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Abstract

In recent years, there has been considerable interest in the Learning-Based Control (LBC)
of unknown linear systems in the Linear Quadratic (LQ) paradigm. In the field of optimal
control, the LQ control has been a benchmark for decades and is extensively used to control
systems in the real world. Moreover, the insights gleaned from studying LQ control prob-
lems can be translated into a critical understanding of more complex control problems. In
this setting of learning-based LQ control, the control action influences not only the control
performance but also the rate at which the system is being learnt, causing a conflict be-
tween learning and control (exploration and exploitation), which is particularly challenging
to address. Of particular relevance to most practical applications is the Linear Quadratic
Gaussian (LQG) control problem, which addresses the control of partially observable linear
dynamical systems driven by additive white Gaussian noises. The LQG control of unknown
systems poses a significant challenge when compared with Linear Quadratic Regulator (LQR),
where the states are measured. The primary aim of this thesis is to develop a novel LBC
algorithm for unknown partially observable systems in the LQG setting, that is computation-
ally efficient and can guarantee an optimal exploration-exploitation trade-off, quantified by a
metric called regret. The regret quantifies the cumulative performance gap over time between
the LBC policy and the ideal controller having full knowledge of the true system dynamics.
The contributions in this thesis involve a novel LBC algorithm that is deployed in a two-
phase structure. The first phase involves injecting Gaussian input signals to obtain an initial
model of the system. The subsequent second phase deploys the proposed LBC strategy in
an episodic setting, where for each episode, the model is updated, and the resulting updated
LQG controller is applied with additive Gaussian signals for exploration. In addition, the
thesis establishes strong theoretical guarantees on the regret growth of Õ(

√
T ), matching the

optimal regret growth in the LQR setting up to poly-logarithmic factors. This guarantee is
also validated in numerical simulations. With an aim to further reduce the exploration cost,
another LBC algorithm, as an extension to the above algorithm, is also developed to bridge
the gap between regret minimisation and experiment design techniques in the field of system
identification. Simulation results are provided in support of the proposed algorithm.
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Chapter 1

Introduction

In many applications, the system dynamics cannot always be determined due to the system’s
complexity or unmeasured disturbances. Hence in practice, knowledge about the system dy-
namics is generally known only with uncertainty if not completely unknown. There are several
real-world applications where control of unknown or uncertain systems is required: naviga-
tion of mobile robots in unknown environments [54], optimal multi-product inventory control
[42], or even analysing the anti-synchronisation behaviour of predator-prey populations [64].
These systems, which are generally nonlinear can however be sufficiently approximated by
linear models near their operating points. Working with linear models is ideal because of the
rich history of analytical solutions in stability analyses and optimal control strategies, and
moreover, they are easy to interpret and work with. To identify such unknown linear systems,
tools such as Prediction Error Method (PEM) [41], subspace identification [65], and maxi-
mum likelihood estimation have been developed. One could use such methods to first identify
the system, and then use the estimated model to develop optimal control laws. Learning
the system dynamics is of particular interest since the knowledge of system dynamics could
potentially aid in deploying various other model-based methods like disturbance rejection and
output feedback control, for instance. In many cases, the ‘estimate-then-control’ method is
impractical if there are strict limitations on the resources that are involved in running the
system, or if the system parameters can change over time. Further, it is not always necessary
to obtain a precise understanding of the system dynamics to design a control policy to satisfy
some performance criteria [67]. One of the solutions to this problem of controlling unknown
systems is through adaptive control or Learning-Based Control (LBC), where the controller
is updated online from the collected data, to satisfy some performance measures [44]. This
type of model-based reinforcement learning is particularly appealing given the significant
advancements in handling large quantities of data efficiently [47].

In recent years, several developments in the control over large state space in the field of
reinforcement learning have demonstrated tremendous success in various applications like
robotics [40], Atari [46], and Go [57], which have led to further developments in ensuring
reliability and sample efficiency, with an emphasis on non-asymptotic guarantees [58]. Failure
in such control systems could potentially lead to catastrophic consequences: loss of human
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2 Introduction

life as well as economic loss [53]. While the field of reinforcement learning has skyrocketed
with the development of model-free tools, the field of control theory has matured over the
years in the design of robust and reliable model-based tools that can guarantee performance
while adhering to the safety limitations of the system. Hence, the way forward is to combine
the effectiveness of the methods developed in reinforcement learning with the strong-theoretic
guarantees offered by control theory [53]. Moreover, the model-free methods of reinforcement
learning are not as sample-efficient as the model-based methods [63].

In the paradigm of optimal control, Linear Quadratic (LQ) control has been a benchmark
for decades and is extensively used to control complex systems [11]. Moreover, the insights
gleaned from studying LQ control problems can be translated into a critical understanding of
more complex control problems. Further, studying LQ control problems allows one to place
reinforcement learning and control theory on equal footing [53]. The significant research
that exists in the learning-based LQR control problem however dwarfs the research in the
learning-based Linear Quadratic Gaussian (LQG) setting [11]. The LQG control problem
which addresses the control of partially observable linear dynamical systems driven by addi-
tive white Gaussian noises, is one of the key issues in adaptive control [12]. Moreover, in most
practical applications, assuming full state-measurement can be restrictive. The seemingly be-
nign difference of not being able to measure the true states will in fact pose a significant
challenge when controlling the system with unknown dynamics [36]. The errors in state esti-
mates due to approximate models could potentially accumulate to have a significant impact
on the control performance. This is precisely why LBC in the partial observability setting is
a particularly challenging problem to address. The LBC strategies that do address this set-
ting either incorporate subroutines that require non-convex optimisation [37], [36], or require
restrictive assumptions on the optimal control policy [34].

Hence, this thesis aims to design an LBC algorithm in the LQG setting that is computationally
efficient, and can effectively balance the exploration-exploitation trade-off, quantified by a
metric called regret, detailed in Section 2-5. The proposed LBC algorithm is deployed in
a two-phase structure. The first phase involves injecting Gaussian input signals to obtain
an initial model of the system. The subsequent second phase deploys the proposed LBC
strategy in an episodic setting, where for each episode, the model is updated, and the resulting
updated LQG controller is applied with additive Gaussian signals for exploration. This thesis
establishes a theoretical guarantee on Õ(

√
T ) upper bound on the regret growth for LQG-

NAIVE (Algorithm 2), which matches the optimal rate of regret growth in the LQR setting.
Further, this thesis also provides compelling simulation results for LQG-NAIVE.

The thesis is structured in the following way. In Chapter 2, the LQG control problem and the
various concepts relevant to model-based reinforcement learning, are introduced. The various
LBC strategies and their limitations in the current research landscape are also highlighted.
Following the preliminary details, Chapter 3 provides motivation for the proposed LBC al-
gorithms. Supporting this proposition, are finite-time stability and regret guarantees of the
LQG-NAIVE algorithm (Algorithm 2), in Chapter 4. Chapter 4 also provides simulations
validating the theoretical regret guarantee of LQG-NAIVE. As an extension to the thesis,
LQG-IF2E is proposed (Algorithm 3), which paves the way into incorporating ‘intelligence’
into the LBC strategy through the Fisher Information Matrix (FIM), as detailed in Section
3-3. In this thesis, only empirical validation of the FIM-based LBC policy is provided.
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Chapter 2

Background

2-1 Notations

The Euclidean norm of a vector x is denoted by ||x||. For a matrix X ∈ Rn×m, ||X|| denotes
the spectral norm, ρ(X) denotes the spectral radius, ||X||F denotes the Frobenius norm, X⊤

denotes its transpose, X† denotes the Moore-Penrose inverse, and Tr(X) denotes the trace.
The determinant of a matrix X is denoted by det(X). The jth singular value of a matrix X is
denoted by σj(X), where σmax(X) := σ1(X) ≥ σ2(X) ≥ ... ≥ σmin(X) := σmin(n,m)(X) > 0.
Similarly, λmin(X) and λmax(X) have analogous meanings for the eigenvalues of X. The
identity matrix with the appropriate dimension is denoted by I and similarly, 0 is a matrix
or a vector of 0’s with appropriate dimensions. Further, N (µ, Σ) denotes a multivariate
normal distribution with a mean vector µ and a covariance matrix Σ. The expectation
operator is denoted by E, and P denotes the probability of an event occurring. The inequality
f ≲ g denotes f ≤ Cg for a universal constant C, and f ⪅ g denotes informal inequality.
The informal inequality is used when it is required to hide some of the terms in g. The
Kronecker product is denoted by ⊗, vec denotes the vectorisation operator. Further, Dθ
denotes Jacobian, dθ denotes differential, and ∇θ denotes gradient, with respect to θ.
In this thesis, X̂ is used to denote an approximation of the true quantity X. Further, X̂t is
used to denote an approximation of the true quantity X, at time step t or at the tth episode.
The intended meaning of this notation becomes clear with the context. The ‘big - O’ notation
(O(.)) for two functions f(x) and g(x), is defined as f(x) = O(g(x)) if ∃C > 0 and x̃ ∈ R
such that |f(x)| ≤ Cg(x) ∀x ≥ x̃. The ‘big-omega’ notation (Ω(.)) for two functions f(x) and
g(x), is defined as f(x) = Ω(g(x)) if ∃C > 0 and x̃ ∈ R such that |f(x)| ≥ Cg(x) ∀x ≥ x̃.
The notations Õ(.) and Ω̃(.) ignores constants and poly-logarithmic terms.

2-2 Linear Quadratic Gaussian (LQG) control problem

In this setting, a discrete-time Linear Time Invariant (LTI) system is described by the state-
space equation:

Master of Science Thesis Archith Athrey



4 Background

xt+1 = Axt + But + wt, wt ∼ N (0, σ2
wI),

yt = Cxt + zt, zt ∼ N (0, σ2
zI),

(2-1)

for t = 0, 1, 2, 3, ..., A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈ Rny×nx . At time step t, ut ∈ Rnu is
the input, xt ∈ Rnx is the state, wt ∈ Rnx is the process noise, yt ∈ Rny is the system output,
and zt ∈ Rny is the measurement noise. Let the system parameter Θ corresponding to the
true system be

Θ = (A, B, C, L), (2-2)

where L is the Kalman gain as described in (2-6). To measure the performance of a controller,
the cost incurred ct at time step t is defined to be quadratically dependent on the outputs
and inputs as follows:

ct = y⊤
t Qyt + u⊤

t Rut, (2-3)

where Q ∈ Rny×ny is positive semi-definite and R ∈ Rnu×nu is positive definite. In this thesis,
the infinite-horizon setting is considered wherein the goal is to design an input signal such
that the long-term average expected cost is minimised. The long-term average expected cost
in this setting is given by

J = lim
T→∞

1
T
E
[
T−1∑
t=0

ct

]
. (2-4)

A linear system with parameter Θ is controllable if the controllability matrix denoted by
C(A, B, nx), where

C(A, B, nx) :=
[
B AB A2B . . . Anx−1B

]
,

has full row rank. Similarly, a linear system with parameter Θ is observable if the observability
matrix denoted by O(A, C, nx), where

O(A, C, nx) :=



C
CA
CA2

.

.

.
CAnx−1


,

has full column rank.

Assumptions 2.1 The thesis assumes the following about the true system:

1. (A, B) is controllable, (A, C) is observable, and (A, F ) is controllable. Here, F is the
Kalman gain in the innovations form (2-10).

2. (Q1/2, A) is observable and (A, σwI) is reachable.

3. Q is positive semi-definite and R is positive definite.

Archith Athrey Master of Science Thesis



2-2 Linear Quadratic Gaussian (LQG) control problem 5

In system identification settings that guarantee the capability of accurate system parameter
estimates and in optimal control settings, the aforementioned assumptions are frequently
made [34], [36], [37], [50], [61]. If Θ is known, the Kalman filter can provide the state
estimate x̂ given the measured inputs and outputs up to time step t − 1, denoted by x̂t|t−1,Θ.
If the assumptions made in Assumptions 2.1 hold, the estimated state error variance Σt|t−1
converges asymptotically to [65]:

lim
t→∞

Σt|t−1 = lim
t→∞

E
[
(xt − x̂t|t−1,Θ)(xt − x̂t|t−1,Θ)⊤

]
= Σ > 0,

where Σ is the solution to the following Discrete Algebraic Riccati Equation (DARE) [65]:

Σ = σ2
wI + AΣA⊤ − AΣC⊤

(
CΣC⊤ + σ2

zI
)−1

CΣA⊤. (2-5)

At steady-state, i.e., after Σt|t−1 converges (exponentially) to Σ, the state estimates can be
efficiently estimated by the Kalman filter:

x̂t|t,Θ = (I − LC)x̂t|t−1,Θ + Lyt,

x̂t+1|t,Θ = Ax̂t|t,Θ + But,

L = ΣC⊤
(
CΣC⊤ + σ2

zI
)−1

,

(2-6)

where L is the Kalman gain. Then, an optimal control law of the form

ut = −Kx̂t|t,Θ, (2-7)

minimising J can be obtained from the separation principle with K being the optimal feedback
gain matrix obtained from

K = (B⊤PB + R)−1B⊤PA, (2-8)

where P is the solution to the following DARE [12]:

P = C⊤QC + A⊤PA − A⊤PB
(
B⊤PB + R

)−1
B⊤PA. (2-9)

In (2-6), the two expressions concerning x̂t|t,Θ and x̂t+1|t,Θ can be combined to obtain the
innovations form:

x̂t+1|t,Θ = A
(
(I − LC)x̂t|t−1,Θ + Lyt

)
+ But

= Ax̂t|t−1,Θ + But + Fet,

et = C
(
xt − x̂t|t−1,Θ

)
+ zt,

et ∼ N (0, CΣC⊤ + σ2
zI),

(2-10)

where F given by F = AL is the Kalman gain in the innovations form. Further, the innova-
tions form (2-10) can be expanded to obtain the one-step-ahead prediction model:

x̂t+1|t,Θ = (A − FC)x̂t|t−1,Θ + But + Fyt,

ŷt+1|t,Θ = Cx̂t+1|t,Θ,
(2-11)
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6 Background

where the Kalman gain here ensures A − FC is asymptotically stable. There exists a closed-
form expression for the optimal long-term average expected cost when applying the optimal
control law as described in (2-7) [36]:

J∗ := min
u0,u1,...

J = Tr
(
C⊤QCΣ̄

)
+ σ2

zTr (Q) + Tr
(
P (Σ − Σ̄)

)
, (2-12)

where
Σ̄ = Σ − ΣC⊤

(
CΣC⊤ + σ2

zI
)−1

CΣ. (2-13)

2-3 Learning-based control

In this thesis, a variant of the LBC technique is proposed, which addresses the problem of
controlling an unknown system, i.e., Θ is unknown whereas, Q and R are user-defined (known).
In this setting, the acquired information about the system behaviour by the controller (or
agent) is used to approximate the system parameter, where the approximation of the system
parameter is denoted by Θ̂, thereby reducing the parameter uncertainty. As a consequence,
the control law is tuned appropriately to control the true underlying system with parameter
Θ, thereby achieving better control performance.

To be more precise, at time step t, the controller can access the past observations denoted by
It, where

It = {y0, u0, y1, u1, ..., yt−1, ut−1, yt}, (2-14)

based on which, a control input ut is computed. By injecting ut into the true system described
by (2-1), the state of the system transitions from xt to xt+1. Consequently, a cost ct is incurred.
The observation is then updated to It+1 = It ∪ {ut, yt+1}.

As mentioned before, only an approximate system parameter Θ̂ is known, which can lead to
sub-optimal control performance. This sub-optimality in the control performance is quantified
with the sub-optimality gap (∆Θ̂) in the long-term average expected cost [43]:

∆Θ̂ = J(Θ̂) − J∗, (2-15)

where J(Θ̂) is the long-term average expected cost incurred when using the control law that
is optimal for a system with parameter Θ̂ onto the true system with parameter Θ.

2-4 Exploration-exploitation trade-off

The problem setting considered here consists of two main goals, that are to be attained
simultaneously:

1. Controlling an unknown system in order to satisfy a certain performance criterion, be
it maximising the performance index or minimising the cost.

2. Learning the optimal control policy for the true system by learning the true system
dynamics.

Archith Athrey Master of Science Thesis



2-5 Regret minimisation 7

This problem comes with its own challenges. To effectively determine what actions to take
such that the performance index is maximised in the LBC paradigm considered here, the
agent (controller) must acquire the necessary information on the relation between current
observations and the corresponding performance index. In other words, the agent must be able
to simultaneously learn the dynamics and plan a control policy [10]. Therefore, it is necessary
to generate informative data to obtain better estimates of the system parameter. One must
also consider a caveat in generating informative data, which may lead to higher costs: in the
LQG setting, since the cost (2-3) is quadratically dependent on the outputs and the inputs,
perturbing the system behaviour to engender informativity may cause the output and input
sequences to deviate significantly from the optimal sequence, thereby incurring larger costs.
Hence, there is a need to develop methods that can optimally balance exploration (actions
that aid in estimating the optimal control policy by estimating Θ) and exploitation (actions
that minimise the cost incurred). The essence of having a balance between exploration and
exploitation is called the exploration-exploitation trade-off.

2-5 Regret minimisation

2-5-1 Definition and a brief history

One of the quantitative measures of the exploration-exploitation trade-off is the cumulative
regret R(T ) [3], which is given by

R(T ) =
T−1∑
t=0

(ct − J∗). (2-16)

The cumulative regret (2-16) quantifies the difference between the cost of an LBC policy and
the optimal expected average cost J∗ under the full knowledge of the true system parameter
(oracle). The LBC policy converges to the optimal policy if its regret grows sub-linearly with
time, i.e., R(T )

T → 0, which is also called as the Hannan consistency [1]. Therefore, for any
learning-based policy under consideration, it is required to guarantee at least sub-linear regret
in order to pay the optimal expected average cost J∗. The smaller the regret, the faster the
LBC policy is converging to the optimal policy.
Another formulation of the cumulative regret denoted by R̄(T ) [22], is given by

R̄(T ) =
T−1∑
t=0

(ct − ct,∗), (2-17)

where ct,∗ = yt,∗
⊤Qyt,∗ + u⊤

t,∗Rut,∗ is the optimal instantaneous cost of the true system paid
at time step t with ut,∗ being the optimal input (2-7) for the underlying true system with
parameter Θ. In the current thesis, the regret definition (2-16) is used because the regret
formulation in (2-17) captures only the uncertainty associated with not knowing the true
system parameter but not the uncertainty associated with the stochastic behaviour induced
by the measurement and process noises. This is because R̄(T ) can become negligibly small
when applying the optimal control action ut,∗ = −Kx̂t|t,Θ.
In the literature, for the sake of brevity, the regret bounds are generally presented in a way
that highlights only its dependence on the time horizon since the rate of the growth of the
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8 Background

regret with time is considered to be one of the important factors in comparing different LBC
techniques.
Regret minimisation was first studied in [32] and [33] for minimum variance controllers. The
proposed methods use white-noise probing inputs when the available information is inadequate
for parameter estimation thereby, guaranteeing an asymptotic rate of regret of O(log(T )).
Whereas for LQR control problems, it is shown that even when applying the optimal control
action ut,∗ = −Kxt to the true system with parameter Θ, the distribution of limT→∞

R(T )
T 1/2 is

a Gaussian random variable centred at zero [20]. This implies R(T ) = Ω(
√

T ). This result,
which is also confirmed in [58], is not trivial as it provides a lower bound for the regret of
LBC policies in the LQR setting.
Whereas in the LQG setting, it was shown that given a set of convex reparameterisation
of linear dynamic controllers, persistently exciting the true underlying system and strongly
convex loss functions e.g. Q, R > 0, a polylogarithmic regret upper bound on R̄(T ) can be
achieved [34]. Complementing this result, [70] establishes that polylogarithmic regret is not
possible if KK⊤ ≯ 0 or in other words, if the optimal control law does not persistently excite
the true system in the LQG setting. In this case, the best regret upper bound that one can
achieve is O(

√
T ).

Remark 1 The regret lower bound of R̄(T ) = Ω(
√

T ) in the LQG setting derived in [70]
under the condition that KK⊤ ≯ 0, motivates answering a more fundamental question: which
system instances are easy to control, and which are easy to learn? To answer this, the work
in [70] shows that systems that are marginally stable or with large Kalman filter gain (poor
observability) are fundamentally hard to (be learned to) control. Further, the work in [62]
concludes that under-actuated and/or under-excited systems with weak state coupling are
hard to learn. More precisely, it is shown that the controllability index directly influences
the ease with which the system can be identified. Therefore, the performance of a regret
minimisation algorithm critically depends on the system properties.

2-5-2 Relation between the two regret definitions

In [23], the difference between the two regret definitions ((2-16) and (2-17)) is investigated in
the LQR setting, which shows

lim sup
T→∞

R(T ) − R̄(T )
T 1/2logT

= lim sup
T→∞

∑T−1
t=0 ct,∗ − TJ∗

T 1/2logT
< ∞. (2-18)

The result (2-18) implies that the difference between the two definitions of regret given by∑T−1
t=0 ct,∗ − TJ∗, grows at the rate O(T 1/2logT ) with high probability. This is shown to hold

when the moment condition supt≥1 E[||w(t)||4] < ∞ is satisfied.

Corollary 2.1 If (2-18) holds, then R(T ) = Õ(T 1/2) if and only if R̄(T ) = Õ(T 1/2).
Therefore, if one were to provide a regret upper bound of Õ(

√
T ) for either definition of

regret, i.e., (2-16) or (2-17), it does not matter which definition of regret is used. Further,
establishing a regret bound of Õ(

√
T ) for one expression of regret implies that the other

expression also scales at Õ(
√

T ). This result is presented in [23] but without proof. The
proof of this corollary is presented in Appendix A-3 for the sake of completeness.
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2-6 Open-loop vs closed-loop system identification 9

2-5-3 Regret bound under high probability vs under expectation

Most of the existing works on LQ-LBC provide regret guarantees that hold with high proba-
bility 1−δ, where δ ∈ (0, 1) [11]. This probabilistic regret guarantee is derived by considering
that certain event(s) holds with a probability of at least 1−δ [3], [29]. Such an event could be,
for instance, when a certain confidence bound on the parameter estimate is satisfied [37], or
when the magnitude of the state vector remains bounded [3]. This implies that the algorithm
is parameterised by δ, i.e., the regret guarantees with high probability show that

P[R(T ) ≤ poly(nx, nu, ny, T, 1/δ)] ≥ 1 − δ. (2-19)

On the other hand, the algorithms that derive expected regret require the consideration of
the case where the event fails to hold as well [29]. In short, expected regret [44] intends to
show that

E[R(T )] ≤ poly(nx, nu, ny, T ). (2-20)
However, by considering δ as a function of T , it is possible to transform an algorithm that
provides probabilistic regret guarantees into the one that provides expected regret guarantees
[29]. In this thesis, a probabilistic regret upper bound is provided and the extension to an
expected regret guarantee is deferred to future work.

2-6 Open-loop vs closed-loop system identification

Since there is an emphasis on learning in the considered online setting, one must weigh
several factors to decide the kind of input signal to adopt for system identification. Some of
the relevant factors are mentioned below.

Figure 2-1: Schematic of closed-loop system identification.

Figure 2-2: Schematic of open-loop system identification.
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In closed-loop system identification as depicted in Figure 2-1, the correlation between the
input and output data is present especially when the closed-loop controller inherently uses
the past observations to deploy control actions [34]. Moreover, if the closed-loop controller
has regulating properties then the information obtained from closed-loop data is often less.
This could lead to a case where the collected data is not rich or informative enough to obtain
accurate model estimates [69]. That being said, there could be cases where the closed-loop
identification is preferred [39]:

• when there is a constraint on the system input or output [14], or

• if regulation is required, a stabilising controller may be required.

Moreover, it is possible to design input signals to address the potential lack of data informa-
tivity in closed-loop identification, as briefly discussed in Section 2-8.
On the other hand, in open-loop system identification as depicted in Figure 2-2, the correlation
between input-output data is significantly reduced with the use of independent inputs. To
elaborate, firstly roll back the output equation H time steps in the history as such:

yt = CAHxt−H +
H∑
i=1

CAi−1But−i +
H∑
i=1

CAi−1wt−i + zt. (2-21)

Since A is assumed to be stable, the first term in (2-21) decays exponentially and becomes
negligible with large enough H. Therefore, from (2-21) we have

yt ≈
H∑
i=1

G[i]ut−i +
H∑
i=1

CAi−1wt−i + zt, (2-22)

where the Markov parameters, G[i] = CAi−1B, ∀i > 0 with G[0] = 0, uniquely describes
the system behaviour. Moreover, G =

[
G[0] G[1] ... G[H]

]
∈ Rny×nu(H+1) denotes the

H-length Markov parameters matrix. From the above formulation in (2-22), a least-squares
estimate of G can be obtained by taking ūt =

[
ut ... ut−H

]
as the regressor:

Ĝ = arg min
X

T−1∑
t=H

||yt − Xūt||2. (2-23)

If i.i.d. Gaussian input signals independent of the noises are used as inputs then, a consistent
estimate of Ĝ can be attained using (2-23). From this estimate, one can obtain an estimate
of (A, B, C) up to similarity transformation by using the popular Ho-Kalman algorithm [28].
As a consequence of this, it is much easier to provide guarantees on the accuracy of the pa-
rameter estimates with open-loop input signals [37], [50]. Existing works which employ such
methods guarantee that the model estimation error diminishes at the rate O(1/

√
T ), after

collecting observation data for T time steps [50], [56], [59], [61]. The regret minimisation
techniques in the partial observability setting that utilise this method of open-loop identifica-
tion, have proposed LBC strategies in the explore-then-commit framework [36], [59]. In this
framework, Gaussian input signals are injected during the explore phase following which, the
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2-7 Episodic policy update 11

system is identified. Using the identified system, the LBC strategy is deployed during the
commit phase. These techniques incur a regret of Õ(T 2/3), which is larger when compared
with the well-established Õ(

√
T ) regret upper bound [34], [37]. As a consequence of this

fragmented approach, these techniques do not generalise well to the current setting where
the past observations are perpetually utilised to update the LQG controller. In closed-loop
system identification, the inputs will become correlated with the noise sequences and as such,
consistent estimates of the Markov parameters cannot be guaranteed by solving (2-23). To
address this challenge, [37] proposed an identification technique to estimate the Markov pa-
rameters both in open-loop as well as in closed-loop. This identification technique, which is
detailed in section 3-1, is adopted in the present thesis.

2-7 Episodic policy update

As the agent is exploring and learning more about the true underlying system, there is a
need to determine when to update the current estimate of the model to a ‘better’ estimate.
Such a need can arise if for some algorithms, switching the policy (updating the system
parameter estimate) too frequently or at every time step can degrade the control performance
[1]. Moreover, by making policy updates less frequent, the computational load can be reduced
[22].

The time steps within which a particular system parameter estimate (and the corresponding
optimal policy) is maintained is called an episode or an epoch. In LBC, the episodic policy
update is categorised based on the number of time steps in each episode, as follows:

• Varying episode length: The algorithm can increase the episode length geometrically,
for instance, in a doubling fashion (cf. [58]).

• Constant episode length: The algorithm maintains a constant episode length, that is
either given by the user or is estimated (cf. [48]).

• Step-wise episode: The algorithm updates the policy at every time step (cf. [29]).

• Anytime episode length: The policy can be updated at any time step (cf. [29]).

