

Delft University of Technology

CityJSON in QGIS: Development of an open‐source plugin

Vitalis, S.; Arroyo Ohori, G.A.K.; Stoter, J.E.

DOI
10.1111/tgis.12657
Publication date
2020
Document Version
Final published version
Published in
Transactions in GIS

Citation (APA)
Vitalis, S., Arroyo Ohori, G. A. K., & Stoter, J. E. (2020). CityJSON in QGIS: Development of an open‐
source plugin. Transactions in GIS, 24(5), 1147-1164. https://doi.org/10.1111/tgis.12657

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/tgis.12657
https://doi.org/10.1111/tgis.12657

Transactions in GIS. 2020;24:1147–1164.	﻿	  |  1147wileyonlinelibrary.com/journal/tgis

DOI: 10.1111/tgis.12657

R E S E A R C H A R T I C L E

CityJSON in QGIS: Development of an
open-source plugin

Stelios Vitalis  | Ken Arroyo Ohori  | Jantien Stoter

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2020 The Authors. Transactions in GIS published by John Wiley & Sons Ltd

3D Geoinformation Group, Delft University
of Technology, Delft, the Netherlands

Correspondence
Stelios Vitalis, 3D Geoinformation Group,
Delft University of Technology, Julianalaan
134, Delft, Zuid Holland 2628BL, the
Netherlands.
Email: s.vitalis@tudelft.nl

Funding information
European Research Council; European
Union’s Horizon 2020 research and
innovation programme, Grant/Award
Number: 677312 UMnD

Abstract
When QGIS 3.0 was released in 2018, it added support
for 3D visualisation. At the same time, CityJSON has been
developing as an easy-to-use JavaScript Object Notation
(JSON) encoding for 3D city models using the CityGML 2.0
data model. Together, this opened the possibility to sup-
port semantic 3D city models in the popular open-source
GIS software for the first time. In order to add support for
3D city models in QGIS, we have developed a plugin that
enables CityJSON datasets to be loaded. The plugin parses
a CityJSON file and analyses its tree structure to identify
all city objects. Then, the geometry and attributes of every
city object are transformed into QGIS features and divided
into layers according to user preferences. CityJSON pars-
ing was proven to be straightforward and consistent when
tested against several open datasets. One of the biggest
challenges we faced, though, was mapping CityJSON’s hier-
archical data structure to the relational model of QGIS. We
undertook this issue by providing various methods on how
geometries from the model are loaded as QGIS features.
We intend to use the plugin for educational purposes in our
university and we believe it can be proven a worthy tool for
researchers and practitioners.

www.wileyonlinelibrary.com/journal/tgis
mailto:﻿￼
http://orcid.org/0000-0003-1886-0722
http://orcid.org/0000-0002-9863-0152
http://creativecommons.org/licenses/by/4.0/
mailto:s.vitalis@tudelft.nl

1148  |     VITALIS et al.

1  | INTRODUC TION

For many years three-dimensional (3D) city models were mainly used for visualization purposes, but recently an
increased demand for processing applications based on 3D urban data has been identified (Biljecki, Stoter, Ledoux,
Zlatanova, & Çöltekin, 2015). For instance, such models have been used for applications such as 3D cadastres,
facilities management and emergency response. As a result, more organizations, such as national agencies, are
investing in and producing 3D city models, mainly offering them as open data (Ho, Crompvoets, & Stoter, 2018).

CityGML is the most popular standard for the representation of 3D city models (Open Geospatial Consortium,
2012). Although it has been available for more than a decade, there exists only a limited amount of support for
handling CityGML files in GIS software. Furthermore, the support is mainly through proprietary tools, such as
FME (https://www.safe.com/fme/fme-deskt​op/) and ArcGIS (https://www.esri.com/arcgi​s/about​-arcgis), where
the high cost of acquisition restricts access for researchers and practitioners. Meanwhile, loading CityGML suc-
cessfully in open-source GIS software requires complicated and fragile processes using external tools (https://3d.
bk.tudel​ft.nl/svita​lis/cityg​ml/gdal/2017/07/24/messi​ng-aroun​d-with-cityg​ml-on-gdal-2.2.html).

One of the main reasons for CityGML’s poor interoperability is the complex and verbose nature of its main
encoding, which is based on GML. For instance, there are at least 26 different ways of representing a simple
square through GML (https://eroua​ult.blogs​pot.com/2014/04/gml-madne​ss.html). Implementing software that
can robustly parse such a data format is extremely challenging.

CityJSON has recently been introduced as a JSON encoding of CityGML’s data model in order to overcome
such issues (Ledoux et al., 2019). The aim of the CityJSON data format is to provide support for almost all the
features of CityGML, while at the same time maintaining a simple file structure that allows developers to easily
manipulate CityJSON files.

Parallel to this, QGIS (QGIS Development Team, 2020) has added support for better manipulation and visual-
ization of 3D data, available since version 3.0 (https://qgis.org/en/site/forus​ers/visua​lchan​gelog​30/index.html).
This opens up the possibility of support for 3D city models in a cross-platform open-source GIS with a wide user
base in geoinformation education.

