up n
| otherwise = error "Runtime check failed: decIsFalse (n < 1)"

Listing 4.2: Checking nested erased arguments
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This approach introduces new names:

• a0, a1, … arguments for each unnamed argument

• go0, a1, … functions, as wrapper functions for any argument with erased arguments
inside it

• an up argument to the go function to return control after the check, the name stemming
from the metaphor of trampolining back up

The former two require keeping track of which numbers have been used. Instead of giving
them placeholders and filling these in a second pass, we set these names in one go.

The checks are computed recursively. However, the logic at the top level differs from the
logic of all levels below: at the top, definitions from below must be put into the where-block,
and the namemust bemarked as exportable. This leads to the definitions of the types returned
by the top-level and lower-level functions respectively in listing 4.3. NameIndices is an integer
tuple to track which a and go numbers have been used. NestedLevel is a two-constructor data
type to track whether the type inspected is on an odd or an even level of nesting, as only odd
levels incur checks (cf. section 5.2).

type NameIndices = (Int, Int)

data NestedLevel = Odd | Even

data RtcResult
= NoneErased
| Uncheckable
| Checkable [Hs.Decl ()]

data RtcResult'
= NoneErased'
| Uncheckable'
| Checkable'

{ theirLhs :: [Hs.Pat ()],
theirChks :: [Hs.Exp ()],
theirRhs :: [Hs.Exp ()],
theirDecls :: [Hs.Decl ()]

}
Listing 4.3: Return types for runtime check computations

The fields in Checkable' are named “theirs” to indicate they come from further below,
unlike the fields being computed at current level (“ours”). The module Hs denotes the Haskell
source extensions, a Haskell formalisation of Haskell’s language structures (Broberg and
Burton 2020). Pat is a pattern for pattern matching, Exp is an expression, and Decl is a
declaration, which includes definitions in this context. The type parameter is empty in our
case, it would otherwise be used for denoting the position of the Haskell construct in a
piece of source code. In the nest example from above, theirLhs is [a0], theirRhs is [go0 a0],
theirDecls is the definition of go0, and theirChks is [] since there are no erased arguments at
top level.

In order to compute checks for all unerased, but potentially nested types in a telescope,
we could use map. However, to also keep track of the go and a numbers used, we need an
accumulator along the way. For this purpose, we can use the mapAccumL higher-order function
or, more precisely, itsmonadic variant fromGHCUtils (TheGHCTeam 2024). mapAccumLM takes
a combining function, initial state, and inputs, returning a final state and its outputs. This gives
it the signature mapAccumLM :: (Monad m, Traversable t) => (acc -> x -> m (acc, y)) ->
acc -> t x -> m (acc, t y). In our instance, these symbols are of different data types:

• acc is NameIndices.

• x is (Dom (ArgName, Type), Telescope).

– Dom is a domain featuring the argument name, so that instead of writing a, we can
use the argument name given in the Agda source if it exists; and the actual type to
be checked.
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– Telescope is a type telescope, but only up to Type. It is used to provide context to
the de Bruijn indices in the runtime checking terms when they are compiled.

• m is the C monad.

• y is Maybe (Hs.Pat (), Hs.Exp (), [Hs.Decl ()]). This is akin to the RtcResult' type,
except there are no Chks because there are no current-level erased types, and there is
only one Lhs and Rhs each because we are map-accumulating over the types.

• t is the list type.

These signatures bring us to the three central functions to compute runtime checks with
respect to a type.

• checkRtc' :: NameIndices -> Telescope -> [NestedLevel] -> C (NameIndices,
RtcResult'), partitioning the received telescope into current-level erased arguments
and unerased, but potentially nested arguments. The latter are mapAccumLMed upon with
checkRtc''. Additionally, a list of level nestings is received. The reason that a list is
given instead of simply toggling the state is that records pass a single telescope of all
their fields, and both the fields and the field types should be considered to be at an
odd (i.e. to be checked) level. Consequently, the logic for records gives a list that starts
with two Odds and then cycles between Even and Odd. If all current-level and lower-level
erased arguments are checkable, the RtcResult' is assembled according to that data
alongside the checks found by instance search at the current level. The incremented
NameIndices are also passed back.

• checkRtc'' :: NameIndices -> ((Dom (ArgName, Type), Telescope), [NestedLevel])
-> C (NameIndices, Maybe (Hs.Pat (), Hs.Exp (), [Hs.Decl ()]))’s signature results
from the bulleted list above. It is mutually recursive with checkRtc', having reserved
the number for the a argument where necessary, and analysing checkRtc'’s result. If
that is Checkable', the number for the go function is also advanced, the Lhs is prepended
by an up, and that up is applied to theirRhs.

• checkRtc :: Telescope -> QName -> Hs.Exp () -> [NestedLevel] -> C RtcResult, tak-
ing a telescope of the type to check, name of the runtime checked function, expression
on success, and returning the result: no erased types, uncheckable, or a complete run-
time checking declaration. It calls checkRtc', initialising NameIndices with (0, 0) and
passing the telescope directly. On success, it assembles the actual check and marks the
name as checkable for export.

In addition, checkRtc'' as well as the smart constructor name generation check for name
conflicts and give an error accordingly if there is a conflict. checkRtc'' is also capable of
inlining a function when there is no check. We give an example to this feature in the form of
a step-by-step illustration of the architecture described in appendix C.

The code to the central functions checkRtc, checkRtc', and checkRtc'' is given in ap-
pendix B. They also use the functions

• createGuardExp :: Dom (a, Type) -> Telescope -> C (Maybe (Hs.Exp ())) which
finds a guarding expression when possible using instance search

• checkTopOrDataErased :: Dom (a, Type) -> [NestedLevel] -> C Bool which checks if
a type is erased or is a type or record containing an erased argument at any (odd) level

• binds :: [Hs.Decl ()] -> Maybe (Hs.Binds ()) which creates where-bindings except
when empty
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• errorWhenConflicts :: [String] -> C () which gives an error message when appro-
priate, taking a list of conflicted names

Additionally, the actual creation of the declaration is computed by the separate createRtc
function, which is also required at the levels below for the where-declarations. It has the
signature createRtc :: Hs.Name () -> [Hs.Pat ()] -> [Hs.Exp ()] -> Hs.Exp () -> Maybe
(Hs.Binds ()) -> Hs.Decl (), taking the function name, left-hand side patterns, check ex-
pressions, expression on success, and optionally where binds. It connects all checks by &&
for the successful case, and gives an appropriate error for each failure of a precondition.
Listing 4.4 shows a transformation sequence using multiple checks.

addHeads : (xs : List Nat) → @0 ⦃ NonEmpty xs ⦄ →
(ys : List Nat) → @0 ⦃ NonEmpty ys ⦄ → Nat

addHeads (x ∷ _) (y ∷ _) = x + y

addHeads :: [Natural] -> [Natural] -> Natural
addHeads xs ys
| decNonEmpty xs && decNonEmpty ys = And.PostRtc.addHeads xs ys
| not (decNonEmpty xs) =
error "Runtime check failed: decNonEmpty xs"

| otherwise = error "Runtime check failed: decNonEmpty ys"

Listing 4.4: Transformation step of a function with multiple checks

4.4 Testing
To ease updates and refactoring, which took place several times in the development of this
thesis, a set of integration tests of our feature was kept. All the core features are tested, such
as generating checks at odd levels, not exporting definitions without complete checkability,
and checking data types and records. It is also ensured that only the checkable constructors
are exported, that records checking works at field and sub-field level, and that data types and
records ranging over erased types are themselves considered erased. There is also a test case
to ensure that internal calls, i.e. calls from translated Agda code rather than external Haskell,
do not incur a runtime check. A number of test cases also focus on catching prohibited
cases, such as having conflicting module, definition, or variable names, or compiling inlined,
unboxed, or to a tuple with erased arguments. The tests also ensure that these compilation
targets remain available when not using erased arguments in odd positions.
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Chapter 5

Analysis

Without being specific to our implementation, we create an argument for the completeness
of the types of checks we emit. We limit this analysis to functions, treating the creation of
smart constructors for data types as an implementation detail. Centrally, we show that with
our model of runtime checks, the execution of a function translated from a language with
verified proofs to one with runtime checks will only occur if the relevant proof exists.