Moreover, switching control policies at the end of each episode may also provide the excitation
necessary for system identification [19].

2-8 Exploration strategies to address the exploration-exploitation
trade-off

There are three main exploration strategies in the LQ setting for LBC [11]:

1. Optimism in the Face of Uncertainty (OFU): Exploration driven by choosing
optimistic system parameters from a confidence set [3],[7], [37], [38]. In this exploration
strategy, exploration is engendered with the optimal control law of the optimistic system
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parameter estimate, i.e., ∃ Θ̃t : J∗(Θ̃t) := infΘ′∈Ct J∗(Θ′) ≤ J∗, where Ct is the confidence
set at time step t. Here, J∗(Θ̃t) is the optimal long-term average expected cost of the
system with parameter Θ̃t. The OFU-based LBC policy is given by

ut =
{

−K(Θ̃t)xt, if C = I, σ2
z = 0

−K(Θ̃t)x̂t|t,Θ̃t
, otherwise

,

where K(Θ̃t) is the optimal feedback gain for Θ̃.

2. Forced exploration: Certainty Equivalence Controller (CEC) with ϵ - greedy explo-
ration [18], [21], [43], [58]. The certainty equivalence principle is based on one of the
most simple techniques for regulating dynamical systems with uncertain or unknown
dynamics: a model of the system is fitted by collecting its temporal history, and a
control strategy is then developed by taking the fitted model as the true system [8].
Whereas, with CEC with ϵ - greedy exploration, the LBC policy is given by

ut =

−K(Θ̂t)xt + ηt, if C = I, σ2
z = 0

−K(Θ̂t)x̂t|t,Θ̂t
+ ηt, otherwise

,

where K(Θ̂t) is the optimal feedback gain for Θ̂t and ηt being an additive excitatory
signal.

3. Thompson Sampling (TS): Here, either the true system parameter is assumed to
belong to a known prior distribution and the optimal policy of the sampled system
parameter from the posterior distribution is deployed (Bayesian setting), or with no prior
assumption on the true system parameter, an optimistic system parameter is sampled
from a confidence set around the system parameter estimate, and the corresponding
optimistic policy is deployed (frequentist setting) [4], [6], [30], [31]. Here, the LBC
policy is given by

ut =
{

−K(Θt)x̂t|t,Θt
, Θt ∼ Dt, for the Bayesian setting

−K(Θ̃t)x̂t|t,Θ̃t
, Θ̃t ∼ Ct, for the frequentist setting

,

where Dt is the posterior distribution of the system parameter at time step t, Ct is the
confidence set around the system parameter estimate at time step t, and K(Θt) is the
optimal feedback gain of the system Θt. The posterior distribution and the confidence
set are constructed such that Θ ∈ Dt or Θ ∈ Ct, with high probability. For the state
feedback setting, one can replace x̂t|t with xt.

Many of the works employing the above-mentioned LBC policies adopt a two-phase structure:
the first phase consists of an initial system identification phase where rich excitatory inputs are
deployed to obtain a ‘good’ initial estimate of the model parameter following which, the LBC
strategy is deployed online, where system identification and control take place sequentially.

2-8-1 Related works

The early works of regret minimisation emerged for Auto Regressive Model (ARX) Single-
Input-Single-Output (SISO) systems, that use minimum variance controllers [32], [33]. These
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2-8 Exploration strategies to address the exploration-exploitation trade-off 13

works show that the regret grows at a rate O(log(T )) asymptotically whereas for LQR, the
regret is shown to grow at a rate O(

√
T ) asymptotically. In the learning-based LQR setting,

the seminal work of [3] incorporating OFU, achieving a finite-time regret guarantee of Õ(
√

T ),
reignited the research into regret minimisation for LQ control problems. A similar rate of
regret is also shown in the TS-based approach as well as in forced exploration [21], [30], [31],
[43]. In fact, Õ(

√
T ) regret upper bound is the optimal rate achievable for unknown systems

in the LQR setting [58]. Such a rate can be attained by a simple naive exploration, i.e.,
CEC with an additive white Gaussian excitatory signal, with a variance diminishing at a rate
O(1/

√
t).

Remark 2 Although the
√

T regret bound is rate optimal for the LQR control problem with
unknown dynamics, poly-logarithmic regret upper bound can be achieved for a known A or
B matrix, as a consequence of the extra available information [16], [29].

Both TS and naive exploration are a better substitute for OFU when considering the com-
putational complexity of computing the actions the agent must execute. To elaborate, TS
requires sampling only a single instance be it in the Bayesian setting or in the frequentist
setting and then, deploying the optimal control law of the sampled instance. Further, the
works in the Bayesian TS framework assume Gaussian posterior distribution, whose mean
and covariance can be updated from analytical expressions [25], [49]. Naive exploration only
requires the system parameter estimate to deploy the optimal control law of the estimated
system parameter with an additive perturbation. On the other hand, OFU requires either
solving a non-convex optimisation or solving a complex optimisation problem based on semi-
definite programming, which are not as computationally efficient as the routines in TS and
naive exploration [3], [7], [17].

Most of the works in the literature address the full-state measurement case, i.e., the LQR
setting, and there are very few works which address the LQG case [11]. Among those, [36] and
[37] use OFU, guaranteeing a Õ(

√
T ) regret upper bound but requires solving a non-convex

optimisation to find optimistic system parameters. Following these two works, [34] provides
guarantees of poly-logarithmic regret by deploying a disturbance feedback control law, which
is a convex reparameterisation of a linear dynamic control law, under the assumption that
the optimal policy persistently excites the true system. Recently, Õ(

√
T ) regret upper bound

has also been established with TS in the LQG setting [30]. Forced exploration has not yet
been investigated for regret minimisation in the learning-based LQG control problem.

There is a parallel line of research which focuses on designing algorithms, that deploy input
signals to generate the required data informativity necessary for estimating an accurate model
of the true system while accounting for various experimental constraints [13], [15], [27], [67].
This problem is called the optimal experiment design problem. Although these works in
optimal experiment design take the application into account, they are not particularly suitable
for regret minimisation [11]. Most of these works optimise some function of the FIM that
depends on the unknown true system parameter. To circumvent this issue, an adaptive
experiment design framework has been developed, where the initial estimate of the system,
as well as the corresponding optimal input sequence to identify the system, are improved as
more data is collected [13], [26], [27], [51], [66], [67]. The task-optimal experiment design
proposed in [67] is the closest to its application for regret minimisation: in this work, the
minimisation of the sub-optimality gap (2-15) is addressed. Further, the work in [67] designs
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an adaptive scheme to converge to a sequence of input signals that achieves a smaller sub-
optimality gap when compared with injecting Gaussian input signals. However, the cost of
running this algorithm is not evaluated online and therefore, it cannot be directly adopted
for regret minimisation [67].

Of the three methods, OFU can be said to incorporate some form of intelligence in engendering
exploration: OFU being a confidence-based method, selects control actions to explore the
regions of the parameter space that has the most influence on the control performance [7].
But as mentioned previously, OFU requires solving a non-convex optimisation problem. The
work in [18] bridges the gap between experiment design and regret minimisation by proposing
the following LBC policy for the LQR setting:

ut = −K(Θ̂t)xt + ηt

ηt =
√√√√ γ

λmin
(
It(Θ̂t)

)r0 for some γ > 0 and r0 ∼ N (0, I), (2-24)

where It(Θ̂t) is the FIM at time step t evaluated on the estimated system parameter Θ̂t. This
type of exploration is called the Inverse Fisher Feedback Exploration (IF2E). The motivation
for using the FIM is provided in Section 3-3. This work [18], guarantees an asymptotic regret
bound of Õ(

√
T ) since λmin

(
It(Θ̂t)

)
is shown to grow at a rate O(

√
t) asymptotically. The

extension to the LQG setting is however lacking.

2-9 Additional assumptions and definitions

The following assumptions aid in simplifying the exposition of stability and regret analyses
in the LQG setting [36], [37]:

1. The system is assumed to be open-loop stable, i.e., ρ(A) < 1. Define Φ(A) := supτ≥0
||Aτ ||
ρ(A)τ .

It is assumed that Φ(A) < ∞. This is a mild assumption that is necessary to quantify
the finite-time evolution of the system. The stability of the open-loop plant is assumed
to avoid explosive behaviour during the initial system identification phase. For details
on the initial system identification phase, refer to Section 3-2.

2. The unknown system parameter Θ is assumed to be member of a set S, such that,

S ⊆

Θ′

∣∣∣∣∣∣∣∣∣∣
ρ(A′) < 1,

(A′, B′) is controllable,
(A′, C ′) is observable,
(A′, F ′) is controllable.

 .

The above two assumptions are standard in the majority of the literature on system
identification and regret minimisation [37], [43], [50], [56], [59].
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3. There exist real numbers ρ, ν, D, Γ, and ζ such that,

ρ = sup
Θ′∈S

||A′ − B′K(Θ′)|| < 1,

ν = sup
Θ′∈S

||A′ − A′L(Θ′)C ′|| < 1,

D = sup
Θ′∈S

||P (Θ′)||,

Γ = sup
Θ′∈S

||K(Θ′)||,

ζ = sup
Θ′∈S

||L(Θ′)||.

The assumptions on ρ and ν are restrictive because they constrain the type of systems
on which the proposed exploration strategy can be applied. The assumptions on D,
Γ, and ζ are not restrictive because their existence can be ensured given that the set
S consists of system parameters that are controllable and observable. With a similar
reasoning, we have ||M||F ≤ S̄. That being said, such assumptions can aid in simplifying
the stability and the regret analyses [37].

4. It is assumed that x̂0|−1,Θ̂ = x̂0|−1,Θ = 0. Further, the system is assumed to start at
the steady state, i.e., x0 ∼ N (0, Σ). At steady state, we have e0 ∼ N (0, CΣC⊤ + σ2

zI).
These assumptions are made to simplify the analysis and to streamline the exposition.

These assumptions hold throughout the thesis.
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Chapter 3

Learning-Based Control Strategy

This chapter provides motivation for the proposed LBC algorithm and for the selected system
identification technique. Firstly, the system identification technique chosen is based on a
recent work in closed-loop subspace system identification [37], as motivated in Section 2-6.
The proposed LBC algorithms are extensions to the LQG setting from the previously proposed
LBC strategies in the LQR setting, namely, the naive exploration strategy [58], and the IF2E
strategy [18].

3-1 System identification

As motivated in Section 2-6, this thesis adopts the closed-loop system identification technique
proposed in [37]. This system identification technique can be broadly structured into two
sequential phases:

1. Using the predictor form of the state-space equation as described in (2-11), estimate
the Markov parameters.

2. Estimating the system parameter Θ from the estimated Markov parameter by using a
variant of the subspace system identification technique.

Estimating the Markov parameters

Consider the predictor form of the state-space equation (2-11). Rolling back the evolution of
the system H-time steps back, we get

x̂t|t−1,Θ = (A − FC)H x̂t−H|t−H−1,Θ +
H−1∑
k=0

(A − FC)k [But−k−1 + Fyt−k−1] . (3-1)

For the sake of brevity, let Ā = (A − FC). Let us also define the matrices:
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F =
[
CF CĀF ... CĀH−1F

]
∈ Rny×nyH ,

G =
[
CB CĀB ... CĀH−1B

]
∈ Rny×nuH .

Now for t = H, H + 1, ..., T − 1, we have
yt = Cx̂t|t−1,Θ + et

= CĀH x̂t−H|t−H−1,Θ +
H−1∑
k=0

CĀk [But−k−1 + Fyt−k−1] + et

= Mϕt + et + CĀH x̂t−H|t−H−1,Θ,

(3-2)

where
M =

[
F G

]
∈ Rny×(ny+nu)H ,

ϕt =
[
y⊤
t−1 ... y⊤

t−H u⊤
t−1 ... u⊤

t−H

]⊤
∈ R(ny+nu)H .

(3-3)

Since Ā is stable, the last term in (3-2) becomes negligible for large enough H. Specifically,
we need

H ≥ max

2nx + 1,
log

(√
ny/λcHT 2

)
log(1/ν)

 , (3-4)

which can also be written as H = O(log(T )) [37]. The expression of the constant cH can be
found in (4-53).

Remark 3 Let the number of time steps in the kth episode be lk. If the duration of the episode
is varied in a doubling fashion, i.e., lk+1 = 2lk, then the requirement that H = O(log(T )) can
be relaxed to H = O(kfin), where kfin is the number of episodes [35].
Now with {yt}τ−1

t=0 and {ut}τ−1
t=0 , define the following matrices:

Yτ−1 =
[
yH yH+1 ... yτ−1

]⊤
∈ RN×ny ,

Φτ−1 =
[
ϕH ϕH+1 ... ϕτ−1

]⊤
∈ RN×(ny+nu)H ,

Eτ−1 =
[
eH eH+1 ... eτ−1

]⊤
∈ RN×ny ,

Nτ−1 =
[
CĀH x̂0|−1,Θ CĀH x̂1|0,Θ ... CĀH x̂τ−H−1|τ−H−2,Θ

]⊤
∈ RN×ny ,

(3-5)

where N = (τ − 1) − H + 1. Since Nτ−1 is negligibly small,

Yτ−1 ≈ Φτ−1M⊤ + Eτ−1. (3-6)

Therefore, from (3-6), the Markov parameters M can be estimated from the regularised least-
squares problem as follows [37]:

M̂⊤ = arg min
X

||Yτ−1 − Φτ−1X⊤||2F + λ||X||2F

=⇒ M̂⊤ = (Φ⊤
τ−1Φτ−1 + λI)−1Φ⊤

τ−1Yτ−1,
(3-7)

where λ > 0. Therefore, from the predictor form of the system description with H satisfying
(3-4), the Markov parameters can be estimated consistently.
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Estimating the model parameters Θ

With the estimated Markov parameters at time step t, denoted by M̂t, the system parameter
Θ is estimated from a variant of the Ho-Kalman algorithm [37] (refer to Algorithm 1). Recall
that M = [F, G]. At time step t, we have

M̂t =
[
F̂t,1 ... F̂t,H Ĝt,1 ... Ĝt,H

]
,

where F̂t,i is the ith ny × ny block of F̂t, and Ĝt,i is the ith ny × nu block of Ĝt. Define the
Hankel matrix HF̂t

as

HF̂t
:=



F̂t,1 F̂t,2 ... F̂t,d2+1
F̂t,2 F̂t,3 ... F̂t,d2+2

.

.

.

F̂t,d1 F̂t,d1+1 ... F̂t,H


∈ Rd1ny×(d2+1)ny . (3-8)

Analogously, HĜt
has a similar definition as above.

Algorithm 1 SYSID [37]

1: Input: M̂t, H, nx, ny, nu, d1 ≥ nx, d2 ≥ nx such that d1 + d2 + 1 = H

2: Construct two Hankel matrices HF̂t
∈ Rd1ny×(d2+1)ny and HĜt

∈ Rd1ny×(d2+1)nu from F̂t

and Ĝt respectively. Let Ĥt =
[
HF̂t

HĜt

]
.

3: Obtain Ĥ−
t by discarding (d2 + 1)th and (2d2 + 2)th block columns of Ĥt.

4: Perform SVD on Ĥ−
t , and then obtain N̂t, the best nx-rank approximation by setting all

but the first nx singular values to zero.
5: Obtain Ut, Σt, Vt = SVD(N̂t).
6: Construct O( ˆ̄At, Ĉt, d1) = UtΣ1/2

t . ▷ ˆ̄At = Ât − F̂tĈt

7: Construct [C( ˆ̄At, F̂t, d2 + 1), C( ˆ̄At, B̂t, d2 + 1)] = Σ1/2
t Vt.

8: Obtain Ĉt from the first ny rows of O( ˆ̄At, Ĉt, d1).
9: Obtain B̂t from the first nu columns of C( ˆ̄At, B̂t, d2 + 1).

10: Obtain F̂t from the first ny columns of C( ˆ̄At, F̂t, d2 + 1).
11: Obtain Ĥ+

t by discarding 1st and (d2 + 2)th block columns of Ĥt.
12: Obtain ˆ̄At = O†( ˆ̄At, Ĉt, d1) Ĥ+

t [C( ˆ̄At, F̂t, d2 + 1), C( ˆ̄At, B̂t, d2 + 1)]†.
13: Obtain Ât = ˆ̄At + F̂tĈt.
14: Obtain L̂t from the first nx × ny block of Â†

tO†( ˆ̄At, Ĉt, d1)Ĥ−
t .

15: Return: Ât, B̂t, Ĉt, and L̂t.
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3-2 Naive exploration-based LBC algorithm

In the present thesis, the focus is on designing an LBC algorithm in the LQG setting that

1. incorporates an LBC policy having a simple structure,

2. provides an effective balance between exploration and exploitation,

3. is computationally efficient, and

4. guarantees the boundedness of the inputs and outputs.

In Section 2-8, it was mentioned that the simple structure of the CEC with ϵ-greedy explo-
ration attains a regret upper bound of Õ(

√
T ) in the LQR setting. The seemingly simple

implementation of the CEC is however sensitive to a model mismatch: the controller can only
be guaranteed to stabilise the system when the sub-optimality gap (2-15) is small [19], [31],
[43]. To circumvent this issue, an initial stabilising controller can be assumed with additive
exploration signals to enable sufficiently long exploration before updating the system param-
eter [58]. Instead of assuming an initial stabilising controller, [36] and [37], which implements
an OFU scheme in the LQG setting, incorporates an initial warm-up period (injecting Gaus-
sian input signals) to obtain an initial system parameter estimate such that the corresponding
CEC stabilises the true system. Following this warm-up phase, the LBC phase is deployed
where system identification and control with the proposed LBC strategy take place sequen-
tially. This modular scheme is considered for the present thesis given the well-established
finite-time guarantees on system parameter estimation error with the considered warm-up
phase [37], [50], [61]. An auxiliary feature of this modular scheme is that it gives the de-
signer the freedom to choose the type of input signals to provide during the warm-up phase,
depending on the application (cf. [67]).

Considering the above argument, the present thesis incorporates a LBC strategy that is
deployed in two phases:

1. Warm-up phase: Gaussian input signals are injected for Tw time steps to provide
informative data in order to obtain an initial system parameter estimate such that the
corresponding CEC stabilises the true system. The length of this phase depends on how
accurate the initial estimate needs to be [37].

2. LBC phase: Naive exploration, as briefly discussed in Section 2-8, is deployed in an
episodic fashion.

3-2-1 LBC phase

As mentioned previously in Section 2-8, naive exploration strategy, i.e., a CEC with an
additive Gaussian input signal whose covariance diminishes at a rate O( 1√

t
), is sufficient to

attain a regret growth rate of Õ(
√

T ) in the LQR setting. Moreover, this LBC policy has
a simple structure and is computationally efficient to deploy, thereby making it a promising
candidate. Establishing a regret upper bound of Õ(

√
T ) with this scheme in the LQG setting
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3-2 Naive exploration-based LBC algorithm 21

is however in question. In this thesis, this question is answered in the affirmative in Theorem
4.4 with the LBC policy:

ut = −K̂kx̂t|t,Θ̂k
+ ηt,

ηt = σηk
rt, rt ∼ N (0, I),

σ2
ηk

= γ√
lk

, γ > 0,

(3-9)

where k is the episode number, and lk is the number of time steps in the kth episode. Further,
K̂k denotes the optimal feedback gain for the system parameter Θ̂k. From (3-9), it becomes
evident that the covariance of the additive Gaussian exploration signal is kept constant during
each episode. This setting is considered to simplify the regret analysis.

Episode length

Following the warm-up phase, the algorithm proceeds in an episodic fashion wherein, the
number of time steps lk of the kth episode satisfies lk = 2kTw for k = 0, 1, 2, 3..., kfin −1. Since
lk+1 = 2lk, the number of episodes is approximately log2(T ). The use of such a ‘doubling’
episode length scheme can be motivated as follows.

The bulk of the algorithm’s regret can be expressed as the sum of the sub-optimality in the
control law and the cost associated with the additive exploration signal, as detailed in 4-75:

R(T ) ⪅
kfin−1∑
k=0

lk(J(Θ̂k) − J∗) + lkσ
2
ηk

nu

⪅
kfin−1∑
k=0

lkcΘ
(
||M̂t − M||F

)2
+ lkσ

2
ηk

nu

⪅
kfin−1∑
k=0

lkcΘ
1
lk

+ lk
1√
lk

nu

⪅ kfincΘ +
√

Tnu

≈ log2(T )cΘ +
√

Tnu.

(3-10)

The third inequality is a consequence of Theorem 4.3. From the above exposition, it be-
comes evident that in order to ensure that the sub-optimality in the control law scales only
with log2(T ), the doubling scheme of the episode length must be adopted. For the detailed
treatment of the regret upper bound, please refer to the proof of Theorem 4.4 in Chapter 4.

3-2-2 Algorithm with naive exploration

The LBC algorithm with naive exploration in the LQG setting is given below. The algorithm
consists of both the warm-up phase and the LBC phase. Specifically, it shows when the
system parameter is updated as well as the corresponding input signals of the warm-up phase
and the LBC phase.
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Algorithm 2 LQG-NAIVE
1: Initialise Q, R, γ > 0, H, Tw, nx, ny, nu, σ2

u, kfin
2: procedure Warm-up ▷ An initial SYS ID phase
3: for t = 0, 1, ..., Tw − 1 do
4: Inject ut ∼ N (0, σ2

uI)
5: end for
6: Store {yt, ut}Tw−1

t=0
7: end procedure
8: procedure Learning-based control ▷ LBC phase
9: for k = 0, 1, ..., kfin − 1 episodes do

10: Calculate M̂k using {yt, ut}2kTw−1
t=0

11: Perform SYSID to obtain Âk, B̂k, Ĉk, L̂k
12: Determine K̂k from (2-8)
13: Let lk = 2kTw
14: for t = 2kTw, ..., 2k+1Tw − 1 do
15: Inject ut = −K̂kx̂t|t,Θ̂k

+ ηt, ηt ∼ N (0, γ√
lk

I)
16: end for
17: end for
18: end procedure

The finite-time guarantees that are critical for establishing a regret bound of Õ(
√

T ) are
presented in Chapter 4. Further, the simulation results validating the theoretical guarantees
are also presented in Chapter 4.

3-3 FIM-based LBC algorithm

It was mentioned in Section 2-8 that experiment design incorporates the intended application
into account when designing the input signals. This is achieved by optimising over some
function of the FIM (cf. [13], [27], [67]). As promising as this scheme is, it is not suitable
for regret minimisation: the cost of deploying these algorithms is not evaluated online. Naive
exploration, on the other hand, has a simple and intuitive structure that can be easily de-
ployed for regret minimisation problems but lacks any form of ‘intelligence’ in designing the
exploration signal. That is, the exploration signal which is a Gaussian signal with a diminish-
ing covariance, does not take the application or any feedback from the system into account.
There is hence a need to combine the principles of experiment design with the LBC strategies
for regret minimisation to ‘intelligently’ design the exploration signal.
Recently, there have been such efforts in the LQR setting [18], [24], as shown in (2-24). As
an extension to this thesis, this LBC strategy which is based on the FIM, is extended to the
LQG setting from the LQR setting. The use of FIM is motivated in the following.

3-3-1 FIM

Since learning the system parameters is intimately tied to LBC, understanding the role of
the FIM in LBC becomes imperative in designing effective exploration strategies for regret
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minimisation [27], [52], [70]. The FIM quantifies the amount of information contained in a
random variable. For a sequence of random variables {Vt}T−1

t=0 , let the joint probability density
function be fT (v|θ) = ∏T−1

t=0 f(vi|θ). The FIM IT (θ) after T time steps is given by

IT (θ) = Var
(

∂

∂θ′ lT (V|θ′)
)∣∣∣∣
θ′=θ

, (3-11)

where lT (V|θ′) is the log-likelihood of the joint probability density function. Alternatively,
the FIM can be defined as follows.

Definition 3.1 [69] For a family of parameterised probability densities {pθ, θ ∈ Θ̄}, Θ̄ ∈ Rd,
FIM Īp(θ) ∈ Rd×d is given by

Īp(θ) =
∫

∇θ log pθ(x) (∇θ log pθ(x))⊤ pθ(x)dx, (3-12)

whenever the integral exists.
Since the FIM quantifies the amount of information contained in the random variable about
some parameter θ, one can construct the FIM on the output signals to quantify the amount
of the information these signals have on the true system parameter Θ.
The FIM has profound significance in the field of system identification and control. Exper-
iment design methods revolve around the FIM, which was briefly discussed in section 2-8.
Many works have used the FIM for control albeit not for exploration: in [5] and [49], FIM is
used to decide when the controller must be updated to a new one. Likewise, in [29], the FIM
is used to decide when to switch to a known stabilising controller. Finally, the recent work
of [18] uses the FIM to explicitly design the exploration signal, the motivation for which is
based on the works of [69] and [70], which emphasise the significance of the FIM in regret
minimisation in the LQ setting, where it is shown that the optimal policy renders the FIM
singular and that the smallest eigenvalue of the FIM is upper bounded by the regret of the
corresponding policy. This intuition is used to influence the rate of growth of the regret
through the smallest eigenvalue of the FIM, as shown in (2-24) for the LQR setting. In the
present thesis, the structure of the LBC policy in (2-24) is extended to the LQG setting by
constructing the FIM on the output measurements.

Lemma 3.1 For a partially observable system as defined in (2-1) with the output expressed
in an ARX form as shown in (3-6), the FIM under any policy π is given by

IH,T−1(M) =
T−1∑
t=H

EΘ
[
ϕtϕ

⊤
t ⊗ Σ−1

e

]
, (3-13)

where Σe = CΣC⊤ + σ2
zI.

The proof of Lemma 3.1, which can be found in Section 3-4, is an extension to the LQG
setting from the earlier result in [70] for the LQR setting.
From (3-13), it becomes evident that the covariates ϕtϕ

⊤
t that directly influence the estimation

accuracy of the Markov parameters, as shown in the least-squares formulation in (3-7), appears
in the FIM formulation. Hence, the minimum eigenvalue of the FIM can be seen as a metric
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to measure both the informativity of the input-output signals in terms of system identification
as well as a measure of how much information the output measurements have about the true
system parameter Θ.

The literature corresponding to the LQR setting indicates that the minimum eigenvalue of
the FIM grows at a rate O(

√
T ), which is optimal when for instance, naive exploration is

used [24], [29]. Moreover, it has been shown in the LQR setting that, when

ut = −K̂txt + ηt,

ηt = O
( 1√

t

)
, ∀t = 0, 1, 2, ..., T − 1,

(3-14)

the incurred regret R(T ) = Õ(
√

T ) [43], [58]. It must be noted that the naive exploration
strategy satisfies (3-14). Using the result from the optimal growth of λmin(FIM) and the
result corresponding to the incurred regret from naive exploration, it is possible to directly
incorporate the FIM in designing the additive exploration signal. The work in [18] leveraged
this relation to design an LBC as described in (2-24) to guarantee a regret upper bound of
Õ(

√
T ), albeit only asymptotically. This is largely due to the behaviour of λmin(FIM): the

work in [18] guarantees that λmin(FIM) can only grow at a rate O(
√

T ) asymptotically.

Therefore, in this thesis, the FIM-based LBC strategy is validated only with empirical simu-
lations, which can be found in Section 4-2. Establishing finite-time guarantees on the regret
with this LBC strategy is an interesting direction to pursue for future work.

