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A new wavefront sensorless adaptive optics method is presented that can accurately correct for time-varying aber-
rations using a single focal plane image at each sample instance. The linear relation between the mean square of the
aberration gradient and the change in second moment of the image forms the basis of the presented method. The
new algorithm results in significant improvements when an accurate model of the aberration’s temporal dynam-
ics is known, by applying a Kalman filter and optimal control. Moreover, where existing wavefront sensorless
adaptive optics methods update all modes sequentially, the information of the Kalman filter is used to select and
update the modes that are expected to give the greatest improvement in performance. The performance is analyzed
in a simulation of an adaptive optics system for atmospheric turbulence. The results show that the new method
is able to correct for the aberration more accurately for higher wind speeds and higher noise levels than existing
algorithms. ©2019Optical Society of America

https://doi.org/10.1364/JOSAA.36.001810

1. INTRODUCTION

Wavefront sensorless (WFSless) adaptive optics (AO) systems
are systems in which the aberrations of the wavefront have to be
corrected without using a dedicated wavefront sensor (WFS).
Instead, only the images of a focal plane camera are used. The
correction is applied to a deformable mirror (DM) in order to
minimize the effect of the aberration on image quality. Finding
an accurate correction without a WFS is challenging because
of the nonlinearity of the underlying optimization problem.
Various WFSless AO algorithms have been developed [1–4].
The common features of these methods are that they are all
iterative and require many measurements to converge. Recently,
WFSless AO also has gained attention in free-space optical
communication leading to new developments [5,6].

Alternatively, an accurate correction can be found by solving
the phase retrieval problem [7]. However, this either requires
additional constraints, such as knowledge of the field’s ampli-
tude in the pupil plane, or requires multiple simultaneous
measurements at different positions along the optical axis.
Furthermore, the phase retrieval problem for AO systems is
computationally very demanding and would limit the sampling
frequency of the control loop significantly [8].

A recent development in WFSless AO is an approach that
requires only m + 1 measurements, where m is the number
corrected modes [9,10] and is often referred to as model-based
or second-moment (SM)-based WFSless AO. A modal basis
is used that is spanned by the influence functions of the DM.

This type of method has been shown to converge faster than
other optimization algorithms [11]. The key to this approach
is the linear relation between the mean square of the phase
aberration gradient and the change in SM of the point-spread
function (PSF). By exploiting this linear relation, a closed-form
expression of the correction can be computed. In contrast with
iterative algorithms, this method is, due to its fast convergence,
promising for real-time AO applications in which the aberration
is time varying.

However, this method is still useful only when the aberrations
are static or change very slowly over time. Since the method
relies on the assumption that the aberration does not change
upon taking all m + 1 measurement images, the performance
decreases rapidly when the aberrations move faster. In [11], a
method is used that requires the aberration not to change over
only two measurement images. However, this method does not
aim to predict the evolution of the aberration over time, nor
discusses the effect of measurement noise on the methods’ per-
formance. Modeling the aberration’s temporal behavior and the
application of Kalman filter theory have been proven to be suc-
cessful to deal with time-varying aberrations and measurement
noise in the field of AO for astronomy [12,13]. Therefore, the
effects of including a temporal aberration model and Kalman
filter for WFSless AO are studied in this paper.

This paper presents an extension of the methods described in
[9,11,14] for aberrations that continuously change over time
and for which an accurate temporal model is available or can be
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identified. An example of an application that deals with these
types of aberrations is AO for astronomy [12]. From now on,
these aberrations will be referred to as dynamic or time-varying
aberrations. When a dynamic model of the aberration is avail-
able, Kalman filter theory and optimal control are applied to
close the loop and compute the optimal DM commands. The
Kalman filter is used to predict the aberration in the future and
to select and update the measurement image(s) that are expected
to give the greatest improvement in performance. The perform-
ance will be analyzed in a simulation study of an AO system that
corrects for aberrations caused by atmospheric turbulence and is
compared to the method in [14].

The remainder of this paper is structured as follows. First, the
existing framework of SM-based WFSless AO is explained, and
its limitation for dynamic aberration correction is discussed.
Section 3 presents the new SM-based WFSless AO method
for time-varying aberrations. The simulation environment is
discussed in Section 4, which considers a case study of dynamic
aberrations caused by atmospheric turbulence. The perform-
ance of the new method is presented in Section 5, where it is
compared to the existing SM-based WFSless AO method [14].
The main conclusions of this paper are summarized in Section 6.

2. SECOND-MOMENT-BASED WAVEFRONT
SENSORLESS ADAPTIVE OPTICS

A SM-based approach to WFSless AO has already been shown
to outperform the iterative algorithms in terms of conver-
gence speeds when applying correction for a static aberration.
Recently, this was also applied to the case of dynamic aberrations
[14]. For the completeness of this paper, this section summarizes
the theory of this SM-based WFSless AO approach. A scheme of
a WFSless AO setup is shown in Fig. 1.

