
Secure smart contract data sharing for IoT Devices

Julio Vega Sanchez
Supervisor: Kaitai Liang

EEMCS, Delft University of Technology, The Netherlands
j.r.vegasanchez@student.tudelft.nl, kaitai.liang@tudelft.nl

Abstract
The increasing demand for sharing Internet of
Things (IoT) increases demand for a secure way of
sharing data. Smart contracts could provide this be-
cause of its distributed nature. Proxy re-encryption
is an encryption (PRE) method that can be used
to share information. In this paper, a secure data
sharing scheme is presented that uses multi-hop
PRE with HyperLedger Fabric (HF). The scheme
requires only two parties to participate with the data
owner serving as the proxy and lets users remain
access after re-encrypting the cipher. The imple-
mentation is used as means for demonstration and
analysis. It still requires further work for actual de-
ployment but demonstrates that the scheme holds in
terms of efficiency and scalability.

1 Introduction
The rise of the Internet of Things (IoT) increases the need for
a safe, secure and fast way of sharing data online with fellow
data consumers. Furthermore, distributed systems are gain-
ing popularity over centralized systems. These systems have
the characteristic that all information is not stored on a single
location but over multiple nodes. Sharing encrypted data over
a distributed system comes with high computational costs. It
would require the data owner to download the encrypted file,
decrypt it and re-encrypt it for the receiver [4]. Using proxy
re-encryption (PRE) the costs can be reduced by only letting
the data owner generate a re-encryption key without needing
to perform any encryption methods on the file itself.

PRE is an encryption method in which a semi-trusted party
re-encrypts the delegators ciphertext to the delegatee [4]. The
new ciphertext can be decrypted using the delegatee’s private
key. In this process, the plaintext is not revealed and the proxy
does not need to know the private key of either party. This
method is of great value since it gives the ability to transfer
data securely without both parties needing to new each other
private-public key pair. Therefore it is suitable for sharing
IoT data between different parties.

Improved methods of PRE incorporate the identity of the
delegator and delegatee in the encryption process, also known
as identity-based (IB) PRE [13]. It is a useful technique to
identify all users that participate in the encryption process in

a secure manner. A more advanced version uses conditional
PRE (as demonstrated in [12]) to form conditional IB-PRE
[14].

Schemes have been created for IoT data sharing pur-
poses in which data owners share their information over a
blockchain network using smart contracts and PRE [16] [15].
These approaches require a third party to act as a proxy and
verify all users that participate in the network. An altered
version of such a scheme has been proposed by [1] by using
IB-PRE to verify each user.

Another method for sharing data online combines PRE
with secret sharing [9] [7]. This method does not require the
need for a proxy. The data user shares his/her public key with
the data owner. The data owner will then generate the re-
encryption key and split the key into smaller pieces. These
pieces will be shared with consensus nodes that all re-encrypt
a part of the original cipher text before combining it all into
one newly generated cipher text that is put on the ledger.

This paper describes a new approach for IoT data sharing
by sending encrypted keys over a distributed network using
smart contracts. This is done by a method that incorporates
symmetric encryption and PRE with Hyperledger Fabric (HF)
that is efficient and scalable. It allows the data owner to share
data with multiple data users without needing to generate new
key pairs.

This paper is structured as follows. Chapter 2 discusses the
methodology of this research. Chapter 3 evaluates the litera-
ture on smart contracts, PRE and HF. The decentralised IoT
PRE data sharing method is described in Chapter 4. In Chap-
ter 5, the implementation of the method is discussed using
code examples. The setup of the test environment and ade-
quate results are discussed in Chapter 6. Chapter 7 reflects on
the ethical aspect of the research. In Chapter 9 the research is
concluded.

2 Methodology
The first step in this research consisted of gaining a better un-
derstanding of the theoretical concepts used by HF as well as
being able to set up a test network and deploy a smart con-
tract. This step is necessary as a thorough understanding of
the mechanics helps in further researching other techniques
that will be implemented in HF. HF provides clear documen-
tation on critical concepts and tutorials on how to set up a

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



network and deploy a smart contract [11]. The test network
is also used in the final prototype.

In the second step existing papers on different PRE meth-
ods were studied. Since the release of the first paper on PRE
in 1998 [4] many different versions of the encryption scheme
have been developed to suit different use cases. An overall
understanding of the differences in properties between the
methods is necessary to create a scheme that is suitable for
IoT data sharing.