This analysis makes some simplifications in comparison to the actual implementation.
Even then, we found that a minimal and complete check insertion is complicated and reaches
beyond “each erased argument should be checked”. We show that it is sufficient to insert
checks for every argument in an odd-nested position. This observation warrants the analysis
beyond the mere self-verification.

Initially, we set up a theory to work in based on Norell 2007. We then present an abstract
model of what checks are emitted. We conclude with a proof that these checks guard the
function implementations from running without meeting the checks.

5.1 A rudimentary model for Agda2Hs and runtime check
emissions

To reason about our output, we require a theoretical model for Agda and Haskell. We base
this on Norell’s dependent type theory for both languages. Thus, we simplify the differences
between the languages and assume that the output language will not have dependent types.
We leave out most of the details surrounding the formalisation of this translation, as these
would be more in scope for a general analysis of Agda2Hs, but not for our runtime checks.

The type judgements in this type theory are using a context Γ, consisting of all relevant
variables. For example, there is a typing rule

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥. 𝑡 ∶ (𝑥 ∶ 𝐴) → 𝐵

where if Γ alongside 𝑥 ∶ 𝐴 derives 𝑡 ∶ 𝐵, Γ derives the lambda term. Norell writes telescopes
explicitly, we assume them implicit.

We require some extensions to Norell’s type system as marked in the definition. Most
importantly, dependent functions are extended with erased arguments. Lambdas taking
an erased argument are denoted by 𝜆0. In the translation target, we will also use an assert
construct as a simplification of the guards and error messages that we emit. To be able to
assert, we introduce the Bool type and true and false values with the usual typing rules.
Alongside assertion, there is also an if-then-else construct to define decidable types and derive
non-trivial Boolean terms. To represent false propositions, we add the bottom type (⊥).

For dependent pairs, we make another simplification. Agda2Hs can compile two kinds
of pairs: one with the second part in erased position, as seen in listing 2.7, and one with
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5. Analysis

the dependency in erased position and with no universe levels, i.e. Σ (a : Set) (b : @0 a →
Set) : Set instead of Agda’s Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b). We only
consider the former.

Definition 1.
𝑠, 𝑡, 𝐴, 𝐵 ∶= 𝑥

| (𝑥 ∶ 𝐴) → 𝐵 ∣ (@0 𝑥 ∶ 𝐴) → 𝐵
| 𝜆𝑥. 𝑡 ∣ 𝜆0𝑥. 𝑡 ∣ 𝑠 𝑡
| (𝑥 ∶ 𝐴) × @0 𝐵
| ⟨𝑠, 𝑡⟩ ∣ 𝜋1 𝑡 ∣ 𝜋2 𝑡
| Set𝑖

| 1 ∣ ⟨⟩ ∣ ⊥
| Bool ∣ true ∣ false
| assert 𝑠; 𝑡
| if 𝑠 then 𝑡 else 𝑢

We require some reduction rules, especially for the constructs we added. Reduction steps
for assertion are denoted by ⟶𝑒, and can lead to an error, which is not a term in the general
sense, but still a possible result.

Definition 2.

(𝜆𝑥. 𝑠)𝑡 ⟶𝛽 𝑠[𝑥 ∶= 𝑡] where 𝑡 is not erased

(𝜆0𝑥. 𝑠)𝑡 ⟶𝛽 𝑠[𝑥 ∶= 𝑡] 𝜋1⟨𝑠, 𝑡⟩ ⟶𝜄 𝑠 𝜋2⟨𝑠, 𝑡⟩ ⟶𝜄 𝑡

if true then 𝑠 else 𝑡 ⟶𝜄 𝑠 if false then 𝑠 else 𝑡 ⟶𝜄 𝑡
𝑠 true

assert 𝑠; 𝑡 ⟶𝑒 𝑡
𝑠 false

assert 𝑠; 𝑡 ⟶𝑒 error

We generalise single small-step reduction by ⟶ and denote multi-step reduction by .
We slightly deviate from the common understanding of ⟶ by always reducing a term that is
asserted over completely, e.g.

(assert (if 𝑎 then 𝑏 else false); (𝜆𝑐. 𝑑)𝑒) ⟶ (𝜆𝑐. 𝑑)𝑒
where 𝑎 = 𝑏 = true

For denoting an Agda2Hs translation, we use the notation J…K, as in the following def-
inition. The compilation of erased arguments in Agda is based on Quantitative Type The-
ory (QTT) (Atkey 2018). Agda2Hs compilation of a dependent type ensure that there is no
dependent variable in an unerased position. Because full reasoning about them would be
off-topic for our analysis, we simply state that it is ignored in compilation and any further
use of the erased argument results in a compile-time error (⊥). To distinguish from meta-
level notation, object-level notation is written in coloured monospace. As a result of our sole
consideration of dependent pairs with an erased second component, J𝜋2 ⟨𝑠, 𝑡⟩K is undefined.

24
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Definition 3.

J𝑠K𝐴 ∶= s

where 𝑠 is a variable, Boolean, or unit value
J𝜆𝑥. 𝑡K(𝑥∶𝐴)→𝐵 ∶= 𝜆x. J𝑡K𝐵

J𝜆0𝑥. 𝑡K(@0 𝑥∶𝐴)→𝐵 ∶= J𝑡K𝐵[𝑥∶=⊥]

J𝑠 𝑡K𝐵 ∶= J𝑠K𝐴→𝐵 J𝑡K𝐴

where 𝑠 has an unerased domain and
𝑡 is of an unerased type

J𝑠 𝑡K𝐵[𝑥∶=𝑡] ∶= J𝑠K(@0 𝑥∶𝐴)→𝐵

where 𝑠 has an erased domain
J⟨𝑠, 𝑡⟩K(𝑥∶𝐴)×@0 𝐵 ∶= J𝑠K𝐴

J𝜋1𝑠K𝐴 ∶= J𝑠K𝐴

J𝜋2𝑠K𝐴 ∶= ⊥
Jif 𝑠 then 𝑡 else 𝑢K𝐴 ∶= if J𝑠KBool then J𝑡K𝐴 else J𝑢K𝐴

We assume that Agda2Hs always creates execution-equivalent output:

Assumption 1. For any well-typed Agda terms 𝑠 and 𝑣, if 𝑠 𝑣, then J𝑠K J𝑣K.

The generation of our checks depends heavily on the reflects predicate and the decidability
type. The latter is defined as a dependent pair:

Definition 4. Reflects 𝑃 𝑏 ∶= if 𝑏 then 𝑃 else (𝑃 → ⊥)

Definition 5. Dec 𝑃 ∶= (𝑏 ∶ Bool) × (@0 Reflects 𝑃 𝑏)

We also postulate the existence of instance search. Instead of the Maybe approach of the
real implementation, we treat it as a partial function, aborting further compilation if it fails to
find a result as a simplification.

Assumption 2. If instance search finds a term 𝑖 of a type 𝐴 (𝑖 = inst 𝐴), it will be a valid term of that
type (𝑖 ∶ 𝐴).

We denote the runtime checked transpilation by notation of J…Krtc. At surface level, only
one rule is modified from the Agda2Hs definition; the one covering erased argument lambdas.
This rule reflects e.g. the translation of the introductory example from listing 3.1. The checking
of nested arguments is achieved by an assumption:

Assumption 3. All terms in J…Krtc are in 𝜂-long form, not expanding heads of application terms.

