
Delft Center for Systems and Control

CONFIDENTIAL

Dynamic Programming based basicity
control of an experimental smelting fur-
nace prototype

G. Vitanov

M
as

te
ro

fS
cie

nc
e

Th
es

is

mscconfidential

Dynamic Programming based basicity
control of an experimental smelting

furnace prototype

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

G. Vitanov

December 8, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by Tata Steel IJmuiden BV. Their cooperation is hereby
gratefully acknowledged.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

This thesis discusses the chemical composition (basicity) control problem of HIsarna, an
experimental iron furnace which operates with 30% less CO2 emissions than its traditional
blast furnace counterparts. The control challenge is keeping the basicity of the plant in
a narrow operating region. A mass balance model of the plant was constructed - as it is
common practice in the literature for traditional blast furnaces - which we combined with
a parameter search method to find the most optimal model parameters from data. Next a
stochastic system model of the plant was derived using the prediction errors of the plant
on a new dataset. The novelty of our work is the chosen dynamic programming controller
approach that we used for controller synthesis that enables optimal control of the plant with
respect to the known model error distribution. A continuous Markov Decision Process based
infinite horizon controller was devised by using Value Iteration to find a fixed point in our
value function space with respect to the Bellman operator: our static value function. We
used multilinear interpolation and a state and inputs grid to define our value function for
our continuous state space. The controller map was derived from the static value function
and we used multilinear interpolation again in order to obtain a continuous controller. We
validate our controller by simulating the controller performance on our stochastic system
model and evaluating it versus the recorded operator runs according to our running cost
function defined in the Value Iteration. In summary the resulting controller outperforms the
operator on average and in the worst case has comparable performance to the operator from
1000 simulation runs. Improving the controller performance further would be possible by
using a more accurate system model or using a different grid parameterization than the one
we used for computational efficiency reasons.

Master of Science Thesis CONFIDENTIAL G. Vitanov

ii

G. Vitanov CONFIDENTIAL Master of Science Thesis

Contents

Acknowledgements v

1 Introduction 1

2 Furnace Process Control 5
2-1 Historic developments . 6
2-2 Control objectives . 6
2-3 Possible modelling frameworks . 8

2-3-1 Model based controllers . 8
2-3-2 Model free controllers . 9

2-4 Conclusions . 10

3 Modelling the plant 13
3-1 Model Types . 13

3-1-1 White box models . 13
3-1-2 Grey box models . 14
3-1-3 Black box models . 14

3-2 Model building . 14

4 Data Preprocessing 19

5 System identification techniques 21
5-1 Overview of identification methods . 21

5-1-1 Prediction error methods . 21
5-1-2 Subspace identification . 22
5-1-3 Instrumental variable methods . 23

5-2 Conclusions . 23

Master of Science Thesis CONFIDENTIAL G. Vitanov

iv Contents

6 Numerical Optimization Methods 25
6-1 Local search methods . 25
6-2 Global search methods . 27

6-2-1 Box-search . 27
6-2-2 Monte-Carlo simulations . 27
6-2-3 Simulated Annealing . 27
6-2-4 Random initialization . 28

6-3 Conclusions . 28

7 Parameter search 29

8 Model evaluation 33
8-1 Error Histograms . 33
8-2 Correlation coefficients . 35

9 Dynamic Programming 39
9-1 Introduction . 39
9-2 Discrete MDPs . 41
9-3 Continuous MDP approaches . 42
9-4 The curse of dimensionality . 43
9-5 Conclusions . 45

10 Controller Synthesis 47
10-1 Introduction . 48

10-1-1 Starting states and inputs . 48
10-1-2 Predicted states . 50
10-1-3 Running cost function . 53
10-1-4 Interpolating the value function . 55
10-1-5 Calculate the expectation . 56
10-1-6 Value iteration . 57

10-2 Controller . 58
10-2-1 Controller validation . 58

11 Conclusions 69

A Code snippets 71

Bibliography 81

G. Vitanov CONFIDENTIAL Master of Science Thesis

Acknowledgements

I would like to thank my supervisors for their assistance during the writing of this thesis:
Prof. Tamás Keviczky, dr. Peyman Mohajerin Esfahani, and Ir. Gyula Félix Max.

Delft, University of Technology G. Vitanov
December 8, 2022

Master of Science Thesis CONFIDENTIAL G. Vitanov

vi Acknowledgements

G. Vitanov CONFIDENTIAL Master of Science Thesis

“Maybe the journey isn’t so much about becoming anything. Maybe it’s about
un-becoming everything that isn’t really you, so you can be who you were meant
to be in the first place”

— Paul Coelho

Chapter 1

Introduction

This thesis concerns the control of an industrial process, namely the chemical composition
control of HIsarna: an experimental smelting furnace.

The structure of the Thesis is the following: In this chapter (1) we introduce our control
problem that we will be solved. In chapter 2 we outline current solutions for furnace process
control and the history of how those solutions came to be. In chapter 3 we examine possible
modelling approaches to model the state of HIsarana, and create our system model based on
the most promising approach. Next chapter 4 details the data preprocessing that was neces-
sary for this project, and we follow with a study of system identification techniques (chapter
5) and numerical optimization methods (chapter 6). Next in chapter 7 we do a parameter
search for the unknown parameters of our model of HIsarna using methods we found suitable
from the previous two chapters. Next we evaluate the performance of the resulting system
model in chapter 8, and follow with a study of dynamic programming in chapter 9. Finally
in chapter 10 we synthesise our controller using dynamic programming and evaluate its per-
formance. We close by summarizing our findings is chapter 11.

In order to understand the control problem first we have to understand the workings of the
plant. The HIsarna pilot plant is an experimental smelting furnace that is the first of its kind
in the world.

Master of Science Thesis CONFIDENTIAL G. Vitanov

2 Introduction

Figure 1-1: HIsarna plant overview

HIsarna is different from all other smelters in the regard that porous iron ore dust and coal
dust can be directly injected into the smelter. A normal smelter requires a coal pellet plant
that creates larger sized ore and coal chunks so that during smelting oxygen can flow through
the coal pellets from below. HIsarna sidesteps this issue by using a different smelter geometry.
Figure 1-1 shows the overview of the HIsarna plant.

The iron ore dust is injected in the top of the plant with oxygen. This top part of the plant is
called the cyclone. The pre-reduction of the iron ore takes place in the cyclone. The injected
iron ore (Fe2O3) reacts with the carbon monoxide (CO) and procures pre-reduced iron (FeO)
and carbon dioxide (CO2). The excess carbon monoxide (CO) also reacts with the injected
oxygen (O2) in the cyclone, and produces carbon dioxide (CO2). Here oxygen is injected
in to eliminate any excess carbon monoxide escaping into the atmosphere. In summary the
following chemical processes take part in the cyclone:

Fe2O3 + CO → 2 FeO + CO2,

2 CO + O2 → 2 CO2.
(1-1)

Then the molten pre-reduced iron drips down the walls of the cyclone into the lower part
of the plant called the SVR. In the upper part of the SVR additional oxygen is injected.
The heating process of the furnace takes place here, by burning carbon monoxide (CO) with
oxygen (O2) and producing carbon dioxide (CO2):

2 CO + O2 → 2 CO2. (1-2)

G. Vitanov CONFIDENTIAL Master of Science Thesis

3

In the lower part of the SVR the materials accumulate according to density, on the very
bottom the completely reduced liquid iron then on top of that the slag. The slag is a liquid
material at operating temperatures which consists of different materials present in the iron
ore and coal besides iron (Fe) and carbon (C). The bottom of the SVR is where the liquid
iron is tapped using an overflowing dam. If the melted iron level in the furnace is sufficiently
high the dam starts overflowing and the liquid iron is extracted from the furnace continuously
as it is being produced. Above the liquid iron level lies the slagtap apparatus. This is used
to extract slag from the furnace since slag is continuously generated and in order for the
furnace to work optimally we need to be in a certain slag mass range. We also inject material
into the furnace in this lower region of the SVR: this is where the coal is injected into the
slag mixture. The coal (C) reduces the pre-reduced iron (FeO) completely in this region,
producing hot metal (Fe) and carbon monoxide (CO). Some of the injected coal (C) is also
burned in this region with oxygen (O2) producing heat and carbon monoxide (CO),

FeO + C → Fe + CO,

2 C + O2 → 2 CO.
(1-3)

The slag plays an important role in the smelting process. It consist mainly of silica dioxide
and calcium oxide, and also of different impurities and metal alloys other than iron and it is
made from materials from the coal and ore mixture. The slag is the heat transfer medium
between the upper part of the SVR - the heating zone - and the hot iron. To achieve better
heat flow, and better mixing of iron and coal, the coal is injected at a very high pressure
into the slag at an angle. This makes sure the coal is sufficiently mixed into the pre-reduced
iron and it creates a slag fountain where droplets of slag fly around in the upper part of the
SVR soaking up the heat generated by burning the coal. To achieve a good slag fountain it
is important to keep the viscosity of the slag at a certain value. A good indication of slag
viscosity is the basicity of the slag - the so called B2 value - which describes a mass ratio of
component materials of the slag:

B2 = CaOmass
SiO2,mass

. (1-4)

Our control objective will be to keep this slag basicity value in a desired range, but ideally
at a desired constant value. Our control action to do so will be a lime injection lance (hollow
rod used to inject material into the furnace) in the SVR. The ore and coal mixes injected into
the plant mostly contain sand (silica dioxide) and by adding lime (mostly calcium) we can
affect the basicity of the slag, and steer the plant state to our desired basicity value.

The challenges of this problem are the following: The concentrations of the ore and coal
mixtures can change batch by batch or even during one plant run. Thus we always have to
adjust the injected lime amount to the current materials that we are using. Usually during
normal operations the operators constantly have to monitor the slag concentration and make
adjustments to the injected lime amount to keep the plant in the operating region. This is a
very tiresome, and complex task that the operators do not achieve perfectly every time, this
is why we would like to automate this process. What makes this task especially hard is that
the operating region of the plant is very narrow and if we go above a certain basicity value

Master of Science Thesis CONFIDENTIAL G. Vitanov

4 Introduction

slag foaming can occur which can cause damage to the plant.

In summary our control goal is (i) to keep the basicity of the slag in the furnace
in a safe region, (ii) preferably at a specific value by controlling the amount of
lime injected into the plant.

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 2

Furnace Process Control

This section will provide an overview of furnace control methods from the literature. While
HIsarna is a one of a kind smelter it has the same chemical processes inside as any other
smelter. This prompts us to inspect the literature to find any similar process control prob-
lems.

This section will consist of the following subsections:

• Historic developments,

• Control objectives,

• Possible modelling frameworks,

• Conclusions.

We will detail each topic and summarize the findings of my literature survey. We will also
see that we can find different types of furnaces in the literature. The most common types we
will be looking at are the following:

• Electric Arc Furnace,

• Blast Furnace,

• Ladle furnace.

All furnace automation tasks are revolving around controlling the amount of input materials
put into the furnaces and the heating of the furnaces. The corresponding control objective
might also be to achieve a certain chemical composition in the furnace, but this goal in the
end also boils down to efficiently controlling the input materials of the furnace. First, lets
take a look at the developments in furnace control technology that enabled us to control more
efficiently the furnaces, or automate parts of these processes.

Master of Science Thesis CONFIDENTIAL G. Vitanov

6 Furnace Process Control

2-1 Historic developments

This section will mainly use the outline of historic developments from [1]. Initially all fur-
naces were just operated by a skilled operator who knew what input mixtures to use from
experience, or from indicators of the hot metal. The main problem with developing a control
structure for the furnaces was that estimating the state of the furnace is increasingly difficult.
Direct measurement of the inside of the furnace, and hot metal is impossible even today due
to the extreme heat inside the furnace. The first big advance in furnace control technology
came from the development of canalization techniques of the liquid product streams of the
furnace. This enables us to measure the chemical compositions of the hot metal and slag, and
thus determine if any adjustment was needed to steer the furnaces into optimal operation.
This enabled many advances in control technology, but still had some drawbacks. It is only
possible to sample the liquid product streams of the furnace infrequently and the liquid prod-
uct streams have slow dynamics. We will only be able to counteract changes on an hourly
scale and also make slow adjustments.

The next advance in furnace control came form the invention of continuous gas analysis at
the exhaust of the furnaces. The gas dynamic is very rapid, because the gasses have very
short retention time in the furnace. This makes them a good indicator of the immediate state
of the furnace. With this new data now different approaches were possible like fine tuning
oxygen and coal input amounts into the furnaces. For example by measuring the CO,CO2,O2
concentration in the exhaust gasses we can infer if we are inputting enough oxygen to burn all
the leftover coal, or if we are inputting too much oxygen, which just exits the furnace unused.
These advances enabled many improvements in process control, helped keep the plant in a
stable operating state and lower the costs of operation. Many publications from the next
sections build on these advances and measurements.

2-2 Control objectives

There are multiple control goals in established in the Literature, a sample list follows:

• Temperature control [2] [3] [4],

• Chemical composition control [2] [5] [6],

• Avoiding slag foaming [7],

• Resource saving control [8].

In temperature control we are trying to estimate the perfect amount of coal input into the
plant in order to achieve a perfect thermal balance in the plant. This is very important since
the thermal variations of the smelting process greatly influence the resulting hot metal prop-
erties as described in [3]. [2]’s main objective is to reduce the impurities of the hot metal, by
temperature control.

G. Vitanov CONFIDENTIAL Master of Science Thesis

2-2 Control objectives 7

During chemical composition control we would like to achieve a certain chemical composition
of our mixture. [6] details the process of accomplishing precise alloy composition control of
the hot metal, [5] mainly concerns keeping the chemical composition of the hot metal (HM)
mixture constant even for varying input mixtures.

An interesting goal is presented in [7], which is the necessity to avoid slag foaming during
operation. This is in truth a chemical composition control problem, we highlight this sepa-
rately since this also our goal with HIsarna. Slag foaming occurs when the basicity of the slag
becomes too high, and this phenomenon can damage the furnace, so it is very important to
completely avoid it during operation. Fortunately, by controlling the chemical composition
of the slag in the furnace it is possible to completely avoid slag foaming during plant operation.

While efficient temperature control might have the side effect of reducing coal consumption,
thus reducing operating cost, [8] instead focuses entirely on reducing all furnace operational
costs. This means optimal oxygen, ore, alloy, coal consumption. We would like to reduce all
these while still maintaining a HM quality that is requested of the plant.

We have seen multiple different main control objectives exist for achieving optimal operation
of the furnaces, but in fact they all want to achieve the same thing: Stable operation of the
plant, even for varying operation conditions and input mixtures. If we have stable operation
then we have low coal consumption, we have a stable thermal control, and our resource allo-
cation is optimal. This way we can also avoid slag foaming. The most important inputs of
the furnaces that we can control are the

• ore amount,

• coal amount,

• oxygen,

• lime,

• additional additives.

Most controller architectures from literature concentrate on controlling one or two input types
from this list. For example thermal control architectures focus on controlling the coal input
and in case of the Electric Arc Furnaces the heating of the furnace. Some control architectures
aim to control the oxygen in order to reduce the number of impurities found in the produced
hot metal [2]. The ore amount although a very important input of the plant is usually not
controlled, only set to a certain set point. This is because usually we just want a continuous
hot metal production of a fixed level, and the required ore input set-point can be calculated
for this easily from the chemical composition of our ore mix. Small deviations in the hot metal
production are usually not significant, thus further controlling this variable is not desirable.

Master of Science Thesis CONFIDENTIAL G. Vitanov

8 Furnace Process Control

2-3 Possible modelling frameworks

The current most common furnace control technique is to use manual regulatory control by
human operators. This is a proven strategy which works well in case of an experienced oper-
ator. Still, using human operators can introduce human errors, and have a certain limit on
precision in control. It also forces plant operators to rely heavily on a small niche of expert
human operators. An important advantage of automating part of the furnace operation is
that it enables the operation of the plant with operators with much less experience or exper-
tise. Lets take a look at how this automation can be achieved.

When trying to automate any process an important question to answer would be if we have
access to a model of the process of not. This can influence our choice to build a model based
controller or a model free controller. In this section we will go through the advantages and
disadvantages of both categories.

2-3-1 Model based controllers

When we use a model based controller, we create a system model that can predict the be-
haviour of our system given correct measurements and inputs. With the use of this model
we derive what the optimal control inputs should be when operating the system with the
controller.

In order to build a model based controller we need clear understanding of the input-state-
output relationships of our process. This poses a very hard obstacle when trying to model a
blast furnace, since our theoretical understanding of the processes present inside the furnace
during operation is still limited. This forces us to use higher level models of the furnace which
only focus on basic chemical compositions, or mass balance relationships. An interesting new
line of research is directed toward modelling heat, material flow, and chemical dynamics in-
side the furnace but these efforts are yet to produce proven results. Because our main goal is
to create a control structure that will actually be implemented in the industry, we chose to
disregard this new line of research, and instead focus on some thoroughly tested higher level
modelling techniques.

This choice is also backed up by two more considerations from our part: Firstly, the more
complex model we would like to use, the harder the model parameter identification task gets.
With a large number of parameters to tune the parameter search gets increasingly difficult. In
case of a non-convex optimization problem, which can often result from trying to fit nonlinear
models to a known dataset, heuristic based methods like decision trees have to be used for the
model parameter search. This in turn results in no guarantees of global model optimality, and
model complexity usually also increases the time required to make predictions with a model.
This is also an important consideration since low-complexity models lend themselves nicely
to optimal control techniques, such as Dynamic Programming, where the best controller can
be found numerically in a reasonable amount of time.