There is however a caveat in using the FIM: the FIM must be evaluated at the unknown true
system parameter Θ, as seen in (3-13). To circumvent this issue, in [18] the FIM is instead
evaluated on Θ̂t, and as the system parameter estimates improve, we have Θ̂t → Θ in the LQR
setting and therefore, the ‘estimated’ FIM that is used will tend to the true FIM. But, such a
guarantee cannot be provided in LQG setting because Θ̂t can only converge to some similarity
transformation of Θ. That being said, what is of consequence is the behaviour of λmin(FIM)
when evaluated at the estimated model parameter since it directly influences the exploration
signal. Since the eigenvalues of a matrix are preserved under similarity transformation, one
can evaluate the FIM with Θ̂t.
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3-3-2 LBC policy and algorithm

Much like LQG-NAIVE (Algorithm 2), the FIM-based LBC algorithm proceeds in two phases:

1. Warm-up phase: Gaussian input signals are injected for Tw time steps to provide
informative data in order to obtain an initial system parameter estimate such that the
corresponding CEC stabilises the true system. The length of this phase depends on how
accurate the initial estimate needs to be [37].

2. LBC phase: CEC with additive FIM-based exploration signal, is deployed in an
episodic fashion.

The estimated FIM is given by the following expression:

IH,T−1(M̂t) =
T−1∑
t=H

ϕtϕ
⊤
t ⊗ Σ̂−1

e,t , (3-15)

where

Σ̂e,t = 1
t + 1

t∑
i=0

(
yi − ŷi|i−1,Θ̂i−1

) (
yi − ŷi|i−1,Θ̂i−1

)⊤
,

where ŷi|i−1,Θ̂i−1
is as defined in (2-11) but for the estimated system parameter Θ̂i−1. The

FIM cannot be constructed for the first H-time steps since the ϕt vector is defined only
after the first H-time steps. This is acceptable because the algorithm, which is based on a
similar structure to LQG-NAIVE, also utilises all the previously collected data for system
identification. Therefore, during the warm-up phase, sufficient data is collected, i.e., Tw ≥ H,
to construct the FIM that is to be used in the LBC phase. To ensure that the FIM is
not poorly scaled, the exploration strategy in (3-9) is used until λmin

(
IH,t(M̂t)

)
is greater

than some tolerance value. After achieving this minimum scaling, the FIM-based exploration
strategy is deployed.

That is, if λmin
(
IH,t(M̂t)

)
< ctol,

ut = −K̂kx̂t|t,Θ̂k
+ ηt,

ηt = σηk
rt, rt ∼ N (0, I),

σ2
ηk

= γ√
lk

, γ > 0,

else,

ut = −K̂kx̂t|t,Θ̂k
+ ηt,

ηt = σηtrt, rt ∼ N (0, I),

σ2
ηt

= α

λmin
(
IH,t(M̂t)

) , α > 0,

(3-16)
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where ctol is the tolerance set by the designer. The proposed LBC strategy does not require
any optimisation procedure to be performed thereby avoiding any computational costs with
respect to computing the exploration signal. The FIM-based LBC algorithm in the LQG
setting is given below. The main difference between LQG-NAIVE and LQG-IF2E lies in
the exploration signal. LQG-IF2E uses the exploration signal as described in (3-16). The
structure of the algorithm, on the other hand, is identical to LQG-NAIVE.

Algorithm 3 LQG-IF2E
1: Initialise Q, R, γ > 0, α > 0, H, Tw, nx, ny, nu, σ2

u, kfin, ctol
2: procedure Warm-up ▷ An initial SYS ID phase
3: for t = 0, 1, ..., Tw − 1 do
4: Inject ut ∼ N (0, σ2

uI)
5: end for
6: Store {yt, ut}Tw−1

t=0
7: end procedure
8: procedure Learning-based control ▷ LBC phase
9: for k = 0, 1, ..., kfin − 1 episodes do

10: Calculate M̂k using {yt, ut}2kTw−1
t=0

11: Perform SYSID to obtain Âk, B̂k, Ĉk, L̂k
12: Determine K̂k from (2-8)
13: for t = 2kTw, ..., 2k+1Tw − 1 do
14: Compute IH,t(M̂t) from (3-15)
15: if λmin

(
IH,t(M̂t)

)
< ctol then

16: Inject ut = −K̂kx̂t|t,Θ̂k
+ ηt, ηt ∼ N (0, γ√

lk
I)

17: else
18: Inject ut = −K̂kx̂t|t,Θ̂k

+ ηt, ηt ∼ N
(

0, α
λmin(IH,t(M̂t))I

)
19: end if
20: end for
21: end for
22: end procedure

3-4 Proofs

3-4-1 Proof of Lemma 3.1

This proof is an extension from the state measurement case addressed in [69] to the partial
observability case. From Lemma B.6, we have for the sequences {yt}T−1

t=0 and {ut}T−1
t=0

IH,T−1(M) = Īp({yt}T −1
t=H ,{ϕt}T −1

t=H) =
T−1∑
t=H

E [Lt(M)] ,

where p
(
{yt}T−1

t=H , {ϕt}T−1
t=H

)
is a multivariate density function for the sequences {yt}T−1

t=H and
{ϕt}T−1

t=H . Further,
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Lt(M) =
∫

∇M log p (ȳ − Mϕt − et) (∇M log p (ȳ − Mϕt − et))⊤

·p (ȳ − Mϕt − et) dȳ,

where ȳ is a dummy variable for integration. From Lemma B.7, with yt = Mϕt + et we have

Lt(M) = EΘ

[((
DMM

)
ϕt
)⊤

Σ−1
e (DMM) ϕt

]
= EΘ

[
(∇Mvec(M))⊤

(
ϕtϕ

⊤
t ⊗ Σ−1

e

)
∇Mvec(M)

]
= EΘ

[
ϕtϕ

⊤
t ⊗ Σ−1

e

]
.

Then

IH,T−1(M) =
T−1∑
t=H

EΘ
[
ϕtϕ

⊤
t ⊗ Σ−1

e

]
.
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Chapter 4

Finite-Time Guarantees and Numerical
Analysis

This chapter provides a finite-time regret guarantee when deploying LQG-NAIVE. Several
auxiliary results are also provided, which provide support to establish the regret guarantee.
Simulation results are provided, which validate the theoretical regret guarantee. As previously
mentioned, this chapter also provides numerical simulations for LQG-IF2E.

4-1 Finite-time guarantees

To provide a finite-time regret guarantee when deploying LQG-NAIVE, several auxiliary
results are required. The two main ingredients involve guaranteeing the system parameter
estimation error to be monotonically decreasing, and the input-output signals of the system
to remain bounded during the LBC phase (Lemma 4.1). The first ingredient requires showing
that the Markov parameters estimation error is monotonically decreasing (Theorem 4.3),
which requires showing that a ‘persistence of excitation’ condition is satisfied (Lemma 4.2).
Now, since the model parameter estimation error can indeed be shown to decrease monotoni-
cally, the corresponding estimation error bound during the LBC period can be upper-bounded
by the estimation error bound after the warm-up period. This fact is extensively utilised to
simplify the analyses. The following provides a list of the results involved in providing a
finite-time regret guarantee:

1. Bounds on the input and output signals after the warm-up phase (Lemma A.1 [36]).

2. Persistence of excitation during the warm-up phase (Lemma A.2 [35]).

3. Bounds on the Markov parameter estimation error after the warm-up phase (Theorem
4.1 [35]).

4. Bounds on the system parameter estimation error (Theorem 4.2 [35]).
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5. Bounds on the input and output signals during the LBC phase (Lemma 4.1).

6. Persistence of excitation during the LBC phase (Lemma 4.2).

7. Bounds on the Markov parameter estimation error during the LBC phase (Theorem
4.3).

To facilitate an easier understanding of how the various finite-time guarantees depend on each
other, a flowchart is provided below.

Figure 4-1: A flowchart showing the dependencies involved in providing finite-time guarantees.

For the ease of comprehension, some relevant terms are recalled here
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1. From Section 2-9, we have

Φ(A) := supτ≥0
||Aτ ||
ρ(A)τ ,

ρ = sup
Θ′∈S

||A′ − B′K(Θ′)|| < 1,

ν = sup
Θ′∈S

||A′ − A′L(Θ′)C ′|| < 1,

Γ = sup
Θ′∈S

||K(Θ′)||,

ζ = sup
Θ′∈S

||L(Θ′)||.

2. From (3-4), we have

H ≥ max

2nx + 1,
log

(√
ny/λcHT 2

)
log(1/ν)

 ,

where the exact expression for cH can be found in (4-53).

3. From (A-3), we have
Υw = ||C||Xw + Z + Uw,

where Xw, Z, and Uw are as defined in (A-2).

4. From (4-46), we have
Υac = Yac + Uac,

where Uac and Yac are as defined in (4-35) and (4-37) respectively.

5. From (3-7), we have that λ > 0, which is a regularising parameter in the least-squares
formulation.

4-1-1 Warm-up phase

Firstly, we state a result from the literature that provides guarantees on Markov parameters
estimation error after the warm-up phase.

Theorem 4.1 [35] The initial estimate of the truncated ARX model, M̂Tw , obeys the following
bound with a probability of at least 1 − 2δ for δ ∈ (0, 1/2), after the warm-up period of Tw
time steps:

||M̂Tw − M|| ≤ poly(ny, H, nu)
min{σw, σz, σu}σo

√
Tw − H

, (4-1)

for some σo > 0. Specifically, if Tw ≥ TM then

||M̂Tw − M|| ≤ 1, (4-2)

with TM = R2
warm, where
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Rwarm =

√
2ny||CΣC⊤ + σ2

zI||
(
log(1/δ) + H(nu+ny)

2 log
(
λ(nu+ny)H+Υ2

wTw
λ(nu+ny)H

))
+

√
2H
T +

√
2λS̄

σo min{σw, σz, σu}
,

(4-3)
where ||M||F ≤ S̄.
This theorem depends on two supporting results, namely, Lemma A.1 and Lemma A.2. Essen-
tially, Theorem 4.1 implies that after sufficient time steps in the warm-up phase, the estimate
of the Markov parameters is quite close to that of the true Markov parameters.

4-1-2 LBC phase

The next step would be to provide guarantees on the system parameter estimation error
after the warm-up phase, i.e., an upper bound on ||Θ̂Tw − Θ||. Theorem 4.2 provides such
a guarantee by generalising it for any t. This is to avoid redundancy in the results as the
following theorem shows that ||Θ̂t − Θ|| = O(||M̂t − M||).

Theorem 4.2 [35] Let H =
[
HF HG

]
be the concatenation of two Hankel matrices obtained

from M. The notations HF and HG have analogous expressions to the definition in (3-8)
but with the true system parameter. Let Ã, B̃, C̃, L̃ be the similarity transformed system
parameters obtained from M by using Algorithm 1. At time step t, let Ât, B̂t, Ĉt, L̂t be the
estimated system parameters obtained from M̂t via Algorithm 1. Then, for a given choice of
H satisfying (3-4), there exists a unitary matrix T ∈ Rnx×nx such that, Θ̃ = (Ã, B̃, C̃, L̃) ∈
(CA(t) × CB(t) × CC(t) × CL(t)), where

CA(t) =
{

A′ ∈ Rnx×nx : ||Ât − T⊤A′T|| ≤ βA(t)
}

,

CB(t) =
{

B′ ∈ Rnx×nu : ||B̂t − T⊤B′|| ≤ βB(t)
}

,

CC(t) =
{

C ′ ∈ Rny×nx : ||Ĉt − C ′T|| ≤ βC(t)
}

,

CL(t) =
{

L′ ∈ Rnu×ny : ||L̂t − T⊤L′|| ≤ βL(t)
}

,

(4-4)

where

βA(t) = cA

(√
nxH(||H|| + σnx(H))

σ2
nx

(H)

)
||M̂t − M||,

βB(t) = βC(t) =
√

20nxH

σnx(H) ||M̂t − M||,

βL(t) = cL,1||H||√
σnx(H)

βA(t) + cL,2

√
nxH(||H|| + σnx(H))

σ
3/2
nx (H)

||M̂t − M||,

(4-5)

for some problem-dependent constants cA, cL,1 and cL,2.
Problem-dependent constants imply constants that depend on the true system parameter Θ.
The proof is provided in Appendix A-2 for the sake of completeness. During the LBC phase,
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it is imperative to guarantee that the input and output signals remain bounded to ensure
the safe operation of the closed-loop system. Such a guarantee can be provided with LQG-
NAIVE, as shown in the following lemma. Both Lemma 4.1 and Lemma 4.2 are extensions of
the results in [35]. The extension here requires accounting for the additive Gaussian excitation
signals.

Lemma 4.1 After a warm-up period of Tw time steps, LQG-NAIVE satisfies the following
with a probability of at least 1 − δ for δ ∈ (0, 1): for all t ∈ [Tw, T − 1],

1. ||x̂t|t,Θ̂t
|| ≤ χ̄,

2. ||x̂t|t−1,Θ̂t−1
|| ≤ Xest,ac,

3. ||yt|| ≤ Yac,

4. ||ut|| ≤ Uac,

where χ̄, Xest,ac, Uac, and Yac are as defined in (4-33), (4-34), (4-35), and (4-37) respectively.
The proof of this lemma can be found in Section 4-3-1. It is important to show that the system
parameter estimation error is monotonically decreasing in the LBC phase. A critical piece to
ensure that lies in guaranteeing the persistence of excitation, which ensures the estimation
accuracy of the Markov parameters. Essentially, the persistence of the excitation ensures that
the cumulative sum of the covariates

(∑t−1
i=Tw

ϕiϕ
⊤
i

)
is positive definite. The significance of

the positive definiteness of the covariates becomes evident in the least-squares formulation
(3-7).

Lemma 4.2 After Tac time steps in the LBC period and for some σc > 0, with probability
of at least 1 − δ for δ ∈ (0, 1), we have the following for all t ≥ Tac + Tw,

σmin

 t−1∑
i=Tw

ϕiϕ
⊤
i

 ≥ (t − Tw)
σ2

c min{σ2
w, σ2

z , σ2
ηt−1}

8 , (4-6)

where

Tac =
512Υ4

acH
2log

(
2H(ny+nu)

δ

)
σ4

c min{σ4
w, σ4

z , σ4
ηt−1}

. (4-7)

A critical component of this proof is the ‘truncated closed-loop noise evolution parameter’
denoted by Gcl

t , which captures how the noise sequences influence the trajectory of the system.
The proof of this lemma is deferred to Section 4-3-2.

Remark 4 An integral piece for proving Lemma 4.2 requires a perturbation bound on the
‘truncated closed-loop noise evolution parameter’ of the form, ||Gcl

t − Gcl||, where Gcl is the
‘truncated closed-loop noise evolution parameter’ with the true system parameter Θ. This
perturbation bound requires representing the bound on ||Gcl

t − Gcl|| as a function of the
system parameter estimation error, and a detailed derivation of the perturbation bound is
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not provided in this thesis due to lack of time and hence it will be consolidated in the future
work. Therefore, in this thesis, it is assumed that ||Gcl

t − Gcl|| can indeed be represented
as a function of the system parameter estimation error. This assumption is not far-fetched
when considering the form of Gcl

t , as shown in (4-41). Further, the proof of Lemma 3.2 in
[35] on which Lemma 4.2 is based, also fails to provide sufficient details for deriving the
above-mentioned perturbation bound.

With Lemma 4.1 and Lemma 4.2, it is possible now to provide a bound on the estimation
error of the Markov parameters during the LBC phase.

Theorem 4.3 For any time step t ≥ max {Tac + Tw, 2Tw − 1}, the estimate of the truncated
ARX model, M̂t, obeys the following bound with a probability of at least 1−2δ for δ ∈ (0, 1/2):

||M̂t − M|| ≤ poly(ny, H, nu)√
(t − H + 1) min{σ2

oσ2
w, σ2

oσ2
z , σ2

oσ2
u, σ

2
cσ

2
w

8 , σ
2
cσ

2
z

8 ,
σ2

cσ
2
ηt

8 }
. (4-8)

The proof of this theorem can be found in Section 4-3-3. The structure of the proof follows
similarly to the proof of Theorem 3.2 in [35]. The difference lies in the terms that account for
the additive excitation signal. Theorem 4.1 along with the result in Theorem 4.3 implies that
the estimation error of Markov parameters is monotonically decreasing approximately at a
rate O( 1√

t
). This fact is leveraged in the following corollary to provide a bound for the model

parameter estimation error at time step t with respect to the bound on the model parameter
estimation error after the warm-up phase.

Corollary 4.1 [35] After the warm-up period of Tw time steps, for a given choice of H satisfying
(3-4), for a unitary matrix T ∈ Rnx×nx , with a probability of at least 1 − 2δ for δ ∈ (0, 1/2),
we have

CA(Tw) =
{

A′ ∈ Rnx×nx : ||Ât − T⊤A′T|| ≤ βA(Tw)
}

,

CB(Tw) =
{

B′ ∈ Rnx×nu : ||B̂t − T⊤B′|| ≤ βB(Tw)
}

,

CC(Tw) =
{

C ′ ∈ Rny×nx : ||Ĉt − C ′T|| ≤ βC(Tw)
}

,

CL(Tw) =
{

L′ ∈ Rnu×ny : ||L̂t − T⊤L′|| ≤ βL(Tw)
}

,

(4-9)

where

βA(Tw) = σnx(A)
2 if Tw ≥ TA,

βB(Tw) = βC(Tw) = 1 if Tw ≥ TB,

βL(Tw) = cL,1||H||√
σnx(H)

βA(Tw) + cL,2

√
nxH(||H|| + σnx(H))

σ
3/2
nx (H)

if Tw ≥ TA.

(4-10)

This corollary is a consequence of Theorem 4.2 and Theorem 4.3, and is from the literature as
cited above. The proof of this corollary along with the definitions of TA and TB are presented
for the sake of completeness in Appendix A-2, along with the proof of Theorem 4.2.

Archith Athrey Master of Science Thesis



4-1 Finite-time guarantees 35

With the boundedness of the input and output signals and with the guarantee of diminishing
model parameter estimation error, we are almost ready to address the regret bound. The final
piece in establishing the regret upper bound requires bounding the sub-optimality gap ∆Θ̂
as defined in (2-15). This inherently requires a way to represent the (sub)optimal long-term
average expected cost incurred during the LBC phase denoted by J(Θ̂t). The following expo-
sition allows us to do just that by representing the (sub)optimal long-term average expected
cost as a function of the solution to a Lyapunov equation.

For a system as defined in (2-1) satisfying the assumptions in Assumptions 2.1, and for
an estimated system parameter Θ̂ ∈ S with the set S as defined in Section 2-9, define an
alternative formulation of the LQG cost function as follows:

Js(Θ̂) = lim
T→∞

1
T
E


T−1∑
t=0

[
xt

x̂t|t,Θ̂

]⊤ [
Qc 0
0 K̂⊤RK̂

]
︸ ︷︷ ︸

W̄

[
xt

x̂t|t,Θ̂

] s.t.

xt+1 = Axt + But + wt, wt ∼ N (0, σ2
wI),

yt = Cxt + zt, zt ∼ N (0, σ2
zI),

x̂t|t,Θ̂ = (I − L̂Ĉ)x̂t|t−1,Θ̂ + L̂yt,

x̂t+1|t,Θ̂ = Âx̂t|t,Θ̂ + B̂ut,

ut = −K̂x̂t|t,Θ̂,

(4-11)

where Qc = C⊤QC, K̂ stabilises the true system, and Â − F̂ Ĉ is asymptotically stable.
Further, consider the following closed-loop state-space equation with extended states:[

xt
x̂t|t,Θ̂

]
=
[

A −BK̂

L̂CA
(
I − L̂Ĉ

) (
Â − B̂K̂

)
− L̂CBK̂

]
︸ ︷︷ ︸

Ĝ1

[
xt−1

x̂t−1|t−1,Θ̂

]
+
[

I 0
L̂C L̂

]
︸ ︷︷ ︸

Ĝ2

[
wt−1

zt

]
,

and let S = dlyap(Ĝ1, W̄) ≥ 0 be the solution of the discrete Lyapunov equation, as defined
in Definition B.1. Then, we have

Js(Θ̂) = Tr
(

Ĝ⊤
2 SĜ2

[
σ2
wI 0
0 σ2

zI

])
. (4-12)

The proof of (4-12) is presented for the sake of completeness in Appendix A-3. Now, it is a
well-known fact that Js(Θ̂) = J(Θ̂) − Tr(Qσ2

zI) [43]. This property can aid in quantifying
the sub-optimality gap ∆Θ̂ as shown in the proof of Theorem 3 in [43]. Now, we are ready to
state the regret upper bound.

Theorem 4.4 (The regret of the LBC phase) After the warm-up period of Tw time steps,
with a probability of at least 1 − δ for δ ∈ (0, 1), we have for any T in the LBC phase, the
regret of LQG-NAIVE is bounded as follows:

Master of Science Thesis Archith Athrey



36 Finite-Time Guarantees and Numerical Analysis

R(T ) ≲
kfin−1∑
k=0

lk
(
Js(Θ̂k) − J∗

)
+ lknyσ

2
zTr (Q) + lkσ

2
ηk

poly (βA(Tw), βB(Tw), βL(Tw), ||S||)

+
√

lkpoly (βA(Tw), βB(Tw), βL(Tw), ||S||, Xac, χ̄, ||Q||, ||R||, Γ) ,

(4-13)

where lk is the number of time steps in the kth episode and kfin is the number of episodes.
The above bound can be refined to obtain:

R(T ) = Õ(
√

T ), (4-14)

where Õ(.) hides poly-logarithmic factors and problem-dependent constants.

Problem-dependent constants imply constants that depend on the true system parameter Θ.
The proof of this theorem is deferred to Section 4-3-4. Here, an intuition is provided on how
the regret bound is derived. From Algorithm 2, it becomes evident that LQG-NAIVE operates
in an episodic fashion. Hence, the regret is also analysed episode-wise. Firstly, an upper bound
on the cumulative cost incurred by LQG-NAIVE in any episode is obtained. From this, we
can obtain an upper bound on the regret for any episode. This episode-wise regret bound is
then summed over the number of episodes to obtain the final regret upper bound incurred
by LQG-NAIVE during the LBC phase as shown in (4-13). From (4-13), we see that the
sub-optimality gap and the exploration cost (3rd term) have significant contributions towards
the magnitude of the regret since they are linearly dependent on the number of time steps in
the kth episode. To provide a bound on the sub-optimality gap, we use an earlier result in [43],
which essentially reduces the contribution from the sub-optimality gap to O(log2(T )). On the
other hand, the exploration cost essentially reduces to O(

√
T ) since σ2

ηk
= O(1/

√
lk). We can

further see that the system parameter estimation error along with the established bounds on
the state and its estimate, also influences the regret upper bound. As was mentioned before,
the system parameter estimation errors are monotonically decreasing, and as a consequence,
it is possible to upper bound the system parameter estimation error at any time step t with
the corresponding bound after the warm-up. This is evident in (4-13). Finally, it must be
noted that the regret incurred during the warm-up phase is Õ(Tw) [36]. This result along
with the result in Theorem 4.4 gives the overall regret incurred by LQG-NAIVE.
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4-2 Simulation results

4-2-1 Simulation setting

Here, we validate the performance of LQG-NAIVE and LQG-IF2E through empirical simu-
lations. For the simulation, the web server control problem is considered, which is linearised
around its operating point [1], [9]. For more details about this control problem, refer to Section
3.4 in [9]. This problem, which is formulated for the full-state measurement case, is modified
to the partial observability case, i.e., the inclusion of the C matrix and the measurement
noise. The system under consideration is given by

xt+1 =
[

0.54 −0.11
−0.026 0.63

]
xt +

[
−85 4.4
−2.5 2.8

]
ut + wt, wt ∼ N (0, 0.01I),

yt =
[
0.2 0.3
0.3 0.2

]
xt + zt, zt ∼ N (0, 0.01I).

The cost matrices for the control problem are given by [9]:

Q =
[
5 0
0 1

]
, R =

[
1

502 0
0 1

106

]
.

The optimal long-term average expected cost calculated from (2-12) is 0.0707046. The length
of the warm-up phase is set to Tw = 25. During the warm-up phase, Gaussian excitatory
signals are injected, where ut ∼ N (0, 0.1I). For the LBC phase, the number of episodes is
taken to be 11. The hyper-parameters for the LBC policies (3-9) and (3-16) are γ =

√
Tw

10
and α = 1 respectively. To ensure proper scaling of the minimum eigenvalue of the FIM,
ctol = 1. Finally, to obtain consistent parameter estimates, the length of the input-output
data history that is used to construct the ϕ vector is set at H = 12. The algorithms LQG-
NAIVE and LQG-IF2E are run 100 times to report the mean and the standard deviation of
the observations.

4-2-2 Comparing the simulation results of LQG-NAIVE and LQG-IF2E

Figure 4-2 captures how the regret growth varies over the 100 simulations. The bold red
line signifies the mean regret of LQG-NAIVE whereas, the bold blue line signifies the mean
regret of LQG-IF2E. LQG-NAIVE incurs a long-term average cost of 0.074426 and LQG-
IF2E incurs a long-term average cost of 0.074203, averaged over the 100 simulations. The
LQG-IF2E algorithm switches to the FIM-based exploration strategy at the 35th time step,
on average. This means that with a delay of approximately one episode, the algorithm is
able to deploy the FIM-based exploration strategy. From Figure 4-2, it becomes evident that
LQG-NAIVE and LQG-IF2E have similar behaviour of the regret growth, this is primarily
due to the hyper-parameter tuning. An intuitive way to understand this similarity in regret
growth is to plot the evolution of the minimum eigenvalue of the FIM.
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Figure 4-2: Regret growth of LQG-NAIVE and LQG-IF2E.

Figure 4-3: Growth of the minimum eigenvalue of the FIM estimated on M̂t.

Figure 4-3 captures how the minimum eigenvalue of the FIM varies over the 100 simulations.
The bold blue line signifies the mean growth of λmin

(
IH,t(M̂t)

)
of LQG-IF2E whereas, the

bold red line signifies the mean growth of λmin
(
IH,t(M̂t)

)
of LQG-NAIVE. From the figure,

it becomes evident that the behaviour of the FIM is also similar between the two algorithms.
Since the FIM captures the informativity of the data, one can expect two algorithms to have
similar regret growth if their corresponding FIMs constructed on the input-output data, also
show a similar growth. The ‘bumps’ that are observed in Figure 4-3 closely correspond to
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the time steps where the system parameter estimate Θ̂t was updated. It is straightforward to
notice that the length of the ‘bumps’ corresponds approximately to the length of the episodes.
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Figure 4-4: Comparing the CEC of the last updated model with that of the optimal policy:
LQG-NAIVE.
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Figure 4-5: Comparing the CEC of the last updated model with that of the optimal policy:
LQG-IF2E.

To validate the claim that the LBC policy is converging to that of the optimal policy, we can
compare the CEC controller, i.e., ut = −K̂11x̂t|t,Θ̂11

that is updated at the start of the last
(11th) episode, with that of the optimal controller. For LQG-NAIVE, we have Figure 4-4,
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which compares the average behaviour of the CEC controller of the ‘latest’ model with that of
the optimal controller for 100 time steps. Here, the average is taken over the 100 simulations.
From the figure, it becomes evident that the estimated control policy has converged quite close
to that of the optimal policy. Comparing the output data, we have a Root Mean Squared
Error (RMSE) of 14×10−4 and 16×10−4, and a Variance Accounted For (VAF) of 96.56% and
94.52%, for output channel 1 and 2 respectively. Similarly, for LQG-IF2E, we have Figure 4-5,
which shows that the output behaviour of the two controllers is quite close. Comparing the
output data, we have an RMSE of 7.87 × 10−4 and 9.36 × 10−4, and a VAF of 99.72% and
98.42%, for output channel 1 and 2 respectively.

