

MSc thesis in Geomatics

# The effects of beach house configurations on dune-ward sediment transport

Anna Vera Stevers

30<sup>th</sup> of June 2021

| Supervisors: | Dr. Clara García-Sánchez          |
|--------------|-----------------------------------|
|              | Dr. Giorgio Agugiaro,             |
|              | Ivan Paden                        |
| Co-reader:   | Dr.ir. Marjolein Pijpers-van Esch |

#### CONTENTS





# 

?

0

#### **1. MOTIVATION**

- Background
- Problem statement





**ŤU**Delft



#### Importance of dunes

- Protection against flooding
- Biodiversity
- Drinking water
- Recreation





Delft

#### Increase in dune erosion

- Climate change<sup>1</sup>
  - Sea level rise
  - Increase in storms
- Human activities<sup>2</sup>



2. Nordstrom, K. F. and Jackson, N. L. (2013). Foredune restoration in Urban Settings. Springer Series on Environmental



#### Sand nourishments

- Artificial reinforcement in the form of sand nourishments
- Sand nourishments depend on aeolian sediment transport





## Limiting effect of beach houses

• The buildings on the beaches can limit the amount of aeolian sediment transport <sup>1-3</sup>



- de Klerk, R. P. (2019). The influence of buildings on aeolian coastal dune development. Msc thesis, TU Delft.
- 2. Hoonhout, B. and Waagmeester, N. (2014). Invloed van strandbebouwing op zandverstuiving. Deltares.
- 3. van Westen, B. (2019). Invloed strandbebouwing op duinontwikkeling. Deltares.

# 91

# Computational Fluid Dynamics (CFD)

- Numerical methods to simulate fluid flow
- Calculations to model flow around obstacles

#### Advantages:

- Relatively fast
- Adjustable environmental conditions
- Detailed information

• Previous study by van Onselen (2018)<sup>1</sup>

<sup>1.</sup> van Onselen, E. (2018). Analysing measures to improve beach - dune interaction in the presence of man - made structures using computational fluid dynamics (CFD). Msc thesis, Utrecht University.



#### ShoreScape

- Interdisciplinary research project
- Aim to ensure coastal safety without harming the natural environment



Photo by: Janneke van Bergen (2020)



#### Problem statement

- Limited knowledge about the effects of changing beach house configurations on aeolian sediment transport
- Unknown (long-term) effects of beach houses configurations using varying seasonal wind conditions
- Potential of lowering the limiting effect on dune-ward sediment transport



?

#### **2. OBJECTIVES**







**ŤU**Delft



#### Objectives

- Simulate wind around beach houses using Computational Fluid Dynamics (CFD)
  - Creating different beach house configurations
  - Using varying seasonal wind conditions
- Determine dune-ward sediment transport

• Create a database storage system



#### **Research question**

# *"What are the effects of different beach house configurations on dune-ward sediment transport?"*

# Case study: Noordwijk

?





0

11.

<u>ل</u>

5

# **3. METHODOLOGY**

- Running a CFD simulation
- Creating different scenarios
- Automation and database storage

Delft



#### Running a CFD simulation: OpenFOAM

#### Pre-processing:

1. 3D model: beach + houses





#### Running a CFD simulation: OpenFOAM

Pre-processing:

- 1. 3D model: beach + houses
- 2. Create mesh



#### Running a simulation: OpenFOAM

#### 3. Set parameters

- Wind speed/direction
- Boundary conditions
- Turbulence
- Etc.
- 4. Run solver
  - simpleFoam



#### Running a simulation: OpenFOAM

#### 5. Postprocessing

- Extract plane
- Calculate sediment transport





#### Calculate sediment transport

Sediment transport<sup>1</sup>:

$$q = 1.8 \left(\frac{\rho}{9.81}\right) \, u_*^3 \left(\frac{d}{0.25}\right)^{\frac{1}{2}}$$

Dune-ward sediment transport<sup>2</sup>:

$$Q_D = 0.1 \operatorname{q} \cos(\alpha)$$

1. Bagnold, R. A. (1937). The Transport of Sand by Wind. *The Geographical Journal*, 89(5):409–438.

2. Davidson-Arnott, R. G. and Law, M. N. (1996). Measurement and prediction of long-term sediment supply to coastal foredunes. *Journal of Coastal Research*, 12(3):654–663.

#### Creating different scenarios

Beach house configurations

0

Delft



3. Methodology 21/40

## Creating different scenarios

Beach house configurations

0

Delft



#### Creating different scenarios

Seasonal wind conditions

0





3. Methodology 23/40



Delft

#### Automation



#### Data storage

0





0

ılı.

<u>ل</u>

**ŤU**Delft



- Wind flow
- Varying wind conditions
- Beach house configurations



#### Wind flow





# Varying wind conditions



4. Results 28/40



#### Varying wind conditions



4. Results

29/40

Group 1 X = 120 m







**ŤU**Delft

լի

Group 2







**fU**Delft

լի

Group 3

<u>ll.</u>

elft







4. Results 32/40

Group 4

լլլ







Group 5

լլլ







4. Results 34/40



**ŤU**Delft

## **5. DISCUSSION**

- Limitations
- Future work



#### Limitations

- Not taken into account: moisture, fetch, temperature, etc
- Simplified 3D model



elft

#### Future work

- Scale models, wind tunnels
- Improve data management



#### **6. CONCLUSION**



#### Conclusion

"What are the effects of different beach house configurations on dune-ward sediment transport?"

- The wind coming from WSW is responsible for most sediment transport.
- Rotating a whole row of houses has only small effects
- Rotating individual houses towards prevalent wind shows increase in dune-ward sediment transport and limits the stationary area
- V/funnel shape shows promising result to increase the dune-ward sediment transport



# Thank you!

• Questions?

#### Extra slides