G. Vitanov CONFIDENTIAL Master of Science Thesis

2-3 Possible modelling frameworks 9

Since we are now familiar with the precision vs model complexity trade off of the task of mod-
elling processes, we should also focus on the advantages of using a model based controller: We
achieve better understandability of our results, and possibly more accurate results in case we
have an accurate model. If we know the type of dynamics our system possesses, then using
a grey-box model with system identification can produce very accurate predictions about the
states of the plant. For example [6] shows that they used a mass balance model for the plant,
and they were able to derive a precise model with calculated mass efficiencies of the plant.

Studies like [2] and [3] show that the most straight forward way to implement a controller for
a process in a smelter usually involves an open loop control structure with a chemical model
of the plant.

2-3-2 Model free controllers

A model free controller in contrast with the model based controllers, does not use model pre-
dictions to find the best control input. The controller only uses the available signals (reference
inputs, output, system measurements) in order to come up with the control inputs.

The advantages of a model free controller are that it can greatly improve our workflow in case
we do not know what kind of model we should use for process modelling, or in case the process
is highly nonlinear and parameter estimation becomes increasingly difficult or computation-
ally demanding. We have two choices then: Firstly, can use a hybrid approach, where we
use a general function approximator as in [8] in order to learn the process model completely
from data and then use a model based controller with our learned model. Secondly, we may
say that we are not interested in the process model, we just want to learn with the general
function approximator the required control inputs directly from the plant output as in [2].
Our decision on which method we choose will also depend on the fact that for the second
option we need to know the desired control actions for each plant output. In case we do not
have this information, which is often the case with furnace process control, then we need to
use the hybrid approach.

The general function approximators used nowadays usually are some kind of Neural Networks.
[8] show that we can create an approximate system model, with accurate predictions, that we
can use later on in controller synthesis without any knowledge on the system dynamics. This
study used a Kohennen Neural Network for process modelling, and used an Model Predictive
Control (MPC) controller. They showed this control structure was able to significantly reduce
process variation in the furnace by controlling the heating, natural gas and oxygen inputs.
By using a hybrid approach we can combine the strengths on Neural Networks, with the fine
control MPC provides over the plant state. With MPC we can create specific constraints on
our inputs, future plant states, and more. This amount of fine control is not possible with
the direct controller synthesis approach.

For direct controller synthesis we have different methods to choose from. One is to use train
a neural network to have correct control actions in general operating conditions, and trust

Master of Science Thesis CONFIDENTIAL G. Vitanov

10 Furnace Process Control

the network to generalize well into unseen scenarios in the future. This method requires that
we know the desired control actions at least for part of the operating region. This might
be a large roadblock for many applications, but sometimes it is feasible. [2] used a chemical
composition measurements of the hot metal to determine how much oxygen should be lanced
into the furnace at each instant, and thus they could calculate the optimal input sequence.
Then they trained an Artificial Neural Network model to predict the control actions, and
they were able to achieve satisfactory mean percentage errors for their application, and also
cost savings in operation.

Of course model free approaches do not require Neural Networks, we can also simply opt
to use PID controllers, or fuzzy logic. Article [4] examines exactly this two options in the
temperature control of an Electric Arc Furnace. It was found that the PID controller archi-
tecture was not able to achieve satisfactory temperature control results in the blast furnace
setting. The high inertia characteristics of the process, and the nonlinear thermodynamics of
the furnace make PID a suboptimal candidate for this setting. An improvement of the PID ar-
chitecture can be to use a cascaded PID design. But this also performs suboptimally, because
of the nonlinear process and the time varying and time delayed properties of the furnace. A
satisfactory solution was finally found by using a fuzzy logic based intelligent controller in the
outer loop, and a PID controller in the inner loop of the cascaded architecture.

2-4 Conclusions

We have seen many approaches for furnace process control. After weighing in the benefits
and drawbacks of model based versus model free controllers the use of a model based mass
balance approach for modelling HIsarna was selected. This is because in order to model our
selected control target: the slag basicity inside the furnace, the SiO2 and CaO masses inside
the furnace have to be known. The mass balance model of the furnace will produce this exact
information in the form of predictions, and by calculating the mass efficiencies of the certain
inputs we can gain additional insight into the plant process.

It is also important to note many publications found that in order to have good results with
any control approach it is important to have reliable measurement data, and also tightly
control the control variables in the process. For example a common problem at smelters is
keeping the chemical composition of the ore mix constant. If our ore mixture has unknown
time varying properties then either controller approach will perform suboptimally. Varying
ore mixtures can also be used in both model structures with more or less ease in case we do
know the variation of the chemical compositions of the plant inputs. Additionally controlling
the input flows of the plant is also crucial from a process control perspective. Injecting the
exact required amounts can pose challenges, but this is also a point where probably most
production plants can make improvements.

With keeping this in mind we can also summarize that the publications agree that there is
significant gain in automating furnace processes. Possible gains are reducing human interven-
tion, human error, freeing up workforce, achieving more stable production, better material

G. Vitanov CONFIDENTIAL Master of Science Thesis

2-4 Conclusions 11

control, and savings in coal consumption. With technologies such as HIsara that have con-
tinuous hot metal production and more automation we are moving toward a fully automated
furnace that the operator just has to switch on, set the desired set points, and the production
algorithms produce the desired results.

Master of Science Thesis CONFIDENTIAL G. Vitanov

12 Furnace Process Control

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 3

Modelling the plant

We already established we will need a mass model of the silica dioxide and calcium oxide
content of the slag inside the furnace in order to gain insightful predictions on the plant state.
Now we have to choose between the three possible model structures: white-box, grep-box and
black-box models based on how much information we possess about the plant dynamics.

3-1 Model Types

We differentiate between three large sets of model structures as detailed by [9] depending on
how much information we have about the process to model:

3-1-1 White box models

We use a white box model when we build the model completely from first principles, physical
knowledge and we know all the model parameter values. This type of model does not require
any kind of optimization, we just need to define all parameters and equations based on our
knowledge of the system. In case we do have this knowledge this is the best model structure
to use. Since we know the true value of parameters we do not need to find these values. Our
model will take the following form then,

ŷ = f(x, θ∗), (3-1)

where

• x ∈ X ⊆ Rn - is the measured inputs of the plant,

• θ∗ ∈ Θ ⊆ Ro - is the true parametrization of the dynamics equations,

• ŷ ∈ Y ⊆ Rm - is the predicted model output,

• f : X × Θ → Y - is the known function of system dynamics.

Master of Science Thesis CONFIDENTIAL G. Vitanov

14 Modelling the plant

3-1-2 Grey box models

Grey-box models are a great choice when we do not know the exact system dynamics, but
we have enough insights to come up with the parametric system equations. In this case we
need to use a parameter search method in order to find the optimal parameters of our model.
The parameter search for these models is usually fast, and there are a lot of well developed
solutions already in the literature. For more information about grey box identification see
[10],

ŷ = f(x, θ), (3-2)

where

• x ∈ X ⊆ Rn - is the measured inputs of the plant,

• θ ∈ Θ ⊆ Ro - is the parametrization of the system dynamics,

• ŷ ∈ Y ⊆ Rp - is the predicted model output,

• f : X × Θ → Y - is the known function of system dynamics.

3-1-3 Black box models

In case we do not have enough information about the system dynamics, or we are only in-
terested in input output relationships we can use a black-box model. For a general review
of black-box models see [9]. A black-box model is a general function approximator. There
are different types of black box models, but in summary they all contain a family of general
functions as described by [9]. During the parameter search of the black-box model we are
trying to decide what combination of general functions to use to describe the input-output
relationships in our data, and simultaneously we are also trying to find the best parametriza-
tion of these general functions, which we will call basis functions.

Essentially we are searching for the best mapping form the input space to the output space.
In the nonlinear case, this task is usually split into two subtasks: First we create a mapping
from the observable data to a so called regression vector. This vector contains all the infor-
mation we can measure or calculate about our system. Next we create a nonlinear mapping
from the regression vector to the output space.

3-2 Model building

As the model types section summarized well, in case we do have knowledge of the plant
dynamics, it is usually advantageous to incorporate it into our system model. We know the
first principle workings of our plant and we would be able to build a white-box system model
with data of the chemical compositions of the input materials. Despite this we choose to use
a grey-box model and a parameter search method in order to retain model flexibility and
achieve a better accuracy by fitting our data directly to our ore mixture compositions. This

G. Vitanov CONFIDENTIAL Master of Science Thesis

3-2 Model building 15

choice is supported by the fact that the mixing process of the ore mix is not precise and ore
mix composition can vary from plant run to plant run or batch to batch. This means it is
better to use data to find out model parameters than precomputed values. Figure 3-1 shows
the steps of the model synthesis process concisely.

Data we have Data
Preprocessing

Training Data

First Principles Parametric
system model Parameter search System model Predictions Model error

Validation Data

Figure 3-1: Model building process flowchart

From Figure 3-1 the green coloring shows that we have plant run data and knowledge of the
chemical process in the plant as our starting points. From this data we need to create our
training, validation data, and predictions of the plant behaviour, shown in yellow. To arrive
at these quantities we need to do some calculations, and define processes such as the data
preprocessing step, the parametric system model and the parameter search, all shown in blue.
Finally if we have calculated all yellow quantities and defined all blue processes we can obtain
our system model and model error distribution, shown in purple.

The individual steps of this process will be explained in separate sections of this documents,
Figure 3-1 was included here to provide a brief overview of what to expect next. To understand
what data we need for the model based controller synthesis, first lets look at our system model
that we will use that was constructed from first principles of the plant dynamics. We decided
to use a mass balance model as a result of our literature survey since it will be able to make
predictions about the how our control variables change in time. We used a discrete time
model because we can only measure the slag composition - the state of our plant - when slag
tapping which usually only happens once in every two or three hours. This means we only
have measurements of our system states at discrete time steps at irregular intervals, which
meant a discrete time model was the most suitable for our control purposes. A general mass
balance model has the following structure:

next state = current state + mass efficiency matrix ∗ inputs − outputs (3-3)

In equation form this will be the following:

x(k + 1) = Ax(k) + Bu(k) − D(x(k))stap(k), (3-4)

where,

• x(k) ∈ X ⊆ R3 - is the current state vector (at time tk, right before slagtap k),

Master of Science Thesis CONFIDENTIAL G. Vitanov

16 Modelling the plant

• x(k + 1) ∈ X ⊆ R3 - is the predicted next state vector of the plant (at time tk+1, right
before slagtap k + 1),

• u(k) ∈ U ⊆ R3 - is the plant inputs vector, see explanation at (3-5),

• stap(k) ∈ Stap ⊆ R - is the tapped slag amount if there was any between tk and tk+1
(The amount of slag tapped at slagtap k),

• A ∈ R3×3 - is the mass retention matrix

• B ∈ R3×3 - is the mass conversion efficiency matrix

• D(x(k)) ∈ X → R3 - is a vector function which describes how much mass is extracted
(removed) from our system states at a slagtap k.

(3-4) is a nonlinear equation since the D(x(k)) vector is a nonlinear state dependent vector.

Our plant state (x(k)) and the plant inputs (u(k)) are the following:

x(k) =

x0(k)
x1(k)
x2(k)

 =

 Slagm(k)
SiO2,m(k)
CaOm(k)

 mass in the plant at tk,

u(k) =

 orem(k)
coalm(k)
limem(k)

 input amount (mass) from time tk till tk+1,

(3-5)

and we will control the lime input amount in order to achieve our control objective. We
should not use the other inputs to stabilize the basicity. The SiO2,m and CaOm mass was
selected as model states since they are needed to calculate our control target - the basicity -
but also because they directly influence how much control action we need to apply in order
to correct the basicity of the plant. The Slagm mass was incorporated as a system state in
order to help express the D(x(k)) vector. For the inputs we used the set of input variables
(ore coal and lime input mnass) that significantly influence our system states.

Next question is what time step (tk+1 − tk) do we want to use for our model? Since we can
only measure the furnace state at slag tapping instances, we will use discrete time steps with
varying duration to describe the system dynamics. For example we can have one measure-
ment at 12:00, 14:00, 15:45, 18:10 and we need to be able to model all state transitions with
different time frames.

Next we discuss the model assumptions we made when determining the value of the A, B
matrices and the D(x(k)) vector function.

G. Vitanov CONFIDENTIAL Master of Science Thesis

3-2 Model building 17

• If we leave the plant without inputs (u = 0) the amount of slag and its concentration
will not change in the plant, this means the mass retention matrix will be the identity
matrix. (A = I).

• When we are slag tapping we are tapping homogeneous slag, this means we can calculate
the D(x(k)) vector for each slag tap as 3-6

• Time delay from input to state is insignificant.

• System is in steady state during operation, no significant periodic fluctuations exist
(without u fluctuations).

List 3.1: Model assumptions derived from first principles.

From these assumptions it follows that:

A =

1 0 0
0 1 0
0 0 1

 , D(x(k)) =


1

SiO2m(k)
Slagm(k)
CaOm(k)
Slagm(k)

 =

 1
x1(k)/x0(k)
x2(k)/x0(k)

 . (3-6)

The D(x(k)) vector function was derived as the following: when we slagtap we are removing
stap amount of slag from Slagm (first row is 1). The removed slag has the following amount
of SiO2 mass: SiO2,m/Slagmstap because SiO2,m/Slagm is the current SiO2,% concentration of
the slag, and concentration times the tapped slag weight gives us the tapped SiO2 weight.
Similarly we can derive the tapped CaO weight.

Now the only unknown model parameter is the mass conversion efficiency matrix B, which we
will calculate using a parameter search method. Our plant model from (3-4) can be expressed
with a parametric B matrix,

B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 , (3-7)

as,

x(k + 1) = A x(k) + B U(k) − D(x(k)) stap(k)

x(k + 1) =

1 0 0
0 1 0
0 0 1

 x(k) +

b11 b12 b13
b21 b22 b23
b31 b32 b33

 U(k) −

 1
x1(k)/x0(k)
x2(k)/x0(k)

 stap(k).
(3-8)

Master of Science Thesis CONFIDENTIAL G. Vitanov

18 Modelling the plant

In order to run a parameter search method to find the B matrix we first need measurements
of our system states, inputs, and slagtaps (for k = 0, 1, . . .):

• Slagm(k) - Slag mass at tk,

• SiO2,m(k) - SiO2 mass at tk,

• CaOm(k) - CaO mass at tk,

• orem(k) - Ore input amounts (actual injected) between tk and tk+1,

• coalm(k) - Coal input amounts between tk and tk+1,

• limem(k) - Lime input amounts between tk and tk+1,

• stap(k) - Slagtap (mass) amounts.

List 3.2: The data needed for parameter search

Unfortunately we do not have measurements of all these variables, so we will need to do some
data preprocessing in order to arrive at the required data (List 3.2).

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 4

Data Preprocessing

Currently the we cannot find all necessary data in one database only, thus we will have
to combine two databases in order to obtain the data from List 3.2: The Historian Data
Consumption database and the Slagtap Data database.

The Historian Data Consumption contains the following data:

• SiO2%(k), CaO%(k) - Slag SiO2 and CaO concentration measurement for each slagtap
(indexed by k),

• ore∆m(i), coal∆m(i), lime∆m(i) - Injected ore, coal, and lime mass flow rate (per hour)
measured every minute (indexed with i because it has different time frame),

List 4.1: Datasets contained in the Historian Data Consumption database.

while the Slagtap Data contains the:

• Slaginv(k) - Slag inventory mass estimates by HCM (furnace control system) before each
slagtap,

• Slagmake(k) - The amount of slag made between slagtaps at time tk and tk+1,

• Slagtap(k) - Tapped slag mass per slagtap.

List 4.2: Datasets contained in the Slagtap Data database.

We used our own naming convention for labelling the separate data arrays to improve work-
flow and also because in the TATA systems we encountered 3 types of different notation for
the same data so we needed some system to rename these to the same. The renaming dictio-
nary used here is dict_H2S. The Slagtap Dataset labels were left unchanged. Algorithm A.1
shows the algorithm used to achieve the reformatting of the data.

Master of Science Thesis CONFIDENTIAL G. Vitanov

20 Data Preprocessing

We also have the problem that the Slagtap Data is in UTC time format while the Historian
Data Consumption is not. This means we have to shift the time labels of the Slagtap data 2
hours to achieve Netherlands local time. This was achieved by Algorithm A.2.

Then we needed some reformatting of our datasets from List 4.1 since our data columns are
different from the requirements from List 3.2:

SiO2m(k) = Slagm(k)SiO2%(k),
CaOm(k) = Slagm(k)CaO%(k),

orem(k) =
tk+1∑
i=tk

ore∆m(i)
60 ,

coalm(k) =
tk+1∑
i=tk

coal∆m(i)
60 ,

limem(k) =
tk+1∑
i=tk

lime∆m(i)
60 .