This assumption makes it possible to forego the consideration of terms like J𝑠Krtc
(𝑥∶𝐴)→𝐵

because such a term 𝑠 will be expanded to 𝜆𝑥. 𝑠𝑥. Likewise, when a dependent pair is in argu-
ment position, e.g. 𝜆0𝑦. 𝑡𝑦 where 𝑦 ∶ (𝑥 ∶ 𝐴) × @0 𝐵, it will be expanded to 𝜆0⟨𝑦1, 𝑦2⟩. 𝑡⟨𝑦1, 𝑦2⟩
and 𝑦2 will be checked accordingly. The addition with respect to plain Agda2Hs is also
marked. Note that this is a compilation of terms, and Agda2Hs’s compilation of types is not
modified.
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Definition 6.

J𝑠Krtc
𝐴 ∶= s

where 𝑠 is a variable, Boolean, or unit value
J𝜆𝑥. 𝑡Krtc

(𝑥∶𝐴)→𝐵 ∶= 𝜆x. J𝑡Krtc
𝐵

J𝜆0𝑥. 𝑡Krtc
(@0 𝑥∶𝐴)→𝐵 ∶= assert J𝑖KDec 𝐴;J𝑡Krtc

𝐵[𝑥∶=⊥]

where 𝑖 = inst(Dec 𝐴)
J𝑠 𝑡Krtc

𝐵[𝑥∶=𝑡] ∶= J𝑠Krtc
(𝑥∶𝐴)→𝐵 J𝑡Krtc

𝐴

where 𝑠 has an unerased domain and
𝑡 is of an unerased type

J𝑠 𝑡Krtc
𝐵[𝑥∶=𝑡] ∶= J𝑠Krtc

(@0 𝑥∶𝐴)→𝐵

where 𝑠 has an erased domain
J⟨𝑠, 𝑡⟩Krtc

(𝑥∶𝐴)×@0 𝐵 ∶= J𝑠Krtc
𝐴

J𝜋1𝑠Krtc
𝐴 ∶= J𝑠Krtc

(𝑥∶𝐴)×@0 𝐵

J𝜋2𝑠Krtc
𝐴 ∶= ⊥

Jif 𝑠 then 𝑡 else 𝑢Krtc
𝐴 ∶= if J𝑠Krtc

Bool then J𝑡Krtc
𝐴 else J𝑢Krtc

𝐴

The direct insertion of runtime checks upon the 𝜂-expanded form of the term is different
from the Haskell implementation, as Haskell will read all arguments and only then evaluate
the guards instead of evaluating the guards in order of appearance in the source type. This
means that the Haskell implementation can error at a later point than suggested by theorem 2,
cf. the trigger points in listing 3.6.

To reiterate on the simplifications made:

• Agda and Haskell are treated as the same language.

• The language has a basic dependent type theory with erased arguments, Booleans, and
assertions.

• The second element of dependent pair types is always erased.

• Data types and records are not considered.

• An instance for a condition-checking term can always be found.

• Checks are inserted directly instead of taking all arguments of a definition first.

5.2 Odd and even positions

We show how this definition inserts runtime checks by the example of definitions from
listing 5.1. We will not cover all of them in full length; the latter ones are included only to
illustrate the conditions under which a function should be checked.

The function sub is defined only as an instance-argument unroll to Agda2Hs’s _-_. Our
focus will be on the odd, even, doubleOdd, etc. functions. Their names denote what position
the erased argument is in.

These examples show how only the erased arguments in even positions will require
checking. This is much akin to the odd-even rule by Findler and Felleisen 2002. In their
publication, they established a model for runtime-checking higher order functions in the
Scheme dialect of Lisp. Their analysis also affects postconditions, which are not part of our
checks because most postconditions would be formulated as indexed data types in Agda,
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5.2. Odd and even positions

which does not translate well to Agda2Hs. They establish how a function is responsible for
violations in even positions, but the function’s caller is responsible in odd positions. Similarly,
doubleOdd can be violated by calling with the argument 𝜆𝑓 . 𝑓 0, but there is no way to violate
even from the caller’s side.

sub : (n m : Nat) → (@0 p : IsFalse (n < m)) → Nat
sub n m prf = _-_ n m ⦃ prf ⦄

odd : (m : Nat) → (@0 p : IsFalse (m < 1)) → Nat
odd = λ n → λ q → ((sub n) 1) q

even : (s : ((m : Nat) → (@0 p : IsFalse (m < 1)) → Nat)) → Nat
even = λ f → (f 1) IsFalse.itsFalse

doubleOdd : (s : ((t : ((m : Nat) → (@0 p : IsFalse (m < 1)) → Nat)) → Nat)) → Nat
doubleOdd = λ f → f (λ n → λ q → ((sub n) 1) q)

-- omitting unnecessarily named variables from here for brevity
doubleEven : ((((m : Nat) → @0 IsFalse (m < 1) → Nat) → Nat) → Nat) → Nat
doubleEven = λ f → f (λ g → (g 1) IsFalse.itsFalse)

tripleOdd : (((((m : Nat) → @0 IsFalse (m < 1) → Nat) → Nat) → Nat) → Nat) → Nat
tripleOdd = λ f → f (λ g → g (λ n → λ q → ((sub n) 1) q))

Listing 5.1: Different positions of an erased argument in 𝜂-long form

odd is the simplest case:

J𝜆𝑛. 𝜆0𝑞. ((sub 𝑛) 1) 𝑞Krtc
(𝑚∶ℕ)→(@0 𝑝∶𝑚≮1)→ℕ

= 𝜆n. J𝜆0𝑞. ((sub 𝑛) 1) 𝑞Krtc
(@0 𝑝∶𝑚≮1)→ℕ

= 𝜆n. assert n ≮ 1; J((sub 𝑛) 1) 𝑞Krtc
ℕ[𝑝∶=𝑞]

= 𝜆n. assert n ≮ 1; J(sub 𝑛) 1Krtc
((@0 𝑝∶𝑚≮1)→ℕ)[𝑛∶=1]

= 𝜆n. assert n ≮ 1; Jsub 𝑛Krtc
ℕ→(@0 𝑝∶𝑚≮1)→ℕJ1Krtc

ℕ

= 𝜆n. assert n ≮ 1; JsubKrtc
((𝑚∶ℕ)→ℕ→(@0 𝑝∶𝑚≮1)→ℕ)[𝑛∶=𝑜]J𝑛Krtc

ℕ 1

= 𝜆n. assert n ≮ 1; sub n 1

even takes a function of odd’s signature, but critically, its input will not be checked because
there is no way to violate its precondition when calling from Haskell:

J𝜆𝑠. (𝑠 1) itsFalseKrtc
(𝑠∶((𝑚∶ℕ)→(@0 𝑝∶𝑚≮1)→ℕ))→ℕ

= 𝜆s. J(𝑠 1) itsFalseKrtc
ℕ[𝑝∶=itsFalse]

= 𝜆s. J𝑠 1Krtc
((@0 𝑝∶𝑚≮1)→ℕ)[𝑛∶=1]

= 𝜆s. J𝑠Krtc
(𝑚∶ℕ)→(@0 𝑝∶𝑚≮1)→ℕJ1Krtc

ℕ

= 𝜆s. s 1

doubleOdd, on the other hand, is a case that warrants checking its erased argument. This
only differs from the implementation in the way that the check is always inlined.
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J𝜆𝑓 . 𝑓 (𝜆𝑛. 𝜆0𝑞. ((sub 𝑛) 1) 𝑞)Krtc
(𝑠∶((𝑡∶((𝑚∶ℕ)→(@0 𝑝∶𝑚≮1)→ℕ))→ℕ))→ℕ

= 𝜆f. J𝑓 (𝜆𝑛. 𝜆0𝑞. ((sub 𝑛) 1) 𝑞)Krtc
ℕ[𝑡∶=𝜆𝑛. 𝜆0𝑞. ((sub 𝑛) 1) 𝑞]

= 𝜆f. J𝑓Krtc
(𝑡∶((𝑚∶ℕ)→(@0 𝑝∶𝑚≮1)→ℕ))→ℕJ𝜆𝑛. 𝜆0𝑞. ((sub 𝑛) 1) 𝑞Krtc

(𝑚∶ℕ)→(@0 𝑝∶𝑚≮1)→ℕ

= 𝜆f. f(𝜆n. assert n ≮ 1; sub n 1) by compilation of odd

We do not list the compilations of doubleEven and tripleOdd here, but only tripleOdd
would incur a check.

