
Navigating Repositories: Assessing the Impact of External Repositories on Packages in Maven
Central

Jelle Sandifort1

Supervisor(s): Dr. ing. Sebastian Proksch1, Shujun Huang1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Jelle Sandifort
Final project course: CSE3000 Research Project
Thesis committee: Dr. ing. Sebastian Proksch, Dr. ing. Casper Bach Poulsen, Shujun Huang

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This paper presents a comprehensive experimental
study on the use and impact of external reposito-
ries in the Maven ecosystem. For this research the
prevalence, naming patterns, and potential risks as-
sociated with external repositories were analyzed.
We analyzed 199,188 packages and found that
3.29% of projects employ external repositories.
Our findings indicate a decline in the usage of
external repositories over time, with one (1.85%)
and two (0.72%) external repositories occurring the
most. The usage of external repositories has no sig-
nificant (p < 0.05) effect on the error rate. How-
ever, 19.85% of the errors of packages that use an
external repository are caused by one of their exter-
nal repositories. Moreover, we found that 69.58%
of the repository urls were unreachable. 19.31% of
the unique ids have two or more different reposi-
tory urls associated with them. Based on our find-
ings, developers are urged to thoroughly evaluate
their usage of external repositories and to consider
checking their settings.xml and POM.xml files to
ensure no url or id collisions are prevent or causing
unintended behaviour.
Keywords: Maven, external repositories, reposi-
tory naming

1 Introduction
The landscape of software development today is profoundly
influenced by the reliance on external code dependencies. A
crucial aspect of this dependence is the integration of open-
source components, which has become an unavoidable prac-
tice in modern software engineering. The amount of open-
source dependencies in software applications is staggering,
with a study indicating that 98% of all applications depend
on some form of open-source code [1]. Projects often em-
ploy package managers or build systems to manage their de-
pendencies for them. Maven is one popular example for
Java-based projects. However, all of these dependencies must
eventually be downloaded from somewhere. Package reposi-
tories are often used for this purpose. A repository is essen-
tially a web server that delivers static content, including JAR
and POM files and some associated metadata [2]. One of the
most popular repositories used by Maven is Maven Central
[3].

As of January 2024, Maven Central accommodates an ex-
tensive collection of over 12.7 million packages. This cen-
tralized repository offers every open-source project the op-
portunity to deploy their packages to. However, Maven also
offers the ability to reference external repositories that can
host dependencies. Even mirrors can be created that host the
same dependencies as provided by Maven Central, to ensure
redundancy or flexibility for example. Organizations and in-
dividuals also have the option to create and maintain repos-
itories, and frequently, widely-used packages are replicated
across multiple of them to ensure redundancy and accessibil-
ity. Examples of these include the Atlassian repository (with

2.6 million packages), Sonatype (with 2.2 million packages),
and Hortonworks (with 2 million packages) [4].

There can be numerous reasons for using other repositories
in a software project. Hosting packages on a different repos-
itory than Maven Central provides flexibility and control for
the owners. Some packages may not be available on Maven
Central thus requiring other repositories to be used [5].

Though there are benefits, they do not come without conse-
quences. External repositories may not always adhere to the
same stringent standards of security and artifact immutabil-
ity as Maven Central, potentially leading to inconsistencies
in dependency versions and compromised reliability. There
is also an increased risk of integrating dependencies with se-
curity vulnerabilities or malicious code. Mirrors of an cen-
tral repository can namely still contain malicious code that
has long been removed from the central repository, inject-
ing software with known security flaws [6] [7]. Mirrors can
also be vulnerable to Mirror Package Override Attacks, which
allows packages that do exist in the mirror but not in the
official registry to be overridden by anyone with malicious
code [8]. Moreover, the complexity of managing and resolv-
ing dependencies escalates when multiple repositories are in-
volved, often leading to conflicts. This setup also increases
the maintenance overhead for developers, who must manage
and monitor multiple sources. In some cases, if an external
repository becomes unavailable or removes certain artifacts,
it might result in build failures or issues in the reproducibil-
ity of builds over time. External repositories could also re-
quire authentication, preventing other users without authen-
tication access to these dependencies. Additionally, external
repositories might host artifacts with more restrictive licens-
ing, posing challenges in ensuring compliance with legal and
corporate policies [9].

In order to get a general picture of the impact of these ex-
ternal repositories on Maven Central, this study tries to un-
ravel how common the use of external repositories are in the
Maven ecosystem. Moreover, we will investigate what the
impact is of depending on them and whether the naming of
such repositories has any impact.

2 Background

A common confusion in the field stems from the misuse of
Maven and Maven Central. In this paper we will use Maven
when referencing to the Maven build system and use Maven
Central when referring to the Maven Central repository.

2.1 Custom Repositories

Maven employs the https://repo.Maven.apache.org/Maven2
URL - also known as Maven Central - as its default repos-
itory address [10]. If all packages are available within this
repository, they will be automatically fetched and stored in
the user’s local repository. This is called the resolving of de-
pendencies. Users have the ability to specify custom reposito-
ries within the POM.xml file by utilizing the <repositories>
tag. Maven uses these repositories to download all the neces-
sary packages [11].