After finishing the literature study a PRE-scheme suitable
for IoT was created that can be implemented through an HF
smart contract. It was first designed on a conceptual level be-
fore being translated into an implementation. During this part
the implementation also required new techniques that had not
yet been examined. Therefore, the exploration and inspec-
tion of suitable continued whilst implementing the proposed
PRE-scheme.

Finally, the implementation was tested on performance in
terms of speed and block size. The tests were performed with
a test set of files with variable sizes. The results are used to
formulate a proper conclusion on the efficiency and scalabil-
ity of the proposed scheme for IoT data sharing.

3 Preliminaries
In this chapter, we will discuss important concepts that will
be used later on in this paper.

3.1 Smart Contract
A smart contract is an extension of classic blockchain in
which programs are included in the transaction to host a
virtual contract [22]. It was first introduced by Ethereum.
Whereas classic blockchain only offers peer-to-peer transac-
tions of coins [17] smart contracts offer executable programs
that can be run on several peers without human interaction.

The contract consists of a set of procedural rules and logic
[21]. The contract is agreed upon by all parties before it is
deployed on the blockchain. The execution of the contract is
automated and signed by the participating parties if verified.
The executed contract is then saved on the chain.

3.2 HyperLedger Fabric
HF [5] is an open-source platform for building distributed
ledger solutions created under the guardianship of the Linux
foundation. It has a modular architecture to deliver a high de-
gree of confidentiality, flexibility, resiliency, and scalability.

HF runs smart contracts as programs, called chaincode [3].
The smart contract is defined as the transaction logic and the
chaincode is the packaged logic that gets deployed on the net-
work. Chaincode can be divided into two different, namely
system- and application chaincode. The first one handles
system-related transactions, e.g. policy configuration, while
the latter one manages application states on the ledger.

A network in HF consists of several components that
are important for setting up and running the network. A
schematic representation can be seen in Figure 1. We will
discuss the core concepts necessary for understanding the
workings of HF as described in [10].

Figure 1: The HyperLedger Fabric network

In HF multiple organisations can join a network as a con-
sortium in which policies and permissions are determined
upon the creation of the network. If an organisation wants
to join a channel they need to have a certificate for identifica-
tion known as the certificate authority (CA1, CA2, CA3).

The network is created when the ordering service (O3) is
set up. The service is started by an administrator in one of
the organisations and is responsible for determining the order
in which transactions take place as well as maintaining the
consortia and associated policies. The administrator may al-
low another organisation to get administrator rights allowing
them to use the ordering service. All administrator rights are
held in network configuration (NC3).

In HF multiple organisations can join a network as a con-
sortium in which policies and permissions are determined
upon the creation of the network. The permissions are stored
in the channel configuration (CC1). In the example, two or-
ganisations have joined the channel (the organisations with
certificates (CA1 and CA2). They are connected to the chan-
nel as peer nodes (P1, P2) hosting a copy of the ledger (L)
and definition of the smart contract (S) also known as chain-
code. Organisations can interact with the network through
applications (A1, A2) that live outside of the network. For
the application to access the ledger it needs to go through
the definition of the chaincode describing the common access
patterns to the ledger.

3.3 Proxy re-encryption
PRE is an encryption method in which a third party (proxy)
transforms the ciphertext under one key into a ciphertext un-
der another key. The proxy does not need to know the secret
keys of both parties or the original message. This method was
first introduced by [4]. New variants have been created that
improve the security issues of the original scheme. A study
on these variants has been done by [20].

Typically any PRE scheme consists of multiple steps as
illustrated in Figure 2. To illustrate the method we have the
scenario where Alice wants to send a message to Bob. In
the first step, Alice and Bob create their public-private key
pair. Then Alice encrypts the message under her public key
to generate a cipher. Bob is not able to decrypt the cipher
with his key pair. Therefore, a third party known as the proxy
requests the key pair of both Alice and Bob. With these pairs



he/she generates a re-encryption key that he/she will use to
re-encrypt the cipher. The newly generated cipher can now
be decrypted by Bob using his private key.

Figure 2: Schematic representation of PRE

To be able to compare different PRE schemes the proper-
ties of PRE have been described in [2] and are listed as fol-
lows:

1. Unidirectional: A PRE scheme is unidirectional if the
proxy is only allowed to translate the delegators cipher-
text into the delegates ciphertext. If the proxy may trans-
late the ciphertext vice versa, we consider the scheme to
be bidirectional.

2. Non-interactive: A non-interactive scheme require the
delegatee to only share his public key pkj for the gener-
ation of the re-encryption. The private key skj remains
secret for all parties.

