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Abstract

Microelectromechanical resonator sensors are crucial in the cutting-edge technologies used in our ev-
eryday communication, timekeeping and computing systems. Their extreme sensing capabilities make
them ideal candidates for the innovation of future technologies. However, with our ever-growing desire
for faster communication, more sensitive systems, and more advanced technologies comes the need
for a new generation of resonator sensors. This next generation will have to be faster, more accurate,
and just as cheap as their predecessors if they are to enable the rapid growth of our technological
needs.

In this thesis, we investigate recently fabricated state-of-the-art extreme aspect ratio membrane res-
onators. The characteristics of extreme aspect ratio membrane resonator sensors are researched, and
the effects of nonlinear forces on their operation are explored. Some of these nonlinear attractive forces,
such as the Casimir effect, are common to the extreme dimensions of these resonators. Another com-
mon nonlinear attractive force in MEMS, the electrostatic force, and its effects on resonator operation
and output are investigated as well. Analytical models are fashioned and a FEMmodel is produced and
validated using experimental results, showing it reflects reality. FEM simulations show that for these
extreme aspect ratio resonators, the nonlinear softening effect is solely responsible for the change in
the eigenfrequency which proves to be able to boost the responsivity of these resonators by factors
of hundreds to thousands. Models are investigated for both conductors and dielectric resonators with
different geometries and different material parameters, which all show these results. Responsivities
of 133.2 kHz/kPa and 1.6 kHz/nm are found, which exceed the state-of-the-art. The negative effects of
nonlinear forces such as pull-in are considered, investigated, and models are produced which predict
them to prevent device failure. Furthermore, the role of crucial resonator parameters is investigated to
aid future research in leveraging this potential new technique of enhancing sensor capabilities.
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1
Introduction

Resonance for Beginners

The resonance frequency of an object is a well-defined frequency at which the object oscillates and is
determined by a variety of factors such as the object’s size, weight, tension and more. An oscillation
is the transfer of one type of energy to another, but at the resonance frequency, this energy transfer
is optimal. Because of this, the object vibrates with a much larger amplitude than it does otherwise.
Other frequencies dissipate quickly and therefore affect the object or system much less. Resonance is
a phenomenon which occurs in every object (even you!). A good example of this is the well-known trick
of a talented singer breaking a wineglass with their voice. Anybody who has seen such a performance
before will tell you that it is not about shouting the loudest, but rather, to sing at a very specific tone,
or frequency. The singer applies a force to the glass by moving their vocal cords, which move the air
at a certain frequency, which in turn exerts a force on the glass. In the beginning, the singer sings
at frequencies which are not the resonance frequency of the wineglass. The force of the vibrating air
makes the glass only move a tiny bit. The glass is not impressed as the movement is not even close
enough to get it to break. However, when the sound vibrates at exactly the resonance frequency of
the wineglass, the situation changes. The air now pushes at exactly the frequency at which the glass
transfers the energy much more efficiently than before. The more efficient energy transfer makes the
glass swing in large amplitudes back and forth, and the glass suddenly breaks.

Resonators

Resonance can be responsible for breaking objects when they have not been adequately accounted
for. However, one can also leverage the fact that the amplitude of oscillation increases and use it to
make sensors. These types of devices are made specifically to vibrate at their resonance frequency
and are called resonators. Resonators are devices that we use every day without realising it. From the
digital clocks ticking on our walls [1], to the exhaust pipes mounted under our cars which prevent the
loud engine sounds from disturbing quiet neighbourhoods [2], to the musical instruments that fill the
music we listen to, resonators are a part of everyday life.

Resonators play a big role in current electronics and nanotechnology [3]. As a matter of fact, you
currently have a resonator in your phone which acts as a microphone [4]. These resonators are more
broadly known as microelectromechanical systems (MEMS) which also have applications in energy
harvesting [5], communication technologies [6], fingerprint sensors [7], accelerometers which one can
use, for example, for gesture recognition [8] and even biosensing [9].

MEMS resonators are tiny structures which vibrate mechanically at very high frequencies. They are an
exciting area of research as they boast extremely high resonance frequency throughput [10] and sensi-
tivities [11], which makes them ideal sensors in many areas of science as previously mentioned. With
improving fabrication techniques, it is possible these days to create resonator structures with very high
aspect ratios, such as 2-dimensional membrane resonators at a very minimal scale. These resonators
consist of extremely thin films suspended over wide cavities very close to the cavity bottom. With these
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ever-shrinking sizes and increasing aspect ratios come new challenges and new force regimes which
one has to keep in mind when designing, fabricating and using these devices. These regimes do not
offer only negative influences, however, and in this thesis, we will explore leveraging them to our ad-
vantage to improve resonator devices and investigate the possibilities of the next generation of MEMS
sensors.

Goal and Outline of this Thesis

In this thesis, we will investigate the effects of nonlinear attractive force fields on 2 two-dimensional
mechanical membrane resonators with extreme aspect ratios. Membrane resonators are the subject
of much research as they offer promising new abilities to future technologies, which often coincide with
nonlinear forces such as electrostatics. These nonlinear force fields occur either naturally (Casimir
effect) or by design (electrostatics). Some, like electrostatics, are established techniques in MEMS
actuation and detection. We will determine how these nonlinear forces have a dominant effect on
their output and how they influence their operation. By attempting to model these high aspect ratio
resonators within nonlinear force regimes, we hope to be able to predict, prevent, and possibly also
leverage the phenomena that we encounter. We hope to provide a solid analytical and FEM simulation
basis that deepens understanding of the nonlinear force effects on these extreme aspect ratio mem-
brane resonators. We will try to assess not only the positives but also the negative aspects of these
nonlinear forces. The goal is to hopefully provide future research with the knowledge on what to avoid
and how to exploit the exciting opportunities that this new generation of sensors offers.

This thesis consists of five chapters, with this introduction being the first one. The second chapter will
cover the necessary theory needed to understand resonators in general, after which we will cover two-
dimensional membrane resonators specifically in the theory. Chapter three, the setup, presents the
fabrication and operation of these membranes and introduces the experimental membrane off of which
we base our FEM models. It also provides the FEM model central to our research and its validation
using experimental values. We will use the FEM models extensively in the fourth chapter called the
results. There, we explore a variety of sensor, force, and parameter variations and show the sensor
improvements as well as new dangers that one can encounter whilst leveraging nonlinear force fields
with high aspect membrane resonator sensors. We briefly give an example of a possibly improved
microphone design using our previous results. We end in chapter five to share our conclusions and
discuss their relevance.



2
Theory

For us to understand what makes mechanical resonators so popular in science and what makes them
interesting in conjunction with nonlinear forces, we need to get to know them first. We will start with
a general introduction to mechanical resonator basics and the different types of resonators that are
used in science. We will cover the nonlinear forces and effects that are present in the systems of
our interest and explain their influence on the resonators. Along the way, we will explore possible
avenues for exploiting these nonlinear effects to improve our resonators. This is no comprehensive
review on resonators, however or nonlinear resonator dynamics, as this would be too elaborate. For
bigger pictures on resonators and nonlinear resonator dynamics, we refer readers to [12], [13], and
[14]. Let us now start with the very definition of a mechanical resonator.

2.1. Mechanical Resonator Basics

Definition of a Resonator

Mechanical resonators are structures that oscillate at resonance, usually due to a driving force. The
resonance frequency is one of the eigenfrequencies of the oscillating mechanical structure. This eigen-
frequency is the specific frequency at which the exchange between the kinetic energy and the potential
energy is optimal. During oscillation, the resonator continuously converts its movement (kinetic energy)
to structural deformation (potential energy). This process is shown schematically in figure 2.1.

Figure 2.1: Schematic side view showing the principle of oscillating motion of a resonator. The resonator is clamped on both
sides. At t = t1, it is at rest, but directly after, i.e. t > t1, it gets jolted upwards and the kinetic energy given to it gets converted
to potential energy. At t = t3, the kinetic energy is fully converted to potential energy or structural deformation. For t > t3, the
potential energy will convert back to kinetic energy, which will reach its maximum at the position the resonator occupied at

t = t1, after which it will continue downwards and repeat the oscillation motion forever.

The figure shows the simplified basics of oscillation for a doubly clamped resonator. The resonator is
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2.1. Mechanical Resonator Basics 4

jolted upwards directly after t = t1, at which the kinetic energy is at a maximum. It converts this energy
to potential energy, and at t = t2, it has converted a considerable amount of it. At t = t3, the kinetic
energy is fully converted into potential energy, after which the conversion is followed in reverse until
the resonator reaches the position it had at t = t1, at which all of the energy is kinetic energy. The
resonator follows the same process but downwards until the position at t = t1 is reached, after which
the cycle begins anew. This continues forever if the resonator does not lose any energy.

2.1.1. Undamped Resonator

A mechanical resonator can best be modelled by a simple mass-spring system, in which a mass m
moves periodically whilst attached to a spring with a linear spring constant k. The spring constant is
responsible for the restoring force F = −kx that flips the direction of motion periodically. The equation
of motion for this system is a simple one and one that is well known:

m
d2x

dt2
+ kx = 0. (2.1)

The solution to this equation is found with a complex exponential as an ansatz and is a combination
of sines and cosines of the form A sin(ω0t) + B cos(ω0t). Here, A and B can be determined with the
boundary conditions of the particular system, and ω0 is the natural frequency or the eigenfrequency.
The (angular) eigenfrequency is defined as

ω0 =

√
k

m
. (2.2)

2.1.2. Damped Resonator

The system shown above is a very idealised version of reality, as in this system, no energy is allowed to
leak out. This would mean that our resonator would be able to resonate until the end of time, which is
not the case for real resonators. In reality, a system always has some form of energy loss via damping,
usually consisting of a variety of effects. These can be viscous damping due to air or liquids, heating,
friction, radiation or even electronic resistance. This damping can be modelled by a linear damping
ratio ζ and introduced into our equation of motion

m
d2x

dt2
+ ζ

dx

dt
+ kx = 0. (2.3)

A schematic of an undamped and a damped oscillator is shown in figure 2.2.

(a) (b)

Figure 2.2: Schematics of two types of oscillators. (a) Undamped oscillator with mass m and a spring constant k. (b) Damped
oscillator with the damping symbolised as a dashpot with a damping ratio ζ.

To find the solutions and eigenfrequency of this equation, we use the same ansatz as before, i.e. e−λt

with λ a complex constant. Filling in the ansatz gives us

mλ2 + ζλ+ k = 0. (2.4)
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The roots of this equation are found as

λ =
−ζ ±

√
ζ2 − 4mk

2m
. (2.5)

The oscillation is influenced by this root depending on its sign and value. If the square root is smaller
than 0, then the system is underdamped. If it is equal to 0, we call it critically damped, and if it is bigger
than 0, it is called overdamped. In our case, i.e. for resonators, we are interested in the case where the
oscillator is underdamped, as damping in resonators is seen as a negative effect that is to be prohibited.
We therefore wish our resonators to be as underdamped as possible for them to retain their oscillation
as long as possible. The solution of an underdamped harmonic oscillator is given by

Ae−
ζ

2m t sin (ωdt) +Be−
ζ

2m t cos (ωdt). (2.6)

With ωd =
√

k
m − ζ2

4m2 . This is a more realistic representation of real-life resonators, which always have
some form of damping which lessens the oscillation amplitude according to an exponential decay. A
comparison between an undamped and an underdamped oscillation time versus amplitude character-
istic is shown in figure 2.3.

(a) (b)

Figure 2.3: Time characteristics of two harmonic oscillators. (a) An undamped harmonic oscillator signal. The oscillation will
go on forever as the energy is conserved. (b) An underdamped harmonic oscillator signal. The oscillation slowly dies out, the

speed of which depends on the damping ratio ζ. The decrease in the amplitude follows the exponential decay function.

2.1.3. Driven Damped Resonators

To use these resonators as sensors, we need a parameter to measure as a response to an input. This
parameter, as the name resonator implies, is the resonance frequency, which for MEMS resonators can
be extremely sensitive to outside influences such as forces or adjusted mass. To achieve a measurable
output, one needs to drive these resonators. This means introducing the resonator to an external force,
after which the response of the resonator can be read out. Often this driving force is a harmonic one
itself, the equation of motion then becomes

m
d2x

dt2
+ ζ

dx

dt
+ kx = F0 sin(ωdt). (2.7)

The response of the resonator depends on the frequency of the driving force, and thus, the response
can be plotted in the frequency spectrum. The magnitude of the response of the resonator to a certain
drive frequency is given by [15]

X(ω) =
F0/m√

(ω2
0 − ω2

d)
2 +

ζ2ω2
d

m2

. (2.8)

The magnitude of the response of three resonators with varying damping ratios is shown in figure 2.4.
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Figure 2.4: Three magnitude response characteristics of identical resonators with varying damping ratios.

The figure shows a sharp peak when the resonator is driven at the resonance frequency as it now
converts the energy given by the driving force much more efficiently than before. The effect of the
value of the damping is seen in the sharpness and width of the peak at the resonance frequency. If
the resonator is now subjected to another effect, such as additional strain by a pressure, or a change
in mass due to a particle landing on the surface, then the resonator stiffness k will change and via 2.2
the resonance too. The resonance peak shifts to the left or right, and so the resonance frequency is
an output parameter that can be directly linked to the input force.

2.1.4. Quality Factor

What can immediately be noticed from figure 2.4 is the influence of the damping ratio on the sharpness
and width of the response peak. This effect of the damping ratio is profound, but we will depart from
using it and express it in another parameter. One that is used extensively in resonator engineering, the
quality factor Q [12]. The relation between the two reads

Q =
1

2ζ
. (2.9)

This, however, is not the only definition of the quality factor. The most commonly used definition of the
quality factor is the one that relates to the amount of energy loss in the system per cycle. This means
that a resonator with a high quality factor is less damped and loses its oscillation less fast than one with
a lowerQ. TheQ factor is thus a useful parameter when comparing different resonators. The definition
is written as

Q = 2π
Total energy stored
Energy lost per cycle

. (2.10)

We will give two more definitions for the quality factor. The first has connections to figure 2.3 in the fact
that it is defined as a function of the so-called ringdown time τR:

Q =
1

2
ω0τR. (2.11)

τR is an important parameter in resonator design. It shows how fast a resonator loses its magnitude,
or energy, which is an undesired effect. It can be determined by following the negative trend shown in
figure 2.3b. The ringdown time can then be extracted by fitting the exponential decay in the magnitude
with e−τR/t [16].
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The final definition is more closely related to figure 2.4, as the quality factor can be expressed as the
ratio of the so-called full width at half maximum (FWHM), being the width of the frequency peak at half
the maximum magnitude, and its resonance frequency :

Q =
ω0

∆ω
. (2.12)

One might find it surprising to learn that the quality factor can be expressed by so many different defini-
tions. It should be noted that these definitions for Q, even though they are used intermixed throughout
resonator engineering, are not always the same in value numerically. They converge to one another
when the quality factor of the resonator is high, i.e. the damping ratio ζ << 1. In modern resonators,
quality factors can be as high as a million, with the state of the art reaching tens of billions [17]. With
the high quality factors being no rare occurrence, it is then no problem to use different definitions for
the quality factor.

2.1.5. Types of Resonators

Resonators come in a large variety of different shapes and forms. From 1D resonators such as beams,
cantilevers or bridges, to 2D resonators such as rectangular or circular plates and membranes, to even
3D bulk resonators of various shapes [18–24]. Covering this broad spectrum is not the goal of this
section, rather, we provide a simple classification of various MEMS resonators based on their mode
type shown by Abdolvand et. al [25] shown in table 2.1. Note that this is by no means a comprehensive
classification.

Table 2.1: Simple classification of MEMS resonators by their mode type shown by Abdolvand et. al [25].

Type Working Principle Example
Flexural Mode Transverse elastic deformation of a structure with at

most 2 relevant dimensions.
Beam, membrane

Bulk Mode Deformation of a three-dimensional structure by ex-
pansion and contraction using LE and WE modes.

Stiff beam, plate

Shear Mode Three dimensional material with shear modes. The
stiffness is determined by the shear modulus instead
of Young’s modulus.

Elastic anisotropic ma-
terial

Torsional Mode Periodic twisting motion Paddle resonator
Coupled Mode Multiple resonators linked by structures such as

beams, influencing their resonance modes
Mechanically coupled
plates

In this thesis, we will concern ourselves with a type of two-dimensional flexural mode resonators, mem-
branes, which are clamped on all sides.

Plates and Membranes

An important difference between two types of structures, plates and membranes, has to be clarified.
Plates and membranes are very similar 2D structures visually and are used extensively throughout
MEMS engineering. They show the same form factor, which is why it is easy to mix them up. They are
inherently different, however, due to the way they handle transverse loads. Plates handle transverse
loads by bending, a large load will increase the bending stiffness as the plate bends further. Membranes
sustain transverse loads by in-plane stresses. The larger the load, the larger the in-plane stress in
the membrane. A test proposed by Dolleman [26] determines if a circular resonator is a plate or a
membrane:

R2n0

D
< 1 Plate (2.13)

R2n0

D
> 104 Membrane (2.14)
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with n0 the in plane tension, R the radius and D = Eh3

12(1−ν2) the flexural rigidity of the resonator, with
E the Young’s modulus, h the thickness and ν Poisson’s constant. This thesis concerns membrane
resonators of the circular and square kind, with the main analysis based on an experimental setup
which is later described in detail. We will then use this test to confirm that our resonators are indeed
membranes according to Dolleman.

2.2. Vibration of a Mechanical Membrane Resonator

2.2.1. Clamped Circular Membrane

Having covered the basics of mechanical resonators, now it is time to dive deeper into their singularly
important aspect, their oscillation at resonance. As stated before, the resonance frequency of a res-
onating object is the frequency at which the energy transfer is optimal between the kinetic energy and
the potential energy stored as mechanical deformation. We will now derive the resonance frequencies
and the associated eigenmodes of a clamped circular membrane and show what they look like. To that
end, we will first find their modeshapes. We will keep close to the derivations shown in Haberman [27]
and Rao [28].