The main goal of WFSless AO is to correct for a residual
phase aberration in the pupil plane φ(χ), with pupil plane
coordinates χ = [χ1 χ2]

T
∈R2. Define the PSF I (ζ , φ) with

image plane coordinates ζ ∈R2 as

I (ζ , φ)= |F(A(χ)e iφ(χ))|2, (1)

where F(·) is the 2D Fourier transform and A is the amplitude
apodization function. The unaberrated PSF will be denoted by
I (ζ , 0). Furthermore, the SM of the aberrated PSF is defined as

Fig. 1. Schematic representation of a WFSless adaptive optics setup.

z(φ)=
∫
R2

I (ζ , φ)|ζ |2dζ . (2)

An important relation that forms the basis of this method is that
the difference between the SM of the aberrated PSF and that of
the unaberrated PSF is proportional to the mean square gradient
of the wavefront [10]. It has been shown that∫

R2
(I (ζ , φ)− I (ζ , 0))|ζ |2dζ = · · ·

1

4π2

∫
R2

A2(χ)|∇φ(χ)|2dχ , (3)

i.e., the SM of the intensity distribution change in the focal
plane is proportional to the integral of the square of the phase
derivative multiplied by the amplitude apodization function.
This can be denoted more compactly as

z(φ)− z(0)= c 0 ‖ ∇φ ‖
2
2, (4)

where z(0) is the SM of the unaberrated PSF and c 0 =
1

4π2

[10]. Notice that Eq. (4) is a scalar equation. Decreasing the
information of an image into a scalar and the compact modal
description of our aberration reduces the dimensionality of the
WFSless AO problem and opens the possibility for applying
real-time filtering and prediction to improve the performance in
the dynamic case.

A. Static Aberration Correction

Define the DM influence functions as E j (χ) for each actuator
j = 1, . . . ,m. Each actuator is poked independently, such
that this phase will be added to the existing residual aberrated
wavefront φ(χ). It is important to notice that, since a residual
wavefront is observed by the focal plane camera, computed
control signals will always be incremental and have to be added
on top of the current control signal.

An inherent property of the SM-based WFSless AO approach
for control is that it will always be unable to compensate for
the part of the aberration that is orthogonal to the DM basis.
However, the true aberration, φ̃(χ), actually is

φ̃(χ)= φ(χ)+ φ⊥(χ), (5)

where

φ(χ)=

m∑
j=1

u j E j (χ), (6)

such that φ(χ) represents the part of the aberration within
the span of the DM influence functions, and φ⊥(χ) is the part
orthogonal to it. Generally, in the derivation of the control law,
it is assumed that φ̃(χ)= φ(χ), such that only φ(χ) will be
estimated. However, it has to be noted that this is an approxima-
tion and thatφ⊥(χ)will have an influence on the measurements
in practice [15]. Also in the simulations of this paper,φ⊥(χ)will
affect the measurements.

SM-based WFSless AO aims to find the coefficients u j

describing the aberration most accurately. In the general
SM-based WFSless AO method [9], each actuator is poked
sequentially. When poking actuator j with an amplitude β on



1812 Vol. 36, No. 11 / November 2019 / Journal of the Optical Society of America A Research Article

top of the current control signals, the total phase of the field
measured by the camera will be

φ j (χ) : = βE j (χ)+ φ(χ). (7)

Define the matrix S ∈Rm×m and vector s ∈Rm as

Si j =

∫∫
R2

(
∂E i

∂χ1

∂E j

∂χ1
+
∂E i

∂χ2

∂E j

∂χ2

)
dχ1dχ2, (8)

s i =

∫∫
R2

(
∂E i

∂χ1

)2

+

(
∂E i

∂χ2

)2

dχ1dχ2, (9)

with Si j denoting the element in row i and column j in the
matrix S and s i denoting element i in the vector s . Using the
linear relation Eq. (4), we can form the following system of
linear equations:

ym
1
=

 z(φ1)− z(φ)
...

z(φm)− z(φ)

=Cm u+ ym,0, (10)

where ym ∈Rm , Cm = 2βc 0S, ym,0 = β
2c 0s , and c 0 =

1
4π2

(see [10] for a more detailed derivation). The vector u ∈Rm

contains the ideal increment of DM control commands u j that
have to be added to the current DM control signal. Solving
Eq. (10) for u gives us the modal description of the aberration
φ(χ) as in Eq. (6). From Eq. (10), a closed-form solution for u
can be expressed as

u=C−1
m ( ym − ym,0). (11)

Once the control u has been applied, a new measurement ym is
computed by sequentially poking the actuators, and a new con-
trol increment u is computed.

B. Challenges for Time-Varying Aberrations

When the method described in Section 2.A is applied to time-
varying aberrations, some difficulties arise. Denote the dynamic
aberrated wavefront by φ(χ , t), with t describing the current
discrete time instance. Furthermore, assume it takes Ti seconds

to collect an image and compute its SM. A total of m + 1 images
have to be taken. First, a reference image is taken, followed by
m images, each corresponding to poking a different actuator.
When sequentially poking all actuators and including the fact
that φ(χ , t) is time varying, the total phase aberration corre-
sponding to the image with the j th actuator poked, previously
Eq. (7), becomes time varying:

φ j (χ , t + j Ti )= βE j (χ)+ φ(χ , t + j Ti ). (12)

This causes the reference image to be taken at time instance t ,
while the image after poking the last actuator is at time t +mTi .
Therefore, there is a time difference of mTi between the refer-
ence image and the image corresponding to poking actuator m.
A detailed discussion of the timeline of this control problem is
given Section 3 and is schematically represented in Fig. 2. When
there is no compensation for this delay, this will introduce an
error, since Eq. (10) is no longer valid.