(4-1)

Equation (4-1) shows that we transformed our SiO2 and CaO concentration measurements
into SiO2 and CaO mass pseudo measurements, and we transformed the ore, coal, lime hourly
mass flow measurements with a one minute time step into injected mass measurements be-
tween two slagtaps. The ore, coal and lime inputs here are calculated in the following way:
Lets take the ore input as an example. We have 60 measurements of the actual ore rate in
an hour, each in the metric [kg/h]. Because we only use these rates for 1 minute we have to
divide them by 60 and add them up, to get the amount of actual ore mix injected in kg in a
data series. This is also shown by Algorithm A.3.

On the other hand the Slagtap Data contains some inconsistencies: if we calculate the es-
timated tapped slag weight amounts from the HCM slag inventory estimates (Slaginv(k))
and slag make estimates (Slagmake(k)), it does not equal the measured slag tap weights
(Slagtap(k)). Namely,

Slaginv(k) − Slaginv(k + 1) + Slagmake(k) ̸= Slagtap(k) (4-2)

This is a problem because our model from (3-4) assumes here the left hand side should equal
the right hand side. Without this equivalence our model will not be accurate in its predictions.
We fixed this issue by simply neglecting the tapped slag weight measurements (Slagtap(k))
since according to the plant operators they were less reliable than the HCM slag inventory
and slag make estimates and instead we created a new slagtap mass dataset as:

stap(k) = Slaginv(k) − Slaginv(k + 1) + Slagmake(k). (4-3)

Algorithm A.4 shows the derivation of the new slagtap mass measurement by code.

Now we have all necessary data from List 3.2. Next step is to build a parameter search
framework to find the optimal values of the B matrix.

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 5

System identification techniques

In this chapter we will look at an overview of the different system identification and parameter
estimation approaches that could enable us to find the values of our unknown parameters of
our gray-box model and create a sufficiently accurate model of HIsarna. We will do this by
evaluating each approach according to their benefits and drawbacks for our application and
selecting the most appropriate one.

5-1 Overview of identification methods

Depending on the model type we choose, next we have the choice of what problem formulation
are we going to use:

• PEM - prediction error methods,

• SID - subspace identification methods,

• IV - instrumental variable methods.

Lets start with the prediction error methods, since those provide the most straightforward
approach to parameter estimation. PEM methods are used with grey-box or black-box models.

5-1-1 Prediction error methods

As described by [11] in parameter estimation we start from an initial parametrization θ0 of
our model f(x, u, θ0). With this parametrization we feed our model the starting states x and
inputs u of our dataset (k = 1, . . . , n), and calculate our predicted model outputs ŷ as,

ŷ(k) = f(x(k), u(k), θ0). (5-1)

Master of Science Thesis CONFIDENTIAL G. Vitanov

22 System identification techniques

Our task is to find the model parametrization θ∗ that minimizes the error (prediction error)
between the predicted model output (ŷ) and the recorded output data (y). This is done by
minimizing a cost function that penalizes the difference between predicted model outputs and
recorded plant outputs. For example, we can use the quadratic cost of model mismatch,

C(y, θ) =
n∑

i=1
||yi − ŷi(θ)||2 . (5-2)

By finding the model parametrization θ∗ that minimizes the cost function, we find the best
parameters for our model:

θ∗ = argmin
θ

C(y, θ). (5-3)

Substituting in the squared two norm of the model mismatch as the cost we get,

θ∗ = argmin
θ

n∑
i=1

||yi − ŷi(θ)||22. (5-4)

Depending on the type of cost function we use our PEM parameter estimate will coincide
with the Maximum Likelihood estimate as described by [12]. Maximum Likelihood Estima-
tion (MLE) is a topic closely related to PEM, which deals with estimation of statistical model
parameters with an assumed probability density function, such that the observed data will
have the highest likelihood of occurring in our statistical model with the parameter estimates
obtained from MLE. For more information on the MLE estimation method see [13].

An inherent technical property of the PEM method is that the optimization step is often not
solvable is closed form and we have to use numerical solutions such as the Gauss-Newton
method. Unfortunately, it is also often a non-convex optimization problem, thus our gradi-
ent based numerical optimization methods will be sensitive to the initialization of θ0. This
means if we choose a random initial estimate θ0, there is a high likelihood the Gauss-Newton
optimization method will converge to a local minimum in the non-convex optimization space.
This undesirable since our aim is to find the global optimum of the problem (θ∗).

In summary during the PEM parameter search our task is to find the best parameters θ∗ from
our parameter space Θ that minimizes our model mismatch. Depending on how we search in
the parameter space we differentiate between local and global search parameter estimation
methods.

5-1-2 Subspace identification

Subspace identification (SID) is used to find the state space system matrices of LTI systems.
In recent years there have been developments into different applications, but we will focus
on LTI systems as this is the main focus of these methods. [14] provides a great overview of
different subspace algorithms. In subspace identification we are deriving the model param-
eters by finding subspaces of the system input-output (Hankel) data matrices with Singular
Value Decomposition (SVD). From these subspaces we can reconstruct the LTI state space
matrices by a linear least squares approach. A large advantage of subspace identification is

G. Vitanov CONFIDENTIAL Master of Science Thesis

5-2 Conclusions 23

that it sidesteps the problems presented by local search methods when using a PEM prob-
lem formulation. This means subspace algorithms do not get stuck at local minima in the
optimization process. On the other hand subspace algorithms provide a suboptimal solution
compared to PEM in terms of numerical accuracy, see [14] Section 6.3 for more information.
Subspace methods are black-box methods, since for most of them we are just defining the
overall system dimension, and we have no option to incorporate previous knowledge of certain
system matrices into our solution.

5-1-3 Instrumental variable methods

Instrumental variable (IV) methods on the other hand differ from PEM methods in the type
of parameters they try to find. In PEM methods we are searching directly for the optimal
model parameters, while in IV methods we transform our optimization problem into a pseudo
linear regression form and then lowpass filter our signals (measured systems inputs, outputs,
states, measurement noise) as shown by [15]. The filtering is necessary to limit noise on the
derivatives of the system signals, but introduces a problem that in our filtered signals now
the noise is correlated with our states and inputs. This means if we use logistic regression
to calculate our model parameter estimates they will be biased. Our task is to make the
noise uncorrelated to the system signals. This can be done by a transformation of our system
signals: by multiplying our measurements by an instrumental variable vector. Now our goal
with an optimization algorithm will be to find an instrumental variable vector that will make
our noise uncorrelated to our states and inputs after transforming the signals. We effectively
traded finding the best model parametrization directly to finding a good instrumental variable
vector. This is advantageous to us since we have transformed our possibly non-convex search
space into one with better geometry. This means our new search space resembles more closely
a convex space and thus our local search methods are less likely to get stuck in local minima
and are less sensitive to initialization of our initial parameter estimate than in the PEM
formulation.

5-2 Conclusions

The final choice of the system identification method was to use a PEM method, since our
model has relatively few parameters (nine) that we need to tune, and because our grey-box
modelling approach fits a PEM framework best. PEM methods also usually provide a better
estimate of the optimal system parameters than SID methods and suffer from less numerical
instability or errors. Compared to IV methods PEM is easier to implement and has a more
extensive literature and usage in industry.

Master of Science Thesis CONFIDENTIAL G. Vitanov

24 System identification techniques

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 6

Numerical Optimization Methods

Numerical optimization methods are used when a solution to an optimization problem cannot
be expressed in an explicit form, or calculated analytically. In this case we need to numerically
search a parameter space in order to find the optimal solution to our problem. Most of the
time we are looking for the global optimum, the best set of parameters that we can possibly
find as a solution to our problem. We give each examined point from our parameter space
a value by checking how good a solution that point is to our problem with a cost function
we defined. There are two types of different optimization methods: local search and global
search methods.

In local search methods we start from an initial estimate of parameters, and explore the
vicinity of our initial estimate in the parameter space. Then we continue our search in the
direction with the best results we found so far. The advantages of local search methods are
that they are fast, efficient, and find the global optimum in a convex search space. The dis-
advantage is that they can get stuck in a local minimum for non-convex problems, and can
be very sensitive to initialization. This means the results of our algorithm can greatly vary,
depending on our initial parameter estimates for a non-convex problem.

This is why we use global search methods too. In global search methods we are trying to
search through the whole parameter space. Of course we cannot check every point on a
interval between 0 and 1 since there are infinite many points there. This means global search
algorithms try to explore the whole search space, but in cases where the search space is
not discrete and finite we can only do this with a certain precision. For a more extended
description of search methods see [16].

6-1 Local search methods

When using a local search method we start our parameter search from an initial estimate of
parameters θ0, and use some kind of directional search method in order to determine in which

Master of Science Thesis CONFIDENTIAL G. Vitanov

26 Numerical Optimization Methods

direction to search for our next θ1 parameter estimates.

θi+1 = θi − µiRi∇f̂i(θi), (6-1)

where

• µi is the step size,

• Ri is a matrix that modifies the search direction,

• ∇f̂i(θi) is the estimate of the gradient of the cost function.

Most commonly we use the direction of the gradient or Hessian of the cost function that we
are trying to minimize as our search direction. Depending on the direction metric we use, we
differentiate between methods [17] such as:

• Gradient descent - Ri = 1,

• Gauss Newton method - Ri = H−1
i (where Hi is the Hessian of the cost function),

• Levenberg - Marquart method [18] [19] - Ri = (Hi − δI)−1 where δ is an online adjusted
parameter. By adjusting δ we can adjust the direction we follow in our parameter search
as the following:

δ ≫ 1 → Ri ≈ 1
δ

,

δ ≪ 1 → Ri ≈ H−1
i .

(6-2)

This means by using the Levenberg-Marquart method we always choose a direction
between what the gradient and the Gauss-Newton methods would have advised us (1/δ
only changes the scaling, not the direction of the gradient method). Adjusting δ lets us
choose how much we want to weigh the contribution of the gradient method versus the
Gauss-Newton method. This lets us optimize our local search for changing cost function
topology.

The fundamental problem with all local search methods is that they only guaranteed to find
the global optimum of the cost function in the case the cost function is convex. Non-convex
cost functions can have multiple local minima, where our local optimization methods can
get stuck, producing these local minimum points as our solutions. One improvement to this
problem is to carefully choose a good initialization point (initial parametrization θ0) for our
algorithms that will converge to the global optimum. Now since we do not know where the
global optimum is, we can only guess for a good initialization point, thus we can improve our
algorithms, but not guarantee global optimality. An other improvement of our algorithms can
be to use some kind of inertia methods such as momentum and hope this way our algorithms
do not get stuck in local minima and achieve faster convergence as described in [20]. This
also does not guarantees global optimality although.

These problems with cost functions inspired the advent of global search methods. In compar-
ison with local search methods these might require more resources, and also do not guarantee
global optimality in all cases, but might provide an improvement over local search methods.

G. Vitanov CONFIDENTIAL Master of Science Thesis

6-2 Global search methods 27

6-2 Global search methods

Global search methods have all in common that they all try to cover most relevant areas
of the parameter space during the parameter search. The most simple algorithm is the box
search.

6-2-1 Box-search

Lets say we have a model, and want to find the best model parameter with an accuracy of 1
unit, and we know the bounds of the parameter space in which to search. Lets say we have
a n dimensional parameter space. In this case we just create a n dimensional parameter grid
with 1 unit distance between grid points between our parameter bounds. Next we evaluate
the cost function at all grid points and select the grid point with the lowest cost value as our
optimal parameter vector. If our grid is sufficiently dense and or cost function is sufficiently
smooth this will provide us with a near globally optimal solution with our predefined accuracy
satisfied.

6-2-2 Monte-Carlo simulations

When trying to model an uncertain process we have two choices. We can replace the uncertain
variables with a concrete value (e.g. most likely value or average) and look at the process
outcome, or we can model the process with probability distributions. Monte Carlo simulations
[21] use the later method. Essentially when trying to model a process outcome one can
sample the probabilities of the random variables present in the process and calculate the
process outputs thus. By the rule of large numbers, by repeating this enough times our
process output distribution will be close to the true distribution in case our process model is
accurate. In summary a Monte Carlo simulation uses many runs, and random distribution
sampling to calculate the output probability distributions of complicated processes. This is a
powerful numerical tool, because often analytical calculation of industrial processes are very
complex, not feasible, or computationally much more expensive.

6-2-3 Simulated Annealing

Simulated Annealing is a metaheuristic based method for approximating the global optimum
in a large search space. It is often used for discrete search spaces, where it is more important
to find an approximate global optimum than to find a precise local minimum in a fixed time.
This is why in these scenarios it is more preferable to exact methods such as gradient descent
or branch and bound. Simulated annealing is a probabilistic exploration of the state space.
As shown in [22] each iteration the algorithm starts form a certain state s and looks at a
randomly chosen neighbor of the current state and chooses with a certain probability to move
the current state to this next state. The probability of moving the current state is dependent
on the so called temperature variable which is explained next: Simulated annealing gets
its name from the metallurgical annealing process where a metal is heated then a controlled
cooling phase sets the desired material properties. As explained in [23] in simulated annealing
we use the same temperature and slow cooling concept as in metallurgy. The slow cooling

Master of Science Thesis CONFIDENTIAL G. Vitanov

28 Numerical Optimization Methods

process in simulated annealing translates into a decrease in temperature, and thus in the
probability of the algorithm accepting worse solutions than the current state. This way at
the start of the algorithm when the temperature is high we accepts worse next states, and
thus we can explore the state space better, but as temperatures drop we start to converge
toward the global optimum with our current state. Typically the algorithm is run until a
good enough state is found or the computational budget is exhausted.

6-2-4 Random initialization

An other common practice is to use a local optimization method and run it multiple times with
random initializations [24]. This way even if some of the initializations converge to different
local optima, we can hope that at least one initialization will converge to the global optimum
position, although we get no guarantees of this happening. Of course computationally this is
an expensive method running a lot of different local searches.

6-3 Conclusions

The Box search global search method was chosen as the parameter search method to be used
in our PEM system identification method. While box search is only fitting for low dimensional
search spaces our model has nine parameters to tune. We sidestep this issue by doing three
separate box searches to find all model parameters. This is possible since our system model
has a separable structure. This is explained more extensively in the next chapter.

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 7

Parameter search

This chapter details how the parameter search method works for finding the optimal B matrix
of our model. Our model is,

x(k + 1) = Ax(k) + Bu(k) − D(x(k))stap(k). (7-1)

We will use our model as a one ahead predictor. This means we only try to predict the next
plant state from the current measured plant state. We can do this one ahead prediction on
a time series of measurements: In order to calculate the one ahead predictions for all time
samples we can use the matrix xxxmeas which has all the x(k) measurements (k ∈ {0, 1, . . . , n}),
and similarly uuu,DDD(xxxmeas), ssstap:

xxxmeas =
[
x(0) x(1) . . . x(n)

]
=

 Slagm(0) Slagm(1) . . . Slagm(n)
SiO2,m(0) SiO2,m(1) . . . SiO2,m(n)
CaOm(0) CaOm(1) . . . CaOm(n)

 ,

uuu =
[
u(0) u(1) . . . u(n)

]
,

DDD(xxxmeas) =


1 1 . . . 1

SiO2m(0)
Slagm(0)

SiO2m(1)
Slagm(1) . . . SiO2m(n)

Slagm(n)
CaOm(0)
Slagm(0)

CaOm(1)
Slagm(1) . . . CaOm(n)

Slagm(n)

 ,

ssstap =
[
stap(0) stap(1) . . . stap(n)

]
.

(7-2)

Then the predicted next state matrix is the following,

xxxpred = Axxxmeas + Buuu − DDD(xxxmeas) ⊗ ssstap, (7-3)

we can rewrite (7-3) with our measurement data at hand using the following knowledge:

x(k) = D(x(k))Slagm(k), (7-4)

Master of Science Thesis CONFIDENTIAL G. Vitanov

30 Parameter search

into,

xxxpred = DDD(xxxmeas) ⊗ (SlagmSlagmSlagm − ssstap) + Buuu. (7-5)

Our measured output yyy is the same as the state matrix xxxmeas time shifted by one step,

y(i) = xmeas(i + 1),

yyy =

Slagm(1) . . . Slagm(n + 1)
SiO2m(1) . . . SiO2m(n + 1)
CaOm(1) . . . CaOm(n + 1)

 .
(7-6)

Next we can calculate the error between the model predictions and our measurements as:

C(yyy,xxxpred) =
n∑

i=1
(yi,0 − xpred,i,0)2 +

n∑
i=1

(yi,1 − xpred,i,1)2 +
n∑

i=1
(yi,2 − xpred,i,2)2, (7-7)

Now while we could use gradient descent and similar algorithms to find the optimal values
of the B matrix, all these methods proved quite slow and computationally demanding, and
do not guarantee a global optimum for non-convex optimization problems. Grid search on
the other hand provides a sufficiently good estimate of the global optimum with a definable
desired precision. Moreover since we can search for the optimal parametrization of the rows
of the B matrix separately, we can use grid search on a 3D box three times to find the optimal
parameters quickly with a desired precision. This separate search for the B matrix parameters
is possible since our (7-3):

xpred,0(k)
xpred,1(k)
xpred,2(k)

 =

1 0 0
0 1 0
0 0 1


 Slagm(k)

SiO2,m(k)
CaOm(k)

 +

b11 b12 b13
b21 b22 b23
b31 b32 b33


 orem(k)

coalm(k)
limem(k)

 −


1

SiO2,m(k)
Slagm(k)
CaOm(k)
Slagm(k)

 stap(k),

(7-8)

can be separated into the following equations:

xpred,0(k) = Slagm(k) +
[
b11 b12 b13

]  orem(k)
coalm(k)
limem(k)

 − stap(k),

xpred,1(k) = SiO2,m(k) +
[
b21 b22 b23

]  orem(k)
coalm(k)
limem(k)

 −
SiO2,m(k)
Slagm(k) stap(k),

xpred,2(k) = CaOm(k) +
[
b31 b32 b33

]  orem(k)
coalm(k)
limem(k)

 − CaOm(k)
Slagm(k) stap(k),

(7-9)

G. Vitanov CONFIDENTIAL Master of Science Thesis

31

with the following separate cost functions:

C(yyy0,xxxpred,0) =
n∑

i=1
(y0(i) − xpred,0(i))2,

C(yyy1,xxxpred,1) =
n∑

i=1
(y1(i) − xpred,1(i))2,

C(yyy2,xxxpred,2) =
n∑

i=1
(y2(i) − xpred,2)(i)2.

