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Detection of soil variability using CPTs

T. de Gast, P.J. Vardon & M.A. Hicks
Section of Geo-Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 
Delft, The Netherlands

ABSTRACT: The variability of soil is well known to affect the geotechnical performance of structures. 
As probabilistic design methods become more commonly used, the ability to measure the variability of 
soil becomes more important. However, by using only the point statistics of soil parameters in design 
(e.g. the mean and standard deviation), typically an over-estimation of failure probabilities occurs, lead-
ing to over-conservative designs. By looking at the spatial correlation (e.g. scales of fluctuation) a more 
accurate representation can be achieved. This paper presents a method to use vertical Cone Penetration 
Tests (CPTs) to detect both the vertical and horizontal scales of fluctuation. An extensive numerical and 
experimental investigation has been undertaken to understand how spatial variation can be estimated 
and to quantify the accuracy in that estimation. The impact of being able to quantify the uncertainty is 
illustrated via a simple slope stability example.

the accuracy in measuring the spatial correlation. 
In this way a CPT campaign can be designed to 
measure horizontal scales of fluctuation using lim-
ited CPT data.

This paper summarises the method proposed by 
de Gast et al. (2018) and gives an example of how 
to apply it.

2 THEORETICAL BACKGROUND

Soil properties are variable, although they are gen-
erally correlated to the properties of material in 
close proximity. A convenient measure of the spa-
tial variability is the auto-correlation length θ, often 
referred to as the scale of fluctuation (SoF). Loosely 
speaking, it is the distance within which material 
properties are significantly correlated. Conversely, 
the properties at two points separated by a distance 
greater than θ will be largely uncorrelated (Griffiths 
& Fenton 1997). The scale of fluctuation has been 
defined by Vanmarcke et al. (1986) as

θ ρ τ( )τ
∞

∫2
0∫∫ d  (1)

where ρ(τ) is the auto-correlation function describ-
ing the spatial auto-correlation structure and τ is 
the lag distance, i.e. the distance separating two 
points. Hence, θ is the area under the auto-corre-
lation function over the range ≤ ≤ ∞τ ,  and, 
while it can have different orientations, for soils it 
is commonly considered to be different in the ver-
tical and horizontal directions due to deposition 
processes.

1 INTRODUCTION

Soil properties are intrinsically variable and 
addressing these variations in design is one of 
the main challenges in geotechnical engineering 
(Honjo 2011). The impact of soil variability has 
been shown to be significant in many types of 
geotechnical analyses, including: shallow, strip and 
pile foundations (Jaksa et al. 2005, Naghibi et al. 
2016); retaining walls (Sert et  al. 2016); liquefac-
tion of hydraulic sand fills (Popescu et  al. 1997, 
Wong 2004, Hicks & Onisiphorou 2005); and 
slope stability (Griffiths & Fenton 2000, Spencer 
& Hicks 2007, Hicks & Spencer 2010, Li & Hicks 
2014, Vardon et al. 2016). Using embankments as 
an example, it has been shown that the spatial vari-
ation of material properties in combination with 
the problem geometry plays an important role in 
the slope stability and failure mode (Hicks & Samy 
2002, Hicks et al. 2014, Li et al. 2015, 2016).

Comprehensive theoretical overviews on the 
quantification of the spatial variation in soils are 
given by Vanmarcke (1977a), Campanella et  al. 
(1987) and Wickremesinghe & Campanella (1993), 
and later discussed by Fenton (1999a, 1999b) and 
Griffiths et al. (2007). The scale of fluctuation can 
be estimated using a range of techniques and, in 
particular, by using an auto-correlation function 
(e.g. de Gast et al. (2017)).

However, little experimental evidence that con-
siders the scale of fluctuation, especially in the 
horizontal direction, is available. In this paper, 
the auto-correlation function is reviewed for its 
accuracy in obtaining the spatial correlation in 
synthetic data and proposes a method to estimate 
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An experimental auto-correlation function can 
be obtained from

( ) ( )
( )

ˆ

0
ˆ

ˆ

γ τ(
ρ τ(

γ
=  (2)

where ( )γ̂ τ(  is the experimental covariance func-
tion. This is given by Vanmarcke (1983) as

( ) ( ) ( )( )
1

1
ˆ ˆ( ) (1

1
ˆ

t

j j j)(
jt

µ µ( )( jy y)((
1 j j)(

j
y y)(j )(γ τ( ) ( )1t

jjjj=
µ(y y)(

− ∑∑  (3)

where µ̂  is the estimated mean (or trend) of the 
dataset, j is a counter representing the first of a 
data pair at lag distance τ, j  + ∆j represents the sec-
ond of the data pair, and t is the number of pairs at 
lag distance τ. By using, for example, the following 
Markov theoretical auto-correlation function,

ρ
ττ

θ( )τ =
−

e
2

 (4)

and finding the minimum of the error given by

( ) ( ) ( )( )2
ˆE ρ τ ρ τ( ) (( ˆθ ) ρ τ( )(∑  (5)

an estimate for the scale of fluctuation may be 
obtained.