One way to decrease the effect of this time delay is to update
the actuators one by one, taking a new reference image in
between. However, the linear system of Eq. (10) is in general
not a decoupled system. A new basis can be formulated in
order to have a diagonal matrix C . Such a diagonalization is
proposed in [11] and used for dynamic aberrations in [14].
For the completeness of this paper, this is shortly summarized
in the next subsection. It should be noted that, although the
maximum time difference between the images can be reduced
from (m + 1)Ti to just 2Ti , not all problems are resolved. First
of all, there is still a (small) delay between the two images that is
not taken into account in [11]. Second, there is a time of 2mTi

between updating the same mode again. These problems will be
treated by the new method proposed in Section 3.

C. Diagonalizing the Linear System

The closed-form solution of Eq. (11) can be separated along the
elements of u when Cm is diagonal. The singular value decom-
position (SVD) of S,

S =U6U T , (13)

Fig. 2. Schematic representation of the processes in one output sample time from kT until (k + 1)T. The lines indicate the computation of the
element in the box at its end, using the element(s) in the box where it originates. Equation numbers are added to indicate which relation is used.
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can be used to formulate a new basis that results in a decou-
pled linear equation. 6 is a diagonal matrix and is shown
to correspond to the correlation matrix [formerly S for
the basis of Eq. (6)] for the basis described by basis func-
tions Ẽ j (χ)= E (χ)U j , j = 1, . . . ,m [11], where
E = [E1(χ), E2(χ), . . . , Em(χ)] and U j the j th column
of U . Consequently, the update in terms of the new basis
becomes

ud =C−1
d ( yd ,m − yd ,0), (14)

where yd contains the changes of the SM of the PSF correspond-
ing to actuating the new set of modes Ẽ j (χ), Cd = 2βc 06,
and yd ,0 is a vector containing the diagonal elements of β2c 06.
Since C−1

d is diagonal, it is no longer necessary to wait until
m measurement images are taken, but the elements in ud can
be updated after a reference image and a single measurement
image.

3. PREDICTIVE SECOND-MOMENT-BASED
WAVEFRONT SENSORLESS AO

In order to have a more systematic approach of dealing with
time-varying aberrations, a dynamic model that exploits
the spatio-temporal relations in the wavefront will be used.
Combining the aberration dynamics with Eq. (10), a linear
state-space model is obtained. The pupil plane coordinates χ
are discretized and sampled on an n-by-n grid, such that the
wavefront at time instance t can be represented by the vector
φ(t) ∈Rn2

. Similarly, the DM influence functions E j (χ) are
sampled on the same square grid, and each function is repre-
sented by the vector e j ∈Rn2

. The influence matrix is defined
as E = [e1, e2, . . . , em] ∈Rn2

×m . For reasons discussed in the
previous section, it is assumed that the wavefront can be written
as Eq. (6), such that only the part of the aberration within the
span of the DM influence functions will be modeled.

First, without considering the time index yet, a general modal
basis with coefficient vector x ∈Rm is defined to represent any
wavefront φ(χ) in Eq. (6). The relation between the coefficient
vector u and x of either basis is given by an invertible matrix B ∈
Rm×m , such that

x = Bu. (15)

Using this modal basis, the observable part of the phase, φ, can
per definition be modeled as

φ = E u= E B−1x . (16)

In the simulations presented in this paper, both x and u will
correspond to the same modal basis, i.e., B = I . It should
be noted that although both x and u represent coefficients
belonging to a basis spanning the same space, they will be used
to represent different processes x(t) and u(t) in the remainder
of this paper. This will be clarified in Sections 3.A and 3.B, in
which a dynamic model of the wavefront will be expressed in
terms of x(t), and a Kalman filter is derived.

The output y(t) ∈Rp will be similar to Eq. (10). Due to the
use of a Kalman filter, it is possible to update the DM with a
smaller number of images by poking a selection of actuators, i.e.,

any p ≤m can be taken without diagonalizing the system as in
Section 2.C. The exact definition of y(t) and the reason that p
can be different from m will be explained further in the follow-
ing subsections. Since the collection of one image is done once
every Ti seconds, the total time it takes to collect the data for
the measurement vector y(t) is (p + 1)Ti seconds. The output
is updated every T = (p + 1)Ti seconds, while the input will
still be updated every Ti seconds. As a result, the model becomes
a so-called multi-rate linear time-invariant system, where the
input and output are obtained over different sample periods.
Although the input and output sampling rates are different,
they are uniformly sampled, and the sample times coincide
every p + 1 samples. A schematic representation of one output
sample time is shown in Fig. 2.

