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Abstract

A method to optimise the fibre angle distribution of variable stiffness laminates is proposed.

The proposed method integrates a fibre angle retrieval step with a fibre angle optimisation proce-

dure. A multi-level approximation approach is used in combination with the method of successive

approximations. First, fibre angle retrieval is done by approximating the structural responses based

on the optimal stiffness distribution found using lamination parameters. The full fibre angle opti-

misation is done by updating the approximations based on the current stacking sequence. Next, the

actual fibre paths are optimised taking into account the actual size of a tow, and the maximum size

of any gap or overlap appearing. The paths are smoothened out using CATIA, and finally NURBS

are found that can be sent to the fibre placement machine for manufacturing. It is shown for a

bucking optimisation with a stiffness constraint that the number of finite element analyses reduces

significantly by starting the optimisation from the optimal stiffness distribution rather than from a

user-specified stacking sequence. Next, it is shown that updating the approximations also leads to

considerable improvements over fibre angle retrieval. Similar promising results are obtained for a

stress optimisation problem.
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1. Introduction

Today, composite materials are finding increasing application in large commercial aircraft and

the first composite-dominated planes like the B-787 or A400M are being built. Traditionally, fibres

within a layer have the same orientation, leading to constant stiffness properties. As manufacturing

technology has evolved, for example the advent of automated fibre placement machines, the fibre

orientation of a layer can be varied continuously leading to varying stiffness properties that can be

best tailored for the applied loads. These composites are called variable stiffness laminates (VSL)

in the current work.

One of the largest problems in optimising VSL, is taking manufacturability into account. To

do this, linearly varying fibre angles are used by many researchers which has given promising,

manufacturable, results [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The use of linearly

varying fibre angle per bay, for stiffened plates, has also been investigated, and again it has been

shown that varying the fibre angles leads to better performance [18, 19]. Direct parametrisation of

the tow paths using Lagrangian polynomials [20, 21, 22] Lobatto-Legendre polynomials [23, 24],

Bezier curves [25, 26, 27], splines [28, 29], B-splines surfaces [30] and NURBS (Non-Uniform

Rational B-Splines) [31]. Constant curvature paths have been extensively applied for flat panels

and for cylindrical and conical shells [32, 33, 34, 35, 36], as the curvature constraint evaluation

is simplified. Large, manufacturable, improvements in buckling load were found, but the result is

dependent of the basis functions chosen [31, 37, 20]. Hence, the total potential of VSL has not

been exploited due to the pre-specified set of possibilities. Furthermore, most methods assume

that the fibres are shifted, meaning a choice had to be made whether gaps or overlaps are allowed

during manufacturing [38]. For instance, gaps and overlaps are observed in the cylindrical shells

manufactured by Wu et al. [32] and the flat plates manufactured by Tatting and Gürdal[7].

Another approach that leads to manufacturable designs is to align the fibres in the direction

of principal stress. This has been shown to reduce stress concentrations, and can also lead to

reduced weight using the tailored fibre placement method [39, 40]. Using load paths, or a hybrid

combination of load paths and principal stress direction has also been used to design VSLs [41].

Continuous tow shearing is a new manufacturing method, leading to varying fibre angles without
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any gaps or overlaps, but with a thickness variation that is coupled with the change in fibre angle

[42, 27]. By using a genetic algorithm, coupled with a pattern-search algorithm, or using the

infinite strip method, large improvements in structural performance have been shown [43, 44]. A

more comprehensive review of optimisation strategies can be found in Ghiasi et al. [45]

For laminate analysis, studies have been conducted on capturing the influence of as-manufactured

geometry and features such as gaps, overlaps, tow-drops and variable thickness for the analysis of

VSL, by means of 3D FE models [10, 33, 46, 47, 48, 49, 50, 51, 52], analytical methods [53] and

experimental tests [50, 54, 55, 56, 57, 58]. Some experiments support the use of overlaps over the

tow-drop method for strength and buckling [9, 32, 33, 59]. In addition, experimental tests on flat

coupons where carried out by Croft et al. [54] to evaluate the effect of individual manufacturing-

induced defects, such as gaps, overlaps and twisted tows. They found that usually defects (gaps

or overlaps) that improve one mechanical property also deteriorate another one. Blom et al. [60]

proposed a method to optimise the course locations for minimum ply thickness and maximum

surface smoothness.

Other manufacturing features are considered in design, such as minimum curvature radius

[58, 61, 62, 63, 64, 65, 66] and minimum cut length [57]. A review focused on analysis meth-

ods for buckling, failure and vibration was published by Ribeiro et al. [67] and on design for

manufacturing by Lozano et al. [68].

To exploit the possibilities of VSL fully, a three-step approach has been developed. The first

step is to find the optimal stiffness distribution in terms of the lamination parameters. This is

discussed in detail in IJsselmuiden [64, 73]. The second step is to find the optimal manufacturable

fibre angle distribution, the focus of this paper [74, 75, 76]. The third step is to retrieve the fibre

paths, discussed in Blom [60]. A schematic overview of this approach is shown in Figure 1.

The lamination parameters are optimised in step one of the three-step optimisation approach,

which has the disadvantage that a fibre angle retrieval step is needed. Enumeration has been used

for constant stiffness laminates to match lamination parameters in terms of fibre angles [77]. If

the number of layers gets too high, a layer-wise optimisation approach might have advantages:

first, the outer layer(s) are optimised, then the optimisation moves inward [78]. Also a genetic

algorithm (GA) is sometimes used for variable stiffness laminates to retrieve fibre angles from the
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optimal lamination parameter distribution. Due to the computational cost of a GA, this is limited

to a reasonably small number of variables [79, 80]. An approach closely related to the three-step

approach is proposed by Wu et al., who first optimise the lamination parameters, followed by a

retrieval step using a GA and Lagrangian polynomials. However, no manufacturing constraints

are taken into account during the second step, hence the results found are not guaranteed to be

manufacturable [81]. Another approach is to try to match the in- and out-of-plane matrices as

closely as possible using a combination of a GA and a modified Shepard’s interpolation [82]. In

other work, a real retrieval step was performed: the fibre angles were optimised using a combina-

tion of a GA and a gradient based optimiser to match the optimal stiffness distribution as closely

as possible, while obeying a steering constraint [4]. Several authors have employed a streamline

analogy, also known as a fluid flow analogy, to compute continuous fibre paths from discrete fibre

angles [41, 23, 59, 69, 70, 71, 72].