2.2 Super POM
A Maven project, at its core, inherits from the ”super POM,”
which is automatically treated as the parent POM when no
explicit parent POM is provided. The super POM is a POM
file that is used across all of Maven and occupies the top po-
sition in the POM hierarchy. In this super POM, you will
find only one repository defined under the repositories sec-
tion: Maven Central. This repository configuration is inher-
ited by all Maven applications, making it a central hub for
package retrieval. While a Maven project can point to a par-
ent POM, this is not mandatory [12].

When specifying repositories in an POM.xml file a user
has to at least specify an id and the repository url. A user will
override the repositories specified in the parent POM when
using the same ids as used by the parent. In this way the
lowest level ids will be used with their corresponding urls.
A user can therefore also override the Maven Central reposi-
tory specified in the super POM by using the central id with
another url. One of the advantages of this is that a user can
extend and override the configuration inherited from higher
up the hierarchy [3].

Besides the Parent POM, Maven defines a specific order
of how repository urls are queried in order to resolve an arti-
fact. First the global and user settings.xml files are traversed,
then Maven starts at the project’s POM file working up the
hierarchy to the parent POM. If after this the artifact can still
not be resolved, Maven traverses the effective POMs from the
dependency path towards the artifact [13].

3 Experimental Setup
In this section we highlight the research questions we will
investigate in this study and the general setup used to collect
and sample the data.

3.1 Research Questions
In order to answer our main research question of what the im-
pact of external repositories is on packages in Maven Central,
we define three sub-questions:

• RQ1: How common is the use of external repositories
among open-source projects in Maven Central?

• RQ2: How often are Maven packages impacted by de-
commissioned or migrated external repositories?

• RQ3: Are there common naming patterns for repository
ids?

3.2 Data Collection
In order to collect the data necessary to answer the research
questions, we built upon the Maven explorer project.1 The
blue section of figure 1 shows a part of the tool that we have
used. This tool enables collecting packages using a speci-
fied index from Maven Central. The tool requests the pack-
ages it finds and puts them in a Kafka topic with requested
as the name of the topic. A N amount of downloaders are
listening to this topic. When the topic has a new message
the downloaders will download all the POM files from the

1https://github.com/cops-lab/Maven-explorer

specific package. The downloaders internally use the mvn de-
pendency:get command. Whenever something goes wrong
with this command, let it be a resolvability or downloading
error, the downloader will put the GroupId-ArtifactId-Version
(GAV) coordinates and the stacktrace on a specific lane in the
downloaded topic, called the error lane.

Index
Crawler

Central

Normal lane

Priority lane

Error lane

Requested Topic

Downloader

Downloader

Downloader

Downloader

Downloader

Normal lane

Priority lane

Error lane

Downloaded Topic

Retry resolving
dependencies

Parse error and
POM

Parse POMSave to Csv

Figure 1: The blue part shows the section of the Maven Explorer we
have used. Outside the blue section the custom extension we created
to collect the data from the POM files and the error messages is
shown

In order to correctly analyse the errors and the correspond-
ing data, the project has been extended to listen to the error
lane and retry resolving the packages and their dependencies,
this can be seen from the part outside the blue section of fig-
ure 1. Following this, the POM files and the detailed errors
were parsed and saved in csv files for analysis.

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

0

10

20

30

N
um

be
ro

fP
ac

ka
ge

s
(x

10
00

)

Figure 2: Distribution of packages (x1000) grouped per year after
applying random sampling to a total dataset of 934,266 packages
which reduced it to 199,188 packages

3.3 Data Sampling
As pointed out before, Maven Central is a large repository.
On 5 January 2024 Maven Central contained 12,778,480
packages which amounted to 38,567 gigabytes of data [14].
In order to answer our research questions, we will be



analysing a subset of this total repository. Maven has re-
leased a weekly index which contains all packages released
per week starting from 2015 [15]. We leverage this to create
a subset. We have split all indexes in sections of 50 starting
with 400 and ending in 800. Starting from every fiftieth index,
we let a total of 100,000 packages accumulate in the normal
lane and appended those with the packages in the error lane.
This ensured that we have an even distribution of packages
across the years 2016 until 2023. Popular packages have re-
leased more versions and therefore they are more present in
the dataset. We account for this by removing duplicates based
on the unique combination of groupId and artifactId and se-
lecting a random version. A seed has been used to replicate
the randomness. This resulted in a reduction from 934,266
collected packages to a total of 199,188 packages with a dis-
tribution over the years as seen in figure 2.

4 How common is the use of external
repositories among open-source projects in
Maven Central?

As illustrated in the introduction, the usage of external repos-
itories can bring certain disadvantages. In order to be able to
gauge how many of the packages in Maven Central are po-
tentially at risk for these disadvantages, we need to find out
how many of the packages use external repositories. More-
over, we would be interested in whether certain trends can be
found over the course of the years.

Methodology While Maven Central is implicitly included
as a repository under the repositories tag in the super POM,
users can choose to also include references to Maven Cen-
tral in their project POM. We define an external repository
as every repository that is referenced and that is not Maven
Central. Since for this research question we want to deter-
mine how many external repositories are used, we exclude the
HTTP and HTTPS variants of the old Maven Central reposi-
tory (repo.maven.apache.org/maven2) and the new repository
(repo1.maven.org/maven2) from the repositories. When col-
lecting our data we have counted the amount of repositories
per package. We can therefore group our dataset in groups
based on the repository count.

