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A Fast 3-D Free-surface Topography Method for
Acoustic Full-waveform Inversion
M.J. Huiskes* (Shell Global Solutions International BV), R.E. Plessix (Shell
Global Solutions International BV) & W.A. Mulder (Shell GSI BV & Delft
University of Technology)

SUMMARY
We propose a finite-difference scheme for the simulation of seismic waves interacting with 3-D free-
surface topography. The intended application is velocity model building by acoustic full-waveform
inversion (FWI). The scheme follows an immersed boundary approach for wave equations in the first-
order stress-velocity formulation, discretized on a standard staggered grid. Our scheme employs modified
1-D stencils rather than a full 3-D field wavefield extension at the free surface. Although this decreases the
accuracy, it improves the scheme's simplicity and robustness. To avoid stability problems, points close to
the zero-pressure boundary must be excluded. The scheme, and its adjoint, have been tested by tilted
geometry tests and by comparison to a finite-element method. We present a first test
result of full-waveform inversion with the new scheme.
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 Introduction

We propose a finite-difference scheme for the simulation of seismic waves interacting with 3-D free-
surface topography. The intended application is velocity model building by acoustic full-waveform
inversion (FWI). The application of existing schemes to FWI has a considerable cost, in particular due to
assumptions regarding the underlying discretization and the required number of samples per wavelength.
Also, several existing approaches are not stable under all circumstances for standard staggered grid
discretizations — the method of choice in many highly optimized FWI codes.

Approaches based on adding an air/vacuum layer with topography represented in a staircase-like fashion,
such as the direct vacuum method (e.g. Bohlen and Saenger, 2006) or the approach of Robertsson (1996)
require a relatively large number of grid points per wavelength (c.f. Lombard et al., 2008).

Grid deformation approaches are based on a transformation of the depth coordinate such that the 3-D
topography becomes flat in the transformed coordinates. This results in schemes with grid points directly
on the free surface. However, the transformed wave equation requires additional derivative operators
with respect to the transformed depth coordinate that are not present in the original wave equations.
These can be computed by wavefield interpolation (Hestholm, 2003) or by using a discretization with
additional field components per grid point, for instance, by means of a fully staggered grid (FSG). De la
Puente et al. (2014) use the deformation method with FSG. They also adopt a mimetic approach to
preserve high-order derivative approximations near the free surface.

For immersed boundary methods (Lombard et al., 2008), the free surface does not have to coincide
with the discretization grid. Wavefields are extended beyond the free surface such that regular high-
order discretization stencils may be used to approximate derivatives near the free surface. The method
described in Lombard et al. (2008) is not stable for standard staggered grids. It is implemented using a
high-order, single-grid ADER method.

Next to the mentioned finite-difference schemes, variational approaches based on finite-element dis-
cretizations are natural candidates for handling 3-D topography, if the mesh is adapted to the boundary.
The spectral-element method on hexahedra (Komatitsch and Vilotte, 1998, e.g.) may offer relatively
good performance and accuracy for application in FWI (Brossier et al., 2014). Tetrahedra offer more
gridding flexibility and are a good alternative (Zhebel et al., 2014).

For general elastic modelling, in particular the simulation of surface waves along a 3-D topography,
more expensive variational approaches or finite-difference schemes based on fully staggered grids may
be required to achieve sufficient accuracy. However, for the case of acoustic FWI, we propose a more
affordable immersed boundary scheme. It employs modified 1-D stencils near the free surface, is stable
on a standard-staggered grid (SSG) with high-order derivative stencils, and is sufficiently accurate at a
small number, 4 to 6, of grid points per wavelength.

Method

We consider the 3-D acoustic wave equation in the stress-velocity formulation. The fully second-order
formulation requires a slightly different approach and will not be discussed here. For the sake of expo-
sition, we consider the 2-D case:

∂t p = −c2
pρ(∂xvx +∂zvz), ρ ∂tvx = −∂xp, ρ ∂tvz = −∂zp. (1)

Here, p(t,x,z) is pressure as a function of timet and position(x,z), vx(t,x,z) and vz(t,x,z) are the
horizontal and vertical velocity, respectively,ρ is the density, andcp the P-wave sound speed. At
the free-surface boundary,Γ : (x(τ),z(τ)), the usual zero traction condition reduces to zero pressure,
p(x(τ),z(τ), t) = 0, in the acoustic case. We discretize(1) on a standard staggered grid. The free
surface does not have to coincide with the discretization grid.