In this paper, a method is discussed which combines fibre angle retrieval and fibre angle opti-

misation. First, the angles are retrieved based on the optimal stiffness distribution; next, starting

from this fibre angle distribution, fibre angle optimisation is performed. The paper is organised as

follows: the optimisation approach is explained in section 2, after which the solution procedure is

explained in section 3. The post-processing approach , where the actual fibre paths are found, is

explained in section 4. Then, two examples are worked out in more detail: a buckling optimisation

example in section 5 and a stress optimisation in section 6. The paper is concluded in section 7.

2. Optimisation approach

In structural optimisation, the minimisation of an objective response (e.g., weight or com-

pliance) subject to performance constraints (e.g., on stresses or displacements) is studied. More

generally, the worst case response, for example in the case of multiple load cases, is optimised.

Additional constraints not related to structural responses may also be imposed to guarantee certain

properties of the design such as manufacturability. The following general problem formulation is

considered:
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min
x

max( f1, f2, ..., fn)

s.t. fn+1, ..., fm ≤ 0

x ∈D

(1)

The functions fi depend on the design variables; f1 to fn denote structural responses that are

optimised and fn+1 to fm denote structural responses that are constrained. The feasible region

is denoted by D . This problem will be solved using successive approximations: one starts from

a certain fibre angle distribution, constructs the approximations based on the optimal stiffness

distribution, optimises the approximations and updates the approximations based on the new fibre

angles. This is repeated until convergence is reached.

Structural responses, such as buckling loads, stiffness, and strength, are calculated using finite

element (FE) analysis. Since each FE analysis is computationally expensive, greater efficiency

can be achieved by using structural approximations to reduce the required number of FE analyses

[83, 65]. The exact FE response f is approximated in terms of the in- and out-of-plane stiffness

matrices A and D and their reciprocals [64]:

f (1) ≈
N

∑
n=1

φ m : A−1 +φ b : D−1 +ψm : A+ψb : D+ c (2)

where the summation takes all nodes n into account, the : operator represents the Frobenius inner

product, A : B = tr(A ·BT ); φ and ψ are calculated from sensitivity analysis [84, 85]. Subscripts

m and b denote the membrane and bending parts respectively. This approximation is a generali-

sation of the linear-reciprocal approximations used in the convex linearisation method [86]. The

approximations are convex functions in stiffness space provided that φ ≥ 0, a condition that is

always satisfied by construction. The free term c equals zero for many types of responses that en-

joy homogeneity properties. In this paper, three different structural responses will be used. Their

sensitivity analysis is not given in this paper, but is given in previous work: buckling can be found

in IJsselmuiden et al. [87], stress in Khani et al. [88], and compliance in IJsselmuiden [64].

In the first step of the three-step approach, the level one approximation, eq. (2), is parametrised
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in terms of the lamination parameters. These lamination parameters are defined as:

(V1,V2,V3,V4) =

1
2∫
− 1

2

(cos(2θ(z̄)),sin(2θ(z̄)),cos(4θ(z̄)),sin(4θ(z̄)))dz̄

(W1,W2,W3,W4) = 12 ·
1
2∫
− 1

2

z̄2 · (cos(2θ(z̄)),sin(2θ(z̄)),cos(4θ(z̄)),sin(4θ(z̄)))dz̄

(3)

where z̄ denotes the normalised z-coordinate. The details of the lamination parameters optimi-

sation are omitted here, they can be found in IJsselmuiden [64]. The outcome of this step is an

optimal lamination parameter distribution: on each node the combination of lamination parameters

is feasible. Since the lamination parameters describe the stiffness of the laminate, this distribution

will be referred to as optimal stiffness distribution in the remainder.

In the second step of the three-step approach the fibre angles are the design variables. Seen

as a function of the fibre angles, the level one approximation, eq. (2), no longer has a simple

mathematical form and is not generally convex, hence, a level two approximation is constructed

based on the level one approximation in terms of the fibre angles:

f (2) ≈ f (1)0 +g ·∆θ +∆θ
T ·H ·∆θ (4)

where f (1)0 , g and H denote respectively the function value, gradient and the Gauss-Newton part of

the Hessian of the level one approximation at the approximation point. The gradient and Hessian

can be calculated starting from

f (2)(θ) = f (1)(s(θ)) (5)

where s contains the components of the stiffness matrices A and D. Differentiating this with respect

to the fibre angle θi, the ith term of the gradient is found to be

gi =
∂ f (1)

∂θi
=

∂ f (2)

∂θi
=

∂ f (1)

∂ sα

· ∂ sα

∂θi
, (6)

where sα denotes either the in- or out-of-plane stiffness matrix. Differentiating again with respect
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to fibre angle θ j, the i jth term of the Hessian is found to be

Hi j =
∂ 2 f (1)

∂θi∂θ j
=

∂ 2 f (1)

∂ sα∂ sβ

· ∂ sα

∂θi
·

∂ sβ

∂θ j
+

∂ f (1)

∂ sα

· ∂ 2sα

∂θi∂θ j
. (7)

Convexity is not guaranteed when using the exact Hessian. Convexity is guaranteed by omitting

the underlined part of equation 7, which is not guaranteed to be positive definite, and leaving the

positive semi-definite leading term, called the Gauss-Newton part. Only part of the Hessian does

not influence the validity of the approximation since a first-order approximation only has to have

equal function and gradient values at the approximation point as the approximated function.

While optimising this level two approximation, a steering constraint is introduced to ensure

the optimised laminate is manufacturable. In this paper only steering constraints are taken into

account during the optimisation: the shape of the part and the manufacturing method also have

an influence, but these are not a function of the fibre angle distribution, which is updated in the

current work. The steering is defined as the inverse of the minimal steering radius. When the

steering radius is too small, the fibres will wrinkle while being laid down. The exact value at which

this happens is material and process dependent and hence no value is assumed in the current work.

The steering is defined as

ς
2 =

2
Ω
·θ T ·L ·θ (8)

where L is the standard FEM discretisation of the Laplacian, Ω is the area enclosed, and θ denotes

the fibre angles at the nodes of an FE model. If L is taken to be the Laplacian of the complete layer,

a global steering constraint is imposed, if the element Laplacian is used, a local steering constraint

is imposed. The Laplacian of a triangular element can be calculated using

Lel =


l1 · l1T l1 · l2T l1 · l3T

l2 · l1T l2 · l2T l2 · l3T

l3 · l1T l3 · l2T l3 · l3T

 (9)

where l denotes the vector along the edge of an element. To find the Laplacian of the full plate, the

different parts have to be assembled according to general finite element routine, in the same way
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as the stiffness matrix is assembled.