We start with the 2D wave equation in which U is our displacement function:

d2U

dt2
= c2∇2U. (2.15)

With c being the wave velocity in the medium and the Laplacian in polar coordinates given as

∇2 =
1

r

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
, (2.16)

We then assume that the solution to our 2D wave equation can be split up into independent parts and
use the method of separation of variables. We thus define our displacement function U(r, θ) as

U(r, θ, t) = φ(r)Θ(θ)T (t), (2.17)

with r the radial coordinate, θ the angular coordinate, and t the time in seconds. We can then enter
2.17 into 2.15, losing the function dependent variables for brevity, we find

φΘ
d2T

dt2
= c2

(
ΘT

d2φ

dr2
+

1

r
ΘT

dφ

dr
+

1

r2
φT

d2Θ

dθ2

)
. (2.18)

We divide the entirety by c2φ(r)Θ(θ)T (t) to clean up the equation. We now have

1

c2T

d2T

dt2
=

1

φ

d2φ

dr2
+

1

rφ

dφ

dr
+

1

r2Θ

d2Θ

dθ2
. (2.19)

If we pay close attention to 2.19, we can see that both sides are completely independent of each other;
we can therefore assume that both sides are equal to a constant, which we will define as −λ2. We can
now split up equation 2.19 and rewrite it into two separate equations

d2T

dt2
+ c2λ2T = 0, (2.20)

1

φ

(
r2

d2φ

dr2
+ r

dφ

dr

)
+ λ2r2 = − 1

r2Θ

d2Θ

dθ2
. (2.21)

We will repeat the same trick as just performed on equation 2.19 on 2.21, as we note that in equation
2.21, again, both sides are independent of each other. We use the separation variable κ2 and write

d2Θ

dθ2
+ κ2Θ = 0, (2.22)
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d2φ

dr2
+

1

r

dφ

dr
+

(
λ2 − κ2

r2

)
φ = 0. (2.23)

To obtain a harmonic solution with a periodicity of 2π as a function of θ, κ should be defined as an
integer, i.e. 0, 1, 2... . We may now note that equations 2.20 and 2.22 are of the same form as equation
2.1 for an undamped harmonic oscillator, which was solved with a simple exponential function as an
ansatz. The same ansatz delivers us the following solutions

T (t) = A sin(λt) +B cos(λt), (2.24)

Θ(θ) = C sin(κθ) +D cos(κθ). κ = 0, 1, 2... (2.25)

where A,B,C and D are scalars to be determined using boundary conditions. Now, if we rewrite
equation 2.23 to the following form

r2
d2φ

dr2
+ r

dφ

dr
+
(
λ2r2 − κ2

)
φ = 0, (2.26)

we don’t seem to gain much of an advantage. However, we are in luck; the equation would be tough
to solve on our own, but this has already been done for us. Equation 2.26 is a famous equation known
as the Bessel equation of order κ with parameter λ. The solutions to this equation are given by

φ(r) = αJκ(λr) + βYκ(λr), (2.27)

In which J and Y are the so-called Bessel functions of the first and second kind, respectively. One can
determine α and β by using the boundary conditions of the problem at hand. We can already note β to
be equal to 0 as the Bessel function of the second kind Y diverges at the middle of our membrane, i.e.
r = 0. We are left with

φ(r) = Jκ(λr). (2.28)

Now, at r = R, meaning at the edge of our membrane, we have the boundary condition that the
displacement should be 0, as it is a clamped membrane. So

φ(r) = Jκ(γκ,n) = 0, (2.29)

in which we defined γκ,n = λr as is customary when dealing with Bessel equations. The number of
solutions to 2.29 is infinite, and the values of γκ,n for which this occurs, also known as the Bessel roots,
have been studied for more than 100 years. For every solution belonging to an integer value of κ, an
infinite number of discrete roots labeled n can be found [29]:

κ = 0 & J0(λr) = 0 : γ0,n = 2.4048, 5.5201, 8.6537, 11.7915, .....

κ = 1 & J1(λr) = 0 : γ1,n = 3.8317, 7.0156, 10.1735, 13.3237, .....

κ = 2 & J2(λr) = 0 : γ2,n = 5.1356, 8.4172, 11.6198, 14.7960, .....

κ = 3 & J3(λr) = 0 : γ3,n = 6.3802, 9.7610, 13.0152, 16.2235, .....

κ = 4 & J4(λr) = 0 : γ4,n = 7.5883, 11.0647, 14.3725, 17.6160, .....

2.2.2. Eigenfrequencies of a Circular Membrane

To find an expression for the eigenfrequencies belonging to the Bessel roots, we shall make two small
adjustments to our previous analysis. Firstly, the definition for c given in [28] is

c =

√
P

ρ
, (2.30)

with P the applied transverse pressure on the membrane and ρ the density. We will rewrite this to√
P

ρ
=

√
n0

hρ
. (2.31)
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With h the membrane thickness, and n0 the 2D tension (n0 = σ ·h with σ the material stress) . Secondly,
we will use a harmonic function, such as sin(ωt) for T (t). This nowmeans that equation 2.19 transforms
to

1

φ

d2φ

dr2
+

1

rφ

dφ

dr
+

1

r2Θ

d2Θ

dθ2
+

ρh

n0
ω2 = 0. (2.32)

We now see that our constant λ2 is equal to ρh
n0

ω2. If we now use the previously defined γκ,n and rewrite
for the eigenfrequencies of the membrane, we will arrive at

ωκ,n =
γκ,n
R

√
n0

ρh
, (2.33)

where we used r = R, the radius of themembrane. The eigenfrequencies can be found for any clamped
circular membrane using the values given for γκ,n above.

2.2.3. Circular Eigenmodes

Finally, the general solution of the displacement function U(r, θ, t) is usually expressed using two func-
tions labeled W

(1)
κ,n and W

(2)
κ,n. For the sake of brevity, we will state them as given in [28] here instead

of showing their full derivation

W (1)
κ,n(r, θ) = C1κ,nJκ(λκ,nr) cos(κθ), (2.34)

W (2)
κ,n(r, θ) = C2κ,nJκ(λκ,nr) sin(κθ), (2.35)

with C1κ,n and C2κ,n scalars. We include these two functions here because they have a unique and
intriguing feature that will help to explain the behaviour of the membrane eigenmodes that we will
demonstrate soon. These two functions only differ by a (potentially) different scalar, but more impor-
tantly, a phase of π/2. This means that for any value of κ and any n for κ ̸= 0, the functions will have
the same shape but an angular rotation of 90◦ and thus, a degenerate eigenfrequency. When plotting
the eigenmodes, we will find infinite pairs of modes with degenerate eigenfrequencies that oscillate in
space with a 90◦ rotational shift from each other.

The first ten eigenmodes of a clamped circular membrane are shown in figure 2.5 with their resonance
frequencies:
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(a) ω0,1 = ω0 (b) ω1,1 = 1.593ω0

(c) ω1,1 = 1.593ω0 (d) ω2,1 = 2.136ω0

(e) ω2,1 = 2.136ω0 (f) ω0,2 = 2.295ω0

(g) ω3,1 = 2.653ω0 (h) ω3,1 = 2.653ω0

(i) ω1,2 = 2.917ω0 (j) ω1,2 = 2.917ω0

Figure 2.5: The modeshapes of the first ten eigenmodes of a clamped circular membrane. The degenerate
modes have been included. The associated eigenfrequencies are given per mode.
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2.2.4. Clamped Square Membrane

Having found the circular modeshapes, we will now turn our attention to clamped square membranes.
We will show how the modeshapes are found for square membranes, which follows much of the same
analysis as before, albeit in the Cartesian coordinate system rather than a polar one. We will try to
keep it brief, and we only want to find the eigenfrequencies and the mode shapes of the membrane.
Wewill therefore refrain from deriving the equations for the general solutions for rectangular membranes
and refer to Haberman and Rao for interested readers [27] [28]. As done before, we will follow their
derivations closely. We start at the same point as before, the 2D wave equation:

d2U

dt2
= c2∇2U.

Where the Cartesian Laplacian is defined as

∇2 =
d2U

dx2
+

d2U

dy2
. (2.36)

Now, we assume our displacement function U to be splittable into independent parts, and we again try
to find the mode shape by separation of variables. We define U as

U(x, y, t) = X(x)Y (y)T (t), (2.37)

and enter it into the 2D wave equation:

XY
d2T

dt2
= c2

(
Y T

d2X

dx2
+XT

d2Y

dy2

)
. (2.38)

Cleaning up, we have
1

c2T

d2T

dt2
=

1

X

d2X

dx2
+

1

Y

d2Y

dy2
. (2.39)

Now, as we noticed with the circular membranes, both sides are completely independent of each other,
and we can thus assume them to both be equal to a constant; we again define it as −λ2 to write

d2T

dt2
+ c2λ2T, (2.40)

1

X

d2X

dx2
+ λ2 = − 1

Y

d2Y

dy2
. (2.41)

Repeating this trick on 2.41, we find two more equations using the separation constants κ

d2X

dx2
+ (λ2 − κ2)X = 0, (2.42)

d2Y

dy2
+ κ2Y = 0. (2.43)

For convenience, we will rewrite 2.42 by defining µ2 = λ2 − κ2. Together with 2.40, we have three
types of equations that we are now experienced with. Using the exponential ansatz as shown before,
we find the solutions:

T (t) = A sin(λt) +B cos(λt), (2.44)
X(x) = C sin(µx) +D cos(µx), (2.45)
Y (y) = E sin(κy) + F cos(κy). (2.46)

Our square membrane has sides of length L and is clamped along its boundaries. We will use the
boundary conditions X(0) = X(L) = Y (0) = Y (L) = 0 to discover that D and F should be 0:

X(x) = C sin(µx), (2.47)

Y (y) = E sin(κy), (2.48)
and that at x = L and y = L, µ and κ should be integer values of π i.e.



2.2. Vibration of a Mechanical Membrane Resonator 13

µL = m′π & m′ = 0, 1, 2, ...

κL = n′π & n′ = 0, 1, 2, ...

Using these definitions for µ and κ, and formulas 2.47 and 2.48, we find our modeshape for a clamped
square membrane to be

φm′,n′ = sin
(m′π

L
x
)
sin
(n′π

L
y
)
. (2.49)

2.2.5. Eigenfrequencies of a Square Membrane

Now we turn our attention to the eigenfrequencies of this square membrane with a modeshape de-
scribed by 2.49. To find the square membrane eigenfrequencies, we follow a similar approach to the
one shown for circular membranes. We assume that the oscillation of the membrane is a harmonic
one, and we will define the time-dependent part as T (t) = sin(ωt). If we fill in this definition in equation
2.39 we arrive at

−ω2

c2
=

1

X

d2X

dx2
+

1

Y

d2Y

dy2
. (2.50)

We see that this new term is equal to λ2 = κ2 + µ2 and so we have

ω2

c2
= κ2 + µ2. (2.51)

Using the definition of c in 2.30 together with the definitions for µ and κ found with the boundary con-
ditions, we rewrite for our eigenfrequency and arrive at the eigenfrequency equation for a clamped
square membrane

ωm′,n′ =
π

L

√
n0

ρh

(
m′2 + n′2

)
. (2.52)

If Lx ̸= Ly, we have

ωm′,n′ = π

√√√√n0

ρh

[(
m′

Lx

)2

+

(
n′

Ly

)2
]
. (2.53)

2.2.6. Square Eigenmodes

As stated before, we will not present the general solution of the displacement function U(x, y, t). Rather,
we will present the modeshapes for the square membranes graphically as done for the circular mem-
branes. Similar to the circular membranes, for square membranes, an infinite number of degenerate
modeshapes appear in pairs which differ by only a spatial rotation of π/2.

The first ten eigenmodes of a clamped square membrane are presented in figure 2.6
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(a) ω1,1 = ω0 (b) ω1,2 = 1.581ω0

(c) ω2,1 = 1.581ω0 (d) ω2,2 = 2ω0

(e) ω1,3 = 2.236ω0 (f) ω3,1 = 2.236ω0

(g) ω2,3 = 2.55ω0 (h) ω3,2 = 2.55ω0

(i) ω3,3 = 2.916ω0 (j) ω3,3 = 2.916ω0

Figure 2.6: The modeshapes of the first ten eigenmodes of a clamped square membrane. The degenerate modes
have been included. The associated eigenfrequencies are given per mode.
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2.2.7. Other Geometries

With the eigenfrequencies of square and circular membranes derived, we have, unbeknownst to us,
solved the eigenfrequencies of the two extremes of a large set of geometric membrane shapes. Lord
Rayleigh in a 1945 analysis [30] derived that regular polygon-shaped membranes and plates should
have fundamental eigenfrequencies that, in terms of numerical value, should lie between square and
circular ones. The formula presented by Rayleigh to find the fundamental eigenfrequencies is defined
as

ω = 2πα

√
n0

ρA
. (2.54)

With α a scalar factor depending on the geometry, a short selection of some found values is shown in
table 2.2, taken from [28] and [30].

Table 2.2: Value of α with which to determine the eigenfrequency of a membrane with a certain geometry [30].

Geometry α
Square 4.443
Circle 4.261
Rectangle with Lx = 2Ly 4.967
Rectangle with Lx = 3Ly 5.736
Equilateral triangle 4.774
Semicircle 4.803

2.3. Nonlinear Attractive Transverse Forces

Now that we have established the necessary analytics for our 2D membrane resonators, we have com-
pleted the first half of our theoretical analysis. The second half will concern the nonlinear attractive
forces that apply transverse pressures upon the membranes. We will introduce the forces and investi-
gate the effects they have on our membrane resonators. Let us start with the Casimir force.

2.3.1. Casimir Force

Ideal Casimir Force

The Casimir effect is a quantummechanical effect that was theoretically predicted by Hendrik Casimir in
1948 during his research into retarded van der Waals forces [31] and experimentally verified in 1997 by
Steven Lamoreaux [32]. The Casimir effect is a consequence of the quantisation of the electromagnetic
field. The effect manifests itself in a vacuum when two perfectly parallel reflecting objects, for example,
two infinite plates, are extremely close to each other. As the distance between the plates becomes
smaller, the allowed modes of the vacuum fluctuations, which appear as intermittent electromagnetic
modes, are quantised. Outside of the plates, the oscillations are not quantised and are continuous.
The limitation of the allowed modes between the plates results in a net force pushing the two plates
together [33]. This is shown schematically in figure 2.7.
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Figure 2.7: Schematic representation of the origin of the Casimir effect. The smaller d becomes, the less vacuum fluctuations
fit as the allowed modes between the plates shrink. This creates a mismatch between the number of wavelengths between the
plates and outside of the plates. This means that for smaller d ,2Fo > Fi and that the plates are pushed towards each other,

thereby increasing the effect.

The Casimir effect is thus known as an attractive pressure between two parallel objects as the plates
are forced towards each other due to the mismatch between the allowed modes inside and outside
the plates. The closer the two plates come together, the stronger the Casimir effect becomes, with the
modes outside of the plates staying unaffected. It is therefore a nonlinear attractive force. The Casimir
effect, as found by Casimir himself, the case of two infinite perfectly smooth reflecting parallel plates
within a vacuum at 0K, is unfeasible in reality. However, the Casimir effect does manifest itself in other
analogues in real life. One simple example is seen in the attractive movements of two parallel ships
that are close to each other in a rough sea.

Real Analogues of the Casimir Force

In electromagnetism, an important analogue of the Casimir effect was found by Lifshitz in his 1956
seminal paper [34]. Lifshitz derived a formula for the Casimir effect between parallel conducting plates
due to the presence of charge fluctuations at finite temperatures. These charge fluctuations manifest
themselves as electromagnetic waves between and outside of the plates. This analogue, to which we
will henceforth refer as just the Casimir effect, has an increasing impact in micro and nano electronics
due to the ongoing miniaturisation of components, resonators included [35]. Resonators are often
fabricated while suspended over a cavity, parallel to the cavity bottom, which is close to the resonator.
As these two parallel objects come close to each other, the Casimir force will attempt to push the
membrane and the cavity bottom together. This puts pressure on the resonator and thus changes its
characteristics.

The force per unit area, i.e. the pressure exerted due to the Casimir effect for two large, parallel,
conducting plates in a vacuum, is shown in equation 2.55

P (d) = −η
π2ℏc
240

1

dn
. (2.55)

With d the distance between the plates, ℏ the reduced Planck’s constant and c the speed of light in a
vacuum. η ≤ 1 is a parameter which depends on the dielectric permittivities of the two plates [36], and
the exponent n is equal to 4 in the ideal case. Both η and n are parameters whose values are subject
to the exact experimental parameters of the system. In reality, due to a multitude of factors, such as
surface roughness, degree of plate parallelism, medium between the plates, dielectric constants and
plate sizes, the exponent n can range in value between 3 and 4. For example, in [37], the exponent is
calculated to range between 3.1 and 3.3 for a superconducting aluminium drum. Equation 2.55 is thus
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an idealised formula corrected with both the η parameter and the n exponent. The value of both η and
n can be determined with the Lifshitz formula for the Casimir effect for finite temperatures [34] [37] :

P (d, T ) = −kBT

π

∞∑
0

′
∫

dk⊥k⊥ql
∑

α∈{TE,TM}

(
e2dql

r
(1)
α r

(2)
α

)−1

. (2.56)

With kB Boltzmann’s constant, k⊥ the length of the in-plane projection of the electromagnetic wave and
d the interplate distance. The prime denotes that the first TM term in the sum should be multiplied by
half and the first TE term omitted. r(n)α are the nth plate Fresnel coefficients

r
(n)
TE =

ql − sl
ql + sl

, (2.57)

r
(n)
TM =

ϵ(iξl)ql − sl
ϵ(iξl)ql + sl

, (2.58)

in which

ql =

√
ξ2l
c2

+ |k⊥|2, (2.59)

sl =

√
ϵ(iξl)

ξ2l
c2

+ |k⊥|2, (2.60)

ξl =
2πkBlT

ℏ
(2.61)

Where ξl are the Matsubara frequencies used in thermal quantum field theory. These formulas are
mainly concerned with the electromagnetic properties of the media in the system. However, as stated
before, surface roughness and degree of parallelism also play roles in the exact definition of both η and
n. These two effects can be approximated using two techniques. Firstly, the Casimir force between
two objects with a degree of roughness can be modelled using the proximity force approximation (PFA)
[38]. The exact approximation is not universally agreed upon, with the Drude model and the Plasma
model being the main candidates [39].

Secondly, in the case of resonators, one also has to take the bowing of the surface into account when
considering the Casimir effect. The resonator will bow down due to the transverse force exerted by
the Casimir effect. The bowing, however slight, changes the parallelism between the resonator and its
cavity bottom. The effect of this can be calculated using the Derjaguin approximation [40].

We state the Lifshitz formula as it is crucial to exact Casimir force experiments and calculations. How-
ever, we will refrain from using it, the Derjaguin approximations and the PFA for the sake of simplicity.
These approximations are complex calculations which, for this thesis, do not add much added value
as we will be concerned with simulations in which effects such as surface roughness are difficult to
include. Instead, for η, we will use the fact that Serry et. al [36] state that for metallic extremely parallel
objects η ≈ 1, and if only one plate is metallic then η ≈ 0.5. If both are dielectrics, this value is probably
close to 0. This is because metallic surfaces facilitate excellent reflection of electromagnetic waves,
whereas dielectrics do not. We will assume that for the systems that we study, the parallelism is not
compromised to a degree that it has significant effects on the value of η. For the exponent n, we have
a different strategy in mind. As previously mentioned, in experimental setups, its value can vary in
the range of 3 to 4, with 4 being the most ideal case. In our situation, it will be taken as equal to 4
and stay constant, as it has no conclusive value. Its value is never the same for different experimental
setups. Later on, we will compare results from simulations with results from experiments, and we can
expect these to not exactly match for n = 4. We will then be able to determine the value of n for the
experimental setup of that measurement by equating both.

The Casimir effect is an effect that was the subject of a relatively small amount of research for a long
time, but interest is building. This is because the effect used to be unattainable and therefore had no
effect on sensors, as the required parallelism and distances are complex to realise. This, in addition
to the very weak magnitude, makes the effect difficult to research. However, with decreasing sensor
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size and improving fabrication techniques, the effect is starting to play an increasing role in research.
Its inverse proportionality to the fourth power of the gap size means that its magnitude is negligible
except for very small distances, where it suddenly rises sharply. For example, for a gap size of 500 nm,
the Casimir effect exerts a pressure of 0.02 Pa, while for a gap of 50 nm, the pressure reaches 206 Pa.
However, these pressures can grow to be significantly larger than the ones given by formula 2.55 due
to an effect known as spring softening, which we will cover later.

2.3.2. Electrostatics

Electric Field and Potential

In contrast to Casimir forces, electrostatics have been a wide area of research for a very long time
and are by far the most commonly used forces to move mechanical components in MEMS [41]. From
resonators, mechanical tweezers, electrofluidic sensors, charge shuttles, micropumps, micromirrors,
diffraction gratings to micromotors and more, electrostatics are a valued technique in MEMS [42] [43].