As with any sampled data, a sample from a 
population is taken and the accuracy of the method 
depends on the amount and r epresentativeness of 
the data available. It has been observed that as more 
data (CPTs) are considered, the better the mean 
auto-correlation function is (Lloret-Cabot et  al. 
2014), especially at larger lag lengths. This feature is 
investigated in detail in the following section.

3 INVESTIGATION USING SYNTHETIC 
DATA

The effectiveness of the experimental auto-corre-
lation function for a set of data was investigated 
using computer generated data, i.e. data where 
the scale of fluctuation and auto-correlation 
were known a priori. 1D strings of data of vary-
ing length, data spacing and correlation length, 
representing CPT profiles, were generated using 
covariance matrix decomposition (Davis 1987, van 
den Eijnden & Hicks 2017). The data were gener-
ated using a mean of zero, a standard deviation of 
unity and a Markov auto-correlation function with 
a scale of fluctuation of 5 (units of length).

In order to test the effectiveness of estimat-
ing the auto-correlation function from equations 
(2)-(5), different variables were investigated: (1) 
the number of datasets—which is, in the vertical 
direction, analogous to the number the number 
of CPT profiles; (2) the number of data points 
used per dataset—which is analogous to the total 
number of data points in single CPT profile; (3) 
the value of θ; (4) the effect of grouping data at 
larger intervals—in the horizontal direction, this is 
analogous to having several CPT profiles in groups 
with a significant space between groups, or, in the 
vertical direction, it is analogous to having a data 
gap in the CPT profile.

Multiple datasets were generated represent-
ing different combinations of the four variables, 
and these are presented in detail in de Gast et al. 
(2018). Figure 1 shows the impact of increasing the 
number of datasets on the estimated θ, which has 
the largest impact on the coefficient of variation 
(COV) of θ. By increasing the number of datasets, 
the COV decreases rapidly as indicated by the bro-
ken line.

Figure 1. Example analysis investigating the accuracy in calculating θ as a function of the number of datasets. Each 
dot is a single estimation of θ, normalized by the input θ = θinput; the horizontal line equal to 1 is the normalized input 
θ; the red diamonds are the calculated average from the individual estimates; and the broken line is the calculated coef-
ficient of variation (COV = σ/µ) of the estimated θ.
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4 ESTIMATING THE VARIATION

It has been found that the coefficient of variation 
of the measured horizontal or vertical scale of fluc-
tuation is related to the actual scale of fluctuation, 
the number of datasets, the domain size and the 
distribution (i.e. spacing) of CPT profiles. The fol-
lowing equation has been proposed to predict the 
COV of θ (de Gast et al. 2018):

COV
Dfitting
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and in which θ is the scale of fluctuation, nf is the 
number of datasets (with a minimum of 1), in is the 
space interval between the groups, ng is the number 
of groups (if  the data have different intervals), Dt is 
the total domain length (the length over which the 
data points are obtained), Dg is the domain length 
of the groups (if  Dt = Dg, in is the interval between 
data points), Dp is the domain length perpendicu-
lar to the investigated direction and θp is the scale 
of fluctuation perpendicular to the investigated 
direction.

Figure 2. Method of estimating COV of the scale of fluctuation using groups of data.
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Equation (6) can be rearranged to aid graphical 
interpretation as:

COV
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and is graphically presented in Figure 2, which can 
be used after first calculating the scale of fluctua-
tion using equations (2)-(5). In the first four sub-
figures in Figure 2, which represent the last term 
in equation (8) with different values of ng, the con-
tour lines can be assumed to be horizontal at the 
right-hand side, i.e. if  / ,g  the value can be 
evaluated at θ / .g

For example, consider 10 CPTs grouped in 
ng = 5 groups of 2 CPTs, with a spacing of Dg = 2.5 
m between CPTs within each group and a spacing 
between groups of in = 25 m, giving a total domain 
of Dt = 112.5 m. If  the horizontal scale of fluctua-
tion is estimated to be θ = 50 m, the first part of 
the figure gives a contour value of between 1.75 
and 2.0, and the second part of the figure gives a 
contour value below 0.05; adding these numbers 
together gives a value between 1.8 and 2.05, and 
dividing by the square root of nf = 20 (Dp = 5 m, 
θp = 0.25 m) yields an estimated COV of 0.40–0.46; 
using equation (6) yields an estimated COV of 0.43.