QGIS uses a relational data model where data are represented in a tabular form, which can easily represent
information from many GIS data formats, such as Esri shapefiles and GeoJSON. Nevertheless, the mapping of a
more complex data model, such as CityGML, to a relational data model is a non-trivial process. Previous attempts
to do so, such as 3dcitydb (Yao et al., 2018) which is a relational model to store CityGML data, result in a com-
plicated database schema composed of multiple tables with complicated relationships. While such a solution pro-
vides a complete representation of the original data, it is practically impossible to manage in QGIS. That is due to
the fact the GIS has very limited support for representing links between tables, which is an essential mechanism
for representing object-oriented concepts such as association and aggregation.

In order to support the loading of 3D city models in QGIS we have developed CityJSON Loader (https://plugi​
ns.qgis.org/plugi​ns/CityJ​SON-loade​r/), a plugin that enables CityJSON files to be loaded in the application. The
software parses a CityJSON file and analyzes its tree structure to identify all city objects. Then the geometry and
attributes of every city object are transformed into QGIS features. Finally, those features are stored in layers,
which are then added to the current project with 3D rendering styles.1

We developed CityJSON Loader with the intention of making CityJSON (and, thus, 3D city models) more
accessible to researchers and practitioners through general-purpose GIS software (in this case, QGIS). Loading
CityJSON in QGIS enables its extensive and powerful processing toolkit to be used on 3D city model data.
Furthermore, we believe that QGIS can act as a transformation tool for 3D city models, due to its wide support for
GIS formats through its utilization of GDAL.

In this article we provide documentation about the design choices, architecture, and modus operandi of
CityJSON Loader. Mostly, we focus on our approach to solving the problem of mapping the CityGML data model,
used by CityJSON, to the relational model of QGIS while maintaining its usability.

https://www.safe.com/fme/fme-desktop/
https://www.esri.com/arcgis/about-arcgis
https://3d.bk.tudelft.nl/svitalis/citygml/gdal/2017/07/24/messing-around-with-citygml-on-gdal-2.2.html
https://3d.bk.tudelft.nl/svitalis/citygml/gdal/2017/07/24/messing-around-with-citygml-on-gdal-2.2.html
https://erouault.blogspot.com/2014/04/gml-madness.html
https://qgis.org/en/site/forusers/visualchangelog30/index.html
https://plugins.qgis.org/plugins/CityJSON-loader/
https://plugins.qgis.org/plugins/CityJSON-loader/

     |  1149VITALIS et al.

Section 2 provides an introduction to QGIS, a description of the CityJSON data format and related work re-
garding mapping CityGML data to a relational model. Section 3 describes the main architecture of the software
developed, as well as implementation details. In addition, it explains how CityJSON data are mapped to the QGIS
tabular structure. Section 4 presents the elements of the software that interact with the user. Section 5 demon-
strates the use of CityJSON Loader with three open data sets, validating the software’s functionality against most
use-case scenarios. Finally, Section 7 presents our conclusions from developing and using the software, as well as
suggestions for future improvement.

2  | BACKGROUND

2.1 | QGIS

QGIS (http://qgis.osgeo.org/) is open-source GIS software which began as a project in 2002. It is governed by
OSGEO (https://www.osgeo.org/) and is licensed under the GNU General Public License. While its initial goal was
simply to develop a spatial data viewer, it has now evolved into a complete platform for the loading, transforma-
tion, and processing of spatial data (https://docs.qgis.org/3.10/en/docs/user_manua​l/).

Its main component is QGIS Desktop, a version of the software which runs on multiple desktop operating
systems, including Linux, macOS, and Windows. The desktop application provides support for loading and saving
to multiple vector and raster file formats through the Geospatial Data Abstraction Library (GDAL; GDAL/OGR
Contributors, 2019), as well as additional providers for web services (e.g., Web Mapping Service and Web Feature
Service).

Vector data are loaded into QGIS in a relational data model. Every feature has multiple attributes and a single
geometry. Features are grouped in layers, so that all features of a layer have the same number of fields (similar to
columns in a table of a relational database) and the same geometry type.

A plethora of processing algorithms are implemented in QGIS for overlaying, translating, and analyzing geo-
spatial data. QGIS also provides support for the execution of geospatial processing algorithms from other tools,
such as GDAL (Ose, 2018), GRASS (Lacaze, Dudek, & Picard, 2018), and SAGA (Passy & Théry, 2018). Furthermore,
processing tools are being developed for multiple research purposes, such as exploratory spatial analysis (Gil,
Varoudis, Karimi, & Penn, 2015), evaluation of aquatic ecosystems (Nielsen, Bolding, Hu, & Trolle, 2017), and clas-
sification of aerial and satellite imagery (Nielsen et al., 2017).

2.1.1 | QGIS technology and extensibility

QGIS is written in the C++ and Python programming languages. It is possible to extend its functionality by devel-
oping an application in either of those languages by utilizing its application programming interface (API).2

The QGIS Development Team maintains a central repository in order to distribute the application’s available
plugins (https://plugi​ns.qgis.org/plugi​ns/). Developers can openly upload a new plugin, thus making it easily ac-
cessible to all QGIS users directly through the application.

2.2 | CityJSON

CityJSON is a JSON encoding of the CityGML 2.0 data model (Ledoux et al., 2019). Its aim is to provide a more
storage-efficient and developer-friendly way of storing 3D city models, while providing full compatibility with the
CityGML standard.

http://qgis.osgeo.org/
https://www.osgeo.org/
https://docs.qgis.org/3.10/en/docs/user_manual/
https://plugins.qgis.org/plugins/

1150  |     VITALIS et al.