The next subsection will discuss the temporal model of the
open-loop aberration. Afterwards, the resulting closed-loop
state-space system and a Kalman filter implementation are dis-
cussed followed by an optimal controller using the predictions
from the Kalman filter. In the last subsection of this section, it is
explained how the information given by the Kalman filter can be
used to select which actuator to poke for the next measurement.
Table 1 gives an overview of important notations that are used
throughout this section.

A. Dynamic Aberration Model

The temporal dynamics of the aberration caused by the turbu-
lence, denoted by x t(k) ∈Rm , will be described by a vector auto
regressive (VAR) model of order 1. Two different models are
defined. One has the output sample time T, and the other has
the input sample time Ti . The two models are the following:

x t(kTi + Ti )= A f x t(kTi )+w f (kTi ), (17)

x t(kT + T)= Ax t(kT)+w(kT), (18)

where w f (k) and w(k) are zero-mean Gaussian proc-
esses with covariance matrices Q f and Q respectively, i.e.,
w f (k)∼N (0, Q f ) andw(k)∼N (0, Q). The simulations in
this paper will focus on the example of aberrations introduced

Table 1. Table of Notations

m Number of actuators
p Number of selected modes per update
z(·) Second moment of the PSF [see Eq. (2)]
x(t) State vector (residual aberration in mode

coefficients)
u(t) Input vector (actuator command)
y(t) Output vector (change in second moment)
A, A f , Q, Q f Aberration dynamics [see Eqs. (17) and (18)]
B Transformation matrix [see Eq. (15)]
C(t), y0(t) Rows of Cm or y0,m that are inI(t)
I(t) Set of p active actuators
T Output sampling time
Ti Input sampling time
β Amplitude of actuation
φ(t) Vectorized residual phase aberration
φ j (t) φ plus actuator j poked [see Eq. (12)]
χ Pupil plane coordinates
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by atmospheric turbulence. However, it should be noted that
the proposed method works for any type of dynamic aberration
that can be accurately represented by this type of model.

The matrices A, A f , Q, and Q f can be derived from
first principles, requiring knowledge of turbulence statis-
tics, wind direction, and wind speed. When this knowledge
is not available, the system matrices can be identified when
a sufficiently large dataset of open-loop aberration data
{x t(kTi ), k = 1, 2, . . . , Nid } is available. With this data,
identification of the matrices A, A f , Q, and Q f follows from
a linear least-squares problem [16]. The simulations in this
paper will use a simulated identification dataset to identify the
system dynamics. The exact method to obtain this identification
dataset in practice is beyond the scope of this paper. Since the
model identification is done offline, a WFS can be temporally
included in the AO system, or computational complex methods
can be used to collect this dataset. When a WFS is included in
the system during the identification data collection, the WFS
measurements can be used to reconstruct a wavefront that is
then mapped onto the desired modes to form the identification
dataset. Alternatively, when additional constraints are available,
such as a sparsity constraint or knowledge of the amplitude in
the pupil plan, or when multiple images along the optical axis
can be taken, there are existing methods that can obtain the
identification dataset from solving the phase-retrieval problem
on a time series of focal plane images (see [7] for an overview).

B. Kalman Filter Implementation

The loop is closed by the DM. The influence of the DM on the
wavefront is defined as

xm(kTi )= Bu(kTi − Ti ), (19)

where the delay represents the fact that the DM cannot respond
instantaneously, and B is the transformation matrix defined
in Eq. (15). In closed loop, the residual aberration, denoted by
x(t) ∈Rm , is defined as

x(kTi )= x t(kTi )+ xm(kTi ). (20)

For the output y(kT) ∈Rp , only a selection of images is taken
and processed. Within each output sample time, a selection of
p actuators is poked and the corresponding images are taken.
Defining I(kT)= {I1, . . . , Ip} ⊆ {1, 2, . . . ,m} as the set of
p distinct integer elements corresponding to the actuators that
will be poked for the next measurement, the output equation
y(kT), based on Eq. (10), is

y(kT)
1
=

 z(φI1(kT − (p − 1)Ti ))− z(φ(kT − pTi ))
...

z(φIp (kT))− z(φ(kT − pTi ))


=C(kT)x(kT)+ y0(kT)+ v(kT),

(21)

where v(kT)∼N (0, R(kT)). Moreover, C(kT) ∈Rp×m and
y0(kT) ∈Rp are chosen to be the selection of rows, given by
the elements in I(kT), of Cm and ym,0 in Eq. (10), respectively.
This choice implies that the temporal changes in the aberrated

wavefront in between images can still be neglected, i.e., it is
assumed that x(kT − j Ti )= x(kT) for j = 1, . . . , p . The
validity of this simplification in closed loop will be discussed in
the next subsection after introducing the optimal control law.

Combining Eq. (21) with Eqs. (18)–(20), the following
single-rate state-space model can be derived, which is sampled at
the output sampling rate:

x(kT + T)= Ax(kT)+ Bu(kT)

− ABu(kT − T)+w(kT), (22)

y(kT)=C(kT)x(kT)+ y0(kT)+ v(kT). (23)

Next, a Kalman filter is derived for this system. Kalman filter
theory can be found in many textbooks, such as [16], but due to
the special nature of the output, the implementation is discussed
in detail.