The driving force behind electrostatics is, naturally, the electrostatic force itself. The electrostatic force
comes about due to electrical potential differences between two objects, which are related to the elec-
tromagnetic field as

E⃗ = −∇ϕ, (2.62)

with E⃗ the electric field between the two objects and ϕ the scalar potential. Contrary to the Casimir
effect, the electrostatic effect is accompanied by so-called fringe fields. These fringe fields are stray
electromagnetic field divergences necessary for the electromagnetic field lines to be completed and
are visible outside the two plates in figure 2.8a. Ignoring the fringe fields and assuming the electric
field points in one direction, as is the case between two parallel plates (red region in figure 2.8a), then
ϕ = V

d , with d the distance between the objects. For two parallel plates, like a capacitor, one can find the
electrostatic force by calculating the potential energy in the electric field U = ε0εr

2

∫
|E⃗|2 in conjunction

with the identity F = −∇U . For an idealised infinite parallel plate capacitor, this results in the famous
relation

FES = −C

2

(
V

d

)2

= −1

2

Aε0εrV
2

d2
. (2.63)

This equation, as fringing fields were ignored, is an approximation that is only valid when the size of the
plates is much larger than the distance between them. When a voltage is applied to a resonator, and a
ground plane is situated above or below it, the resonator will be pulled by the electrostatic force towards
the grounded plane. This affects the stiffness of the resonator and thereby its resonating characteristics.
Figure 2.8 shows the electric field and the voltage distribution of such a situation, with the fringing fields
visible.

(a) (b)

Figure 2.8: Plots of a resonator subjected to a potential, with a thicker grounded base. Red is used to show high
values, and blue shows low values. (a) The electric field distribution as seen from the side. (b) The electric

potential distribution as seen from the side.

Shown is the side view of a resonator above a grounded base. The resonator has a voltage applied
to it, and the base is grounded. The field lines indicate where the electrostatic effect is the strongest
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in figure 2.8a, with the space between the grounded base and the resonator showing the strongest
electric field density.

An exact solution to the contribution of these fringe fields does not exist, and accurate solutions to
this problem grow fast in complexity as shown analytically by Reichert et. al [44]. One can estimate
the deviation by these fringing fields by using the simple approximation found by Kirchhoff [45]. This
approximation of the fringing fields for a circular plate gives a more realistic indication of the impact of
the fringe fields on the capacitance, and so the electrostatic effect, without being too complex.

C = C0

(
1 +

b

π
ln
(16π

b
− 1
))

, (2.64)

with b = d/R the aspect ratio between the distance between the two plates d, and the radius of a circular
plate R. A plot of the percentual shift in the electrostatic force calculated between an infinite circular
capacitor approximation and 2.64 is shown in figure 2.9

Figure 2.9: Percentual deviation between the electrostatic force as calculated by the infinite capacitor approximation and the
Kirchhoff correction. Relatively small aspect ratios still lead to a sizable force error for the infinite capacitor approximation.

Figure 2.9 shows a surprisingly large error in the force calculated by the infinite capacitor approximation,
even for relatively small aspect ratios. When the fringe fields are excluded, the system contains less
energy. Only systems with very large aspect ratios are barely affected by the exclusion of the fringe
fields, as the total energy in that case is dominated by the interplate fields, and the fringe field energy
is thus negligible.

Electrostatics are not only used to move mechanical sensors; they also serve a sensing purpose in
capacitive sensors. The change in the capacitance of a system can be directly linked to the change in
distance between two objects with a potential between them, thereby enabling the sensing of a plethora
of physical effects. Unfortunately, attractive forces such as electrostatics also introduce unwanted
effects, such as pull-in.

Electrostatic Pull-in

The inherent attractive nature of electrostatics poses a problem for the design of MEMS devices. This
is due to the fact that when the electrostatic force becomes too strong, an effect known as pull-in can
occur, which is not exclusive to just electrostatics but any attractive distance-dependent force. If the
restoring force of a resonator is unable to balance out the electrostatic force, then the resonator will
deform inelastically and/or be pulled further towards the grounded electrode until it hits it (or reaches
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the size regime at which VanderWaals forces take over) and shorts the circuit. We would like to predict
when this happens to prevent device failure by means of analytics and later on, Finite Element Analysis.

For our analytics, we choose to use a so-called lumped element model. This means that we use a
simplified representation of our physical system to calculate the pull-in voltage. We do this because a
full-fledged continuummodel for the pull-in voltage is very complex, which in this instance is not needed.
The simplified model was introduced before when discussing basic resonator theory and is shown in
figure 2.10, where we model the spring constant of the membrane as a simple spring.

Figure 2.10: Lumped element model of a flexible membrane separated by a gap with the cavity bottom. The membrane is
subjected to an electrostatic force due to a voltage difference. The membrane restoring force is modelled as a spring.

A simple calculation of the pull-in voltage will now be shown, We start by equating the opposing forces
in our lumped model

kU = −F, (2.65)

where k is our membrane spring constant, U is the centre deflection of the membrane, or the stretching
of the spring, and FES is the electrostatic force as defined in 2.63. Pull-in occurs when the electrostatic
force trumps the restoring force, and this point is known as a stability point. One determines the stability
of a point by inspecting the eigenvalues of the Jacobian at that point in space [46]. For this one-
dimensional system of our interest, this means linearising around the equilibrium point with a first-order
Taylor expansion, i.e. equating the derivative with respect to the deflection to zero. The moment the
stiffness changes sign, we know we have crossed the pull-in point. We now calculate the derivative of
2.65 with respect to U to find k:

k = −Aε0εrV
2

(d+ U)3
. (2.66)

Entering this definition for k back into 2.65 and after rearranging, one finds the famous electrostatic
MEMS rule of thumb:

Umax = d/3. (2.67)

Wemay then use thismaximumdeflection distance in combination with 2.65 and 2.66 to find amaximum
voltage, or the pull-in voltage for a certain gap size as

VPI =

√
8kU3

max

27ε0εrA
. (2.68)

This quite famous relation for the pull-in voltage is an easy but also an inaccurate one. It is useful as
it gives a lower bound, but more accurate models predict higher pull-in voltages and bigger maximum
deflections, such as Umax = 0.44d [47]. This is due to the fact that we have not included the nonlinear
effects that occur to the spring constant of the membrane when subjected to nonlinear attractive forces
such as the Casimir force, the electrostatic force or large deflections in general. These nonlinear effects,
including spring softening, hardening, and an improved analytical model for the pull-in voltage, are
presented in the next section.
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2.4. Nonlinear Effects

Up until now, we have been limiting our analysis of resonators to the linear class. Linear resonators
show the characteristic output shown in figure 2.4 when looking at their amplitude per drive frequency
output. Linear in this context means that the role of the amplitude of the oscillations is linear in the
equation of motion. This means that if one were to increase the amplitude of the driving force, the output
response would not change. In reality, this is not the case, and the class of effects that cause this are
called nonlinear and resonators that are notably affected by them nonlinear resonators. Nonlinearities
are very common in nature, and linear systems are almost always approximations made in engineering
to systems with negligible nonlinearities. Nonlinearities exist in a wide spectrum of different kinds, some
have the effect of making the membrane softer, meaning it is more easily deflected, and some make
the membrane harder [13]. Mixing of multiple nonlinear effects can also occur as shown by Samantha
et. al [48]. We will start with a famous type of nonlinearity.

The most basic form of a nonlinear resonator is describable with the so-called Duffing equation of
motion, which adds the so-called Duffing term β [13]

m
d2x

dt2
+ ζ

dx

dt
+ kx+ βx3 = F0 sin(ωdt). (2.69)

Here, a new force enters the equation of motion that is proportional to the displacement cubed. The
Duffing term models the behaviour of systems in which the stiffness term does not obey Hookes law.
The Duffing term β can be either positive or negative, depending on the type of nonlinear effect present
in the system. When the Duffing parameter is positive, i.e. β > 0, the harmonic oscillator is stiffened,
or sometimes called hardened, and the restoring force of the resonator grows. If the Duffing parameter
is negative, i.e. β < 0, a softening effect on the spring constant occurs and the restoring force is
decreased. A softer resonator exhibits a lower resonant frequency and a stiffened one a higher resonant
frequency. This effect can be seen in the output amplitude per frequency as shown in figure 2.11.

Figure 2.11: Three frequency response curves of nonlinear resonators. The three curves show the response for varying types
of Duffing parameters, linear (β = 0), hardening (β > 0) and softening (β < 0). The dashed regions show the unstable regions
which cause hysteresis in the frequency response. The measured value will depend on the branch taken , which depends on

the direction of the drive frequency sweep.

We see that the spring softening/hardening effect pushes or bends the resonance peak to the sides
and creates a dashed region, which is known as the unstable region [14]. The resonator will not stay
in this region and will snap back to either the top or the bottom branch of the output. This means that
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the Duffing resonator exhibits hysteresis as an approach in drive frequency from the left will follow a
different trajectory compared to an approach in drive frequency from the right.

2.4.1. Types of Nonlinearities

As mentioned before, there exists a wide variety of nonlinearities in MEMS resonators. These vary
from nonlinearities found in the damping, to ones found due to actuation, detection, or the materials
of the resonators themselves. We will cover the two most important ones for the 2 two-dimensional
resonators of our interest. The first being the softening effect caused by external attractive nonlinear
force fields that act upon the resonator, such as an electrostatic force or the Casimir force. The second
is a nonlinearity caused by the geometry of the resonator when subjected to large deflections, known as
geometrical nonlinearity. We will also show how these nonlinearities can be used to potentially improve
these resonators.

2.4.2. Nonlinear Force Field Frequency Softening

The nonlinear force field softening effect is a counterintuitive one, as one would expect the stiffness to
increase when a resonator is pulled by a nonlinear force, but the opposite occurs. It is an effect that
has been well known for decades, as electrostatic actuation and detection are one of the most popular
tools in MEMS technology. It is, however, not exclusive to the electrostatic effect and occurs for any sort
of distance dependent force field pulling on the resonator as we will now show based on a calculation
given by [13]. Let us consider a general nonlinear attractive force field that pulls on a membrane and
is dependent on the distance between the membrane and a backplate parallel to it. We will define it as

F (U) = − C

(d+ U)q
, (2.70)

in which U is the centre deflection of the circular membrane from its equilibrium point and d is the
distance between the membrane and the backplate, and C is a force-dependent constant. If the force
would not be present, then the equilibrium position would be a distance d from the backplate, but with
the force pulling on the membrane, the equilibrium position shifts to d+U , note (U < 0). The opposing
forces in the system are then

kU = − C

(d+ U)q
. (2.71)

We now take the force term on the left-hand side and bring it to the right. Using the identity F = −∇V ,
we write

dV

dU
= kU +

C

(d+ U)q
. (2.72)

If the force changes slightly, then the resonator will move to a new equilibrium position U0. We can
expand the potential using a Taylor expansion around the new equilibrium point d0 = U + U0 to find

V (d0) ≃ V (U0) +

(
k/2− qC

(d+ U0)q+1

)
d20 +

1

6

q(q + 1)C

(d+ U0)q+2
d30 −

1

24

q(q + 1)(q + 2)C

(d+ U0)q+3
d40 +O(d50). (2.73)

Or, equivalently,
V (U0) ≃ V (U0) + keffd

2
0 + βd30 + αd40 +O(d50). (2.74)

Where we have collected
(
k/2− qC/(d+ U0)

q+1
)
into a new parameter keff and the other terms in β

and α.

We may now make two important observations. Firstly, looking at our definition of the effective spring
constant, we see that it is reduced by the squared term resulting from the force field expansion. In
other words, it is softened due to this attractive nonlinear force. Secondly, if this squared term were to
grow larger than our original spring constant k, we would have a negative spring constant. A negative
spring constant, instead of restoring the membrane, would do the opposite. This is the effect earlier
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described as pull-in, where the membrane would not overcome the pulling force and would snap to the
backplate. The potential given in 2.74 creates the following equation of motion.

m
d2d0
dt2

+ kd0 + βd20 + αd30 = 0, (2.75)

where we have omitted any driving force. The quadratic term influences the resonance frequency but
does so regardless of the direction of d0 and β is known as an elastic constant [13]. In α we find our
Duffing parameter as it is connected to the cubic term, which in this case is negative.

A nonlinear attractive force thus negatively influences the spring constant. This influence is distance-
dependent, and we can expect a larger deflection to create a larger softening effect on the eigenfre-
quency of the membrane. This means that the shift in the eigenfrequency due to a pressure on the
membrane will be bigger when softened by a nonlinear force than without it. We could see this as
a potential technique to increase the responsivity/sensitivity of our resonator, as the change in eigen-
frequency would be bigger with our nonlinear force present. This opportunity has been seized using
magnetic fields by Karlivčič et. al [49] and with electric fields by Xiong et. al. [50] and Zhang et. al. [51]
but remains an eccentric responsivity boosting technique. It would also aid the sensing of the eigen-
frequency as the softened stiffness will lead to bigger deflections, which can be more easily measured.
We will explore this effect in depth in theory and simulations as it promises exciting opportunities to
optimize resonator sensors.

2.4.3. Softening in Circular Membranes

Electrostatic Softening

With the stiffness of the resonator softened by nonlinear effects, the resonance frequency will also
change and be reduced. We will now derive the softening of the resonance frequency of a circular
membrane subjected to an attractive electrostatic force field. We must note that the following derivation
only has this softening effect in mind and is therefore not valid as an approximation for other nonlinear
effects that might arise when the deflection distance of the membrane is no longer negligible compared
to the dimensions of the membrane and the cavity bottom. We use a continuum model based on [12]
and we repeat the electrostatic force between two parallel plates, when the distance between the plates
is very small compared to the size of the plates, here:

FES = −1

2

Aε0εrV
2

(d+ U)2
.

With ε0 the permittivity of the vacuum and A the membrane area. The equation of motion of the mem-
brane subjected to an electrostatic force field is found by equating the forces present in the system.
For an infinitesimal piece of membrane area with a thickness h, the force equilibrium is

ρh
d2U

dt2
− σh∇2U = FES , (2.76)

with ∇, the Laplacian of the spherical kind. We then follow an adjusted version of a procedure shown
in [12], which presents a calculation for square membranes. With some adjustments, we will find the
resonance frequency of a circular membrane subjected to an attractive electrostatic potential. We will
use the Galerkin method, which exploits the orthogonality of the membrane eigenmodes. We define
the displacement function U of the membrane as

U(r) =

∞∑
m′=1

∞∑
n′=1

U0,m′,n′φm′,n′(r)eiωm′,n′ t, (2.77)

with U0,m′,n′ the amplitude for them′, n′-th mode, eiωm′,n′ t the time dependent oscillation term. For φ(r),
we will use the normalised first-order spherical Bessel function, which we found in an earlier deviation,
as we desire to derive the eigenfrequency of the fundamental eigenmode:
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φ(r)1,1 =
R sin

(
αr
R

)
αr

. (2.78)

With α = 2.4048, the first zero of the Bessel function of the first kind. We can linearise 2.4.3 by using a
first-order Taylor expansion and write

Fe ≈ Fe(0) +
dFe(0)

dU
U ≈ −ε0εrV

2

2d2
+

ε0εrV
2

d3
U. (2.79)

The first electrostatic term is a static one, as shown before, and is constant in its effect on the resonant
frequency as it is independent of U . This effect is significant if geometrical nonlinearities are significant
in our system, for the time being we assume that not to be the case. We consider its effect to be
negligible, and we can thus ignore it. Our equation of motion then becomes

ρh
d2U

dt2
− σh∇2U =

ε0εrV
2

d3
U. (2.80)

We then employ the Galerkin method to find the resonance frequency shift of the membrane due to the
electrostatic field. To this end, we multiply with the mode of interest, in our case the fundamental mode
φ1,1 and integrate over the entire membrane surface. This gives us

∫
R

(
ρh

d2U

dt2
− σh∇2U − ε0εrV

2

d3
U

)
φ1,1dr = 0. (2.81)

We evaluate the Laplacian of the eigenmode as:

∇2φ(r)1,1 = r2

(
−
a sin

(
ar
R

)
Rr

+
2R sin

(
ar
R

)
ar3

−
2 cos

(
ar
R

)
r2

)
+ 2r

(
cos
(
ar
R

)
r

−
R sin

(
ar
R

)
ar2

)

= −
α sin(αrR )

rR
(2.82)

and after calculating the other terms, we arrive at

∫
R

(
−ρhω2

1,1φm′,n′ + σh
α2

R2

R sin(αrR )

αr
− ε0εrV

2

d3
φm′,n′

)
φm′,n′dr = 0. (2.83)

We then rewrite the second term and collect the r dependent terms to find

−ρhω2
1,1

∫
R

φ2
1,1dr + σh

α2

R2

∫
R

φ2
1,1dr −

ε0εrV
2

d3

∫
R

φ2
1,1dr = 0, (2.84)

note that due to the eigenmodes being orthogonal, the only eigenmode that is nonzero when multiplied
with φ1,1 is φ1,1 itself. Losing the integral terms, the eigenfrequency is then isolated and becomes

ω2
1,1(V ) =

α2

R2

σ

ρ
− ε0εrV

2

ρhd3
. (2.85)

If no voltage is present, then the eigenfrequency is just

ω2
1,1(0) =

α2

R2

σ

ρ
. (2.86)

Using 2.85 and 2.86, the first-order Taylor approximation of the fundamental eigenfrequency of the
membrane in an electrostatic field can be written as
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ω2
1,1(V ) = ω2

1,1(0)

(
1− R2

α2

ε0εr
σhd3

V 2

)
. (2.87)

Casimir Softening

The frequency softening of a circular membrane subjected to the Casimir force field can be found in
a similar fashion, with the only difference being the nonlinear force itself. The Casimir force for an
infinitesimal piece of membrane is again linearised with a first-order Taylor approximation:

FCas ≈ FCas(0) +
dFCas(0)

dU
U ≈ −η

π2ℏc
240d4

+ η
π2ℏc
60d5

U. (2.88)

Again, ignoring the static term, the same procedure as above is followed. The first-order Taylor approx-
imation of the fundamental eigenfrequency is then found as

ω2
1,1(η) = ω2

1,1(0, 0)

(
1− R2

α2

ηπ2ℏc
60σhd5

)
, (2.89)

where ω2
1,1(0) is equal to 2.86. The Casimir effect will always be present in the sensors covered in

this thesis, the electrostatic effect is one that can be manually turned on or off. The combination of
both effects is therefore always the case if electrostatics are chosen to play a role in future sensors.
The combined effect on the resonance frequency will therefore be given here. The procedure is again
equivalent to those given above, and therefore, we only show the resulting eigenfrequency:

ω2
1,1(V, η) = ω2

1,1(0, 0)

(
1− R2

α2σh

(
ε0εr
d3

V 2 + η
π2ℏc
60d5

))
(2.90)

With ω2
1,1(0, 0) given in 2.86.

General Nonlinear Force Field Softening

As mentioned before, the Casimir force and the electrostatic force are never exactly equal to their
analytical formulas. This is due to non-perfect geometries, fringe fields, and/or non-ideal conductors.
The exponent in the interplate distance term is therefore rarely equal to 2, in the case of electrostatics,
or 4 in the case of the Casimir effect. We therefore present the frequency softening for a general
attractive nonlinear force field here.

We define our general attractive nonlinear force, with C as the distance independent term as

FGen = − C

(d+ U)q
. (2.91)

Using the first order Taylor expansion we are given

FGen(U) ≈ FGen(0) +
dFGen(0)

dU
U = −C

dq
+

qC

dq+1
U (2.92)

It must again be noted that we need to assume that the membrane deflects only a small amount due
to this force, such that the geometric nonlinearity is negligible. This nonlinear force, therefore, should
not be too strong to pull it out of this regime. Using the now well-known procedure, we find for the
resonance frequency

ω2
1,1(C) = ω2

1,1(0)

(
1− R2

α2

qC

σhdq+1

)
. (2.93)

With ω2
1,1(0) again equal to 2.86.
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2.4.4. Softening in Square Membranes

The calculation of the frequency of the fundamental eigenmode is performed in much the same way as
the circular one. The main difference is that we use a different modeshape, we found it before and it
was defined as

φm,n = sin
(m′π

L
x
)
sin
(n′π

L
y
)
.