4-3 Proofs

4-3-1 Proof of Lemma 4.1

The present analysis abstracts away the episodic behaviour of the algorithm, that is, Θ̂t−1
could either be the system parameter estimate being used in the current episode at time step
t − 1 or it could be the system parameter estimated in the previous episode if the time step
t − 1 falls in the previous episode. The analysis is independent of when the system parameter
is being updated.

Since the behaviour of a system with parameter Θ and its similarity transformation is the
same, without loss of generality, we assume that the similarity transformation matrix T = I.
This proof is an extension of an earlier result in [35]. The cited parts in this proof can be
found in the proof of Lemma 4.1 in [35].

Based on (2-6), consider the following decomposition of x̂t|t,Θ̂t

x̂t|t,Θ̂t
= x̂t|t−1,Θ̂t−1

+ L̂t(yt − Ĉtx̂t|t−1,Θ̂t−1
)

= Ât−1x̂t−1|t−1,Θ̂t−1
− B̂t−1K̂t−1x̂t−1|t−1,Θ̂t−1

+ B̂t−1ηt−1 + L̂t

(
yt − Ĉt

(
Ât−1x̂t−1|t−1,Θ̂t−1

− B̂t−1K̂t−1x̂t−1|t−1,Θ̂t−1
+ B̂t−1ηt−1

))

=
(
I − L̂tĈt

) (
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+
(
I − L̂tĈt

)
B̂t−1ηt−1

+ L̂t
(
Cxt + zt − Cx̂t|t−1,Θ̂t−1

+ Cx̂t|t−1,Θ̂t−1

)
=
(
I − L̂tĈt

) (
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+
(
I − L̂tĈt

)
B̂t−1ηt−1

+ L̂t
(
Cxt − Cx̂t|t−1,Θ̂t−1

+ C
(
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+ CB̂t−1ηt−1 + zt
)

=
(

Ât−1 − B̂t−1K̂t−1 − L̂t
(
ĈtÂt−1 − ĈtB̂t−1K̂t−1 − CÂt−1 + CB̂t−1K̂t−1

))
x̂t−1|t−1,Θ̂t−1

+
(
I − L̂tĈt

)
B̂t−1ηt−1 + L̂tC

(
xt − x̂t|t−1,Θ̂t−1

+ x̂t|t−1,Θ − x̂t|t−1,Θ
)

+ L̂tCB̂t−1ηt−1 + L̂tzt
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=
(

Ât−1 − B̂t−1K̂t−1 − L̂t
(
ĈtÂt−1 − ĈtB̂t−1K̂t−1 − CÂt−1 + CB̂t−1K̂t−1

))
︸ ︷︷ ︸

Can be thought of as the dynamics

x̂t−1|t−1,Θ̂t−1

+ L̂tC
(
xt − x̂t|t−1,Θ

)
+ L̂tC

(
x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1

)
+ B̂t−1ηt−1 + L̂tzt + L̂t

(
C − Ĉt

)
B̂t−1ηt−1︸ ︷︷ ︸

Can be thought of as a process noise

.

(4-15)

We will bound ||x̂t|t,Θ̂t
|| by bounding each of the above terms in the decomposition. Define

the following event:
EM :=

{
||M̂t − M|| ≤ 1

}
, (4-16)

which is assumed to hold when t ≥ Tw ≥ TM, where TM is as defined in Theorem 4.1. It will
be shown later in Theorem 4.3 that this event indeed holds with high probability. Assuming
this event holds, we have

1. Θ ∈ CA(t) × CB(t) × CC(t) × CL(t) for all t ≥ Tw.

2. ||Ĉt − C||, ||B̂t − B||, ||F̂t − F || ≤ βB(Tw) = 1 when Tw ≥ TB.

3.
∣∣∣∣∣∣Ât − A

∣∣∣∣∣∣ ≤ βA(Tw) = σnx(A)/2 when Tw ≥ TA.

4.
∣∣∣∣∣∣L̂t − L

∣∣∣∣∣∣ ≤ βL(Tw),

where the similarity transformation matrix T = I without loss of generality. We will use the
above bounds extensively in the current proof. The definitions of TA and TB can be found in
Appendix A-2.

Bounding the norm of the ‘dynamics’ term [35]

Let

Nt =
(

I − L̂t
(
Ĉt − C

))(
Ât−1 − B̂t−1K̂t−1

)
.

Let Tu = TB
(

2ζρ
1−ρ

)2
. This implies

∣∣∣∣∣∣Ĉt − C
∣∣∣∣∣∣ ≤ 1−ρ

2ζρ for t ≥ Tw ≥ Tu. Then under event EM,
we have

||Nt|| ≤ 1 + ρ

2 < 1. (4-17)

Recalling from Section 2-9, we have

Φ(A) := supτ≥0
||Aτ ||
ρ(A)τ ,

ρ = sup
Θ′∈S

||A′ − B′K(Θ′)|| < 1,

ν = sup
Θ′∈S

||A′ − A′L(Θ′)C ′|| < 1,

Γ = sup
Θ′∈S

||K(Θ′)||,

ζ = sup
Θ′∈S

||L(Θ′)||.
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Bounding the norm of the ‘process noise’ term

The term L̂tC
(
xt − x̂t|t−1,Θ

)
+L̂tzt is a ζ

(
||C||||Σ||1/2 + σz

)
- sub-Gaussian random variable.

Therefore, from Lemma B.1, we get [36]:

∣∣∣∣∣∣L̂tC (xt − x̂t|t−1,Θ
)

+ L̂tzt
∣∣∣∣∣∣ ≤ ζ

(
||C||||Σ||1/2 + σz

)√
2nx log

(2nxT

δ

)
, (4-18)

for all t ≥ Tw with probability of at least 1 − δ/T . Re-parameterise δ/T → δ. Now, under
EM, we have ∣∣∣∣∣∣B̂t−1ηt−1 + L̂t

(
C − Ĉt

)
B̂t−1ηt−1

∣∣∣∣∣∣
≤
(
||B|| +

∣∣∣∣∣∣B̂t−1 − B
∣∣∣∣∣∣) ||ηt−1||

(
1 +

∣∣∣∣∣∣L̂t(Ĉt − C)
∣∣∣∣∣∣)

≤ (||B|| + 1) ||ηt−1|| (1 + ζ) .

Recall from (3-9) that ηt ∼ σηtN (0, I), where σ2
ηt

= γ√
lk

with γ > 0. Therefore, from Lemma
B.1, we have

||ηt|| ≤ σηt

√
2nu log

(2nuT

δ

)
, (4-19)

which holds with a probability of at least 1 − δ/T for all t ≥ Tw. Re-parameterise δ/T → δ.
This implies ∣∣∣∣∣∣B̂t−1ηt−1 + L̂t

(
C − Ĉt

)
B̂t−1ηt−1

∣∣∣∣∣∣
≤ σηt (||B|| + 1) (1 + ζ)

√
2nu log

(2nuT

δ

)

≤ √
γ (||B|| + 1) (1 + ζ)

√
2nu log

(2nuT

δ

)
,

(4-20)

which holds with a probability of at least 1 − δ for all t ≥ Tw under the event EM. Finally,
we bound the spectral norm of the term ∆t =

(
x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1

)
.

Bounding ||∆t||

From (2-6), we have the following decompositions:

x̂t+1|t,Θ = Ax̂t|t,Θ + But

= Ax̂t|t,Θ − BK̂tx̂t|t,Θ̂t
+ Bηt

= Ax̂t|t,Θ − BK̂tx̂t|t,Θ + BK̂tx̂t|t,Θ − BK̂tx̂t|t,Θ̂t
+ Bηt

=
(
A − BK̂t

)
x̂t|t,Θ − BK̂t

(
x̂t|t,Θ̂t

− x̂t|t,Θ
)

+ Bηt.
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x̂t+1|t,Θ̂t
= Âtx̂t|t,Θ̂t

+ B̂tut

= Âtx̂t|t,Θ̂t
− B̂tK̂tx̂t|t,Θ̂t

+ B̂tηt

=
(
Ât + A − A

)
x̂t|t,Θ̂t

+
(
−B̂tK̂t + BK̂t − BK̂t

)
x̂t|t,Θ̂t

+ B̂tηt

=
(
Ât + A − A − B̂tK̂t + BK̂t − BK̂t

)
x̂t|t,Θ̂t

+ B̂tηt

=
(
Ât + A − A − B̂tK̂t + BK̂t − BK̂t

) (
x̂t|t,Θ̂t

− x̂t|t,Θ + x̂t|t,Θ
)

+ B̂tηt

=
(
Ât − A − B̂tK̂t + BK̂t

)
︸ ︷︷ ︸

δΘ̂t

x̂t|t,Θ +
(
A − BK̂t

)
x̂t|t,Θ

+
(
Ât − A − B̂tK̂t + BK̂t

) (
x̂t|t,Θ̂t

− x̂t|t,Θ
)

+
(
A − BK̂t

) (
x̂t|t,Θ̂t

− x̂t|t,Θ
)

+ B̂tηt.

Thus ∆t+1 is,

∆t+1 = x̂t+1|t,Θ − x̂t+1|t,Θ̂t

=
(
A − BK̂t

)
x̂t|t,Θ − BK̂t

(
x̂t|t,Θ̂t

− x̂t|t,Θ
)

+ Bηt

− δΘ̂t
x̂t|t,Θ − δΘ̂t

(
x̂t|t,Θ̂t

− x̂t|t,Θ
)

−
(
A − BK̂t

) (
x̂t|t,Θ̂t

− x̂t|t,Θ
)

−
(
A − BK̂t

)
x̂t|t,Θ − B̂tηt

= A
(
x̂t|t,Θ − x̂t|t,Θ̂t

)
− δΘ̂t

x̂t|t,Θ + δΘ̂t

(
x̂t|t,Θ − x̂t|t,Θ̂t

)
+ Bηt − B̂tηt

=
(
A + δΘ̂t

) (
x̂t|t,Θ − x̂t|t,Θ̂t

)
− δΘ̂t

x̂t|t,Θ +
(
B − B̂t

)
ηt.

We will now decompose the term
(
x̂t|t,Θ − x̂t|t,Θ̂t

)
. From (2-6), we have [35]:

x̂t|t,Θ − x̂t|t,Θ̂t
=
(
I − L̂tĈt

)
∆t +

(
L − L̂t

)
et + L̂t

(
Ĉt − C

)
x̂t|t−1,Θ.

Now, substituting the above expansion into ∆t+1, we get

∆t+1 =
(
A + δΘ̂t

)((
I − L̂tĈt

)
∆t +

(
L − L̂t

)
et + L̂t

(
Ĉt − C

)
x̂t|t−1,Θ

)

− δΘ̂t
x̂t|t,Θ +

(
B − B̂t

)
ηt

=
(
A + δΘ̂t

) (
I − L̂tĈt

)
∆t +

(
A + δΘ̂t

) (
L − L̂t

)
et

+
(
A + δΘ̂t

)
L̂t
(
Ĉt − C

)
x̂t|t−1,Θ − δΘ̂t

x̂t|t,Θ +
(
B − B̂t

)
ηt

=
(
A + δΘ̂t

) (
I − L̂tĈt

)
∆t +

(
A + δΘ̂t

) (
L − L̂t

)
et

+
(
A + δΘ̂t

)
L̂t
(
Ĉt − C

)
x̂t|t−1,Θ − δΘ̂t

x̂t|t−1,Θ − δΘ̂t
Let +

(
B − B̂t

)
ηt

=
(
A + δΘ̂t

) (
I − L̂tĈt

)
∆t +

(
AL − AL̂t + δΘ̂t

L − δΘ̂t
L̂t − δΘ̂t

L
)

et

+
((

A + δΘ̂t

)
L̂t
(
Ĉt − C

)
− δΘ̂t

)
x̂t|t−1,Θ +

(
B − B̂t

)
ηt
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=
(
A + δΘ̂t

) (
I − L̂tĈt

)
∆t +

(
A
(
L − L̂t

)
− δΘ̂t

L̂t

)
et

+
((

A + δΘ̂t

)
L̂t
(
Ĉt − C

)
− δΘ̂t

)
x̂t|t−1,Θ +

(
B − B̂t

)
ηt

=
t∑
i=0

t−i−1∏
j=0

((
A + δΘ̂t−j

) (
I − L̂t−jĈt−j

))(
A
(
L − L̂i

)
− δΘ̂i

L̂i

)
ei

+
t∑
i=1

t−i−1∏
j=0

((
A + δΘ̂t−j

) (
I − L̂t−jĈt−j

))((
A + δΘ̂i

)
L̂i
(
Ĉi − C

)
− δΘ̂i

)
x̂i|i−1,Θ

+
t∑
i=0

t−i−1∏
j=0

((
A + δΘ̂t−j

) (
I − L̂t−jĈt−j

))(
B − B̂i

)
ηi.

(4-21)
The last equality in (4-21) comes from the assumption that x̂0|−1,Θ = x̂0|−1,Θ̂−1

= 0. Let us
now decompose x̂i|i−1,Θ:

x̂i|i−1,Θ = Ax̂i−1|i−1,Θ − BK̂i−1x̂i−1|i−1,Θ̂i−1
+ Bηi−1

= Ax̂i−1|i−1,Θ − BK̂i−1x̂i−1|i−1,Θ − BK̂i−1
(
x̂i−1|i−1,Θ̂i−1

− x̂i−1|i−1,Θ
)

+ Bηi−1

=
(
A − BK̂i−1

)
x̂i−1|i−1,Θ + BK̂i−1

(
x̂i−1|i−1,Θ − x̂i−1|i−1,Θ̂i−1

)
+ Bηi−1

=
(
A − BK̂i−1

) (
x̂i−1|i−2,Θ + Lei−1

)
+ BK̂i−1

((
I − L̂i−1Ĉi−1

)
∆i−1 +

(
L − L̂i−1

)
ei−1 + L̂i−1

(
Ĉi−1 − C

)
x̂i−1|i−2,Θ

)
+ Bηi−1

=
(

A − BK̂i−1
(
I − L̂i−1

(
Ĉi−1 − C

)))
x̂i−1|i−2,Θ + BK̂i−1

(
I − L̂i−1Ĉi−1

)
∆i−1

+
((

A − BK̂i−1
)

L + BK̂i−1
(
L − L̂i−1

))
ei−1 + Bηi−1

=
i−1∑
j=0

i−2−j∏
k=0

(
A − BK̂i−1−k + BK̂i−1−kL̂i−1−k

(
Ĉi−1−k − C

))
(

BK̂j

(
I − L̂jĈj

)
∆j +

((
A − BK̂j

)
L + BK̂j

(
L − L̂j

))
ej + Bηj

)
.

(4-22)
For brevity of representation, we can define the following terms:

ai =
(
A + δΘ̂i

) (
I − L̂iĈi

)
bi =

(
A
(
L − L̂i

)
− δΘ̂i

L̂i
)

ci =
(
A + δΘ̂i

)
L̂i
(
Ĉi − C

)
− δΘ̂i

di =
(
B − B̂i

)
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fi = A − BK̂i + BK̂iL̂i
(
Ĉi − C

)
gi = BK̂i

(
I − L̂iĈi

)
hi =

(
A − BK̂i

)
L + BK̂i

(
L − L̂i

)
.

(4-23)

Finally, using (4-21) with the equality given in (4-22), and with the definitions in (4-23), we
get

∆t+1 =
t∑
i=0

t−i−1∏
j=0

at−jbiei +
t∑
i=1

t−i−1∏
j=0

at−jci

i−1∑
j=0

i−2−j∏
k=0

fi−1−kgj∆j


+

t∑
i=1

t−i−1∏
j=0

at−jci

i−1∑
j=0

i−2−j∏
k=0

fi−1−khjej

+
t∑
i=1

t−i−1∏
j=0

at−jci

i−1∑
j=0

i−2−j∏
k=0

fi−1−kBηj


+

t∑
i=0

t−i−1∏
j=0

at−jdiηi.

(4-24)

The above expression is similar to the one in the proof of Lemma 4.2 in [36]. The main
difference lies in accounting for the additive excitation signal, i.e., the last two terms in the
above expression. Since the model parameter estimation error is monotonically decreasing
at every time step after the warm-up under the event EM, we can upper bound the norm of
each of the above terms in the decomposition by the bound at the end of the warm-up [35].
The bound for the first three terms in the above expression follows analogously to the bounds
given in the proof of Lemma 4.2 in [36]. Further, it must be noted that the norm of the terms
in (4-23) are identical to the ones in the proof of Lemma 4.2 in [36]. Hence, in this thesis, a
detailed treatment of deriving the bounds on the norm of the terms in (4-23), is not provided.

Bounding the norm of
∑t
i=1

∏t−i−1
j=0 at−jci

(∑i−1
j=0

∏i−2−j
k=0 fi−1−kBηj

)
Expanding the term, we see that

t∑
i=1

t−i−1∏
j=0

at−jci

i−1∑
j=0

i−2−j∏
k=0

fi−1−kBηj


= (atat−1...a2c1) (Bη0) + (atat−1...a3c2) (f1Bη0 + Bη1) + (atat−1...a4c3) (f2f1Bη0 + f2Bη1 + Bη2)

+ (atat−1...a5c4) (f3f2f1Bη0 + f2f1Bη1 + f1Bη2 + Bη3) + ...

+ ct (ft−1ft...f1Bη0 + ft−1ft...f2Bη1 + ... + Bηt−1)
= (atat−1...a2c1 + atat−1...a3c2f1 + atat−1...a4c3f2f1 + ... + ctft−1ft...f1) Bη0

+ (atat−1...a3c2 + atat−1...a4c3f2 + atat−1...a5c4f2f1 + ... + ctft−1ft...f2) Bη1

+ ... + ctBηt−1.

(4-25)

We will first start with bounding the norm of at. Recalling (4-23), we have
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at =
(
A + δΘ̂t

) (
I − L̂tĈt

)
=
(
A + Ât − A − B̂tK̂t + BK̂t

) (
I − L̂tĈt

)
=
(
Ât −

(
B̂t − B

)
K̂t

) (
I − L̂tĈt

)
=
(
Ât − ÂtL̂tĈt

)
−
(
B̂t − B

)
K̂t

(
I − L̂tĈt

)
.

Let σ ∈ R satisfy 1 > σ > max{ρ, ν}. Under the event EM, we have ||at|| ≤ σ < 1 for all
t ≥ Tw ≥ Ta, where

Ta = TB

(Γ (1 + ζ (||C|| + 1))
(σ − ν)

)2
.

Similarly, we can bound the norm of ft. If

Tf = TA
σ2
n(A)
4

(1 + Γ + Γζ ||B||
σ − ρ

)2
,

we obtain ||ft|| ≤ σ < 1 for all t ≥ Tw ≥ Tf . Furthermore, for Tw ≥ max{Ta, Tf}, we have
that for all t ≥ Tw, max{||at||, ||ft||} ≤ σ < 1. Further, a bound on the norm of ct exists
under the event EM:

||ct|| ≤ 2
(

Φ(A) + βA(Tw) + ΓβB(Tw)
)

ζβC(Tw) + 2
(

βA(Tw) + ΓβB(Tw)
)

:= c̄. (4-26)

Therefore, from (4-25) and using the above bounds, we have the following under event EM:∣∣∣∣∣∣
∣∣∣∣∣∣
t∑
i=1

t−i−1∏
j=0

at−jci

i−1∑
j=0

i−2−j∏
k=0

fi−1−kBηj

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
(
tσt−1 + (t − 1)σt−2 + ... + 2σ + 1

)
c̄||B||√γ

√
2nu log

(2nuT

δ

)
= c̄||B||√γ

(
(1 + σ + σ2 + ... + σt−1) + (σ + σ2 + ... + σt−1) + (σ2 + σ3... + σt−1) + ... + σt−1

)
√

2nu log
(2nuT

δ

)

≤ c̄||B||√γ

( 1
1 − σ

+ σ

1 − σ
+ ...

)√
2nu log

(2nuT

δ

)

=
c̄||B||√γ

(1 − σ)2

√
2nu log

(2nuT

δ

)
,

(4-27)

which holds with a probability of at least 1 − δ.

Bounding the norm of
∑t
i=0

∏t−i−1
j=0 at−jdiηi

The bound on this term follows a similar procedure as that of the bound in (4-27). It is
straightforward to see that ||dt|| ≤ 1 under the event EM. Therefore, we have the following
under the event EM:
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∣∣∣∣∣∣
∣∣∣∣∣∣
t∑
i=0

t−i−1∏
j=0

at−jdiηi

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

√
γ

1 − σ

√
2nu log

(2nuT

δ

)
, (4-28)

which holds with a probability of at least 1 − δ.

Bounding the norm of
∑t
i=0

∏t−i−1
j=0 at−jbiei [35]

Similar to the other terms, we can indeed say that a bound on the norm of bt exists under
the event EM:

||bt|| ≤ 2Φ(A)βL(Tw) + 2βA(Tw)ζ + 2βB(Tw)Γζ := b̄.

Observe that et is a
(
||C||||Σ||1/2 + σz

)
- sub - Gaussian random variable. Therefore, by using

Lemma B.1, for all t ≥ Tw with probability of at least 1 − δ, we have the following under
event EM: ∣∣∣∣∣∣

∣∣∣∣∣∣
t∑
i=0

t−i−1∏
j=0

at−jbiei

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ b̄

1 − σ

(
||C||||Σ||1/2 + σz

)√
2ny log

(2nyT

δ

)
. (4-29)

Bounding the norm of
∑t
i=1

∏t−i−1
j=0 at−jci

(∑i−1
j=0

∏i−2−j
k=0 fi−1−khjej

)
[35]

Under the event EM, we have

||ht|| ≤
(

2βA(Tw) + ρ + 2βB(Tw)Γ
)

ζ + 2||B||ΓβL(Tw) := h̄.

Similar to the previous bound, we have the following under event EM:∣∣∣∣∣∣
∣∣∣∣∣∣
t∑
i=1

t−i−1∏
j=0

at−jci

i−1∑
j=0

i−2−j∏
k=0

fi−1−khjej

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ c̄h̄

(1 − σ)2

(
||C||||Σ||1/2 + σz

)√
2ny log

(2nyT

δ

)
,

(4-30)

which holds with a probability of at least 1 − δ.

Bounding the norm of
∑t
i=1

∏t−i−1
j=0 at−jci

(∑i−1
j=0

∏i−2−j
k=0 fi−1−kgj∆j

)
[35]

It can be shown under the event EM that, ||gt|| ≤ ḡ exists. Further, it can be shown through
the method of induction, that for all t ≥ Tw, under the event EM, we have the following with
a probability of at least 1 − δ:∣∣∣∣∣∣x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1

∣∣∣∣∣∣ = ||∆t|| ≤ ∆̄,

∆̄ = 10
(

b̄

1 − σ
+ c̄h̄

(1 − σ)2

)(
||C||||Σ||1/2 + σz

)√
2ny log

(2nyT

δ

)

+ 10
( √

γ

1 − σ
+

c̄||B||√γ

(1 − σ)2

)√
2nu log

(2nuT

δ

)
.

(4-31)

For details on the derivation of the above expression, refer to the proof of Lemma 4.1 in [35].
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Putting things together

To recall, from (4-15) we have

x̂t|t,Θ̂t
=

t∑
i=1

t−i−1∏
j=0

Nt−j
(
L̂iC

(
xi − x̂i|i−1,Θ

)
+ L̂iC

(
x̂i|i−1,Θ − x̂i|i−1,Θ̂i−1

)
+ B̂i−1ηi−1

+L̂izi + L̂i
(
C − Ĉi

)
B̂i−1ηi−1

)
.

From (4-17), (4-18), (4-20), and (4-31), we have the following under the event EM:

∣∣∣∣∣∣x̂t|t,Θ̂t

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
t∑
i=1

t−i−1∏
j=0

Nt−j
(
L̂iC

(
xi − x̂i|i−1,Θ

)
+ L̂iC

(
x̂i|i−1,Θ − x̂i|i−1,Θ̂i−1

)
+ B̂i−1ηi−1

+L̂izi + L̂i
(
C − Ĉi

)
B̂i−1ηi−1

)∣∣∣∣∣∣
≤ max

1≤i≤t

∣∣∣∣∣∣(L̂iC
(
xi − x̂i|i−1,Θ

)
+ L̂iC

(
x̂i|i−1,Θ − x̂i|i−1,Θ̂i−1

)
+ B̂i−1ηi−1

+L̂izi + L̂i
(
C − Ĉi

)
B̂i−1ηi−1

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
t∑
i=1

t−i−1∏
j=0

Nt−j

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
(

1 + 1 + ρ

2 +
(1 + ρ

2

)2
+ ... +

(1 + ρ

2

)t−1
)

max
1≤i≤t

∣∣∣∣∣
∣∣∣∣∣
(

L̂iC
(
xi − x̂i|i−1,Θ

)

+L̂iC
(
x̂i|i−1,Θ − x̂i|i−1,Θ̂i−1

)
+ B̂i−1ηi−1 + L̂izi + L̂i

(
C − Ĉi

)
B̂i−1ηi−1

)∣∣∣∣∣
∣∣∣∣∣

≤ 2
1 − ρ

max
1≤i≤t

∣∣∣∣∣
∣∣∣∣∣
(

L̂iC
(
xi − x̂i|i−1,Θ

)
+ L̂iC

(
x̂i|i−1,Θ − x̂i|i−1,Θ̂i−1

)
+ B̂i−1ηi−1

+L̂izi + L̂i
(
C − Ĉi

)
B̂i−1ηi−1

)∣∣∣∣∣
∣∣∣∣∣

≤ χ̄,

(4-32)
which holds with a probability of at least 1 − 3δ, where

χ̄ :=
2
(

ζ
(
||C||||Σ||1/2 + σz

)√
2nx log

(
2nxT
δ

)
+ ζ||C||∆̄ + √

γ (||B|| + 1) (1 + ζ)
√

2nu log
(

2nuT
δ

))
1 − ρ

.

(4-33)
Now, using (4-33), we can bound the norm of x̂t|t−1,Θ̂t−1

as follows. From (2-6), we have

x̂t|t−1,Θ̂t−1
=
(
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+ B̂t−1ηt−1,

then

||x̂t|t−1,Θ̂t−1
|| ≤

∣∣∣∣∣∣Ât−1 − B̂t−1K̂t−1
∣∣∣∣∣∣ ∣∣∣∣∣∣x̂t−1|t−1,Θ̂t−1

∣∣∣∣∣∣+ ∣∣∣∣∣∣B̂t−1
∣∣∣∣∣∣ ||ηt−1||

≤ ρχ̄ + √
γ (||B|| + 1)

√
2nu log

(2nuT

δ

)
:= Xest,ac,

(4-34)
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which holds with a probability of at least 1−3δ under the event EM. Now to bound the norm
of ut, we recall the following from (3-9):

ut = −K̂tx̂t|t,Θ̂t
+ ηt,

then

||ut|| ≤ Γχ̄ + √
γ

√
2nu log

(2nuT

δ

)
:= Uac, (4-35)

which holds with a probability of at least 1 − 3δ under the event EM. To derive a bound on
the norm of xt, we do the following:

xt = xt − x̂t|t−1,Θ + x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1
+ x̂t|t−1,Θ̂t−1

= xt − x̂t|t−1,Θ + x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1

+
(
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+ B̂t−1ηt−1.