The global steering constraint is the average steering over the layer, hence this can be loosely

interpreted as a measure for the number of gaps and overlaps. The local steering constraint limits

the minimal radius of curvature to ensure the machine can lay down the fibre tows without wrin-

kling. The bound on the local steering ςU is the inverse of the minimal radius of curvature needed;

for example: a maximal steering value of 2m−1, corresponds to a minimal radius of curvature of

500mm. When only local steering constraints are used, the complete optimisation problem reads,

min
θ

max( f (2)1 , f (2)2 , ..., f (2)n )

s.t. f (2)n+1, ..., f (2)m ≤ 0 i = 1, ...,N

ςe ≤ ςU e = 1, ...,E

(10)

The details on the fibre angle optimisation, including the steering constraints, can be found in

Peeters et al. [65].

3. Solution Procedure

To incorporate the information obtained from the optimal stiffness distribution from step one

of the three-step optimisation approach, the sensitivities in the first iteration when using fibre

angles as design variables are calculated from the optimal stiffness distribution. This first iteration

is called the fibre angle retrieval step. This retrieval step was previously not used, meaning the

information of the optimal stiffness distribution was not used. The fibre angle optimisation starts

afterwards: the sensitivities are updated based on the current fibre angle distribution to create

a new level one approximation which is consequently optimised. The process is repeated until

convergence, and is a full fibre angle optimisation. Convergence is defined in terms of the change

in objective function: unless specifically mentioned, a 1 ·10−3 change in objective function is used

as the convergence criterion in the current work. It is expected that the fibre angle optimisation

after fibre angle retrieval will improve the structural performance: in regions where the stiffness

distribution cannot be matched exactly, it is probably advantageous to find an optimal fibre angle

distribution rather than approximating the optimal stiffness distribution.

8



The approximation used for fibre angle optimisation is guaranteed to be convex and separable,

meaning every approximation has an optimum and the problem is not computationally expensive.

To ensure convergence to a (local) optimum, every step needs to be an improvement (i.e., reduced

objective and feasible constraints). When every step is reducing the objective while satisfying all

constraints, a local optimum will be found since the objective has physically a minimum. Even

though only a local optimum can be guaranteed, previous results starting from different initial

guesses showed little variation in performance at the optimum. [65] One possibility to guarantee

an improvement step is to make each approximation conservative, meaning it is strictly greater than

the function it approximates at the new iterate. This implies that when a finite element analysis is

done, the objective will be decreasing and all constraints are satisfied: during the optimisation the

approximations of the objective are decreasing, the constraints are satisfied and, since the exact

function values are lower than the approximations, the increase in performance is even larger,

and feasibility is conserved. To achieve conservative approximations, Svanberg proposed to add a

positive function with zero value and gradient at the approximation point to the approximations,

referred to as damping function in the remainder [89]. This damping function is scaled with a

damping factor which is adjusted to make the approximations conservative. The criterion to accept

a new iterate is less stringent: if the new iterate is an improvement, it is accepted, else it is rejected;

the damping factor is always updated. The damping function for the first level approximations is

chosen as

d(1) = ∑
n

(
An : A−1

n0 +Dn : D−1
n0 +A−1

n : An0 +D−1
n : Dn0

)
−12, (11)

where the subscript 0 denotes the value at the approximation point. The damping function for the

second level approximations is chosen as [65]

d(2)(θ) =
1
2

∆θ
T ·Hd ·∆θ , (12)

where ∆θ is the change in angles from the approximation point of the level two approximation,
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and Hd is a regularisation matrix given by

Hd =
1
s2



1 −1

−1 2 −1
. . . . . .

−1 2 −1

−1 1


+α


1 . . . 1
...

. . .
...

1 · · · 1

 , (13)

where s stands for the number of layers in the symmetric part, with α given by

α =
ε ·2 · (s−1)

s3 , (14)

where ε is a damping factor, usually chosen to be 1. The damping factor of the first level approxi-

mation is defined as

ζ1
2
= ∑

n

wn

2
·
((
||φ nm : A−1

n ||+ ||ψnm : An||
)2

+
(
||φ nb : D−1

n ||+ ||ψnb : Dn||
)2
)
. (15)

The damping factor for the second level approximation is initialised as

ζ2
2
=

1
2
·
(
gT ·Hd

−1 ·g
)
. (16)

The damping factor is updated after each iteration using a ratio between the old and optimal damp-

ing factor, given by

ζ
∗ = e

f (x∗)− f̂ (x∗)
d . (17)

The details of the damping function and damping factor can be found in Peeters et al. [65]. The

solution procedure is shown in Figure 2, and is explained in algorithm 1.

4. Post processing

The optimal fibres angles distribution has been further processed using the software for manu-

facturing analysis and optimisation of variable stiffness laminates, FIPAM (Fibre Paths for Man-
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Algorithm 1 Solution Procedure
1: start from an initial fibre angle distribution.
2: calculate the sensitivities at the optimal stiffness distribution for the first level approximation

f (1).
3: add the damping function ρ(1) ·d(1) to the first level approximation.
4: calculate the gradient and Hessian for the second level approximation f (2).
5: add the damping function ρ(2) ·d(2) to the second level approximation.
6: apply the steering constraint, build the Lagrangian L and solve the system.
7: calculate first level approximation f (1) and update damping factor of level two d(2).
8: decide if the new point is accepted: if the first level approximation f (1) is improved, the point

is accepted. If the point is accepted, continue, else go back to step 5.
9: check whether the first level approximation f (1) has converged, or the maximum number of

iterations is reached. If either of these conditions is met, continue, else return to step 4.
10: perform an FEA and update the damping factor of first level approximation d(1).
11: decide if the new point is accepted: if the FE response has improved, the point is accepted. If

the point is accepted, continue, else go back to step 3.
12: perform an FEA and calculate the sensitivities for the first level approximation f (1)

13: if FEA has converged, the optimal fibre angle distribution is found, else return to step 3.

ufacturing). This tool enables the automatic generation of fibre paths (i.e., machine trajectories),

imposing manufacturing requirements. It is integrated in CATIA V5, where each individual path is

modelled considering constraints, such as gaps and overlaps, minimum steering radius, minimum

cut length and curve smoothness, to ensure manufacturability of the outcome.