The eigenfrequency softening for a square membrane is shown for an electrostatic potential in [12], and
we will not repeat it here. We will give the derivation of the combination of the electrostatic effect and
the Casimir effect briefly. We shall use the starting equation given in 2.76 with a Cartesian Laplacian,
and the displacement function given in 2.77 with φ as above. We linearise the electrostatic and the
Casimir effects using the first-order Taylor expansions

Fe ≈ Fe(0) + Fc(0) +
dFe(0)

dU
U +

dFc(0)

dU
U ≈ −ε0εrV

2

2d2
− η

π2ℏc
240d4

+
ε0εrV

2

d3
U + η

π2ℏc
60d5

U, (2.94)

and as before, only keep the non-static terms. We integrate over the entire membrane surface and
multiply with the desired modeshape, i.e. φ1,1∫ ∫

A

(
ρh

d2U

dt2
− σh∇2U −

(ε0εrV 2

d3
+ η

π2ℏc
60d5

)
U

)
φ1,1dxdy = 0. (2.95)

After we work out the double time derivative and the Cartesian Laplacian, we multiply with the funda-
mental mode, and divide out the x and y dependent terms, we can rewrite the equation and find the
softened eigenfrequency

ω2
1,1(V, η) = ω2

1,1(0, 0)

(
1− 1

2

L2

π2σh

(
ε0εr
d3

V 2 + η
π2ℏc
60d5

))
, (2.96)

with ω2
1,1(0, 0) = 2

π2

L2

σ

ρ
.

2.4.5. Pull-in with Stiffness Softening

With our softened eigenfrequencies found for circular and square membranes, we are ready to tackle
the pull-in problem, which we attempted before. We have now derived the softening effect and will use
it to find a better approximation for the pull-in voltage and pull-in distance than d/3.

As discussed before, ’pull-in’ in MEMS and NEMS design occurs when using attractive forces such as
electrostatics. Pull-in occurs when a structure’s restoring force is not able to balance out the displacing
force. This results in the structure elastically deforming, snapping or becoming stuck to another part.

The case of membrane pull-in in the case of electrostatics has been extensively explored in recent
years [52–54]. The case of an additional Casimir force field has also been explored by various authors
[55–57], but one for circular membranes remains rare. A full, in-depth analysis of the pull-in effect for
a continuum structure strained by multiple nonlinear distance-dependent attractive force fields can be
complex, and an elaborate exploration deserves a thesis in itself. We will therefore again opt for a
lumped order model with the softening effect included in order to find the voltage at which our struc-
tures fail for a given gap size. This method follows the derivation presented by [58], with numerous
adjustments to fit our specific situations.

Pull-in Voltage for Circular Membranes

A lumped element model of two circular plates is shown in figure 2.10. The top plate is pulled towards
the bottom one with an electrostatic force, and now also by the Casimir force. These forces are bal-
anced out by the spring constant keff . We are under the assumption that the membrane deflection is
very minute compared to its own size. This means that we can ignore the geometric nonlinear hard-
ening effects and that we can effectively model voltage pull-in using this simplified model with spring
softening. When we include the Casimir effect, we have for our force equation.
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kU = −1

2

Aε0εrV
2

(d+ U)2
− Aπ2ℏc

240(d+ U)4
. (2.97)

We would ideally like to find the maximum deflection Umax like we did before as a good starting point.
We follow our previous method and calculate the derivative of 2.97 with respect to U ,

k =
Aε0εrV

2

(d+ U)3
+

Aπ2ℏc
60(d+ U)5

. (2.98)

Filling in k using its newfound definition into 2.97, we find

(
Aε0εrV

2

(d+ U)3
+

Aπ2ℏc
60(d+ U)5

)
U = −1

2

Aε0εrV
2

(d+ U)2
− Aπ2ℏc

240(d+ U)4
. (2.99)

Now, we have an equation in which we cannot isolate U , find Umax and by extension, also not Vmax.
One could use root-finding algorithms, although finding the correct roots of equations like these proves
to be surprisingly difficult. We will therefore keep U as a free variable, and we will later find its perfect
value by fitting and find the pull-in voltage via a different technique.

We want to write the spring constant, affected by the spring softening, as a function of the maximum
deflection and the voltage. We will re-use 2.90, in which we linearised the force fields around the centre
deflection as our starting point, as we assumed our deflections to be small compared to the membrane
itself. We take 2.90 and use 2.86 to write

ω2
1,1(V, η) =

α2

R2

σ

ρ
− ε0εr

ρh

V 2

d3
− η

π2ℏc
60ρh

1

d5
. (2.100)

Via the definition of the resonance frequency, we write:

ω2 =
keff
meff

=
k − ksoft
meff

, (2.101)

we may then use the effective mass of a circular membrane, which is dependent on the eigenmode,
meff = 0.2695ρπR2h = γρπR2h [59], to write for keff :

keff = k − ksoft =

(
α2

R2
σ − ε0εr

h

V 2

d3
− η

π2ℏc
60h

1

d5

)
γπR2h. (2.102)

We now define the following:

k =
α2σ

R2
γπR2h and ksoft =

(
ε0εr
h

V 2

d3
+ η

π2ℏc
60h

1

d5

)
γπR2h. (2.103)

With these definitions made, we can now substitute keff in 2.97 for k:(
k −

(
ε0εr
h

V 2

d3
+ η

π2ℏc
60h

1

d5

)
γπR2h

)
U =

1

2

Aε0εrV
2

(d+ U)2
+ η

Aπ2ℏc
240(d+ U)4

. (2.104)

As said previously, when deriving the softening terms, the deflections are assumed to be very small
compared to the size of the membrane. We can therefore use parallel plate approximation (d+U ≈ d)
on the right-hand side of 2.104 around the equilibrium position U = 0 without introducing a significant
error. Reshuffling terms gives us

kU =
1

2

Aε0εrV
2

d2
+ η

Aπ2ℏc
240

1

d4
+

(
ε0εr
h

V 2

d3
+ η

π2ℏc
60h

1

d5

)
γπR2hU. (2.105)
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2.105 is similar in form to 2.97. The right-hand side of 2.105 describes a force that can be used to
find the pull-in voltage. To that end, we will use formula 26a given by Sarafraz et. al [60] which relates
the pressure on a circular membrane to its centre displacement. We first use the definition P = F/A
to transform 2.105 into a formula for the pressure, and equate its right-hand side to formula 26a by
Sarafraz et. al:
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Here, A and B are values that can be found in the paper, in our case, they are equal to 3.61 and
2.2837, respectively. Finally, we can now collect the voltage-dependent terms and rewrite 2.106 to find
the voltage as a function of U , where we will fill in Umax for the pull-in voltage:
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In the results, this function will be plotted for various values of U and compared to the pull-in voltage
values given by the COMSOL model. The best fit for Umax can then be found and the according pull-in
voltages determined analytically.

Circular Deflection Distance

In equation 2.107, we have entered the yet to be determined Umax as our parameter for when the pull-in
phenomenon occurs. We may also forego Umax and instead want to find the deflected distance of the
centre of our membrane for a given voltage with the Casimir effect present for a certain gap size. To
this end, we re-state equation 2.106 again
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To find our deflection distance, wewill again perform an approximation. Looking at the left-hand side, we
may notice that the term proportional to U3 is significantly lower in magnitude than the term proportional
to U . For example, if we assume our deflection to be 100 nm and our radius to be 0.4mm, then the term
proportional to U is more than 6000 times larger in magnitude. We shall thus discard the U3 term to
simplify our equation. If we now collect our U dependent terms and rewrite for U , we find
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This equation will give us the approximate deflection of the centre of the membrane due to the elec-
trostatic and Casimir forces. We should be wary of using this approximation for situations where the
deflections grow large. The higher order Taylor terms in the softening of the resonance frequency,
which in our formula are absent, might play a significant role the further the membrane deflects, and
the neglected term proportional to U3 will impact the accuracy increasingly for larger deflections. We
can expect to see larger deviations from FEM results in these situations. Note that this equation does
not tell us when pull-in occurs in itself, as it will give an arbitrary deflection distance even if U > Umax.
Umax will have to be determined from FEM simulations and will provide a bound for the usefulness of
this formula.

Pull-in Voltage for Square Membranes

As with the derivations shown for the eigenfrequencies and the frequency softening, the pull-in voltage
calculations for square membranes are very similar to those for circular ones, with some subtle differ-
ences. Chowdury et. al performed a pull-in calculation for only the electrostatic effect for a square
membrane [58], which served as a guideline for our derivation. We adjusted it to accommodate the
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Casimir effect for our circular membranes, and we could, in principle, repeat their full calculation for
a square membrane with the added Casimir effect, but we will refrain from doing so. Instead, we will
state the differences and present the results here. Our starting point is naturally different as we will use
2.96 instead of 2.87. We are then able to follow the same steps as in the circular case, remembering
that the effective mass of a square membrane is meff = m/4. We have one further change to our
procedure, which is the pressure-deflection formula. We used one for circular membranes presented
by Sarafraz et. al [60] and shall now use the one for square membranes presented by Maier et. al [61],
which is defined as

P (U) = C1
n0

(L/2)2
U + C2(ν)

Eh

(L/2)4
U3, (2.109)

with C1 = 3.45 and C2 = 1.994(1−0.271ν)
(1−ν) .

Following the above described procedure with these adjustments, for the pull-in voltage for a clamped
square membrane we then have
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For its centre deflection distance, we find
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Note that the factor γ = 0.2695 is very close to 1/4 for the effective mass of the circular and square
membranes, respectively.

2.4.6. Geometric Nonlinearity

In our previous derivations, we assumed the membrane deflections to be negligible enough to exclude
hardening effects due to geometric nonlinearities. Geometrical nonlinearities are common in MEMS
resonators, as resonators often are driven into the high-amplitude regime. It is, however, not necessary
for the resonator to be pushed to extremely high amplitudes for the geometric nonlinearity to take hold
and affect its dynamics noticeably. Geometric nonlinearity is a consequence of the boundary condi-
tions of a resonator [13]. In the systems of our interest, namely clamped membranes, the boundary
conditions prevent the structures from moving at the boundaries. This means that if the membrane is
to oscillate transversely, it is inescapable for the membrane material to not deform slightly by means of
flexural bending or stretching. When the membrane deflects from its equilibrium position, it stretches
and compresses longitudinally. For a circular MEMS, this stretching, for the base frequency mode as
shown in figure 2.5a, is radially symmetric. A schematic side view of a deflected circular membrane is
shown in figure 2.12.
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Figure 2.12: Side view schematic of a circular membrane resonator during oscillation with a high amplitude. The high
amplitude causes radially symmetric elongation and increases the longitudinal strain. This triggers the rise of the geometric

nonlinearity, which has a hardening effect on the stiffness of the resonator, making its resonance frequency rise.

Figure 2.12 shows the membrane material as springs. The stiffness of these springs is directly related
to the elongation along their radial coordinate according to Hooke’s law. If the length of the springs at
rest is equal to R, and the height of an arbitrary amplitude is H, then the length of the spring at this
amplitude is equal to R2 =

√
R2 +H2. Using Hooke’s law F = −kx we write F = −k(R − R2). The

force component parallel to the direction of the oscillation can be found by multiplying by the sine of
the angle between the equilibrium position and the new position of the spring, which is equal to the
opposite divided by the hypotenuse: We then write for the total force in the transverse direction, i.e.
the direction of oscillation for the two springs [14]:

F = 2k(R−R2)
H√

R2 +H2
= 2

(
kHR√
R2 +H2

− kH

)
. (2.112)

Already, a linear and a nonlinear part can be identified from this relation. Taylor expanding this equation
will result in the appearance of a Duffing parameter.

As this elongation changes periodically during oscillation, the spring stiffnesses of both springs do too
and the change to the frequency as a result as well. For higher order modes and square membrane
configurations, shown in figures 2.5 and 2.6, this elongation is not necessarily radially symmetric any
more. These varying spring constants can have a hardening or softening effect on the resonance fre-
quency depending on the situation, with influence from variables such as the drive frequency, stiffness,
clamping type, geometry of the resonator, and more [14] [62].

An accurate calculation of geometric nonlinearity is quite cumbersome to perform and we refrained
from doing so up until this point. However, for our high aspect ratio systems, it might be justifiable to
omit it. As mentioned before, the geometric nonlinearity is generally associated but not exclusive to
resonators driving at large amplitudes. The geometry of the devices of our interest means that the ratio
of the oscillation amplitudes compared to the radius of the membrane at rest will be on the order of
d/R < 1/10000. Still, we would like to prove that this geometric nonlinearity is negligible and for that we
will use a formula given in Steeneken et. al [63]. The range of the gaps between the membrane and the
backplate will be approximately 200 nm - 800 nm. Steeneken et. al derive an approximate formula for
the exact centre deviation of a circular membrane drum, for which the nonlinear stiffness is 10% of the
magnitude of the linear stiffness. They define the onset of the nonlinear regime beyond this deflection.
This choice is arbitrary, as there is no real, recognisable well-defined regime. We will follow this choice
of ratio between the linear and nonlinear stiffnesses, with the onset of the nonlinear regime where one
has to account for nonlinear effects, the moment that the nonlinear stiffness exceeds 10% of the linear
stiffness in magnitude. It is given as

Unon linear =

√
α
3noR2(1− ν)

2Eh
, (2.113)

where n0 is the initial material stress, E the Young’s modulus, α is the ratio between the nonlinear
stiffness and the linear stiffness, in this case equal to 0.1, h the membrane thickness and ν the Poisson
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ratio. Using the experimentally obtained values of one of our systems which we use in our simulations
prematurely, which one can find in tables 3.1 and 3.2 in the next chapter, we find a center deviation of
≈ 7.7µm for which the nonlinear stiffness reaches 10% of the linear stiffness in magnitude. Beyond
this deviation, we consider the resonator to enter the nonlinear regime.

A deflection of 7.7µm is beyond any deviation that will be possible in our systems as the maximum
gap size that we will consider is 800 nm, a deflection of that size will lead to the membrane colliding
with the backplate due to Casimir and or electrostatic forces. As mentioned before, according to [47],
Umax is approximately equal to 0.44d for a system with only an electrostatic force. Incorporating the
Casimir force into this model will undoubtedly reduce this distance, meaning we can expect a Umax <
0.44 · 800 = 350 nm, which is far below our nonlinear regime threshold. We can flip 2.113 around and
solve for α to discover that the influence of the nonlinear stiffness in our system will always be << 1%
of the linear stiffness, justifying its omission from our analytics.



3
Setup and Finite Element Model

We have now shown the fundamentals of resonators and explored the analytics behind the mode-
shapes and eigenfrequencies of square and circular membranes. We found that nonlinear forces such
as the Casimir effect and electrostatics offer a surprising potential opportunity due to their softening
effect, with the flip side being a possible pull-in occurrence. After determining other nonlinearities to
be negligible, we are now ready to take a look at the experimentally fabricated resonators, off of which
our simulations will be based. We hinted at some of their features earlier on, but we will now highlight
the key characteristics that distinguish these resonators and what makes them worthwhile investigat-
ing. These insights will provide a deeper understanding of their fabrication, operation and important
parameter values crucial to their unique characteristics.

Wewill then continue by diving into simulating these resonators and the steps that were taken to validate
those computer models. At the end of this chapter, we will be ready to explore the opportunity of
improving the responsivity of our resonators using nonlinear force field effects.

3.1. General Overview

Our 2-dimensional resonators consist of a membrane clamped on all sides, suspended above a parallel
cavity bottom, equal in shape. Schematics of both the circular and the square type, which have not
been drawn to scale, are shown in figures 3.1 and 3.2.

Figure 3.1: Schematic representation of a clamped circular membrane resonator. The image is not to scale. Shown are
important resonator parameters such as the radius R, thickness h and the size of the gap, or the cavity, between the

membrane and the cavity bottom d.

32
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Figure 3.2: Schematic representation of a clamped square membrane resonator. The image is not to scale. Shown are
important resonator parameters such as the length L, thickness h and the size of the gap, or cavity, between the membrane

and the cavity bottom d.

Important parameters are the area defining lengths: R and L, the membrane thickness h and the size
of the gap between the suspended membrane and the bottom of the cavity below it d. The cavity bottom
is carefully fabricated to be as smooth as possible, as is the resonator, to enable an extremely parallel
surface to act as a parallel plate setup for electrostatics and Casimir forces. The signature feature
of these sensors is their extreme aspect ratio between the cavity gap d and the size of the resonator,
whilst maintaining a small membrane thickness h.

The resonators subject to our research are based on experimental resonators fabricated by Xu. et
al, featured in [64] and [65]. These concerned square membranes with a lengths L of up to 0.7mm,
or radius R up to 0.4mm, suspended above cavity gaps ranging from 200 nm to 1500 nm, and with
a maximum membrane thickness of 150 nm. These sizes result in a maximal aspect ratio of 1/3500
between the cavity depth and the membrane side length. To put that into perspective, the average size
of a football field (or soccer as named by some) is 100 meters. A sensor of that ratio at that scale would
consist of two perfectly parallel square 100 by 100 meter football fields separated by a 2 euro coin. The
thicknesses of these square football fields would be thinner than the gap between them, highlighting
the extremes of this sensor, the materials and the great lengths Xu et. al had to go to to fabricate such
devices.

3.2. Fabrication and Operation

The fabrication of these sensors is extremely difficult without having the two plates stick to each other
during fabrication, making the technology state-of-the-art. These extreme aspect ratios allow the res-
onator to stay within the softening regime and not enter the realm where geometric nonlinearity plays
a large influence, as the membrane deflection during oscillation is negligible compared to its other di-
mensions. The state-of-the-art aspect ratio also increases the Casimir force and the electrostatic force
due to the extreme parallelism combined with a large surface area.

3.2.1. Membrane Materials

Themembranematerial can vary in principle, but requires several important properties to be considered
for these kinds of devices. These properties are

• High stiffness due to high material stress to be able to withstand falling onto the cavity bottom
during fabrication or during oscillation. It should be able to withstand additional transverse forces
created by external pressures or nonlinear force fields.

• Possible to fabricate using existing nanofabrication techniques and machinery. Especially its
resistance to certain etching techniques to facilitate the removal of layers below it, to suspend it
without any damage to the cavity bottom or membrane.

• Metals in general are preferred as these boast high reflectivities, which facilitate Casimir forces
and electrostatics, although dielectrics might still be of interest if they boast any reflective prop-
erties. Non-reflective insulators can be used, but not in conjunction with electrostatics and or
Casimir forces.
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The fabrication of these resonators naturally differs for different materials, as aspects such as etchant,
exposure times, and deposition techniques might vary. We mean to provide a general overview of how
the membranes are fashioned on a silicon substrate. This will thus inescapably exclude many details
and intermediate steps. For a highly detailed approach on NbTiN membranes, we refer the reader to
[64], an aluminium recipe is shown in [37], and information on the SiC membranes device is given by
[65].

NbTiN is a type II superconductor [66], giving it ideal electromagnetic reflective and conductive prop-
erties below Tc, meaning we can expect η = 1 and electrostatics to work well. SiC is an insulator [67]
in its pure form, but can be doped to create a semiconductor [68]. It therefore boasts low reflective
properties η << 0.5, with η = 0.5 if the cavity bottom is coated with a conductor. It will not respond to
voltages in its pure form but can be actuated by them when coated with conducting films, as shown in
[69].