Then,

||xt|| ≤
∣∣∣∣∣∣xt − x̂t|t−1,Θ

∣∣∣∣∣∣+ ∣∣∣∣∣∣x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1

∣∣∣∣∣∣+ ∣∣∣∣∣∣(Ât−1 − B̂t−1K̂t−1
)∣∣∣∣∣∣ ∣∣∣∣∣∣x̂t−1|t−1,Θ̂t−1

∣∣∣∣∣∣
+
∣∣∣∣∣∣B̂t−1

∣∣∣∣∣∣ ||ηt−1||

≤
∣∣∣∣∣∣xt − x̂t|t−1,Θ

∣∣∣∣∣∣+ ∣∣∣∣∣∣x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1

∣∣∣∣∣∣+ ∣∣∣∣∣∣(Ât−1 − B̂t−1K̂t−1
)∣∣∣∣∣∣ ∣∣∣∣∣∣x̂t−1|t−1,Θ̂t−1

∣∣∣∣∣∣
+
(
||B|| +

∣∣∣∣∣∣B − B̂t−1
∣∣∣∣∣∣) ||ηt−1||

≤ ||Σ||1/2

√
2nx log

(2nxT

δ

)
+ ∆̄ + ρχ̄ + √

γ (||B|| + 1)
√

2nu log
(2nuT

δ

)
:= Xac,

(4-36)

which holds with a probability of at least 1 − 3δ under the event EM. Now for yt, we have

yt = Cx̂t|t−1,Θ̂t−1
+ C

(
xt − x̂t|t−1,Θ̂t−1

)
+ zt

= Cx̂t|t−1,Θ̂t−1
+ C

(
xt − x̂t|t−1,Θ

)
+ C

(
x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1

)
+ zt

= C
(
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+ CB̂t−1ηt−1 + C
(
xt − x̂t|t−1,Θ

)
+ C

(
x̂t|t−1,Θ − x̂t|t−1,Θ̂t−1

)
+ zt.

Using similar analysis of xt, we get the following bound for yt for all t ≥ Tw:

||yt|| ≤ ρ||C||χ̄ + √
γ||C|| (1 + ||B||)

√
2nu log

(2nuT

δ

)

+
(
||C||||Σ||1/2 + σz

)√
2nx log

(2nxT

δ

)
+ ||C||∆̄ := Yac,

(4-37)

which holds with a probability of at least 1 − 3δ under the event EM. By re-parameterising
3δ → δ, the above bounds can be guaranteed with a probability of at least 1 − δ. This
concludes the proof.
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4-3-2 Proof of Lemma 4.2

The proof critically requires the ‘truncated closed-loop noise evolution parameter’. This pa-
rameter captures how the noise and excitation signal sequences influence the input-output
data in the vector ϕ. As mentioned previously, this proof is an extension of the result in
[35], and the extension lies in accounting for the additive excitation signal. Conceptually, this
proof follows similar steps as the one in [35] but, the terms involved are different. Firstly, the
expression for the truncated closed-loop noise evolution parameter is derived.

Truncated closed-loop noise evolution parameter

The truncated closed-loop noise evolution parameter derivation is an extension to the one
provided in [35], the difference lies in accounting for the additive Gaussian excitation signals.
The truncated closed-loop noise evolution parameter, which captures the effect of noises and
excitation signals on the vector ϕt, will play an important role in establishing the persistence
of excitation during the LBC period. Consider a permutation of the vector ϕt, i.e., ϕ̄t = Pϕt,
where

ϕ̄t =
[
y⊤
t−1 u⊤

t−1 . . . y⊤
t−H u⊤

t−H

]⊤
∈ R(ny+nu)H ,

and P is the permutation matrix. The present analysis abstracts away the episodic behaviour
of the algorithm, that is, Θ̂t−1 could either be the model parameter estimate being used in the
current episode at time step t−1 or it could be the model parameter estimated in the previous
episode if the time step t − 1 falls in the previous episode. The analysis is independent of the
type of algorithmic behaviour in terms of when the system parameter is being updated.

Following the warm-up period, recall that the LBC policy ut = −K̂tx̂t|t,Θ̂t
+ ηt is deployed,

where

ut = −K̂tx̂t|t,Θ̂t
+ ηt,

ηt =
√

γ√
lk

r0, r0 ∼ N (0, I), γ > 0,

where lk is the number of time steps in the kth episode. Recall the following relation from
(2-6):

x̂t|t−1,Θ̂t−1
=
(
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+ B̂t−1ηt−1,

x̂t|t,Θ̂t
= x̂t|t−1,Θ̂t−1

+ L̂t
(
yt − Ĉtx̂t|t−1,Θ̂t−1

)
=
(
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+ B̂t−1ηt−1

+ L̂t

(
Cxt + zt − Ĉt

((
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+ B̂t−1ηt−1
))

=
(
I − L̂tĈt

)((
Ât−1 − B̂t−1K̂t−1

)
x̂t−1|t−1,Θ̂t−1

+ B̂t−1ηt−1

)

+ L̂t

(
C
(
Axt−1 − BK̂t−1x̂t−1|t−1,Θ̂t−1

+ Bηt−1 + wt−1
)

+ zt

)
.
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Now,[
xt

x̂t|t,Θ̂t

]
=
[

A −BK̂t−1

L̂tCA
(
I − L̂tĈt

) (
Ât−1 − B̂t−1K̂t−1

)
− L̂tCBK̂t−1

]
︸ ︷︷ ︸

Ĝ(t)
2

[
xt−1

x̂t−1|t−1,Θ̂t−1

]

+
[

I 0 B 0
L̂tC L̂t

(
I − L̂tĈt

)
B̂t−1 + L̂tCB 0

]
︸ ︷︷ ︸

Ĝ(t)
3


wt−1

zt
ηt−1
ηt

 .

Let ft =
[

yt
ut

]
. Now, we can express ft as:

ft =
[

CA −CBK̂t−1

−K̂tL̂tCA −K̂t

(
I − L̂tĈt

) (
Ât−1 − B̂t−1K̂t−1

)
+ K̂tL̂tCBK̂t−1

] [
xt−1

x̂t−1|t−1,Θ̂t−1

]

+
[

C I CB 0
−K̂tL̂tC −K̂tL̂t −K̂t

(
I − L̂tĈt

)
B̂t−1 − K̂tL̂tCB I

]
wt−1

zt
ηt−1
ηt



=
[
C 0
0 −K̂t

]
︸ ︷︷ ︸

Γ̂t

Ĝ(t)
2

[
xt−1

x̂t−1|t−1,Θ̂t−1

]
+
[
C 0
0 −K̂t

]
︸ ︷︷ ︸

Γ̂t

Ĝ(t)
3


wt−1

zt
ηt−1
ηt

+
[
0 I 0 0
0 0 0 I

]
wt−1

zt
ηt−1
ηt



= Γ̂tĜ(t)
2

[
xt−1

x̂t−1|t−1,Θ̂t−1

]
+ Γ̂tĜ(t)

3


wt−1

zt
ηt−1
ηt

+
[
0 I 0 0
0 0 0 I

]
wt−1

zt
ηt−1
ηt

 .

Rolling back in time
[

xt
x̂t|t,Θ̂t

]
for H-time steps, we obtain the following:

[
xt

x̂t|t,Θ̂t

]
︸ ︷︷ ︸

xe
t

= Ĝ(t)
2

[
xt−1

x̂t−1|t−1,Θ̂t−1

]
︸ ︷︷ ︸

xe
t−1

+Ĝ(t)
3


wt−1

zt
ηt−1
ηt


︸ ︷︷ ︸
ηe

t−1

=
H∏
i=0

Ĝ(t−i)
2 xet−H−1 +

H+1∑
i=1

 i∏
j=2

Ĝ(t−j+2)
2

 Ĝ(t−i+1)
3 ηet−i.

(4-38)

Now, let us expand xet−H−1.

xet−H−1 =
t−1∏

i=H+1
Ĝ(t−i)

2

[
x0

L̂0Ĉ0x0 + L̂0z0

]
+

t∑
i=H+2

 i∏
j=H+3

Ĝ(t−j+2)
2

 Ĝ(t−i+1)
3 ηet−i. (4-39)
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The equality comes from the assumption that x̂0|−1,Θ̂−1
= 0. Therefore, xet−H−1 represents

the effect of


wi−1

zi
ηi−1
ηi

 for 0 ≤ i < t − H − 1, which are independent with respect to the time.

Now ft can be rolled back H-time steps backwards, as follows:

ft = Γ̂tx
e
t +

[
0 I 0 0
0 0 0 I

]
ηet−1

= Γ̂t

 H∏
i=0

Ĝ(t−i)
2 xet−H−1 +

H+1∑
i=1

 i∏
j=2

Ĝ(t−j+2)
2

 Ĝ(t−i+1)
3 ηet−i


+
[
0 I 0 0
0 0 0 I

]
ηet−1

= Γ̂t

H+1∑
i=2

 i∏
j=2

Ĝ(t−j+2)
2

 Ĝ(t−i+1)
3 ηet−i

+
[

C I CB 0
−K̂tL̂tC −K̂tL̂t −K̂t

(
I − L̂tĈt

)
B̂t−1 − K̂tL̂tCB I

]
︸ ︷︷ ︸

Ĝ(t)
1

ηet−1 + rc
t ,

(4-40)

where rc
t is the residual vector that represents the effect of


wi−1

zi
ηi−1
ηi

 for 0 ≤ i ≤ t − H − 1,

which are independent with respect to the time. Now ft can be compactly represented as
such:

ft = Ḡt



ηet−1
ηet−2

.

.

.
ηet−H−1


+ rc

t ,

where
Ḡt =

[
Ĝ(t)

1 Γ̂tĜ(t)
2 Ĝ(t−1)

3 Γ̂tĜ(t)
2 Ĝ(t−1)

2 Ĝ(t−2)
3 ... Γ̂tĜ(t)

2 Ĝ(t−1)
2 ...Ĝ(t−H+1)

2 Ĝ(t−H)
3

]
∈ R(ny+nu)×(H+1)(nx+ny).

We can now represent ϕ̄t as follows:

ϕ̄t =


ft−1

.

.

.
ft−H

+


rc

t−1
.
.
.

rc
t−H

 = Gcl
t



ηet−2
ηet−3

.

.

.
ηet−2H−1


+


rc

t−1
.
.
.

rc
t−H

 ,
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where

Gcl
t =



Ḡt−1 0 0 0 ...

0 Ḡt−2 0 0 ...
.
.
.

0 0 0 ... Ḡt−H


. (4-41)

If the true system parameter is known, the optimal control policy can be deployed. Then, Gcl
captures the effect of the process and measurement noises as well as excitation signals on ϕ̄t
while using the optimal control policy:

Gcl =



Ḡ 0 0 0 ...

0 Ḡ 0 0 ...
.
.
.

0 0 0 ... Ḡ


,

where

Ḡ =
[
G1 ΓG2G3 ΓG2

2G3 ... ΓG2
HG3

]
∈ R(ny+nu)×(H+1)(nx+ny)

with

G1 =
[

C I CB 0
−KLC −KL −K (I − LC) B − KLCB I

]
, Γ =

[
C 0
0 −K

]
,

G2 =
[

A −BK
LCA (I − LC) (A − BK) − LCBK

]
,

G3 =
[

I 0 B 0
LC L (I − LC) B + LCB 0

]
.

With H chosen such that Ḡ is full-row rank, Gcl can be shown to have full-row rank with QR
decomposition [35]. Therefore, σmin

(
Gcl
)

≥ σc > 0.

The proof

The event EM will be extensively used in this proof. To recall from (4-16), we have

EM :=
{

||M̂t − M|| ≤ 1
}

, (4-42)

which is assumed to hold with high probability when t ≥ Tw ≥ TM. This event will indeed
be shown to hold with high probability in Theorem 4.3. Now,
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E
[
ϕ̄tϕ̄

⊤
t

]
= Gcl

t Σw,z,ηGcl
t

⊤ +


rc

t−1
.
.
.

rc
t−H




rc

t−1
.
.
.

rc
t−H


⊤

,

where Σw,z,η ∈ R2H(nx+ny+2nu)×2H(nx+ny+2nu) is

Σw,z,η = diag(σ2
wI, σ2

zI, σ2
ηt−2I, σ2

ηt−1I, ..., σ2
wI, σ2

zI, σ2
ηt−2H−1I, σ2

ηt−2H
I).

The notation diag(.) signifies a diagonal matrix, where the diagonal elements are the argu-
ments in this operator. This implies

E
[
ϕ̄tϕ̄

⊤
t

]
≥ Gcl

t Σw,z,ηGcl
t

⊤

=⇒ σmin
(
E
[
ϕ̄tϕ̄

⊤
t

])
≥ σ2

min(Gcl
t )min{σ2

w, σ2
z , σ2

ηt−1}.

To proceed, we require a lower bound on σmin(Gcl
t ). To obtain such a lower bound, we can

first say that the following perturbation bound exists under the event EM:

||Gcl
t − Gcl|| ≤ σc

2 ,

if t ≥ Tw ≥ TG for some TG > H. It is possible to represent ||Gcl
t −Gcl|| as a function of system

parameter estimation error whose bound exists under the event EM. The detailed treatment
of this bound is deferred to future work. The above perturbation bound, which is based on
the proof of Lemma 3.2 in [35], also fails to provide sufficient details on the derivation of the
above-mentioned perturbation bound.
One of the fundamental results of Weyl’s inequalities on singular values is as follows:

σj(X) + σj(Y ) ≤ σ1(X + Y ), j = 1, 2, ..., min{m, n}, (4-43)

holds for any two matrices X, Y ∈ Rm×n. Taking j = 1 and replacing Y with −Y , we have

σmin(X) − σmin(Y ) ≤ σmax(X − Y )
=⇒ σmin(X) − σmax(X − Y ) ≤ σmin(Y ).

Now taking X = Gcl and Y = Gcl
t , we have

σmin(Gcl) − σmax(Gcl − Gcl
t ) ≤ σmin(Gcl

t )
=⇒ σmin(Gcl

t ) ≥ σmin(Gcl) − σmax(Gcl
t − Gcl)

=⇒ σmin(Gcl
t ) ≥ σc

2 .

(4-44)

With the above result, we finally have

σmin
(
E
[
ϕ̄tϕ̄

⊤
t

])
≥ σ2

min(Gcl
t )min{σ2

w, σ2
z , σ2

ηt−1}

≥ σ2
c

4 min{σ2
w, σ2

z , σ2
ηt−1},

(4-45)
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for t ≥ Tw. Since singular values do not change under permutation, σmin
(
E
[
ϕ̄tϕ̄

⊤
t

])
=

σmin
(
E
[
ϕtϕ

⊤
t

])
. To recall, we need to derive a lower bound for σmin

(∑t−1
i=Tw

ϕiϕ
⊤
i

)
. Firstly,

we will derive a bound on || ϕt ||. From Lemma 4.1, we have

|| ϕt || =

√√√√ H∑
i=1

||yt−i||2 + ||ut−i||2

≤
√

H max
1≤i≤H

(||yt−i||2 + ||ut−i||2)

≤
(√

max
1≤i≤H

||yt−i||2 +
√

max
1≤i≤H

||ut−i||2
)

√
H → triangle inequality

≤ (Yac + Uac)︸ ︷︷ ︸
Υac

√
H,

(4-46)

which holds with a probability of at least 1 − δ under the event EM. We can re-parameterise
δ → δ/2. This requires appropriately modifying the

√
log(.) terms of Yac and Uac. The

reason for re-parameterising will become apparent shortly. We will now apply Lemma B.2.
In Lemma B.2, it becomes evident that the notations Xk = Ak = ϕiϕ

⊤
i , and

σ2 = ||
t−1∑
i=Tw

(ϕiϕ⊤
i )2||

≤ (t − Tw) max
Tw≤i≤t−1

|| ϕi ||2 || ϕ⊤
i ||2

= (t − Tw) max
Tw≤i≤t−1

|| ϕi ||4 .

From Lemma B.2, we can set

δ

2 = H(ny + nu) exp
(

−t2

8σ2

)

=⇒ − log
(

δ

2H(ny + nu)

)
= t2

8σ2

=⇒ log
(2H(ny + nu)

δ

)
= t2

8σ2

=⇒ t = 2
√

2σ

√
log
(2H(ny + nu)

δ

)

=⇒ t = 2
√

2(t − Tw) max
Tw≤i≤t−1

||ϕi||2
√

log
(2H(ny + nu)

δ

)
.

Finally by using Lemma B.2, we have

λmax

 t−1∑
i=Tw

ϕiϕ
⊤
i − E

[
ϕiϕ

⊤
i

] ≤ 2
√

2(t − Tw)Υ2
acH

√
log
(2H(ny + nu)

δ

)
, (4-47)
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which holds with a probability of at least 1 − δ under the event EM. Since ϕiϕ
⊤
i is a symmet-

ric matrix, its singular values are the absolute values of its eigenvalues. Now using Weyl’s
inequality as described in (4-43), we get

σmin

 t−1∑
i=Tw

ϕiϕ
⊤
i

 ≥ σmin

 t−1∑
i=Tw

E[ϕiϕ⊤
i ]

−

∣∣∣∣∣∣λmax

 t−1∑
i=Tw

ϕiϕ
⊤
i − E[ϕiϕ⊤

i ]

∣∣∣∣∣∣
=⇒ σmin

 t−1∑
i=Tw

ϕiϕ
⊤
i

 ≥ (t − Tw)σ2
c

4 min{σ2
w, σ2

z , σ2
ηt−1} − 2

√
2(t − Tw)Υ2

acH

√
log
(2H(ny + nu)

δ

)
,

(4-48)

which holds with a probability of at least 1−δ under the event EM. Now we need to determine
the minimum number of time steps to ensure σmin

(∑t−1
i=Tw

ϕiϕ
⊤
i

)
> 0. Equating the LHS of

(4-48) to 0 we get,

2
√

2(t − Tw)Υ2
acH

√
log
(2H(ny + nu)

δ

)
≥ (t − Tw)σ2

c
4 min{σ2

w, σ2
z , σ2

ηt−1}

=⇒ 8(t − Tw)Υ4
acH

2log
(2H(ny + nu)

δ

)
≥ σ4

c
16(t − Tw)2min{σ4

w, σ4
z , σ4

ηt−1}

=⇒ (t − Tw) ≥
128Υ4

acH
2log

(
2H(ny+nu)

δ

)
σ4

c min{σ4
w, σ4

z , σ4
ηt−1}

.

Therefore, for all (t − Tw) ≥ Tac where

Tac =
512Υ4

acH
2log

(
2H(ny+nu)

δ

)
σ4

c min{σ4
w, σ4

z , σ4
ηt−1}

, (4-49)

we have

σmin

 t−1∑
i=Tw

ϕiϕ
⊤
i

 ≥
128Υ4

acH
2log

(
2H(ny+nu)

δ

)
σ2

c min{σ2
w, σ2

z , σ2
ηt−1}

−
64Υ4

acH
2log

(
2H(ny+nu)

δ

)
σ2

c min{σ2
w, σ2

z , σ2
ηt−1}

=⇒ σmin

 t−1∑
i=Tw

ϕiϕ
⊤
i

 ≥ (t − Tw)
σ2

c min{σ2
w, σ2

z , σ2
ηt−1}

8 ,

(4-50)

which holds with a probability of at least 1−δ under the event EM. This completes the proof.

4-3-3 Proof of Theorem 4.3

Recalling from Section 3-1, we have for a single input-output trajectory {yt, ut}tt=0:

Yt = ΦtM⊤ + Et + Nt,

where
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M =
[
CF CĀF ... CĀH−1F CB CĀB ... CĀH−1B

]
∈ Rny×(ny+nu)H ,

Yt =
[
yH yH+1 ... yt

]⊤
∈ R(t−H+1)×ny ,

Φt =
[
ϕH ϕH+1 ... ϕt

]⊤
∈ R(t−H+1)×(ny+nu)H ,

Et =
[
eH eH+1 ... et

]⊤
∈ R(t−H+1)×ny ,

Nt =
[
CĀH x̂0|−1,Θ CĀH x̂1|0,Θ ... CĀH x̂t−H|t−H−1,Θ

]⊤
∈ R(t−H+1)×ny ,

where Ā = A − FC. Further, recall that

M̂⊤
t = (Φ⊤

t Φt + λI)−1Φ⊤
t Yt.

This implies

M̂t =
[
(Φ⊤

t Φt + λI)−1Φ⊤
t

(
ΦtM⊤ + Et + Nt

)]⊤
=
[
(Φ⊤

t Φt + λI)−1Φ⊤
t ΦtM⊤ + (Φ⊤

t Φt + λI)−1Φ⊤
t (Et + Nt)

]⊤
+
[
λ(Φ⊤

t Φt + λI)−1M⊤ − λ(Φ⊤
t Φt + λI)−1M⊤

]⊤
=
[
(Φ⊤

t Φt + λI)−1Φ⊤
t Et + (Φ⊤

t Φt + λI)−1Φ⊤
t Nt + M⊤ − λ(Φ⊤

t Φt + λI)−1M⊤
]⊤

.

Now consider the following:

|Tr(X(M̂t − M)⊤)| = |Tr(X(Φ⊤
t Φt + λI)−1Φ⊤

t Et) + Tr(X(Φ⊤
t Φt + λI)−1Φ⊤

t Nt)
− λTr(X(Φ⊤

t Φt + λI)−1M⊤)|
≤ |Tr(X(Φ⊤

t Φt + λI)−1Φ⊤
t Et)| + |Tr(X(Φ⊤

t Φt + λI)−1Φ⊤
t Nt)|

+ λ|Tr(X(Φ⊤
t Φt + λI)−1M⊤)|,

where X is some matrix. Let M1, M2, M3 be three matrices. Using the property |Tr(M1M2M⊤
3 )| ≤√

Tr(M1M2M⊤
1 )Tr(M3M2M⊤

3 ) for a positive definite M2, we have

|Tr(X(M̂t − M)⊤)| ≤
√

Tr(X(Φ⊤
t Φt + λI)−1X⊤)Tr(E⊤

t Φt(Φ⊤
t Φt + λI)−1Φ⊤

t Et)

+
√

Tr(X(Φ⊤
t Φt + λI)−1X⊤)Tr(N⊤

t Φt(Φ⊤
t Φt + λI)−1Φ⊤

t Nt)

+ λ
√

Tr(X(Φ⊤
t Φt + λI)−1X⊤)Tr(M(Φ⊤

t Φt + λI)−1M⊤)

=
√

Tr(X(Φ⊤
t Φt + λI)−1X⊤)×[√

Tr(E⊤
t Φt(Φ⊤

t Φt + λI)−1Φ⊤
t Et) +

√
Tr(N⊤

t Φt(Φ⊤
t Φt + λI)−1Φ⊤

t Nt)

+ λ
√

Tr(M(Φ⊤
t Φt + λI)−1M⊤)

]
.

Substituting X = (M̂t − M)(Φ⊤
t Φt + λI) and Vt = (Φ⊤

t Φt + λI), we get
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|Tr((M̂t − M)Vt(M̂t − M)⊤)| ≤
√

Tr((M̂t − M)V ⊤
t (M̂t − M)⊤)×[√

Tr(E⊤
t ΦtV

−1
t Φ⊤

t Et) +
√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt)

+ λ
√

Tr(MV −1
t M⊤)

]
.

Since Vt is a symmetric positive definite matrix, the above expression reduces to

√
Tr((M̂t − M)Vt(M̂t − M)⊤) ≤

[√
Tr(E⊤

t ΦtV
−1
t Φ⊤

t Et) +
√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt)

+ λ
√

Tr(MV −1
t M⊤)

]

≤
[√

Tr(E⊤
t ΦtV

−1
t Φ⊤

t Et) +
√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt)

+ λ
√

||V −1
t ||

√
Tr(MM⊤)

]

≤
[√

Tr(E⊤
t ΦtV

−1
t Φ⊤

t Et) +
√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt)

+
√

λS̄

]
,

where ||M||F ≤ S̄. Now we provide bounds for each of the terms in the above expression.

Bounding
√

Tr(E⊤
t ΦtV

−1
t Φ⊤

t Et)

Since et is ||CΣC⊤ + σ2
zI|| - sub-Gaussian vector, from Theorem B.1 we have

√
Tr(E⊤

t ΦtV
−1
t Φ⊤

t Et) ≤

√√√√ny||CΣC⊤ + σ2
zI|| log

(
det(Vt)1/2det(V )−1/2

δ

)
, (4-51)

which holds with a probability of at least 1 − δ. Here, V = λI. For the sake of convenience,
define the event EEt :

EEt
:=


√

Tr(E⊤
t ΦtV

−1
t Φ⊤

t Et) ≤

√√√√ny||CΣC⊤ + σ2
zI|| log

(
det(Vt)1/2det(V )−1/2

δ

) ,

which holds with a probability of at least 1 − δ.
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Bounding
√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt)

Now, we provide a bound for the second term.√
Tr(N⊤

t ΦtV
−1
t Φ⊤

t Nt) ≤ 1√
λ

||N⊤
t Φt||F

≤
√

ny
λ

∣∣∣∣∣
∣∣∣∣∣
t∑

i=H
ϕi(CĀH x̂i−H|i−H−1,Θ)⊤

∣∣∣∣∣
∣∣∣∣∣ .

The last inequality comes from the following property,

σmax(X) ≤ ||X||F ≤
√

min{m, n}σmax(X),

for any matrix X ∈ Rm×n. Now,√
Tr(N⊤

t ΦtV
−1
t Φ⊤

t Nt) ≤
√

ny
λ

∣∣∣∣∣
∣∣∣∣∣
t∑

i=H
ϕi(CĀH x̂i−H|i−H−1,Θ)⊤

∣∣∣∣∣
∣∣∣∣∣

≤ (t − H + 1)
√

ny
λ

max
H≤i≤t

∣∣∣∣∣∣ϕi(CĀH x̂i−H|i−H−1,Θ)⊤
∣∣∣∣∣∣

≤ t

√
ny
λ

||C||νH max
H≤i≤t

||ϕi|| ||x̂i−H|i−H−1,Θ||.