3. Proxy invisible: The delegatee will not be able to distin-
guish first-level encryption (computed under his public
key) from a re-encryption of the ciphertext. In case both
the delegator and delegatee do not have to be aware of
the proxy we consider the scheme to be transparant.

4. Original-access: The delegatee can decrypt re-
encrypted ciphertexts under his/her private key. This is
also known as a multi-hop scheme.

5. Key-optimal: A users secret storage remains constant re-
gardless of the number of delegates he/she accepts.

6. Collusion-“safe”: In a collusion-safe PRE scheme, the
proxy colluding with the delegatee can not recover the
private key of the delegator. This protects the delegator
against malicious proxy and participants.

7. Temporary: A PRE scheme with the temporary property
entitles the delegator to revoke the delegated decryption
rights.

8. Non-transitive: The decryption rights can not be re-
delegated by the proxy. More formally, the proxy can
not calculate rka→c from rka→b and rkb→c

9. Non-transferable: A non-transferable PRE scheme pre-
vents the proxy to collude with delegates to re-delegate
decryption rights. In other words, rka→b, skb and pkc
can not produce rka→c.

4 IoT PRE Data Sharing Method
4.1 Overview
The proposed method describes a new approach for sharing
encrypted IoT data between different users. A visual rep-
resentation can be seen in Figure 3. The scheme consists
of four entities, namely the data owner (DO), the data users
(DU) and the HF blockchain network.

Figure 3: Schematic representation of data-sharing method

Data Owner: the DO is the entity that owns the IoT data
and wants to be able to share this data with other users. He
does this by encrypting his data under a symmetric key cre-
ating a cipher. The DO then generates a key pair that is
used to encrypt the symmetric key under which the data will
be encrypted. At this point, the DO is the only entity that
can decrypt the key. The encrypted key is published to the
blockchain through a smart contract for other users to access.
If the DO receives a request from another user to access the
data a re-encryption key can be generated using the DO’s pri-
vate key and the DU’s public key. This way the DO serves as
the proxy. The data can be re-encrypted using this key.

Date Users: The DU is the entity that wants to access
the IoT data for personal use. The DU has access to the
blockchain network and can read all published data contain-
ing the encrypted keys, though he can not use the data since
it is encrypted. If the DU wants to access a particular piece
of information he can request access to the DO. If the DO
approves the DU can send his public key (as part of his asym-
metric key pair) so the data can be re-encrypted. After this
action, the DU can decrypt the symmetric key using his pri-
vate key. The symmetric key can then be used to decrypt the
cipher and generate the original data.

Hyperledger Fabric: HF is the platform that is used to
host the smart contract needed for this method. All data is
saved on the ledger of which a copy resides at every peer. This
ensures the data can not be tampered with once it is put on the
ledger. The blockchain network provides the methods to up-
load the symmetric key and encrypt it using the PRE scheme.
Furthermore, the data can be re-encrypted by the DU and will
be updated on the chain. In case someone tries to re-encrypt
data with the wrong key, HF will cancel the transaction and
the ledger will remain intact.



4.2 Encryption methods
The scheme combines PRE and symmetric encryption to cre-
ate a scheme that is suitable for IoT sharing. For this scheme
to be properly implemented it must hold several PRE proper-
ties. Firstly, it must be non-interactive so that the DO is al-
lowed to generate a re-encryption key without the knowledge
of the DU’s private key (no third party needs to be involved).
Secondly, the scheme must be multi-hop to ensure every user
that once was authorised to decrypt the cipher can still do so
after the cipher gets re-encrypted.

The IoT data sharing scheme consists of several methods
that are used for encrypting and decrypting files and keys.
They are assessed in chronological order:

1. Key Generation(U) → (pkDO, skDO, pkDU , skDU ):
Two key-pairs can be generated for the DO and DU.
The algorithm relies on cryptographically secure ran-
dom bytes that are generated at run-time. These random
bytes are used to generate the private key sk. Then, the
public key pk is calculated from the private key.

2. Data Encryption(Data,Key) → CD: The IoT data is
encrypted by the DO using symmetric encryption. This
method only needs one key Key to be shared among the
users to encrypt and decrypt the data. The method used
in this scheme is AES [8] (with a 256-bit key). It is the
most suitable method because it requires little comput-
ing power and memory, and is fast [19]. The cipher CD

can be shared among users but will only be accessible
for users that have access to the key.

3. Key Encryption(Key, pkDO) → CK : The symmetric
key is encrypted using an asymmetric method under the
public key of the DO. This can be seen as the first en-
cryption step of the PRE method. The algorithm gen-
erates a cipher CK which will be uploaded to the HF
network. After the encryption, the cipher can only be
decrypted using the private key of the DO skDO.