5.3 Completeness of the emission
Intuitively, we want to show that

• for each program, compiled from Agda to Haskell, the result should be the same as if
executed in Agda,

• when a precondition does not hold, the checked version should error, and

• when the checked version errors, a precondition does not hold.

The inverse of the first statement, “for each runtime-checked execution, there is a proof for
the type checked execution”, is not included because the Agda type checker is assumed to be
correct.

For the positive statement, the formal statement and proof are relatively straightforward:

Theorem 1. For well-typed terms 𝑡 and 𝑣, if 𝑡 𝑣, then J𝑡Krtc  J𝑣Krtc.

Proof. We show a lemma to relate Agda2Hs execution of well-typed terms to the runtime-
checked one.

Lemma 1. For well-typed terms 𝑠 and 𝑣, if J𝑠K J𝑣K, then J𝑠Krtc  J𝑣Krtc.

Proof. The only case of 𝑠 that we need to consider is the one where definition 6 differs from
definition 3. This case is the 𝛽-reduction 𝑠 𝑢 with 𝑠 = 𝜆0𝑥. 𝑡, 𝑠 ∶ (@0 𝑥 ∶ 𝐴) → 𝐵, 𝑢 ∶ 𝐴. By case
distinction on 𝜋1𝑖 where 𝑖 = inst(Dec 𝐴):

• true, then by definition 2, assert true; J𝑡Krtc
𝐵[𝑥∶=⊥] reduces to J𝑡Krtc

𝐵[𝑥∶=⊥]. In turn, this term
is equivalent to J𝑡K𝐵[𝑥∶=⊥] by induction.

• false, then by assumption 2, inst(Dec 𝐴)  ⟨false, 𝑞⟩ where 𝑞 ∶ ¬𝐴. However, ¬𝐴
contradicts 𝑡 ∶ 𝐴.

The claim of the theorem itself follows directly with this lemma and assumption 1.

For the negative statements, we need a workaround for the fact that ill-typed terms would
not type check in Agda in the first place. We solve this by creating a context Γ with some
bindings that will be used as (wrong) arguments to checked functions. This creation bears
some similarity to postulates, an Agda construct to declare that an element is of a type without
defining it. This context will also be an erased context, meaning that each binding is erased,
in order to make its bindings available to Agda application, but not to runtime-relevant
compilation output.

For the former direction of the negative statement, we explore the cases of a term and
the conditions under which it evaluates to an error. For these conditions, it is important
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5.3. Completeness of the emission

to note that the term stating the opposite of the argument derives from an empty context,
not Γ. When the term does not (immediately) evaluate to an error, we base the claim only
on single-step reduction (⟶) because the premises and proofs surrounding “will error but
later” are much more difficult. There are no cases given for tuples and if-then-else because
they cannot reduce to an error in one reduction step and as such would be specific cases of
lemma 1.

Theorem 2. For a well-typed term 𝑠 ∶ 𝑆, in an erased context Γ:

1. 𝑠 = 𝑡 𝑢 where 𝑡 ∶ (@0 𝑥 ∶ 𝐴) → 𝑆, 𝑢 ∶ 𝐴:

(∃𝑏. 𝜀 ⊢ 𝑏 ∶ ¬𝐴) ⟹ J𝑠Krtc
𝑆  error

2. 𝑠 = 𝑡 𝑢 where 𝑡 ∶ (𝑥 ∶ 𝐴) → 𝑆, 𝑢 ∶ 𝐴 and some 𝑣 ∶ 𝑆, i.e. not an error:

J𝑠Krtc
𝑆 ⟶ 𝑣 ∨ J𝑡Krtc  error

Proof. By case from the statement:

1. If J𝑡Krtc  error, the statement follows directly. Otherwise, one interesting case of 𝑡
remains:

• 𝑡 cannot be a variable because Γ has no unerased bindings.
• 𝑡 cannot be a Boolean or unit because those cannot be in an application head.
• 𝑡 cannot be a pair or an unerased lambda because its type does not match.
• 𝑡 can be an application or a projection on a pair. In both cases, the theorem applies

inductively.
• 𝑡 = 𝜆0𝑥. 𝑤. Then, J(𝜆0𝑥. 𝑤) 𝑢Krtc = assert J𝑖KDec 𝐴; J𝑤Krtc where 𝑖 = inst(Dec 𝐴).

The instance search for 𝑖 does not depend on Γ, as it may find unproven postulates
otherwise. By case distinction on the normal form of 𝜋1 𝑖:

– false, then assert J𝑖KDec 𝐴; J𝑢Krtc ⟶ error.
– true. Then, 𝜋2 𝑖 is some 𝑞 where 𝑞 ∶ Reflects 𝐴 true. The type of 𝑞 reduces to

𝐴, but this contradicts 𝑏 ∶ ¬𝐴.

2. If J𝑡Krtc  error, the statement follows directly. Otherwise, by distinction on 𝑡:

• For the reasons described in (1), 𝑡 cannot be a variable, Boolean, unit, pair, or erased
lambda.

• 𝑡 can be an application or a projection on a pair. In both cases, the theorem applies
inductively because J𝑡Krtc  error has been ruled out.

• 𝑡 = 𝜆𝑥. 𝑤. Then, J(𝜆𝑥. 𝑤) 𝑢Krtc
𝑆[𝑥∶=𝑢] = (𝜆x. J𝑤Krtc

𝑆 ) J𝑢Krtc
𝐴 . From this, an error is not

reachable within one step of reduction, resulting in 𝑤.

For the latter direction of the negative statement, we begin with a lemma on single-step
reduction. We can then generalise this to multi-step reduction with a lemma on the existence
of equivalent unchecked terms for each reduction of a checked term.

Lemma 2. For a well-formed context Γ where Γ ⊢ 𝑠 ∶ 𝑆:

J𝑠Krtc
𝑆 ⟶ error ⟹ ∃𝑝. Γ ⊢ 𝑝 ∶ ⊥
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Proof. Because we only consider single-step reduction, and in the premise, checked 𝑠 evaluates
to an error, checked 𝑠 must be an assertion. Only erased lambdas compile to assertions, thus,
the only case of 𝑠 that we must consider is 𝑠 = (𝜆0𝑥. 𝑤)𝑢 where (𝜆0𝑥. 𝑤) ∶ @0 𝐴 → 𝑆, 𝑢 ∶ 𝐴.
Then, J(𝜆0𝑥. 𝑤)𝑢Krtc

𝑆[𝑥∶=𝑢] = assert J𝑖KDec 𝐴; J𝑤Krtc
𝑆 where 𝑖 = inst(Dec 𝐴). By case distinction

on the normal form of 𝜋1 𝑖:

• false. Then, 𝜋2 𝑖 is some 𝑞 where 𝑞 ∶ Reflects 𝐴 false. This type reduces to 𝐴 → ⊥. Thus,
𝑞𝑢 ∶ ⊥ gives 𝑝.

• true, but with the assertion over 𝑖, an error is not reachable within one step of reduction.

The lemma on intermediate representations needs a small helper lemma:

Lemma 3. For well-typed terms 𝑡 ∶ 𝑇, 𝑢 ∶ 𝑈 with 𝑥 free in 𝑡:

J𝑡(𝑥 ∶= 𝑢)Krtc
𝑇[𝑥∶=𝑢] = J𝑡Krtc

𝑇 (𝑥 ∶= J𝑢Krtc
𝑈 )

Proof. By definition 6, all mentions of 𝑥 in 𝑡 will be compiled to x. Because the runtime checked
compilation of terms recurses into its sub-terms, this is equivalent to compiling 𝑢 separately
and inserting it for all x.