During the warm-up phase, i.e., t ≤ Tw − 1, we do not have a bound on ||x̂t|t−1|| since there
is no model of the system during this phase. Therefore, during the warm-up phase, we can
bound ||x̂t|t−1|| = ||xt|| ≤ Xw. Further, recall from Lemma A.1 that ||ϕt|| ≤ Υw

√
H with a

probability of at least 1 − δ/2. Therefore, during the warm-up phase, we have

max
H≤i≤Tw−1

||ϕi|| ||x̂i−H|i−H−1,Θ|| ≤ ΥwXw
√

H,

which holds with a probability of at least 1 − δ/2. Define an event Eϕ,warm:

Eϕ,warm :=
{

||ϕt|| ≤ Υw
√

H
}

,

which holds with a probability of at least 1 − δ/2. Further, define an event EPE, warm:

EPE, warm :=
{

σmin

(
Tw−1∑
i=H

ϕiϕ
⊤
i

)
≥ (Tw − H)σ2

omin{σ2
w, σ2

z , σ2
u}

2

∣∣∣∣∣ Eϕ,warm

}
,

which holds with a probability of at least 1 − δ/2 if Tw ≥ To, where To is as defined in (A-5).
This event is a consequence of Lemma A.2.
Now, during the LBC phase, recall from (4-46) that ||ϕt|| ≤ Υac

√
H, with a probability of at

least 1 − δ under the event EM. To recall from (4-16), we have

EM :=
{

||M̂t − M|| ≤ 1
}

, (4-52)

which is assumed to hold with high probability. Therefore, during the LBC phase, we have
from (4-34):
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max
Tw≤i≤t

||ϕi|| ||x̂i−H|i−H−1,Θ|| ≤ ΥacXest,ac
√

H,

which holds with a probability of at least 1 − δ under the event EM. Just like in the proof of
Lemma 4.2, δ can be re-parameterised to δ → δ/2, in the above result. Define an event Eϕ,ac:

Eϕ,ac :=
{

||ϕt|| ≤ Υac
√

H
∣∣∣ EM

}
,

which holds with a probability of at least 1 − δ/2. Further, from Lemma 4.2 we can define an
event EPE, ac, where

EPE, ac :=

σmin

 t−1∑
i=Tw

ϕiϕ
⊤
i

 ≥ (t − Tw)
σ2

c min{σ2
w, σ2

z , σ2
ηt

}
8

∣∣∣∣∣∣ Eϕ,ac

 ,

which holds with a probability of at least 1 − δ/2 if t − Tw ≥ Tac, where Tac is as defined in
(4-49).
By setting

H =
log

(
1√

ny/λ||C|| max{ΥwXw,ΥacXest,ac}T 2

)
log(ν) =

log
(√

ny/λ||C|| max{ΥwXw, ΥacXest,ac}T 2
)

log(1/ν) ,

(4-53)
we have √

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt) ≤ t

T 2

√
H, (4-54)

which holds under the event Eϕ,warm ∩ Eϕ,ac.

Putting things together

Now, combining (4-51) and (4-54), we get

√
Tr((M̂t − M)Vt(M̂t − M)⊤) ≤

√√√√ny||CΣC⊤ + σ2
zI|| log

(
det(Vt)1/2det(V )−1/2

δ

)
+ t

T 2

√
H +

√
λS̄.

Now,

Tr((M̂t − M)Vt(M̂t − M)⊤) ≥ σmin(Vt)||M̂t − M||2F

=⇒ σmin(Vt)||M̂t − M||2F ≤


√√√√ny||CΣC⊤ + σ2

zI|| log
(

det(Vt)1/2det(V )−1/2

δ

)
+ t

T 2

√
H +

√
λS̄

2

.

From Lemma A.2 and Lemma 4.2, we have

σmin(Vt) = σmin

(
t∑

t=H
ϕtϕ

⊤
t + λI

)

≥ σmin

(
t∑

t=H
ϕtϕ

⊤
t

)

≥ (Tw − H)σ2
omin{σ2

w, σ2
z , σ2

u}
2 + (t − Tw + 1)

σ2
c min{σ2

w, σ2
z , σ2

ηt
}

8 .

Archith Athrey Master of Science Thesis



4-3 Proofs 61

Therefore, from Lemma B.4, we have

||M̂t − M||F ≤

√
ny||CΣC⊤ + σ2

zI|| log
(

det(Vt)1/2det(V )−1/2

δ

)
+ t

T 2

√
H +

√
λS̄√

(Tw − H)σ2
omin{σ2

w,σ
2
z ,σ

2
u}

2 + (t − Tw + 1)σ
2
c min{σ2

w,σ
2
z ,σ

2
ηt

}
8

≤

√
ny||CΣC⊤ + σ2

zI||
(
log(1/δ) + H(nu+ny)

2 log
(
λ(nu+ny)H+(t−H+1) max{Υ2

w,Υ2
ac}

λ(nu+ny)H

))
+ t

T 2

√
H +

√
λS̄√

(Tw − H)σ2
omin{σ2

w,σ
2
z ,σ

2
u}

2 + (t − Tw + 1)σ
2
c min{σ2

w,σ
2
z ,σ

2
ηt

}
8

≤

√
ny||CΣC⊤ + σ2

zI||
(
log(1/δ) + H(nu+ny)

2 log
(
λ(nu+ny)H+T max{Υ2

w,Υ2
ac}

λ(nu+ny)H

))
+

√
H
T +

√
λS̄

√
t − H + 1

√
min

{
σ2

omin{σ2
w,σ

2
z ,σ

2
u}

2 ,
σ2

c min{σ2
w,σ

2
z ,σ

2
ηt

}
8

} ,

(4-55)

which holds under the event EPE, warm ∩ EPE, ac ∩ EEt . This concludes the proof.

4-3-4 Proof of Theorem 4.4

To recall from (2-16), we are trying to minimise the following definition of regret:

R(T ) =
T−1∑
t=0

ct − TJ∗, where

ct = y⊤
t Qyt + u⊤

t Rut.

Since the LBC policy is deployed in an episodic fashion, as described in Algorithm 2, the
regret is also analysed episode-wise, i.e., the cumulative difference between the (sub)optimal
cost incurred by the LBC policy and the optimal long-term average expected cost J∗, is upper
bounded for every episode. This bound is then summed over the number of episodes to obtain
the final regret upper bound. The relation between the long-term average expected cost and
the solution to the Lyapunov equation is derived in Appendix A-3. This relation as described
in (A-15), is critical for establishing the regret upper bound. To recall, the estimated model
parameter is maintained during the length of each episode. Therefore, for our present analysis
of the regret, let us denote Θ̂k = Θ̂, K̂k = K̂, and σ2

ηk
= σ2

η for the sake of brevity, where k
is the episode number.
We will first decompose the cost. Consider the following decomposition of the cost at time
step t:

y⊤
t Qyt + u⊤

t Rut = (Cxt + zt)⊤ Q (Cxt + zt) + u⊤
t Rut

= x⊤
t C⊤QCxt + u⊤

t Rut + 2z⊤
t QCxt + z⊤

t Qzt

= x⊤
t C⊤QCxt + x̂⊤

t|t,Θ̂K̂⊤RK̂x̂t|t,Θ̂︸ ︷︷ ︸
ct,1

+ η⊤
t Rηt − 2η⊤

t RK̂x̂t|t,Θ̂ + 2z⊤
t QCxt + z⊤

t Qzt︸ ︷︷ ︸
ct,2

.

(4-56)

We will upper bound ∑t−1
t=0 ct,1 and ∑t−1

t=0 ct,2 separately. To avoid ambiguity in the present
analysis, it must be noted that we are not analysing the 0th episode: the time step starts at
0 just for the sake of convenience.
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Upper bounding
∑t−1
t=0 ct,1

From (2-6), we have[
xt

x̂t|t,Θ̂

]
︸ ︷︷ ︸

x̄t

=
[

A −BK̂

L̂CA
(
I − L̂Ĉ

) (
Â − B̂K̂

)
− L̂CBK̂

]
︸ ︷︷ ︸

Ĝ1

[
xt−1

x̂t−1|t−1,Θ̂

]

+
[

I 0
L̂C L̂

]
︸ ︷︷ ︸

Ĝ2

[
wt−1

zt

]
︸ ︷︷ ︸
ϵ̄t−1

+
[

B(
I − L̂Ĉ

)
B̂ + L̂CB

]
︸ ︷︷ ︸

Ĝ3

ηt−1

=⇒ x̄t = Ĝ1x̄t−1 + Ĝ2ϵ̄t−1 + Ĝ3ηt−1.

This implies,

x̄t = Ĝt
1x̄0 +

t−1∑
i=0

Ĝt−i−1
1 Ĝ2ϵ̄i +

t−1∑
i=0

Ĝt−i−1
1 Ĝ3ηi.

For simplicity of exposition, let us define for l ∈ N and j, l ≥ i,

Coli,j(A) :=



Ii≥1Ai−1

Ii≥2Ai−2

.

.

.
Ii≥jAi−j


, Toepi,j,l(A) :=



AiIi≥0 Ai+1Ii≥−1 ... Ai+lIi≥−l
Ai−1Ii≥1 AiIi≥0 ... Ai+l−1Ii≥1−l

.

.

.
Ai−jIi≥j Ai−j+1Ii≥j−1 ... Ai+l−jIi≥j−l


,

and diagt(A) := It ⊗ A,

(4-57)

where I is the indicator function and with a slight abuse of notations, we have It as the
identity matrix with t rows. This implies



x̄t−1
x̄t−2

.

.

.
x̄0


︸ ︷︷ ︸
x̄[t−1:0]

=



Ĝt−1
1

Ĝt−2
1
.
.
.
I


x̄0 +



0 I Ĝ1 Ĝ2
1 . . . Ĝt−2

1
0 0 I Ĝ1 . . . Ĝt−3

1
.
.
.
0 0 0 0 . . . I
0 0 0 0 . . . 0


It ⊗ Ĝ2



ϵ̄t−1
ϵ̄t−2

.

.

.
ϵ̄0


︸ ︷︷ ︸
ϵ̄[t−1:0]

+



0 I Ĝ1 Ĝ2
1 . . . Ĝt−2

1
0 0 I Ĝ1 . . . Ĝt−3

1
.
.
.
0 0 0 0 . . . I
0 0 0 0 . . . 0


It ⊗ Ĝ3



ηt−1
ηt−2

.

.

.
η0


︸ ︷︷ ︸
η[t−1:0]
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=⇒ x̄[t−1:0] = Colt,t(Ĝ1)x̄0 + Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ2)ϵ̄[t−1:0]

+ Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ3)η[t−1:0].
(4-58)

Finally, ∑T−1
t=0 ct,1 can be decomposed as:

t−1∑
t=0

ct,1 =
t−1∑
t=0

x⊤
t C⊤QCxt + x̂⊤

t|t,Θ̂K̂⊤RK̂x̂t|t,Θ̂

=
t−1∑
t=0

x̄⊤
t W̄x̄t

= x̄⊤
[t−1:0]diagt(W̄)x̄[t−1:0]

= x̄⊤
0 Col⊤t,t(Ĝ1)diagt(W̄)Colt,t(Ĝ1)︸ ︷︷ ︸

Λx̄0

x̄0

+ ϵ̄⊤
[t−1:0] diag⊤

t (Ĝ2)Toep⊤
−1,t−1,t−1(Ĝ1)diagt(W̄)Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ2)︸ ︷︷ ︸

Λϵ̄

ϵ̄[t−1:0]

+ η⊤
[t−1:0] diag⊤

t (Ĝ3)Toep⊤
−1,t−1,t−1(Ĝ1)diagt(W̄)Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ3)︸ ︷︷ ︸

Λη

η[t−1:0]

+ 2ϵ̄⊤
[t−1:0] diag⊤

t (Ĝ2)Toep⊤
−1,t−1,t−1(Ĝ1)diagt(W̄)Colt,t(Ĝ1)︸ ︷︷ ︸

Λcross,1

x̄0

+ 2η⊤
[t−1:0] diag⊤

t (Ĝ3)Toep⊤
−1,t−1,t−1(Ĝ1)diagt(W̄)Colt,t(Ĝ1)︸ ︷︷ ︸

Λcross,2

x̄0

+ 2ϵ̄⊤
[t−1:0] diag⊤

t (Ĝ2)Toep⊤
−1,t−1,t−1(Ĝ1)diagt(W̄)Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ3)︸ ︷︷ ︸

Λcross,3

η[t−1:0],

(4-59)

where W̄ =
[
C⊤QC 0

0 K̂⊤RK̂

]
. We will now upper bound each of the above terms individ-

ually.

Bounding ϵ̄⊤
[t−1:0]Λϵ̄ϵ̄[t−1:0]

This term can be upper-bounded using the Hanson-Wright inequality. To do so, firstly we
require the following bounds. From Lemma B.12 we have

||Λϵ̄|| ≤
∣∣∣∣∣∣Ĝ2

∣∣∣∣∣∣2 ∣∣∣∣∣∣W̄∣∣∣∣∣∣ ∣∣∣∣∣∣Toep−1,t−1,t−1(Ĝ1)
∣∣∣∣∣∣2

≤
∣∣∣∣∣∣Ĝ2

∣∣∣∣∣∣2 ∣∣∣∣∣∣W̄∣∣∣∣∣∣ ∣∣∣∣∣∣Ĝ1
∣∣∣∣∣∣2

H∞
.

The above bound depends on the estimated system parameter Θ̂. To use the Hanson-Wright
inequality, we need a bound on ||Λϵ̄|| that is not a random variable. Now,∣∣∣∣∣∣Ĝ2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Ĝ2 − G2

∣∣∣∣∣∣+ ||G2||
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≤
∣∣∣∣∣
∣∣∣∣∣
[

0 0
(L̂ − L)C (L̂ − L)

]∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣
[

I 0
LC L

]∣∣∣∣∣
∣∣∣∣∣

≤ cĜ2
.

The above bound exists under the event EM. This event, which was defined in (4-16), is
recalled here for convenience:

EM =
{

||M̂t − M|| ≤ 1
}

,

where P{EM} ≥ 1 − 2δ if t ≥ Tw ≥ TM with TM as defined in Theorem 4.1. This event is a
direct consequence of Theorem 4.3. Under this event, we have

1. Θ ∈ CA(t) × CB(t) × CC(t) × CL(t) for all t ≥ Tw.

2. ||Ĉt − C||, ||B̂t − B||, ||F̂t − F || ≤ βB(Tw) = 1 when Tw ≥ TB.

3.
∣∣∣∣∣∣Ât − A

∣∣∣∣∣∣ ≤ βA(Tw) = σnx(A)/2 when Tw ≥ TA.

4.
∣∣∣∣∣∣L̂t − L

∣∣∣∣∣∣ ≤ βL(Tw),

where the similarity transformation matrix T = I without loss of generality. Similarly, we can
bound

∣∣∣∣∣∣Ĝ1
∣∣∣∣∣∣

H∞
≤ cĜ1

under the event EM. For Hanson-Wright inequality, we also require
the following bound, which exists under the event EM:

||Λϵ̄||F =
√

Tr(Λϵ̄Λ⊤
ϵ̄ )

≲
√

t(nx + ny) := c̄Λϵ̄ .

Consider the following:

∣∣∣∣∣∣W̄∣∣∣∣∣∣ =
∣∣∣∣∣
∣∣∣∣∣
[
C⊤QC 0

0 K̂⊤RK̂

]∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣∣C⊤QC + K̂⊤RK̂

∣∣∣∣∣∣
≤ ||C||2 ||Q|| + Γ2 ||R|| := cW̄.

Finally, from the Hanson-Wright inequality as defined in Theorem B.3, we have

P
{

ϵ̄⊤
[t−1:0]Λϵ̄ϵ̄[t−1:0] − E

[
ϵ̄⊤
[t−1:0]Λϵ̄ϵ̄[t−1:0]

]
> t
}

≤ 2 exp

−c min

 t2

a4c̄2
Λϵ̄

,
t

a2c2
Ĝ2

c2
Ĝ1

cW̄

 ,

where c is an absolute positive constant. Since, ϵ̄[t−1:0] consists of Gaussian random variables,
the constant a exists. Now we can simplify the above expression as follows. Let,

Archith Athrey Master of Science Thesis



4-3 Proofs 65

δ

2 = exp

−c min

 t2

a4c̄2
Λϵ̄

,
t

a2c2
Ĝ2

c2
Ĝ1

cW̄


1
c

log
(2

δ

)
= min

 t2

a4c̄2
Λϵ̄

,
t

a2c2
Ĝ2

c2
Ĝ1

cW̄


=⇒ t = a2c̄Λϵ̄

√
1
c

log
(2

δ

)
or t =

a2c2
Ĝ2

c2
Ĝ1

cW̄

c
log

(2
δ

)
.

This implies with a probability of at least 1 − δ,

ϵ̄⊤
[t−1:0]Λϵ̄ϵ̄[t−1:0] ≤ E

[
ϵ̄⊤
[t−1:0]Λϵ̄ϵ̄[t−1:0]

]
+ O

(
c̄Λϵ̄

√
log

(2
δ

)
+ c2

Ĝ2
c2

Ĝ1
cW̄ log

(2
δ

))

=⇒ ϵ̄⊤
[t−1:0]Λϵ̄ϵ̄[t−1:0] ≤ Tr

(
Λϵ̄diagt

([
σ2
wI 0
0 σ2

zI

]))

+ O
(

c̄Λϵ̄

√
log

(2
δ

)
+ c2

Ĝ2
c2

Ĝ1
cW̄ log

(2
δ

))
.

(4-60)

Bounding Tr
(

Λϵ̄diagt

([
σ2
wI 0
0 σ2

zI

]))

Tr
(

Λϵ̄diagt

([
σ2
wI 0
0 σ2

zI

]))

= Tr
(

diag⊤
t (Ĝ2)Toep⊤

−1,t−1,t−1(Ĝ1)diagt(W̄)Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ2)diagt

([
σ2
wI 0
0 σ2

zI

]))
.

Now, consider the following:

Tr
(
Toep⊤

−1,t−1,t−1(Ĝ1)diagt(W̄)Toep−1,t−1,t−1(Ĝ1)
)

= Tr
([

Col0,t(Ĝ1) ... Colt−1,t(Ĝ1)
]⊤

diagt(W̄)
[
Col0,t(Ĝ1) ... Colt−1,t(Ĝ1)

])
=

t−1∑
i=0

Col⊤i,t(Ĝ1)diagt(W̄)Coli,t(Ĝ1)

≤ t · dlyap
(
Ĝ1, W̄

)
,

where the last inequality comes from Corollary B.11. Further, we have the following re-
lation. For any positive semi-definite matrices X, Y , and any matrix P , if X ≤ Y then,
P ⊤XP ≤ P ⊤Y P =⇒ Tr(P ⊤XP ) ≤ Tr(P ⊤Y P ). Further, for another diagonal matrix Z,
Tr(P ⊤XPZ) = Tr(Z1/2P ⊤XPZ1/2) ≤ Tr(Z1/2P ⊤Y PZ1/2). Considering these relations, we
have
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Tr
(

Λϵ̄diagt

([
σ2
wI 0
0 σ2

zI

]))

= Tr
(

diag⊤
t (Ĝ2)Toep⊤

−1,t−1,t−1(Ĝ1)diagt(W̄)Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ2)diagt

([
σ2
wI 0
0 σ2

zI

]))

≤ tTr
(

Ĝ⊤
2 dlyap

(
Ĝ1, W̄

)
Ĝ2

[
σ2
wI 0
0 σ2

zI

])

= tTr
(

Ĝ⊤
2 SĜ2

[
σ2
wI 0
0 σ2

zI

])
= tJs(Θ̂),

where the last equality comes from (A-15) and to recall, Js(Θ̂) is an alternate formulation of
the LQG control problem defined in (A-14) as

Js(Θ̂) = lim
T→∞

1
T
E
[
T−1∑
t=0

x⊤
t Qcxt + u⊤

t Rut

]

= lim
T→∞

1
T
E


T−1∑
t=0

x̃⊤
t

[
Qc 0
0 K̂⊤RK̂

]
︸ ︷︷ ︸

W̄

x̃t

 s.t.

xt+1 = Axt + But + wt, wt ∼ N (0, σ2
wI),

yt = Cxt + zt, zt ∼ N (0, σ2
zI),

x̂t|t,Θ̂ = (I − L̂Ĉ)x̂t|t−1,Θ̂ + L̂yt,

x̂t+1|t,Θ̂ = Âx̂t|t,Θ̂ + B̂ut,

ut = −K̂x̂t|t,Θ̂,

where Qc = C⊤QC, K̂ stabilises the true system and Â − F̂ Ĉ is asymptotically stable.

Putting things together

From (4-60), we have the following under the event EM:

ϵ̄⊤
[t−1:0]Λϵ̄ϵ̄[t−1:0] ≤ tJs(Θ̂) + O

(√
t(nx + ny) log

(2
δ

)
+
(
c2

Ĝ2
c2

Ĝ1
cW̄

)
log

(2
δ

))

≤ tJs(Θ̂) + O
[(√

t(nx + ny) log
(2

δ

)
+ log

(2
δ

))(
c2

Ĝ2
c2

Ĝ1
cW̄

)]
,

(4-61)

which holds with a probability of at least 1 − δ.

Bounding η⊤
[t−1:0]Ληη[t−1:0]

This term can also be upper-bounded using the Hanson-Wright inequality. Under the event
EM, and from Lemma B.12, we have
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||Λη|| ≤
∣∣∣∣∣∣Ĝ3

∣∣∣∣∣∣2 ∣∣∣∣∣∣W̄∣∣∣∣∣∣ ∣∣∣∣∣∣Toep−1,t−1,t−1(Ĝ1)
∣∣∣∣∣∣2

≤ c2
Ĝ3

c2
Ĝ1

cW̄.

Now from Theorem B.3, we have

η⊤
[t−1:0]Ληη[t−1:0] ≤ Tr

(
Ληdiagt

(
σ2
ηI
))

+ O
(√

tnu log
(2

δ

)
+ c2

Ĝ3
c2

Ĝ1
cW̄ log

(2
δ

))
, (4-62)

which holds with a probability of at least 1 − δ.

Bounding Tr
(
Ληdiagt

(
σ2
ηI
))

It is a standard fact that, for any positive semi-definite matrix X and any matrix Y ,

Tr(XY ) ≤ Tr(X)||Y ||.

Now from Corollary B.11, we have the following under the event EM:

Tr
(
Ληdiagt

(
σ2
ηI
))

≤ Tr (Λη) σ2
η

= Tr
(
diagt(Ĝ3)⊤Toep−1,t−1,t−1(Ĝ1)⊤diagt(W̄)Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ3)

)
σ2
η

≤ tTr
(
Ĝ⊤

3 dlyap
(
Ĝ1, W̄

)
Ĝ3
)

σ2
η

≤ tnu
∣∣∣∣∣∣Ĝ⊤

3 SĜ3
∣∣∣∣∣∣σ2

η

≤ tnuc2
Ĝ3

||S|| σ2
η.

Putting things together

Under the event EM, and from (4-62), we have

η⊤
[t−1:0]Ληη[t−1:0] ≤ tnuc2

Ĝ3
||S|| σ2

η + O
(√

tnu log
(2

δ

)
+
(
c2

Ĝ3
c2

Ĝ1
cW̄

)
log

(2
δ

))

≤ tnuc2
Ĝ3

||S|| σ2
η + O

[(√
tnu log

(2
δ

)
+ log

(2
δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)]
,

(4-63)

which holds with a probability of at least 1 − δ.

Bounding x̄⊤
0 Λx̄0 x̄0

From Corollary B.11, we have

x̄⊤
0 Λx̄0 x̄0 = x̄⊤

0 Col⊤t,t(Ĝ1)diagt(W̄)Col⊤t,t(Ĝ1)x̄0

≤ x̄⊤
0 dlyap

(
Ĝ1, W̄

)
x̄0

= x̄⊤
0 Sx̄0

≤ ||x̄0||2||S||

≤
(
X2

ac + χ̄2
)

||S||,

(4-64)
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which holds with a probability of at least 1−δ under the event EM. The last inequality comes
from Lemma 4.1. It must be noted that although x0 = 0 is assumed, we do not consider that
for the above bound. The reason is that x0 here represents the state of the system at the
start of each episode. For instance, the above bound will make sense if we consider the 2nd

episode. For the sake of convenience, define the following event:

Ex := {||xt|| ≤ Xac| EM} ,

which holds with a probability of at least 1 − δ. Under the event Ex, the bound in (4-64)
becomes deterministic.

Bounding 2ϵ̄⊤
[t−1:0]Λcross,1x̄0

Firstly, notice that

E
[
2ϵ̄⊤

[t−1:0]Λcross,1x̄0
]

= 0,

Var
(
2ϵ̄⊤

[t−1:0]Λcross,1x̄0
)

= 4x̄⊤
0 Λ⊤

cross,1diagt

([
σ2
wI 0
0 σ2

zI

])
Λcross,1x̄0.

It can be verified that there exists a matrix X such that XX⊤ = Λϵ̄ and a matrix Y such
that Y Y ⊤ = Λx̄0 to obtain Λcross,1 = XY ⊤ [58].

||Λcross,1x̄0|| =
√

x̄⊤
0 Y X⊤XY ⊤x̄0

≤
√

||X⊤X|| · x̄⊤
0 Y Y ⊤x̄0

≤
√

||Λϵ̄|| · x̄⊤
0 Sx̄0,

which holds since Λϵ̄ is symmetric positive semi-definite. The last inequality comes from
(4-64). Now, from arithmetic mean-geometric mean inequality, we have the following under
the event EM ∩ Ex:

||Λcross,1x̄0|| ≲ ||Λϵ̄|| + x̄⊤
0 Sx̄0

≲ c2
Ĝ2

c2
Ĝ1

cW̄ + x̄⊤
0 Sx̄0

≲ c2
Ĝ2

c2
Ĝ1

cW̄ + ||x̄0||2||S||

≲ c2
Ĝ2

c2
Ĝ1

cW̄ +
(
X2

ac + χ̄2
)

||S||.

Now observe that 2ϵ̄⊤
[t−1:0]Λcross,1x̄0 is c2

Ĝ2
c2

Ĝ1
cW̄ +

(
X2

ac + χ̄2) ||S|| - Lipschitz. Using Lemma
B.5, we have

2ϵ̄⊤
[t−1:0]Λcross,1x̄0

≲ 2
√

2 max{σ2
w, σ2

z}
(

c2
Ĝ2

c2
Ĝ1

cW̄

√
log

(2
δ

)
+
(
X2

ac + χ̄2
)

||S||
√

log
(2

δ

))

≲ max{σw, σz}
(

c2
Ĝ2

c2
Ĝ1

cW̄

√
log

(2
δ

)
+
(
X2

ac + χ̄2
)

||S||
√

log
(2

δ

))
,

(4-65)

which holds with a probability of at least 1 − δ under the event EM ∩ Ex.
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Bounding 2η⊤
[t−1:0]Λcross,2x̄0

In a similar fashion to the previous cross-term, we obtain the following bound under the event
EM ∩ Ex:

2η⊤
[t−1:0]Λcross,2x̄0

≲ σηc
2
Ĝ3

c2
Ĝ1

cW̄

√
log

(2
δ

)
+ ση

(
X2

ac + χ̄2
)

||S||
√

log
(2

δ

)
,

(4-66)

which holds with a probability of at least 1 − δ.

Bounding 2ϵ̄⊤
[t−1:0]Λcross,3η[t−1:0]

Recalling from (4-59), we have

2ϵ̄⊤
[t−1:0]Λcross,3η[t−1:0]

= 2ϵ̄⊤
[t−1:0]diagt(Ĝ2)⊤Toep−1,t−1,t−1(Ĝ1)⊤diagt(W̄)Toep−1,t−1,t−1(Ĝ1)diagt(Ĝ3)η[t−1:0].

Now in a similar fashion as the previous cross terms, we have the following from the arithmetic
mean-geometric mean inequality:∣∣∣∣∣∣Λcross,3η[t−1:0]

∣∣∣∣∣∣ ≤
√

||Λϵ̄|| · η⊤
[t−1:0]Ληη[t−1:0]

≲ ||Λϵ̄|| + η⊤
[t−1:0]Ληη[t−1:0].