To arrive at an optimal prediction of the state vector, the
Kalman filter essentially performs two steps: a measurement
update, in which a newly obtained measurement is used to
improve the current estimate of the state vector x(t), and a time
update, where the model is used to predict that state vector. The
measurement update is computed every output sample time and
is given by

x̂(kT|kT)=x̂(kT|kT − T)+ K (kT)( y(kT)− · · ·

C(kT)x̂(kT|kT − T)− y0(kT)), (24)

where the Kalman gain K (kT) ∈Rm×p is computed using a
square root implementation of the so-called Riccati equation
[16]. The time update gives the optimal prediction of the state
vector one output sample time ahead:

x̂(kT + T|kT)= A(x̂(kT|kT)− Bu(kT − Ti ))+ · · ·

Bu(kT + pTi ). (25)

In between the measurements, a different time update is done
each input sample time by using the model in Eq. (17). This pre-
diction of the state vector in between measurements is given by

x̂(kT + ( j + 1)Ti |kT)= A f (x̂(kT + j Ti |kT)− · · ·

Bu(kT + ( j − 1)Ti ))+ Bu(kT + j Ti ) (26)

for j = 0, 1, . . . , p − 1. At moment (k + 1)T, a new measure-
ment is obtained, and a new measurement update like Eq. (24) is
performed.

C. Optimal Control

The derived optimal state prediction in Eqs. (25) and (26)
is used to create an optimal controller. The control law aims
to minimize the norms of the predicted residual wavefront
coefficients, i.e.,

min
u(kT+( j−1)Ti )

‖ x̂(kT + j Ti |kT) ‖2
2, j = 1, 2, . . . , p + 1.

(27)
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Here, x̂(kT + j Ti |kT), j = 1, 2, . . . , p is defined by
Eq. (26), and x̂(kT + T|kT) by Eq. (25). Due to the fact
that B is invertible, solving Eq. (27) for u and applying these
inputs in Eqs. (25) and (26) per definition results in

x̂(kT + j Ti |kT)= 0 for j= 1, 2, . . . , p+ 1, (28)

as the least squares problem Eq. (27) boils down to solving a
linear system of equations. Equation (28) can be interpreted as
follows. When the optimal control action according to Eq. (27)
is applied, the expected residual wavefront is always equal to
zero, i.e., it is expected to be a flat wavefront. This does not mean
that the wavefront will actually be flat in practice, but it does
show that with the available knowledge at time instance kT, the
flat wavefront is the optimal estimate. With this insight, it can
be concluded that the assumption that the residual wavefront
has not changed between taking images, which was implied in
Eq. (21), is optimal as long as an optimal controller is used as
described in this paragraph.

Solving Eq. (27) and using x̂(kT + j Ti |kT)= 0 for
j = 1, 2, . . . , p + 1 gives the following simplified optimal
control actions:

u(kT)= B−1 A f (x̂(kT|kT)− Bu(kT − Ti )), (29)

u(kT + j Ti )= B−1 A f Bu(kT + ( j − 1)Ti )

for j= 1, . . . , p− 1, (30)

u(kT + pTi )= B−1 A(x̂(kT|kT)− Bu(kT − Ti )). (31)

Consequently, the predictions of the state vector in Eqs. (25)
and (26) never have to be computed explicitly, as they per def-
inition equal zero, and the measurement update simplifies to

x̂(kT|kT)= K (kT)( y(kT)− y0(kT)). (32)

D. Actuator Selection Algorithm

Besides a more accurate prediction, having a model of the aber-
ration dynamics results in another important advantage of this
method. In [14], all modes are actuated sequentially, and this is
repeated after the last mode is actuated. In this section, a method
is proposed that uses the information from the Kalman filter,
rather than sequentially poking all modes. In other words, it uses
the information in the Kalman filter to decide which set I(kT)
in Eq. (21) will give the most informative measurements.

The selection method is based on the realization that the state
error covariance matrix of the Kalman filter,

P (kT + j Ti |kT) : = E [(x(kT + j Ti )− x̂(kT + j Ti |kT))

(x(kT + j Ti )− x̂(kT + j Ti |kT))T ],
(33)

describes the uncertainty of the estimate. In order to have a scalar
measure, trace[P (kT + j Ti |kT)] ∈R can be used to quantify
the uncertainty. Minimizing this trace will mean a better esti-
mate of the state vector, resulting in a better performance of the

method. Therefore, the output channels that cause the biggest
expected decrease in the trace of the covariance matrix of the
state error in the Kalman filter are selected.

The basis of the actuator selection method in this paper
lies in the fact that both the time and measurement update
of the state error covariance do not require an actual mea-
surement, but can be computed from the so-called Riccati
equation [16]. Consequently, at time t = kT, the values of, e.g.,
P (kT + T|kT + T), can be computed before actually observ-
ing the measurement at t = kT + T, assuming the selection
of actuators I(kT + T), i.e., C(kT + T) and y0(kT + T) in
Eq. (21), is known.