Results We found that 3.29% of the packages in our dataset
have at least one or more external repositories specified in
their POM file. Figure 3 shows the change in external reposi-
tory reliance over time. On the y-axis the percentage of pack-
ages that rely on at least one external repository is shown. On
the x-axis the years are shown. We found a strong negative
pearson correlation (ρ = −0.911, p-value < 0.05) indicating
that the percentage of packages with at least one repository is
declining over the years.

In figure 4 the distribution of the amount of repositories
can be seen. On the x-axis the amount of repositories that
was found in the POM file is shown and on the y-axis the
percentage of packages that have specified such amount of
repositories. From the graph can be seen that 1.85% of the
packages have specified one external repository and 0.72%
has specified two repositories. After two repositories, the

amount quickly decreases. We found that almost no packages
with more than ten repositories specified exist.

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

2.5

3.0

3.5

4.0

P
ac

ka
ge

s
w

ith
at

le
as

t1
re

po
si

to
ry

(%
)

Figure 3: Change in percentage of packages using at least one exter-
nal repository

1 2 3 4 5 6 7 8 9 10
Number of Repositories Specified

0

1

2

Pe
rc

en
ta

ge
of

P
ac

ka
ge

s

1.85%

0.72%

0.30%
0.12% 0.10% 0.08% 0.03% 0.01% 0.04% 0.03%

Figure 4: Percentage of packages using N amount of external repos-
itories

5 How often are Maven packages impacted by
decommissioned or migrated external
repositories?

Over the course of time repositories can be moved or taken
down. Such as Maven Central itself which as of January 2020
deprecated the central.maven.org url and all transactions over
HTTP [16]. When packages still rely on these repositories,
resolvability failures can be introduced. We want to find how
often Maven packages fail to resolve their dependencies be-
cause of decommissioned or migrated repositories in order to
find the impact of them. We therefore need to find whether
an repository url is the cause specified in the Maven Error
message while running mvn depencendy:tree. Moreover, we
need to find out whether these urls are unreachable or that the
resolution failed because of something else.



Methodology To determine whether external repositories
pose issues for packages, we classified the errors received
from executing the mvn:dependency tree command. Table 1
shows the error types that we could find while executing the
mvn command.

Forbidden
Blocked Mirror

Not found in Central
Non-resolvable parent POM

Does not exist
Unknown packaging
Connection refused

Table 1: Maven dependency error types that can appear when exe-
cuting mvn dependency:tree

On 4 April 2021 in version 3.8.1, Maven introduced a
HTTP blocker that would block access to repositories over
HTTP. This was done to prevent man-in-the-middle attacks
[17]. The blocked mirror error message hides whether a
repository still is available. This error is not caused by a faulty
setup of the project. In order to circumvent this we added a
HTTP unblocker to the settings.xml file to see whether the
url is still working and prevent the blocked mirror error from
appearing. However, the HTTP blocker itself introduces an
interesting question. How often is the HTTP protocol used as
an url for custom repositories?

In order to measure the impact of external repositories on
the resolvability of the dependencies of packages in Maven
Central we formulated a null hypothesis. The null hypothe-
sis states that packages with no external repositories have the
same mean percentage of errors as packages with one or more
repositories.

In order to find out whether the specified repository urls
are reachable we group by the unique urls. Then we execute
a HTTP GET request to each unique url with a timeout of
five seconds. When we receive a 301 (Moved Permanently),
302 (Found) and 307 (Temporary Redirect) status we follow
the new url one time in order to see whether that leads to
a successful status code (200 - 299) [18]. We take the status
code of the new url. We define a repository as reachable when
it returns a status code from the 200-299 range or the 300-399
range.
Results We found that on average 0.89% of the packages
with one or more repositories has an resolvability error. Of
these packages 19.85% of the error messages contained the
repository url, indicating that the repository was the cause of
the error. We used a t-test to test the null hypothesis, we found
p > 0.05 and therefore fail to reject the null hypothesis. The
amount of repositories therefore does not seem to have an
effect on the error rate of packages.

We found that on average 30.27% of all repositories re-
turned 200 status codes. We received for 26.26% of the urls
404 (Not Found) codes and 24.24% of the time we received a
timeout. Figure 5 show this in more detail, with on the y-axis
the percentage of unique urls responding with a status code
as presented on the x-axis. From this figure we omitted sta-
tus codes that we received for less than 1% of the packages

which where: 502 (Bad Gateway), 410 (Gone), 503 (Service
Unavailable) (0.50% each), 501 (Not Implemented) (0.35%)
and 500 (Internal Server Error), 526, 203 (0.07% each). This
indicates that 30.42% of the unique urls were reachable.

20
0

40
4

Tim
eo

ut 40
0

40
3

40
1

40
5

Reponses from Repository urls

0

20

Pe
rc

en
ta

ge
of

un
iq

ue
ur

ls

30.34%
26.18%

24.18%

8.25%
4.30% 3.52%

1.08%

Figure 5: Percentage of unique repository urls responding with a
certain status code after a HTTP GET request which also followed
redirect status codes

Figure 6 shows the percentage of unreachable urls on the y-
axis and the years on the x-axis. It shows that the percentage
of unreachable urls per year is declining. However, it never
reaches lower than 30%.