(7-10)

This separation is possible since we are only using the model for a one ahead prediction and
thus on the right hand side of (7-9) Slagm,SiO2m,CaOm are all measurements.

The gird search algorithm can be found in the appendix as Algorithm A.6 and works as the
following: First we choose an area inside the search space and create a cube (3D) grid inside
this area with a certain precision, this gives us a set of grid points in this area Θ. Then we
test each grid point θ from our set of grid points Θ with the cost function:

C(yyyj ,xxxθ
pred,j) =

n∑
i=1

(yj(i) − xθ
pred,j(i))2, (7-11)

where,
xθ

pred,j(k) = xmeas,j(k) + Bj(θ)u(k) − Dj(xmeas(k))stap(k),

Bj(θ) =
[
θ1 θ2 θ3

]
.

(7-12)

After a grid search we can easily find the best θ by finding the lowest C(θ). Now in order to
find all parameters of B we have to do 3 grid searches each on a different row of B. After
all unknown parameters of the B matrix have been found we end up with a system model
which is optimized for making prediction one step in the future. We optimized our model for
this type of one ahead prediction since during normal operation of the plant the controller
will also rely on the last measurement of plant state available to it in order to minimize the
expected cost of the next plant state (we will use a dynamic programming controller). Now
that we have our one ahead system model we will evaluate its accuracy in the next chapter.

Master of Science Thesis CONFIDENTIAL G. Vitanov

32 Parameter search

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 8

Model evaluation

When we have our system model we can check how well it performs when predicting the next
plant states. We will use 2 methods to evaluate model performance: error histograms and
correlation coefficients.

8-1 Error Histograms

We can create an error histogram by using the model to create predictions about the plant
state for a recorded run as in (7-5), using yyy from (7-6) and calculating the model error for all
time steps as,

xxxerr = yyy − xxxpred. (8-1)

We can calculate the mean vector of our dataset (bias), and the covariance matrix by,

xerr = EEE [Xerr] = 1
n

n∑
i=1

xerr(i), (8-2)

cov(xxxerr) = EEE
[
(Xerr − EEE [Xerr]) · (Xerr − EEE [Xerr])⊤

]
= 1

n − 1(xxxerr − xerr) · (xxxerr − xerr)⊤.

(8-3)

Next we create an error histogram and fit a normal distribution to the histogram data since we
noticed our error distribution resembles a normal distribution. We will use this assumption
later on to characterise our model error distribution as a normal distribution with mean
and covariance calculated by (8-3). Figure 8-1 shows the error histograms used to visualize
the model prediction error in blue, the bias by the red vertical line, and the fitted normal
distribution by the dashed red curve. A good model has a thin error spread, and a bias close
to 0.

Master of Science Thesis CONFIDENTIAL G. Vitanov

34 Model evaluation

Figure 8-1: Error histograms of the model predictions on the validation dataset.

G. Vitanov CONFIDENTIAL Master of Science Thesis

8-2 Correlation coefficients 35

8-2 Correlation coefficients

An other important statistical method to check model performance is to calculate the corre-
lation between our error signals and our inputs and desired outputs. We will use the Pearson
correlation coefficient for this check since it can recognize linear correlation between two one
dimensional datasets. We can calculate the Pearson correlation coefficient r by

r = cov(xxxerr,j , sss)
σ(xxxerr,j)σ(sss) , (8-4)

where we are interested in if xxxerr,j correlates with signal sss (for example inputs or states of
the plant), and cov(a, b) is the covariance (scalar) between datasets (1D) a and b and σa is
the standard deviation of the dataset a which is calculated as,

σ(xxxerr,j) =
√
EEE

[
(Xerr,j − Xerr,j)2

]
=

√√√√ 1
n

n∑
i=1

(xxxerr,j(i) − xerr,j)2, (8-5)

where x is calculated according to (8-3). The resulting Pearson correlation table is shown
below:

Slagm SiO2m CaOm orem coalm limem stap
Slagpred,err 0.04 0.04 0.05 -0.16 -0.16 -0.08 -0.02
SiO2pred,err 0.09 0.19 0.06 -0.10 -0.13 -0.08 0.10
CaOpred,err 0.16 0.13 0.27 -0.02 -0.02 -0.05 0.18

Table 8-1

We can see there is weak correlation between some of our inputs, measurements and our model
prediction errors. We interpreted this weak correlation as a satisfactory result for model per-
formance since our prediction errors have a zero mean (are predictions are unbiased).

There is one more metric we can look at in order to see how our model performs which
is similar to the error histograms but have additional information. If we look at the error
histograms from Figure 8-1 we only understand how precise our model is in predicting the
different system states but we cannot see if the errors on one state correlate with the errors
on an other state. To better understand this property we can look at the errors of our model
plotted on a 2D plane with respect to each other as shown on Figure 8-2.

Master of Science Thesis CONFIDENTIAL G. Vitanov

36 Model evaluation

Figure 8-2: Model errors plotted

We are not interested in our slag mass prediction errors since they do not influence our control
objective. This means we will only use the SiO2m and CaOm prediction errors from now on:

xxxerr,12 =
[
xxxerr,1
xxxerr,2

]
(8-6)

We already established that we presume our errors follow a normal distribution we can fit a 2D
normal distribution to this dataset (xxxerr,12). We can do this simply by calculating the mean
and covariance of our SiO2m and CaOm errors by (8-3). If we have the mean and covariance
of our 2D normal error distribution we can calculate the probability density of each point (x)
on the 2D plane assuming a Gaussian distribution by (as Algorithm A.7 shows),

pdf(x) = 1√
(2π)2||cov(xxxerr,12)||

e− 1
2 (x−xerr,12)⊤·cov(xxxerr,12)−1·(x−xerr,12). (8-7)

Using the pdf function from (8-7) we can plot the probability density contour lines onto Figure
8-3.

G. Vitanov CONFIDENTIAL Master of Science Thesis

8-2 Correlation coefficients 37

Figure 8-3: Contour lines of the probability density function, model errors inside the inner ellipses
are more probable than outside

Thus on Figure 8-3 we can see that the SiO2 and CaO prediction errors are slightly correlated
since the contour lines trace out ellipses whose semi-mayor axis does not lie on the x or y axis.

The fact that we can calculate the probability density of our model errors now will enable
us in the controller synthesis section to improve the expected controller performance. While
now we have a continuous probability density function of our model errors, later on we will
need a discretized model error set instead on a continuous one.

The discrete model error set will be selected as follows: We create a set of grid points (1000×
1000) on the 2D plane of model errors, with our error distribution at the center of the grid.
This grid will represent our model error distribution. Next we create the probability matrix
by evaluating the probability density function (8-7) at every grid point. We normalize the
probability matrix so that its elements sum up to one. Next we calculate the cumulative
distribution function from the probability matrix and find the 0.99 level set of the cumulative
distribution function. Then we create a rectangle grid on the model error plane which covers
exactly the 0.99-th level set of the cumulative distribution function, and we evaluate the
probability of every grid point with (8-7). We save the set of grid points with probability

Master of Science Thesis CONFIDENTIAL G. Vitanov

38 Model evaluation

larger than the 0.99-th level set value of the cumulative distribution function as our discrete
error distribution. This means we created a discrete error set which covers the 99-th percentile
of possible model errors. Figure 8-4 shows the model error points (blue), the 99-th level set
(green), and the set of discretized probability density function points (red) on the model
errors plane.

Figure 8-4: Model error points (blue), the 99-th level set (green), and the set of discretized
probability density function points (red) on the model errors plane.

Algorithm A.8, A.9, and A.10 show the calculation of the discrete error set W by code. With
the discrete error set at hand we can move on to the controller synthesis chapter. We conclude
this chapter by declaring our model sufficiently accurate to use with our controller based on
the mean and variance of prediction errors, and the low linear correlation of prediction errors
with measurements and inputs.

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 9

Dynamic Programming

We already know the plant model is not perfect and has errors on all predictions. If we want to
take into account the inaccuracies of our model during controller synthesis, we can transform
our model into a stochastic process model with an approximate discrete error distribution.
Using a stochastic model results in a stochastic control problem where we are interested in
operating the plant in the optimal operating point indefinitely. This means we have an infinite
horizon stochastic control problem. This infinite dimensional optimization problem is not
solvable with conventional optimization methods so we will use Dynamic Programming (DP)
to partition our large optimization problem into a series of separately solvable deterministic
optimization problems as shown in [25].

9-1 Introduction

Dynamic programming nowadays is a field of its own with many applications in different
sectors such as economics [26] [27], ecology [28] [29], hydro power [30] [31], and scheduling
[32]. Its wide use is justified by the fact that it is a very versatile tool for decision making
under uncertainty.

A prerequisite of us applying dynamic programming to our control problem is that we can
write our stochastic control problem as a Markov Decision Process (MDP). An MDP [33] is a
stochastic process model type where the probability of transitioning into a certain next state
of the system only depends on the current state and the control action we apply,

Pu(Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn) = Pu(Xn+1 = xn+1|Xn = xn). (9-1)

Equation (9-1) shows a Markov decision process, Pu is the transition probability of transi-
tioning into state xn+1 from state xn when applying action u. This requirement is satisfied
since our discrete state space model (3-4) that we chose in chapter 3 is and MDP model.

Master of Science Thesis CONFIDENTIAL G. Vitanov

40 Dynamic Programming

The dynamic programming formalization is the following [34]: we are at state x and we are
searching for the best control action to use u∗. We can calculate the cost of our control actions
as g(x, u). In order to evaluate how good a certain control action is, we not only need to
know the cost of that control action g(x, u), but also the value of the state that we end up
in applying that control action. This means we need to construct a value function that tells
us the inherent value of each state. To calculate the value function (V (x)) we will use the
Bellman operator (Γ):

Γ(V)(x) := min
u∈U

g(x, u) + β

∫
V (x̂)p(dx̂|x, u), (9-2)

where

• g(x, u) - is the running cost of being in state x and applying action u,

• β - is the discount factor,

• V(x̂) - is our current estimate of the value function,

•
∫

V (x̂)p(dx̂|x, u) = EEEx̂[V (x̂)] - is the expected value of the next state (x̂) if we are in
state x and apply action u.

We get our next value function estimate then as V1(x) = Γ(V0)(x). An important property
of the Bellman operator is that it is a β contraction mapping on the space of value functions
(V). This means by repeatedly applying the Bellman operator Γ we are converging to one
stationary function (V) (with respect to the Bellman operator) in our value function space.
We take advantage of this property of the Bellman operator in many numerical methods
to calculate convergent approximate solutions to the Bellman’s equation. There are many
different methods to calculate the value function for an infinite horizon dynamic programming
problem, but the most common one to use it the successive approximations method [27]. In
the successive approximations method we use this property of the Bellman operator to arrive
at an optimal estimate of the value function by applying the Bellman operator over and over
again until we reach a convergent stationary value function (V (x)).

V1(x) = Γ(V0)(x),
V2(x) = Γ(V1)(x),

...
V (x) := Γ(V)(x),

(9-3)

From the stationary value function we can the derive our controller as,

Ucon(x) := argmin
u∈U

g(x, u) + β

∫
V (x̂)p(dx̂|x, u). (9-4)

For the first approximation of the value function for an infinite horizon dynamic programming
problem we may just use any value for example zeros:

V0(x) = 0. (9-5)

G. Vitanov CONFIDENTIAL Master of Science Thesis

9-2 Discrete MDPs 41

Before diving deeper into the calculations, first lets see what are the different choices we can
make when selecting a DP method.

We can differentiate between continuous MDP-s and discrete MDP-s, and depending on our
choice we may need to use different algorithms to solve our control problem. The difference
between the two is our state space. In continuous MDP-s our state space is a continuous set
while in discrete MDP-s our states are discrete. This means our state transition probabilities
are also continuous and discrete respectively.

9-2 Discrete MDPs

Now since our transition probabilities are a discrete set we need to redefine the Bellman (9-2)
to its discrete form as described in [28],

Γ(V)(x) = min
u∈U

g(x, u) + β
∑
x̂∈X

V (x̂)p(x̂|x, u). (9-6)

For most practical applications we can define a finite discrete state space and action space
that is of interest. For a finite state space we can calculate the value function with the use of
matrix algebra as,

Γ(V) = min
u

(gu + βPuV), (9-7)

where

V :=


vx1

vx2
...

vxn

 , Pu :=


px1,x1 px1,x2 . . . px1,xn

px2,x1 px2,x2 . . . px2,xn

...
...

pxn,x1 pxn,x2 . . . pxn,xn

 , gu :=


gx1

gx2
...

gxn

 , (9-8)

where vxa is the value of the state xa and pxa,xb
from the matrix (Pu) is the probability of

transitioning from state xa to state xb if we applied control action u. The cost matrix is gu

where gxa is the cost of being in state xa and applying control action u, and β is the discount
factor scalar.

If we use full matrix notation P becomes a tensor (3 dimensional) with indexing P (u, xa, xb),
and the cost matrix will be a matrix (2 dimensional) as g(u, x). Then we can calculate Γ(V)
as a minimization along the first matrix dimension.

While calculating (9-7) is straight forward, we will need to use a different method since in
our MDP model of HIsarna our states are continuous. This means we will need to use the
continuous MDP modelling framework.

Master of Science Thesis CONFIDENTIAL G. Vitanov

42 Dynamic Programming

9-3 Continuous MDP approaches

We have already seen how the discrete MDP approaches can calculate the Discrete Bellman
(9-6) in the previous section. Our main problem to solve in the Continuous MDP approach
is how to calculate the multivariate integral from the continuous Bellman equation (9-2). We
have two choices here: we can either use discrete approximation, or continuous approximation.

As described by [35] during discrete approximation we transform our continuous problem
into a discrete MDP. First, we select a set of discrete points form the state space (Xd) and
action space (Ud), that are going to be our discrete states and actions. Next, we calculate
the transition probabilities between our discrete states for each action applied to arrive at the
state transition probability tensor (P (ud, xd1 , xd2)). Finally we can use the discrete Bellman
equation (9-6) to calculate the value functions value at our defined set of discrete state space
grid points (V (xd)). The resulting value function can only be evaluated at the predefined
grid points of the state space V (xd).

While performing a discrete approximation of a continuous MDP can be easily done, it comes
with some drawbacks: If we want a precise approximation of the true value function we will
need to use dense grids for our state and action space which requires large computational
power. This is where continuous approximations of the value function have many advantages,
namely we can arrive at better value function estimates with less computation. The main
difference between continuous approximation and discrete approximation of the value function
is that in the continuous case the state space and action space can be continuous thus our
value function and transition probability function will also be continuous. Numerous methods
of continuous and smooth approximation can be found in [25]. Here smooth approximation
denotes the fact that these methods produce value functions whose derivates exist in every
point. It is important to note in continuous approximation of V we also have to select a set
of grid points from the state and action space. These will be our interpolation points later
on, where we fit our basis functions to the value function. In the continuous approximation
methods the value function can be evaluated at any point in the state space V (x), and we
can decide what basis functions we would like to use to approximate V . The most common
basis functions are the following:

• Multilinear interpolation,

• Chebyshev polynomials,

• Piecewise polynomials.

The multilinear interpolation is the most simple from all methods. It is a linear approxima-
tion along each dimension of the state space. In this method first we need to select a grid
of the state space where we will calculate the value of V . The difference compared to the
discrete MDP method is that we will be able to calculate values of V (x) where x /∈ Xd (where
the state x does not lie on a grid point) using interpolation.

Other smooth approximation techniques work similarly. We parameterize our basis functions
with a parameter vector θ and we select a set of grid points for the state and action space

G. Vitanov CONFIDENTIAL Master of Science Thesis

9-4 The curse of dimensionality 43

(xd, ud) where we calculate Vk+1(xd) from a previous value function estimate V̂k(x, θk).

Vk+1(xd) = Γ(V̂k(xd, θk)) (9-9)

Next we try to find the best parameterization of θ such that our next estimate of the value
function V̂k+1(xd, θ) is closest to our points Vk+1(xd).

θk+1 = argmin
θ

n∑
i=1

(Vk+1(xd,i) − V̂k+1(xd,i, θ))2 (9-10)

To better understand the computational advantages and disadvantages of these different
methods we have to first examine the computational complexity of dynamic programming
problems.