Of course, I (kT + T) is not known, but is the unknown still
to be determined. However, it is known that there is only a finite
number of sets possible. Theoretically, it is possible to compute
P (kT + T|kT + T) for all possible sets I(kT + T), but for
larger values of p , there are too many possible combinations of
actuators, and this is therefore not practical. However, it is pos-
sible to compute the state error covariance matrix corresponding
to poking a single actuator, i.e., P (kT + 2Ti |kT + 2Ti ). This
leads to the following simple algorithm.

The first step is to compute, at t = kT, all possible
values of P (kT + 2Ti |kT + 2Ti ). This requires solv-
ing the Riccati equation m times, such that m different
matrices are obtained. The second step is to compare the
value of trace[P (kT + 2Ti |kT + 2Ti )] for each matrix.
The p actuators that have led to the p smallest values of
trace[P (kT + 2Ti |kT + 2Ti )] are defined as the next set of
actuators to be updated,I(kT + T).

As a result of this actuator selection method, it is expected
that the actuators located in an area where the dynamic model of
the aberration is less accurate are updated more frequently. The
Kalman filter including the optimal control law and actuator
selection method are implemented in a simulation study that is
discussed in the following section.

4. SIMULATION OF AO FOR ATMOSPHERIC
TURBULENCE

The performance of the method is shown in a simulation of an
AO system for atmospheric turbulence, where the aberrations
in the wavefront shown in Fig. 1 are caused by atmospheric
turbulence and are compared to another SM-based WFSless AO
algorithm for dynamic aberrations [14]. This section will dis-
cuss the simulation conditions and the implementation details
of the algorithm. Table 2 summarizes the most important simu-
lation parameters. The results of the simulations are presented in
Section 5.

A. Adaptive Optics Simulation Design

The phase aberrations caused by atmospheric turbulence is
simulated using Oriented Matlab Adaptive Optics (OOMAO)
[17]. A single turbulence layer is considered with Fried param-
eter r0, outer scale L0, and wind speed v. The telescope
diameter will be fixed at D= 1 m and sample frequency at
f s = 1000 Hz, i.e., Ti =

1
1000 s. In order to have a fair compari-

son between different wind speeds, a collection of wavefronts
on an n × n grid of pixels has been generated at a speed of
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Table 2. Simulation Parameters
a

Parameter Standard Value Range

r0 [m] 0.2 0.1–0.35
v [m/s] 1.6 0.2–16
σy 1 10−2

− 5
p 3 1–35
m 37 –
f s [Hz] 1000 –
L0 [m] 20 –
D [m] 1 –

a

The parameters have their “standard value” in each experiment when not
explicitly mentioned otherwise. The last column shows the range in which they
have been varied in an experiment.

Fig. 3. Actuator placement for m1 = 7. The m = 37 active actu-
ator centers are represented by solid squares. This center serves as the
local origin of this actuators’ influence function [i.e., χ1 = χ2 = 0 in
Eq. (34)].

1 pixel/Ti over a period of Ñ time samples. The simulated
sequence of wavefronts is stored in a three-dimensional tensor
of dimension n × n × Ñ. Afterwards, linear interpolation
along the third dimension of this tensor is performed to obtain
wavefronts at slower or faster wind speeds. A set of 20 turbulent
wavefronts, each containing N = 2000 time samples, is created
for each combination of parameters, and the performance of the
algorithm is tested in a Monte Carlo simulation.

The DM consists of a square grid of m1 ×m1 actuators with
Gaussian influence functions:

E i (χ)= e ln(λ)((χ2
1+χ

2
2 )/d)

2
, (34)

where d is the distance between actuators in the pupil plane,
and λ> 0 is the coupling parameter, defining the width of
the functions. A schematic representation is shown in Fig. 3.
During the simulations in this paper, m1 = 7, λ= 0.1, and
d = D/(m1 + 1)= 0.125 m. The actuators at the corners of
the square are removed, since they have little influence inside
the circular aperture, such that a total of m = 37 active actua-
tors are used. The influence of the actuator on the closed-loop
aberration is simulated as in Eq. (20).

The PSF images are simulated according to the definition in
Eq. (1) and sampled on an equally spaced square grid. As a result,
the SM of this discretized image becomes a weighted sum of the
PSF pixel values.

B. Measurement Noise

The camera noise in each pixel can be modeled as a combi-
nation of Gaussian (read-out noise) and Poisson noises (shot
noise). For pixels with large mean values, Poisson distributions
can be accurately approximated by a Gaussian distribution.
For small pixel values, the influence of the shot noise becomes
less significant with respect to the Gaussian read-out noise.
Furthermore, low-valued pixels have a very low SNR and are
therefore often truncated when processing the images. Since the
SM is a weighted sum of the pixel values, the noise contribution
to the SM is expected to be approximately Gaussian and can
be estimated based on the intensity measurement and camera
properties.