The data model provides definitions to describe urban objects (e.g., buildings and transportation infrastruc-
ture) and landscape features (e.g., terrain, vegetation, and water bodies). In CityJSON, every such feature is a
JSON object with the respective type (Figure 1), a number of attributes, and a set of geometries. The multiple
geometries of a city object correspond to different 3D representations of the object’s shape according to different
levels of detail (LoDs).

A geometry object can be an object of any of the following types: MultiPoint, MultiLineString,
MultiSurface, CompositeSurface, Solid, MultiSolid, or CompositeSolid. Intuitively, all geomet-
ric types (with the exception of MultiPoint and MultiLineString) can be considered as a set of polygons
which describe the 3D shape of an object. What differs between the types of geometry is the shape’s semantic
meaning; a Solid geometry is considered to be the volume bounded by the aforementioned polygons, while a
MultiSurface or a CompositeSurface describes a surface object without a volumetric interior composed of
those polygons. Every such polygon, which in CityJSON terminology is considered a surface, may also have an
additional semantic meaning. This means that individual surfaces can have a semantic type (e.g., WallSurface,
RoofSurface, and FloorSurface) with attributes that represent further information exclusive to that surface.

In addition to the previously mentioned explicit geometric types, CityJSON also provides support for the ef-
ficient storage of repeating geometries through the usage of geometry templates. This is done by defining a basic
geometry as a template in the file and then referencing it as a GeometryInstance in a city object. For example,
if a specific tree geometry is to be used multiple times in a city model, the tree geometry can be defined as a ge-
ometry template. Then, every tree city object can reference the template as a GeometryInstance, locating and
transforming the original geometry in 3D space.

In order to achieve storage efficiency, CityJSON also supports a compression mechanism. When a CityJSON
file is compressed, all coordinates are stored as integers and a basic transformation is defined for all of them.
Therefore, in compressed files, all coordinates have to be scaled and translated (i.e., moved) based on the trans-
formation defined. Through compression, CityJSON ensures that coordinates are normalized to a certain precision
point.

CityGML currently has very limited support for metadata and most categories are only supported via the
CityGML 3D Metadata ADE (https://github.com/tudel​ft3d/3D_Metad​ata_ADE), an application domain extension

F I G U R E 1 The available city object types according to the CityJSON specifications. A feature can be a first-
level object which describes an individual object, such as a building, or a second-level object which describes
part of a first-level object (Source: Ledoux et al., 2019).

https://github.com/tudelft3d/3D_Metadata_ADE

     |  1151VITALIS et al.

(Labetski, Kumar, Ledoux, & Stoter, 2018). In contrast to this, CityJSON has full support for metadata, both in
conformance with ISO 19115, the metadata standard specifically for geographic information (ISO, 2014), and with
further categories specific to 3D city models (e.g., LoD). Metadata can be at the city model level (e.g., presence of
materials) or at the thematic module level (e.g., number of buildings per LoD).

2.2.1 | Software support

The main tool for managing CityJSON files is cjio (https://github.com/tudel​ft3d/cjio). This is a command-line tool
that allows users to query a file and access information about the model, including statistics and metadata. It is
also capable of conducting multiple managing operations, including schema validation, compression/decompres-
sion, and the extraction of a subset of a CityJSON file. In addition to the command-line interface, cjio provides a
Python library for developers to manipulate CityJSON files and apply these operations on a data set.

citygmltools (https://github.com/cityg​ml4j/cityg​ml-tools) is software developed in Java using the cityg-
ml4j (https://github.com/cityg​ml4j/cityg​ml4j) library. Although mainly developed as a set of tools to manipulate
CityGML files, it provides support for parsing and saving CityJSON files as well. Therefore, it can be used to con-
vert CityGML files to CityJSON and vice versa.

There are a variety of other open-source tools that can manipulate and visualize CityJSON files. azul (https://
github.com/tudel​ft3d/azul) is a viewer for 3D city models for macOS, which supports the loading of CityJSON.
val3dity (https://github.com/tudel​ft3d/val3dity) can conduct the validation of 3D primitives in a CityJSON file.
3dfier (https://github.com/tudel​ft3d/3dfier) is software for the creation of 3D city models from 2D data sets,
and it can produce CityJSON models specifically.

2.3 | Object-relational impedance mismatch

Mapping objects to tables, such as in the case of relational databases, is a common issue in computer science and
practice (Keller, 1997). In the literature, this is further discussed as the general and inevitable issue of exchang-
ing data between systems, which is referred to as “impedance mismatch” (Ireland, Bowers, Newton, & Waugh,
2009). This problem is formulated by Ireland et al. (2009) as an issue caused by differences between paradigms,
languages, schemas and instances of object-oriented representation of the universe of discourse, compared to a
relational representation. In practice, this problem is normally addressed through the use of object-relational map-
ping systems. Developers use such mechanisms in object-oriented applications when they must use a relational
database for persistence.

2.3.1 | Object-relational mapping of CityGML

The CityGML data model is designed with an object-oriented approach and formulated in UML. This causes a
problem of impedance mismatch when trying to map CityGML data to a relational database. Normally, people
address such issues by transforming the data from object-oriented data models to relational data according to
the needs of their specific use case using an extract, transform and load tool, such as FME (https://www.safe.
com/fme/). Nevertheless, this requires a specific investigation of the data and is a process that has to be executed
based on the particularities of every individual data set.