4. Re-Encryption Key Generation(skDO, pkDU ) →
rkDO→DU : A re-encryption key is generated using the
private key of the DO and the public key of the DU that
requests the data. The generated key is uploaded to the
HF network for further use.

5. Re-Encryption(CK , rkDO→DU ) → C ′
K : This algo-

rithm transforms the original cipher CK to an altered
cipher C ′

K under the re-encryption key. This step allows
the DU to decrypt the newly created cipher under his/her
private key. The original cipher in the HF network will
be updated and written into a new block.

6. Key Decryption(C ′
K , skDU ) → Key: The new cipher

can be decrypted by the private key of the DU skDU .
This gives them access to the symmetric key to decrypt
the original data. Note that the cipher C ′

K can still be
decrypted by skDO.

7. Data Decryption(CD,Key) → Data: Since the DU
now has access to the symmetric key he/she can decrypt
the cipher CD to generate the original data.

5 Implementation
The implementation of the scheme is done by invoking an HF
smart contract through a dedicated application. The contract
is deployed on the HF test network and the application in-
teracts with the contract through this network. The methods
described earlier are partially implemented in the contract and
partially performed by the application.

The prototype makes use of a proxy re-encryption pack-
age provided by IronCoreLabs called Recrypt1. The library is
based on [6] and holds the following PRE properties: unidi-
rectional, non-interactive, non-transitive, collusion-safe and
multi-hop. The library is built in Rust but for this imple-
mentation, a Node.js binding called Recrypt Node Binding2

is used to run the actual code.
Some encryption methods make use of randomization

which is not supported by deterministic smart contracts.
Therefore, the prototype requires the user to perform certain
tasks locally before querying the smart contract and therefore
differs from the method described in Chapter 4.

Both the chaincode and application are written in Node.js
and are publically available on Github3. The version used in
the prototype of HyperLedger Fabric is v2.4.0, the version of
Recrypt is v0.13.1 and the version of Recrypt Node Binding
is v0.8.1.

An overview of the tasks performed by the application and
chaincode can be seen in Figure 4. The following sections
will discuss them separately using the figure as a reference.

Figure 4: Communication between application and chaincode

5.1 Application
The methods that relate to key generation and encryption are
performed locally through the application. This is because the
methods rely on the generation of random numbers which can
not be performed in the chaincode due to its deterministic na-
ture. Therefore the application is responsible for generating
keys and ciphers, whereas the chaincode is used for storing
the information.

The key generation consists of generating two key pairs
(one for Alice and one for Bob) and a symmetric key. The

1https://github.com/IronCoreLabs/recrypt-rs
2https://github.com/IronCoreLabs/recrypt-node-binding
3https://github.com/julio1998/proxyreencryption

https://github.com/IronCoreLabs/recrypt-rs
https://github.com/IronCoreLabs/recrypt-node-binding
https://github.com/julio1998/proxyreencryption


key-pairs are generated using Api256 provided by the Recrypt
package. The symmetric key is generated using the Crypto
package and has a size of 256 bits.

During the key generation, a signing key-pair suitable for
EDDSA [] is also generated. This pair is required for most
methods provided by the API (e.g. for signing ciphers or
keys). Therefore, in future listings the signature keys are
apparent. Since there is no sufficient useful implementation
of these keys in the IoT PRE data sharing method (because
blockchain creates a signature of each successful transaction)
they will only be used as a requirement for the API.

To encrypt the data under the symmetric key (Listing 1)
the fs package is used to create an input stream to the file
path and write the encrypted data to a file. The algorithm
first creates a Cipher object using the AES 256-bit algorithm
in CBC mode with the symmetric key. Upon opening the
input stream the algorithm creates a cipher of the data
using the Cipher object and inserts it into a new buffer. The
buffer is written to the output file. Upon closing the in-
put stream any enciphered data is written to the output stream.

1 // Step: "Encrypt data"
2 function encrypt = (filePath, encryptFilePath , algorithm ,

symmetricKey , iv) => {
3 let input = fs.createReadStream(filePath);
4 let output = fs.createWriteStream(encryptFilePath);
5
6 let cipher = Crypto.createCipheriv(algorithm ,

symmetricKey , iv);
7
8 input.on(’data’, function(data) {
9 let buf = Buffer.from(cipher.update(data, ’binary’));

10 output.write(buf);
11 });
12
13 input.on(’end’, function() {
14 try {
15 let buf = Buffer.from(cipher.final(’binary’), ’

binary’);
16 output.write(buf);
17 output.end();
18 } catch(e) {
19 fs.unlink(output);
20 }
21 });
22 };

Listing 1: Encrypt data

Listing 2 displays all methods used in the application from
the ”Encrypt data” step until the final step, as well as calling
methods from the chaincode.