In practice, methods such as truncation of low-valued pixels
and filtering have to be used to decrease the effect of the mea-
surement noise on the SM. However, it has been decided that
this will not be included in the analysis for this paper. Instead,
in order to have a clear analysis of the noise sensitivity of the
algorithm itself, the noise signal v(kT)will be simulated directly
as a Gaussian noise, v(kT)∼N (0, σ 2

y I ).

5. SIMULATION RESULTS

The results of the simulations will be discussed in this section.
A number of parameters will be varied in order to study the per-
formance of the methods under different circumstances. First,
the wind velocity, v, is varied to see whether the improvements
of the new method are indeed more clear for faster moving
turbulence. Second, the Fried parameter, r0, is changed to see
which method is better to deal with more severe aberrations.
Third, the influences of increasing the number of actuators that
is updated per measurement, p , are discussed. Finally, the noise
sensitivity is analyzed by varying the parameter σy in the mea-
surement noise covariance R = σ 2

y I . The rest of the parameters
will be kept constant in order to have a fair comparison. The
standard values of the parameters can be found in Table 2.

In the legends of the figures, the new method will be referred
to as Dynamic SM , as it includes a temporal dynamic model of
the aberrations plus the SM model Eq. (10). It is compared to
an existing method [14], which is referred to as Static SM , as it is
based on the assumption that the change in aberration between
two input sampling times is negligible, i.e., the aberration is
approximately static over this time period. The parameter β is
seen as an important tuning parameter in both methods. When
β is taken too small, the SNR will be very low. Too large values
of β will create too many speckles in the PSF for the output
to still be informative. Therefore, it has an optimal value that
depends on the current simulation conditions and measurement
noise level. During the following simulations, β has been tuned
for each different set of parameters using a grid search in order
to improve the performance for both the static and dynamic
SM-based method.

The main goal is to decrease the effect of the aberration on
the image. Therefore, the Strehl ratio is used as a measure of
performance. The Strehl ratio is computed as the fraction of the
maximum pixel value of the aberrated PSF over the maximum
pixel value of the unaberrated PSF. A higher Strehl ratio indi-
cates a better performance. Also, since the method is based on
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minimizing the SM of the PSF, this will be occasionally used as a
measure. Since each simulation takes N time samples, the mean
Strehl value and SM for each simulation will be used, and the
Monte Carlo simulation is visualized in boxplots.

A. Increasing Wind Speed

It is expected that the new method, due to its predictive capabil-
ities and smart actuator selection algorithm, can handle much
higher wind speeds than the static method for the same AO
system. It should be noted that for both the static and dynamic
SM-based methods, besides the Fried parameter r0 and sam-
ple frequency f s , the performance at a certain wind speed is
influenced by the number of actuators m and the spatial sample
distance of the actuators d . This is due to the fact that only one
actuator can be poked at the same time. So when m is increased,
more modes have to be updated within the same time span, and
when d is decreased, the turbulence moves the distance between
actuators in a shorter time. Therefore, in order to improve the
performance under higher wind speeds or when increasing the
number of DM actuators, it might be necessary to increase the
sample frequency f s . For the simulations in this paragraph, m
and f s are fixed at the values in Table 2.

The wind speed is varied between 0.2 m/s and 16 m/s, and
the other parameters are kept constant at their standard values
according to Table 2. The results of this simulation are shown
in Fig. 4. From observing the Strehl ratio in Fig. 4(a), the new
method is clearly better, most notably for higher wind speeds.
Even for lower wind speeds, the new method outperforms the
existing approach. This can be explained by the fact that the
Kalman filter is more suited in dealing with measurement noise.
In Fig. 4(b), the SM of the PSF is shown. Even when the static
method improves the image quality in terms of the Strehl ratio
at lower wind speeds, the SM of the PSF is larger than in the
case without AO. This is caused by the fact that under the noisy
conditions in this simulation, the static method introduces
high-frequency aberrations erroneously in the compensation.
The oscillating trend of the static method’s line is due to the
different step lengths of the interpolation when generating the
wavefront data as discussed in Section 4.A. Interpolation of
a time-varying aberration has in general a slightly smoothing
effect on the SM of the aberrated PSF. This effect is usually very
small, as is seen in the line corresponding to no control, but
seems to be amplified by the static method. Since this smooth-
ing effect can be seen as a small amount of noise on the data,
this issue indicates again the high noise sensitivity of the static
method compared to the dynamic method.

It should be noted that due to the small number of DM
actuators, the fitting error is relatively large, and the maximum
achievable Strehl ratio for this AO configuration is approx-
imately 0.83. So at very low wind speeds, the new method
approaches the theoretical optimum. In order to improve the
theoretical maximum closed-loop performance, the fitting
error should be decreased by using a DM with more actuators.
However, as discussed in the beginning of this paragraph, hav-
ing more actuators within the same size aperture corresponds
to more modes to be updated in the same time. This would
require that also the sample frequency f s is increased in order to
maintain a good performance for high wind speeds.

Fig. 4. Results for varying the wind speed. The other simulation
parameters are given in Table 2. “Dynamic SM” represents the method
presented in this paper, and “Static SM” is the existing method pre-
sented in [14]. The boxes indicate the 25th and 75th percentiles of the
results in the Monte Carlo simulation, and the lines are drawn through
the medians. (a) Mean Strehl ratio. (b) Mean second moment of the
PSF.