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

40

50

60

Pe
rc

en
ta

ge
of

U
nr

ea
ch

ab
le

U
R

Ls
(%

)

Figure 6: Change in percentage of unreachable repositories out of
the total 1,394 unique urls

Figure 7 shows the evolution of the Connection refused er-
ror over the course of the years. The connection refused error
indicates that Maven was unable to resolve a dependency be-
cause it could not connect to a remote repository. The y-axis
shows the percentage of packages that generated a connection
refused error and the x-axis shows the years. One can see that
the graph starts at more than 30 percent in 2016 and declines
to almost 0% in 2023.

Figure 8 shows the evolution of the repository urls us-
ing HTTP and HTTPS. On the y-axis the percentage of urls
that use a certain protocol is shown and the x-axis shows the



years. From the figure one can see that from 2016 onwards
the HTTPS protocol seem to gain traction compared to the
HTTP protocol. In 2023 the HTTP usage seems to be de-
clined to almost 0%. One can see the steepest decline took
place between 2019 and 2020, which can be explained by the
fact that Maven deprecated HTTP access of Maven Central in
January 2020 [16].

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

0

10

20

30

Pe
rc

en
ta

ge
of

C
on

ne
ct

io
n

R
ef

us
ed

E
rr

or

Figure 7: Change in percentage of packages that had the connection
refused error per year

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

0

25

50

75

100

Pe
rc

en
ta

ge
of

To
ta

lU
R

Ls

URL Type
HTTP
HTTPS

Figure 8: The evolution of HTTP versus HTTPS usage for urls of
external repositories

6 Are there common naming patterns for
repository ids?

The only constraint Maven imposes on repository ids is that
they have to be unique within the same POM file. As dis-
cussed before Maven has a certain way of resolving artifacts,
such as traversing the POM hierarchy. This method poses
some problems. When a dependency in the child project re-
lies on a repository specified in the parent, but has a different

repository specified with the same id, Maven will be unable to
resolve the dependency. There are also two other scenario’s
where a collision between urls or ids can cause problems. In
first case, two separate Maven projects have employed identi-
cal ids for two distinct urls, we named this an id collision.
When a GAV is downloaded in one project and stored lo-
cally in the .m2 folder and there happens to be a conflicting
GAV in the other repository, the second Maven project might
inadvertently select the package from the repository of the
other project and thus from the wrong repository. This oc-
curs because Maven lacks the ability to differentiate between
the two, due to the shared ids. Another scenario is where
the same repository url is used with different ids, we named
this an url collision. This scenario makes it harder to create
mirrors for these repositories, since mirrors are created based
on repository ids [19]. In these two scenarios, when Maven
finds the artifact it is looking for, it will successfully resolve
and output no errors. This introduces a malicious effect, since
it now looks like Maven is acting as intended, but under the
hood it is using repositories that we explicitly do not want to
use.

Methodology We want to find whether collisions exist be-
tween different ids and different urls. Meaning that we can
find at least two different urls that have the same id specified,
or two different ids that have same url specified. We do this
by grouping repository id and then calculating the amount of
unique urls associated with them. We will treat the same url
over HTTP and HTTPS as different urls. We have striped
every url of the trailing forward slash (/), since urls with or
without one still resolve to the same repositories - e.g. exam-
ple.com/packages versus example.com/packages/.

Results We found that on average 19.31% of all unique ids
have collisions, meaning that these ids have two or more dif-
ferent urls associated with them. Moreover, we found that
20.75% of the unique urls have two or more unique ids. Fig-
ure 9 shows on the y-axis the percentage of repositories that
have the same id, but a different url in that specific year. On
the x-axis it shows the years. One can see from the graph that
the relative amount of collisions seems to be stable across the
years.

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

0

10

20

Pe
rc

en
ta

ge
of

C
ol

lis
io

ns

14.79%

11.05%

13.81%
15.32% 14.41% 14.84%

18.21%

15.61%

Figure 9: Bar plot showing the percentage of repositories that have
an id in common with another repository, but both have different urls
specified (collisions)



In table 2 the top ten most used urls are shown. The
frequency indicates how often the url was used by different
repositories, the unique ids column indicates how many dif-
ferent repository ids used that same url. From the table one
can see that the most popular url was used 1760 times and
had 97 different ids. Surprisingly jitpack.io which is used
741 times only has been used with two different ids. No url
from the top ten has just one unique repository id. We found
that every repository url has 1.70 unique ids on average.

url frequency unique ids

https://oss.sonatype.org/content
/repositories/snapshots

1760 97

https://jitpack.io 741 2

https://repo1.maven.org/maven2 649 26

https://build.shibboleth.net/nexus
/content/repositories/releases

539 7

https://oss.sonatype.org/content
/repositories/releases

469 39

https://jcenter.bintray.com 418 18

https://repo.spring.io/milestone 412 10

https://files.couchbase.com/maven2 388 2

https://repo.spring.io/snapshot 378 3

https://repo.maven.apache.org/maven2 352 18

Table 2: Table showing the top ten most used repository urls out of
the total 16,781 repositories as indicated by the frequency column
and the amount of unique ids for the url as indicated by the unique
ids column.

From table 3 can the top ten most used ids be seen, with the
frequency of the ids and the amount of unique urls used with
that id. One can see that central, although specified by default
in the super POM, is used 555 times and has 31 different urls.
This indicates that projects are using other repositories than
Maven Central and associating them with the original central
id. Interestingly, jitpack is the only id in the top ten that has
one unique url, even tough it is used 569 times. This indicates
that a common id naming is possible. We found that on aver-
age every repository id has 7.80 unique urls associated with
it.