In a first step, the fibre angles for each ply are translated into continuous curves using an iter-

ative procedure where discrete segments are consecutively created following the fibre trajectories.

The procedure starts by creating a linear segment from an input starting point. The direction of

the segment is obtained by interpolation of the optimal fibre angles at this point. Ordinary Kriging

within the library of functions XonGrid Interpolation has been applied as interpolation method,

with the power variogram defined as [90]:

γ(hi j) = γ(hβ

i j) with 1≤ β ≤ 1.99 (18)

where h denotes the spatial distance between two random variables (data points), expressed by

hi j = (xi,x j) = (xi,xi +hi j) (19)
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The length of the segment (i.e., fineness of the discretisation) is a constant value given as input. The

endpoint of the segment is the starting point for the consecutive segment, where a new value for

the fibre angle is determined using the Kriging interpolant, see Figure 3. This process is repeated

iteratively until the segments reach the boundary of the part. From the resulting polylines, splines

are modelled and smoothed using CATIA commands (Spline and Curve Smooth) to comply with

the minimum turning radius constraint. The details of the smoothing operation are included in

Figure 4.

The width of each course (machine pass) can be specified and the proportion between gap and

overlap size (coverage) is controlled, shown in Figure 5. The selection of next starting points is

done iteratively based on the specified course width. First, a point is chosen, which is contained

in a parallel curve to the previous path with an offset equal to the course width. The proportion

of gaps and overlaps between the original reference and the one created from the new starting

point are computed. The position of the starting point is tuned until the required coverage is met.

This procedure is summarised in algorithm 2. The ply design resulting from following the optimal

angles may present large gaps and overlaps affecting the manufacturability of the laminate.

Algorithm 2 Modelling of continuous reference curves from vector map of fibre orientations
1: Select starting point.
2: Create segment following optimal angle at point.
3: Interpolate angle at end of segment.
4: Create new segment with the interpolated angle and the end of the previous segment as start

point
5: If curve is not finished (cover the surface) then go to step 3
6: Join the segments to create a polyline or store the points of start/end of segments to fit a curve.
7: Curve fitting. Options: 1) using the reference points as inputs, create cubic Bezier curves

through two consecutive reference points, which are joined;2) create a general Bezier curve
of n-degree using the reference points as control points; 3) use the spline command of CATIA
(creation of a NUPBS).

8: Curve smoothing: measure minimum radius of curvature and smooth the curve in case it does
not comply with the minimum turning radius.

9: Select next starting point and go to step 2. The selection of the starting points is done itera-
tively, by choosing points contained in a parallel curve to a previous reference with an offset
equal to the course width. The position of the starting point is tuned to comply with the defined
proportion between gaps and overlaps.
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In a second step, new fibre paths for manufacturing are modelled approaching the previously

defined paths. Choosing one curve as starting path, the method consists of defining a feasible

region where the next path should be placed to comply with the specifications on course width,

maximum gap and maximum overlap. The new path is created within this region trying to ap-

proach the trajectory of the closest reference curve from the first step. To create this manufac-

turable path, several equally distributed points are created on the current fibre path (initially, it is

the starting path). The number of points or distance between points is defined at the start of the

process. Distances are measured from these points to the target reference, normally to the current

fibre path. The minimum distance to the target reference is used to calculate how many fibre paths

would fit between the source current path and the target according to the course width. If there

is no space between the current path and the target reference to create a path, then that reference

is ignored and the next nearest reference is used. The feasible region where the fibre path must

be contained to comply with the manufacturing constraints is defined by two curves: one, a par-

allel curve to the current fibre path with a distance equal to the course width minus the maximum

overlap allowance, and two, a parallel offset of the course width plus the allowable gap, shown in

Figure 6. A set of control points are generated by offsetting the points created on the current path

at a distance normal to the path on the part surface (i.e., on the distance lines between current path

and reference). These points must lie inside the feasible region. For that purpose, the following

formulas have been used:

If MaxDistance−MinDistance
PathsInBetween /≥ (MaxGap+MaxOverlap) then

ControlPoint(i) =
(
(MaxGap+MaxOverlap) Distance(i)−MinDistance

MaxDistance−MinDistance
weight

+

CourseWidth−MaxOverlap
)
· p

Else if MaxDistance−MinDistance
pathsInBetween ≤MaxGap then

ControlPoint(i) =
(MaxDistance−MinDistance

pathsInBetween · Distance(i)−MinDistance
MaxDistance−MinDistance

weight
(20)

+Coursewidth
)
· p

Else ControlPoint(i) =
(MaxDistance−MinDistance

pathsInBetween · ( Distance(i)−MinDistance
MaxDistance−MinDistance

weight
−1)

+Coursewidth+maxGap
)
· p
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where MaxDistance and MinDistance denote the maximum and minimum distance between the

current path and the reference, respectively. Distance(i) is the distance to the reference of point(i)

on the current path. MaxGap and MaxOverlap are the manufacturing constraints specified for

maximum acceptable gaps and overlaps; PathsInBteween is the number of fibre paths that will be

created between the current path and the reference; p is the path number; and Weight is a factor to

decide whether giving more importance to the current path or the reference. The Weight value is

normally set to 1. Values lower than 1 will result in the fibre path closer to the reference and higher

values result in a path closer to the current path. As generally gaps are preferred over overlaps,

the formulas prioritise the presence of gaps within the allowable limits; meaning that if possible,

it will eliminate overlaps by using the maximum size of gaps permitted.