The encryption of the symmetric key is done using Api256.
The API requires three arguments for encryption, the sym-
metric key to be encrypted, the public key of Alice and a pri-
vate signing key. The API only allows for buffers with the
size of 384 bytes to be encrypted. Therefore the symmetric
key is sliced from a generated plaintext that meets the size
requirements. The generated cipher is submitted as a transac-
tion to the network.

The re-encryption key is generated using the private key of
Alice and the public key of Bob. In the hypothetical scenario,
Alice would be responsible for generating this key. The origi-
nal cipher is then transformed using the re-encryption key and
a transaction is submitted with the newly generated cipher.

In the final step of the process, Bob wants to decrypt

the cipher using the retrieved symmetric key from the HF
network. First, the key is sliced so that the 384-byte cipher
is reduced to a 32-byte key. A similar approach as the one
described in Listing 1 is used to decrypt the data. Two
streams are created to read and write files. The Cipher object
is now generated by the CreateDecipherIV function used to
decipher encrypted data. Using the same approach Bob now
has access to the original data.

1 // Step: "Encrypt data", "Encrypt symmetric key"
2 symmetricKey = Buffer.from(plaintext).slice(0, 32)
3 const encryptedKey = Api256.encrypt(plaintext , alice.

publicKey , signingKeys.privateKey);
4
5 // Method: "Create Entry"
6 let result = await contract.submitTransaction(’CreateEntry

’,id, JSON.stringify(encryptedKey));
7
8 // Step: "Generate re-encryption key", "Transform cipher"
9 const recryptKey = Api256.generateTransformKey(alice.

privateKey , bob.publicKey , signingKeys.privateKey);
10 const recryptVal = Api256.transform(encryptedKey ,

recryptKey , signingKeys.privateKey);
11
12 // Method: "Recrypt Entry"
13 result = await contract.submitTransaction(’ReCryptEntry’,

id, JSON.stringify(recryptVal), JSON.stringify(
signingKeys.privateKey));

14
15 // Method: "Decrypt Entry"
16 result = await contract.submitTransaction(’DecryptEntry’,

id, JSON.stringify(bob.privateKey));
17
18 // Step: "Decrypt data"
19 let retrievedKey = Buffer.from(JSON.parse(result).

plaintext.data).slice(0, 32);
20 await decrypt(encryptFilePath , decryptFilePath , algorithm ,

retrievedKey , iv);

Listing 2: Encrypt data

5.2 Chaincode
The contract saves entries with four parameters as demon-
strated in Listing 3. The ID identifies the entry that is
being saved and must be unique. The Cipher represents
the encrypted data in the form of an EncryptedValue object
provided by the API. It contains multiple fields necessary to
be further processed by the API. The entry saves a passphrase
in Passphrase which only allows the DO to change the state of
the entry (e.g. with re-encryption).

1 const Entry = {
2 ID : id,
3 Cipher: cipher,
4 Passphrase: passphrase
5 }

Listing 3: Entry

The DO or DU can interact with the smart contract using
three methods and will be evaluated independently.

The CreateEntry method (Listing 4) is used to create a new
entry and save it on the ledger. It accepts an identifier id
that must be unique, the cipher to save and a passPhrase which
will be used to authenticate the user if the entry were to be
updated.



1 async CreateEntry(ctx, id, cipher, passphrase) {
2 const exists = await this.EntryExists(ctx, id);
3 if (exists) {
4 throw new Error(’The entry ${id} already exists’);
5 }
6
7 const entry = {
8 ID: id,
9 Cipher: cipher,

10 Passphrase: passphrase
11 };
12
13 // Step: "Put block on ledger"
14 await ctx.stub.putState(id, Buffer.from(stringify(

entry)));
15
16 // Return: "State"
17 return JSON.stringify(entry);
18 }

Listing 4: Create entry

The ReCryptEntry method (Listing 5) is used to re-encrypt
an existing cipher. The cipher is selected by providing
the id after the algorithm has checked its existence. The
transformedCipher is generated before being sent to the network
using the re-encryption key rkDO→DU . The passPhrase is
used to identify the user. If the DO keeps his/her passPhrase
the algorithm can ensure that the DO is calling the method. If
the passphrase is correct, the algorithm will update the state
of the entry and push it on the ledger.