The problem of mapping CityGML to a relational model without loss of information has been addressed by
3dcitydb (Yao et al., 2018). 3dcitydb is a relational schema definition for representing 3D city model data as

https://github.com/tudelft3d/cjio
https://github.com/citygml4j/citygml-tools
https://github.com/citygml4j/citygml4j
https://github.com/tudelft3d/azul
https://github.com/tudelft3d/azul
https://github.com/tudelft3d/val3dity
https://github.com/tudelft3d/3dfier
https://www.safe.com/fme/
https://www.safe.com/fme/

1152  |     VITALIS et al.

described by the CityGML data model. It also provides the tools for translating CityGML data to a database with
the respective schema and vice versa.

Due to the fact that 3dcitydb aims to provide a complete representation of the original data model, the re-
sulting schema is a complex set of tables and relationships. It is possible to use this schema as intermediate storage
to load data in GIS software, such as QGIS, but in practice only a very small portion of the schema is necessary to
visualize the required level of information. In addition, some essential functionality of GIS software, such as the
identification of the attributes of a polygon, is non-trivial as the information related to geometries is scattered in
multiple tables. In most cases, though, such information could be easily simplified in such a way that the informa-
tion and geometry are stored in one table, due to the fact that most data sets only use a very small portion of what
the data model prescribes.

For example, it is easy to assume that intuitively a building could be represented by a set of attributes that
represent its semantic information and the geometry of the building itself. Such a simple concept, though, is nor-
mally represented in 3dcitydb through multiple tables that represent the building, the geometry and any generic
attributes through multiple rows in different tables.

3  | SOF T WARE ARCHITEC TURE

CityJSON Loader works as a plugin in QGIS which parses the content of a CityJSON file and maps it to QGIS fea-
tures. As described in Section 2.2, we can assume that every city object is composed of multiple surfaces, which
in QGIS would be perceived as 3D polygons. Therefore, the software’s main task is to create QGIS features with
multi-polygon geometries that represent the objects of the city model.

Mapping the CityJSON data model to the single tabular structure of QGIS layers, where every feature has a
fixed number of fields and one geometry, is non-trivial. A simple approach is to assume that every city object can
be mapped to a feature in a QGIS layer. While this might be a good representation for simple city objects with a
single geometry (i.e., one LoD), it is not sufficient for all cases. This is due to the fact that a city object can have
more than one geometry, due to multiple LoDs. Merging multiple LoD geometries into one multi-polygon feature
would render the visualization, or any geometric processing, useless. Furthermore, CityJSON’s semantic surfaces
mechanism offers the possibility of attaching individual information to every surface. If all surfaces of a geometry
were merged into one multi-polygon QGIS feature, then all semantic information regarding the surfaces would
be lost.

3.1 | Mapping of surfaces to polygons

In order to tackle these problems, CityJSON Loader provides various options for different mappings between city
objects and QGIS features (Figure 2). This means that, depending on the user’s choice, a QGIS feature can corre-
spond to: a city object, where all geometries are represented by one multi-polygon (Figure 2a); a city object’s LoD,
where a city object is divided into multiple features (one feature per LoD geometry; (Figure 2b)); or a semantic
surface of a city object, where every surface of a city object forms its own QGIS polygon feature (Figure 2c).

3.2 | Division of features into layers

The software is also designed in such a way that the resulting features can be split into different layers according
to: their object type (e.g., Building, Road, and Terrain), or their LoD (as soon as the LoD geometries are loaded
as individual features). Those options can be combined, so that, for instance, a layer is created for every LoD of

     |  1153VITALIS et al.

F I G U R E 2 The different mappings between geometries of the city model and the resulting QGIS features. (a)
Simple mapping will create a QGIS feature for every city object in the model. (b) If the user chooses to load LoDs
(but not semantic surfaces), then every city object will have to be represented with multiple features in QGIS.
In this case, the semantic information (i.e., attributes) will be repeated. (c) If the user chooses to load semantic
surfaces, then every surface of a city object will be represented as an individual feature in QGIS. Similar to the
LoD case, the semantic information (i.e., attributes) of the city object will be repeated for every surface

ID guid LoD

1 building1 1

2 building1 2

3 road1 1

City Model

CityObject
(building1)

LoD1 LoD2

CityObject
(road1)

LoD1

SurfaceRoofSurface WallSurfaceSurface

ID guid attribute.one

1 building1 -

2 road1 -

City Model

CityObject
(building1)

LoD1 LoD2

CityObject
(road1)

FloorSurface WallSurface

RoofSurface

LoD1

WallSurface

Surface

Surface

Surface

Surface

ID guid lod semanticsurface

1 building1 1

2 building1 1

3 building1 2 RoofSurface

4 building1 2 FloorSurface

5 building1 2 WallSurface

6 building1 2 WallSurface

7 road1 1

8 road1 1

City Model

CityObject
(building1)

LoD1 LoD2

CityObject
(road1)

LoD1

Surface

Surface

FloorSurface WallSurface

RoofSurface WallSurface

Surface

Surface

(a)

(b)

(c)

SurfaceFloorSurface WallSurfaceSurface

1154  |     VITALIS et al.

every object type. This allows users to visualize and process different LoDs separately in multi-LoD data sets. In
addition, by dividing features by object type, it is easier to style and manage objects of different kinds.3

3.3 | General loading process

The software conducts the loading process in five individual steps (Figure 3). The workflow is structured in such
a way so that the different mappings or division of features to layer can be applied in a flexible way. This can be
achieved by changing the behavior of every step based on the user’s requirements.