The main challenge in formulating a finite-difference scheme is the accurate approximation of the spatial
derivatives in(1) for grid points near the free surface. To this end, we use an immersed boundary
approach in which the wavefields are extended beyond the free surface such that we can still use regular
high-order derivative stencils for the derivative approximation. In our approach, we restrict ourselves
to constructing 1-D extensions of the wavefield. The extended or virtual wavefield is only constructed
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 in the direction where we need the spatial derivative by combining the free-surface conditions with
interpolation through a number of interior values. As we consider only 1-D extensions, an exterior
grid point can sometimes be assigned several ‘virtual’ values if that point is required for derivatives in
different directions. Figure 1 illustrates the approximation procedure.

(a) (b)
Figure 1 (a) Pressure (•) derivative approximation at a particle velocity (N) grid point (↑) usinga
regular (8-th order) derivative stencil extended beyond the free surface using field values (indicated by
the squares) on both sides of the free surface (green line). (b) Pressure field extension by 1-D Taylor
expansion at the free surface from interior field values (solid) to virtual field values (dashed).

To construct the 1-D extension for an even approximation orderM = 2K, the wavefield is represented by
anM-th order Taylor expansion at the crossing of the coordinate line for the required spatial derivative
and the free surface. By assuming a 1-D wave equation in that direction, the constraints on the time
derivatives of the pressure — all derivatives zero on the free surface — can be transformed into con-
ditions on the spatial derivatives of the Taylor expansion. If we make additional assumptions of mild
curvature and local invariance of the earth attributes near the free surface, it follows that all odd deriva-
tives of the pressure field and all even derivatives of the particle velocities are zero, i.e., pressure fields
must be mirrored anti-symmetrically and velocity fields symmetrically. For general 3-D topography, the
resulting extension is strictly valid only in the direction normal to the free surface. Applying this exten-
sion along the coordinate directions introduces an additional numerical error, although the zero pressure
at the free surface is still respected.

For example, to construct a pressure extensionp(x) = ∑K−1
k=0 a2k+1x2k+1, first determine the coefficients

a from
pin = Xin(α)a, (2)

wherea =
(

a1h a3h3 . . . a2K−1h2K−1
)T

, pin has the interior field values used to perform the exten-
sion, andXin is a Vandermonde-type matrix depending onα , the relative distance, in terms of grid cell
sizeh, of the first interior grid point to the free surface. Next, we can use the resulting extension to define
an extrapolation operator,Ep(α), that maps known interior field values to the virtual values required for
the derivative approximation, through

pext = Xext(α)a = Xext(α)X−1
in (α)pin ≡ Ep(α)pin, (3)

whereXext has one row for each required virtual value.

The scheme sketched above is used for pressure extensions withα ≥ 1
2 aswell as all particle velocity

extensions. To obtain a stable scheme, a modification is required in cases where the grid point nearest to
the free surface is a pressure grid point and hasα <

1
2. Thesepressure grid points are ignored in the field

extension and instead, a pressure value one spacing further into the interior is used. The pressure at the
ignored grid points is still needed for the derivative approximation by the 1-D stencil (see below) and,
sometimes, for the derivative approximation in another coordinate direction. This can be accommodated
by reconstructing such pressure values in the same way as the virtual field values, i.e., by interpolation
with a local 1-D Taylor series based on neighbouring interior values and the boundary conditions.

The resulting procedure to estimate a spatial derivative, i.e., field approximation, followed by extrap-
olation into a virtual field, followed by application of a regular (staggered) derivative stencil, can be
reformulated as the application of a modified 1-D stencil using only interior field values. This means
the simulation near the topography can be based on the same propagator code as used for the rest of
the domain, if it is adapted to allow for grid-dependent derivative stencils. Only the modified difference
operators have to be stored. No explicit storage and application of extrapolation operators is required.