1 async ReCryptEntry(ctx, id, transformedCipher , passPhrase)
{

2 const exists = await this.EntryExists(ctx, id);
3 if (!exists) {
4 throw new Error(‘The entry ${id} does not exist‘);
5 }
6
7 const entry = JSON.parse(await ctx.stub.getState(id));
8
9 // Step: "Verify passphrase"

10 if (entry.Passphrase.normalize() === passPhrase.
normalize()) {

11 const updatedEntry = {
12 ID : id,
13 Cipher: transformedCipher ,
14 Passphrase: passPhrase
15 };
16
17 // Return: "State"
18 return ctx.stub.putState(id, Buffer.from(stringify

(updatedEntry)));
19 } else {
20 throw new Error(‘The new cipher did not match the

hash of ${id} or the given signature was invalid.‘);
21 }
22 }

Listing 5: Recrypt Entry

The DecryptEntry method (Listing 6) is used to decrypt the
metadata. The method looks up the cipher for the given id
and will try to decrypt it under the giving decryptionKey using
the API. If successful, the network will return the decrypted
cipher to the user.

1 async DecryptEntry(ctx, id, key) {
2 const exists = await this.EntryExists(ctx, id);
3 if (!exists) {
4 throw new Error(‘The entry ${id} does not exist‘);
5 }
6
7 const Api256 = new Recrypt.Api256();

8 let cipher = this.EncryptedValueFromString(JSON.parse(
await ctx.stub.getState(id)).Cipher);

9
10 let ret = {
11 message: ’Decryption was successful’,
12 plaintext: ’’
13 };
14
15 try {
16 // Step: "Decrypt cipher with key"
17 ret.plaintext = Api256.decrypt(cipher, this.

PrivateKeyFromString(key));
18 } catch (e) {
19 console.log(e);
20 ret.message = e.message;
21 }
22 // Return: "Symmetric key"
23 return JSON.stringify(ret);
24 }

Listing 6: Decrypt entry

6 Evaluation
For the performance analysis, the speed of the different meth-
ods was calculated on different file sizes as well as the differ-
ence in speed when performing multi-hop encryption on the
cipher.

The experiments were performed on MacOS using the
Node v16.13.1 interpreter. The computer has a 3,5 GHz Dual-
Core Intel Core i7 processor and 8GB of RAM.

6.1 Performance analysis
The average time for encryption and decryption of the data
increases with files of bigger size as seen in Figure 5. In
the test setup, encryption includes the steps of encrypting
the data (in this case the file), encrypting the symmetric key
and creating an entry on the HF network. The decryption
only consists of decrypting an entry on the network. The
increasing time relates to the AES algorithm requiring more
time to encrypt and decrypt a file if its size increases.

Figure 5: Speed performance of steps in implementation compared
to different file sizes

Recryption does not show any significant changes in terms
of speed. The recryption step includes generating the re-
encryption key, transforming the cipher and recrypting the



entry on the network. The severe changes in terms of speed
relate to the cipher containing only a symmetric key. The time
for the algorithm to complete this step is not dependent on the
file size but on a key of a fixed size of 256 bits.

The result was measured by performing an experiment
10000 times for 13 files of different sizes. The experiment
consisted of the encrypting, recrypting and decrypting step in
chronological order. The time per step is calculated by mea-
suring the time before starting the first operation and after fin-
ishing the last operations. The averages per file are displayed
in the graph and a trend line is calculated over the separate
variables.

The decryption time and block size are related to the num-
ber of iterations in which a multi-hop re-encryption of the
cipher is performed as demonstrated in Figure 6. Multi-hop
re-encryption means that the cipher is re-encrypted under the
private key of the delegatee and a public key of a new user
(i.e. a cipher encrypted under rka→b is re-encrypted under
rkb→c). The results can be justified by the way the cipher is
generated. The cipher consists of an array of transformation
blocks that adds a block every time a multi-hop re-encryption
is performed, increasing the size. The decryption takes
longer because every block needs to be processed.

Figure 6: Speed and size performance after increasing multi-hop
iterations

The experiment displays what might happen when per-
forming multi-hop operations on the cipher. The prototype
does not incorporate this method since the new cipher can
not be decrypted under the original key. However, the graph
does give an indication of what consequences occur in terms
of speed and size if the prototype were to be refined.