Lemma 4. For well-typed terms 𝑠, 𝑣 ∶ 𝑆, where 𝑣 is not an error:

J𝑠Krtc
𝑆 ⟶ 𝑣 ⟹ ∃𝑣′ ∶ 𝑆. J𝑣′Krtc

𝑆 = 𝑣

Proof. By case distinction on 𝑠.

• 𝑠 = 𝑡 𝑢 where 𝑡 ∶ (𝑥 ∶ 𝐴) → 𝑆, 𝑢 ∶ 𝐴. By case distinction on 𝑡:

– 𝑡 cannot be a Boolean, unit, pair, or erased lambda because the type does not match.
– 𝑡 cannot be a variable because there is no reduction towards any 𝑣.
– 𝑡 can be an application or a projection on a pair. In both cases, the theorem applies

inductively.
– 𝑡 = 𝜆𝑥. 𝑤. Then,

J(𝜆𝑥. 𝑤)𝑢Krtc
𝑆[𝑥∶=𝑢] = J𝜆𝑥. 𝑤Krtc

(𝑥∶𝐴)→𝑆J𝑢Krtc
𝐴 = (𝜆x. J𝑤Krtc

𝑆 )J𝑢Krtc
𝐴

and
(𝜆x. J𝑤Krtc

𝑆 )J𝑢Krtc
𝐴 ⟶𝛽 J𝑤Krtc

𝑆 (𝑥 ∶= J𝑢Krtc
𝐴 )

and by lemma 3
J𝑤Krtc

𝑆 (𝑥 ∶= J𝑢Krtc
𝐴 ) = J𝑤(𝑥 ∶= 𝑢)Krtc

𝑆[𝑥∶=𝑢]

giving 𝑤(𝑥 ∶= 𝑢) for 𝑣′.

• 𝑠 = 𝑡 𝑢 where 𝑡 ∶ (@0 𝑥 ∶ 𝐴) → 𝑆, 𝑢 ∶ 𝐴. We can eliminate all other cases of 𝑡 similarly to
the bullet above and remain with 𝑡 = 𝜆0𝑥. 𝑤. Then,

J(𝜆0𝑥. 𝑤) 𝑢Krtc
𝑆[𝑥∶=𝑢] = J𝜆0𝑥. 𝑤Krtc

(𝑥∶𝐴)→𝑆 = assert J𝑖KDec 𝐴; J𝑤Krtc

Because J𝑠Krtc
𝑆 ⟶ 𝑣, where 𝑣 is not an error, J𝑖KDec 𝐴  true, giving 𝑤 for 𝑣′.

• 𝑠 = if 𝑡 then 𝑢1 else 𝑢2 where 𝑡 ∈ {true, false}, 𝑢1, 𝑢2 ∶ 𝑆. 𝑣′ is 𝑢1 or 𝑢2 respectively.
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5.3. Completeness of the emission

With these lemmas, we come to the theorem itself:

Theorem 3. For a well-formed context Γ where Γ ⊢ 𝑠 ∶ 𝑆:

J𝑠Krtc
𝑆  error ⟹ ∃𝑝. Γ ⊢ 𝑝 ∶ ⊥

Proof. J𝑠Krtc
𝑆 multi-step reduced to an error through some 𝑠1 ⟶ … ⟶ 𝑠𝑛 where 𝑠𝑛 ⟶𝑒 error.

By lemma 4, there also exist 𝑠1, … , 𝑠𝑛 such that J𝑠1Krtc ⟶ … ⟶ J𝑠𝑛Krtc. For J𝑠𝑛Krtc, lemma 2
applies.
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Chapter 6

Discussion

We have shown how it is possible to generate complete and automatic runtime checks for a
verified-to-functional source-to-source translation system in order to guard against input that
does not meet criteria only expressible in dependent types. In this chapter, we discuss what
place our Agda2Hs extension takes in an ecosystem of verified and unverified code, especially
with regard to how it compares to handwriting the emitted checks instead. Furthermore, we
discuss some additional features that our solution could have included, but that also come
with drawbacks.

6.1 Comparison to writing checks by hand

We acknowledge that our approach of automatically generating checks at translation level is
not necessary for having them per se. Listing 6.1 shows two Agda files reimplementing the
introductory example from listing 1.1, but with a check spelled out in Agda, and its native
Agda2Hs compilation. This approach should be used in tandem with a technical solution to
prohibit erased arguments in files imported from unverified Haskell code, again, e.g. on CI
level.

The most obvious drawback to handwriting is that the relatively mundane checks have
to be written first. There are some issues of a more technical nature with this approach, but
workarounds could be created for them:

• The output has an if-then-else instead of guards. Agda’s case pattern matching is
somewhat akin to guards, but translation to guards is not supported in Agda2Hs at this
time.

• We used error through a hack by defining an untranslated function of type Nat. A
generic error like in Haskell cannot be implemented in Agda as is because it creates
arbitrary types: Agda2Hs’s signature for it is error : {a : Set} {@0 @(tactic absurd)
i : ⊥} → String → a, i.e. to create arbitrary types, you must first have a proof of ⊥.
More advanced error handling (see section 8.1 for more detail) would overcome the
need to error altogether, but probably introduce more complex pragmas that could also
be used here.

6.2 Potential features left unimplemented and their challenges

6.2.1 Omission of runtime checking class instances

Type classes is an Agda and Haskell feature to implement functions on a data type according
to a fixed set of signatures, akin to interfaces in object-oriented programming. A structure
that implements a type class is called an instance. In Agda, the type class is no separate
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6.2. Potential features left unimplemented and their challenges

-- PostRtc.agda
module PostRtc where
open import Haskell.Prelude

subtractFromGreater : (x y : Nat) → @0 ⦃ IsFalse (x < y) ⦄ → Nat
subtractFromGreater x y = x - y
{-# COMPILE AGDA2HS subtractFromGreater #-}

-- SubtractManual.agda
module SubtractManual where
open import Haskell.Prelude hiding (error)
open import Haskell.Extra.Dec
open import Haskell.Extra.Dec.Instances
-- hack: put into same level (Agda2Hs handles common prefixes of modules poorly)
import PostRtc

-- hack: simulate Haskell error
error : String → Nat
error _ = 0

subtractFromGreater : (x y : Nat) → Nat
-- could also use instance search (`it`) with implicit argument
-- specification, but this is not translated correctly by Agda2Hs
subtractFromGreater x y = ifDec decIsFalse

(PostRtc.subtractFromGreater x y)
(error "check failed")

{-# COMPILE AGDA2HS subtractFromGreater #-}

-- PostRtc.hs
module PostRtc where

import Numeric.Natural (Natural)

subtractFromGreater :: Natural -> Natural -> Natural
subtractFromGreater x y = x - y

-- SubtractManual.hs
module SubtractManual where

import Haskell.Extra.Dec.Instances (decIsFalse)
import Numeric.Natural (Natural)
import qualified PostRtc (subtractFromGreater)

subtractFromGreater :: Natural -> Natural -> Natural
subtractFromGreater x y

= if decIsFalse (x < y) then PostRtc.subtractFromGreater x y else
error "check failed"

Listing 6.1: Comparison to the manual approach: generating similar checks without the need
for Agda2Hs modification
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6. Discussion

construct, but simply a record with instance fields (Agda Development Team 2024b, Record
Types, Instance fields). For Agda2Hs, a record can be marked as to be compiled to a type class
by stating class in the pragma. Class fields can contain erased arguments, for which we do
not support automatic runtime checking.