First, the software iterates through the model’s city objects to identify all attributes contained in the data set.
During this step, a list of the attributes is constructed for use in creating the QGIS layers.

In the second step, the QGIS data sources and layers are created. This is done by enumerating the attributes
identified in the first step. Additionally, at this step certain supplementary fields might be created: one for the LoD
of the feature, in cases where the user chooses to load LoD geometries as individual features; and one for the
semantic surfaces, in cases where the user wishes to load the geometry of the surfaces of an object.

During the third step, the actual QGIS features are built. This is done following the mappings described in
Section 3.1, which means that features are built by city object, by LoD, or by semantic surface.

At the fourth step, the features created are assigned to the layers created during the second step. This is done
based on the features’ attributes and the desired division. For instance, if the user chooses to have different LoD
features in individual layers, then the respective LoD field is used by the software to decide which layer the fea-
ture is assigned to.

Finally, the layers are added to the active QGIS project. Some basic formatting is applied to the layers during
this step. The software enables 3D rendering for every layer that was created by applying the same color style
as the 2D view.4 Depending on user preferences, a rule-based styling can be applied in 3D so that features are
colored based on their semantic surface type (e.g., red for RoofSurface and white for WallSurface).

3.4 | Implementation

CityJSON Loader is written in Python 3. It utilizes the QGIS API in order to communicate with the host application.
It was originally developed in QGIS 3.2 and is compatible with all version of QGIS since 3.0.

The software’s interface uses Qt for all user interface elements. The loading dialog (Figure 4) is designed in
Qt Creator (https://doc.qt.io/qtcre​ator/). JSON parsing and manipulation of a city model’s data is done through
the json library provided by Python. There are no additional software requirements for the plugin to work, as all
aforementioned libraries are provided by the QGIS installation.

The analysis and processing of the semantic and geometric information are done by the core library of
CityJSON Loader. The core library was designed in order to implement the process described in Section 3.3.
Certain software design patterns are followed in order to allow the software’s core library to be extensible. The
main workflow is implemented depending on the strategy pattern, thus making the individual steps variable. In
addition, the functionality of every step can be adjusted by using the decorator pattern. For instance, a basic class
creates the layers by adding fields for the attributes identified in the city model. This behavior can be enhanced

F I G U R E 3 The main workflow of the CityJSON loading process by the software

https://doc.qt.io/qtcreator/

     |  1155VITALIS et al.

by applying decorative classes that will also create an lod or semanticsurface field if necessary, based on the
user’s input.

4  | USER INTER AC TION

The interaction between the software and the user mainly takes place through the loading dialog (Figure 4). This
dialog can be initiated by the shortcut provided or the appropriate menu entry found in the QGIS Vector menu.

In the dialog, the user can select a file using the operating system’s file explorer by pressing the top-right but-
ton. After a CityJSON file is selected, the main information regarding the file is shown in the dialog.

The CityJSON properties group shows the CityJSON version of the file, the coordinate reference system (CRS)
of the city model and whether the CityJSON file is compressed or not. The CRS field is filled according to the city
model’s metadata, if a coordinate system is defined. Nevertheless, the user can set another CRS if none is found
or if they prefer to load the layers with a different one.

The City model information group presents the metadata information contained in the file. The information is
shown in key–value pairs, while nested information is also shown and can be collapsed or expanded.

Finally, the dialog provides a number of user options which impact the loading process.

•	 The Split layer according to object type option splits features of different object types (e.g., Building and Terrain)
into different layers.

F I G U R E 4 The main dialog providing options for loading a CityJSON file

1156  |     VITALIS et al.

•	 The Load LoD option provides two choices: As Attribute, which loads different LoD geometries as individual
features and adds a lod field; or As Layers, which splits those features into individual layers.

•	 The Load semantic surfaces (as individual features) further divides city objects by semantic surface and adds a
semanticsurface field.

•	 The Style layers according to semantic surfaces adds a rule-based style to all new layers so that the features are
colored according to their semantic type (e.g., every WallSurface would be white and every RoofSurface
would be red).5

5  | E X AMPLES

In this section we provide examples of using CityJSON Loader with three open data sets:

•	 Den Haag, which contains LoD2 buildings and terrain;
•	 Helsinki, which contains LoD1 and LoD2 buildings; and
•	 a data set representing the landscape around a railway (from a data set that was originally introduced to demon-

strate a plethora of CityGML 2.0 city object types).

5.1 | Den Haag

The Den Haag data set is provided by the municipality of The Hague through its web data platform (https://denha​
ag.datap​latfo​rm.nl/#/data/756d6​fe7-f334-4ced-af13-61d61​2d92b1a) and contains buildings and the terrain for
the city. This model was produced in 2010 based on the national registration of buildings (BAG (https://zakel​ijk.
kadas​ter.nl/bag)) and areal images acquired that year. The complete data set is split across 152 tiles which contain
overall around 112,500 buildings in The Hague and neighboring municipalities.

The file tested with CityJSON Loader is a tile which contains 2,498 city objects, of which one is a TINRelief
and the remainder are Building and BuildingPart objects. It was converted from CityGML to CityJSON
using citygmtools. It contains 1,991 LoD2 geometries of MultiSurface and CompositeSurface types, with
the presence of the semantic surfaces RoofSurface, WallSurface, and GroundSurface. We used this file in
order to evaluate the functionality of the software against what is considered a “typical” 3D city model, mostly
composed of buildings and terrain with LoD2 geometries and semantic surfaces.