We observed that within successive releases of the same
software package, approximately 0.68% of the packages alter
the names of their repository ids.

7 Responsible Research
Research is inherently associated with reproducibility and
ethical issues, In this section we will investigate how those
issues played a role in this study, starting with reproducibil-
ity.

Despite being cautious in selecting a subset of Maven Cen-
tral, biases could be at play that could inadvertently influence
the outcome of the research. Over the course of the project
measures has been taken to prevent this. One version per

id frequency unique urls

shib-release 576 3

jitpack 569 1

central 555 31

couchbase 550 2

maven-central 449 7

spring-milestones 444 8

sonatype-nexus-snapshots 440 11

jcenter 422 4

atlassian-public 351 5

spring-snapshots 347 6

Table 3: Table showing the top ten most used repository ids out of
the total 16,781 repositories as indicated by the frequency column
and the amount of unique urls for the id as indicated by the unique
urls column.

groupId and artifactId combination was randomly selected to
prevent data skewing based on some packages having more
frequent releases. A seed has been used to ensure the study
can be replicated. The code used for downloading the pack-
ages has been released in order to enable reproducibility.2
The dataset and the notebook used to analyse it has also been
published.3 As long as the indexes remain available and do
not change in content the study can be replicated by follow-
ing the setup from section 3 and the downloading tool. The
notebooks can be executed by others to validate the findings
we reported in this study.

Ethics is another important consideration when conducting
research. A study by Badampudi highlighted certain advan-
tages of addressing ethical considerations in a research paper.
One advantage is encouraging researchers to critically think
about the application of ethical issues in their study design.
Another benefit is improving accountability and trust in the
research study that points out these applicable ethical consid-
erations [20]. Despite these advantages Hall & Flynn found a
lack of ethical considerations in empirical software engineer-
ing research [21]. Singer & Vinson highlighted ethical is-
sues concerned with empirical software engineering research,
which entail: informed consent, scientific value, beneficence
(human), beneficence (organization) and confidentiality [22].
We used these aspects to evaluate the ethics of our study, how-
ever since our study did not entail any human subjects we
omit the informed consent aspect.
Scientific value We have explained the importance of our
study and the problem itself. Moreover, we have explained
our methodology in order to promote reproducibility. We
evaluate the threats to the validity of the results in the dis-
cussion.
Beneficence (human) In this context, beneficence is the
balance of the benefits and the harm of a study on society

2https://github.com/JSandifort/MavenReposInsights
3https://github.com/JSandifort/MavenReposAnalysis



[21]. Over the course of the study one form of harm could
be formulated as the large amount of packages that have been
downloaded from Maven Central. The downloading takes up
bandwidth and could have negatively impacted the experience
of other users. We mitigated this by only using a maximum
amount of ten downloaders and spreading the downloading
over multiple weeks. The benefits of the study are the in-
sights gained from the results and the recommendations that
can implemented in order to improve the ecosystem.
Beneficence (organization) We have found no consider-
able problematic issues that influence the image of Maven or
other organizations. We have included recommendations that
Maven and developers could follow to improve the ecosys-
tem. However, the issues that we have found are an accu-
mulation of contributions over the years and are therefore not
attributed to the fault of one organization in particular.
Confidentiality In contrast to software repositories like
GitHub, artifact repositories such as Maven Central contain
considerably less data about the developers and their inter-
actions. Maven Central lacks information such as commits,
issues, and pull requests for example. While uploading to
Maven Central requires the inclusion of developer informa-
tion, such as name and email address, we intentionally ex-
cluded this data from our dataset [23]. Developers who up-
loaded packages to Maven Central agreed to the distribution
and availability of their packages for download [24].

8 Discussion and Future Work
Within this section, we will delve into the implications of our
results and the potential challenges to the validity.

8.1 Implications
Our findings indicate that external repositories are used by
packages and that while they do not increase the error rate of
resolving dependencies, a substantial amount of the errors of
packages with repositories are related to those repositories.
We therefore reason it is important for project maintainers
to check whether the artifact they have published on Maven
Central can be resolved on a newly initiated machine or to
test the resolvability in continuous integration pipelines.

We have also found that only a small amount of repos-
itories were available. We therefore usher developers and
project maintainers to check their repositories to see whether
they are still available. We recommend Maven to maintain a
list of repositories that were once commonly used, but are
now decommissioned or moved. Moreover, project main-
tainers and developers should thoroughly evaluate why they
are using certain repositories, what the security standards and
considerations for these repositories are and whether there are
safer or better alternatives.

We have also found that the amount of repositories using
the HTTP protocol has decreased to almost zero. This im-
plies that the HTTP blocker is unlikely to cause the blocked
mirror error for recent and future dependencies. We recom-
mend repository maintainers to ensure their repositories are
available over HTTPS.

We found that the default Maven repository was included
in a considerable amount of projects, even tough this is not

necessary since it is included by default. The more reposito-
ries are specified in a project, the more complex a project be-
comes and the more difficult it becomes to keep an overview.
We recommend developers to evaluate why they are specify-
ing this default repository explicitly and whether it is neces-
sary to do so.