A spline is fitted through the calculated control points. The path smoothing algorithm de-

scribed for the first step is also used here to ensure the created spline satisfies the constraint on

minimum turning radius. A compromise between minimising angular deviation from the optimal

trajectories and reducing gaps, overlaps and tow drop-offs is sought. The process is repeated until

completion of the ply, using the new path as current path and the closest curve from the set of

reference curves from the first step as new target to approach. The solution procedure is further

explained in algorithm 3.
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Algorithm 3 Solution procedure to model fibre paths for manufacturing based on target approach
method

1: Input values
Set of reference curves
Manufacturing constants: gap and overlap allowance, number of tows, tow width, gap between
tows, minimum turning radius, maximum angle deviation allowed (optional)
Settings: Accuracy of distance measurements (number of points on curve) and priority (in
case not all constraints can be satisfied)

2: Select starting path (= current path)
3: Sort references according to distance to starting path and side with respect to it
4: Define direction of movement (side)
5: Find nearest reference. If Current path intersects reference (and intersections are not enabled)

then, go to next reference; else, select that reference as target
6: Measure minimum distance to target reference. Calculate Number of paths in between:

PathsInBetween= Round(MinimumDistance/CourseWidth). If PathsInBetween = 0, go to step
16; else:

7: Calculate origin and end of current path where distances will be calculated. Distances are
measured normal to current path

8: Create points on current path equally distributed along the active segment
9: Compute distances to reference measured normal to current path

10: Create control points by offsetting the points on the current path along the distance lines
between current path and reference using formulas described in eq. (20) (objective: approach
reference and stay in feasibility region)

11: Fit a spline curve through the control points
12: Split and extrapolate curve (fibre path) to cover the surface
13: Check maximum curvature and smooth new curve if necessary
14: If maximum angle deviation constraint is used, constraints on gaps and overlaps may not be

fulfilled. Analyse individual gaps/overlaps between current path and new fibre path and tune
position of fibre path if necessary to satisfy the constraint that is prioritised (either maximum
gap or maximum overlap)

15: Make Current path = new fibre path, and go to step 6
16: Calculate if ply is completed.

If reference = last reference on one side then, enable intersections (to ensure coverage of the
ply) and go to step 5
If Side has been completed then: select Starting path = Current path; change orientation (do
the other side) and go to step 5
If all references have been used then end
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5. Buckling optimisation

The first example is a singly-curved plate under compression. The buckling load of the plate is

optimised with the constraint that the axial stiffness should be at least as much as that of a quasi-

isotropic laminate of the same thickness. To have a minimisation problem, the inverse buckling

load is considered during the optimisation. Furthermore, to avoid mode jumping, the inverse of

the lowest two buckling loads are simultaneously considered using a min-max formulation. The

compliance constraint is set to avoid unstable post-buckling behaviour, which is dependent on

the overall in-plane stiffness. The buckling performance is mainly dependent on the out-of-plane

stiffness and the relative change in in-plane stiffness distribution over the plate [91]. The plate is

600 by 400mm, with a sine-shaped height difference, which is maximal 75mm in the middle. The

left edge cannot move in x-direction, while the right edge is loaded with a unit compressive force

while this edge is to remain straight (i.e., all nodes on the right edge have the same displacement in

x-direction). All edges are constrained to not move out-of-plane, and one node is extra constrained

in y-direction to suppress rigid body modes. A graphical representation can be seen in figure

7. The material properties are as follows: E1 = 154GPa, E2 = 10.8GPa, G12 = 4.02GPa and

ν12 = 0.317. The balanced layers are assumed to be next to each other, no thickness variation is

taken into account. The physical laminate has 36 layers in total, but since symmetry and balance

are imposed, only 9 design layers are part of the optimisation problem. The optimisation problem

can be formulated as
min

θ
max( f (2)1 , f (2)2 )

s.t. f (2)3 ≤ 0 i = 1, ...,N

ςe ≤ ςU e = 1, ...,E

(21)

where f (2)1 denotes the inverse of the first buckling mode, f (2)2 denotes the inverse of the sec-

ond buckling mode, and f (2)3 denotes the compliance minus the compliance of the quasi-isotropic

laminate. The steering constraint is kept general since multiple values will be used. During the

optimisation, the level two approximations are used, hence the superscript (2).

A mesh convergence study indicated that a sufficiently fine mesh is to use 24 elements in y-

direction, and 36 in x-direction, leading to 1728 triangular elements and 925 nodes in the model
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used during optimisation. Due to the symmetry of the problem, only a quarter of the plate will

be used during the optimisation, reducing the number of nodes in the optimisation to 247, and

the number of elements to 432. The complete model is used for the FE analysis and sensitivity

calculation.

In the first step, the optimal stiffness distribution is found, which has buckling loads of 2.2432

and 2.4656 times the lowest QI buckling load while the stiffness is 1.0001 times the QI stiffness.

The QI material is defined as all lamination parameters equal to zero; no lay-up is known. Since

the laminate is balanced and symmetric, the only non-zero lamination parameters are V1, V3, W1,

and W3. The optimal lamination parameters are shown in Figure 8.

5.1. Influence of initial fibre angle retrieval

The optimisation will be performed twice to assess the computational advantages of the fibre

angle retrieval step. The first time, the initial level one approximation is calculated at a user-

specified initial fibre angle distribution. The second time, the initial level one approximation is

calculated at the optimal stiffness distribution. When starting from the sensitivities of the opti-

mal stiffness distribution, the first iteration is a fibre angle retrieval step. Five level one iterations

are allowed, following previous work done by the authors [65]. Only a local steering constraint

of 3m−1, corresponding to a minimal radius of curvature of 333mm, is used for this investiga-

tion. In the following, the buckling load and stiffness values are normalised with respect to the

corresponding values of a QI laminate of the same thickness.

The results are shown in Table 1. The initial fibre angle distribution is assumed to be uniform

for all layers and nodes. The initial angle is shown in the first column. The optimal buckling load,

and number of FEAs used when no retrieval step is applied are shown in the second and third

columns. The optimal buckling load, and number of FEAs used with fibre angle retrieval activated

are shown in the fourth and fifth columns. The difference in optimal buckling load and FEAs

used between the two optimisation strategies are shown in the last two columns. The stiffness

is not shown in Table 1 to save space, but it was always equal to the QI stiffness, or slightly

higher, also only the critical buckling load is shown; the second buckling load was always close

to it but not identical. It can be seen from Table 1 that the influence of the initial fibre angles is
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limited: a maximum change of 1.2 % is observed. The solution procedure seems to be robust to

initial conditions. When using fibre angle retrieval, the number of FEAs always decreases, in most

cases it is halved. The difference in optimal buckling load due to the different initial sensitivities

is negligible, less then 1%, and may be explained by the stopping criterion in a gradient-based

algorithm.

Observing the convergence history, shown in Figure 9, the largest improvement is seen to be

made in the first level one step, which is the retrieval step. When fibre angle retrieval is used, less

iterations are needed to ’fine-tune’ the design. This could be because in the first step the stiffness

distribution is already getting to the best one based on the optimal stiffness, while when starting

from the initial fibre angle distribution, there is more fine-tuning to be done.