We loaded the data set with two different set of options: one with simple mapping (one feature per city object)
and all features loaded in one layer (Figure 5); and one with semantic surfaces mapping (one feature per semantic
surface) and features divided by object type (Figure 6). The tests show the ability of CityJSON Loader to parse a
simple 3D city model. Through the simple 2D and 3D view, and by using the attributes table, we can inspect the
3D city model’s semantic information. Both 2D and 3D identification also work.

5.2 | Helsinki

The Helsinki city information model has been developed by the municipality of Helsinki in order to enable users to
perform analyses such as calculating energy consumption and greenhouse gases (https://hri.fi/data/en_GB/datas​
et/helsi​ngin-3d-kaupu​nkimalli). It is available as open data and can be downloaded through the dedicated web
portal (https://kartta.hel.fi/3d/) or as CityGML tiles (http://3d.hel.ninja​/data/cityg​ml/). The city model contains

https://denhaag.dataplatform.nl/#/data/756d6fe7-f334-4ced-af13-61d612d92b1a
https://denhaag.dataplatform.nl/#/data/756d6fe7-f334-4ced-af13-61d612d92b1a
https://zakelijk.kadaster.nl/bag
https://zakelijk.kadaster.nl/bag
https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli
https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli
https://kartta.hel.fi/3d/
http://3d.hel.ninja/data/citygml/

     |  1157VITALIS et al.

F I G U R E 5 Screenshots of the application while initially loading the Den Haag data set with a simple mapping.
(a) In the dialog we selected the CityJSON file containing the Den Haag data set. The CRS was successfully
parsed from the relevant metadata property (Reference System). (b) Given the options we provided, only one
layer was loaded in the active project containing all city objects, regardless of their object type. (c) The attributes
table window shows that all semantic information (attributes) for the 2,498 city objects are loaded successfully

1158  |     VITALIS et al.

F I G U R E 6 Screenshots of the application while loading the Den Haag data set with mapping features by
semantic surface. (a) In the dialog we selected the CityJSON file containing the Den Haag data set. Splitting
objects by type, loading LoDs as attributes and mapping features per semantic surfaces is selected. In addition,
semantic surface formatting rules are enabled. (b) Given the options we provided, three layers were created: one
per object type (Building, BuildingPart and TINRelief). (c) The 3D view visualizes the surfaces with rule-
based coloring: white for WallSurface and red for RoofSurface

     |  1159VITALIS et al.

buildings of the area with LoD1 and LoD2 geometries. The model uses the ETRS-GK25 plane coordinate system
and the N2000 height system (namely, EPSG:3132).

For our tests, we downloaded a CityGML tile of 1,331 Building objects. The CityGML file was converted to
CityJSON using citygmltools and then tested with CityJSON Loader (Figure 7).

This CityJSON file was selected in order to validate the functionality of the software when working with multi-
LoD data sets. In this case, both LoD1 and LoD2 geometries are present, therefore the mechanism of splitting city
objects by LoD (preferably to layers) was necessary in order to properly visualize the data.

5.2.1 | Railway demo

The railway demo data set is a 3D city model that was procedurally produced in order to demonstrate most
CityGML 2.0 city object types. It contains 121 city objects of 14 different object types. It is composed of 105
MultiSurface and CompositeSurface geometries at LoD3 with semantic surfaces and utilizes the mechanism
of GeometryInstance.

We tested this CityJSON file with CityJSON Loader (Figure 8) in order to verify that the parsing of all city
object types works. In addition, this data set validates the fact that complex LoD3 geometries can be successfully
loaded in QGIS. Finally, with this file we ensured that objects with GeometryInstance representations could
be loaded correctly.

6  | DISCUSSION

In implementing this software we have faced certain challenges, the most important being the mapping of
CityJSON’s hierarchical data model to QGIS’s relational data model. We have overcome this issue by providing a
number of variable ways of loading city objects from a CityJSON model to QGIS. However, every difference in
mapping between the two data models comes with its own compromises; in some cases information might be
lost (e.g., if semantic surfaces exist in a city model but are not loaded) or data might be duplicated, resulting in
redundant information due to the repetition of city-object level attributes for multiple LoDs or semantic surfaces
(when loaded as individual features).

Our approach to solving the object-relational impedance mismatch was focused on how to import the ge-
ometries of objects so that it is optimized for the functionality provided by QGIS. This means that we intended
to make the resulting layers have the minimum set of features that would be necessary in order for a user to be
able to identify individual geometries, while maintaining as much semantic information as possible. Nevertheless,
that choice came at the expense of hierarchical relationships between city objects. We deliberately chose not to
tackle the problem of representing parent–child relationships between objects (e.g., a Building that has many
BuildingParts as children) in order to avoid adding further redundancy to the resulting layers.

In our view, CityJSON parsing was proven to be straightforward and consistent when tested against several
open data sets. However, a certain focus had to be put on the manipulation of GeometryInstance objects, for
which inevitably some more complicated transformations have to be performed.

CityJSON Loader provides support for all CityJSON geometric types, except for MultiPoint and
MultiLineString. In our experience, there are few or no CityJSON or CityGML data sets that use those geo-
metric types. Therefore, in order to remove complexity of geometry parsing, handling, and styling we assume that
all geometries in QGIS will be multi-polygons. Nevertheless, we intend to add support for points and linestrings
in the future.