3.2.2. Fabrication Steps

We start, as with almost every electronic device in the world, with a silicon base. Silicon is a preferred
base due to its abundance, but it is also highly adaptable due to the availability of highly selective
etching techniques. This also makes silicon a preferred so-called ’sacrificial layer’. This is a layer
which plays a role early on in fabrication but is removed later [70]. This use of silicon is also the case
when fabricating these membranes. The very first step in fabrication is the deposition of the desired
cavity bottom material. This is often the same material as the membrane itself, but can be varied if
so desired. Important is an extremely smooth surface to facilitate conditions for Casimir forces and
electrostatics. The fabrication step is shown schematically, not to scale, in figure 3.3.

Figure 3.3: Schematic side view of the first fabrication step. Shown is a slice of a much larger wafer. The image is not to scale
and simplified. Shown in grey is the silicon wafer acting as a base. The wafer is then coated in a thin equilateral layer of

material, which is usually the same material out of which the membrane will be fabricated. This does not have to be the case,
however.

The deposition is usually performed using techniques such as LPCVD or ICPECVD to accommodate
the parallelism between the cavity bottom and the membrane later on. As the material builds wherever
it comes in contact with silicon, the entirety of the chip, including the bottom, will be layered with it even
though this is not necessary. A sacrificial layer has to be deposited next onto the top of the chip as
shown in figure 3.4.

Figure 3.4: Schematic side view of the second fabrication step. Shown is a slice of a much larger wafer. The image is not to
scale and simplified. Shown in blue is the sacrificial layer. The sacrificial layer is usually silicon, just as the base shown in grey.

The sacrificial layer is shown in blue, it is usually silicon, the same material as the base shown in grey,
but this does not have to be the case, which is why we differentiate it. It will later be removed, but for now
aids in the fabrication of the membrane structure. Fabrication step 3 is the step where the membrane
is created, and a repetition of fabrication step 1. The entire chip is covered using the material that the
membrane consists of. We display it using the same colour as the cavity bottom in figure 3.5.
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Figure 3.5: Schematic side view of the third fabrication step. Shown is a slice of a much larger wafer. The image is not to scale
and simplified. The chip is again covered fully in the material the membrane is fashioned of, in this case the same as the cavity

bottom.

The membrane has been fabricated but is stuck to the sacrificial layer, which has to be removed. This
process is known as ’lift-off’ [71]. This is not possible in in the current situation as there is no way to get
at this sacrificial layer. In order to remove it, we have to go through the membrane itself. Using a mix
of resist spinning, optical lithography and washing techniques, a layer of resist with little holes in them
is applied on the membrane top. Using an anisotropic etching process, meaning directional, the holes
in the resist are elongated by etching the membrane material away until the sacrificial layer is reached.
After cleaning of the resist, the situation is as the one shown in figure 3.6.

Figure 3.6: Schematic side view of the situation after the membrane has been patterned. Shown is a slice of a much larger
wafer. The image is not to scale and simplified. The membrane has been patterned with little holes by means of resist spinning

and optical lithography techniques.

Due to the membrane now being patterned with holes, there is a way to reach the sacrificial layer.
The holes lower the parallel plate effects such as the Casimir effect and electrostatics somewhat, as
these are directly linked to the surface areas that the two plates share. The holes are patterned with
intervals. Important being the distance between the holes, which should be large compared to the
membrane gap d. Now, to remove the sacrificial layer, one has to be careful. The etch needs to be
extremely selective, as the etch should only etch away the sacrificial layer and ideally not harm the
membrane and the bottom of the cavity in order to conserve the parallelism. The etch, due to the
sacrificial layer being present everywhere under the membrane, has to be an isotropic one, meaning it
etches in all directions. One should not make the mistake of using a wet etch, as the narrow cavity will
trap some etchant irreversibly, which will lead to capillary forces pulling the membrane down, causing
the membrane to stick to the cavity bottom and the sensor failing. An isotropic plasma etch is therefore
among the preferred methods. Once the sacrificial layer has been etched away, the membrane is
suspended above the cavity. The final situation is shown in figure 3.7. Note that the sides which clamp
the membrane have not been sketched.
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Figure 3.7: Schematic side view of the situation after the membrane has been suspended in a process called ’lift off’. Shown is
a slice of a much larger wafer. The image is not to scale and simplified. The membrane hangs above the cavity bottom freely

and is clamped on its sides (not shown) by removing the intermediate sacrificial layer.

3.2.3. Actuation and Detection

As shown in oscillator theory earlier on, in order to obtain an output signal which can be related to
exterior influences such as force or mass, one usually needs to drive the resonator. Although for
resonators of extremely high Q’s, one can read out the resonance peak from the Brownian thermal
noise alone, as shown by Davidovikj et. al in [72], an actuation mechanism is usually still needed.
Electrostatic actuation is a method used to actuate a membrane [73]. One can ground one of the
plates in the parallel plate configuration and put an AC voltage on the flexible sensor in order to make
it oscillate. Detection using electrostatics is a tried and tested method used in MEMS microphones,
where the change in the capacitance due to the change in distance between the flexible plate and
the static ground plane can be read out [74]. A second method for both actuation and detection is
thermoelastics [14]. Thermoelastic actuation is performed by using local heating with pulses from, for
example, a laser. The local heating in the membrane creates stress in the material due to the local
thermal expansion of the material. If this heating is performed with pulses with the right timing, the
resonator will start to oscillate. It can also be used to detect the motion of a resonator by pointing a low-
energy laser at the resonator to prevent too much heating. One can then find the resonator’s amplitude
or frequency by reading out the reflected light using a Fabry-Perot interferometer in combination with
conversion algorithms [75].

As the field of mechanical resonators is broad, other varieties of transduction and detection techniques
exist [12] such as electrodynamics [76], capacitive actuation [77], piezoresistivity [78], piezoelectrics
[79] and optical actuation [80].

3.3. Finite Element Modeling

Analytics are insightful but limited in their applications. As one will have noticed, with the derivations
shown in the theory, approximations are quickly made to decrease the rapidly growing complexity of
equations, even for relatively simple systems such as the resonators of our study. In order to analyze
our systems to a deeper extent we will use the finite element method (FEM). For the finite element
model of the membrane resonators, we will use the commercially available COMSOL Multiphysics as
it boasts numerous MEMS-related multiphysics packages that specialise in membranes, electrostatics,
nonlinear analyses and more.

The membranes experimentally fabricated, characterised and used for measurements„ which we will
attempt to replicate directly, were fashioned out of NbTiN [64] and SiC [65] as mentioned before. The
parameter values given in these papers for our materials will be used in our simulations. In our simu-
lations, we do not go for bigger gaps than 800 nm. Casimir forces at distances larger than this play no
significant role in the membrane oscillation, electrostatics, in principle, can be investigated with higher
voltages, but to investigate the interplay between the two, the cavity size is kept within the Casimir
regime.
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3.3.1. Model Parameter Values

In our prospective simulations, we will use the two earlier-mentioned materials to generate results.
The parameter values for these three materials have been collected, in table 3.1. All of the system
parameters for circular and square membranes are collected and presented in table 3.2.

Table 3.1: Film material parameters used in COMSOL and analytical models [64][65].

Parameter Symbol Unit NbTiN a-SiCR3
Young’s modulus E GPa 441 210
Density ρ kg/m3 4291 2962
Poisson’s ratio ν - 0.252 0.199
Material stress σ MPa 533-566 960
Thickness h nm 160 81

The dimensions of the to be modelled resonators are based on the experimental square membranes
fabricated in [64] with sides ofL = 0.7mm. Circular membranes of these dimensions were not produced.
We therefore choose to simulate circular membranes with an area equal to the square ones, meaning
R = 0.4mm.

Table 3.2: Membrane parameter values used in COMSOL and analytical simulations.

Parameter Symbol Value
Radius (circle) R 0.4mm
Side length (square) L 0.7mm
Gap size d 200 nm-800 nm
Effective mass (circle) meff = 0.2695m 0.2695ρhπR2

Effective mass (square) meff = m/4 ρhL2/4

If we now remember formula 2.14 in the theory, we may test if these resonators are plates or mem-
branes. Using the experimental parameters for a circular resonator, we find the value of 8.4 · 104,
meaning we are dealing with a membrane.

The reason for us limiting ourselves to a minimum gap size of 200 nm is twofold. First off, we base
our models on the experimentally fabricated membranes mentioned earlier, and in these experiments
lower gaps were never attempted. The second reason is that we want to stay in the current force
regime. With gaps smaller than 200 nm we can expect the distance between the cavity bottom and
the centre of the membrane to reach less than 100 nm. At this size, other forces become dominant
and a new force regime is entered. Especially the VanderWaals forces are of concern, which we have
not considered in our analytics and which we will also not include in our simulations further on. These
forces will undoubtedly influence the resonator significantly, and we therefore do not simulate gap sizes
smaller than 200 nm.

One last thing to remark is that the experimental resonators were all tested in a vacuum environment.
This rules out effects such as damping due to trapped air within the cavity, which is a significant chal-
lenge in resonator engineering. It is known as squeeze film damping, which can lead to various effects
which are difficult to model accurately. A comprehensive coverage is given by Bao et. al on various
types of squeeze film damping models [81]. We will assume our resonators to operate in a vacuum as
well and not simulate any damping forces.

3.3.2. Model Choices

An immediate challenge that arises when modelling these particular membranes is their demanding
aspect ratio. Finite element simulations are expensive time-wise as is, and a membrane of this size
with a mesh fine enough to accurately simulate the small gap sizes leads to COMSOL showing errors
when handling the membrane physics and thus, complexity has to be reduced. As mentioned before,
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the resonator is a membrane rather than a plate due to it sustaining transverse loads using in-plane
stresses rather than bending stresses. A simple reduction in complexity could be made by using a shell
model, as a shell-type structure is significantly less computationally expensive for larger structures due
to the absence of transverse shear calculations.

A second challenge lies in the implementation of the nonlinear force fields. COMSOL readily provides
an in-built multiphysics package which combines the shell-type structure calculations with electrostatics.
Unfortunately, due to the Casimir effect being a relatively unpopular area of scientific research com-
pared to electrostatics, it is not provided as a base multiphysics package within COMSOL. This means
that the Casimir effect has to be modelled in a different manner, such as by entering its analytical for-
mula as a force applied to the shell structure. An analytical force formula is much less computationally
taxing than a full-on multiphysics calculation, which is an advantage. However, we do not know if the
implementation of a nonlinear force field by entering its analytical representation as a face load on the
membrane is accurate enough compared to the multiphysics package. If this were the case, then the
possibility of reducing both effects to formulas implemented as face loads would provide an exciting op-
portunity to simplify the simulations significantly. We therefore want to validate whether this simplified
implementation of the forces is correct compared to the multiphysics packages. To accomplish this, we
will build two models of a circular membrane resonator using the parameter values for NbTiN, one using
the electrostatic-shell multiphysics package, and one using a force defined as 2.63. A comparison of
both models will prove the validity of this approach

3.3.3. Validation

Force Calculation

We set out to validate the implementation of a nonlinear force field using its analytical representation
as a face load in COMSOL. In order to do so, we will use the electrostatic effect and compare the imple-
mentation using the formula against the multiphysics package. The main differences between these
two models from a physics standpoint lie in the fringe fields which are generated using the multiphysics
package as they appear in reality. These fields are not captured by the analytical formula, given in
2.63. This equation, known as the infinite capacitor formula, is only valid for a system in which the
distance between the plates is significantly smaller than the rest of the dimensions, which matches the
description of our membrane resonator systems. We could use the Kirchoff formula instead of 2.63 in
our model, but we would prefer to keep 2.63 if possible to keep the model complexity to an absolute
minimum. Using equation 2.64 in conjunction with 2.63 we find our force correction factor to range
from ≈ 0.18% − 0.64% for gap sizes between 200 nm and 800 nm in our circular membranes. These
percentages are small enough that we have reason to believe that the fringing force fields will play little
to no role in our model.

To validate the implementation of the force by formula, we sweep the voltage from ±1 volts in both
models and calculate the eigenfrequencies, using a gap size d of 250 nm and the parameter values for
a circular NbTiN membrane. The result is shown in figure 3.8.
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Figure 3.8: Frequency softening response of a circular nanoresonator made, from NbTiN above a 250nm cavity due to an
attractive nonlinear electrostatic load. Two almost identical models are shown, with one calculating the electrostatic force with
an analytical formula, and the other calculating it using the built-in multiphysics engine. They show a perfect match, validating

the use of a formula in order to reduce calculation time.

Figure 3.8 shows a perfect match between the models, validating the use of analytical formulas as a
means to calculate nonlinear forces. This means a significant reduction of model complexity, saving
on computational time. With this result in mind, we turn our attention back to the Casimir effect. The
Casimir effect does not create any fringe fields as the force is exclusively between the plates. This
means we can then, by extension, assume that the implementation of the Casimir effect in this manner
is correct, which is good news as it was our only way of doing so. We now have a FEM model which is
significantly reduced in complexity and ready to compare to our analytical models and to experimental
results.

Experimental Validation of Models

With the COMSOL model having undergone significant improvements towards reducing its complexity
without detriment to its accuracy, we now turn our attention to a very important test for not only the
COMSOL model, but also our analytics presented in the theory. One could compare the FEM model to
these analytics directly and see if they match, but we can do one better. A comparison with experimen-
tally obtained values would determine both of their validities and could justify our assumptions, such
as the negligible influence of the geometric nonlinearity.

We use data measured by Xu et. al on square membranes, fabricated from NbTiN separated, by a
gap of 200 nm [64]. As mentioned before, NbTiN is a type 2 superconductor and thus the reflection of
electromagnetic waves is maximised under the critical temperature within the cavity, i.e. η ≈ 1. Xu
et. al performed voltage sweeps from ±0.3V and measured the softened resonance frequency of the
membrane per voltage. As mentioned in the theory, we can expect the simulations not to line up with
the experimental data straight away, as the exponent n, which we set equal to 4 in the simulations,
in reality often varies between 3 and 4. We can find the value of n for which the simulations match
the experimental results. If this is within the range of possible values and the values match well, then
we can conclude that the models are correct. We show the experimental data with results given by
COMSOL and equation 2.96 in figure 3.9.
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Figure 3.9: Comparison of analytical model and FEM model of a square NbTiN membrane with a cavity gap of 200nm to
experimental results measured by Xu et. al. The softening effect caused by electrostatics is visible and the comparison

validates the analytical model and FEM model. As expected, the simulation data of the ideal situation n = 4 does not exactly
match the experimental data. Using n = 3.65, we find the two models perfectly match experimental results.

We can be content, as figure 3.9 validates our analytical model and our COMSOL model of the mem-
brane resonators. As we expected beforehand, the ideal case of n = 4 deviates from the experiments.
A value of n = 3.65 does fit the experimental values perfectly, which is well within the range of possible
exponent values. The analytical model does start to deviate from the values given by COMSOL and
the experiment at larger voltages, an effect likely caused by the fact that we opted to only use first-order
Taylor expansions instead of second or third-order ones. The COMSOL model does not suffer from this
and proves accurate compared to the experimental values, even for the larger voltages. The deviation
between the COMSOL model and the analytical formula grows significantly for even larger voltages,
demonstrating the limited use of the analytics due to the approximations made. This deviation is shown
in more detail and discussed in Appendix A. Note that the experimental data is shifted to the left as the
voltage values were not exactly the same as the ones in our simulations.

We have now, next to the validation for the implementation of the force calculation, also validated that
our COMSOL model can accurately model reality. We thus have a correctly functioning FEM model
on our hands with which we will explore the interesting aspects of resonators in nonlinear force fields
such as the possibility of increasing their responsivity as we imagined in the theory. We will continue to
use n = 4 in our simulations going forward, as the parameter is highly dependent on the experimental
setup and is thereby unique to every situation. We thus stick to the generalized ideal case of n = 4
for simplicity and generality, where we also note that this value gives the maximum force that can be
created by the Casimir effect. The results should be appreciated with this in mind.



4
Results

With the theoretical knowledge of mechanical resonators under our belt we created an additional valu-
able tool in the form of a FEM model in the previous chapter. We simplified the model, validated it and
are now ready to start our analysis of these nonlinearly strained mechanical resonators. We will first
explore how the nonlinear forces change the eigenfrequency characteristics of these membranes and
show their magnitudes. Afterwards, we will dive into the earlier-mentioned exciting potential avenue to
increase the responsivity of our membrane resonators when using nonlinear force fields. We will set
out to provide a full picture, and not merely sugarcoat the results. To that end, we will follow up on the
increases in responsivity with analyses on pull-in voltages, pull-in deflections, and we will finish with
potential applications and parameter sweeps to gain insight into the viability of fabricating these types
of membranes for practical purposes. We will use the FEM COMSOL model throughout this chapter.

The reader might already have questioned our reasons for calling the sensor enhancement ’respon-
sivity’ and not ’sensitivity’, sensitivity sounds much more exciting after all! Some authors [82] state
that these are two terms that mean the same thing when it comes to resonators. The difference can
be slight, however, and the truth is that it is difficult to determine if the potential enhancement to the
resonators can be defined as sensitivity or responsivity definitively. Both sensitivity and responsivity
are dependent on more than just this simulated system. They are influenced by the measurement
apparatus, the ’perfectness’ of the resonator, the environment of the experiment and many other vari-
ables. Sensitivity is the minimally measurable change in the output parameter compared to the noise
floor. Noise is something that is completely missing in our simulations altogether. Responsivity is the
swing in the output compared to the input, and that is something that we can easily determine with our
simulations. The boost is therefore more easily justified as one in responsivity. We will thus refrain
from naming the sensor enhancement an enhancement in sensitivity, as we have no proper way of
confirming that it, too, is improved. Further research, especially experimental, could determine if this
responsivity boost is also one in sensitivity.

4.1. Nonlinear Force Field Influence on Resonator Eigenfrequency

Earlier on in the theory, we found that nonlinear attractive forces affect the spring constants negatively of
mechanical resonators. In other words, they reduce them or soften them. This means that the resonator
is more easily pulled down and a further distance than it would with forces such as a static pressure.
The spring constant is directly linked to the eigenfrequency of a resonator by ω =

√
k/m, meaning

that we can expect the eigenfrequency to reduce as well. We encountered this already in figure 3.9.
The eigenfrequency is the defining output characteristic of a resonator, which is why the influence of
nonlinear forces is a major player in resonator sensor applications. In our sensors, it is the dominating
effect as the geometric nonlinearity is barely present for these geometries, as we determined in the
theory.

We saw the minor softening influence of nonlinear forces such as the Casimir effect and electrostatics

41
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on the eigenfrequency already in figure 3.9. However, the frequency shifts can be more drastic than
the one shown there. As an example, lets set the electrostatic voltage to 0.75V in our COMSOL model
and add the Casimir force with η = 1 for a circular NbTiN resonator using the parameter values given
in tables 3.1 and 3.2, choosing σ = 533MPa. We then sweep the gap size distance d from 200 nm to
800 nm and calculate for the eigenfrequency. The result is shown in figure 4.1.

Figure 4.1: Simulated eigenfrequencies of a circular NbTiN resonator subjected to the Casimir force and electrostatics using
the parameters given in tables 3.1 and 3.2 with the lower value of σ chosen. The voltage is set to 0.75V and η = 1. The
eigenfrequency changes dramatically for a changing gap size due to the nonlinear force fields growing in strength, thereby

softening the spring constant.

We see that the eigenfrequency is dramatically softened by the combination of the Casimir and elec-
trostatic forces. The softening is more dramatic the smaller the gap becomes, as lower gaps mean
larger nonlinear forces. The difference between the eigenfrequency for d = 235 nm and d = 800 nm is
28.5 kHz. The change in the eigenfrequency becomes more extreme the larger the force grows. This
effect signals the dangerous side of the use of nonlinear attractive forces. If the force is increased, then
the eigenfrequency dips more severely to lower values, due to the restoring force of the membrane be-
coming softer and softer. At some point, this restoring force loses the battle against the attractive forces,
and a pull-in occurs. This is the reason why the gap distance in the softening curve in figure 4.1 does
not reach 200 nm as we set out to do. COMSOL shows an error for this gap size with these nonlinear
force magnitudes, as it finds no way to calculate an eigenfrequency, meaning pull-in happened. We
will revisit this pull-in extensively and show how to prevent it later.