Classes have no logic in themselves, but instances translated from Agda2Hs do, and could
have runtime checking. Listing 6.2 shows a minified definition of Agda2Hs’s Num record,
which is to be compiled to a Haskell typeclass, and the instance for Nat. Agda2Hs’s native
compilation of these definitions is shown below.

open import Haskell.Prelude
open import Agda.Builtin.Nat using (_-_)

record MiniNum (a : Set) : Set₁ where
field

@0 MinusOK : a → a → Set
sub : (x y : a) → @0 ⦃ MinusOK x y ⦄ → a

open MiniNum public

instance
iMiniNumNat : MiniNum Nat
MinusOK iMiniNumNat n m = IsFalse (n < m)
sub iMiniNumNat n m = Agda.Builtin.Nat._-_ n m

{-# COMPILE AGDA2HS MiniNum class #-}
{-# COMPILE AGDA2HS iMiniNumNat #-}

module Class where

import Numeric.Natural (Natural)

class MiniNum a where
sub :: a -> a -> a

instance MiniNum Natural where
sub n m = n - m

Listing 6.2: An Agda record and instance with their native Agda2Hs compilation to a class
and instance

Listing 6.3 shows a theoretical runtime-checked version of the instance. We did not
implement this approach for two reasons:

• Instances cannot be separated into pre- and post-check versions like we do with other
definitions. It is not possible to have two instances to the same class and data type in
one namespace in Haskell, although it is in Agda.

• This only works for instances of data types also defined in Agda, and as such leaves a
gap for instances defined in Haskell.

6.2.2 Types that become decidable by their parameters

The checks that we generate omit a specific kind of erased types that is not checkable directly,
but can become checkable indirectly in some cases. One example is the ∃ record, which, while
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6.3. Eagerness of runtime checks

instance MiniNum Natural where
sub n m | IsFalse (n < m) = n - m

| otherwise = error "…"

Listing 6.3: Instance-level checking: a hypothetical approach to runtime checking listing 6.2

not a Haskell construct, is shipped by the Agda2Hs library as a useful extension. Essentially,
it is the Σ type from dependent type theory with the second part erased; the kind we also
considered in chapter 5. Thus, it is a value and a proven statement about that value (see
listing 6.4).

record ∃ {ℓ ℓ′ : Level} (a : Set ℓ) (@0 P : a → Set ℓ′) : Set (ℓ ⊔ ℓ′) where
field

value : a
@0 proof : P value

Listing 6.4: Abridged ∃ record from the Agda2Hs library

Consider the function useExists from listing 6.5. Our implementation treats this as an
uncheckable definition because the function type uses a record that contains an erased field
and the record is not decidable.

useExists : ∃ Nat (λ n → IsFalse (1 < n)) → Nat
useExists (n ⟨ p ⟩) = _-_ 1 n ⦃ p ⦄

Listing 6.5: Simple use of ∃

However, the parametrised ∃ record becomes decidable when given a decidable type in the
proof position, such as in this example. Listing 6.6 shows a hypothetical checking of useExists.
While this seems reasonably straightforward to implement at surface level, we decided against
doing so because such an approach would imply an additional complexity regarding avoiding
double checking. Smart constructors for the data types and records that are checkable at
constructor level already exist. Thus, not double checking them would require either tracking
which types have been given smart constructors, or testing whether the definition behind the
type used can also be checked with a smart constructor. Alternatively, it would be possible
to generate all checks at function level and skip smart constructors entirely. This approach
would lead to extra checks likewise, as data types and records would be runtime checked
on every use. Note that this limitation of not checking parameter-level decidable types can
generally be worked around by e.g. unrolling the record to a Π type.

subtractFromGreater :: Natural -> Natural
subtractFromGreater n

| decIsFalse (1 < n) = UseExists.PostRtc.useExists n
| otherwise = error "Runtime check failed: decIsFalse (1 < n)"

Listing 6.6: Parameter-level checking: a hypothetical approach to runtime checking listing 6.5

6.3 Eagerness of runtime checks
One drawback to consider when working with this extension is that on top of the time that a
runtime check takes in itself, the check may evaluate more eagerly than the execution would
have made necessary. Listing 6.7 show the Agda definition and checked output excerpt of
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6. Discussion

an example: the first ten elements of a list will be added, requiring a precondition due to
output types. Logically, only those first ten would need to be checked, and due to Haskell’s
laziness, the rest would not be evaluated, which works even for infinite lists. However, with
the generated check, the entire list will be checked, which will not work with infinite lists.

-- Agda2Hs implements a `take` for lists, but it does not have universe
-- polymorphism. The `All` predicate, however, has a universe polymorphic
-- definition, so we implement `take` with universe polymorphism.
take : ∀ {a} {A : Set a} → Nat → List A → List A
take n [] = []
take zero nil = []
take (suc n) (x ∷ xs) = x ∷ take n xs

Positive : Integer → Set
Positive i = IsTrue (i >= 0)

i>=0⇒NIOK : (i : Integer) → @0 ⦃ Positive i ⦄ → iNumNat .Num.FromIntegerOK i
i>=0⇒NIOK (pos n) = tt

-- Explicit fold to provide relevant instance arguments.
intSum : (is : List Integer) → @0 ⦃ All Positive is ⦄ → Nat
intSum [] = 0
intSum (i ∷ is) ⦃ allCons ⦄ = fromInteger i ⦃ i>=0⇒NIOK i ⦄ + intSum is ⦃ it ⦄
{-# COMPILE AGDA2HS intSum #-}

take⁺ : ∀ {n a b} {A : Set a} {P : A → Set b}
(xs : List A) → All P xs → All P (take n xs)

take⁺ [] allNil = allNil
take⁺ {zero} (_ ∷ _) _ = allNil
take⁺ {suc n} (_ ∷ xs) allCons = allCons ⦃ is = take⁺ xs it ⦄

takeSum : (is : List Integer) → @0 ⦃ All Positive is ⦄ → Nat
takeSum is = intSum (take 10 is) ⦃ take⁺ is it ⦄
{-# COMPILE AGDA2HS takeSum #-}

takeSum :: [Integer] -> Natural
takeSum is
| decAll is (\ x -> decIsTrue (x >= 0)) = Lazy.PostRtc.takeSum is
| otherwise =
error
"Runtime check failed: decAll is (\\ x -> decIsTrue (x >= 0))"

Listing 6.7: No lazy evaluation: checks more eager than the computation itself

6.4 Closing remarks

In short, we have shown how unsafe input to translated verified functions can be checked, and
how this check can be inserted automatically. We have also shownwhere this check insertion is
truly necessary—something the manual technique from section 6.1 does not handle correctly.
However, we do not present this as a solution that would be strictly necessary for safe use of
Agda2Hs.
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6.4. Closing remarks

The sentiment from the Agda2Hs development team seems to be that considering the
overall current mission of Agda2Hs, a merge of the feature is not worth the incurring technical
burden at this time. Although a large share of the code of the implementation is in a separate
module, there also are a number of changes that were necessary to put into existing Agda2Hs
logic, which can affect the maintainability of the project. I believe that it was interesting to
show that this principle can work, but in its current state, it may not align with Agda2Hs’s
goal of integrating verified code in larger software projects perfectly.
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Chapter 7

Related work

In this chapter, we explore related work. Much of the related work we found is not based
on dependent types, but was created for the much more popular imperative languages.
Reasoning about such languages is generally based on Hoare logic, which is also based on pre-
and postconditions (Hoare 1969). At the end of the chapter, we also discuss related work for
dependent types.

To begin, it was not a novel idea to increase safety by making runtime checks of properties
accessible. Specifying pre- and postconditions has been a first-class feature of the object-
oriented Eiffel language since its beginning (Meyer 1986). The obvious drawback is that
formal arguments that would make a costly runtime check obsolete are never available.