Moreover, as indicated in section 6, url and id collisions
could introduce some dangerous scenarios and side-effects.
We found a non-negligible amount of evidence that url col-
lisions and ids collisions are present in Maven Central. This
indicates that the problems identified could be present in the
Maven ecosystem. Since url and id collisions will not always
lead to errors, the malicious effect of them will not be easily
noticed. We therefore recommend developers to check their
projects for conflicting repository ids and urls. We advocate
for the research into and the development of an unified nam-
ing convention for repository ids. Until a repository id nam-
ing convention is established we also recommend developers
to append a hash or another form of randomness to their exist-
ing and future repository ids and to check their settings.xml
files to see whether the proxies and mirrors configured for
their repository ids are correctly used. This randomness will
minimize the occurrence of collisions and minimize the neg-
ative effect of them.

8.2 Threats to Validity
We differentiate between external validity and internal valid-
ity.

External Validity
Generalizability Across Different Ecosystems: The study

is focused on Maven Central and its dependencies. Maven
Central is used for Java-based projects. This might limit the
generalizability of the findings to other ecosystems and their
respective package management tools, such as PyPi and npm.
Additional research is required to determine the generaliz-
ability of our findings to other dependency management sys-
tems.

Internal Validity
Accuracy of Data Collection: For this paper We have uti-

lized a subset of Maven Central. The method of selecting
this subset and its size can affect the representativeness of
the findings. Using the Maven Explorer project different in-
dexes were collected and after that random sampling was ap-
plied. However, this still includes a subset and the indexes
were manually picked which could have introduced a bias or
data skewing. In the future it is recommended to build upon
the tool such that one can apply random sampling before col-
lecting from certain date ranges.

Accuracy of Error collection: We ran mvn depen-
dency:tree to determine whether a package could resolve its
dependencies. However, whether this command succeeds
does not only depend on the POM file of the package but also
on Maven settings, the packages in the local repository, our
firewall settings, our network and other environmental fac-
tors. We have done our best to mitigate these environmental
factors, for example by providing a settings.xml folder with
the project where only a HTTP unblocker was specified, and
by setting the firewall of our server as openly as possible, but



one can never mitigate these factors entirely. These factor
could have influence the accuracy of the errors and should be
taken into account when evaluating the data.

Reachability of Url: We used an HTTP request with a
short timeout to check whether the repository urls were still
available. It could be that the repository is still available but
the root url does not accept standard HTTP requests. More-
over, it could also be the case that the repository was still
available but that the timeout was not sufficiently long enough
to allow the server to return a response. The timeout was nec-
essary to allow all repository urls to be tested, since we do
not know whether the server will actually respond in the first
place. We have only tested the urls specified in the url tag
of the repositories. This url often leads to a directory listing
of the repository. Some working repositories however could
have disable this directory listing therefore sending a 4xx or
5xx status code even tough the repository is functioning prop-
erly. Future work will be required to more thoroughly explore
whether this has an effect on the reachability.

9 Related Work
While there seems to be little work on the naming of the
repository ids and the repository usage from the Maven Cen-
tral repository, there is a considerable amount of research
within the field of artifact repositories like Maven Central.

Soto Valero, et al. [25] analyzed 723,444 dependency re-
lationships to study the emergence of bloated dependencies
within the Maven ecosystem. They define bloated dependen-
cies as dependencies that were included in a project, but were
not necessary to actually build or execute it. They found that
2.7% of the direct dependencies and 57% of the transitive de-
pendencies were bloated.

Soto Valero, et al. [26] also researched the emergence of
Software Diversity in Maven Central. They analyzed 73,653
libraries and all their versions and found that 30% of the li-
braries’ versions are actively used by the latest versions of
artifacts on Maven Central.

Tacong Gu, et al. [8] analyzed security threats on mir-
rors of popular repositories across different ecosystems and
showed that Maven, PyPI and npm mirrors were vulnerable
to Mirror Package Override Attacks, indicating the dangers
of using other repositories than the official centralized one.

Yang, et al. [27] studied the dependency scope settings of
65 different Maven projects. They found that improper de-
pendency scope settings could lead to missing dependencies,
dependency duplication or conflict and dependency settings
being overwritten. They noted that the default compile scope
is most of the time sufficient to ensure that a project contain-
ing dependencies runs without problems.

A study by Düsing & Hermann [28], which analysed the di-
rect and transitive vulnerabilities of software packages, found
that 25% of the patches were released after the corresponding
vulnerability publication. They also found that the amount of
artifacts transitively affected by a vulnerability in Maven was
more than 6,000 times higher than for the NuGet.org ecosys-
tem.

Kula, et al. proposed the Software Universe Graph (SUG)
which could model library popularity, adoption and diffusion

within the Maven and CRAN ecosystems [29].
Taylor, et al. designed a tool that could indicate with

99.4% accuracy, typosquatting cases within the npm and PyPi
ecosystem. Typosquatting is a common technique to try to
get an user to download a less popular package by uploading
it with a similar name of that of a very popular package [30].

Harrand, et al. investigated the usage of the APIs of the 94
most popular libraries from the Maven Central repository and
their 2.2 million dependencies. They found that there exist a
subset of all APIs that are used by most of the clients and that
most APIs are used at least once [31].

