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Abstract. In this contribution, dual and primal domain decomposition techniques
are studied for the multiscale analysis of failure in quasi-brittle materials. The multi-
scale strategy essentially consists in decomposing the structure into a number of non-
overlapping domains and considering a refined spatial resolution where needed. In mul-
tiscale analysis of damage, the spatial refinement is performed where damage nucleation
and propagation take place. The domain decomposition approach turns to be a compu-
tationally cheaper alternative to the direct numerical solution in which a fine scale model
is considered throughout the complete sample. Dual and primal domain decomposition
techniques are appropriate for such concurrent multiscale analyses and provide identical
results. Parallel scalability of the multiscale analysis is studied using a moderate number
of processors and a parallel direct solver for the system obtained through the assembly of
all domains.

1 INTRODUCTION

Multiscale analysis of materials has gained momentum in the last years thanks to the
breakthroughs in computer technology. Many new numerical multiscale techniques have
recently emerged and the topic is in continuous evolution. An attempt to classify different
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multiscale methods for the simulation of constitutive behaviour of complex materials has
been done in [3] where the scale separation and structure of the computation serve as
leading criteria for the classification. Accordingly one can distinguish between hierarchical
and concurrent techniques depending on the scale separation, and decoupled, weakly
coupled and strongly coupled micro-macro computations.

The use of domain decomposition methods [8] for multiscale analysis is a good exam-
ple of concurrent strongly coupled techniques and has captured the attention of many
researchers due to its flexibility, generality and adequacy for the solution of large struc-
tural problems. Examples of such approaches can be found in the work of of Amini et
al. [9] where a FETI-DP framework is employed as a basis for the multiscale analysis, or
in Ladevèze et al. [10] and Guidault et al. [11] where a more complex interface between
domains is employed.

The current contribution revises the main features of the multiscale framework based on
dual domain decomposition methods [1] introduced in [3, 4], and presents the equivalent
primal formulation assessed in multiscale analysis of non-linear softening materials.

2 DUAL AND PRIMAL MULTISCALE DOMAIN DECOMPOSITION

The main idea behind a multiscale domain decomposition strategy is to lower the
burden of a full fine scale approach by decomposing a structure into a number of domains
and consider a higher resolution where needed. The kernel of such an approach resides in
the strategy to link the different domains and the type of compatibility between coarse
and fine scale substructures.

2.1 General formulation

Consider a homogeneous body Ω decomposed into a number Ns of domains Ω(s) (Fig-
ure 1). In a dual assembly, the interface compatibility is enforced through the signed
Boolean matrices B(s) as

Ns
∑

s=1

B(s)u(s) = 0. (1)

Consequently, the global system
Ku = f (2)

arising from the discretization and linearization of the equilibrium equations is re-casted
into the augmented system
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, (3)

where K, u, f and λλλ denote the global stiffness matrix, displacement vector, force vector
and Lagrange multipliers used to tie the different domains (bottom part of Figure 1).
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Figure 1: Body Ω decomposed into a number of non-overlapping domains.

In a primal assembly, the matching boundary nodes at the interface ub are assembled
at the same position in the global system (bottom part of Figure 1) and therefore the
interface degrees of freedom (DOF) ub are uniquely defined. The local DOF are identified
form the global set u as

u(s) = L(s)u, (4)

where L(s) contains identity coefficients which relate the internal DOF to the correspond-
ing global DOF and Boolean coefficients expressing the assembly of the subdomains on
the interface. The global system (2) can be therefore re-cast into

(

Ns
∑

s=1

L(s)TK(s)L(s)

)

u =
Ns
∑

s=1

L(s)Tf (s). (5)

It is important to realize that
BL = 0, (6)

being

B =
[

B(1) . . . B(Ns)
]

(7)

L =
[

L(1) . . . L(Ns)
]T

. (8)

For this reason one can obtain the localization operator L by solving

L = ker(B), (9)

where ker denotes the kernel or null space of the matrix B.
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Figure 2: Dual and primal assembly at the non-conforming interface ΓI.

2.2 Algebraic multiscale extensions

The main ingredient in the multiscale extension consists in enforcing a certain compat-
ibility condition at a non-conforming interface between different resolution domains (top
part of Figure 2). Different types of compatibility have been recently reported in [4]. A
full collocation condition of the solution field u at the interface ΓI between fine f and
coarse c adjacent domains reads

uf = uc at ΓI, (10)

and can be enforced using the shape functions of the coarse domain restricted at the
interface. These conditions can be written using the compatibility matrices C(s) to obtain

Ns
∑

s=1

C(s)u(s) = 0. (11)

The previous relations can be simply enforced in a dual approach by adding the compat-
ibility equations to the Boolean matrices as

[

B̄(1) . . . B̄(Ns)
]

=

[

B(1) . . . B(Ns)

C(1) . . . C(Ns)

]

. (12)

Consequently, the extended field of Lagrange multipliers reads

ΛΛΛ =

[

λλλ

µµµ

]

(13)

In a primal approach, the localization operators L(s) need to be modified in order to
incorporate the new constraints arising from the coarse-to-fine displacement compatibility.
The primal system (5) can be recovered by considering the modified localization operator

u(s) = L̄(s)u. (14)
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Figure 3: Force resolution migration in a multiscale dual approach.