The influence of the nonlinear forces is considerable, and that might be surprising considering how
minimal the pressures in principle are. For example, for a gap size of 235 nm, the Casimir effect and
a voltage of 0.75V exert pressures of 0.43Pa and 45.1Pa respectively if one only uses the standard
formulas. The influence of the spring softening must therefore be considerable to be able to make the
membrane collapse, even if its aspect ratio is extreme. To demonstrate this, we plot the magnitudes
of both effects, with or without the spring softening considered, and their resultant magnitudes for a
circular membrane in figure 4.2 by using equation 2.106.
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Figure 4.2: Magnitudes of the Casimir force and electrostatic force with V = 0.75V for a circular membrane with and without
the softening effect. The resultant pressures show the immense influence of the softening effect on the force magnitude.

The magnitude of the softening effect has been approximated using COMSOL simulations to determine
U for equation 2.106. We see that the softening effect increases the force magnitude considerably. Still,
we should remember that our analytical expression is a first-order approximation, and that is shown in
figure 3.9 to underestimate the strength of the forces when they grow larger. This mismatch grows
quickly and we can therefore expect the actual magnitude of the nonlinear forces to be considerably
more than the ≈ 200Pa given by our approximation to the softened situation for d = 200 nm, which
explains the pull in occurrence.

Another aspect which can be noted from figure 4.2 is how the Casimir effect plays little to no role for
a long time until it rises sharply due to its proportionality with 1/d4. This means that if we use a low
voltage value combined with the Casimir effect in our simulations that we can expect a sudden sharp
softening effect that quickly leads to pull-in as the Casimir effect lies dormant for a long time until it
suddenly grows in size.

The membrane deflection and the softening of the stiffness have a recursive relationship as they in-
crease each other’s magnitude. The further the membrane deflects, the softer the eigenfrequency
becomes due to the smaller gap. The softened stiffness makes the deflection grow, and the cycle goes
on. This means that an increase in the membrane deflection by any means will enlarge the softening
effect. Now, imagine if we were to apply a static force on top of these nonlinear forces, such as a static
pressure. We would expect the membrane to deflect further than normal when subjected to this static
pressure due to the stiffness being reduced. This could be any pressure, for example, sound. The
static pressure would worsen the softening of the eigenfrequency, and with it, a larger ∆f would be
read out due to this pressure than if we had omitted the nonlinear forces.

The nonlinear forces thus make our output parameter, i.e. the eigenfrequency, change significantly
more when subjected to the same static pressure. We can therefore see this effect as an opportunity
to increase the responsivity of our sensor. Pressures would result in a higher output swing, i.e. a
bigger shift in eigenfrequency than without the nonlinear force present. To explore if this is the case,
we model two versions of the circular NbTiN membrane, one with an electrostatic potential of 0.5V and
one without it. We omit the Casimir effect for simplicity and keep the gap size at 350 nm and sweep
over a variety of static pressures which push the membrane towards the cavity bottom. The resulting
eigenfrequencies are shown in figure 4.3.
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Figure 4.3: Eigenfrequencies of a circular NbTiN membrane with parameters given in tables 3.1 and 3.2 with σ = 566MPa.
The membrane eigenfrequency is shown for a case with and without an electrostatic voltage applied to it for a gap size of

350nm when sweeping over static pressures. The influence of a nonlinear force field when a static pressure is applied is visible.

Our suspicion was correct, the membrane eigenfrequency is influenced more greatly due to a static
pressure when influenced by an attractive nonlinear force field, which is an exciting result. The red
line, indicating the case without the voltage, shows an eigenfrequency increase of 92Hz due to the
geometric nonlinearity. The black line, which includes the voltage of 0.5V, trumps this with a decrease in
eigenfrequency of 37 360Hz. One could imagine using this to amplify the output swing of a microphone
in which the pressure from the sound waves applies a transverse pressure on the membrane, for
example. We can plot the absolute value of the difference in the eigenfrequency to determine the
responsivity for this range of pressures, as we do in figure 4.4.
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Figure 4.4: Absolute value of the change in eigenfrequency, or responsivity, of a circular NbTiN membrane with parameters
given in tables 3.1 and 3.2 with σ = 566MPa. The membrane eigenfrequency is shown for a case with and without an

electrostatic voltage applied to it for a gap size of 350nm when sweeping over static pressures. The influence of a nonlinear
force field when a static pressure is applied is visible.

We see the responsivity skyrocket to the earlier mentioned 37360 times the original shift in the frequency.
We can thus extract a responsivity of 37 360Hz/500Pa for this particular sensor setup.

Having seen the effect of nonlinear forces on the eigenfrequency first-hand, we shall now dive deeper
into the two earlier-mentioned resonator setups. A circular NbTiN membrane and a square SiC mem-
brane. We will explore the eigenfrequency characteristics for different situations in which we vary the
gap size d, electrostatic voltage V and the Casimir parameter η. We will first quantify a standard way
to explore the responsivity boost. We aim not to show similar simulations twice and will explain the
differences between them along the way. Let’s start with the circular NbTiN membrane.

4.2. Circular NbTiN Resonator

The parameters which we use in our COMSOL model can be found in the setup chapter, namely in
tables 3.1 and 3.2, for these simulations, we use σ = 533MPa. We mentioned the definition of respon-
sivity before, the ratio of the output to the change in the input. In order to make our research into the
responsivity boost of nonlinear force fields simpler, we will need to define a way to quantify it. The
responsivity in [12] is given as

R =
∂ω0

∂x

1

ω0
, (4.1)

Where ω0 is the resonance frequency and x is the change in an observable, such as the mass or the
force on the membrane. In engineering, the responsivity is often expressed as the output swing in the
measured voltage. This method does not apply to our simulations, as we do not use an electric circuit
to obtain our results. Therefore, we shall use a custom definition which is tailored to be easy to obtain
using our simulations.

We define the responsivity increase as the scalar change in the resonance frequency ω0 when
subjected to a pressure P0. The pressure P0 is the pressure which shifts the resonance fre-
quency of the membrane by 1 Hz when there are no other forces present. So if our resonator
eigenfrequency changes 1Hz when only under a static pressure P0, and, for example, changes 20Hz
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when subjected to the same pressure with nonlinear forces present, then the responsivity is increased
by 20 times. For the case of the circular NbTiN resonator, the resonance frequency shifts by 1Hz when
the membrane is subjected to P0 = 50Pa.

4.2.1. Casimir Responsivity Boosting

We will start with only the Casimir effect present. By doing so, we will determine what we can achieve
by only using parallelism before we consider effects which require other types of parameters, such as
input voltage. We calculate the eigenfrequency for two distinct cases, one for η = 1, i.e. both the
membrane and the cavity bottom are conductive, and η = 0.5, meaning only the membrane or only the
cavity bottom is conductive. In these two circumstances, we again sweep over various gap sizes and
calculate the eigenfrequency for 2 separate cases. One for static pressures of P = 0Pa and one for
P = P0 = 50Pa in order to determine the responsivity increase. The eigenfrequencies are shown in
figure 4.5.

Figure 4.5: Eigenfrequencies of a circular NbTiN resonator subjected to the Casimir effect for two distinct cases. One for
η = 1, and one for η = 0.5. For each case, two simulations, which are grouped by colours, have been performed. One for a

static pressure of P = 0Pa and one for P = 50Pa. The eigenfrequencies are calculated for different gap sizes.

The two cases per value of η have been grouped by colour. We can see the softening effect due to the
Casimir force. Its effect increases for higher values of η, which is to be expected. Let’s now plot the
differences in the eigenfrequencies for the two different pressures to determine the absolute value of
the shift per gap size for each value of η. We present these values in figure 4.6
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Figure 4.6: Absolute value of the change in eigenfrequency of a circular NbTiN membrane subjected to the Casimir effect for
two values of η per gap size when put under a pressure P0. The higher value of η shows a larger increase in responsivity due

to the magnitude of the force being larger.

We see the absolute values of the differences between the eigenfrequencies for the two situations per
value of η. They show an exciting result, the responsivity increase can be on the order of a hundred
times from merely the Casimir effect alone, with a peak of 570 times the original responsivity reached
with the full force Casimir effect. The reduced Casimir effect still manages to boost the responsivity by
a factor of 280 for the smallest gap size. This is a promising result for multiple reasons. The first is
that the Casimir force, despite its weaker magnitude compared to the electrostatic effect for these gap
sizes, is still able to show a sizable responsivity boost. The second is seen when one considers the fact
that the Casimir force, in a way, is a ’free’ force. No voltage has to be applied, nor any other outside
parameters or methods have to be implemented. The only needed parameters are a big surface area
and high parallelism. Even when using only one conducting layer, the responsivity increases to more
than a hundredfold for gaps lower than 225 nm. The downside is the very narrow gap sizes required to
do this, especially if only the membrane itself is conducting. Nonetheless, this is very promising, and we
want to determine what effect the electrostatic effect will add to this, considering its larger magnitude.

Combined Responsivity Boosting

We now turn on the electrostatic effect in our simulations. With both effects now in effect, the pull-in
phenomenon is more likely to occur than before, and we will shortly see how this affects the possible
gap sizes for some voltages. The minimum gap size that we investigate is 200 nm as stated before.
With a gap this small, we will not consider voltages that are bigger than 1.2V. This voltage leads to
an electric field strength of 6 million volts per meter. We set the Casimir parameter η = 1 for this
experiment; sweeps using η = 0.5 can be found in the appendices. We then perform similar gap size
sweeps as before, but instead of varying the Casimir parameter η, we vary V . We group the sweeps
that only differ in the static pressure P = P0 again by colour in figure 4.7.
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Figure 4.7: Eigenfrequencies of a circular NbTiN resonator subjected to the Casimir effect and varying electrostatic potentials.
For each case, two simulations, which are grouped by colours, have been performed. One for a static pressure of P = 0Pa

and one for P = P0 = 50Pa.The eigenfrequencies are calculated for different gap sizes.

Figure 4.7 shows, as we could have expected, even larger swings in the output eigenfrequency, with
the biggest change seen in the 1.2V P = 50Pa eigenfrequency characteristic: ∆f =45 kHz.

One thing to note is the fact that for smaller voltages, the onset of the larger softening dips starts later
on. For example, for V = 0.5V, the sharp downwards trend starts at approximately d = 350 nm. This
is the case at 600 nm when the voltage equals 1.2V. So, for lower voltages, one can attain lower gap
sizes at the cost of a more abrupt trend downwards, which quickly leads to pull-in. This is also seen
in the fact that for larger voltages, there is no data available on the eigenfrequency for gap sizes of,
for example 200 nm. It would then seem to be easier in terms of engineering to use a larger gap in
combination with a larger voltage if one were to exploit this effect, as the range of gap sizes is bigger
in which the softening effect is sizable. This is, of course, only the case if this does not introduce any
other unwanted effects in the phenomena that the sensor should capture.

These graphs have highlighted some key differences between using only Casimir forces and using
electrostatics. Casimir forces are ’free’ and do not create things such as fringe fields, which can influ-
ence other parameters. They come at the cost of a sharper drop to the pull-in point and increase the
responsivity less, however.

The increase in responsivity is larger with the introduction of electrostatics. We show a graph similar
to that in the Casimir sweep case, which showcases these impressive increases in figure 4.8.
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Figure 4.8: Absolute value of the change in eigenfrequency of a circular NbTiN membrane subjected to the Casimir effect and
varying electric potentials per gap size d when put under a pressure P0. The higher values of V show a larger increase in

responsivity due to the magnitude of the force being larger.

Figure 4.8 presents the largest responsivity increases we have seen yet, with the largest numbers
reaching orders of ten thousand, and the biggest increase found as 14782 times the original responsivity
for the voltage of 1.2. The lowest voltage still manages a responsivity boost by a factor of 10000. These
numbers are found in the very steep responsivity boost regions, close to pull-in. However, within the
less steep ’safer’ regions, we still find responsivity boosts of thousands compared to the case without
any nonlinear forces. This is the case for gap sizes that are not too small, as can be seen in the
green 1.2V graph, as a gap of 500 nm shows a responsivity boost of a factor 1000. This graph shows
us opportunities for big increases in sensor performance at sizes that are not at the absolute limit of
current engineering.

These results are merely for circular NbTiN membranes, and ample variations can be made to the
material or the geometry of the resonator, which will influence the results. We will analyse one other
resonator, a square SiC membrane, in order to get a sense of the responsivity boosting possibilities
using dielectrics.

4.3. Square SiC Resonator

SiC, in its pure form, is an insulator. It is possible to dope SiC to fashion a semiconductor from the
material, but we will not consider this option for our simulations. In order to boost the responsivity,
one could increase the reflectivity of SiC to increase the Casimir effect by adding conducting surfaces.
This would enable the setup to accommodate the electrostatic effect as well, if so desired. Techniques
to fashion electrostatically actuatable SiC membranes have been created as mentioned before in the
setup by a variety of authors, an example being Chang et. al [69].

4.3.1. Reduced Casimir Frequency Softening

These conducting SiC resonators are promising directions for further research in responsivity boosting,
but for now, we will not consider simulating them as material data is not provided, and the situation
is, excluding different material parameters, the same as with the NbTiN resonator. If one obtains the
material parameters for the multilayer conducting SiC membrane, then the simulations in principle can
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be repeated with ease. They do not provide any new insights other than different numerical values,
which is why we will abstain from researching them. What we will do is determine the magnitude of
the Casimir effect for more reduced values of η, however. If the bottom of the cavity is layered with
a conductor, then η = 0.5 is the maximally achievable value. The value of η for two dielectrics can
be determined using equation 2.56, but we can assume this to be low as η ranges from 0 to 1, with
η ≥ 0.5 only occurring for at least one conductive plate. We show the eigenfrequencies of the square
SiC material for different gap sizes d for two values of η, 0.5 and 0.2, in figure 4.9. We include η = 0.2,
which we assume to be a high value for two dielectrics. Note that this value of η has not been determined
by calculations or assumptions and merely serves the purpose of showing what amount of responsivity
boosting might be possible for systems with low values of η in general. Research into the exact value
of η for dielectrics is not performed in this text. We omit the electrostatic effect as we are dealing with
insulators. We again simulate twice per value of η for a pressure of 0Pa and for P = P0 which in the
case of this square SiC membrane is equal to 65Pa and show the results in figure 4.9.

Figure 4.9: Eigenfrequencies of a square SiC resonator subjected to the Casimir effect with varying values of η. For each
case, two simulations, which are grouped by colours, have been performed. One for a static pressure of P = 0Pa and one for

P = P0 = 65Pa. The eigenfrequencies are calculated for different gap sizes.

Figure 4.9 shows a surprisingly large eigenfrequency change for P = P0, even for reduced Casimir
forces. The Casimir forces have been scaled down by a factor of 2 and 5, but we still see decreases
on the order of a few hundred to almost a thousand Hertz. The eigenfrequency does not decrease
as sharply as in figure 4.7 just like figure 4.5 for these gaps, the Casimir effect alone provides a safer
force which does not trend towards a pull-in as fast as when combined with the electrostatic effect due
to its smaller magnitude. The trend would proceed downwards sharply if we considered smaller gaps,
however. If we now plot the absolute value of the frequency change as we have done twice before in
other situations, we arrive at figure 4.10.
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Figure 4.10: Absolute value of the change in eigenfrequency of a square SiC membrane subjected to the Casimir effect for
varying values of η per gap size d when put under a pressure P0. The higher values of η show a larger increase in responsivity

due to the magnitude of the force being larger.

The change in eigenfrequency, even for these reduced Casimir forces, could still be worthwhile inves-
tigating for dielectrics, as shown by figure 4.10 where a gap size of 200 nm is enough to scale the
responsivity by a factor of 700. When the bottom of the cavity is covered in a conductor, responsivity
boosts reach the order of one hundred for gaps smaller than 275 nm. The symbolic value η = 0.2 still
shows responsivity increases for smaller gap sizes, which achieve this order of magnitude. As said
before, this value of η is fictional as it is not based on anything. It merely shows the possibilities for
low values of η. The red line in figure 4.10 can be directly compared to the gold line in figure 4.6 as
the nonlinear force situation is the same, except for the membrane geometry. The comparison shows
a more than double increase in the responsivity when using SiC for the reduced Casimir effect. We
can then, by extension, assume that if one were able to produce the SiC membranes with both the
membrane and the cavity bottom covered in conductors, one could achieve responsivity boosts larger
than those shown in figure 4.8. The reasons for these larger boosts for SiC will be explored in a later
paragraph.

4.4. Comparison to the State of the Art

With our definition for the responsivity of the membrane resonators, we have shown sizable increases
which could potentially be used in future membrane resonator design. However, in order to underline
the potential of this responsivity boosting technique, we shall compare it to the state of the art. In 2024,
More et. al showed Graphene pressure resonator sensors to reach ’ultrahigh’ responsivity ranges of
20 kHz/kPa over a range of 270 kPa [83]. To compare this to our models, we shall subject the NbTiN
membrane with the same parameter values as before to a pressure of 1000Pa with our responsivity
boosting technique active for two situations, the first being one with only the Casimir effect present
and the second one with only the electrostatic effect present. For our first case, we try three different
gap sizes, and for the second case, we try three different voltages for a set gap size of 500 nm. The
simulations with their respective responsivities are shown in tables 4.1 and 4.2.
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Table 4.1: Responsivities due to a static pressure of 1000Hz with the Casimir effect present for the NbTiN resonator for various
gap sizes.

Gap size d (nm) Resp. (kHz/kPa)
700 0.08
600 0.95
550 10.5

Table 4.2: Responsivities due to a static pressure of 1000Hz with the electrostatic effect present for the NbTiN resonator for
various voltages.

Voltage (V) Resp. (kHz/kPa)
0.05 3.2
0.10 18.1
0.15 133.2

We see the Casimir effect not able to hold up to the state of the art, but the electrostatic effect manages
to exceed the earlier mentioned 20 kHz/kPa responsivity shown in [83] by a factor of 6.7. In figure
4.3, the boost to the eigenfrequency reached 40000 for a pressure of 500Pa, showing again that this
technique offers unprecedented responsivity boosts. The exciting part of these results is found in the
fact that this technique is highly tunable. Be it figure 4.3 or table 4.2, a responsivity is shown that
exceeds More et. al, with two differing setups. Changing the system parameters, such as by using a
smaller membrane size or a higher gap size, whilst using a higher electrostatic voltage, one can attain
similar responsivities which are beyond the state of the art, with a setup fitted to one’s desire. The
limiting factor in design is given by the extreme aspect ratio requiring the deflection to be negligible
compared to the membrane dimension.

One might be surprised to find the gap sizes of the Casimir effect experiment being as large as they are,
and the voltages in the second experiment so low. This is due to the duality which we have mentioned
often before, that is inherent to working with nonlinear attractive forces in conjunction with membranes
of these sizes. The dynamical range, i.e. the range of a parameter value at which the sensor can
perform, suffers significantly when using this effect. More et. al found a 20 kHz/kPa over a range of
270 kPa. Using lower gap sizes, or higher voltages, leads to pull-in for pressures of 1 kHz. Using these
lower voltages, we can reach a pressure of 1100 kPa before pull-in occurs, showing the severely limited
dynamical range. The responsivity is thus boosted significantly by paying the price in the dynamic
range of the sensor.