6.2 Security analysis
The PRE algorithm used in the implementation has security
level IND-CCA [6] which is high enough for sharing secure
data with peers. The real issue lies in the security of access
control for altering an entry. In the implementation, the ac-
cess control is dependent on a single passphrase that has no
minimum requirements in terms of size and character types.

Therefore, it is easy for a malicious user to perform a brute-
force attack on a single entry to be able to change the state of
that entry.

7 Responsible Research
In this chapter, the ethical aspects of the research are dis-
cussed. The first section will talk about the integrity of the
research followed by a discussion on the reproducibility of
the implementation and results.

7.1 Integrity
In this paper, existing techniques are combined into a scheme
that is suitable for IoT data sharing. During the research,
many papers have been read that helped create the scheme
and implementation discussed in Chapters 5 and 6. To prevent
plagiarism and illegitimate ownership of intellectual property
all papers that have contributed to this research have been ref-
erenced and are briefly discussed if necessary.

All code used in the implementation and test cases can be
verified for legitimacy since everything is publically available
on GitHub. Furthermore, cases in which a package or plug-in
might reduce the speed or other performance of the prototype
are discussed in the paper and need not be discovered in the
code.

7.2 Reproducibility
To be able to reproduce this research several steps have been
taken. Firstly, all code written for the prototype is publicly
available on GitHub. Anyone can rerun the test cases in a
different environment to confirm the results as displayed in
Chapter 7.

Second, all plug-ins and packages that have been used in
the implementation have been listed including the version
number. Also, the operating system and hardware on which
the tests are run are denoted. Therefore, if anyone runs the
tests in the same environment they should produce similar re-
sults.

8 Conclusions
The aim of this research is to provide a secure smart contract
to provide data sharing for IoT devices. The sharing method
that uses PRE demonstrates the possibilities of distributing
IoT securely over the HF network. Though the implementa-
tion does not fulfil the security requirements (mainly due to
the insecure passphrase) the data-sharing scheme does pro-
vide on a conceptual level a secure system in which a DO can
share information with other users.

The method is efficient and scalable since it remains fast
and low in storage when working with larger files. The
scheme is designed in such a way that file sizes do not have
a significant on the speed of the network or the size of the
blocks since the only information is stored in the fixed sizes
symmetric key. If in a later version of this prototype a multi-
hop solution is implemented, the speed and size would also
not suffer since they increase linearly at a slow rate.



8.1 Future work
For future work, there are many aspects that can be improved
for the prototype to be a fully functional implementation that
can be deployed for public use. The first improvement is find-
ing a more suitable package for PRE or creating the meth-
ods from scratch. The issue for the implementation is that
many methods provided by the package use additional vari-
ables that do not have a suitable usage in the overall scheme.
This would reduce unnecessary storage for unused variables.
A PRE that has the property ’original-access’ would make
the prototype usable for sharing the IoT to multiple users
without original users losing access. Lastly, a PRE scheme
that does not increase the size of the cipher (demonstrated in
[14]) when working with networks on which a high amount
of peers participate.

The second improvement is to incorporate the PRE meth-
ods in the actual chaincode. Since asymmetric encryption
relies on randomness this can not be implemented in a de-
terministic smart contract. A future version of the scheme
should possibilities of using randomness in a determinstic
contract so encryption can take place in the contract reducing
the workload of the user and making a more coherent commu-
nication channel. This would also solve security issues since
the private key of the data owner can be used as a means of
identification.

The final improvement that can be explored is the use of
a distributed file storage service provider such as IPFS [18].
In the prototype, files are saved locally which would mean in
practice that the data owner must share the encrypted files
manually with potential data users. The storage provider
solves this by providing a single channel over which all DO’s
can share information with DU’s that is easily accessible. The
service can be structured in such a way that it serves as a copy
of the ledger, where the service stores the encrypted files and
the ledger contains all the keys.

References
[1] Kwame Opuni-Boachie Obour Agyekum, Qi Xia, Em-

manuel Boateng Sifah, Christian Nii Aflah Cobblah,
Hu Xia, and Jianbin Gao. A proxy re-encryption ap-
proach to secure data sharing in the internet of things
based on blockchain. IEEE Systems Journal, 2021.

[2] Giuseppe Ateniese, Kevin Fu, Matthew Green, and
Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage.
ACM Transactions on Information and System Security
(TISSEC), 9(1):1–30, 2006.

[3] Vipin Bharathan, Mic Bowman, and Sally et al. Cole.
Hyperledger architecture, volume ii smart contracts.
Technical report.

[4] Matt Blaze, Gerrit Bleumer, and Martin Straus. Divert-
ible protocols and atomic proxy cryptography. In In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 127–144. Springer,
1998.