9-4 The curse of dimensionality

The curse of dimensionality is an important concept in dynamic programming. It [36] states
that when we add a dimension to the state space the number of computations required to
derive the value function increases exponentially. This is a problem since often times we
would like to solve stochastic optimization problems with dynamic programming with mul-
tidimensional state spaces. It affects both the discrete MDP and the continuous time MDP
approaches but differently.

When using a discrete MDP approach and we increase the dimension of our state space by
one, we need to use much more grid points. For example we have a 3D discrete cube grid as
our state space, with 10 possible states along each dimension: 103 possible states altogether.
If we add one more dimension to our state space the number of grid points increase to 104

immediately. This means we have to do an order of magnitude more computations to derive
the value function.

The problem with continuous MDP-s is different. If we add one more dimension we might
have to increase the number of parameters in θ in order to account for this change. Now
the problem is if we increase the number of parameters in θ that greatly increases the search
space of our optimization step when we are trying to fit V̂ (x, θ) to V (x).

Essentially by increasing the dimension of the state space in the both the discrete and con-
tinuous MDP approaches we get an exponentially increasing number of grid points, and thus
an exponentially increasing number of calculations to find the value function V (xd).

While the curse of dimensionality affects all MDP problems we have tools to reduce the
leading constants of the exponential dependence:

• sparse matrices,

Master of Science Thesis CONFIDENTIAL G. Vitanov

44 Dynamic Programming

• parallel computations,

• action elimination,

• smooth approximation.

Lets walk through how these methods work. When dealing with a discrete or discretized
MDP problem we have a large state transition probability matrix. This matrix is usually
sparse, assuming smooth dynamics since from one state we can transition into only so many
neighbouring states. We can use this property of the state transition matrix in order to speed
up our value function calculations. If we have a sparse matrix we can transform it into such
a structure that the matrix computations required to calculate the value function can run
more efficiently, thus resulting in a speedup. This is done nowadays automatically in matrix
computation libraries if they detect sufficient structure so we do not need to spend additional
attention on this topic.

The next point is parallel computations. While we need to run the value function approxi-
mation steps in series, the computations of one step of the value function approximation can
be very well parallelized. For example we can calculate separately,

Γ(V)(x1) = min
u∈U

g(x1, u) + β

∫
V (x̂)p(dx̂|x1, u)

Γ(V)(x2) = min
u∈U

g(x2, u) + β

∫
V (x̂)p(dx̂|x2, u).

(9-11)

This can produce significant speedups if we are able to code our calculations to run on a
GPU, or even just parallelize our calculations on multi core CPU. For example by running
the calculations parallel on 64 cores we can achieve a speedup of approximately 50x (some
data copying operations reduce the speedup from 64x).

An other method is action elimination: we do not to calculate the value of every state action
pair in the value function

Γ(V)(x) = min
u∈Ured

g(x, u) + β

∫
V (x̂)p(dx̂|x, u)

where Ured ⊂ U,
(9-12)

but only for a subset (Ured) of all actions (U). In many scenarios depending on our current
state a lot of possible actions might not make sense outright. By eliminating these actions
from the calculations, we can increase our algorithms speed. For certain special scenarios:
if our model is linear and our cost function convex with respect to the control action then
applying the Bellman operator will not change the convexity of our value function. This
means we can use gradient descent to solve the minimization problem and find the optimal
control action which can be much faster than testing all possible inputs u. It is also possible
in this case to use a continuous action space directly instead of a discrete one, since we can
find the ideal action with a certain precision with a finite number of computations with this
method.
Finally the last type of speedup is achievable with smooth approximation. Lets say we have a
one dimensional value function for the following example: If we know that the value function

G. Vitanov CONFIDENTIAL Master of Science Thesis

9-5 Conclusions 45

takes the shape of a parabola then we can fit this parabola from only using three points as our
state grid contrary to using a lot of grid points to approximate the parabola with multilinear
interpolation. This can provide a large speedup of our calculation since the total calculation
time is proportional to the size of our state grid. On the other hand we can only use this
method to reduce the computational complexity of our problem if we have priori knowledge
of the expected shape of the value function. Otherwise we have to use a family of general
functions as our smooth functions and many grid points in order to achieve a good fit between
our smooth approximation of our value function and the grid points where we calculate the
actual value function value.

In summary the most promising speedup algorithms are parallel computation and action
elimination. Because these methods if properly implemented can reduce the required compu-
tations and increase the speed of our calculations by orders of magnitude.

9-5 Conclusions

The conclusions of the dynamic programming literature review part are the following: Since
our chosen model of HIsarna has a continuous state space, we will need to use a continuous
MDP approach to calculate the value function. From the continuous MDP approaches we
will use the multilinear interpolation technique since it is easy to implement and we do not
have priori knowledge of the expected shape of the value function. This means we cannot
reduce the number of state grid points used drastically using smooth approximation. In order
to further speed up computations the following candidate solutions were deemed worthy of
trial: parallel computation, and action elimination.

Master of Science Thesis CONFIDENTIAL G. Vitanov

46 Dynamic Programming

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 10

Controller Synthesis

This section will detail the methodology used for creating the controller of the plant. We will
build on the continuous MDP approach outlined in the previous chapter, explain each step
in detail and highlight modifications that lead to speed up.

We selected a continuous MDP approach with multilinear interpolation of the value function.
This means we have to define a grid of points where we will calculate the value of the value
function and then interpolate it between the grid points. We will call these grid points the
possible starting states (X̂0) and the possible inputs (Ûf , Ûc) where Ûf is the grid for the fixed
inputs and Ûc is the grid for our control input.

Figure 10-1 shows the overview of the controller synthesis process.

Possible starting
states

System Model Predicted States

Possible inputs

Optimization

Cost Function

Value Function

Controller
Model error

Figure 10-1: Controller synthesis process flow chart

The green boxes form Figure 10-1 show what we have already obtained in the previous
chapters: the system model and model error distribution. The blue boxes contain everything
we still need to define such as the possible states of our model, the possible input combinations,
and the optimization method for our controller. We also need to define a metric that will tell
the optimization algorithm what is the cost of each state input combination, this will be our

Master of Science Thesis CONFIDENTIAL G. Vitanov

48 Controller Synthesis

running cost function g. In yellow we can see the quantities we need to calculate, such as the
predicted states of the plant and the value function of our controller. Purple shows us our
desired end product, which is the controller table.

10-1 Introduction

We established in the previous chapter the value function of a continuous MDP problem can
be calculated as (9-2), but we have to slightly modify this framework since our control action
and thus our value function will not only depend on the state of the plant x but also on the
fixed inputs of the plant uf . This is necessary because we only want to use the lime input
uc of the plant in order to control the basicity, but we also have other inputs of the plant
(ore and coal injected) that have a major affect on system dynamics. The modified Bellman
equation is then,

Γ(V)(x, uf) := max
uc∈Ûc

g(x, uf , uc) + β

∫
V (x̃, uf)p(dx̃|x, uf , uc). (10-1)

After iteratively refining the value function by repeatedly applying the Bellman operator to
(10-1) as shown by (9-3) we arrive at the stationary value function V (x, uf). We can derive
our controller from the stationary value function as,

Ucon(x, uf) := argmax
uc∈Ûc

g(x, uf , uc) + β

∫
V (x̃, uf)p(dx̃|x, uf , uc), (10-2)

Our next tasks will be:

• Define starting states and inputs grids X̂0, Ûf , Ûc

• Calculate predicted states X+

• Define running cost function g(x0, uf , uc)

• Implement multilinear interpolation to calculate V (ˆx, uf)

• Calculate the expected value of predicted state distribution
EEEx̂ [V (x̂)] =

∫
V (x̃, uf)p(dx̃|x, uf , uc).

10-1-1 Starting states and inputs

To get a good approximation of the continuous value function by multilinear interpolation we
have to choose our grid points carefully. We also need to make sure to cover the operating
region of the plant with our grid points in order to be able to use interpolation when calculating
V (x̂, uf). We select our grid points based on our system states x and fixed inputs uf , and
control inputs uc that can arise during normal operation. As we already mentioned we needed
to incorporate here the fixed inputs of the plant because we do not want to optimize the
plant state using them but they affect the system dynamics in major ways. This increases the
required number of grid points significantly (see explanation at section 9-4). To counteract

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-1 Introduction 49

this we will not use a grid for the Slag mass system state, instead we will only use a scalar.
This will be explained below more extensively. We also assumed that slag taps do not change
the system basicity in our system model, so for our starting states and inputs grid we will
disregard the slag taps happening stap = 0. We will use equidistant grids for every variable.
To protect the intellectual property of TataSteel we will also not publish the true values of
all grids used during the project, but instead opt to show how the grids are constructed with
different randomly chosen values. The chosen grids for the variables are as follows.

• x0
1 ∈ X̂0

1 ⊂ [5000, 15000] with |X̂0
1| = 50 - the SiO2 mass state in the furnace will have an

equidistant grid with 50 points starting form 5000 kg till 15000 kg. These starting and
endpoints for the grid were chosen because 5000 kg is 80% of the minimal SiO2 mass
measured in the furnace in our available data and 15000 kg is 120% of the maximal
measured SiO2 mass, so this range covers the operating region and allows some lower
and higher values also. We will denote with x0

1,i one element of this grid.

• x0
0 ∈ X̂0

0(x0
1,i) = x0

1,i/0.4 - The Slag mass state will not have a grid, but only a scalar
value. This is done in order to reduce the number of grid points we use to reduce the
required number of computations in controller synthesis. While the Slag mass does
influence the system dynamics it does not influence our control objective: the plant
basicity. For example if our plant has a SiO2 mass, b CaO mass and c and d fixed inputs,
then no matter what the current slag mass is we should inject e lime in order to arrive
at our basicity target. Here the constant 0.4 is the average SiO2 mass concentration of
the Slag.

• x0
2 ∈ X̂0

2(x0
1,i) ⊂ [1.19x0

1,i; 1.31x0
1,i] where |X̂0

2| = 20 - this means for each grid point of
the SiO2 mass grid x0

1,i there will be a different x0
2 grid

• u1 ∈ Ûf1 ⊂ [10000; 50000] where |Û1| = 30 - ore grid

• u2 ∈ Ûf2(u1,k) ⊂ [u1,k/2 − 8000; u1,k/2 + 8000] where |Û2| = 40 - coal grid (on average
for every 1 kg of injected coal we inject 2 kg ore).

• uc ∈ Ûc ⊂ [0; 1] where |Ûc| = 51 - lime grid

Table 10-1 summarizes the chosen grid parameters:

grid starting value grid end value num.
X̂0

0 x0
1,i/0.4 x0

1,i/0.4 1
X̂0

1 5000 15000 50
X̂0

2 1.19x0
1,i 1.31x0

1,i 20
Ûf1 10 000 50 000 30
Ûf2 u1,k/2 − 8000 u1,k/2 + 8000 40
Ûc 0 1 51

Table 10-1: Grid points for the dynamic programming controller synthesis

Instead of defining static intervals for every variable as grids we let the grid points depend on
each other. This is done in order to have good coverage of the operating region of the plant
while using as few points as possible.

Master of Science Thesis CONFIDENTIAL G. Vitanov

50 Controller Synthesis

10-1-2 Predicted states

In the previous section we have defined our controller grid. This means we have defined a
set of starting states X̂0, and a set of possible inputs Û0. Now we will define the tensors
that contain every possible state vector and input vector combination from our grids X̂0, Û0.
We will define X0 as the tensor that has every possible X0

i,j combination (we will call this
the tensor with every possible starting state) and U0 as the four tensor that has every U0

k,l,m

combination (the inputs tensor).

X0
i,j =

 x0
1,i/0.4

x0
1,i

x0
2,j(x0

1,i)

 ∈ X̂0, U0
k,l,m =

u1,k

u2,l(u1,k)
uc,m

 ∈ Û0, (10-3)

where [
u1,k

u2,l(u1,k)

]
∈ Ûf , uc,m ∈ Ûc (10-4)

where i, j, k, l, and m are the grid indices that go from 0 till the max grid sizes. The i-th row
and j-th column of X0 has the starting state vector X0

i,j . With the possible starting states
tensor X0 and possible inputs tensor U0 at hand we can calculate the possible next states
using the system model. The set of possible next states denote all the points in the state
space where we can end up at using any combination of possible starting states and possible
inputs.

X+ = model(X0, U0)
X+

i,j,k,l,m = X0
i,j + BU0

k,l,m

(10-5)

Here we are presuming that no slag tap happens stap = 0. This is in order to reduce the
complexity of the dynamic programming synthesis. This assumption is also reasonable since
our control objective only depends on the basicity which we assumed does not change during
a slag tap. We denote in (10-5) X+ the six tensor that contains all possible next states,
starting from any possible starting state X0 and using any possible input combination U0.
Algorithm A.11 shows how X+ was calculated in python. Figure 10-2 shows the X0 grid
points in red and the X+ points in blue on the SiO2 - CaO state space.

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-1 Introduction 51

Figure 10-2: The chosen X0
i,j (red) grid points and X+

i,j,k,l,m (blue) next state points.

We can see from Figure 10-2 that the X+ states cover a larger area than the X0 states
especially toward the high SiO2 mass region. This is undesirable since when we calculate
V (X+

i,j,k,l,m) we will need to use interpolation or extrapolation since we only know the con-
crete value of the value function at V (X0

i,j) and we use multilinear interpolation to calculate
it elsewhere. This is necessary since many points from our predicted state set are not in our
starting states set (X+

i,j,k,l,m /∈ X̂0 for many i, j, k, l, m).

This means when we calculate all V (X+
i,j,k,l,m) for some i, j, k, l, m combinations we will need

to use extrapolation since this particular X+
i,j,k,l,m point lies outside of any red points (X0

i,j).
This means we introduce extrapolation errors into our calculations which we want to minimize.
To rectify this issue we can make a rule that if any state in X+

i,j,k,l,m has SiO2 mass larger than
a threshold, we simulate a slag tap on it. This is a very reasonable rule, since the furnace has

Master of Science Thesis CONFIDENTIAL G. Vitanov

52 Controller Synthesis

finite volume and the slag mass needs to be limited at any time instant inside it. We simulate
a 6 ton slag tap where

X+
i,j,k,l,m = X+

i,j,k,l,m −

 6000
X+

i,j,k,l,m,1/6000
X+

i,j,k,l,m,2/6000

 , if X+
i,j,k,l,m,1 ≥ SiO2,m,max − 500 (10-6)

Figure 10-3 shows that using the transformation from (10-6) we transform the yellow region
into the green region. This means that now all the X+ states lie in the same region as the
X0 states, so we will not require extensive extrapolation.

Figure 10-3: In blue X+ states, in red X0 states, in yellow the X+ states that violate the SiO2
mass condition, and in green the yellow states after we simulate a slag tap on them.

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-1 Introduction 53

10-1-3 Running cost function

Our running cost function will tell us what is the cost of being in a certain state x and
applying actions uf and control action uc. Since keeping the plant in the optimal operating
condition is paramount, applying control input uc will incur zero cost. Applying ore and coal
inputs uf will also incur zero cost since our task is hot metal production which is not possible
without ore and coal inputs (uf). This means our running cost function is only dependent
on the current plant state x. More precisely we will only penalize deviations from our target
basicity in the plant states.

g(x) = g

(
B2,ref − x2

x1

)
=


330 x < 1.2
132000(1.25 − x2/x1)2 1.2 ≤ x ≤ 1.25
400000(1.25 − x2/x1)2 1.25 < x1.3
1000 1.3 < x

(10-7)

This cost function topology was devised based on the operator experience and recommenda-
tions of plant operation. If we are below 1.2 or above 1.3 basicity then we are outside of the
plant operating region. These regions are both highly penalized, although being above 1.3 is
more highly penalized since it is dangerous for the plant operation because slag foaming can
occur in this region which can damage the plant. The most optimal point of our cost function
is the 1.25 target basicity state while we penalize any deviation from it quadratically both if
we are above or below it. The above region is penalized approximately 3 times more, since
high basicity regions are dangerous for operation so we would really prefer to be below or at
1.25 basicity.

Figure 10-4 shows the chosen running cost function g(x):

Master of Science Thesis CONFIDENTIAL G. Vitanov

54 Controller Synthesis

Figure 10-4: Running cost function g(x).

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-1 Introduction 55

10-1-4 Interpolating the value function

In this section we will look at how multilinear interpolation will work. We need this func-
tionality since we only know the value of the value function at X0 but we want to calculate
V (X+).

x0j x+ x0j+1

f(x0j)

f(x+)

f(x0j+1)

d(x+-x0j) d(x0j+1-x+)

Figure 10-5: The value function is only known at discrete locations, but sometimes we need to
know its value at a different location so we have to use interpolation

Figure 10-5 shows the one dimensional case of linear interpolation. We can calculate the value
f(x+) of the red point x+ from the known values f(x0

j) and f(x0
j+1) as,

f(x+) = (1 − d(x+ − x0
j))f(x0

j) + d(x+ − x0
j)f(x0

j+1),
where, d(x+ − x0

j) + d(x0
j+1 − x+) = 1.