These responsivity increases are exciting results as they trump the state of the art. However, we
have mentioned the pull-in effect often when discussing these responsivity boosts without showing any
analysis on how to prevent it. The pull-in effect poses the biggest danger for these responsivity boosted
membranes, and the use of nonlinear effects means that there will always be a trade-off between them.
The dynamical range of the sensor, as shown above, suffers significantly. We will discuss how we can
predict the pull-in effect next in order to determine the range in which responsivity boosted membranes
can operate safely.

4.5. Pull-in and Membrane Deflection

We explored the mathematics behind the pull-in effect in the theory. We considered the Casimir effect
and the electrostatic effect together, with the possibility of removing them from the equation by setting
either η or V to 0. By using the first-order Taylor terms for the softening effects, for a circular membrane,
we arrived at
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In which Umax was a free variable to be determined using FEM simulations. The square membrane
variant was given in 2.110. We saw the effect of static pressures on the eigenfrequencies of membranes
in figure 4.3. With the static pressure adding to the softening effect, it can directly contribute to the pull-
in effect. This can easily be modelled by adding a∆P to the right side of equation 2.106. This changes
our pull-in equation to

VPI(η, V,∆P ) =
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There are a lot of variables which one could explore to determine its critical value in certain situations be-
fore pull-in occurs, such as the material parameters E, n0,B, εr, the geometric parameters R, h, d, γ, L
and the external force parameters η, V,∆P . To keep it brief, we will again use the parameters for a
circular NbTiN resonator given before, use η = 1 and set ∆P = 0. We will use the voltage V as our
independent variable and show how to determine the pull-in voltage using a combination of FEM and
analytics.

4.5.1. Voltage

Our method to determine the pull-in voltage uses a combination of FEM and equation 2.107. First, we
use equation 2.107. We can, in principle, calculate the pull-in voltage if we have the right value of Umax,
but at the moment we do not know its exact value. Let us first examine the values of the pull-in voltages
per gap size for different values of Umax. They are shown in figure 4.11.

Figure 4.11: Analytically determined pull-in voltages per gap size per value of Umax for a circular NbTiN membrane calculated
by equation 2.107. The parameters used are given in tables 3.1 and 3.2. Note that Umax ≤ d as the membrane can never

deflect further than the gap size itself.

We have defined Umax as the scaled gap distance: Umax = d/m, as the membrane can, of course,
never deflect further than the gap size itself.

Now, to find the correct value of m to determine which of the lines shown above is correct, we use
COMSOL. We try to calculate the eigenfrequencies of the membrane for a gap size range of d =
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120 nm − 800 nm with the Casimir effect and the electrostatic effect pulling on the membrane. Per
gap size, we increase the voltage until the simulation is unable to find the eigenfrequency any longer.
COMSOL gives an error the moment this occurs, as it is unable to find an eigenfrequency. We interpret
the voltage at which this happens as the pull-in voltage.

Now, we combine the data we found with COMSOL and the pull-in equation. We vary the value of m
until we find the line that provides an optimal fit to the COMSOL data, and the best match will give
the optimal value of Umax. Note that this value of Umax does not necessarily have to be the maximum
deviation of the centre of the membrane. We must remember that we are only using the first Taylor
terms, and thatUmax does not have to be a constant fraction of the gap size, either, as other effects such
as geometric nonlinearity can change the stiffness more positively for larger deflections. The value we
find will be a good fit to be used for our specific NbTiN membrane, which we can use to determine the
safe operating region. We fit the data found with COMSOL and find what is shown in figure 4.12.

Figure 4.12: Pull-in voltages per gap size per value of Umax for a circular NbTiN membrane calculated by equation 2.107
using Umax = d/m = d/4.1. The parameters used are given in tables 3.1 and 3.2. The optimal value m = 4.1 was found by

fitting the curves with the pull-in data from COMSOL.

Figure 4.12 shows an excellent match with the data provided by COMSOL for the pull-in voltage for
our circular NbTiN membrane. The value of m at which this fit matches optimally was found to be
4.1, meaning that for a gap size d, according to our analytics, Umax = d/4.1. The analytical solution
provides a surprisingly good match with COMSOL, considering we used only first-order Taylor terms
for the softening. For lower gap sizes, it overestimates the pull-in voltage slightly. We must mention
that the data we obtained using COMSOL was found by increasing the voltage ever so slightly until a
crash occurs. This is a long iterative process with no distinctive end, and some values of VPI might
be closer to the real VPI per gap size than others. These deviations are slight nonetheless, and using
the value for Umax, we have found that the analytical solution can provide an excellent estimate for the
point at which device failure occurs for a membrane subjected to Casimir and electrostatic forces. We
thus have added a valuable tool to aid in the design of our resonators.

4.5.2. Deflection

The centre deflection is a key parameter in all of our analytical calculations, and its value determines the
size of the forces present in our system. We found an analytical approximation for this centre deflection
distance by discarding some higher-order terms in equation 2.108. In the previous paragraph, we
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found the maximum deviation, or centre deflection, to equal d/4.1 for our analytical models to resemble
COMSOL closely. To determine the accuracy of our analytical expression, we again use COMSOL
and calculate the centre deflection of the circular NbTiN membrane for three gap sizes. The sizes are
200 nm, 400 nm, and 600 nm. We use the Casimir effect with η = 1 and vary the voltage V in both our
simulations. We stop at the pull-in voltage VPI for a certain gap size d as given by graph 4.12. The
comparison between both models is shown below in figure 4.13.

Figure 4.13: Centre deflection of a circular NbTiN membrane as calculated by COMSOL and equation 2.108. The centre
deflection is calculated for three different gap sizes and varying voltages, with the Casimir effect present at all times.

The dots indicate the deflections found by COMSOL. Note that the cutoff points, which are indicated with
dashed lines, have been added manually. Equation 2.108 does not indicate when this exact moment
occurs, and we have chosen the point at which formula 2.107 indicates that the pull-in voltage has been
reached for a certain gap size d, using Umax = d/4.1.

We can make two observations when looking at figure 4.13. The first is that the resonator deflection
U as calculated by COMSOL, dips deeper than the maximum deflections Umax we found before using
analytics. This confirms the notion we made earlier that Umax is a handy fitting parameter which aided
us in correcting values of VPI . It is not equal to the actual maximum deflection, which is not a constant
fraction of the gap size. Secondly, we see that the analytical formula is able to predict the deflections
for smaller values quite well. It fails to predict them accurately for larger forces when the deviations
grow larger, however, and the deflection distance for which this occurs seems to lie beyond a critical
point in between 60 and 80 nm. After this point, it underestimates the actual deviation as calculated by
COMSOL.

We provide additional sweeps in figure 4.14 where we swap the dependent and independent variables
of figure 4.13 around. We keep the voltage V constant and change the gap size, and calculate the
centre deflection using our two models. Again, we do not go further than the pull-in voltage VPI as
predicted by our earlier simulations.
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Figure 4.14: Centre deflection of a circular NbTiN membrane as calculated by COMSOL and equation 2.108. The centre
deflection is calculated for five different voltages with varying gap sizes, with the Casimir effect present at all times.

The lower voltages show good resemblance, but we see similar trends as before. The analytical so-
lutions fail to value the centre deflection at a correct size when the combination of Casimir forces and
electrostatic forces grows large. This deviation is probably due to the higher-order Taylor terms, which
we discarded before, growing in size when the force magnitude increases. Additionally, the terms pro-
portional to U3, which we discarded, could play a major role. To determine the influence of this U3 term,
a root finding algorithm was used on equation 2.106 and its results compared to formula 2.108. The
result proved negligible differences between the found values of U , validating our earlier assumptions
of the terms proportional to U3 having little to no role in our system. By extension, it also leaves the
higher-order Taylor terms as the possible culprit for the analytical model deviating from COMSOL for
larger deflections, which is shown in more detail in Appendix A.

4.6. Resonator Parameter Sweep

Our analysis has been largely based on resonators which have been fabricated or variations of ones
that have been fashioned experimentally. The square SiC membranes were fabricated by Xu et. al,
and the circular NbTiN membranes were produced in square variants by Xu et. al too. The specific
materials offer great insight into the possibilities, but up until now, we have gained little sense of which
system parameters play a crucial role in the responsivity boosts that we found.

We wish to gain some understanding on what material and geometric parameters are crucial in these
high aspect ratio nonlinearly strained systems. This might aid future fabrication developments as one
could more easily select what material to pick for their membrane. We will stick to the circular NbTiN
membrane parameters as a base and explore 5 parameters briefly. These are the membrane radius
R, the membrane thickness h, the material Young’s modulus E, the material density ρ and the material
stress σ, which is closely related to the initial tension n0 by n0 = σh. We must note that in order for
these resonators to keep solely to the softening regime, other nonlinear effects such as the geometric
nonlinearity must not become significant. This means the deflection should still be negligible compared
to the membrane dimensions.
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4.6.1. Radius

In these parameter sweeps, we keep all of the other membrane parameters constant and equal to those
given in tables 3.1 and 3.2. Furthermore we use η = 1 and V = 0.5. We will start with the radiusR. With
the radius, we are mainly interested in whether the extreme aspect ratio of this system is necessary in
order to leverage our responsivity boosting technique. We know that the aspect ratio is important, but
the fabrication of such membranes is difficult, and a reduction in radius with considerable boosts would
be highly desirable. We therefore look at two other situations in which R = 0.2mm and R = 40µm. We
first find the pressures at which thesemembranes shift 1Hz under normal free conditions and determine
the responsivity when exposed to the Casimir and electrostatic effect. To keep it brief, we only show
the ∆fres plots similar to figures 4.6 and 4.8.

Figure 4.15: Absolute value of the change in eigenfrequency of a circular NbTiN membrane subjected to the Casimir effect for
η = 1 and the electrostatic effect with V = 0.5 per gap size d when put under a pressure P0. The variation in R has a drastic

effect on the change in eigenfrequency. The higher values of R show a larger increase in responsivity.

The result is one we could have expected. The material can withstand the forces better the less the big
the radius is. A larger membrane is subjected to a larger resultant force, causing it to dip deeper. This
deflection is not big enough to increase the geometric nonlinearity notably, but enough to drastically
increase the softening effect. The smallest radius shows little to no shift, with amaximum frequency shift
of 10Hz. At this radius size, the geometric nonlinearity is dominant, and the frequency first increases
slightly before softening again. This is not visible as the scale of the other graphs washes out this
characteristic. The blue navy line shows high values of responsivity increase as it is the biggest radius,
which leads to bigger deflections. The material is less able to keep membranes of this size away
from the cavity bottom due to the increased forces, which are area-dependent. A more interesting
result is seen when the radius is 0.2mm. The responsivity boost still reaches a thousand Hertz for the
lowest gap size. This, paired with the fact that the voltage is low and the fact that the graph is not
trending in a vertical direction, means that pull-in is still relatively far away. This means that a higher
responsivity boost can be achieved when using higher voltages. These responsivity boosts could then
also be worthwhile for gap sizes larger than 200 nm, which would be more easily manageable in terms
of engineering.

To examine the role of the radius further, we simulate a 300 nm gap, 0.5V η = 1 system for 5 different
Radii. The responsivity for each radius is shown in figure 4.16
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Figure 4.16: Responsivity per radius for a NbTiN membrane above a 300nm gap with a voltage of 0.5V and η = 1. A
quadratic relationship is seen.

We see a characteristic that one might expect. The force on the membrane is proportional to the area,
which is proportional to the radius squared. The bigger the force on the membrane, which itself is bigger
too, the larger the deflection will be. This deflection leads to the increased softening effect due to the
Casimir and electrostatic forces. The shift grows as a consequence. We therefore see a quadratic
relationship which tends to 0 for smaller radii. Note that due to the scale, the radius of 0.04mm seems
to have reached a value of 0 in its responsivity. This, however, is not the case; it is a mere 1Hz which
is washed away in comparison to the almost 1000Hz for the biggest radius.

4.6.2. Thickness

Next, we look into the role of the membrane thickness. With the radius restored to 0.4mm we vary the
thickness, testing a thinner membrane h = 100 nm and a thicker one h = 220 nm. Thinner membranes
offer less restoring force than thicker ones, as the decrease in material leads to the membrane coping
with transverse forces less well. We can therefore expect larger responsivity boosts as the deflections
will grow larger, but these will be accompanied by a quicker pull-in occurrence. We see our expectations
confirmed in figure 4.17
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Figure 4.17: Absolute value of the change in eigenfrequency of a circular NbTiN membrane subjected to the Casimir effect for
η = 1 and the electrostatic effect with V = 0.5 per gap size d when put under a pressure P0. The variation in h has a drastic

effect on the change in eigenfrequency. The higher value of h shows a lower increase in responsivity.

The thinner membrane indeed shows the highest responsivity boosts, but is dangerously close to pull-
in as the graph jumps from a ∆fres of 9500 to almost 25000 within 25 nm, displaying a responsivity
of 620Hz/nm. The thicker membrane shows lower boosts, but they are still notably large as they rise
above the 5000s for the smallest gap size. At a gap size of 350 nm, the increase is still on the order
of a few hundred. This is a promising result, which shows that thicker materials are not excluded from
this technique.

The square SiC resonator we visited earlier on boasted a thickness of 81 nm. This is half the thickness
of the original NbTiN membrane, which could explain the surprising increase in responsivity we found
in figure 4.10 despite the Casimir effect being reduced. We perform a similar sweep as in figure 4.16
in which we only vary h for a NbTiN membrane above a 300 nm gap with a voltage of 0.5V and the
Casimir effect with η = 1 present.
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Figure 4.18: Responsivity per thickness for a NbTiN membrane above a 300nm gap with a voltage of 0.5V and η = 1. An
inverse proportionality to the thickness is seen in the responsivity.

The trend can be understood by looking at the analytical formula we derived for the frequency softening
due to nonlinear effects.
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which is proportional to the inverse of the thickness. We see this trend in figure 4.18.

4.6.3. Young's Modulus

Leaving the geometric parameters behind, we will now focus on the material parameters instead. We
kick off with the Young’s modulus, and we will again use a lower value E = 200GPa and a higher value
E = 700GPa than the base value of E = 441GPa.
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Figure 4.19: Absolute value of the change in eigenfrequency of a circular NbTiN membrane subjected to the Casimir effect for
η = 1 and the electrostatic effect with V = 0.5 per gap size d when put under a pressure P0. The variation in E has a drastic

effect on the change in eigenfrequency. The higher value of E shows a lower increase in responsivity.

We see that lower values of E make for a better responsivity boost. The square SiC membrane also
boasted a lower value of E compared to the NbTiN membrane, which would have added to the larger
responsivity boost in figure 4.10. The lower value of E already achieves boosts in responsivity above
1000 for gap sizes of 350 nm, which is impressive considering the low voltage. The higher value of E
does not mean a total reduction of responsivity increase, as we see the boosts rise above a thousand
when gap sizes shrink below 275 nm. It seems that, while important, the Young’s modulus will not be a
limiting factor if one were to design a membrane with this responsivity boosting technique in mind. All
three values show high jumps in eigenfrequency for gap sizes that are not unattainable.

Continuing our investigation, we once again research the system previously explored for the geomet-
rical parameters where we only vary the value of the Young’s modulus. We know that the Young’s
modulus is proportional to the inverse of the axial strain of a material. The larger the axial strain, the
smaller the modulus becomes. It is therefore no surprise to see a larger responsivity for lower values
of the Young’s modulus. The lower values mean a larger axial strain, indicating that the membrane is
deflected further and thus the effect of the nonlinear attractive forces larger. The increased nonlinear
force leads to a bigger frequency softening, and thus a larger responsivity as shown.



4.6. Resonator Parameter Sweep 62

Figure 4.20: Responsivity per Young’s modulus for a NbTiN membrane above a 300nm gap with a voltage of 0.5V and η = 1.
An inverse proportionality to the modulus is seen in the responsivity.

4.6.4. Density

With the role of Young’s modulus determined, we find a surprising result in our next endeavour. It is
shown in figure 4.21 where we research the role of the density ρ. We again use three values for the
density and determine the shift in their eigenfrequencies due to a pressure of P0 per gap size.

Figure 4.21: Absolute value of the change in eigenfrequency of a circular NbTiN membrane subjected to the Casimir effect for
η = 1 and the electrostatic effect with V = 0.5 per gap size d when put under a pressure P0. The variation in ρ does not affect

the change in eigenfrequency.
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This result is a strange one indeed, which is not something we suspected beforehand. The value of
ρ influences the eigenfrequency directly as it is closely bound to the effective mass of the membrane.
For example, the eigenfrequency when the density is equal to 2000 kg/m3 is equal to 510 kHz for a gap
of 700 nm. This eigenfrequency changes to 293 kHz when we set the density to 6000 kg/m3. One would
therefore expect the density of the material to be of crucial influence on the responsivity boost. It turns
out, however, that the change in the eigenfrequency due to the softening effect is very similar across
the three values, with the middle value surprisingly offering the lowest increase by a small margin. If
we look back at equation 2.87, we can understand why this result might not be so surprising after
all. We see that the decrease in the eigenfrequency is independent of ρ as ρ is a parameter which
influences both the eigenfrequency and the softening effect with the same magnitude. We therefore
have to conclude that ρ is an unimportant design parameter when looking purely at the responsivity
boost.

However, we are again surprised. As shown before in the analysis of the membrane thickness, the
inverse proportionality of the responsivity to the thickness can be found when only varying h. We do
the same for ρ, whilst looking at our frequency softening formula. The base resonance frequency is
proportional to the inverse of the density, but the change should not be. The result is surprising for that
reason and not one we have an explanation for.

Figure 4.22: Responsivity per density for a NbTiN membrane above a 300nm gap with a voltage of 0.5V and η = 1. An
inverse proportionality to the density is seen in the responsivity.

We do note that the change in the eigenfrequency for wildly differing densities is quite minimal, but
present nonetheless. We can therefore conclude that the responsivity is slightly affected by the density
alone and that the earlier results could be explained by the way we have defined our responsivity, as
the change due to P0. This pressure is different for every system, and by coincidence, these values
could have overlapped, creating the illusion of a system that is not dependent on ρ.

4.6.5. Pre-stress

We finish our analysis with the material stress σ in figure 4.23. There we see the that for the value
of σ = 250MPa the onset of pull-in almost occurs at the lowest gap size and is extremely abrupt with
an increase in ∆fres of 40000 within 25 nm, boasting a record high 1.6 kHz/nm responsivity. Higher
values of stress do not kill the boosting effect straightaway as the σ = 700MPa membrane rises above
a∆fres of 5000. Lower values of stress make a membrane less stiff and more easily deflectable, which
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logically increases the responsivity boost, but the pull-in danger seems to be very high here. Lower
values of σ thus offer better boosts but suffer from the same issue as thinner membranes, the danger
of pull-in. This duality is at the centre of this thesis. Using nonlinear attractive forces is a double-edged
sword, offering sensor improvement while at the same time introducing the devices to the dangers of
failure. In terms of designing a membrane, a safer bet would probably be a highly stressed membrane
which gives more room for error before pull-in destroys the device. The responsivity boosts for these
higher values are still respectable.

Figure 4.23: Absolute value of the change in eigenfrequency of a circular NbTiN membrane subjected to the Casimir effect for
η = 1 and the electrostatic effect with V = 0.5 per gap size d when put under a pressure P0. The variation in σ has a drastic

effect on the change in eigenfrequency when it decreases in magnitude.

Smaller radii, thicker membranes, higher Young’s moduli and higher material stresses lead to less of
a responsivity increase straightaway, but are interesting avenues to pursue more research. They are
further from the pull-in point but still offer notable increases, which can be increased even more with
lower gap sizes or higher voltages. Last in line to simulate is once again a sweep of only the value of
the pre-stress and the shift in the eigenfrequency as an output.



4.7. Discussion 65

Figure 4.24: Responsivity per value of pres-stress for a NbTiN membrane above a 300nm gap with a voltage of 0.5V and
η = 1. An inverse proportionality to the stress is seen in the responsivity.