10 Summary
In this study we analyzed 199,188 packages to shed light on
the usage and impact of external repositories in the Maven
ecosystem. Our findings reveal that the prevalence of external
repositories in Maven Central is relatively low at 3.29% and
there is a notable decline in their usage over time. We found
that packages with one or two external repositories specified
are the most common. The study uncovered significant con-
cerns regarding repository reliability, with 69.58% of repos-
itory urls being unreachable, raising questions about the sta-
bility and security of custom package repositories in Maven
projects. Moreover, we have identified different malicious
scenarios of conflicting repository urls and ids and showed
that on average 19.31% of the unique ids relate to two or more
different urls. Interestingly, our analysis did not find a signif-
icant correlation between the usage of external repositories
and increased error rates in Maven packages, despite the fact
that 19.85% of the errors of packages with repositories were
caused by their repositories. We advocate for a thorough re-
assessment of the repositories used in one’s project and for
more research in a naming convention that could minimize
future problems from occurring.

References
[1] O. Mishra and R. Sarkar, “OSS known vulnerability

scanner - Helping software developers detect third-party
dependency vulnerabilities in real time,” in Implement-
ing Enterprise Cyber Security with Open-Source Soft-
ware and Standard Architecture, vol. 2, pp. 25–34,
2023.

[2] P. Späth, “Corporate Maven Repositories,” in Pro
Jakarta EE 10: Open Source Enterprise Java-based
Cloud-native Applications Development (P. Späth, ed.),
pp. 61–86, Berkeley, CA: Apress, 2023. https://doi.org/
10.1007/978-1-4842-8214-4 6.

[3] P. Siriwardena, Maven Essentials, pp. 23–24. Packt
Publishing Ltd, Dec. 2015.

[4] “Maven Repository: Repositories.” https:
//mvnrepository.com/repos. Accessed: 2024-01-09.

[5] J. Ossher, H. Sajnani, and C. Lopes, “Astra: Bottom-
up construction of structured artifact repositories,”
pp. 41–50, 2012. https://doi.org/10.1109/WCRE.2012.
14 ISSN: 1095-1350.

https://doi.org/10.1007/978-1-4842-8214-4_6
https://doi.org/10.1007/978-1-4842-8214-4_6
https://mvnrepository.com/repos
https://mvnrepository.com/repos
https://doi.org/10.1109/WCRE.2012.14
https://doi.org/10.1109/WCRE.2012.14


[6] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Back-
stabber’s Knife Collection: A Review of Open Source
Software Supply Chain Attacks,” in Detection of In-
trusions and Malware, and Vulnerability Assessment
(C. Maurice, L. Bilge, G. Stringhini, and N. Neves,
eds.), Lecture Notes in Computer Science, (Cham),
pp. 23–43, Springer International Publishing, 2020.
https://doi.org/10.1007/978-3-030-52683-2 2.

[7] W. Guo, Z. Xu, C. Liu, C. Huang, Y. Fang, and
Y. Liu, “An Empirical Study of Malicious Code In
PyPI Ecosystem,” in 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), pp. 166–177, Sept. 2023. https://doi.org/10.
1109/ASE56229.2023.00135 ISSN: 2643-1572.

[8] Y. Gu, L. Ying, Y. Pu, X. Hu, H. Chai, R. Wang, X. Gao,
and H. Duan, “Investigating Package Related Security
Threats in Software Registries,” in 2023 IEEE Sympo-
sium on Security and Privacy (SP), pp. 1578–1595, May
2023. https://doi.org/10.1109/SP46215.2023.10179332
ISSN: 2375-1207.

[9] A. Molin, A. M. Riviş, and R. Marinescu, “Assess-
ing the Real Impact of Open-Source Components in
Software Systems,” IEEE Access, vol. 11, pp. 111226–
111237, 2023. https://doi.org/10.1109/ACCESS.2023.
3322362 Conference Name: IEEE Access.

[10] “Maven – Introduction to the POM.”
https://maven.apache.org/guides/introduction/
introduction-to-the-pom.html. Accessed: 2024-01-27.

[11] P. Siriwardena, Maven Essentials, p. 9. Packt Publishing
Ltd, Dec. 2015.

[12] P. Siriwardena, Maven Essentials, p. 18. Packt Publish-
ing Ltd, Dec. 2015.

[13] “Setting up multiple repositories.” https://maven.
apache.org/guides/mini/guide-multiple-repositories.
html. Accessed: 2024-01-28.

[14] “Maven Repository: Central.” https://mvnrepository.
com/repos/central. Accessed: 2024-01-05.

[15] “Maven – Central Index.” https://maven.apache.org/
repository/central-index.html. Accessed: 2024-01-05.

[16] “Central http deprecation update.” https://central.
sonatype.org/news/20190715 http deprecation update/.
Accessed: 2024-01-27.

[17] “Maven – Release Notes – Maven 3.8.1.” https://maven.
apache.org/docs/3.8.1/release-notes.html. Accessed:
2024-01-20.

[18] “HTTP response status codes - HTTP | MDN.” https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Status,
Nov. 2023.

[19] “Maven - using mirrors for repositories.” https://central.
sonatype.org/publish/producer-term. Accessed: 2024-
01-27.

[20] D. Badampudi, “Reporting Ethics Considerations
in Software Engineering Publications,” vol. 2017-
November, pp. 205–210, 2017. https://doi.org/10.1109/
ESEM.2017.32 ISSN: 1949-3770.

[21] T. Hall and V. Flynn, “Ethical Issues in Software Engi-
neering Research: A Survey of Current Practice,” Em-
pirical Software Engineering, vol. 6, pp. 305–317, Dec.
2001. https://doi.org/10.1023/A:1011922615502.