B. Number of Images in Output

In the previous simulation, it was assumed that p = 3, such that
three output channels are observed within one output sample
time. The method allows for any p that satisfies 1≤ p ≤m.
Varying p can possibly lead to a better performance and needs to
be investigated. Decreasing p corresponds to a smaller output
sampling time T, having the advantage that the measurement
updates are more frequent. However, the drawback is that, since
per (p + 1)Ti seconds p output channels are created, more time
is spent per acquired output channel when p is small. On the
other hand, increasing p increases the output sampling time T,
but means that less time is spent per acquired output channel.
For the sake of a complete comparison, a multivariate output
is also considered for the existing method of [14]. It should
be mentioned that in the original method, varying p was not
discussed, and p was chosen to equal 1.
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Fig. 5. Results of the new algorithm for different values of p .
(a) p is varied while all the other parameters are kept at their standard
values given in Table 2. The presentation of the results is similar to
Fig. 4. (b) Influence of the wind speed on the best choice of p ; only the
median Strehl ratios over the Monte Carlo simulations are shown.

The results for varying p while keeping the other parameters
equal to their standard value in Table 2 are shown in Fig. 5(a). It
clearly shows how p = 1 is not the optimal value in this case, but
larger values are more optimal. The effect of p for other wind
speeds is shown in Fig. 5(b). Only the medians over the Monte
Carlo runs are plotted. Although all lines have similar trends,
it is visible that p = 1 does not always lead to the best results.
Especially in the region where the wind speed is low, p = 5 is
better than p = 1 as is also clear in Fig. 5(a).

The effect of the actuator selection method described in
Section 3.D is very clearly visible in Fig. 6. For the same actuator
configuration as in Fig. 3 and a single turbulence layer moving
from left to right over this aperture, this figure shows the amount
of times a certain actuator was deemed to be in the set of most
informative actuators. The actuators located at the edge where
the new turbulence comes in are much more regularly chosen
than the other actuators. This is expected, since the aberration
towards the center and right side of the aperture is merely a shift
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Fig. 6. Example of the most often selected actuators by the method
described in Section 3.D. The simulation parameters equal the stand-
ard values in Table 2 with N = 1000 sample times, and the configura-
tion of the DM is as in Fig. 3. The color scale displays how many times
this actuator was chosen to be part of the subsetI.

of the wavefront at a previous time instance. The aberration at
the left side of the aperture was unknown at this previous time
instance and more difficult to model.

C. Stronger Aberrations

As the aberrations become more severe, the PSF images become
more distorted. Therefore, a decrease in performance is
expected for any algorithm. If the same performance for a
lower Fried parameter is desired, the number of actuators has
to be increased. Figure 7 shows the performance of the method
for r0 varying between 0.1 m and 0.35 m, while all other param-
eters are fixed at their standard value given in Table 2. The top
line indicated by “DM optimal” corresponds to a controller
that assumes perfect knowledge of the residual wavefront and

Fig. 7. Strehl ratio for different values of the Fried parameter r0.
The presentation of the results is similar to Fig. 4. The line indicated
by “DM optimal” displays the maximum possible performance of the
DM for each turbulence strength.
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Fig. 8. Strehl ratios for different measurement noise values. The
presentation of the results is similar to Fig. 4.

maps it onto the DM. So it represents the theoretical opti-
mal performance when using this DM. When the turbulence
strength increases, the performance of both methods decreases
as expected. Especially for turbulence strengths r0 ≥ 0.2, the
new method clearly outperforms the existing method.

D. Noise Sensitivity

As discussed before, the influence of camera noise on the SM
will be approximately Gaussian. Therefore, the Gaussian
measurement noise is added to the output y(kT) in order to
simulate noisy conditions. In these results, the measurement
noise variance is supposed to be known. In practice, this must
be calibrated based on the exact noise properties of the camera
and PSF intensity. The influence of the measurement noise on
the results is shown in Fig. 8. For low noise, i.e., σy ≤ 0.1, the
existing method has an advantage. When there is a significant
measurement noise, which will be the case in any practical sys-
tem, the new method is clearly better. This is expected, since the
Kalman filter is designed to optimally deal with measurement
noise, whereas the original method ignored any noise present in
the system.

6. CONCLUSION

A method has been presented to extend the SM-based WFSless
AO to the case of time-varying aberrations. It combines the
knowledge of an accurate temporal model of the aberration
dynamics with the linear relation between the SM of the PSF
and the mean square of the residual phase aberration. The result
is that the AO problem can be cast into a Kalman filtering and
optimal control problem. Where all previous methods had to
update the actuators sequentially, the new algorithm automati-
cally selects the actuator that is expected to lead to the most
informative update. Actuators placed at locations where the

model is accurate can be updated with only a small number of
images over time. The improved performance has been shown in
a simulation study of an AO system for atmospheric turbulence.
It was shown that the new method leads to an improved per-
formance for both lower and higher wind speeds and for higher
noise levels.
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