[5] Tamas Blummer, M Sean, and C Cachin. An introduc-
tion to hyperledger. Technical report, 2018.

[6] Yi Cai and Xudong Liu. A multi-use cca-secure proxy
re-encryption scheme. In 2014 IEEE 12th Interna-
tional Conference on Dependable, Autonomic and Se-
cure Computing, pages 39–44. IEEE, 2014.

[7] Yingwen Chen, Bowen Hu, Hujie Yu, Zhimin Duan, and
Junxin Huang. A threshold proxy re-encryption scheme
for secure iot data sharing based on blockchain. Elec-
tronics, 10(19):2359, 2021.

[8] Joan Daemen and Vincent Rijmen. Announcing the ad-
vanced encryption standard (aes). Federal Information
Processing Standards Publication, 197, 2001.

[9] Michael Egorov, David Nuñez, and MacLane Wilkison.
Nucypher: A proxy re-encryption network to empower
privacy in decentralized systems. NuCypher whitepa-
per, 2018.

[10] HyperLedger Fabric. Blockchain network, 2020.

[11] HyperLedger Fabric. Using the fabric test network,
2020.

[12] Kai He, Xueqiao Liu, Huaqiang Yuan, Wenhong Wei,
and Kaitai Liang. Hierarchical conditional proxy re-
encryption: A new insight of fine-grained secure data
sharing. In International Conference on Informa-
tion Security Practice and Experience, pages 118–135.
Springer, 2017.

[13] Kaitai Liang, Cheng-Kang Chu, Xiao Tan, Duncan S
Wong, Chunming Tang, and Jianying Zhou. Chosen-
ciphertext secure multi-hop identity-based conditional
proxy re-encryption with constant-size ciphertexts. The-
oretical Computer Science, 539:87–105, 2014.

[14] Kaitai Liang, Willy Susilo, Joseph K Liu, and Duncan S
Wong. Efficient and fully cca secure conditional proxy
re-encryption from hierarchical identity-based encryp-
tion. The Computer Journal, 58(10):2778–2792, 2015.

[15] Ahsan Manzoor, An Braeken, Salil S Kanhere, Mika
Ylianttila, and Madhsanka Liyanage. Proxy re-
encryption enabled secure and anonymous iot data shar-
ing platform based on blockchain. Journal of Network
and Computer Applications, 176:102917, 2021.

[16] Ahsan Manzoor, Madhsanka Liyanage, An Braeke,
Salil S Kanhere, and Mika Ylianttila. Blockchain
based proxy re-encryption scheme for secure iot data
sharing. In 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pages 99–103.
IEEE, 2019.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Decentralized Business Review, page
21260, 2008.

[18] Nishara Nizamuddin, Haya R Hasan, and Khaled Salah.
Ipfs-blockchain-based authenticity of online publica-
tions. In International Conference on Blockchain, pages
199–212. Springer, 2018.

[19] Zahraa Ch Oleiwi, Wasan A Alawsi, Wisam Ch Alisawi,
Ali S Alfoudi, and Liwa H Alfarhani. Overview and



performance analysis of encryption algorithms. In Jour-
nal of Physics: Conference Series, volume 1664, page
012051. IOP Publishing, 2020.

[20] Zhiguang Qin, Hu Xiong, Shikun Wu, and Jennifer
Batamuliza. A survey of proxy re-encryption for secure
data sharing in cloud computing. IEEE Transactions on
Services Computing, 2016.

[21] Shuai Wang, Yong Yuan, Xiao Wang, Juanjuan Li, Rui
Qin, and Fei-Yue Wang. An overview of smart contract:
architecture, applications, and future trends. In 2018
IEEE Intelligent Vehicles Symposium (IV), pages 108–
113. IEEE, 2018.

[22] Hiroki Watanabe, Shigeru Fujimura, Atsushi
Nakadaira, Yasuhiko Miyazaki, Akihito Akutsu,
and Jay Kishigami. Blockchain contract: Securing a
blockchain applied to smart contracts. In 2016 IEEE
international conference on consumer electronics
(ICCE), pages 467–468. IEEE, 2016.


	Introduction
	Methodology
	Preliminaries
	Smart Contract
	HyperLedger Fabric
	Proxy re-encryption

	IoT PRE Data Sharing Method
	Overview
	Encryption methods

	Implementation
	Application
	Chaincode

	Evaluation
	Performance analysis
	Security analysis

	Responsible Research
	Integrity
	Reproducibility

	Conclusions
	Future work