From our experimentation we can conclude that QGIS 3D functionality is rather useful, especially for in-
vestigating a data set. We have tested several versions of QGIS, from 3.0 onwards, and the functionality is still

1160  |     VITALIS et al.

F I G U R E 7 Screenshots of the application while loading a tile of the Helsinki data set. (a) In the dialog we
selected the CityJSON file containing the Helsinki data set. According to the metadata, both LoD1 and LoD2
are present (for 1,331 objects). There is no CRS defined in the metadata, but we chose ETRS-GK25/N2000
(EPSG:3132) as mentioned on the data set website. (b) Given the options we provided, two layers were created,
one for the Building objects of each LoD. (c) The 3D view of LoD1 shows the prismatic geometries of the
1,331 buildings in the data set. (d) The 3D view of LoD2 shows the surfaces with rule-based coloring: white for
WallSurface and red for RoofSurface.

     |  1161VITALIS et al.

F I G U R E 8 Screenshots of the application while loading the railway data set. (a) In the dialog we selected
the CityJSON file containing the railway data set. As there is no CRS defined in the metadata and the
geographic extents seem to be arbitrary, we defined no CRS. Splitting objects by type and loading LoDs
as attributes is selected. (b) Given the options we provided, the city objects of all 14 types were loaded.
Since there is no geometry, the CityObjectGroup layer is empty, as expected. Nevertheless, all other
features were loaded successfully, including the GeometryInstance objects (mainly trees which are of
SolitaryVegetationObject type). (c) The 3D view visualizes the objects with similar colors to the 2D
view (as there are no semantic surfaces loaded). We also validated that the trees that are represented as
GeometryInstance geometries are successfully loaded and rendered

1162  |     VITALIS et al.

improving. As of the release of version 3.10, it is possible for the user to use the 3D view not only to navigate
around the geometries, but also to query specific objects by clicking on them. Furthermore, since version 3.4,
conditional formatting has been available for 3D styles, which is a rather important functionality for analyzing and
visualizing data by city object.

Nevertheless, the software does not provide support for the appearance module of CityJSON (i.e., colors and
textures by surface). This is partly due to the limitations imposed by the 3D capabilities of QGIS, which only sup-
ports simple or rule-based colored surfaces for 3D polygon layers.

Our experience of managing the distribution of the plugin through the QGIS main repositories is quite pos-
itive. As soon as an author has an OSGEO account (https://www.osgeo.org/commu​nity/getti​ng-start​ed-osgeo​/
osgeo_useri​d/) they can manage their plugin and version through the relevant web management page (https://
plugi​ns.qgis.org/). After a new version is uploaded, the plugin needs to be verified by the administrators of the
repository. In our experience, this process did not take more than a few hours, assuming that a proper changelog
was provided during the submission of a new version.

7  | CONCLUSIONS

In this article we described the design and functionality of CityJSON Loader, our open-source QGIS plugin for
loading CityJSON. We developed this software and made it available through the official QGIS plugins repository.
Furthermore, we tested the plugin by loading multiple CityJSON files in QGIS and inspecting the data loaded.

We focused on a way to solve the object-relational mapping between CityGML and QGIS’s relational model
in such a way that QGIS 3D functionality would become more efficient for the user. This means that we had
to compromise on a simpler “flattened” representation of city objects in order to bring together their essential
semantic information (e.g., object type and attributes) in one layer along with their geometry. We believe this is
an unavoidable trade-off in the process of loading 3D city model data into a traditional GIS data model, such as
QGIS, which stores data in a tabular format. While there are certain nuances to our approach that could be further
refined in the future, we believe that this approach provides the best possible way of representing 3D city model
data in a GIS.

QGIS has been proven to be a useful tool for the inspection and visualization of data. The support for CRS
in QGIS provides a powerful tool for the manipulation and visualization of data sets that utilize heterogeneous
horizontal and vertical units (e.g., in EPSG 4979).6 Furthermore, QGIS provides a plethora of processing and saving
tools, by incorporating most GRASS (https://grass.osgeo.org/) functions and the ability to transform data formats
through GDAL (https://gdal.org/). The lack of support for textures, though, still poses limitations to the extent to
which QGIS can offer visualization for some data sets.

By using CityJSON Loader against a number of open 3D city model data sets we identified a lack of metadata
information in them. For instance, the Helsinki data set was missing its coordinate system definition, which forced
us to manually identify it from the vendor’s website and specify the CRS during loading. We believe defining more
information in the metadata of a CityJSON file would provide a better description to users regarding the nature
and locality of the data. Therefore, we strongly suggest that CityJSON and CityGML data producers further focus
on the subject of metadata storage.

While QGIS and similar software (such as ArcGIS) have been proven to be robust tools for proper spatial
analysis over the last few decades, the rise in popularity of data sets with more complex data models is becoming
a challenging task. This applies not only to CityGML, but also to other formats of data such as INSPIRE data sets,
which were originally designed in UML and are also subject to object-relational impedance mismatch. Unless a
proper solution for GIS software to support more complex data structures (e.g., trees of hierarchy) is found, the
manipulation of such data will remain a cumbersome process for GIS users and researchers.

https://www.osgeo.org/community/getting-started-osgeo/osgeo_userid/
https://www.osgeo.org/community/getting-started-osgeo/osgeo_userid/
https://plugins.qgis.org/
https://plugins.qgis.org/
https://grass.osgeo.org/
https://gdal.org/

     |  1163VITALIS et al.