We have skipped over a number of issues. For example, for the horizontal derivatives, the coordinate
lines along which derivatives are computed may cross the free surface more than once. As a result,
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Figure 2 Sound speed (a) for a 2-D test problem. The exact solution on a grid that is periodic in the
horizontal direction, has a zero normal derivative for the pressure at the bottom and a zero value of the
pressure at the curved surface is shown in (b). The maximum error for the test problem with a time step
at half the maximum value for a discretization of order M= 4 as a function of grid spacing (c).

we may not have enough interior grid points to perform the extrapolation at the requested order. To
deal with this, we have implemented two strategies: (i) an automatic order reduction of the derivative
operator depending on the number of available grid points, and/or (ii) an elevation regularization that
flattens the topography to avoid such problematic cases. This, of course, results in a less accurate
representation of the topography. Another issue is that the pressure grid points near the free surface that
are implicitly reconstructed in the derivative approximation may be close to the free surface in one or two
directions, but further away in another direction. For the latter direction, we then need a single, explicitly
reconstructed pressure value for these ‘orphan’ grid points. We construct their values through a corrector
operator, applied after the regular pressure update step, based on the same 1-D field approximation as
before but using only the direction in which the grid point is closest to the free surface. Similarly, special
care must be taken for the source injection near such corrected grid points.

The adjoint scheme is similar to the forward scheme, but since the derivative operators are no longer
anti-symmetric, the modified stencils must be transposed explicitly. The same holds for the corrector
operator and sampling operators for source and receivers that are positioned near the free surface. The
stencil modifications do not depend on the velocity model.

Results

Figure 2 shows the sound speed for a 2-D test problem, together with the pressure at initial time. The
exact solution is a traveling wave, with a zero Dirichlet boundary condition at the surface and a zero
Neumann boundary condition at the bottom. The left and right boundary conditions are periodic. Panel
(c) shows the maximum error after travelling around once on the periodic grid for a set of grid spacings.
The dashed lines in red show the theoretical error behaviour for some ordersM. In the case of an interior
fourth-order spatial discretization (M= 4), a fourth-order error in the pressure is observed on the coarser
meshes. On finer meshes, the effects of the locally 1-D approximations in the boundary conditions start
to appear.

(a) (b) (c)

Figure 3 (a) Elevation map of a 9 by 9 km area in southeastern Europe. Elevations range from 1750 to
2200 m. (b) Shot panels for a receiver line along the line indicated in (a), left: finite-difference, right:
finite-element. (c) The same shot panels but overlayed, with our finite-difference approach shown as
wiggles and the CML-FEM method in colour in the background.
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 Figure 3 shows a comparison of our 1-D finite-difference scheme with a continuous mass-lumpedfinite
element approach (CML-FEM, Zhebel et al., 2014) for a rough 3-D topography in southeastern Europe.
Both methods were run with a 5-Hz Ricker wavelet and a constant velocity of 2500 m/s. To compare the
response of the topography we have used a source at an artificial depth of 1500 m below the surface. The
shot panels of Figure 3 as well as the wavefield snapshots (not shown) show a close agreement between
the finite-difference and finite-element approaches.

Figure 4 shows two synthetic inversion results obtained with our scheme. For both inversions, the data
were generated using a simple model with a velocity of 2000 m/s at the surface, increasing with depth
with a velocity gradient of 0.6 s−1. In the first experiment, the model has a horizontal free surface at zero
depth. In the second, the entire model is rotated around they-axis to obtain a flat free surface tilted by
30◦. In both cases, we have used an initial model with a velocity gradient of 0.58 s−1. We have inverted
for the frequency band from 2 to 5 Hz, using offsets between 4 and 12 km.

(a) (b) (c)

Figure 4 (a) Difference between initial velocity model and the velocity model used to generate the
synthetic data. (b) Velocity model update for a horizontal free surface. (c) Velocity model update for a
flat free surface tilted by 30◦ along the x-coordinate. The size of the box is the same as the domain in
(b): 10 km by 2.5 km (by 3 km out of plane).

Conclusion

We handle 3-D topography through an immersed boundary approach that is stable for standard staggered
grids as commonly used in FWI modelling codes. Since the symmetry used to obtain the 1-D field
extensions is imposed along coordinate directions rather than in direction normal to the free surface,
some accuracy is lost compared to a full 3-D extension. The resulting approach is relatively simple to
implement, affordable and, for the acoustic wave equations investigated, sufficiently accurate.
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