It is interesting to inspect the convergence of the level two optimisation. To check this, an

FEA is done after each level two update until convergence is reached. This is done for an initial

fibre angle of 1,10 and 20◦ as can be seen in Figure 10. For some cases convergence is established

fairly quickly and the 5 inner iteration limit imposed earlier is adequate. For the case of a 10◦

initial angle the convergence is slower and it is possible that more inner iterations are beneficial.

The reason the convergence is not monotonous (i.e., constantly decreasing response) is that during

level two updates, level one approximations are monitored and are guaranteed to decrease. It can

happen that the level two updates wander out of the range of validity of level one approximations

leading to non-monotone convergence of the FEA results.

A maximum improvement over QI of 60% is found when fibre angle retrieval is used on its

own. This means that about 30% of the improvement is lost compared to the optimum in terms

of lamination parameters. This is more than what Wu et al. found [81], but can be explained by

the manufacturing constraints that are imposed in the current work. The lamination parameters

after the retrieval step can be seen in Figure 11. Comparing to Figure 8, it can be seen the optimal

lamination parameters are not matched exactly, but the general trends are similar. After updating

the approximations and converging the full fibre angle optimisation, a 76% improvement is found.

The lamination parameters after the fibre angle optimisation can be seen in Figure 12. Comparing

to the lamination parameters after the fibre angle retrieval step, the differences are not large, but

these small changes do lead to a considerable improvement in performance. Thus, the best optimi-
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sation strategy seems to be to combine the fibre angle retrieval and angle optimisation. This way

a better performance is achieved while keeping the cost, in terms of number of FEAs, low.

The post-processing described in section 4 has been applied to the fibre angles from optimi-

sation to control the gaps and overlaps. The objective was to minimise the amount and size of

overlaps, keeping the size of gaps below 2 mm (a commonly used acceptance criteria in industry)

and a minimum steering radius of 333 mm. Minimising these manufacturing defects comes at the

expense of increasing the angular deviation from the structural optimal. Results are shown for

plies 1 and 7, when starting to count from the outside, and imposing a constraint on the maximum

allowable angle deviation in Table 2 and Figure 13. If no angle deviation is allowed, the fibre

path design obtained corresponds to the closest paths that approximate the optimal fibre angles,

meaning the reference paths from step 1 of the post-processing approach.

Significant improvements are obtained when this constraint is relaxed. Increasing the allowable

fibre angle deviation to 5◦ results in a reduction in the amount of overlaps, 86.0% reduction for

ply 1 as can be seen in Figure 13b, and 57.6% for ply 7, see Figure 13e, with respect to the

reference curves created by interpolation of the optimal fibre angles, shown in Figure 13a and

13d, respectively. In addition, the gap area for both plies is larger for the paths for manufacturing

than the reference paths. That is because gaps below 2 mm are acceptable and the paths for

manufacturing use more efficiently the acceptable gap size to reduce the overlaps.

Removing the constraint on angle deviation provides an upper limit to the angle deviation

necessary to nearly eliminate the presence of overlaps. The paths and analysis of gaps and overlaps

are depicted in Figure 13c for ply 1 and Figure 13f for ply 7. Note that the curves represent the

centrelines of the fibre paths, where the angular deviation constraint is applied. As the paths

have a width, there is a fibre deviation between the centreline and the inner and outer boundaries.

Therefore, an additional angle deviation error is expected when computing the manufacturing

fibre angles at the data points. Also the interpolation method introduces a small error in the form

of angular deviation from the optimal. The analysis of gaps and overlaps is performed assuming

no tow-dropping. Overlaps can be removed by dropping the tows, although triangular gaps will

appear.

19



5.2. Influence of manufacturing constraints

The influence of manufacturing constraints on how close the optimal stiffness response can be

approached is investigated. First, the optimisation is performed for different levels of the maxi-

mum local steering, there is no constraint on the global steering. The results, for a local steering

of 1m−1 up to 5m−1, are shown in Table 3, where the maximum local steering is shown in the first

column, the optimal buckling load with only fibre angle retrieval is shown in the second column,

the optimal buckling loads and stiffness are shown in columns three to five. The sixth column

lists the number of FEAs needed, the seventh column indicates the improvement obtained by full

fibre angle optimisation over only fibre angle retrieval, and the last column lists the difference in

performance with respect to the stiffness optimum. Note that the level two optimisation in the fibre

angle retrieval step was allowed to converge fully to ensure a fair comparison between the results

with and without full fibre angle optimisation.

The higher the allowed steering, the higher is the improvement in buckling load. Furthermore,

it seems that the difference obtained by performing fibre angle optimisation after the retrieval step

diminishes. This is due to the better fit that can be obtained at higher steering values.

The Pareto front trading off manufacturability versus structural performance is shown in Figure

14: the minimum turning radius represents manufacturability and the buckling load represents

performance. The Pareto front is not convex which is typical of the highly non-convex buckling

optimisation problem. It seems that initially large performance improvements can be made by

decreasing the minimum steering radius of curvature; the improvements become gradually less

significant for tighter radii. The response does seem to converge to the stiffness optimum as

expected. This shows that when manufacturing constraints are relaxed, the optimum in terms of

lamination parameters can almost be matched, certainly much closer than the values reported in

Wu et al.

As discussed earlier, the local steering constraint is imposed to guarantee a minimum radius

of curvature. This is not the only manufacturing consideration; gaps/overlaps due to fibre diver-

gence/convergence may develop. These are considered manufacturing defects and it is desirable

to minimise them. Detailed prediction of gaps and overlaps requires full simulation of the fibre-

placement process. Embedding a full simulation in the optimisation process, as is discussed in
20



section 4 and shown in Figure 13, would not be feasible. This is especially due to the additional

geometric freedom, not related to the fibre angle distribution, is available to the designer to space

the fibres in a way that best avoids gaps and overlaps. During the optimisation, we propose to

use the global steering as a surrogate measure of the extent of local defects in the laminate. A

reasonable value for the local steering, 4 m−1 corresponding to a minimal radius of curvature of

250mm, is selected and fixed. The upper bound on global steering is varied to investigate the effect

on optimal performance.

The results are shown in Table 4, where the global steering constraint is shown in the first

column, the optimal buckling load after fibre angle retrieval is shown in the second column. The

optimal buckling loads and stiffness are shown in columns three to five. The number of FEAs

is shown in the sixth column, the difference obtained by full angle optimisation is shown in the

seventh column while the last column indicates the difference with respect to the optimal stiffness

design. The lowest value used for global steering is small enough to be considered as the optimal

straight-fibre, constant stiffness, laminate. Up to 55% improvement in the buckling load can be

achieved by manufacturable steered laminates. The difference between fibre angle retrieval and

full optimisation is mostly around 20% supporting our earlier observations about the improvement

of fibre angle optimisation over only fibre angle retrieval.