From (4-63), we have∣∣∣∣∣∣Λcross,3η[t−1:0]

∣∣∣∣∣∣
≲ c2

Ĝ2
c2

Ĝ1
cW̄ + tnuc2

Ĝ3
||S|| σ2

η +
(√

tnu log
(2

δ

)
+ log

(2
δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)
,

which holds with a probability of at least 1 − δ under the event EM ∩ Ex. The above bound is
indeed deterministic since t here represents the number of time steps in a particular episode,
which is known a priori. Now using Lemma B.5 on the entire term, we have

2ϵ̄⊤
[t−1:0]Λcross,3η[t−1:0]

≲ max{σw, σz}c2
Ĝ2

c2
Ĝ1

cW̄

√
log

(2
δ

)
+ tnuc2

Ĝ3
||S|| σ2

η max{σw, σz}
√

log
(2

δ

)
+
(√

tnu log
(2

δ

)
+ log2

(2
δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)
max{σw, σz},

(4-67)

which holds with a probability of at least 1 − 2δ under the event EM ∩ Ex.
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Putting things together

Finally, we have the following bound under the event EM ∩ Ex:

t−1∑
t=0

ct,1 ≲ tJs(Θ̂) + tnuc2
Ĝ3

||S|| σ2
η

(
1 + max{σw, σz}

√
log

(2
δ

))

+ max{σw, σz, ση}
(
X2

ac + χ̄2
)

||S||
(

1 +
√

log
(2

δ

))

+


√√√√(t(nx + ny) + max{σ2

w, σ2
z}
)

log
(2

δ

)
+ log

(2
δ

)(c2
Ĝ2

c2
Ĝ1

cW̄

)

+
(√

tnu log
(2

δ

)
+
(√

tnu max{σ2
w, σ2

z} + 1
)

log
(2

δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)

+
(

ση

√
log

(2
δ

)
+ max{σw, σz} log2

(2
δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)
,

(4-68)

which holds with a probability of at least 1 − 6δ.

Upper bounding
∑t−1
t=0 ct,2

To recall, from (4-56) we have

t−1∑
t=0

ct,2 = η⊤
t Rηt − 2η⊤

t RK̂x̂t|t,Θ̂ + 2z⊤
t QCxt + z⊤

t Qzt.

Upper bounding
∑t−1
t=0 2z⊤

t QCxt

Bounding this term follows analogously to the previous cross-terms. Under the event Ex, we
have: ∣∣∣∣∣∣diagt(QC)x[t−1:0]

∣∣∣∣∣∣ ≤
√

||Q|| · x⊤
[t−1:0]diagt(C⊤QC)x[t−1:0]

≤
√

||Q|| · ||diagt(C⊤QC)|| · ||x[t−1:0]||2

≤
√

||Q|| · ||C⊤QC|| ·
√

tXac.

Now from Lemma B.5, we have

t−1∑
t=0

2z⊤
t QCxt ≲

√
tσz||Q|| · ||C||Xac

√
log

(2
δ

)
, (4-69)

which holds with a probability of at least 1 − δ under the event Ex.
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Upper bounding −
∑t−1
t=0 2η⊤

t RK̂x̂t|t,Θ̂

Let us define, x̂[t−1:0] :=
[
x̂⊤
t−1|t−1,Θ̂ ... x̂⊤

0|0,Θ̂

]⊤
. Bounding this term is again similar to the

previous cross-terms. Under the event Ex, we have:∣∣∣∣∣∣diagt(RK̂)x̂[t−1:0]

∣∣∣∣∣∣ ≤
√

||R|| · x̂⊤
[t−1:0]diagt(K̂⊤RK̂)x̂[t−1:0]

≤
√

||R|| ·
∣∣∣∣∣∣diagt(K̂⊤RK̂)

∣∣∣∣∣∣ · ||x̂[t−1:0]||2

≤ ||R|| Γ
√

tχ̄.

From Lemma B.5, we have
t−1∑
t=0

−2η⊤
t RK̂x̂t|t,Θ̂ = 2(−η[t−1:0])⊤diagt(RK̂)x̂[t−1:0]

≲ ση
√

t ||R|| Γχ̄

√
log

(2
δ

)
,

(4-70)

which holds with a probability of at least 1 − δ under the event Ex.

Upper bounding
∑t−1
t=0 η⊤

t Rηt

From Hanson-Wright inequality (refer to Theorem B.3), we have
t−1∑
t=0

η⊤
t Rηt = η⊤

[t−1:0]diagt(R)η[t−1:0]

≤ tnuσ2
ηTr (R) + O

(√
tnu log

(2
δ

)
+ ||R|| log

(2
δ

))

≤ tnuσ2
ηTr (R) + O

(√
tnu log

(2
δ

)
+ log

(2
δ

))
||R||,

(4-71)

which holds with a probability of at least 1 − δ.

Upper bounding
∑t−1
t=0 z⊤

t Qzt

From Hanson-Wright inequality, we have
t−1∑
t=0

z⊤
t Qzt = z⊤

[t−1:0]diagt(Q)z[t−1:0]

≤ tnyσ
2
zTr (Q) + O

(√
tnx log

(2
δ

)
+ ||Q|| log

(2
δ

))

≤ tnyσ
2
zTr (Q) + O

(√
tnx log

(2
δ

)
+ log

(2
δ

))
||Q||,

(4-72)

which holds with a probability of at least 1 − δ.
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Putting things together

We have the following bound under the event Ex:

t−1∑
t=0

ct,2 ≲
√

tσz||Q|| · ||C||Xac

√
log

(2
δ

)
+ ση

√
t ||R|| Γχ̄

√
log

(2
δ

)

+ tnuσ2
ηTr (R) +

(√
tnu log

(2
δ

)
+ log

(2
δ

))
||R||

+ tnyσ
2
zTr (Q) +

(√
tnx log

(2
δ

)
+ log

(2
δ

))
||Q||,

(4-73)

which holds with a probability of at least 1 − 4δ.

Final upper-bound on the cumulative cost

Combining (4-68) and (4-73), we have

t−1∑
t=0

y⊤
t Qyt + u⊤

t Rut

≲ tJs(Θ̂) + tnuc2
Ĝ3

||S|| σ2
η

(
1 + max{σw, σz}

√
log

(2
δ

))

+ max{σw, σz, ση}
(
X2

ac + χ̄2
)

||S||
(

1 +
√

log
(2

δ

))

+


√√√√(t(nx + ny) + max{σ2

w, σ2
z}
)

log
(2

δ

)
+ log

(2
δ

)(c2
Ĝ2

c2
Ĝ1

cW̄

)

+
(√

tnu log
(2

δ

)
+
(√

tnu max{σ2
w, σ2

z} + 1
)

log
(2

δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)

+
(

ση

√
log

(2
δ

)
+ max{σw, σz} log2

(2
δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)

+
√

tσz||Q|| · ||C||Xac

√
log

(2
δ

)
+ ση

√
t ||R|| Γχ̄

√
log

(2
δ

)

+ tnuσ2
ηTr (R) +

(√
tnu log

(2
δ

)
+ log

(2
δ

))
||R||

+ tnyσ
2
zTr (Q) +

(√
tnx log

(2
δ

)
+ log

(2
δ

))
||Q|| := ccost,k,

(4-74)

which holds with a probability of at least 1 − 10δ under the event EM ∩ Ex. Further, we can
say that there exists an event Ecost, which holds with a probability of at least 1 − 10δ such
that, on EM ∩ Ex ∩ Ecost the following bound holds:
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t−1∑
t=0

y⊤
t Qyt + u⊤

t Rut ≲ ccost,k.

Now, EM ∩ Ex ∩ Ecost holds with a probability of at least 1 − 13δ. We can re-parametrise
δ → δ

13 log2(T ) . The reason for doing so will become apparent in the following section. The
bound in (4-74) holds for one episode. This bound can be used to determine the upper bound
on the cumulative cost for the entire horizon by summing the established bound in (4-74)
over the number of episodes, i.e., by taking the union bound. This will be addressed in the
following section.

Regret upper bound

To recall, the regret is defined as such:

R(T ) =
T−1∑
t=0

(y⊤
t Qyt + u⊤

t Rut − J∗).

To recall, the system parameters are estimated at the start of each episode. Hence, the system
parameter being used during the kth episode is denoted as Θ̂k. Further, as a reminder,
the number of time steps in each episode is double the previous episode. Hence, we can
approximate the number of episodes to be log2(T ). Also, to recall lk is the number of time
steps in the kth episode. From (4-74), we have

R(T ) ≲
log2(T )−1∑

k=0
lk
(
Js(Θ̂k) − J∗

)
+ lknuc2

Ĝ3
||S|| σ2

ηk

(
1 + max{σw, σz}

√
log

(2
δ

))

+ max{σw, σz, σηk
}
(
X2

ac + χ̄2
)

||S||
(

1 +
√

log
(2

δ

))

+


√√√√(lk(nx + ny) + max{σ2

w, σ2
z}
)

log
(2

δ

)
+ log

(2
δ

)(c2
Ĝ2

c2
Ĝ1

cW̄

)

+
(√

lknu log
(2

δ

)
+
(√

lknu max{σ2
w, σ2

z} + 1
)

log
(2

δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)

+
(

σηk

√
log

(2
δ

)
+ max{σw, σz} log2

(2
δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)

+
√

lkσz||Q|| · ||C||Xac

√
log

(2
δ

)
+ σηk

√
lk ||R|| Γχ̄

√
log

(2
δ

)

+ lknuσ2
ηk

Tr (R) +
(√

lknu log
(2

δ

)
+ log

(2
δ

))
||R||

+ lknyσ
2
zTr (Q) +

(√
lknx log

(2
δ

)
+ log

(2
δ

))
||Q||,

(4-75)

which holds under the event EM ∩ Ex ∩ Ecost. Now, we will refine the above bound. To recall,
σ2
ηk

= γ√
lk

. Combining with the result in Theorem 4.2, we have the following result from
Theorem 4 in [43]:
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J(Θ̂k) − J∗ = Js(Θ̂k) − Js(Θ)

≤ cΘ
(
max{||Ât − T⊤AT||F, ||B̂t − T⊤B||F, ||Ĉt − CT||F, ||L̂t − T⊤L||F}

)2

︸ ︷︷ ︸
ϵ2

,

where cΘ is some constant dependent on the true system parameter. Now, we have

Js(Θ̂k) − J∗ = Js(Θ̂k) − Js(Θ) − σ2
znyTr(Q)

≲ cΘ

( 1√
lk

)2
− σ2

znyTr(Q).

Combining the above result with the bound in (4-75), we obtain the final regret upper bound:

R(T ) ≲ log2(T )cΘ +
√

Tγnuc2
Ĝ3

||S||
(

1 + max{σw, σz}
√

log
(2

δ

))

+ log2(T ) max{σw, σz, T −1/4}
(
X2

ac + χ̄2
)

||S||
(

1 +
√

log
(2

δ

))

+


√√√√(T (nx + ny) + max{σ2

w, σ2
z}
)

log
(2

δ

)
+ log

(2
δ

)(c2
Ĝ2

c2
Ĝ1

cW̄

)

+
(√

Tnu log
(2

δ

)
+
(√

Tnu max{σ2
w, σ2

z} + 1
)

log
(2

δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)

+ log2(T )
(

√
nuγT −1/4

√
log

(2
δ

)
+ max{σw, σz} log2

(2
δ

))(
c2

Ĝ3
c2

Ĝ1
cW̄

)

+
√

Tσz||Q|| · ||C||Xac

√
log

(2
δ

)
+
√

Tγ ||R|| Γχ̄

√
log

(2
δ

)

+
√

TγnuTr (R) +
(√

Tnu log
(2

δ

)
+ log

(2
δ

))
||R||

+
(√

Tnx log
(2

δ

)
+ log

(2
δ

))
||Q||,

(4-76)

which holds under the event EM ∩ Ex ∩ Ecost. The regret bound in (4-76) suggests that
R(T ) = Õ(

√
T ) with a probability of at least 1 − δ. This concludes the proof.
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Chapter 5

Conclusions and Future Work

5-1 Conclusions

In this thesis, we have analysed learning and control in one coherent framework. In particular,
we have focused on the learning and control of unknown partially observable LTI systems
in the LQG setting. With a focus on designing computationally efficient LBC algorithms,
we proposed LQG-NAIVE and LQG-IF2E in Chapter 3. LQG-NAIVE, which is based on
the naive exploration strategy, is argued to be computationally efficient with the ability to
guarantee a regret growth of Õ(

√
T ). On the other hand, LQG-IF2E extends the setting of

‘open-loop’ additive excitation signal in LQG-NAIVE to a setting of ‘closed-loop’ additive
excitation by incorporating FIM in designing the covariance of the external signal. The
FIM, which has a significant presence in the field of system identification, is argued to show
potential in adapting the magnitude of external signal to the degree of informativity in the
output signal. In Chapter 4, we proceeded to derive finite-time guarantees on the persistence
of excitation of the input-output signal and regret growth of Õ(

√
T ) for LQG-NAIVE, which

matches the rate of regret growth in the LQR setting up to poly-logarithmic constants. We
further validated the finite-time regret guarantee of LQG-NAIVE with numerical simulations.
Providing finite-time guarantees for LQG-IF2E is however significantly more challenging:
although the optimal rate of growth of the FIM has been shown to be O(

√
T ) in the ‘open-

loop’ setting, proving a similar finite-time result in the ‘closed-loop’ is significantly more
challenging due to the additive excitation signal not being i.i.d. Therefore, in this thesis,
we presented sufficient numerical results for LQG-IF2E, showing its potential to perform
competitively with LQG-NAIVE, with a hope to engender sufficient motivation to pursue
deriving finite-time guarantees for FIM-based LBC strategies such as LQG-IF2E.

5-2 Possible future directions

Firstly, the regret guarantee of LQG-NAIVE as detailed in (4-76), can be refined further by
representing the terms in the regret upper bound as a function of the solution to DARE or
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a function of the controllability/observability matrices. This makes it easier to understand
the relative difficulty in learning to control a specific instance of the system parameter. In
the LQR setting, the solution to the DARE in (2-9), is generally present in the regret upper
bound (cf. [58]). Unlike the LQR setting, the LQG setting requires the solution to two
DAREs, (2-5) and (2-9). It would be an interesting direction to pursue to further refine the
stated regret upper bound in terms of such quantities.

Secondly, the LQG-IF2E algorithm lacks finite-time guarantees on the persistence of excita-
tion and regret growth. These guarantees require analysing the correlations in the external
signal through mathematical tools that cater to such settings. Given the significance of the
FIM-based input signal in system identification and regret minimisation, bolstered by the
empirical results of LQG-IF2E in this thesis, addressing this challenge of deriving finite-time
guarantees is a promising direction to pursue in the future.

Finally, it must be noted that the LBC algorithms proposed in this thesis rely on the fact
that a regret growth of Õ(

√
T ) can be guaranteed if the additive excitation signal to the CEC

diminishes at a rate O( 1√
t
). Although this rate of regret growth is optimal, it is more intuitive

to design the exploration signal directly by minimising the regret. Recently, the work in [24]
addresses this challenge in the LQR setting by first decomposing the regret as a sum of an
‘exploitation cost’ and an ‘exploration cost’ followed by, determining the optimal value of ηt
by directly minimising over this alternative regret formulation. However, this optimisation
problem is non-convex. Reformulating the regret in a similar fashion and convexifying the
resultant optimisation problem for the LQG setting is a promising direction to pursue.
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Appendix A

Technical Background

A-1 Finite-time guarantees during the warm-up period

Lemma A.1 [36] Let Φ(A) be as defined in Section 2-9. For any δ ∈ (0, 1/6), with a probability
of at least 1 − δ/6, the following bounds hold when controlling the system as defined in (2-1)
with ut ∼ N (0, σ2

uI) for all t ∈ [0, Tw − 1]:

||xt|| ≤ Xw, ||ut|| ≤ Uw, ||zt|| ≤ Z, (A-1)

where

Xw := (σw + σu||B||) Φ(A)ρ(A)√
1 − ρ(A)2

√
2nx log(12nxTw/δ),

Uw := σu

√
2nu log(12nuTw/δ),

Z := σz

√
2ny log(12nyTw/δ).

(A-2)

As a consequence of the above bounds, we have

||ϕt|| ≤ (||C||Xw + Z + Uw)︸ ︷︷ ︸
Υw

√
H, (A-3)

which holds with a probability of at least 1 − δ/2 with δ ∈ (0, 1/2), for all t ∈ [H, Tw − 1].

Lemma A.2 [35] For some σo > 0, if the warm-up duration Tw ≥ To, then for all t ∈
[To, Tw − 1], and for any δ ∈ (0, 1), with a probability of at least 1 − δ, we have

σmin

(
Tw−1∑
i=H

ϕiϕ
⊤
i

)
≥ (Tw − H)σ2

omin{σ2
w, σ2

z , σ2
u}

2 , (A-4)

where

To :=
32Υ4

wHlog
(

2H(ny+nu)
δ

)
σ4
omin{σ4

w, σ4
z , σ4

u}
. (A-5)
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A-2 Confidence set construction

Proof of Theorem 4.2 For brevity, we have the following notation O = O(Ā, C, d1), Ôt =
O( ˆ̄At, Ĉt, d1), CF = C(Ā, F, d2 + 1), ĈFt = C( ˆ̄At, F̂t, d2 + 1), CB = C(Ā, B, d2 + 1), ĈBt =
C( ˆ̄At, B̂t, d2 + 1). Let TN = TM

8H
σ2

nx
(H) , then for Tw ≥ TN , we have σmin(N ) ≥ 2

∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣.
Here, N denotes the best rank - nx approximation of H. Applying Lemma B.9 with t ≥ Tw ≥
TN , the following result can be obtained:

∣∣∣∣∣∣Ôt − OT
∣∣∣∣∣∣2

F
+
∣∣∣∣∣∣[ĈFt ĈBt ] − T⊤[CF CB]

∣∣∣∣∣∣2
F

≤
5nx

∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣2
σnx(N ) −

∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣
≤

5nx
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣2
2
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣− ∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣
=

10nx
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣2
σnx(N ) .

Here, σnx(N ) = σmin(N ). Since Ĉt−C̃T is a submatrix of Ôt −OT, B̂t−T⊤B̃ is a submatrix
of ĈBt − T⊤CB, and F̂t − T⊤F̃ is a submatrix of ĈFt − T⊤CF, we get

||Ĉt − C̃T||, ||B̂t − T⊤B̃||, ||F̂t − T⊤F̃ || ≤

√√√√√10nx
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣2
σnx(N ) .

Now applying Lemma B.8 with d1, d2 ≥ H/2, we get∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ≤ 2
√

min{d1, d2}
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣
≤ 2

√
H/2

∣∣∣∣∣∣M̂t − M
∣∣∣∣∣∣

≤
√

2H
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣ .
This implies

||Ĉt − C̃T||, ||B̂t − T⊤B̃||, ||F̂t − T⊤F̃ || ≤

√
20nxH

∣∣∣∣∣∣M̂t − M
∣∣∣∣∣∣√

σnx(N )

=
√

20nxH
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣√
σnx(H)

.

(A-6)

Equation (A-6) provides the advertised bounds in the theorem. From Theorem 4.3, we observe
that ||M̂t − M||F = O

(
1√
t

)
. That is, the estimation error is monotonically decreasing.

Therefore, if TB = TM
20nxH
σnx (H) and Tw ≥ TB, we have

||Ĉt − C̃T||, ||B̂t − T⊤B̃||, ||F̂t − T⊤F̃ || ≤ 1.
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Before we can bound ||Ât − T⊤ÃT||, we will first bound || ˆ̄At − T⊤ ¯̃AT||. To recall, ˆ̄At =
Ât − F̂tĈt and ¯̃A = Ã − F̃ C̃. Let X = OT and Y = T⊤[CF CB]. Therefore,

|| ˆ̄At − T⊤ ¯̃AT||F = ||Ô†
tĤ

+
t [ĈFt ĈBt ]† − X†H+Y †||F

≤
∣∣∣∣∣∣(Ô†

t − X†
)

Ĥ+
t [ĈFt ĈBt ]†

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣X†

(
Ĥ+
t − H+

)
[ĈFt ĈBt ]†

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣X†H+

(
[ĈFt ĈBt ]† − Y †

)∣∣∣∣∣∣
F

.

We will now provide a bound for each of the above terms. The first and the third terms can
be bounded from the perturbation bound presented in [68] and [45], as follows:

∣∣∣∣∣∣Ô†
t − X†

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣Ôt − X

∣∣∣∣∣∣
F

max
{

||X†||2, ||Ô†
t||

2
}

≤ ||N −N̂t||
√

10nx
σnx(N ) max

{
||X†||2, ||Ô†

t||
2
}

.

Since σnx(N ) ≥ 2||N − N̂t||, we have ||N̂t|| ≤ 2||N || and 2σnx(N̂t) ≥ σnx(N ) from Lemma
B.10. Using this result, let us now analyse the following term:

max
{

||X†||2, ||Ô†
t||

2
}

= max
{∣∣∣∣∣∣∣∣(UΣ1/2T⊤

)†
∣∣∣∣∣∣∣∣2 ,

∣∣∣∣∣∣∣∣(UtΣt
1/2I⊤

)†
∣∣∣∣∣∣∣∣2
}

= max
{∣∣∣∣∣∣UΣ−1/2T⊤

∣∣∣∣∣∣2 ,
∣∣∣∣∣∣UtΣt

−1/2I⊤
∣∣∣∣∣∣2}

= max
{

1
σnx(N ) ,

1
σnx(N̂t)

}

≤ 2
σnx(N ) .

In a similar fashion, the third term can also be bounded. Therefore,

∣∣∣∣∣∣Ô†
t − X†

∣∣∣∣∣∣
F

,
∣∣∣∣∣∣[ĈFt ĈBt ]† − Y †

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣√ 40nx
σ3
nx

(N ) .

Using the above individual bounds, we obtain the following:∣∣∣∣∣∣X†
(
Ĥ+
t − H+

)
[ĈFt ĈBt ]†

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣X†

∣∣∣∣∣∣ ∣∣∣∣∣∣(Ĥ+
t − H+

)∣∣∣∣∣∣
F

∣∣∣∣∣∣[ĈFt ĈBt ]†
∣∣∣∣∣∣

≤ 2
σnx(N )

√
nx
∣∣∣∣∣∣(Ĥ+

t − H+
)∣∣∣∣∣∣ ,∣∣∣∣∣∣X†H+

(
[ĈFt ĈBt ]† − Y †

)∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣X†

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣ ∣∣∣∣∣∣([ĈFt ĈBt ]† − Y †

)∣∣∣∣∣∣
F

≤
√

1
σnx(N )

√
40nx

σ3
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣

= 2
√

10nx
σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣ ,
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∣∣∣∣∣∣(Ô†
t − X†

)
Ĥ+
t [ĈFt ĈBt ]†

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣Ô†

t − X†
∣∣∣∣∣∣

F

∣∣∣∣∣∣Ĥ+
t

∣∣∣∣∣∣ ∣∣∣∣∣∣[ĈFt ĈBt ]†
∣∣∣∣∣∣

≤
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣√ 40nx
σ3
nx

(N )
∣∣∣∣∣∣Ĥ+

t

∣∣∣∣∣∣ ∣∣∣∣∣∣[ĈFt ĈBt ]†
∣∣∣∣∣∣

=
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣√ 40nx
σ3
nx

(N )
1√

σnx(N̂t)

∣∣∣∣∣∣Ĥ+
t

∣∣∣∣∣∣
≤
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣√ 40nx
σ3
nx

(N )

√
2

σnx(N )
∣∣∣∣∣∣Ĥ+

t

∣∣∣∣∣∣
= 4

√
5nx

σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣Ĥ+
t

∣∣∣∣∣∣
≤ 4

√
5nx

σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ (∣∣∣∣∣∣H+
∣∣∣∣∣∣+ ∣∣∣∣∣∣Ĥ+

t − H+
∣∣∣∣∣∣) → Triangle inequality.

Combining these, we obtain

|| ˆ̄At − T⊤ ¯̃AT||F ≤ 4
√

5nx
σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ (∣∣∣∣∣∣H+
∣∣∣∣∣∣+ ∣∣∣∣∣∣Ĥ+

t − H+
∣∣∣∣∣∣)+ 2

σnx(N )
√

nx
∣∣∣∣∣∣(Ĥ+

t − H+
)∣∣∣∣∣∣

+ 2
√

10nx
σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣

= 4
√

5nx + 2
√

10nx
σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣+ 4

√
5nx

σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣Ĥ+
t − H+

∣∣∣∣∣∣
+ 2

σnx(N )
√

nx
∣∣∣∣∣∣Ĥ+

t − H+
∣∣∣∣∣∣

≤ 4
√

5nx + 2
√

10nx
σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣+ 4

√
5nx

2
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣σnx(N )

∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣Ĥ+
t − H+

∣∣∣∣∣∣
+ 2

σnx(N )
√

nx
∣∣∣∣∣∣Ĥ+

t − H+
∣∣∣∣∣∣ → Using the condition in Lemma B.9

= 4
√

5nx + 2
√

10nx
σ2
nx

(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣+ 2

√
5nx

σnx(N )
∣∣∣∣∣∣Ĥ+

t − H+
∣∣∣∣∣∣

+ 2
σnx(N )

√
nx
∣∣∣∣∣∣Ĥ+

t − H+
∣∣∣∣∣∣

≤
31√

nx
2σ2

nx
(N )

∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣+ 13√

nx
2σnx(N )

∣∣∣∣∣∣Ĥ+
t − H+

∣∣∣∣∣∣ .
Now consider Ât = ˆ̄At + F̂tĈt.∣∣∣∣∣∣Ât − T⊤ÃT

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣ ˆ̄At + F̂tĈt − T⊤ ¯̃AT − T⊤F̃ C̃T

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣ ˆ̄At − T⊤ ¯̃AT

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣F̂tĈt − T⊤F̃ C̃T

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣ ˆ̄At − T⊤ ¯̃AT

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣F̂tĈt − T⊤F̃ C̃T − T⊤F̃ Ĉt + T⊤F̃ Ĉt

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣ ˆ̄At − T⊤ ¯̃AT

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣(F̂t − T⊤F̃

)
Ĉt

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣T⊤F̃

(
Ĉt − C̃T

)∣∣∣∣∣∣
F
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≤
∣∣∣∣∣∣ ˆ̄At − T⊤ ¯̃AT

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣(F̂t − T⊤F̃

)∣∣∣∣∣∣
F

∣∣∣∣∣∣Ĉt − C̃T
∣∣∣∣∣∣

F
+
∣∣∣∣∣∣(F̂t − T⊤F̃

)∣∣∣∣∣∣
F

∣∣∣∣∣∣C̃T
∣∣∣∣∣∣

+
∣∣∣∣∣∣T⊤F̃

∣∣∣∣∣∣ ∣∣∣∣∣∣(Ĉt − C̃T
)∣∣∣∣∣∣

F
→ Triangle inequality

≤
31√

nx
2σ2

nx
(N )

∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ∣∣∣∣∣∣H+
∣∣∣∣∣∣+ 13√

nx
2σnx(N )

∣∣∣∣∣∣Ĥ+
t − H+

∣∣∣∣∣∣+ 10nx
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣2
σnx(N )

+
(∣∣∣∣∣∣C̃T

∣∣∣∣∣∣+ ∣∣∣∣∣∣T⊤F̃
∣∣∣∣∣∣)√ 10nx

σnx(N )
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣
Finally, from Lemma B.8 we have

∣∣∣∣∣∣Ât − T⊤ÃT
∣∣∣∣∣∣

F
≤ 31

√
2nxH

2σ2
nx

(N )
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣ ||H|| + 13
√

nxH

2
√

2σnx(N )

∣∣∣∣∣∣M̂t − M
∣∣∣∣∣∣

+
20nxH

∣∣∣∣∣∣M̂t − M
∣∣∣∣∣∣2

σnx(N ) +
(∣∣∣∣∣∣C̃∣∣∣∣∣∣+ ∣∣∣∣∣∣F̃ ∣∣∣∣∣∣)√ 20nxH

σnx(N )
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣ .
(A-7)

Similar to the bounds in (A-6), define TA such that
∣∣∣∣∣∣Ât − T⊤ÃT

∣∣∣∣∣∣ ≤ σnx(Ã)/2 when Tw ≥ TA,
where

TA = TM


62

√
2nxH

2σ2
nx

(N ) ||H|| + 26
√
nxH

2
√

2σnx (N ) +
√

40nxHσnx (Ã)
σnx (N ) +

√
80nxH√
σnx (N )

(∣∣∣∣∣∣F̃ ∣∣∣∣∣∣+ ∣∣∣∣∣∣C̃∣∣∣∣∣∣)
σnx(Ã)


2

.