As shown before with the thickness h using the analytical formula for the frequency softening, we
expected to see an inverse relationship between the shift and the value of the stress, which is confirmed
in figure 4.24.

4.7. Discussion

The principal mechanism behind the responsivity boost lies in the fact that the softening effect can
have an unrestricted effect on the resonator, as other nonlinear effects that usually play a role are
minimal. Hardening effects, such as the geometrical nonlinear hardening, are of little effect for these
huge aspect ratios in which the defections are small compared to the overall membrane sizes. This
allows the softening effect to change the eigenfrequency solely, thereby creating the opportunity to
use its dramatic effect on the output to our advantage. This responsivity boost is a tunable technique
which, in essence, only requires the aspect ratio to be extreme enough. We noted numerous times
how these boosts come at a cost, however, namely the danger of device failure due to pull-in and the
limitation it has to the dynamic range. Having shown the various instances where the responsivity of the
membranes is larger due to the changes in the spring softening, we now briefly discuss the significance
of these results. These increases are, first of all, a promising sight. They are possible to realise with
a variety of materials and geometries, and forces. The responsivity increase is present for conductors
as well as for dielectric-conductor combinations. The technique is possible with a diverse range of
geometries and thicknesses, as shown by the impact of some parameter values on the results. One
can attain boosts by using the Casimir effect and or the electrostatic effect.. Furthermore, any nonlinear
attractive force in principle will do to achieve these boosts, which, as shown, can exceed the state of the
art by a significant margin. Thismakes the technique in principle quite versatile as the only requirements
are a high aspect ratio, a nonlinear force, and a stiff membrane.

However, it is necessary to take these results with a pinch of salt. We should realise that we are using
an idealised simulation. In our models, be it analytical or FEM, we considered only static loads, no
membrane/air damping, a perfect homogenic membrane structure, no charging effects, perfect vacuum
and perfect parallelism. Additionally, we did not consider damping created by nonlinear force fields
themselves, such as thermoelastic damping [84] or dipole damping due to electrostatics [85]. This
does not mean that the results have no significance, but that further research should be conducted
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into the possible effects of the phenomena we ignored. The boosts presented here should not be seen
purely by their numerical values but as a starting point or a possible opportunity to improve resonator
operation. The exact magnitude of which shall possibly be decreased by the effects we did not account
for.

The extreme aspect ratio sizes do offer limitations in terms of engineering possibilities as they are
difficult to fabricate, especially commercially. Furthermore, the possibility of pull-in when subjected
to larger forces leading to device failure, makes these sensors relatively fragile compared to those
not using nonlinear force fields. The limited range of applicable pressures would make the sensors
possibly too fragile for applications such as microphones. Exact estimates on the range of possible
pressures depend on the exact parameter values of the system and would have to be determined on
a case-by-case basis.

4.7.1. Possible Applications

Despite these considerations, we could imagine using this technique in a variety of different ways. First
of all, of course, is the boosting of membrane resonators that are already in existence to enhance their
capabilities. This could lead to the sensing of masses or pressures of minimal sizes. For example, in
certain areas of fundamental research, the magnitude of the Casimir effect during a superconducting
transition is of interest. Sensors to be able to detect these transitions are hypothesised to be able to
need to sense pressures on the order of millipascals [86]. Other applications in fundamental research
include quantum optomechanics, or microwave resonators in which 2D mechanical resonators have
been used [87].

In order to prevent us from covering every type of sensor that our membrane could be, we will highlight
two distinct applications instead. The first one is a simple one and it is based on, for example, the results
shown in figure 4.23. We see a huge output swing in the resonance frequency due to the softening
effect for a lower material stress. One could, in principle, use this as a switch detector. The huge
change in the eigenfrequency is dramatic enough to determine a very small change in the value of a
system parameter, and it could therefore be useful as such. The resonator could be used as a sensor
to detect discrete changes in a system, showing the exact moment when a system parameter steps
over a critical value of interest. The sensor would have to operate close to the pull-in point, however.

A second possible application for the membrane resonator would be as a dynamic pressure sensor,
such as a microphone. MEMS microphones already utilise 2D flexible membranes to detect sound
and are prevalent in modern smartphones. In microphone engineering, the effect mentioned earlier, as
squeeze film damping, is present. The air trapped in the cavity damps the movement of the resonator.
When the resonator moves due to pressure oscillations, the resonator moves up and down. The air in
the cavity between the cavity bottom and the resonator is therefore compressed and extended in an
oscillatory fashion. A schematic example of this effect is shown in figures 4.25a and b.

(a) (b)

Figure 4.25: Schematics of the squeeze film effect in a resonator. (a) The membrane is in the equilibrium position, and the air
molecules inside the cavity experience the same pressure as the outside atmosphere. If the pressure were different, the
membrane would bulge. (b) The membrane oscillates and, when moving downwards, squeezes the air molecules together,

creating a damping effect on its motion as the air resists the compression.

The air resists this compression, which leads to the damping of the overall motion of the membrane.
The damping, as we saw in the theory, leads to a less pronounced output peak. Engineers try to combat
the squeeze film effect by adding perforations to the cavity bottom and the membrane itself. Behind
these perforations is a large cavity often called the back cavity [74]. This cavity facilitates the air which
is forced out of the cavity through the back plate perforations. The perforations in the membrane itself
also facilitate air movement, but one would prefer to keep the perforation count in the membrane to a
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minimum to keep them from influencing the membrane operation too much. A schematic showing the
back cavity is given in figure 4.26.

Figure 4.26: Schematic of a MEMS microphone including a back cavity. The back cavity facilitates air movement during
operation, which reduces the damping of the membrane significantly.

This technique is successful in reducing the damping, but it does lead to larger microphone structures
as the cavity has to be incorporated. This is the point where our discovered responsivity boosting might
prove to be a useful addition. Using nonlinear attractive forces for extreme aspect ratio membranes,
one could imagine counteracting the damping effect given by squeeze film damping. If those two
effects negate each other, then microphones could be produced without the need for back cavities.
The microphones would be bigger in the in-plane dimensions, but the out-of-plane dimensions would
shrink considerably. Because the amount of voltage one could use is arbitrary, there could also be
room for possibly having a tweakable responsivity depending on the voltage input. Do note that the
eigenfrequency should not be softened too much, as for microphones in general it is undesirable to
have a resonance frequency close to the frequency regime of audible sounds [74].
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Conclusion

The rapid advancements in technology that have revolutionised human life over the past decades have
been possible thanks to devices and sensors that have been created using advanced micro- and nano
technologies. However, our imagination causes us to desire smartphones, computers, and technolo-
gies that are better, cheaper, and more able than the ones we have right now. This desire to improve
is never quenched, and if we wish for our devices to become faster and more compact, then improve-
ments to the next generation of MEMS sensors are mandated. They should become smaller and be
able to sense more accurately for the same price.

In this thesis, we set out to investigate a certain type of MEMS sensor, a membrane resonator. These
resonators already have widespread applications in technology, but recent advancements in fabrication
have enabled them to be fabricated with extreme aspect ratios, where dimensions become smaller
than ever before. The introduction of these sensors with unprecedented dimensions brings about new
challenges as phenomena such as the Casimir force can play dominant roles in their operation. In
order to be able to use these devices effectively, we should therefore understand to what extent they
are influenced by these forces. Besides understanding the interplay between the device structure and
external forces, we also set out to discover if there were possibilities of exploiting these forces to our
advantage.

We started with a broad general coverage on resonators and their defining parameters to get accus-
tomed to them. Shortly afterwards, we diverted our focus to the 2 dimensional membrane resonator
kind analytically. We explored the mode shapes in square and circular variations and derived expres-
sions for the defining output characteristic of resonators, their resonance. We introduced the nonlinear
attractive forces of our interest and followed up on them by obtaining formulas for their influences on
the resonance frequencies of membrane sensors. During this coverage, we found an opportunity to
possibly enhance the performance of our sensors by leveraging the nonlinear force field effects. To
prove this more concretely, we required more than just analytics, however. To that end, we used our
analytics together with experimental data and built, simplified and validated a finite element model in
COMSOL, which was able to reproduce real-life experiments. We were then ready to start exploring
the possibility of improving extreme aspect ratio membrane resonators with nonlinear force fields. With
the finite element COMSOL simulations, we presented a variety of situations in which the responsivity
of the membrane resonators was improved. Using a custom definition for the resonator’s responsivity,
we found that for our NbTiN membrane, the responsivity was boosted up to 280 times for a reduced
Casimir effect and up to 570 times when the Casimir was in full force. This boost was even higher for
SiC membranes, where the Casimir effect managed a peak of 710 fold the original responsivity. The
combination of the Casimir effect and electrostatic voltages proved the highest boosts with a record
14782 fold increase in the responsivity when using a voltage of 1.2V. The boosts were shown be
able to exceed the state of the art by a factor of 6.7 by showing responsivities of 133.2 kHz/kPa and
37 360 kHz/500Pa. These increases do not come without cost, however and we presented techniques
of predicting the dreaded pull-in effect to define the safe dynamical range, which is drastically reduced
when using this technique.
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We are therefore ready to return to the research questions that we posed in the introduction of this
text. The influence of nonlinear attractive forces on extreme aspect ratio membrane resonators is
profound. The extreme aspect ratio allows the nonlinear forces to dominate the resonance frequency
of the membranes by softening the membrane stiffness. This effect trumps all other nonlinear force
effects, which, due to the extreme aspect ratio, are negligible. The softening effect is potentially harmful
as it can cause the membrane to collapse during an event called pull-in when the forces overcome the
restoring force of the membrane. However, as we found in the results, there is ample opportunity
to use the nonlinear forces to our advantage. Using an electrostatic voltage of 0.15V, we were able
to show a membrane responsivity of 133.2 kHz/kPa. This technique applies not only to conducting
surfaces but also to combinations of conductors and dielectrics. We can improve the responsivity of
these membranes by allowing the nonlinear forces to be strong enough to pull the membrane down,
but not strong enough to destroy it. Within this regime, one can find improved device operation, which
can potentially be applied to a variety of resonator sensors.

5.1. Outlook

The idea of boosting the responsivity of membranes by using nonlinear forces such as the Casimir
effect is exciting, but at the same time, experimentally unverified. This thesis has concerned itself
with simulations and analytical analysis in order to find the scope of the possible improvements. With
these new possibilities presented, we would like to finish with recommendations for future research. As
eluded to before, the biggest challenge, in our opinion, lies in the implementation in experimental setups.
Stepping out of the idealised simulations will always prove a challenge, there are four main directions
in which future research may go. These may be pursued after a first and foremost step has been taken,
a measurement showing the immense responsivity swings due to a nonlinear attractive field. This
measurement should stay as close to the simulation as possible, meaning extremely parallel, vacuum
and superconducting in order to facilitate excellent electromagnetic reflections. With this measurement
confirming results projected by the simulation, one may proceed in a number of ways and move from
the idealised situation.

An important research step would be to confirm the dependence of the Casimir effect on the conductors
and to determine the values given by Serry et. al[36] for the values of η. They present a value of η = 0.5
for a cavity with only one side layered in conducting material, and η = 1 when both sides are covered.
We have taken this value for granted and played around with its consequences, but a confirmation
or determination of the actual values in an experiment would greatly aid in the understanding of the
impacts that the Casimir effect could have. Even more interesting would be to see the magnitude of
the effect between two dielectrics. We used the value of η = 0.2 without providing any basis for it
to show the possibilities of low η systems, but an experimentally determined value would aid in the
applications of the Casimir effect in this responsivity boosting technique, as using superconductive
temperatures limits the applications severely.

Another direction which is important in order for this technique to be able to find its way in applications
outside of fundamental research is a deep dive into the role of various sources of damping on the
responsivity boosts. We mentioned in the applications a possible application for microphones in which
the squeeze film effect could be countered using this technique. Before any of this is possible, a full-
scale investigation into the damping due to the structure, and especially the air damping in the cavity,
should be conducted. If this damping does not completely wash away the results proposed by this
boosting technique, then applications outside of vacuum setups would be more likely, even though
one could still use it in combination with ventilation holes and back cavities. The follow-up would be
actively counteracting damping effects using nonlinear responsivity boosting, in which other nonlinear
attractive forces might be tried to determine the broadness of this potential scientific discovery. Various
sources of damping in MEMS are the subject of active research into preventing or evading them, and
this technique could potentially prove a useful tool.

A third direction would be to research the potential applications of this technique into boosting the
sensitivity rather than the responsivity. As mentioned in the beginning of the results, we kept to the re-
sponsivity for practical reasons. However, the potential change in sensitivity might be possible with this
technique and should be experimentally verified. An improved sensitivity would open up new regimes
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of force detection which could aid significantly in fundamental research. It would also greatly assist in
the general scientific interest of this technique as sensitivity is considered the more valuable parameter
of the two for resonators.

A final but definitely not less important research direction lies in the biggest negative of this responsivity
boosting technique, the pull-in dangers. The prevention of pull-in is paramount to the exploitation of
nonlinear attractive force fields. We provided analysis and a technique which combined analytics with
FEM in order to predict the occurrence of pull-in. However, this method takes a long time to complete
and research into faster, more automated methods to calculate or predict the pull-in effect and the
reduced dynamic range would be highly valuable. Other techniques, such as pull-in reversion, in which
membranes are ’unstuck’, are at the moment not available but would broaden the applications of this
effect to a great extent.

The results in this thesis are thus presented as such to provide a starting point for future research, which
could follow a variety of directions. The boost in membrane responsivity proves exciting, nonetheless,
despite the worries presented above. We therefore believe and hope that the possible applications to
microphones, resonator sensors to sense pressure, humidity, electromagnetic waves, mass, tempera-
ture, or other effects are inspiring to an extent that future research will continue to look further into this
phenomenon.
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A
Analytical Model Deviation compared

to COMSOL

In figure 3.9, the analytical model for a circular membrane subjected to an electrostatic potential is com-
pared to the results given by COMSOL and experimental results. The results show a promising match,
especially between the analytical formula 2.87 and COMSOL. This match is surprising considering we
only used the first-order Taylor term when deriving the formula. The calculation of ω0 is surprisingly ac-
curate when comparing it to the value found by COMSOL, with a deviation of less than 0.3%. However,
this match does not hold for eigenfrequencies under larger voltages at which the graph deviates from
the results that COMSOL provides, as we show in figure A.1

Figure A.1: Comparison of equation 2.87 with our COMSOL model. The COMSOL data of the frequency softening, which was
presented in figure 3.8, was used. The models show a good match for lower voltages, however, the analytical model loses its

accuracy for larger voltages. Most likely, this is due to the fact that only one Taylor term was used.

The analytical formula loses its accuracy when the voltages grow too large. This is to be expected as
we only used the first Taylor term. Its performance is still impressive since we see a reasonable match
in the softened frequency up to ±0.5V. The electrostatic field at a gap distance of 300 nm at that voltage
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is 1.66 million V/m strong. The deviation of the analytical formula is probably mainly responsible for
the deviations shown in figures 4.14 and 4.13 as it lies at the basis for the pull-in calculations. The
analytical calculations for the centre deflections show an underestimation of the actual deflection given
by COMSOL, which is comparable to the underestimation of the frequency softening shown in figure
A.1.



B
Responsivity Boost of a Reduced

Casimir NbTiN Membrane

We present a few more simulations of the frequency softening induced by electrostatic and Casimir
forces. These are similar to figures 4.7 and 4.8, but instead of using η = 1, we use η = 0.5 to examine
the case of only the cavity bottom being layered in a conductive layer. They are presented below.

Figure B.1: Eigenfrequencies of a circular NbTiN resonator subjected to the reduced Casimir effect (η = 0.5) and varying
electrostatic potentials. For each case, two simulations, which are grouped by colours, have been performed. One for a static

pressure of P = 0Pa and one for P = P0 = 50Pa.The eigenfrequencies are calculated for different gap sizes.
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Figure B.2: Absolute value of the change in eigenfrequency of a circular NbTiN membrane subjected to the reduced Casimir
effect (η = 0.5) and varying electric potentials per gap size d when put under a pressure P0. The higher values of V show a

larger increase in responsivity due to the magnitude of the force being larger.

The responsivities are boosted significantly due to the electrostatic voltage, despite the Casimir force
being reduced, which is a welcome sight. Boosts of almost ten thousand are seen for relatively low
voltages for gap sizes at which the Casimir effect becomes a dangerous pull-in factor. One interest-
ing observation to be made in figure B.2 is the fac that for a voltage of 1 V, the simulation can find
eigenfrequencies for gaps of 250 nm, whereas this size was unreachable when η = 1 in figure 4.8. The
reduced Casimir effect is not powerful enough to create a pull-in when it is halved in size for those
gap sizes when the voltage is 1. We see that for a voltage of 1.5 V, the graph does not show larger
responsivity boosts and only reaches gap sizes of 350 nm. The large voltage, despite the Casimir force
being reduced, initiates a pull-in for these gap sizes, which is so abrupt that it is not possible to find
eigenfrequencies for smaller gaps such as 325 nm. This is despite the eigenfrequency not being as
softened as we have seen before when pull-in occurs. This means that the pull-in effect happens be-
tween these gap sizes and happens quickly, as the softening effect will reduce the eigenfrequency to
0 before pull-in happens.



C
Responsivity Boosting of a Fictitious

Membrane

We used the material parameters shown in tables 3.1 and 3.2 to simulate our results, which we pre-
sented in the results chapter. We even swept some parameters to study their influence on the eigenfre-
quencies and the responsivity boosts. However, earlier on, before these results were obtained, entirely
different material parameters were used to simulate the NbTiN membranes due to a misunderstand-
ing. These parameter values were taken from uncharacterized SiN resonators instead of characterised
NbTiN ones. These values are therefore mostly fictitious, and to our knowledge, no material possesses
these exact material parameters when used in a thin film configuration. The parameter values that were
incorrectly assumed to be those of NbTiN films are given in table C.1.

Table C.1: Incorrect NbTiN film material parameters used in COMSOL to determine responsivity boosts. The parameter values
match no other material to our knowledge.

Parameter Symbol Unit Fictitious material
Young’s modulus E GPa 238
Density ρ kg/m3 6500
Poisson’s ratio ν - 0.252
Material stress σ MPa 800
Thickness h nm 150

The truthfulness of these values was discovered only after the simulations had been run and the results
had been plotted. We still show them here, as they might prove useful in future research, perhaps when
some parameter values of materials match. The case for only the (reduced) Casimir effect and the case
for the combined Casimir and electrostatic effects are given. The material parameters were those used
for the circular membranes.
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Figure C.1: Eigenfrequencies of a circular resonator using fictitious material values shown in table C.1 subjected to reduced
Casimir effects. For each case, two simulations, which are grouped by colours, have been performed. One for a static pressure

of P = 0Pa and one for P = P0 = 110Pa.The eigenfrequencies are calculated for different gap sizes.

Figure C.2: Absolute value of the change in eigenfrequency of a circular resonator using fictitious material values shown in
table C.1 subjected to reduced Casimir effects per gap size d when put under a pressure P0. The higher values of η show

larger increases in responsivity due to the magnitude of the force being larger.
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Figure C.3: Eigenfrequencies of a circular resonator using fictitious material values shown in table C.1 subjected to the Casimir
effect and varying electrostatic potentials. For each case, two simulations, which are grouped by colours, have been performed.
One for a static pressure of P = 0Pa and one for P = P0 = 110Pa.The eigenfrequencies are calculated for different gap sizes.

Figure C.4: Absolute value of the change in eigenfrequency of a circular resonator using fictitious material values shown in
table C.1 subjected to the Casimir effect and varying electric potentials per gap size d when put under a pressure P0. The

higher values of V show a larger increase in responsivity due to the magnitude of the force being larger.
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