(10-8)

where d() is a distance measuring function between points such that for ∀j : d(x0
j+1−x0

j) = 1.
For linear interpolation to work first we have to find the nearest grid points x0

j , x0
j+1 to our

location x+. This is done by Algorithm A.14 where we use the fact that our grids have
equidistant points. This speeds up the interpolation process significantly, because instead of
searching for the two nearest grid points we can analytically find the nearest points just from
our location and the known grid parameters. Although ideally we would like to interpolate
all x+ values sometimes this will not be possible because not all X+ points lie inside the X̂0

grid from Figure 10-3. This is the result of our model dynamics so it is something we cannot
change. In case x+ lies outside of the grid we can still use the same analytical method to
calculate V (x+) but in this case we will be extrapolating the value from the nearest two know
grid points. We calculate the interpolated value of V (x+, uf) by Algorithm A.15 with a 2D
interpolation for the SiO2 and CaO states. If we interpolate on multidimensional space we use
multiple interpolations sequentially along all state space dimensions as, (for 2D interpolation)

f(x+, y+) = (1 − d(x+ − x0
j))f(x0

j , y+) + d(x+ − x0
j)f(x0

j+1, y+),
f(x0

j , y+) = (1 − d(y+ − y0
k))f(x0

j , y0
k) + d(y+ − y0

k)f(x0
j , y0

k+1),
f(x0

j+1, y+) = (1 − d(y+ − y0
l))f(x0

j+1, yl) + d(y+ − y0
l+1)f(x0

j+1, y0
l+1),

(10-9)

Master of Science Thesis CONFIDENTIAL G. Vitanov

56 Controller Synthesis

which is,

f(x+, y+) =
(
1 − d(x+ − x0

j)
) [(

1 − d(y+ − y0
k)

)
f(x0

j , y0
k) + d(y+ − y0

k)f(x0
j , y0

k+1)
]

+ d(x+ − x0
j)

[(
1 − d(y+ − y0

l)f(x0
j+1, yl) + d(y+ − y0

l)f(x0
j+1, y0

l+1)
)]

.

(10-10)
The order of interpolating along the dimensions in our state space will be important in our
case because some of our grids are dependent on other grids. This means first we interpolate
along the free dimension’s grid (x from (10-9)) and then on the dependent dimension’s grid
(yfrom(10 − 9)). We can calculate the neighbouring points along the dependent grid also
analytically since the dependent grid is also equidistant.

10-1-5 Calculate the expectation

Our next task if to define how we calculate

∫
V (x̃, uf)p(dx̃|x, uf , uc) = EEE

w

[
V (x+(x, uf , uc) + w, uf)

]
(10-11)

The integral here equals the expected value of the value function at the predicted state
distribution x+ + w if we start from state x and apply inputs uf and control action uc. Here
we have two choices on how to calculate the expectation:

• Monte Carlo simulation: sample noise distribution many times then average

• Integrate over a discretized model error distribution

We can calculate the expected value of the value function at the predicted state distribution
using 1000 samples of the model error distribution wi as,

EEE
w

[
V (x+ + w, uf)

]
= 1

1000

1000∑
i=1

V (x+ + wi) (10-12)

This method will have a higher probability producing a good estimate of the true expected
value the higher number of times we sample the noise distribution. We usually use the Monte
Carlo method when our probability distribution is high dimensional and it is computationally
not feasible to integrate over a sensibly dense discretized grid of model error distribution. For-
tunately this is not the case with us, since our model error distribution is only two dimensional.

The second approach is using the noise distribution sample set we already exported with
Algorithm A.10 and shown on Figure 8-4. By using this sample noise dataset wi ∈ W we can
estimate the expectation as follows:

EEE
w

[
V (x+ + w, uf)

]
=

n∑
i=1

p(wi)V (x+ + wi, uf) (10-13)

where p(wi) is the probability of wi occurring which we stored in the heights array, and wi is
a vector noise sample like [0; SiO2 model error, CaO model error].

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-1 Introduction 57

10-1-6 Value iteration

With the above section we have fulfilled every requirement for the value iteration process to
start. We can substitute (10-13) into (10-1) and arrive at our value iteration equation:

Γ(Vn+1)(x, uf) := max
uc∈Ûc

g(x) + β
∑

wi∈Ŵ

p(wi)Vn(x+(x, uf , uc) + wi, uf). (10-14)

The value iteration is calculated in the code by Algorithm A.16. It is usually enough to run
the algorithm for 25-30 iteration until convergence is achieved which is defined as,

|Vn+1(x, uf) − Vn(x, uf)| ≤ ϵ (10-15)

Then we can calculate the controller as,

uc(x, uf) := argmax
uc∈Ûc

g(x) + β
∑

wi∈Ŵ

Vn+1(x+(x, uf , uc) + wi, uf). (10-16)

The practical aspects of the value iteration calculation are the following: We used a highly
parallelized framework calculating the value function on 16 threads, while also using numba
which pre-compiles python functions into machine code that can be run by the python inter-
preter and can usually replace for loops used in python. With these optimization it is possible
to reduce the calculation time of the static value function by orders of magnitude.

Master of Science Thesis CONFIDENTIAL G. Vitanov

58 Controller Synthesis

10-2 Controller

Now that we have obtained the controller table from (10-16) what we have calculated is
essentially the optimal control input u∗

c for all grid points from our starting states X̂0 and
fixed inputs Ûf . In order to actually obtain a controller from the controller table we have to
use multilinear interpolation to calculate the optimal control input to any state-fixed input
combination that do not lie on the grid X̂0 and Ûf . We will be using the same multilinear
interpolation technique as in section 10-1-4 but now we also interpolate along the uf axes.
Thus the controller implementation is shown by Algorithm A.21.

An important property of the obtained controller is that by using a model structure which is
time independent (mass based, time is not important) we make sure that our controller will
also be time independent. This means our controller will output how much lime has to be
injected until the next slag tap (state measurement), based on the current plant state and the
ore and coal input amounts that will be injected until the next tap, but it is unimportant how
much time elapses until the next slag tap. Now a possible problem with this framework is that
we use a static error distribution to model our system error during controller synthesis. If we
want our controller to work for a wide variety of possible uf (ore and coal injection rates) then
our static error distribution no longer encompasses the true model error well. This is because
for example the possible error on the model prediction should be much smaller when using
an ore input of 100 kg than if we use an ore input of 20 000 kg since most model inaccuracies
come from ore mixture variation or B matrix inaccuracy. This means our controller synthesis
approach will not yield an optimal solution.

To fix this issue a possible solution could be deriving a model error distribution that is de-
pendent on the total amount of injected material. This would be a rational choice since if one
parameter from the B matrix of our model is for example off 1% then the resulting model
error will be 1% times the injected ore, coal or lime amount depending on which element of
the B matrix has the deviation.

Our next task will be to validate if our controller performs up to expectation.

10-2-1 Controller validation

The controller validation is one of the hardest tasks in the project. The best way to validate
the controller would be to just connect it up to the plant and see if the performance is up to
standard. Unfortunately this is not possible as a first test since the plant have a very narrow
operating region and in case our controller does not perform optimally we can end up outside
the operating region possibly causing damage to a multi million dollar plant.

In order to sidestep this issue we can use simulations of what would happen in the plant in
case we used the controller to control it. We can do this by using our system model, but we
also have to take into account that our model is not perfect and can have model errors. Our
task will be to validate a controller on a statistical basis. For example we can easily calculate

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-2 Controller 59

what would our system model predict as next states if we used the controller as,

x̂(k + 1) = f(x(k), uf (k), uc(x(k), uf (k))) (10-17)

where

• x(k + 1) ∈ X ⊂ R3 is the predicted next state vector of the system model at time k + 1
(model prediction),

• x(k) ∈ X ⊂ R3 is the current state vector of the plant at time k (measurements),

• uf (k) ∈ Uf ⊂ R2 is our fixed plant inputs vector (measurement),

• uc(k) ∈ X × Uf → Uc is our controller advice at time k (controller output),

• f ∈ X × Uf × Uc → X is our system model.

The prediction x(k + 1) is the state the real plant would transition into in case we used the
controller with it and the system model were perfect. To incorporate the effect of the model
uncertainty we can add sampled random noise to our predicted next plant state. Since we
already know the model prediction error distribution we can use this information and sample
our random noise from this distribution. This way we make sure we are adding a realistic
noise to our predicted next states.

x̃(k + 1) = f(x(k), uf (k), uc(k)) + ω, (10-18)

where x̃(k + 1) is the noisy prediction of the next plant state and ω is a random sample
from our model error distribution from Algorithm A.10 (Figure 8-4). If we create the noisy
predictions for all time steps (k = 0, 1, . . .) we can compare the performance of the operator
and controller. If we use this simulation framework we are only using the model as a one
ahead predictor. This means we are comparing how well does the controller and the operator
react to deviations in the slag basicity in one time step.

First lets compare the actions of the operator and the controller taken during the one ahead
simulation. Figure 10-6 shows this comparison for a certain plant run dataset. Please note we
used here a min max scaled dataset in order to protect the intellectual property of TataSteel.

Master of Science Thesis CONFIDENTIAL G. Vitanov

60 Controller Synthesis

Figure 10-6: Control action taken by operator versus advised by controller in each time step k

We can see from Figure 10-6 that the controller advice has a similar trend to the operator
control actions which is expected since both are reacting to the same plant state changes and
fixed input fluctuations. We can also see that the controller is more aggressive and often
applies a control action which is more toward the extremities (low and high) which is also as
expected since the operators often do not try to correct basicity deviations in one time step
but rather try slow corrections toward the optimal value instead in multiple time steps. We
can also compare the graphs of the plant state evolution x(k) and the model predictions with
the control action x̃(k) on Figure 10-7. We also used a min max scaled dataset here in order
to protect the intellectual property of TataSteel.

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-2 Controller 61

Figure 10-7: Comparison of plant state evolution with operator control versus where the con-
troller would steer the plant.

We can see on Figure 10-7 the measured plant basicity evolution x(k) with operator control
in orange and we can also see the blue data points where the controller would steer the plant
x̃(k + 1) from the previous measured state (x(k)). We used here only dots since the dots
do not represent a state evolution of the plant, merely indicate where the plant would end
up at if we applied the controller recommendation from the previous measured state and the
system model was prefect. The filled blue areas indicate how certain is our model that we
end up at a blue dot. The darker region is one standard deviation above and below our model
prediction, and the light area cover a plus minus two standard deviation range of our model
error. This means if we apply control action uc(x(k), uf (k)) starting from x(k) then we have
a probability of ≈ 68.27% of that our plant ends up in the dark blue area and ≈ 95.45%
probability to end up inside the light or dark blue areas and on average we will end up at the
blue dot x̃(k + 1), which is:

x̃(k + 1) = 1
n

n∑
i=1

f(x(k), uf (k), uc(k)) + ωi (10-19)

Now we can see on our graph that the controller on average will probably be better at
controlling the plant than the operator since the blue dots lie near the 1.25 target basicity
line but we can also see that we have a large model error distribution on the plant basicity

Master of Science Thesis CONFIDENTIAL G. Vitanov

62 Controller Synthesis

which makes it hard to decide if in fact the controller really performs better than the operator.
To have a better tool for judging the controller performance we can do the following: Calculate
1000 times x̃(k + 1) from (10-18) for all time steps k which we will denote as x̃xxj for the j-th
calculation (from the 1000). This way we can get a statistical baseline on what the result of
our controller advice would look like with imperfect model error. Next we can use the cost
function from (10-7) to evaluate the operator performance xxx =

[
x(1) x(2) . . . x(n)

]
as

g(xxx) and similarly we can evaluate the performance of the plant controller advices as g(xxxj).
Next we can look at the best, average and worst controller advices from the 1000 simulations.

operator score g(xxx) 19706
best controller advice simulation minj g(x̃xxj) 7974
average controller advice simulation meanj g(x̃xxj) 11479
worst controller advice simulation maxj g(x̃xxj) 15962

Table 10-2: Controller advice simulations scores versus operator score

In Table 10-2 we can see that on average our controller performs better than the operator
in controlling the plant from given plant states toward the basicity target in one step. We
can also see even for the worst run from 1000 simulation the controller still outperforms
the operator in controlling the plant toward the target basicity in one time step. This is
as expected since the operators mostly try to use slower corrective control actions during
operation and steer the plant toward the target basicity using multiple time steps because
they do not know the plant state response to the corrective control actions, thus they stay
on the side of caution and stick to more average lime injection amounts instead of aggressive
corrections. Now we know the controller performs better with a high probability than the
operator in steering the plant toward the target basicity in one time step. The next thing
to check is if the controller can maintain stable operation of the plant by using multiple
sequential control actions. This means we have to simulate the plant behaviour for multiple
time steps forward not just one step ahead as previously for Figure 10-7 and Table 10-2. This
can be done similarly to (10-18) but instead of using measurements x(k) we will need to use
the previous simulated states x̃(k):

x̃(0) = x(0),
x̃(k + 1) = f(x̃(k), uf (k), uc(x̃(k), uf (k))) + ωi.

(10-20)

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-2 Controller 63

Figure 10-8: Simulated controller run versus operator run (same fixed inputs used uuu12).

Figure 10-8 shows the operator run measurements in orange, the average controller state in
blue and the one standard deviation of the controller state with respect to the model error
distribution as a dark blue region, and the two standard deviation region as a light blue
region. We can see our controller on average will converge to the basicity target of 1.25 well
but due to the model errors will deviate from the basicity target significantly per simulations
because of the model error uncertainties as shown by Figure 10-9. We can also see that the
controller average is consistently slightly bellow the target basicity. This id due to the shape
of our cost function from Figure 10-4 and the size of our error distribution from Figure 8-4.
The controller will try to keep the basicity level slightly below the target value in order to
have a low expected cost for any arising model errors, because we penalize model error that
overshoot the 1.25 target basicity line much more than model error below the target. The
two Figures: 10-8 and 10-9 were also min max scaled to protect the intellectual property of
TataSteel.

Master of Science Thesis CONFIDENTIAL G. Vitanov

64 Controller Synthesis

Figure 10-9: One controller simulation compared to the operator run measurements.

As we can see on Figure 10-9 the controller although the model has a large model error
distribution still manages to keep the basicity of the plant near the target better than the
operator. Lets compare again the scores of 1000 simulations with the operator run score:

operator score g(xxx) 19706
best controller advice simulation minj g(x̃xxj) 7211
average controller advice simulation meanj g(x̃xxj) 11395
worst controller advice simulation maxj g(x̃xxj) 18399
simulation from Figure 10-9 score g(x̃xx421) 8130

Table 10-3: Controller advice simulations scores versus operator score

In Table 10-3 we can see the controller on average still outperforms the operator significantly
when we simulated the plant state not just one step ahead but for all step of a plant run
fixed input dataset uuuf . We can also see in the worst case the controller has comparable per-
formance to the operator from 1000 simulations. It would be even possible to significantly
improve these controller results by slightly reducing the model error distribution if we are
able to build a better system model in the future. This is certainly possible since now we
are using a very crude system model and Tata Steel has a more precise model for plant op-
eration control which they are in the process of simplifying in order to be used with simulation.

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-2 Controller 65

There is one more plot we can examine as it might contain valuable information of our
controller. We can check the controller advice for certain 2D slices of our controller table as
shown by Figure 10-10 .

Figure 10-10: Controller advice plot for static fixed inputs uf = constant.

We can see on Figure 10-10 that if we fix our fixed inputs to a certain constant uf =[
26000 14000

]⊤
then the amount of lime we need to inject is actually linearly dependent on

the current slag basicity (plant state). This can be seen because the colored stripes of the
contour plot have a similar thickness. We can also see that as the SiO2 mass in the furnace
increases we need to apply use a more aggressive control. This can be seen from how the
colored stripes narrow down towards the top. This means if we are at a high SiO2 mass we
will need to apply large control actions for smaller deviations of the basicity (B2) compared

Master of Science Thesis CONFIDENTIAL G. Vitanov

66 Controller Synthesis

to low SiO2 mass states. This means as a future work we can try to approximate the value
function for a fixed uf with a smooth function instead of multilinear interpolation. We can
also see periodic waveform of Figure 10-10. These are likely caused by the states grid and
multilinear interpolation that we decided to use. Figure 10-11 shows the same plot as Figure
10-11 but with different axes.

Figure 10-11: Controller advice plot for uf =
[
26000 14000

]⊤.

The states grid that we used X̂0 is indicated on Figure 10-11 as black dots. We can see be-
tween each vertical line of black dots there is one wave visible. A different parameterization
of the state space would be advisable in future work as to minimize this undesirable wave
effect which is simply an artifact of multilinear interpolation and our grid shape. We used
this state space grid X̂0 because it enabled analytic calculation of the neighboring points in
the multilinear interpolation.

G. Vitanov CONFIDENTIAL Master of Science Thesis

10-2 Controller 67

If this controller is put into production, as future work a model error checking script would
be advised to run beside it. The controller will only give valid advice until the model errors
lie within the previously calculated model error distribution. When this is not the case the
controller should be recalculated with the updated model error distribution. In this case
refitting the system model would be also a good idea.

Master of Science Thesis CONFIDENTIAL G. Vitanov

68 Controller Synthesis

G. Vitanov CONFIDENTIAL Master of Science Thesis

Chapter 11

Conclusions

This thesis discussed the basicity control of HIsarna: an experimental smelting furnace. The
novelty of the work carried out is solution to the stochastic infinite horizon dynamic program-
ming control problem that was solved to control the basicity of the furnace. Hisarna is a pilot
plant, which is the first of its kind in the world and it requires more complex control methods
than traditional blast furnace technology since there is a more complicated process inside
the furnace that needs constant attention for successful operation. Automating the basicity
control of this plant is one step toward production operation of this pilot plant, which would
mean 30% carbon emission reduction compared to traditional blast furnaces and large cost
savings because HIsarna does not require a pellet plant preprocessing of the input materials.