Other ingredients for an adaptive multiscale analysis consist in a criterion to trigger
the zoom-in events, the solution of local boundary value problems (BVP) and a set of
global relaxation steps as described in detail in [3, 4]. It is important to note that in a
dual multiscale approach one needs to keep track of the interface tying forces to set up the
appropriate force field at the boundary of a newly refined domain. This force migration
scheme is accomplished through the resize matrices R (Figure 3) and is explained in more
detail in [3]. Such a procedure is obviously not needed in a primal multiscale approach
due to the absence of tying forces in the formulation.

3 EXAMPLES

3.1 Dual and primal multiscale analysis

Dual and primal multiscale analyses are performed on the L-shaped homogeneous speci-
men depicted in Figure 4. The specimen is decomposed in 12 regular domains and zoom-in
is performed at those domains affected by damage growth. A gradient enhanced dam-
age model [7] is employed in the computations and the adopted material parameters are
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Figure 4: L-shaped specimen (left) and final damage contours of the adaptive multiscale analysis (right).
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Figure 5: Force-displacement plot for the dual and primal analyses (left) and force field relative error
(right).

identical to the ones reported in [3].
The displacement versus reaction at the upper edge is plotted in Figure 5 (left) for the

analyses employing dual and primal approaches. The relative difference between reaction
forces obtained with the dual and primal approaches is negligible and it is therefore
concluded that both multiscale analyses provide identical results.

3.2 Parallel performance

In this example, the dual assembly is employed to perform a multiscale analysis sim-
ulating a wedge split test of a concrete specimen. The test setup is sketched in Figure 6
and the material parameters are adopted from [5, 6]. Three different decompositions with
34, 68 and 136 domains are considered (Figure 7) and the global assembled system is
solved using a parallel solver designed for the solution of large sparse linear systems based

6



O. Lloberas-Valls, F. P. X. Everdij, D. J. Rixen, A. Simone and L. J. Sluys

Γn

InterfaceΓI

Traction free interfaceΓn
I

60
m

m
40

m
m

20
m

m

20 mm40 mm

Ω(s)

ux = 0.2 mm

Figure 6: Boundary conditions (left) and domain decomposition (right) for the wedge split test.

on direct methods. Automatic load-balancing and multi-threading are accounted for and,
consequently, the performance of the solver is optimized according to the hardware used.
All analyses have been performed on a Dell R710 PowerEdge machine (two X5570 quad-
core Xeons, Core I7 Nehalem, clocked at 2.93 GHz with 24 GB of memory). Parallel tasks
related to BVP solves of different zoomed-in domains and FE assemblies are distributed
over one to eight cores using openMP. It is observed in Figure 8 that parallel scalability is
found for a low number of processors. Solution strategies for massively parallel comput-
ers, typically employed in domain decomposition approaches, need robust iterative solvers
and are considered out of the scope of this contribution.

3.3 3D opportunities

To illustrate the performance of the adaptive multiscale framework, a simple tensile
test is performed on a homogeneous bar with variable height (Figure 9). The sample
is decomposed into seven domains according to the planes x = 20, x = 40, x = 60,
x = 80, x = 100 and x = 120 mm, respectively. The coarse domains are discretized with
one 8-noded hexahedron while the fine domains contain 375 8-noded hexahedra. The
constitutive model is linear elastic with Young’s modulus E = 35 GPa and Poisson’s
ratio ν = 0.2. Zoom-in is performed when the strain component εxx > 8.0× 10−4 at any
integration point within the domain. Horizontal displacement contours on the deformed
configuration at different loading stages are depicted in Figure 10.

4 CONCLUSIONS

The performance of both dual and primal multiscale techniques is assessed for damage
analysis in quasi-brittle materials. Results turn to be identical and it is concluded that
both formulations are equivalent when utilized in a multiscale context. Due to the lack of
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Figure 7: Final damage distributions for a decomposition using 34, 68 and 136 domains.
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Figure 8: Computation times t, speed-up Sp, i.e. ratio between the time measured with one processor
t1 and p processors tp, and parallel efficiency Ef for up to eight cores.
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Figure 9: Geometry and boundary conditions for the three-dimensional test

interconnecting forces in the primal assembly there is no need for a force migration scheme
as introduced in the dual framework. It is observed that parallel scalability is found for a
low number of processors when parallel direct solvers are applied at the fully assembled
system of equations. The proposed multiscale techniques show promising features for
the three dimensional analysis of large structures. However, further research is required
in order to devise robust iterative solvers needed for the computations with massively
parallel computers typically employed in domain decomposition approaches.
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