5 EFFECT ON DYKE STABILITY

Considering a hypothetical study of the stability of 
a dyke, the impact of the sampling has been investi-
gated. The analytical model of Vanmarcke (1977b) is 
used, which considers 3D effects and has been exam-
ined in detail by Li et  al. (2015) and Varkey et  al. 
(2017). It is summarised by the following equations:

F F
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d
A

LaL
= 2  (14)

where F is the mean 2D factor of safety, FbFF ,µ  is 
the corrected mean for 3D end effects, d is related 
to the cross-sectional sliding area A and failure arc 
length La, bc is the critical failure length in the third 
dimension, bFF ,σ  is the standard deviation of the 3D 
safety factor, Γ ( )LaL  and Γ( )b  are variance reduc-
tion factors depending on θ, Vs is the coefficient 
of variation of the strength point statistics,θh is the 
horizontal scale of fluctuation, and θe is the equiv-
alent scale of fluctuation obtained by a weighted 
average of the horizontal and vertical components 
of the scale of fluctuation along the 2D slip circle.

In this example analysis, it is assumed that a 
budget for 10 CPTs is available to assess the stability 
of a 5 m high dyke with a length of 150 m. It is also 
assumed that the following are calculated: F = 1.5, 
Vs = 0.3, La = 11.25 m, A = 16 m2 and θvθθ = 0 25. m25 .  
θv is measured using an interval of 0.01 m between 
measurements down to 5 m depth for all CPTs. The 
CPTs are either evenly distributed (i.e. ungrouped) 
over the length of the dyke at 16.7 m spacing, or 
in five groups of 2 CPTs, with a distance of 2.5 m 
between the 2 CPTs in each group and a spacing of 
34.4 m between each group.

To illustrate the effect of CPT positioning and 
the corresponding uncertainties obtained from 
equation (6), two scenarios have been considered, 
where the horizontal scales of fluctuations are 
(a) hθ = 50 m  and (b) θhθ = 5 m . Using the COV 
obtained from equation (6), three likely outcomes 
of θe have been calculated (following the approach 
of Li et al. (2015)) for the following combinations 
of ( )θ σ θ σh vθ σθ σ θσ θ ,)σvθθθθ  (θh, θv) and ( )θ σ θ σh vθ σθ θσ θ .)σvθθ  
For each combination, the five percentile factor of 
safety FbFF , %  has been calculated, following the pro-
cedure of equations (9)-(14).

In Table 1 the results of the different scenarios 
and CPT groupings are presented. For a large θh 
(scenario 1), the difference between the grouped 
and ungrouped data is not apparent as they yield 
almost the same FbFF , % . For a small θh (scenario 2), 
there is a clear advantage in grouping the CPTs; 
this is because the small scale of fluctuation can 
then be measured, whereas, for the ungrouped 
data, this is not the case and the calculated θh has a 
minimum value equal to the CPT spacing (16.7 m). 
Table  1  shows that based on the same point sta-
tistics, a large range of bFF , %  can be found, from 
1.24 to 1.90, depending on the value of θh and the 
distance between the CPT locations.

As the scale of fluctuation is not generally 
known a priori, it is more useful to use grouped 
CPTs, as then both large and small scales of fluc-
tuation can be estimated using the same number 
of CPTs. Comparing any pair of calculated safety 
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factors (for the same scenario and same calculated 
θe), e.g. the data in bold text, it is possible to cal-
culate up to an 10% increase in the five percentile 
factor of safety.

6 CONCLUSIONS

A method is presented to quantify the uncertainty 
in the measured values of the spatial scale of fluc-
tuation (which characterises the soil heteroge-
neity). In a simple example used to illustrate the 
calculation process, it has been demonstrated that, 
by careful design of the site investigation, the fac-
tor of safety of an embankment may be increased 
by ∼10%.
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