The thesis discussed the following topics: First we created a grey-box nonlinear system model
which enabled us to model the relevant plant behaviour for different ore mixtures. We fitted
the model parameters by a parameter search method that was guaranteed to find a solu-
tion near the global optimum if certain smoothness conditions of the cost function were met.
Next we evaluated our system model extensively by examining the error histograms on the
validation dataset and the correlation between the model errors and the plant inputs and
states. We concluded that our system model is adequate for controller synthesis since we ob-
served zero mean model errors and no or low correlation coefficients. For controller synthesis
we used Value Iteration. We needed a continuous value function because our system model
had a continuous state space. We selected multilinear approximation of the continuous value
function as our approach since we did not have any knowledge of the expected shape of the
value function. We used the same multilinear interpolation technique to derive a continuous
controller.

In the controller evaluation part of the thesis the challenge was how to evaluate the expected
performance of the controller on the real system without actually operating the furnace with
the controller. It is necessary the validate the controller virtually first because HIsarna is
a multi-million dollar project and incorrect operation of the plant can damage the furnace.
We settled on comparing the performance of the recorded operator runs versus the simulated

Master of Science Thesis CONFIDENTIAL G. Vitanov

70 Conclusions

controller performance with our stochastic system model in two performance metrics: First
we compared how the operator and the controller adjust to deviations of the plant basicity
in one time step which yielded favorable results for the controller. Then we compared the
operator and the controller performance starting from the same initial state but simulating
for the same number of time steps ahead as we have recorded data. Again on average the
controller outperforms the operator according to our running cost function that we we used
in the dynamics programming formulation and in the worst case from 1000 simulations has
comparable performance to the operator. From these results we conclude that the achieved
controller has good potential for real world application but we point to several future work
improvement points that can greatly increase the controller performance such as using a
more accurate system model or using a different grid for the value function parametrization
or smooth approximation of the value function.

G. Vitanov CONFIDENTIAL Master of Science Thesis

Appendix A

Code snippets

This appendix contains code snippets used during the thesis.

Algorithm A.1: Data read and label convert
1 # Slag inv. data & Run Data
2 data = pd . read_csv (workdir+"/data/Historian_Data_Consumption.csv" , sep=";

" , decimal=",")
3 S_data = pd . read_csv (workdir+"/data/Slaktap_Data_run3_2.csv" , sep="," ,

decimal=".")
4
5 # column name translation file
6 data_H2S = pd . read_csv (workdir + "/data/columns_H2G.csv" , sep=";")
7
8 # Create translation dictionaries to rename columns in dataset to ’

Standard’
9 dict_H2S = dict (zip (data_H2S ["His_database"] , data_H2S ["G_names"]))

10 data . rename (columns=dict_H2S , inplace=True)

Algorithm A.2: Shift timelables of Slagtap data
1 # Reformat date columns as needed , round to minutes ,
2 data ["DateTime"] = pd . to_datetime (
3 data . DateTime . str . replace ("T" , " " , regex=False) . str . replace (
4 "Z" , ".000" , regex=False)) . round ("min")
5
6 # And Slag data is different timezone (substract 2h)
7 S_data ["DateTime"] = (pd . to_datetime (S_data . DateTime) . round ("min")
8 − np . timedelta64 (2 , "h"))

Algorithm A.3: Reformat data values
1 data ["slag_inventory_calc"] = data . slag_inventory_calc ∗ 1000
2 data ["Slag_inv"] = data . Slag_inv ∗ 1000
3 data ["CaO_rate"] = data . CaO_15min ∗ 4
4 data ["Coal_rate"] = data . Coal_rate_1 + data . Coal_rate_2

Master of Science Thesis CONFIDENTIAL G. Vitanov

72 Code snippets

5 data ["M_Slag_SiO2"] = data . M_Slag_SiO2 / 100
6 data ["M_Slag_CaO"] = data . M_Slag_CaO / 100

Algorithm A.4: Transform slag inv. dataset
1 # get corrected amount of tapping
2 slag_mptap_opt [0] = np . concatenate (([S_data . Slag_mptap . values [0]] ,
3 (S_data . Slag_inv_corr . values [: −1]
4 + S_data . HCM_make . values [1 :] ∗ 1 0 0 0
5 − S_data . Slag_inv_corr . values [1 :])

))
6
7 # get intersection of datasets
8 s_ind , slag_m = np . intersect1d (S_data . DateTime . values , data . DateTime .

values ,
9 assume_unique=True , return_indices=True)

[1 : 3]
10 s_ind = s_ind [slag_m < end] # intersect indexes of S_data (bool)
11 slag_m = slag_m [slag_m < end] # tapping times in ’data indices’
12
13 # chop the mptap -s to length
14 slag_mptap_opt [0] = slag_mptap_opt [0] [s_ind]
15
16 # Get slag inventory meas. uncorrected , and corrected
17 Slag_inv_m_opt [0] = S_data . Slag_inv_corr . values [s_ind] + slag_mptap_opt

[0]

Algorithm A.5: Create SiO2, CaO and input amounts measurements
1 def meas_at_t (dat , slag_m) : # get measurement at only slag measure times
2 return dat [slag_m]
3
4 def create_U (data , slag_m) :
5 u = np . zeros ((len (slag_m) −1 ,3))
6 for i in range (len (slag_m) −1) :
7 t0 = slag_m [i]
8 t1 = slag_m [i+1]
9

10 sum_o = np . sum (data . Ore_rate . values [t0 : t1]) # injected ore
between t0 and t1

11 sum_c = np . sum (data . Coal_rate . values [t0 : t1])
12 sum_l = np . sum (data . CaO_rate . values [t0 : t1])
13
14 u [i , :] = [sum_o , sum_c , sum_l] # create vector
15
16 # There are 60 measurements in an hour and each is [kg/h], we return

[kg]
17 return u / 60
18
19 # Get measurements of CaO, SiO2 at taps (~approx.)
20 m_offset = 70
21 CaO_f = meas_at_t (CaO_new , slag_m + m_offset)
22 SiO2_f = meas_at_t (SiO2_new , slag_m + m_offset)
23

G. Vitanov CONFIDENTIAL Master of Science Thesis

73

24 # Calc. [ore[slag_m[i]:slag_m[i+1]] for i in range(len(slag_m))]
25 U_f = create_U (data , slag_m)

Algorithm A.6: Grid search algorithm
1 def run_grid_searchprop (sys , Th0 , Y , sim , F , S_range , prec ,

prog_bar_build ,
2 scaler =[1 ,1 , 1] , allow=0, u_dim=0) :
3 """Find the best Theta with a grid search"""
4 # S_range = [[xa,xb],[ya,yb],[za,zb]]
5 # Create grid points
6 Th_grid = np . array (np . meshgrid (np . arange (S_range [0 , 0] , S_range [0 , 1]

+ prec , prec) ,
7 np . arange (S_range [1 , 0] , S_range [1 , 1]

+ prec , prec) ,
8 np . arange (S_range [2 , 0] , S_range [2 , 1]

+ prec , prec)
9)) . T . reshape (−1 ,3)

10 Th_len = len (Th0)
11 n = len (Th_grid)
12
13 # Theta value for each grid point
14 Th_arr = np . outer (np . ones (n+1) , Th0) . astype (’float’) ; # n+1 x

Theta ,
15 # predicted X array
16 X_arr = np . zeros ((n+1, u_dim , len (scaler))) # n+1 x sim

output
17 # Cost value array
18 cost_arr = np . zeros (n+1) # n+1 x

cost
19
20 # -------------SIMULATE n times -----------
21 for i in range (1 , n+1) :
22 Th_arr [i , np . where (allow)] = Th_grid [i−1]
23 # save cost and sim output
24 cost_arr [i] , X_arr [i] = err (sys , Th_arr [i] , Y , scaler , sim , F)
25
26 return Th_arr , cost_arr , X_arr ;

Algorithm A.7: Distribution fitting
1 mean , var = stats . distributions . norm . fit (temp) # Fit normal distribution

to error histograms
2 border = max (abs (temp)) # Largest error
3 x = np . linspace(−border , border , 2 00) # linspace to plot normal

distr.
4 fitted_pdf = stats . distributions . norm . pdf (x , mean , var) # calc. pdf

values of normal dist.

Algorithm A.8: Discretizing the model error set.
1 lim = 5∗np . max (abs (cov ∗∗0 . 5)) # limits for the integral
2 # grid of x,y points
3 X , Y = np . meshgrid (np . linspace(−lim , lim , 1 000) , np . linspace(−lim , lim , 1 000))

Master of Science Thesis CONFIDENTIAL G. Vitanov

74 Code snippets

4 # Create list from X,Y
5 xy = np . concatenate ((X [: , : , None] , Y [: , : , None]) , axis=2) . reshape ((−1 ,2))
6 # Calculate the pdf at these xy grid points
7 Z = gauss_2D_pdf (xy , mean , cov) . reshape ((1000 ,1000))
8
9 zsum = Z . sum () # calculate the sum of our points

10 z = Z/zsum # Correction so integral is equal to 1 (as len(x)->inf Z.
sum->1)

Algorithm A.9: Calculate the value of the pdf at the 99-th percent contour line of the error
distribution

1 t = np . linspace (0 , z . max () , 1000) # contour heights array
2 integral = ((z >= t [: , None , None]) ∗ z) . sum (axis =(1 ,2)) # integrates the

pdf
3 f = interpolate . interp1d (integral , t) # interpolates the integral
4 t_contours = f (np . array ([0 . 9 9])) # Select percentile line here,

selects a contour line (height value)

Algorithm A.10: DP discrete error set
1 # Create grid with error values to be used in DP
2 zr = z . reshape ((−1 ,1))
3 ret = np . array ([xy [i] for i in range (len (xy)) if zr [i] > t_contours [0]])
4 lim2 = np . max (abs (ret) , axis=0) # Find the limits of the 99-th

percentile line
5
6 X1 , Y1 = np . meshgrid (np . linspace(−lim2 [0] , lim2 [0] , 20) , np . linspace(−

lim2 [1] , lim2 [1] , 20))
7 x1 = np . concatenate ((X1 [: , : , None] , Y1 [: , : , None]) , axis=2) . reshape ((−1 ,2))
8
9 # Return the points inside the percentile line

10 ret = np . array ([[xi [0] , xi [1] , gauss_2D_pdf (xi , mean , cov)] for xi
11 in x1 if gauss_2D_pdf (xi , mean , cov) /zsum >

t_contours [0]])
12 ret [: , 2] = ret [: , 2] / ret [: , 2] . sum () # make them sum up to 1
13
14 bins = np . zeros ((len (ret) , 4) , dtype=x_type) # bins is 4D as X0
15 bins [: , : 2] = ret [: , 0 : 2] . astype (x_type)
16 heights = ret [: , 2] . astype (x_type)

Algorithm A.11: Calculating predicted next states X+ form X0 and U

1 def Xn_calc (B , SiO2_bins , CaO_linsp , Ore_bins , Coal_bins , U_c_bins ,
SiO2_mean , x_type=np . float32) :

2 """Calc B2"""
3 # ----------BU Calc.--------
4 U_h = np . moveaxis (np . array (np . meshgrid (Ore_bins , Coal_bins , U_c_bins

, copy=False)) ,
5 [0 , 2 , 3] , [3 , 0 , 2])
6 U_h [: , : , : , 1] += U_h [: , : , : , 0] / 1 .83 # 1.83 = U_f[:,0]/U_f[:,1] -> Uf1

= Uf0 / 1.83
7 BU = np . dot (U_h , B . T) # --------Checked
8

G. Vitanov CONFIDENTIAL Master of Science Thesis

75

9 # ----------X0 Calc.--------
10 X_h = np . vstack ((np . ones (len (CaO_linsp) , dtype=x_type) / SiO2_mean ,
11 np . ones (len (CaO_linsp) , dtype=x_type) ,
12 CaO_linsp)
13) . T
14 X0 = np . multiply . outer (SiO2_bins . T , X_h) # --------Checked
15
16 # -----------Xn Calc.--------
17 Xn = np . empty ((np . hstack ((X0 . shape [: −1] ,
18 BU . shape [: −1] ,
19 [4]))
20) , dtype=np . float32) # Create empty Xn array
21 Xn [: , : , : , : , : , 2] = np . array (range (Xn . shape [2]) , dtype=np . int32) [None ,

None , : , None , None]
22 Xn [: , : , : , : , : , 3] = np . array (range (Xn . shape [3]) , dtype=np . int32) [None ,

None , None , : , None]
23 for i in range (X0 . shape [0]) :
24 temp = X0 [i , : , None , None , None , :] + BU [None , : , : , : , :]
25 Xn [i , : , : , : , : , : 2] = (temp [: , : , : , : , 1 :]) . astype (np . float32)
26
27 # Simulate slag tap if we go above a certain treshold of slag

inventory
28 for i in range (2) :
29 # Tap where SiO2_m > max(SiO2_measured) - 500kg
30 idxes = np . where (Xn [: , : , : , : , : , 0] > np . max (SiO2_bins) − 500)
31 # calc. multiplier for tapped indexes
32 slg = Xn [idxes] [: , 0] / SiO2_mean
33 slg = (slg −6000)/slg
34 # modify tapped indexes with multiplier
35 Xn [: , : , : , : , : , : 2] [idxes] = slg [: , None] ∗ Xn [idxes] [: , : 2]
36 print (’States that violate border:’ , np . sum (Xn [: , : , : , : , : , 0] > np . max (

SiO2_bins)))
37 return Xn , X0

Algorithm A.12: Running cost function: f_cost_R()
1 @vectorize ([’float32(float32)’] , nopython = True)
2 def f_cost_R (b2) :
3 """Running Cost function"""
4 if b2 >1.30 or b2 <1.20:
5 return 1000
6 else :
7 return 100000∗(1.25 − b2) ∗∗2

Algorithm A.13: Modified running cost function
1 @vectorize ([’float32(float32)’] , nopython = True)
2 def f_cost_R (b2) :
3 """Running Cost function"""
4 if b2 >1.30 :
5 return 1000
6 if b2 <1.2
7 return 250
8 if b2 <1.25

Master of Science Thesis CONFIDENTIAL G. Vitanov

76 Code snippets

9 return 25000∗(1.25 −b2) ∗∗2
10 else :
11 return 100000∗(1.25 − b2) ∗∗2

Algorithm A.14: Function to find the index of neighbouring points
1 def id_from_m (x0 , x0_min , x0_size , x0_len) :
2 x0id = (x0 − x0_min) / x0_size
3 x0idx = max (min (int (np . floor (x0id)) , x0_len − 2) , 0)
4 x0idp = x0id − x0idx
5 return x0idx , x0idp

Algorithm A.15: Interpolate JT (x+ + w))
1 Sidx , Sidp = id_from_m (x0 , SiO2_min , SiO2_size ,

SiO2_len)
2 Caidx1 , Caidp1 = id_from_m (x1/SiO2_bins [Sidx] , CaO_min , CaO_size ,

CaO_len)
3 Caidx2 , Caidp2 = id_from_m (x1/SiO2_bins [Sidx +1] , CaO_min , CaO_size ,

CaO_len)
4
5 ((1 − Sidp) ∗ ((1 − Caidp1) ∗ cost_T [Sidx , Caidx1 , x2a , x3a]
6 + Caidp1 ∗ cost_T [Sidx , Caidx1+1,x2a , x3a])
7 + Sidp ∗ ((1 − Caidp2) ∗ cost_T [Sidx+1,Caidx2 , x2a , x3a]
8 + Caidp2 ∗ cost_T [Sidx+1,Caidx2+1,x2a , x3a]))

Algorithm A.16: JT calc

1 def calc_JTmn_wrapper (cost_R , Xn , grid_args , bins , heights , n=30) :
2
3 diff = −10 # initial value , can be any negative
4 prev_diff = −100 # initial value , negative , not = diff
5 gamma = 0.5 # discount factor in DP
6
7 # Calc. cost and controller in T-1
8 U_N , cost_T = cost_min_U (cost_R)
9 U_arr . append (U_N) # store controller arrays in step T, T-1, ...