[22] J. Singer and N. Vinson, “Ethical issues in empirical
studies of software engineering,” IEEE Transactions on
Software Engineering, vol. 28, no. 12, pp. 1171–1180,
2002. https://doi.org/10.1109/TSE.2002.1158289.

[23] “Requirements.” https://central.sonatype.org/publish/
requirements. Accessed: 2024-01-27.

[24] “Central repository producer terms.” https://maven.
apache.org/guides/mini/guide-mirror-settings.html.
Accessed: 2024-01-27.

[25] C. Soto-Valero, N. Harrand, M. Monperrus, and
B. Baudry, “A comprehensive study of bloated depen-
dencies in the Maven ecosystem,” Empirical Software
Engineering, vol. 26, p. 45, Mar. 2021. https://doi.org/
10.1007/s10664-020-09914-8.

[26] C. Soto-Valero, A. Benelallam, N. Harrand, O. Barais,
and B. Baudry, “The emergence of software diver-
sity in maven central,” vol. 2019-May, pp. 333–343,
2019. https://doi.org/10.1109/MSR.2019.00059ISSN:
2160-1852.

[27] H. Yang, L. Chen, Y. Cao, Y. Li, and Y. Zhou, “Towards
Better Dependency Scope Settings in Maven Projects,”
in Proceedings of the 14th Asia-Pacific Symposium on
Internetware, Internetware ’23, (New York, NY, USA),
pp. 90–100, Association for Computing Machinery,
Oct. 2023. https://doi.org/10.1145/3609437.3609447.

[28] J. Düsing and B. Hermann, “Analyzing the Direct and
Transitive Impact of Vulnerabilities onto Different Arti-
fact Repositories,” Digital Threats: Research and Prac-
tice, vol. 3, pp. 38:1–38:25, Feb. 2022. https://dl.acm.
org/doi/10.1145/3472811.

[29] R. Kula, C. De Roover, D. German, T. Ishio, and K. In-
oue, “A generalized model for visualizing library popu-
larity, adoption, and diffusion within a software ecosys-
tem,” vol. 2018-March, pp. 288–299, 2018. https://doi.
org/10.1109/SANER.2018.8330217.

[30] M. Taylor, R. Vaidya, D. Davidson, L. De Carli, and
V. Rastogi, “Defending Against Package Typosquat-
ting,” in Network and System Security (M. Kutyłowski,
J. Zhang, and C. Chen, eds.), Lecture Notes in Com-
puter Science, (Cham), pp. 112–131, Springer In-
ternational Publishing, 2020. https://doi.org/10.1007/
978-3-030-65745-1 7.

[31] N. Harrand, A. Benelallam, C. Soto-Valero, F. Bet-
tega, O. Barais, and B. Baudry, “API beauty is in
the eye of the clients: 2.2 million Maven dependen-
cies reveal the spectrum of client–API usages,” Jour-
nal of Systems and Software, vol. 184, 2022. /url-
https://doi.org/10.1016/j.jss.2021.111134.

https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1109/ASE56229.2023.00135
https://doi.org/10.1109/ASE56229.2023.00135
https://doi.org/10.1109/SP46215.2023.10179332
https://doi.org/10.1109/ACCESS.2023.3322362
https://doi.org/10.1109/ACCESS.2023.3322362
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/mini/guide-multiple-repositories.html
https://maven.apache.org/guides/mini/guide-multiple-repositories.html
https://maven.apache.org/guides/mini/guide-multiple-repositories.html
https://mvnrepository.com/repos/central
https://mvnrepository.com/repos/central
https://maven.apache.org/repository/central-index.html
https://maven.apache.org/repository/central-index.html
https://central.sonatype.org/news/20190715_http_deprecation_update/
https://central.sonatype.org/news/20190715_http_deprecation_update/
https://maven.apache.org/docs/3.8.1/release-notes.html
https://maven.apache.org/docs/3.8.1/release-notes.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://central.sonatype.org/publish/producer-term
https://central.sonatype.org/publish/producer-term
https://doi.org/10.1109/ESEM.2017.32
https://doi.org/10.1109/ESEM.2017.32
https://doi.org/10.1023/A:1011922615502
https://doi.org/10.1109/TSE.2002.1158289
https://central.sonatype.org/publish/requirements
https://central.sonatype.org/publish/requirements
https://maven.apache.org/guides/mini/guide-mirror-settings.html
https://maven.apache.org/guides/mini/guide-mirror-settings.html
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1109/MSR.2019.00059 ISSN: 2160-1852
https://doi.org/10.1109/MSR.2019.00059 ISSN: 2160-1852
https://doi.org/10.1145/3609437.3609447
https://dl.acm.org/doi/10.1145/3472811
https://dl.acm.org/doi/10.1145/3472811
https://doi.org/10.1109/SANER.2018.8330217
https://doi.org/10.1109/SANER.2018.8330217
https://doi.org/10.1007/978-3-030-65745-1_7
https://doi.org/10.1007/978-3-030-65745-1_7

	Introduction
	Background
	Custom Repositories
	Super POM

	Experimental Setup
	Research Questions
	Data Collection
	Data Sampling

	How common is the use of external repositories among open-source projects in Maven Central?
	How often are Maven packages impacted by decommissioned or migrated external repositories?
	Are there common naming patterns for repository ids?
	Responsible Research
	Discussion and Future Work
	Implications
	Threats to Validity

	Related Work
	Summary