Now we will focus on
∣∣∣∣∣∣L̂t − T⊤L̃

∣∣∣∣∣∣
F
.

∣∣∣∣∣∣L̂t − T⊤L̃
∣∣∣∣∣∣

F
=
∣∣∣∣∣∣Â†

tÔ
†
tĤ−

t − T⊤Ã†O†H−
∣∣∣∣∣∣

F

=
∣∣∣∣∣∣Â†

tÔ
†
tĤ−

t − T⊤Ã†TÔ†
tĤ−

t + T⊤Ã†TÔ†
tĤ−

t − T⊤Ã†TX†Ĥ−
t

+T⊤Ã†TX†Ĥ−
t − T⊤Ã†O†H−

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣Â†

tÔ
†
tĤ−

t − T⊤Ã†TÔ†
tĤ−

t + T⊤Ã†TÔ†
tĤ−

t − T⊤Ã†TX†Ĥ−
t

+T⊤Ã†TX†Ĥ−
t − T⊤Ã†TX†H−

∣∣∣∣∣∣
F

→ Since X = OT

≤
∣∣∣∣∣∣(Â†

t − T⊤Ã†T)Ô†
tĤ−

t

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣T⊤Ã†T(Ô†

t − X†)Ĥ−
t

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣T⊤Ã†TX†(Ĥ−

t − H−)
∣∣∣∣∣∣

F

≤
∣∣∣∣∣∣(Â†

t − T⊤Ã†T)
∣∣∣∣∣∣

F

∣∣∣∣∣∣Ô†
t

∣∣∣∣∣∣ ∣∣∣∣∣∣Ĥ−
t

∣∣∣∣∣∣+ ∣∣∣∣∣∣T⊤Ã†T
∣∣∣∣∣∣ ∣∣∣∣∣∣(Ô†

t − X†)
∣∣∣∣∣∣

F

∣∣∣∣∣∣Ĥ−
t

∣∣∣∣∣∣
+
∣∣∣∣∣∣T⊤Ã†T

∣∣∣∣∣∣ ∣∣∣∣∣∣X†
∣∣∣∣∣∣ ∣∣∣∣∣∣(Ĥ−

t − H−)
∣∣∣∣∣∣

F
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≤
∣∣∣∣∣∣(Â†

t − T⊤Ã†T)
∣∣∣∣∣∣

F

∣∣∣∣∣∣Ô†
t

∣∣∣∣∣∣ ∣∣∣∣∣∣Ĥ−
t

∣∣∣∣∣∣+ ∣∣∣∣∣∣Ã†
∣∣∣∣∣∣ ∣∣∣∣∣∣(Ô†

t − X†)
∣∣∣∣∣∣

F

∣∣∣∣∣∣Ĥ−
t

∣∣∣∣∣∣
+ √

nx
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣ ∣∣∣∣∣∣X†
∣∣∣∣∣∣ ∣∣∣∣∣∣(Ĥ−

t − H−)
∣∣∣∣∣∣

≤
(∣∣∣∣∣∣(Â†

t − T⊤Ã†T)
∣∣∣∣∣∣

F

√
2

σnx(N ) +
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣√ 40nx
σ3
nx

(N )
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣) ∣∣∣∣∣∣Ĥ−
t

∣∣∣∣∣∣
+ √

nx
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣ 1√
σnx(N )

∣∣∣∣∣∣(Ĥ−
t − H−)

∣∣∣∣∣∣
≤
(∣∣∣∣∣∣(Â†

t − T⊤Ã†T)
∣∣∣∣∣∣

F

√
2

σnx(N ) +
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣√ 40nx
σ3
nx

(N )
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣) (∣∣∣∣H−∣∣∣∣+ ∣∣∣∣∣∣Ĥ−
t − H−

∣∣∣∣∣∣)
+ √

nx
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣ 1√
σnx(N )

∣∣∣∣∣∣(Ĥ−
t − H−)

∣∣∣∣∣∣ .
From Lemma B.10, we have σnx(Ât) ≥ σnx(Ã)/2. Now using the perturbation bounds of the
Moore-Penrose inverse under the Frobenius norm [45], we obtain the following:

∣∣∣∣∣∣(Â†
t − T⊤Ã†T)

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣(Ât − T⊤ÃT)

∣∣∣∣∣∣
F

max
{

||T⊤Ã†T||2, ||Â†
t ||2
}

=
∣∣∣∣∣∣(Ât − T⊤ÃT)

∣∣∣∣∣∣
F

max
{

1
σ2
nx

(Ã)
,

1
σ2
nx

(Ât)

}

≤ 2
σ2
nx

(Ã)

∣∣∣∣∣∣(Ât − T⊤ÃT)
∣∣∣∣∣∣

F
.

Now using Lemma B.8, we have

∣∣∣∣∣∣L̂t − T⊤L̃
∣∣∣∣∣∣

F
≤
(

2
σ2
nx

(Ã)

∣∣∣∣∣∣(Ât − T⊤ÃT)
∣∣∣∣∣∣

F

√
2

σnx(N ) +
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣√ 40nx
σ3
nx

(N )
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣)
(∣∣∣∣H−∣∣∣∣+ ∣∣∣∣∣∣Ĥ−

t − H−
∣∣∣∣∣∣)+ √

nx
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣ 1√
σnx(N )

∣∣∣∣∣∣(Ĥ−
t − H−)

∣∣∣∣∣∣
≤
(

2
σ2
nx

(Ã)

∣∣∣∣∣∣(Ât − T⊤ÃT)
∣∣∣∣∣∣

F

√
2

σnx(N ) +
√

2H
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣√ 40nx
σ3
nx

(N )
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣)||H|| +
√

H

2
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣
+ √

nx

√
H

2
1√

σnx(N )

∣∣∣∣∣∣Ã†
∣∣∣∣∣∣ ∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣ .
(A-8)

With Tw ≥ TA, we have

∣∣∣∣∣∣L̂t − T⊤L̃
∣∣∣∣∣∣

F
≤
(

σnx(Ã)
√

2
σnx(N ) +

√
80Hnx
σ3
nx

(N )
∣∣∣∣∣∣Ã†

∣∣∣∣∣∣)
||H|| +

√
H

2

+
√

Hnx
2σnx(N )

∣∣∣∣∣∣Ã†
∣∣∣∣∣∣ .

(A-9)

This concludes the proof.
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A-3 Regret minimisation

Proof of Corollary 2.1

From (2-18),

T−1∑
t=0

ct,∗ − TJ∗ = O(T 1/2logT )

=⇒
T−1∑
t=0

ct,∗ +
T−1∑
t=0

ct −
T−1∑
t=0

ct − TJ∗ = O(T 1/2logT )

=⇒ R(T ) − R̄(T ) = O(T 1/2logT ).

If R̄(T ) = Õ(T 1/2) then,

R(T ) − R̄(T ) = O(T 1/2logT )
=⇒ R(T ) = O(T 1/2logT ) + Õ(T 1/2)
=⇒ R(T ) = Õ(T 1/2).

The proof showing R̄(T ) = Õ(T 1/2) when R(T ) = Õ(T 1/2) can be derived in the same way
as above.

Representing the (sub)optimal long-term average expected cost as the solution of a
Lyapunov equation

The following analysis will prove to be a critical component in establishing the finite-time
regret upper bound. Roughly speaking, the regret is analysed episode-wise i.e., the cumulative
difference between the (sub)optimal cost incurred by the LBC policy and the optimal long-
term average expected cost J∗ incurred by the optimal control policy (assuming the full
knowledge of Θ) during each episode, is upper bounded. This bound on the cumulative
difference in the cost incurred in each episode is then summed over the number of episodes to
obtain the final regret upper bound. The final piece in establishing the regret upper bound
requires bounding the sub-optimality gap ∆Θ̂k

as defined in (2-15), where k is the episode
number. This inherently requires a way to represent the (sub)optimal long-term average
expected cost incurred during the LBC phase denoted by J(Θ̂k). The following exposition
addresses this problem through a Lyapunov equation.

Since the estimated system parameter is maintained during each episode, for the sake of
brevity, we will consider Θ̂k = Θ̂ and K̂k = K̂. To recall, the LBC policy as described in
(3-9), is of the form

ut = −K̂x̂t|t,Θ̂ + ηt.

From (2-6), we have
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x̂t|t−1,Θ̂ =
(
Â − B̂K̂

)
x̂t−1|t−1,Θ̂ + B̂ηt−1,

x̂t|t,Θ̂ = x̂t|t−1,Θ̂ + L̂
(
yt − Ĉx̂t|t−1,Θ̂

)
=
(
Â − B̂K̂

)
x̂t−1|t−1,Θ̂ + B̂ηt−1

+ L̂

(
Cxt + zt − Ĉ

((
Â − B̂K̂

)
x̂t−1|t−1,Θ̂ + B̂ηt−1

))

=
(
I − L̂Ĉ

)((
Â − B̂K̂

)
x̂t−1|t−1,Θ̂ + B̂ηt−1

)

+ L̂

(
C
(
Axt−1 − BK̂x̂t−1|t−1,Θ̂ + Bηt−1 + wt−1

)
+ zt

)
.

Now, [
xt

x̂t|t,Θ̂

]
︸ ︷︷ ︸

x̄t

=
[

A −BK̂

L̂CA
(
I − L̂Ĉ

) (
Â − B̂K̂

)
− L̂CBK̂

]
︸ ︷︷ ︸

Ĝ1

[
xt−1

x̂t−1|t−1,Θ̂

]

+
[

I 0
L̂C L̂

]
︸ ︷︷ ︸

Ĝ2

[
wt−1

zt

]
︸ ︷︷ ︸
ϵ̄t−1

+
[

B(
I − L̂Ĉ

)
B̂ + L̂CB

]
︸ ︷︷ ︸

Ĝ3

ηt−1

=⇒ x̄t = Ĝ1x̄t−1 + Ĝ2ϵ̄t−1 + Ĝ3ηt−1.

Let us consider a case where ut = −K̂x̂t|t,Θ̂. Then, x̃t = Ĝ1x̃t−1 + Ĝ2ϵ̄t−1. Now consider an
alternative formulation of the finite-horizon LQG control problem:

J̄s(Θ̂) = E
[
T−1∑
t=0

x⊤
t Qcxt + u⊤

t Rut + x̃⊤
T Qf x̃T

]

= E


T−1∑
t=0

x̃⊤
t

[
Qc 0
0 K̂⊤RK̂

]
︸ ︷︷ ︸

W̄

x̃t + x̃⊤
T Qf x̃T

 s.t.

xt+1 = Axt + But + wt, wt ∼ N (0, σ2
wI),

yt = Cxt + zt, zt ∼ N (0, σ2
zI),

x̂t|t,Θ̂ = (I − L̂Ĉ)x̂t|t−1,Θ̂ + L̂yt,

x̂t+1|t,Θ̂ = Âx̂t|t,Θ̂ + B̂ut,

ut = −K̂x̂t|t,Θ̂,

(A-10)

where Qf is the terminal cost weighting matrix, Qc = C⊤QC, K̂ stabilises the true system,
and Â − F̂ Ĉ is asymptotically stable. The reason for considering this alternate formulation
(A-10) becomes clear in the regret analysis, as detailed in Section 4-3-4. Define the finite-
horizon value function as
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V̂ (x̃, k) = E{wk},{zk}

[
T−1∑
t=k

x̃⊤
t W̄x̃t + x̃⊤

T Qf x̃T | x̃k = x̃

]
, (A-11)

and given that it can be assumed to have a quadratic form as V̂ (x̃, k) = x̃⊤Skx̃ + qk with
qT = 0 [12], we can deduce from Bellman’s principle of optimality that

V̂ (x̃, k) = x̃⊤
k W̄x̃k + Ex̃k+1

[
V K̂(x̃k+1, k + 1) | x̃k = x̃

]
=⇒ x̃Tk Skx̃k + qk = x̃⊤

k W̄x̃k + Ex̃k+1

[
x̃⊤
k+1Sk+1x̃k+1 + qk+1

]
=⇒ x̃⊤

k Skx̃k + qk = x̃⊤
k W̄x̃k + x̃⊤

k Ĝ⊤
1 Sk+1Ĝ1x̃k + E

[
ϵ̄⊤
k Ĝ⊤

2 Sk+1Ĝ2ϵ̄k
]

+ qk+1

=⇒ Sk = W̄ + Ĝ⊤
1 Sk+1Ĝ1

=⇒ qk = tr
(

Ĝ⊤
2 Sk+1Ĝ2

[
σ2
wI 0
0 σ2

zI

])
+ qk+1.

(A-12)

We find that Ĝ1 is a stable matrix since it is assumed that the control law ut = −K̂x̂t|t,Θ̂
stabilises the true system and Â − F̂ Ĉ is stable. Further, W̄ can be verified to be symmetric
positive semi-definite. This implies that (A-12) converges to a unique symmetric positive
semi-definite solution S such that [12]:

S = W̄ + Ĝ⊤
1 SĜ1 (A-13)

From Definition B.1 we have, dlyap(Ĝ1, W̄) = S. Now, the expected cumulative cost given
by J̄s(Θ̂) = V̂ (x̃, 0) can be expressed as:

J̄s(Θ̂) = E
[
x̃⊤

0 S0x̃0
]

+ q0

= E
[
tr
(
S0x̃0x̃⊤

0

)]
+
T−1∑
t=0

tr
(

Ĝ⊤
2 St+1Ĝ2

[
σ2
wI 0
0 σ2

zI

])

= E

tr

S0

[
x0

x̂0|0,Θ̂

] [
x0

x̂0|0,Θ̂

]⊤
+

T−1∑
t=0

tr
(

Ĝ⊤
2 St+1Ĝ2

[
σ2
wI 0
0 σ2

zI

])

= E

tr

S0

 x0x⊤
0 x0x̂⊤

0|0,Θ̂
x̂0|0,Θ̂x⊤

0 x̂0|0,Θ̂x̂⊤
0|0,Θ̂

+
T−1∑
t=0

tr
(

Ĝ⊤
2 St+1Ĝ2

[
σ2
wI 0
0 σ2

zI

])

= tr
(

S0

[
Σ ΣC⊤L̂⊤

L̂CΣ L̂(CΣC⊤ + σ2
zI)L̂⊤

])
+
T−1∑
t=0

tr
(

Ĝ⊤
2 St+1Ĝ2

[
σ2
wI 0
0 σ2

zI

])
,

where the last equality comes from the assumption that x0 ∼ N (0, Σ) and x̂0|−1,Θ̂ = 0. Now
consider the following infinite-horizon setting of J̄s(Θ̂):
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Js(Θ̂) = lim
T→∞

1
T
E
[
T−1∑
t=0

x⊤
t Qcxt + u⊤

t Rut

]

= lim
T→∞

1
T
E


T−1∑
t=0

x̃⊤
t

[
Qc 0
0 K̂⊤RK̂

]
︸ ︷︷ ︸

W̄

x̃t

 s.t.

xt+1 = Axt + But + wt, wt ∼ N (0, σ2
wI),

yt = Cxt + zt, zt ∼ N (0, σ2
zI),

x̂t|t,Θ̂ = (I − L̂Ĉ)x̂t|t−1,Θ̂ + L̂yt,

x̂t+1|t,Θ̂ = Âx̂t|t,Θ̂ + B̂ut,

ut = −K̂x̂t|t,Θ̂.

(A-14)

Since St → S as T → ∞, we have

Js(Θ̂) = lim
T→∞

1
T

[
tr
(

S0

[
Σ ΣC⊤L̂⊤

L̂CΣ L̂(CΣC⊤ + σ2
zI)L̂⊤

])
+
T−1∑
t=0

tr
(

Ĝ⊤
2 St+1Ĝ2

[
σ2
wI 0
0 σ2

zI

])]

= tr
(

Ĝ⊤
2 SĜ2

[
σ2
wI 0
0 σ2

zI

])
.

(A-15)

This concludes the proof.
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Technical Tools

Definition B.1 [58] (Discrete Lyapunov equation) Let X, Y ∈ Rm×m with Y = Y ⊤ and
ρ(X) < 1. We let TX [P ] := X⊤PX + Y , and let dlyap(X, Y ) denote the unique positive
semi-definite solution TX [P ] = P .

Lemma B.1 [3] Let v ∈ Rd be an entry-wise R-sub-Gaussian random variable. Then with
probability of at least 1 − δ, ||v|| ≤ R

√
2d log(2d/δ).

Lemma B.2 [60] Consider a self-adjoint matrix martingale {Yk : k = 1, .., n} in dimension d,
and let {Xk} be the associated difference equation. Consider also a fixed sequence {Ak} of
self-adjoint matrices that satisfy

Ek−1Xk = 0 and X2
k ≤ A2

k almost surely.

Compute the variance parameter
σ2 :=||

∑
k

A2
k || .

Then for all t ≥ 0,

P {λmax(Yn − EYn) ≥ t} ≤ d e
−t2
8σ2 .

Lemma B.3 [3] Let X1, ..., Xt be random variables. Let a ∈ R. Let St = ∑t
s=1 Xs and

S̃t = ∑t
s=1 IXs≤aXs where IXs≤aXs denotes the truncated version of Xs. Then it holds that

P {St > x} ≤ P
{

max
1≤s≤t

Xs ≥ a

}
+ P

{
S̃t > x

}
.
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Lemma B.4 (Regularised design matrix Lemma) [2] When the covariates satisfy ||zt|| ≤
D, with some D > 0 with probability 1 then,

log det(Vt)
det(λI) ≤ d log

(
λd + tD2

λd

)
,

where Vt = λI +∑t
i=1 ziz

⊤
i for zi ∈ Rd.

Lemma B.5 (Gaussian concentration inequality) Let X =
[
X1, ..., Xn

]⊤
be a vector with

i.i.d. standard Gaussian entries and F : Rn → R a L-Lipschitz function (|F (x) − F (y)| ≤
L||x − y||, for all x, y ∈ Rn). Then, for every t ≥ 0

P {|F (X) − E[F (X)]| ≥ t} ≤ 2 exp
(

−t2

2L2

)
.

Lemma B.6 (Chain rule for Fisher information) [69] For a density p, consider the
following FIM for a bivariate density pθ(x, y):

Īp(x,y)(θ) =
∫ ∫

∇θ log pθ(x, y) (∇θ log pθ(x, y))⊤ pθ(x, y)dxdy.

Define the conditional FIM as

Īp(x|y)(θ) =
∫ ∫

∇θ (log pθ(x|y)) [∇θ (log pθ(x|y))]⊤ pθ(x|y)dx pθ(y)dy.

Then
Īp(x,y)(θ) = Īp(x|y)(θ) + Īp(y)(θ),

assuming that ∇θ log pθ(x|y) and ∇θ log pθ(y) have mean zero.

Lemma B.7 [70] Let µ : Rdθ → Rd and V : Rdθ → Rd×d, with V > 0 for all θ ∈ Rdθ , and
define

γθ(x) = 1√
(2π)ddet(V (θ))

exp
(

−1
2(x − µ(θ))⊤V (θ)−1(x − µ(θ))

)
.

Then

Īγ(θ) = (Dθµ(θ))⊤ V (θ)−1 (Dθµ(θ)) + 1
2 (Dθvec (V (θ)))⊤

(
I ⊗ V (θ)−2

)
Dθvec (V (θ)) .

Lemma B.8 [50] Let H, Ĥt and N , N̂t be as defined in Algorithm 1. They satisfy the following
perturbation bounds,

max
{∣∣∣∣∣∣H+ − Ĥ+

t

∣∣∣∣∣∣ , ∣∣∣∣∣∣H− − Ĥ−
t

∣∣∣∣∣∣} ≤
∣∣∣∣∣∣H − Ĥt

∣∣∣∣∣∣ ≤
√

min{d1, d2 + 1}
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣H− − Ĥ−

t

∣∣∣∣∣∣ ≤ 2
√

min{d1, d2}
∣∣∣∣∣∣M̂t − M

∣∣∣∣∣∣ .
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Lemma B.9 [50] Let N and N̂t be as defined in Algorithm 1. Suppose σmin(N ) ≥ 2
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣.
Let rank nx matrices N , N̂t have SVDs UΣVT and ÛtΣ̂tV̂T

t respectively. There exists a
unitary matrix T ∈ Rnx×nx such that

∣∣∣∣∣∣UΣ1/2 − ÛtΣ̂1/2
t T

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣VΣ1/2 − V̂tΣ̂1/2

t T
∣∣∣∣∣∣2

F
≤

5nx
∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣2
σmin(N ) −

∣∣∣∣∣∣N − N̂t

∣∣∣∣∣∣ .

Lemma B.10 [50] Let N and N̂t be as defined in Algorithm 1. Suppose σmin(N ) ≥ 2||N −N̂t||.
Then, ||N̂t|| ≤ 2||N || and 2σmin(N̂t) ≥ σmin(N ).

Lemma B.11 [58] Let Toepi,j,l(X) and Coli,j(X) be as defined in (4-57) for X ∈ Rm×m. For
any i ≤ j, l, and for Y ∈ Rm×m, and diagj−i(Y ) denoting a j − i block matrix with blocks Y
on the diagonal, we have the bound

Tr
(
Coli,j(X)⊤diagj−i(Y )Coli,j(X)

)
≤ Tr(dlyap(X, Y )).

Corollary B.11 [58] Let Toepi,j,l(X) and Coli,j(X) be as defined in (4-57) for X ∈ Rm×m.
For any i ≤ j, l, and for Y ∈ Rm×m, and diagj−i(Y ) denoting a j − i block matrix with blocks
Y on the diagonal, we have the bound

Coli,j(X)⊤diagj−i(Y )Coli,j(X) ≤ dlyap(X, Y ).

Lemma B.12 [58] Let Toepi,j,l(X) and Coli,j(X) be as defined in (4-57) for X ∈ Rm×m. For
any i ≤ j, l, we have ||Coli,j(X)|| ≤ ||Toepi,j,l(X)|| ≤ ||X||H∞ .

Theorem B.1 [3] Let (Ft; k ≥ 0) be a filtration, (mk; k ≥ 0) be an Rd - valued stochastic
process adapted to (Fk), (ηk; k ≥ 1) be a real-valued martingale difference process adapted to
(Fk). Assume that ηk is conditionally sub-Gaussian with constant R. Consider the martingale

St =
t∑

k=1
ηkmk−1

and the matrix-valued processes

Vt =
t∑

k=1
mk−1mT

k−1, V̄t = V + Vt, t ≥ 0.

Then for any 0 < δ < 1, with probability 1 − δ,

S⊤
t V −1

t St ≤ 2R2 log
(

det(V̄t)1/2det(V )−1/2

δ

)
∀t ≥ 0.
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Theorem B.2 (Azuma’s inequality) Assume that (Xs; s ≥ 0) is a supermartingale and
|Xs − Xs−1| ≤ cs almost surely. Then for all t > 0 and ϵ > 0,

P {|Xt − X0| ≥ ϵ} ≤ 2exp
(

−ϵ2

2∑t
s=1 c2

s

)
.

Theorem B.3 (Hanson-Wright inequality) [55] Let X = (X1, ..., Xn) ∈ Rn be a random
vector with independent components Xi which satisfy E[xi] = 0 and ||Xi||ψ2 ≤ k for all
i = 1, .., n, where ||.||ψ2 = supp≥1 p−1/2(E[.]p)1/p is the sub-Gaussian norm. Let A be an n × n
matrix. Then, for every t ≥ 0,

P
{

|X⊤AX − EX⊤AX| > t
}

≤ 2 exp
[
−c min

(
t2

k4||A||2F
,

t

k2||A||

)]
,

where c is a positive absolute constant.
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Glossary

List of Acronyms

ARX Auto Regressive Model
CEC Certainty Equivalence Controller
DARE Discrete Algebraic Riccati Equation
FIM Fisher Information Matrix
IF2E Inverse Fisher Feedback Exploration
LBC Learning-Based Control
LQ Linear Quadratic
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
OFU Optimism in the Face of Uncertainty
RMSE Root Mean Squared Error
SISO Single-Input-Single-Output
TS Thompson Sampling
VAF Variance Accounted For

List of Symbols

δ Probability of an event not occurring
∆Θ̂ Sub-optimality gap in the long-term average expected cost
Θ̂ Estimated system parameter
Ω(.) Big - Omega notation
Σ Solution to the DARE in (2-5)
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98 Glossary

Θ True system parameter
Ω̃(.) Big - Omega notation ignoring constants and poly-logarithmic terms

R̄(T ) Secondary formulation of cumulative regret in the LQ setting
M̂t Markov parameters estimated at time step t

M Markov parameters of the true system with parameter Θ
Õ(.) Big - O notation ignoring constants and poly-logarithmic terms
It The observations available to the controller until time step t

O(.) Big - O notation
S A set of system parameters of interest (refer section 2-9)
C(A, B, nx) Controllability matrix with nx-block columns
O(A, C, nx) Observability matrix with nx-block rows
A ∈ Rnx×nx State matrix of the true system
B ∈ Rnx×nu Input matrix of the true system
C ∈ Rny×nx Output matrix of the true system
ctol Tolerance value to switch to the FIM-based LBC strategy
ct Cost incurred by the true system at time step t

F Optimal Kalman gain in the innovations form
H Length of the input-output data history to construct the ϕ vector
IT (θ) Fisher Information Matrix (FIM) after T time steps evaluated on θ

J(Θ̂) Long-term average expected cost incurred when using the control law computed
from Θ̂ on the true system with parameter Θ

J∗ Optimal long-term average expected cost of the system with parameter Θ
J∗(Θ̃t) Optimal long-term average expected cost of the system with parameter Θ̃t

K Optimal feedback gain for the true system parameter
L Optimal Kalman gain for the measurement and the time update of the state

estimate
lk Length of the kth episode
P Solution to the DARE in (2-9)
Q ∈ Rny×ny Output weighting matrix
R ∈ Rnu×nu Input weighting matrix
R(T ) Cumulative regret in the LQ setting
ut ∈ Rnu Input at time step t

wt ∈ Rnx Process noise at time step t

xt ∈ Rnx State of the system at time step t

yt ∈ Rny System output at time step t

zt ∈ Rny Measurement noise at time step t
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