10 cost_arr . append (cost_T) # store cost arrays in step T,T-1,...
11
12 # Calculate DP problem n times
13 for i in range (n) :
14 EJN = parallel_calc (E_JN ,
15 Xn [: , : , : , : , : , 0] ,
16 Xn [: , : , : , : , : , 1] ,
17 Xn [: , : , : , : , : , 2] ,
18 Xn [: , : , : , : , : , 3] ,
19 parallel=parallel)
20 U_N , cost_T = cost_min_U (cost_R + gamma ∗ EJN)
21
22 U_arr . append (U_N)
23 cost_arr . append (cost_T)
24
25 # Calculate how many cells of the optimal control table have

changed in this

G. Vitanov CONFIDENTIAL Master of Science Thesis

77

26 # iteration
27 if i > 0 :
28 diff = np . sum (np . abs (U_N − U_arr [−2]) > 0)
29 print (diff)
30 if prev_diff == 0 and diff == 0 : # if none changed then stop

iterating
31 break ;
32 prev_diff = diff
33
34 # return U_arr[-1]
35 return U_arr , cost_arr

Algorithm A.17: JN
1 @vectorize ([’float32(float32 , float32 , float32 , float32)’] , nopython =

True)
2 def JN (x0 , x1 , x2 , x3) :
3 """ Calculates JT-n(x+,w)"""
4 def id_from_m (x0 , x0_min , x0_size , x0_len) :
5 x0id = (x0 − x0_min) / x0_size
6 x0idx = max (min (int (np . floor (x0id)) , x0_len − 2) , 0)
7 x0idp = x0id − x0idx
8 return x0idx , x0idp
9

10 Sidx , Sidp = id_from_m (x0 , SiO2_min , SiO2_size , SiO2_len)
11 Caidx1 , Caidp1 = id_from_m (x1 / SiO2_bins [Sidx] ,
12 CaO_min , CaO_size , CaO_len)
13 Caidx2 , Caidp2 = id_from_m (x1 / SiO2_bins [Sidx +1] ,
14 CaO_min , CaO_size , CaO_len)
15
16 x2a = int (x2)
17 x3a = int (x3)
18
19 return ((1 − Sidp) ∗ ((1 − Caidp1) ∗ cost_T [Sidx , Caidx1 , x2a , x3a

]
20 + Caidp1 ∗ cost_T [Sidx , Caidx1+1,x2a , x3a

])
21 + Sidp ∗ ((1 − Caidp2) ∗ cost_T [Sidx+1,Caidx2 , x2a , x3a

]
22 + Caidp2 ∗ cost_T [Sidx+1,Caidx2+1,x2a , x3a

]))

Algorithm A.18: EJN
1 @vectorize ([’float32(float32 , float32 , float32 , float32)’] , nopython =

True)
2 def E_JN (x0 , x1 , x2 , x3) :
3 """Calculates JT-n(x+) = E[JT-n(x+,w)] = Sum_i[JT-n(x+,wi)*p(wi)]"""
4 return np . dot (JN (x0+bins [: , 0] , x1+bins [: , 1] , x2+bins [: , 2] , x3+bins

[: , 3]) , heights)

Master of Science Thesis CONFIDENTIAL G. Vitanov

78 Code snippets

Algorithm A.19: cost_min_U
1 def cost_min_U (cost_U) :
2 """ This is the minimization for selecting the best U
3 returns |indices of optimal U|,|cost of optimal U|
4 Works on min 2D array , minimizes last dim."""
5 sh=0
6 if len (cost_U . shape) > 2 : # if not 2D -> transform
7 sh = cost_U . shape
8 cost_U = cost_U . reshape ((−1 ,sh [−1]))
9

10 U_opt = np . argmin (cost_U , axis=1)
11 cost_Tmn = cost_U [np . arange (cost_U . shape [0]) , U_opt]
12
13 if sh : # back transform
14 U_opt = U_opt . reshape ((sh [: −1]))
15 cost_Tmn = cost_Tmn . reshape ((sh [: −1]))
16
17 return U_opt , cost_Tmn

Algorithm A.20: parallelcalc

1 def parallel_calc (func , Var1 , Var2 , Var3 =[] , Var4 =[] , parallel=1) :
2 """
3 f - function to parallellize ,
4 Var1 - valiable to parallelize by (x0)
5 Var2 - x1
6 """
7 if parallel :
8 def ff (func , r , out , Var1 , Var2 , Var3 =[] , Var4 =[]) :
9 res = {’r’ : r}

10 if len (Var3) == 0 :
11 res [’C’] = func (Var1 , Var2)
12 else :
13 res [’C’] = func (Var1 , Var2 , Var3 , Var4)
14 out . put (res)
15
16 first = True
17 result =[]
18 out_p = Queue ()
19 ranges = [x for x in np . array_split (range (Var1 . shape [0]) ,

cpu_count ())
20 if x . size != 0]
21 open_processes =[]
22
23 for r in ranges :
24 if len (Var3) == 0 :
25 x = Process (target = ff , args=(func , r , out_p , Var1 [r] ,

Var2 [r] ,))
26 else :
27 x = Process (target = ff , args=(func , r , out_p , Var1 [r] ,

Var2 [r] ,
28 Var3 [r] , Var4 [r] ,))
29 open_processes . append (x)

G. Vitanov CONFIDENTIAL Master of Science Thesis

79

30 x . start ()
31
32 for process in open_processes :
33 temp = out_p . get ()
34 if first :
35 result = np . empty ((np . hstack ((Var1 . shape [0] , temp [’C’] .

shape [1 :]))) ,
36 dtype=np . float32)
37 first = False
38 result [temp [’r’]] = temp [’C’]
39
40 return result
41
42 else :
43 if len (Var3) == 0 :
44 return func (Var1 , Var2)
45 else :
46 return func (Var1 , Var2 , Var3 , Var4)

Algorithm A.21: controller implementation
1 def controller (cont_tab , states , inputs , grids) :
2 """Needed for unknown numba type inference reasons"""
3
4 def controller_wrapped (cont_table , states , inputs ,
5 SiO2_bins , SiO2_min , SiO2_size , SiO2_len ,

CaO_min , CaO_size ,
6 CaO_len , Ore_bins , Ore_min , Ore_size , Ore_len ,

Coal_min ,
7 Coal_size , Coal_len , Lime_min , Lime_size ,

Lime_len) :
8 """ Apply controller """
9 def id_from_m (x0 , x0_min , x0_size , x0_len) :

10 """Creates index x0idx from an amount x0, and returns
distance measure x0idp"""

11 x0id = (x0 − x0_min) / x0_size
12 x0idx = max (min (int (np . floor (x0id)) , x0_len − 2) , 0)
13 x0idp = x0id − x0idx
14 return x0idx , x0idp
15
16 def InputN (x0 , x1 , x2 , x3) :
17 """ Interpolates U[sio2_id ,cao_id ,Ore,Coal], *id-s are

indexes already"""
18 Oidx , Oidp = id_from_m (x2 , Ore_min , Ore_size , Ore_len)
19 Cidx1 , Cidp1 = id_from_m (x3 − Ore_bins [Oidx] / 1 . 8 3 ,
20 Coal_min , Coal_size , Coal_len)
21 Cidx2 , Cidp2 = id_from_m (x3 − Ore_bins [Oidx +1]/1 .83 ,
22 Coal_min , Coal_size , Coal_len)
23 x0a = int (x0)
24 x1a = int (x1)
25 return ((1 − Oidp) ∗ ((1 − Cidp1) ∗ cont_table [x0a , x1a ,

Oidx , Cidx1]

Master of Science Thesis CONFIDENTIAL G. Vitanov

80 Code snippets

26 + Cidp1 ∗ cont_table [x0a , x1a ,
Oidx , Cidx1+1])

27 + Oidp ∗ ((1 − Cidp2) ∗ cont_table [x0a , x1a ,
Oidx+1,Cidx2]

28 + Cidp2 ∗ cont_table [x0a , x1a ,
Oidx+1,Cidx2+1]))

29
30 def UN (x0 , x1 , x2 , x3) :
31 """ Interpolates U[SiO2,Cao,-,-] -,- are not interpolated yet

"""
32 Sidx , Sidp = id_from_m (x0 , SiO2_min , SiO2_size , SiO2_len)
33 Caidx1 , Caidp1 = id_from_m (x1 / SiO2_bins [Sidx] ,
34 CaO_min , CaO_size , CaO_len)
35 Caidx2 , Caidp2 = id_from_m (x1 / SiO2_bins [Sidx +1] ,
36 CaO_min , CaO_size , CaO_len)
37
38 return ((1 − Sidp) ∗ ((1 − Caidp1) ∗ InputN (Sidx , Caidx1

, x2 , x3)
39 + Caidp1 ∗ InputN (Sidx , Caidx1

+1,x2 , x3))
40 + Sidp ∗ ((1 − Caidp2) ∗ InputN (Sidx+1,Caidx2

, x2 , x3)
41 + Caidp2 ∗ InputN (Sidx+1,Caidx2

+1,x2 , x3)))
42
43 U_arr = []
44 for i in range (len (inputs)) :
45 U_arr . append (UN (states [i , 0] , states [i , 1] , inputs [i , 0] ,

inputs [i , 1]))
46
47 return Lime_size ∗ np . maximum (np . minimum (np . array (U_arr) ,

Lime_len) , Lime_min)
48
49 return controller_wrapped (cont_tab ,
50 states ,
51 inputs ,
52 grids [’SiO2_prop’] [’bins’] ,
53 grids [’SiO2_prop’] [’min’] ,
54 grids [’SiO2_prop’] [’size’] ,
55 grids [’SiO2_prop’] [’len’] ,
56 grids [’CaO_prop’] [’min’] ,
57 grids [’CaO_prop’] [’size’] ,
58 grids [’CaO_prop’] [’len’] ,
59 grids [’Ore_prop’] [’bins’] ,
60 grids [’Ore_prop’] [’min’] ,
61 grids [’Ore_prop’] [’size’] ,
62 grids [’Ore_prop’] [’len’] ,
63 grids [’Coal_prop’] [’min’] ,
64 grids [’Coal_prop’] [’size’] ,
65 grids [’Coal_prop’] [’len’] ,
66 grids [’Lime_prop’] [’min’] ,
67 grids [’Lime_prop’] [’size’] ,
68 grids [’Lime_prop’] [’len’])

G. Vitanov CONFIDENTIAL Master of Science Thesis

Bibliography

[1] R. Nightingale, R. Dippenaar, and W.-K. Lu, “Developments in blast furnace process
control at port kembla,” Metallurgical and Materials Transactions B, vol. 31, pp. 993–
1003, 2000.

[2] A. Das, J. Maiti, and R. Banerjee, “Process control strategies for a steel making furnace
using ann with bayesian regularization and anfis,” Expert Systems with Applications,
vol. 37, no. 2, pp. 1075–1085, 2010.

[3] V. M. Gasparini, L. F. A. de Castro, A. C. B. Quintas, V. E. de Souza Moreira, A. O.
Viana, and D. H. B. Andrade, “Thermo-chemical model for blast furnace process control
with the prediction of carbon consumption,” Journal of Materials Research and Tech-
nology, vol. 6, no. 3, pp. 220–225, 2017.

[4] B. Vasu Murthy, Y. V. Pavan Kumar, and U. V. Ratna Kumari, “Fuzzy logic intel-
ligent controlling concepts in industrial furnace temperature process control,” in 2012
IEEE International Conference on Advanced Communication Control and Computing
Technologies (ICACCCT), pp. 353–358, 2012.

[5] V. Rybolovlev, A. Krasnobaev, N. Spirin, and V. Lavrov, “Principles of the development
and introduction of an automated process control system for blast-furnace smelting at
the magnitogorsk metallurgical combine,” Metallurgist, vol. 59, 2015.

[6] Īsmail Ekmekçi, Y. Yetisken, and Ünal Çamdali, “Mass balance modeling for electric arc
furnace and ladle furnace system in steelmaking facility in turkey,” Journal of Iron and
Steel Research, International, vol. 14, no. 5, pp. 1–55, 2007.

[7] O. Y. Sheshukov, I. V. Nekrasov, A. V. Sivtsov, M. M. Tsimbalist, A. I. Stepanov, D. K.
Egiazaryan, and V. V. Kataev, “Electric characteristic of steel-making electric furnace
and the process control,” in Materials, Mechanical Engineering and Manufacture, vol. 268
of Applied Mechanics and Materials, pp. 1376–1379, Trans Tech Publications Ltd, 2013.

[8] B. T.A, “A multilevel resource-saving blast furnace process control,” in Bulletin of the
South Ural State University, vol. 21 of Computer Technologies, Automatic Control, Radio
Electronics, p. 136–146, 2021.

Master of Science Thesis CONFIDENTIAL G. Vitanov

82 Bibliography

[9] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjalmars-
son, and A. Juditsky, “Nonlinear black-box modeling in system identification: a unified
overview,” Automatica, vol. 31, no. 12, pp. 1691–1724, 1995.

[10] T. Bohlin, Practical grey-box process identification. Springer-Verlag London Limited,
2006.

[11] L. Ljung, System Identification, pp. 163–173. Boston, MA: Birkhäuser Boston, 1998.

[12] L. Ljung, “Prediction error estimation methods,” Circuits, Systems and Signal Process-
ing, vol. 21, no. 1, p. 11–21, 2002.

[13] I. J. Myung, “Tutorial on maximum likelihood estimation,” Journal of Mathematical
Psychology, vol. 47, no. 1, pp. 90–100, 2003.

[14] B. De Moor, P. Van Overschee, and W. Favoreel, Algorithms for Subspace State-Space
System Identification: An Overview, pp. 247–311. Boston, MA: Birkhäuser Boston, 1999.

[15] H. Garnier, “Direct continuous-time approaches to system identification. overview and
benefits for practical applications,” European Journal of Control, vol. 24, pp. 50–62,
2015.

[16] P. M. P. Christodoulos A. Floudas, Encyclopedia of Optimization. Springer New York,
NY, 2009.

[17] A. Ruhe, “Accelerated gauss-newton algorithms for nonlinear least squares problems,”
BIT Numerical Mathematics, vol. 19, no. 3, pp. 356–367, 1979.

[18] K. Levenberg, “A method for the solution of certain problems in least squares,” Quart.
Appl. Math., vol. 2, p. 164–168, 1944.

[19] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,”
SIAM J. Appl. Math., vol. 11, p. 431–441, 1963.

[20] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
Networks, vol. 12, no. 1, pp. 145–151, 1999.

[21] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the monte carlo method is
so important today,” WIREs Computational Statistics, vol. 6, no. 6, pp. 386–392, 2014.

[22] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated annealing-based mul-
tiobjective optimization algorithm: Amosa,” IEEE Transactions on Evolutionary Com-
putation, vol. 12, no. 3, pp. 269–283, 2008.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[24] S. Bhojanapalli, B. Neyshabur, and N. Srebro, “Global optimality of local search for low
rank matrix recovery,” in Advances in Neural Information Processing Systems (D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, Curran Associates,
Inc., 2016.

G. Vitanov CONFIDENTIAL Master of Science Thesis

83

[25] D. P. Bertsekas, Neuro-dynamic programmingNeuro-Dynamic Programming, pp. 2555–
2560. Boston, MA: Springer US, 2009.

[26] G. Infanger, “Chapter 5 - dynamic asset allocation strategies using a stochastic dynamic
programming aproach,” in Handbook of Asset and Liability Management (S. Zenios and
W. Ziemba, eds.), pp. 199–251, San Diego: North-Holland, 2008.

[27] J. Rust, “Chapter 14 numerical dynamic programming in economics,” vol. 1 of Handbook
of Computational Economics, pp. 619–729, Elsevier, 1996.

[28] L. Marescot, G. Chapron, I. Chadès, P. L. Fackler, C. Duchamp, E. Marboutin, and
O. Gimenez, “Complex decisions made simple: a primer on stochastic dynamic program-
ming,” Methods in Ecology and Evolution, vol. 4, no. 9, pp. 872–884, 2013.

[29] J. M. Hutchinson and J. M. McNamara, “Ways to test stochastic dynamic programming
models empirically,” Animal Behaviour, vol. 59, no. 4, pp. 665–676, 2000.

[30] A. Gjelsvik, B. Mo, and A. Haugstad, Long- and Medium-term Operations Planning
and Stochastic Modelling in Hydro-dominated Power Systems Based on Stochastic Dual
Dynamic Programming, pp. 33–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[31] S. Yakowitz, “Dynamic programming applications in water resources,” Water Resources
Research, vol. 18, no. 4, pp. 673–696, 1982.

[32] J. N. Hooker, “Decision diagrams and dynamic programming,” in Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(C. Gomes and M. Sellmann, eds.), (Berlin, Heidelberg), pp. 94–110, Springer Berlin
Heidelberg, 2013.

[33] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1994.

[34] M. Sniedovich, Dynamic Programming: Foundations and Principles, Second Edition.
CRC Press., 2010.

[35] R. Bellman, “The theory of dynamic programming,” Bull. Amer. Math. Soc., vol. 60,
pp. 503–515, 1954.

[36] J. Rust, “Using randomization to break the curse of dimensionality.,” Econometrica,
vol. 65, no. 3, pp. 485–516, 1997.

Master of Science Thesis CONFIDENTIAL G. Vitanov

84 Bibliography

G. Vitanov CONFIDENTIAL Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Furnace Process Control
	Historic developments
	Control objectives
	Possible modelling frameworks
	Model based controllers
	Model free controllers

	Conclusions

	Modelling the plant
	Model Types
	White box models
	Grey box models
	Black box models

	Model building

	Data Preprocessing
	System identification techniques
	Overview of identification methods
	Prediction error methods
	Subspace identification
	Instrumental variable methods

	Conclusions

	Numerical Optimization Methods
	Local search methods
	Global search methods
	Box-search
	Monte-Carlo simulations
	Simulated Annealing
	Random initialization

	Conclusions

	Parameter search
	Model evaluation
	Error Histograms
	Correlation coefficients

	Dynamic Programming
	Introduction
	Discrete MDPs
	Continuous MDP approaches
	The curse of dimensionality
	Conclusions

	Controller Synthesis
	Introduction
	Starting states and inputs
	Predicted states
	Running cost function
	Interpolating the value function
	Calculate the expectation
	Value iteration

	Controller
	Controller validation

	Conclusions

	Appendices
	Code snippets

	Back Matter
	Bibliography