6. Strength optimisation

The second example problem is the taken from Khani et al. [88]. A plate with a circular cut-

out loaded in tension is optimised for strength. The plate is 400 by 400mm, with a large circular

cut-out with a diameter of 200mm at the centre. The plate is simply supported all around, with

all edges constrained to remain straight. A graphical representation can be seen in Figure 15.

After taking the symmetry into account, the plate was discretised into 217 triangular elements

with 132 nodes. The material stiffness properties are as follows: E1 = 142.9GPa, E2 = 10.3GPa,

G12 = 7.2GPa and ν12 = 0.27. The failure is defined using the conservative omni-strain envelope

[92, 88, 93]. The total laminate has a thickness of 4.6mm, meaning there are 24 layers. As in the

previous example, the laminate is assumed the be balanced and symmetric, leading to 6 design
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layers. The optimisation problem can be formulated as

min
θ

max( f (2)1 , ..., f (2)n )

s.t. ςe ≤ ςU e = 1, ...,E
(22)

where f1 up to fn denote the stress at the different nodes, and the steering constraint is again kept

general since multiple values are used. During the optimisation, the level two approximations are

used, hence the superscript (2).

The load is chosen such that the QI design has a minimum factor of safety of 1. As in the

previous example, the QI laminate is defined by all lamination parameters equal to zero. When

performing the optimisation in terms of the lamination parameters, the optimal design has a mini-

mum factor of safety of 1.944. Only the effect of the local steering constraint will be investigated.

The optimisation will be performed for straight fibres, by setting the maximum local steering to

0.01m−1, and for local steering bounds from 1 to 3m−1. The results are shown in Table 5, where

the local steering constraint is shown in the first column. The maximum failure index after angle

retrieval and after optimisation are shown in the second and third column, the fourth column gives

the number of FEAs needed to get to the optimum, the difference from angle retrieval due to full

optimisation is shown in column six, the last column indicates the difference with respect to the

optimum stiffness distribution.

The small number of FEAs needed for the straight-fibre laminate stands out: only 4. Although

the approximations are only updated four times, there is a clear advantage in updating them. The

large increase in safety factor after the fibre angle retrieval is due to the bad matching in the vicinity

of the hole: updating the approximations makes sure the optimal fibre angle is found, as opposed

to a suboptimal lamination parameter match. The number of FEAs is low due to the limited design

space: no steering is allowed, thus not much ’fine-tuning’ can be done.

When steering is allowed, the increase in safety factor is more significant. This comes at the

cost of significantly more FEAs. Since steering is allowed, a wider design space is available to

the optimiser, and a lot of ’fine-tuning’ can be done. If the convergence criterion is chosen to be

3 · 10−3 instead of 1 · 10−3, fewer FEAs will be needed, but at the expense of reduced optimal
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performance. The results are shown in Table 6. This table has the same layout as Table 5 with one

column added where the difference with respect to the tighter convergence criterion is given.

What really stands out is that even with a relatively limited steering of 3m−1, one can already

get within 4% of the optimal stiffness distribution. This can be explained by the relatively low

load redistribution that has to be done for the stress optimisation. For buckling optimisation, all

the load is redistributed to the sides, while for the strength, the load is gently nudged away from

the cut-out, possibly because of the geometry: the cut-out is large compared to the total size of the

plate.

To see what is happening in terms of the stiffness distribution, the V1 and V3 distribution are

shown in Figure 16. The optimal stiffness distribution found is shown at the top, the lamination

parameters after the fibre angle retrieval step are shown in the middle, and the optimal fibre angle

distribution is shown in the bottom. A local steering constraint of 3m−1 is used for the fibre angle

retrieval and optimisation. In the top figures, it can be seen there is a lot of difference in stiffness

from one point to the next, which causes the stiffness distribution after the fibre angle retrieval

step to be very far away from the optimal, not knowing what places should be matched more

accurately. When looking at the stiffness distribution for the fibre angle optimum, it can be seen

that the stiffness change is smoother, and the sides and middle are matched exactly, while the part

in between looks completely different. Although the difference in stiffness distribution is very

large, the factor of safety only differs by 3%: the stiffness optimisation allows very large changes

in stiffness from one point to the next for a small increase in performance, while this is constrained

in the fibre angle optimisation.

7. Conclusion

A method to optimise the fibre angle distributions of variable stiffness laminates is proposed.

The proposed method integrates a fibre angle retrieval step with the fibre angle optimisation pro-

cedure. The fibre angles are retrieved using the approximation based on the optimal stiffness dis-

tribution, meaning there is a direct connection between the optimum in terms of the stiffness and

the optimisation of the fibre angles. Due to a steering constraint, which limits the rate of change

in fibre angles, the stiffness distribution cannot, in general, be matched exactly. Hence, fibre angle
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optimisation is performed, using successive approximations, after the fibre angle retrieval step, un-

til convergence is reached. Finally, a novel post-processing step is performed to find the exact fibre

path definitions. Two examples are used to demonstrate the approach. The first example shown is

a singly-curved plate under compression, optimised for buckling with a stiffness constraint. The

second example is a square plate with a circular hole in the centre under tension, optimised for

maximum strength. The results indicate a strong trade-off between manufacturability, measured

by the bound on steering, and performance.

The results show that by incorporating a fibre angle retrieval step, the number of FEAs goes

down significantly, usually it is halved, compared to starting from a user-specified initial stacking

sequence. While the fibre angle retrieval leads to improved numerical efficiency, the results indi-

cate that fibre angle retrieval in itself is not sufficient to obtain the best performance. Further full

fibre angle optimisation steps, in the buckling example, led on average to 15-20% improvement in

performance over fibre angle retrieval. The strength optimisation example showed that even larger

improvements are possible by performing full fibre angle optimisation, almost 35% on average.

The best strategy seems to be to combine fibre angle retrieval and angle optimisation. This way a

better performance is achieved while limiting the number of FE analyses.

Next to the fibre angle distribution optimisation, also a fibre path optimisation has been per-

formed. This bridges the gap from the optimised fibre angle distribution to manufacturing. During

the fibre path generation the tow width and a maximum size of gaps and overlaps is taken into

account. The fibre paths are smoothed using CATIA and the resulting NURBS can be sent to a

fibre placement machine for manufacturing.