Eiffel’s rigour had been partially inspired by the Ada language. The formally defined
SPARK subset of Ada attempts to automatically create a proof for pre- and postconditions
based on Hoare logic (Praxis High Integrity Systems Ltd. 2005, dating back to at least 1994).
Failure to find such a proof is a compile-time error and must be rectified by rewriting the
program in a more obviously correct way. Because these conditions are undecidable, a
desirable condition may have to be skipped entirely. Compared to our work, their approach
seems to sometimes require extra nudging to pass a condition. The effect, however, may be
similar, being an increased development time and lack of possible optimisations.

An early verification standardwhich supported bothmechanised proofs, againwithHoare
logic, and runtime checking was the Java Modeling Language (JML). Frameworks like JACK
(Burdy, Requet, and Lanet 2003) and JMLC (Cheon 2003) have been created to support both
methods separately, the former computing proofs automatically like SPARK. In comparison,
our approach is more hybrid in the way that interoperation of code translated from Agda
receives verification, but no runtime checking, and code interoperating between Haskell and
Agda receives runtime checking.

The Prusti system (Astrauskas et al. 2019) is a more modern approach to automatic
verification of imperative programs. It is written for Rust and leverages Rust’s ownership
tracking. Hegglin 2023 then used runtime checks to improve upon Prusti’s verification,
notably for the cases of unverified functions and unverified contexts, the same gaps that our
solution tackles. Assumed theorems from Prusti can also be runtime checked—more on this
in section 8.1. He uses Rust’s panic! in case of a failed runtime check, much akin to our error.

Using a dependently typed programming language is quite different from the Hoare
logic-related approaches above: the overall proof style is more akin to mathematical logic,
and Turing completeness is sacrificed for decidability and termination guarantee. When
working exclusively in dependently typed languages, runtime checks are not necessary, at
least not without using unsafe language features. However, we are not aware of any efforts to
e.g. runtime check dependent arguments in Coq’s program extraction (Inria 2024).

Regarding formal analysis, there is some remote resemblance to a polymorphic blame
calculus (Ahmed et al. 2011), in which incorrect type casts lead to blame. However, this work
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has not been extended to dependent types. It is noteworthy that they too present a theorem on
how well-typed programs will not go wrong (or blame), but not on how ill-typed programs
will. This difficulty may be analogue to our restriction on the negative statements (theorem 2).
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Chapter 8

Conclusion

We have demonstrated how the gap between verified and unverified code can be bridged with
runtime checking. We have also shown formally these checks are complete and make further
execution on input not in accordance with the erased arguments impossible. Regardless, we
acknowledge the invasiveness of this feature as definitions with undecidable preconditions
are made unavailable.

We conclude with the further work that could be built on top of our contributions. The
most central piece is a more nuanced way to produce and handle errors than error. We close
with some further, less immediate or smaller potential improvements.

8.1 Future work

The biggest piece of future work is providing more error handling capability than giving a
simple error. It can be caught as SomeExceptionwith Control.Exception.catch as in listing 3.5,
but working with just an error string is unsuitable for non-trivial programs: actual Exceptions
would be better. One difficulty of providing advanced error handling is the presumable need
to design a usable programmer interface for error handling.

Agda2Hs’s compilation pragmas could be leveraged here; listing 8.1 shows an unim-
plemented mock-up of such an approach: a data type is defined for exceptions, deriving
Exception and having one string in each constructor. For a function with erased arguments,
each must be named, and the desired exception is specified in the compilation pragma to the
function. The proposed output is shown in the same listing.

On the other hand, this explicit exception insertion has the drawback of necessary specifi-
cation on the Agda side. Furthermore, any system more advanced than error would have
implications on the types of definitions: exceptions, as in the example above, can only be
caught from code in the IOmonad, which may turn code that would have been pure otherwise
into monadic code.

Further areas of future work are:

Formalising Agda2Hs itself The statement of the analysis from chapter 5 would also be
more reliable if a formalisation of Agda2Hs itself existed. With such a formalisation, it would
no longer be necessary to depend on simplifications like pretending to work in just one
language or assumptions like all outputs being identical. This formalisation is, however,
difficult to create and was considered to be beyond the scope of this thesis.

Postulate tracing Because of the completeness guarantees of the checks that we emit, work-
ing with unsafe Agda, namely Agda containing postulate statements, was not considered
here. In practice, Agda code will often contain postulates due to the hardness of creating
mechanised proofs. It could be useful to also check postulates with a decidable output type.
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8.1. Future work

data RuntimeException : Set where
Empty : String → RuntimeException
SubNat : String → RuntimeException

{-# COMPILE AGDA2HS RuntimeException deriving (Show, Exception) #-}

subtractFromGreaterList :
(x : Nat) (ys : List Nat)
⦃ @0 ne : NonEmpty ys ⦄ ⦃ @0 gt : IsFalse (x < head ys) ⦄
→ Nat

subtractFromGreaterList x (y ∷ _) = x - y
{-# COMPILE AGDA2HS subtractFromGreaterList

ne=RuntimeException.Empty,gt=RuntimeException.SubNat #-}

-- SubtractException/PostRtc.hs
{-# LANGUAGE DeriveAnyClass #-}
module SubtractException.PostRtc where

import Control.Exception

import Numeric.Natural (Natural)

data RuntimeException = Empty String
| SubNat String

deriving (Show, Exception)

subtractFromGreaterList :: Natural -> [Natural] -> Natural
subtractFromGreaterList x (y : _) = x - y
-- SubtractException.hs
module SubtractException (RuntimeException(Empty, SubNat),

SubtractException.subtractFromGreaterList) where

import Control.Exception

import Haskell.Extra.Dec.Instances (decIsFalse, decNonEmpty)
import Numeric.Natural (Natural)

import SubtractException.PostRtc

subtractFromGreaterList :: Natural -> [Natural] -> Natural
subtractFromGreaterList x ys

| decNonEmpty ys && decIsFalse (x < head ys) =
return $ SubtractException.PostRtc.subtractFromGreaterList x ys

| not (decNonEmpty ys) =
throw $ Empty "Runtime check failed: decNonEmpty ys"

| otherwise =
throw $ SubNat "Runtime check failed: decIsFalse (x < head ys)"

Listing 8.1: Exception: a proposed way of more nuanced error handling capabilities
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8. Conclusion

An extension to this would be postulate tracing, i.e. checking preconditions even on internal
calls if proofs given to them depend on a postulate.

Delinting The output created by our check insertion system is sometimes more verbose
than it would need to be. Listing 3.5, for instance, could have \x -> x and \a0 -> f (go0 a0)
replaced by id and f . go0 respectively. An easy to apply, but only partial fix would be to run
the output through a linter like hlint at the last stage (Mitchell 2024). However, it may be more
consistent to apply such a fix to Agda2Hs as a whole, which can produce similar 𝜂-reducible
outputs, not least because Haskell has a greater emphasis on supporting a point-free style.
On the other hand, this may lead to confusion with respect to comparability with the Agda
source.