In the future, we intend to enrich the functionality of the plugin by providing more tools for the manipulation
of CityJSON files through QGIS. Our initial intention is to focus on the incorporation of certain processes of cjio
as QGIS processing algorithms. Furthermore, we would like to investigate the possibility of exporting data in
CityJSON from QGIS.

ACKNOWLEDG MENTS
We would like to thank Anna Labetski for assisting in the design and implementation of metadata visualization
in CityJSON Loader, as well as for her contribution to the text of this article. In addition, we would like to thank
Balazs Dukai for testing the software and providing suggestions which led us to implement more meaningful
functionality for users.

ORCID
Stelios Vitalis http://orcid.org/0000-0003-1886-0722
Ken Arroyo Ohori http://orcid.org/0000-0002-9863-0152

ENDNOTE S
	1	 Styling is only available from QGIS 3.2 onwards.

	2	 The C++ (https://qgis.org/api/3.10/) and Python (https://qgis.org/pyqgi​s/3.10/) APIs.

	3	 This feature is particularly useful for QGIS versions earlier than 3.6, where rule-based 3D styling is not available.

	4	 This functionality is only available in versions later than QGIS 3.2 due to the technical limitations of the 3.0 API.

	5	 This functionality has only been available since QGIS 3.6 which added support for rule-based 3D rendering styles.

	6	 EPSG 4979 is a 3D version of WGS 84, where horizontal coordinates are latitude and longitude in degrees, and vertical
coordinates are height in meters (https://epsg.io/4979).

R E FE R E N C E S
Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D city models: State of the art

review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889.
GDAL/OGR Contributors. (2019). GDAL/OGR geospatial data abstraction software library. Beaverton, OR: Open Source

Geospatial Foundation.
Gil, J., Varoudis, T., Karimi, K., & Penn, A. (2015). The space syntax toolkit: Integrating depthmapX and exploratory spatial

analysis workflows in QGIS. In K. Karimi, L. Vaughan, K. Sailer, G. Palaiologou, & T. Bolton (Eds.), Proceedings of the
10th International Space Syntax Symposium (pp. 148.1–148.12). London, UK: Space Syntax Laboratory, Bartlett School
of Architecture, UCL.

Ho, S., Crompvoets, J., & Stoter, J. (2018). 3D geo-information innovation in Europe's public mapping agencies: A public
value perspective. Land, 7(2), 61.

Ireland, C., Bowers, D., Newton, M., & Waugh, K. (2009). A classification of object-relational impedance mismatch. In
Proceedings of the First International Conference on Advances in Databases, Knowledge, and Data Applications. Cancún,
Mexico (pp. 36–43). Piscataway, NJ: IEEE.

ISO. (2014). Geographic information—Metadata—Part 1: Fundamentals (ISO 19115-1:2014). Geneva, Switzerland: ISO.
Keller, W. (1997). Mapping objects to tables: A pattern language. In D. Riehle (Ed.), Proceedings of the Second European

Conference on Pattern Languages of Programming (Siemens Technical Report 120/SW1/FB, pp. 1–25). Munich,
Germany: Siemens.

Labetski, A., Kumar, K., Ledoux, H., & Stoter, J. (2018). A metadata ADE for CityGML, Open Geospatial Data, Software &
Standards, 3, 16.

Lacaze, B., Dudek, J., & Picard, J. (2018). GRASS GIS software with QGIS. In N. Baghdadi, C. Mallet, & M. Zribi (Eds.), QGIS
and generic tools (pp. 67–106). Hoboken, NJ: John Wiley & Sons.

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S. (2019). CityJSON: A compact and easy-to-use
encoding of the CityGML data model. Open Geospatial Data, Software & Standards, 4, 4.

Nielsen, A., Bolding, K., Hu, F., & Trolle, D. (2017). An open source QGIS-based workflow for model application and ex-
perimentation with aquatic ecosystems. Environmental Modelling & Software, 95, 358–364.

http://orcid.org/0000-0003-1886-0722
http://orcid.org/0000-0002-9863-0152
https://qgis.org/api/3.10/
https://qgis.org/pyqgis/3.10/
https://epsg.io/4979

1164  |     VITALIS et al.

Open Geospatial Consortium. (2012). City Geography Markup Language (CityGML) Encoding Standard, version: 2.0.0.
Ose, K. (2018). Introduction to GDAL tools in QGIS. In N. Baghdadi, C. Mallet, & M. Zribi (Eds.), QGIS and generic tools

(pp. 19–65). Hoboken, NJ: John Wiley & Sons.
Passy, P., & Théry, S. (2018). The use of SAGA GIS modules in QGIS. In N. Baghdadi, C. Mallet, & M. Zribi (Eds.), QGIS and

generic tools (pp. 107–149). Hoboken, NJ: John Wiley & Sons.
QGIS Development Team. (2020). QGIS geographic information system. Beaverton, OR: Open Source Geospatial

Foundation.
Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., ⋯ Kolbe, T. H. (2018). 3DCityDB: A 3D geodata-

base solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open
Geospatial Data, Software & Standards, 3, 5.

How to cite this article: Vitalis S, Arroyo Ohori K, Stoter J. CityJSON in QGIS: Development of an
open-source plugin. Transactions in GIS. 2020;24:1147–1164. https://doi.org/10.1111/tgis.12657

https://doi.org/10.1111/tgis.12657