8.2 Closing remarks
This thesis has shown how it is possible to runtime check input to source-translated verified
programs: the gap between unverified and verified software really can be closedwith only few
unsupported constructs left. The concept could pose an important and helpful addition to the
complex task of writing correct software. However, handling the case of a failed check better
remains a difficult piece of future work, and this feature would be required for real-world
projects.
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Acronyms

CI continuous integration

JML Java Modeling Language

QTT Quantitative Type Theory

TCB trusted computing base

TCM type checking monad
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Appendix A

Lawfulness of the tree equality
definition

This is the omitted lawfulness proof of the equality instance to a binary tree from listing 2.8.
cong₃ : ∀ {A B C D : Set} (f : A → B → C → D) {a b c x y z} →

a ≡ x → b ≡ y → c ≡ z → f a b c ≡ f x y z
cong₃ _ refl refl refl = refl

instance
iLawfulEqTree .isEquality (Leaf x) (Leaf y) with (x == y) in h
... | True = cong Leaf $ equality x y h
... | False = flip exFalso h ∘ equality' x y ∘ leaf-injective

where
leaf-injective : Leaf x ≡ Leaf y → x ≡ y
leaf-injective refl = refl

iLawfulEqTree .isEquality xt@(Branch x xl xr) yt@(Branch y yl yr)
with (x == y) in h

... | True = mapReflects branch tree-injective
(reflects-&& (isEquality xl yl) (isEquality xr yr))

where
branch : xl ≡ yl × xr ≡ yr → xt ≡ yt
branch (refl , refl) = cong₃ Branch (equality x y h) refl refl
tree-injective : xt ≡ yt → xl ≡ yl × xr ≡ yr
tree-injective refl = refl , refl
reflects-&& : ∀ {e f} → Reflects (xl ≡ yl) e → Reflects (xr ≡ yr) f

→ Reflects (xl ≡ yl × xr ≡ yr) (e && f)
reflects-&& {False} re1 _ = re1 ∘ fst
reflects-&& {True} {False} _ = _∘ snd
reflects-&& {True} {True} refl refl = refl , refl

... | False = flip exFalso h ∘ equality' x y ∘ branch-injective
where

branch-injective : xt ≡ yt → x ≡ y
branch-injective refl = refl
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Appendix B

Core runtime check determination
functions

This is the full definition of the checkRtc functions from section 4.3.

-- Creates a runtime check if necessary and possible, informing C accordingly.
-- Takes telescope of type to check, name, level of nesting,
-- and expression on success.
checkRtc :: Telescope -> QName -> Hs.Exp () -> [NestedLevel] -> C RtcResult
checkRtc tel name success lvls = do

(_, chk) <- checkRtc' (0, 0) tel lvls
case chk of
NoneErased' -> return NoneErased
Uncheckable' -> return Uncheckable
Checkable' {..} -> do
tellAllCheckable name
let rhs = eApp success theirRhs

chkName = hsName $ prettyShow $ qnameName name
chk = createRtc chkName theirLhs theirChks rhs $ binds theirDecls

return $ Checkable [chk]

-- Recursively check for runtime checkability in nested types.
-- Accumulates on name indices for `go` function and `a` argument.
-- Takes telescope of type to check.
checkRtc' ::

NameIndices ->
Telescope ->
[NestedLevel] ->
C (NameIndices, RtcResult')

checkRtc' idcs tel lvls = do
-- Partition out arguments that are erased and at top level
-- (those we will attempt to check)
(erased, call) <- partitionM (checkTopOrDataErased . fst) $ zip doms telsUpTo
ourChks <- uncurry createGuardExp `mapM` if head lvls == Odd then erased else []
-- Recursively accumulate checks on arguments below top level
(belowIdcs, belowChks) <- mapAccumLM checkRtc'' idcs $ map (,lvls) call
(belowIdcs,)
<$> if not $ all isJust belowChks && all isJust ourChks
then return Uncheckable'
else -- all checkable or none erased
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B. Core runtime check determination functions

let (theirLhs, theirRhs, decls) = unzip3 $ catMaybes belowChks
theirDecls = concat decls
-- all checks below found an instance
theirChks = catMaybes ourChks

in if null theirDecls && null erased
then return NoneErased'
else return Checkable' {..}

where
doms = telToList tel
telsUpTo = map (\i -> fst $ splitTelescopeAt i tel) [0 ..]

-- Check a single type for runtime checkability.
-- Accumulates on name indices for `go` function and `a` argument.
-- Takes domain of type and telescope up to that point for context.
-- If checkable, returns lhs and rhs at that point
-- plus declarations from checks below.
checkRtc'' ::
NameIndices ->
((Dom (ArgName, Type), Telescope), [NestedLevel]) ->
C (NameIndices, Maybe (Hs.Pat (), Hs.Exp (), [Hs.Decl ()]))

checkRtc'' (goIdx, argIdx) ((d, tUpTo), _ : lvls) =
-- Mutual recursion with checkRtc'
addContext tUpTo (checkRtc' (goIdx, ourArgIdx) tAt lvls) >>= \case
(idcs, NoneErased') -> return (idcs, Just (ourLhs, argVar, []))
(idcs, Uncheckable') -> return (idcs, Nothing)
((theirGoIdx, theirArgIdx), Checkable' {..}) -> do
let go = "go" ++ show theirGoIdx

conflicts = tAtNames `intersect` [go, arg, up]
errorWhenConflicts conflicts
let (ourGoIdx, ourRhs, ourRtc) =

if null theirChks
then
-- inline if nothing to check at this level (consumes no `goIdx`)
-- e.g. `\ a3 -> a2 (go0 a3)`, continuing the example above
( theirGoIdx,
Hs.Lambda () theirLhs $ argVar `eApp` theirRhs,
theirDecls

)
else
let -- e.g. `up m a2`

lhs = hsPat up : theirLhs
-- e.g. `up m (\ a3 -> a2 (go0 a3))`
rhs = hsVar up `eApp` theirRhs
rtc =
createRtc (hsName go) lhs theirChks rhs $

if theirDecls
in -- e.g. `go1 a1`

(succ theirGoIdx, hsVar go `eApp` [argVar], [rtc])
return ((ourGoIdx, theirArgIdx), Just (ourLhs, ourRhs, ourRtc))

where
tAt = domToTel $ snd <$> d
tAtNames = map (fst . unDom) $ telToList tAt
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name = fst $ unDom d
-- Use arg name if available, otherwise insert one (consumes one on `argIdx`)
(arg, ourArgIdx) =
if name == "_"
then ("a" ++ show argIdx, succ argIdx)
else (name, argIdx)

ourLhs = hsPat arg
argVar = hsVar arg
up = "up"
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Appendix C

Full example of nested check
determination

This is an illustration what happens in the mutual recursions of appendix B. It is based on
this Agda type:
tripleOdd : (((m : Nat) → @0 IsTrue (m > 0) →

(((n : Nat) → @0 IsFalse (n < 1) → Nat) → Nat) → Nat) → Nat) → Nat
The checked output is this Haskell definition:

tripleOdd ::
((Natural -> ((Natural -> Natural) -> Natural) -> Natural) ->

Natural)
-> Natural

tripleOdd a0 = TripleOdd.PostRtc.tripleOdd (\ a1 -> a0 (go1 a1))
where
go1 up m a2
| decIsTrue (m > 0) = up m (\ a3 -> a2 (go0 a3))
| otherwise = error "Runtime check failed: decIsTrue (m > 0)"
where
go0 up n
| decIsFalse (n < 1) = up n
| otherwise = error "Runtime check failed: decIsFalse (n < 1)"

These are the actions and results of checkRtc' at each level:
(((m : Nat) → @0 … → (((n : Nat) → @0 … → Nat) → Nat) → Nat) → Nat) → Nat ~(0, 0)

Reserve a0 for ((Nat → ((Nat → Nat) → Nat) → Nat) → Nat):

((m : Nat) → @0 … → (((n : Nat) → @0 … → Nat) → Nat) → Nat) → Nat ~(0, 1)

Reserve a1 for (Nat → ((Nat → Nat) → Nat) → Nat):

(m : Nat) → @0 … → (((n : Nat) → @0 … → Nat) → Nat) → Nat ~(0, 2)

Reserve a2 for ((Nat → Nat) → Nat):

((n : Nat) → @0 … → Nat) → Nat ~(0, 3)

Reserve a3 for (Nat → Nat):
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(n : Nat) → @0 … → Nat ~(0, 4)
~(0, 4)

Reserve go0 for (((Nat → Nat) → Nat) → Nat):

~(1, 4)

Inline:

~(1, 4)

Reserve go1 for ((Nat → ((Nat →Nat) →Nat) →Nat) →Nat→ ((Nat →Nat) →Nat) →Nat):

~(2, 4)

Inline:
~(2, 4)
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