Overall, integration of fibre-angle retrieval in the full fibre angle optimisation process reduces

the computational cost. Compared to only performing fibre angle retrieval, the performance has

significantly increased. This gain in efficiency and performance will allow designers to study the

trade-off between manufacturability and performance carefully and to select the most promising

design(s) depending on the relative importance of both considerations.
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[8] Tatting, B. F. and Gürdal, Z., “Analysis and design of variable stiffness composite cylinders,” .
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Figure 1. schematic overview of the three-step optimisation approach [64]
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Figure 2. schematic overview of the code for a single optimisation step

Table 1. Overview of the results using different initial sensitivities

initial optimal number of optimal number of difference difference
fibre buckling load FEAs without buckling load FEAs with in FEAs

angles [deg] without fibre fibre angle with fibre fibre angle buckling load used
angle retrieval angle retrieval

retrieval [-] retrieval retrieval [-] retrieval
0.1 1.7574 14 1.7696 8 + 0.7 % - 6
1 1.7620 21 1.7671 5 + 0.3 % - 16

10 1.7608 13 1.7486 8 - 0.7 % - 5
20 1.7628 11 1.7645 5 + 0.1 % - 6
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Figure 3. Description of algorithm to create continuous fibre paths using Kriging multivari-
ate interpolation method.

Table 2. Analysis of gaps, overlaps and angular deviations of paths for manufacturing of ply
1 and ply 7

ply 1 ply 1 ply 1 ply 7 ply 7 ply 7
Constraint: maximum allowable 0 5 not 0 5 not

angle deviation [deg] applied applied
Maximum overlap size (mm) 14.00 8.73 0.21 16.78 14.75 0.53

Maximum gap size (mm) 1.99 2.09 2.09 2.08 2.09 2.11
Total gap area (%) 0.41 3.10 4.11 1.06 2.51 4.82

Total overlap area (%) 20.46 2.87 0.0033 32.56 13.80 0.0029
Average of angular deviation 1.11 3.57 5.26 0.94 4.22 9.43

from optimal [deg]
Standard deviation of angular 0.93 1.84 3.71 0.60 1.84 6.80
deviation from optimal [deg]

Maximum angular deviation [deg] 6.15 10.91 17.65 3.32 7.67 29.47
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Figure 4. (a) Flowchart of curve smoothing approach to comply with minimum turning
radius constraint; (b) Example of smoothing operation on a flat plate with a hole.

Figure 5. Generation of two reference curves on a plate with a hole with course width =
25.4mm and different input values for gap/overlap proportion (coverage).
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Figure 6. Process rationale to create fibre paths for manufacturing approaching reference
curves.

Figure 7. Load case and boundary conditions for the bucking optimisation

Table 3. Overview of the results using different local steering constraints

maximum optimal optimal optimal optimal number difference difference
local buckling buckling buckling stiffness of FEAs w.r.t. w.r.t. optimal

steering load after load 1 load 2 [-] optimum stiffness
[m−1] fibre angle [-] [-] after fibre angle distribution

retrieval [-] retrieval
1 1.1210 1.3731 1.3735 1.0012 4 + 22.5 % - 38.8%
2 1.2894 1.5749 1.5752 1.0005 5 + 22.1 % - 29.8%
3 1.4867 1.7474 1.7474 1.0008 5 + 17.5 % - 22.1%
4 1.6024 1.8846 1.8852 1.0010 4 + 17.6 % - 16.0%
5 1.7550 1.9830 1.9835 1.0007 5 + 13.0 % - 11.6%
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(a) V1 distribution (b) V3 distribution

(c) W1 distribution (d) W3 distribution

Figure 8. optimal lamination parameters for the buckling optimisation
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Figure 9. convergence history with and without initial fibre angle retrieval step

Figure 10. FE response after each level 2 optimisation (during fibre angle retrieval)
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(a) V1 distribution (b) V3 distribution

(c) W1 distribution (d) W3 distribution

Figure 11. lamination parameters after the fibre angle retrieval step for the buckling optimi-
sation
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(a) V1 distribution (b) V3 distribution

(c) W1 distribution (d) W3 distribution

Figure 12. lamination parameters after the fibre angle optimisation for the buckling optimi-
sation
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(a) Ply 1; maximum an-
gle deviation = 0◦

(b) Ply 1; maximum an-
gle deviation = 5◦

(c) Ply 1; angle devia-
tion not constrained

(d) Ply 7; maximum an-
gle deviation = 0◦

(e) Ply 7; maximum an-
gle deviation = 5◦

(f) Ply 7; angle deviation
not constrained

Figure 13. Analysis of gaps and overlaps of fibre paths for manufacturing with minimum
steering radius = 333 mm and maximum gap size = 2 mm (overlaps represented in blue and
gaps in green)

Figure 14. normalised buckling load versus the minimal steering radius
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Table 4. Overview of the results using different global steering constraints

maximum optimal optimal optimal optimal number difference difference
global buckling buckling buckling stiffness of FEAs w.r.t. w.r.t. optimal

steering load after load 1 load 2 [-] optimum stiffness
[m−1] fibre angle [-] [-] after fibre angle distribution

retrieval [-] retrieval
0.01 1.0307 1.2132 1.2132 1.1067 6 + 17.7% - 45.9%
0.5 1.0519 1.2888 1.2888 1.0011 5 + 22.5% - 42.6%
1 1.1274 1.3992 1.3999 1.0011 4 + 24.1% - 37.6%

1.5 1.2292 1.5192 1.5196 1.0007 5 + 23.6% - 32.3%
2 1.3532 1.6330 1.6333 1.0007 5 + 20.7% - 27.2%

2.5 1.4819 1.7436 1.7441 1.0006 6 + 17.7% - 22.3%
3 1.5724 1.8034 1.8046 1.0005 4 + 14.7% - 19.6%

3.5 1.0181 1.8467 1.8481 1.0013 8 + 81.4% - 17.7%
4 1.6024 1.8846 1.8852 1.0010 4 + 17.6 % - 16.0%

Figure 15. Load case and boundary conditions for the strength optimisation

Table 5. Overview of the results using different local steering constraints using 1 · 10−3 as
stopping criterion

maximum minimum optimal number difference difference
local factor of factor of of FEAs w.r.t. w.r.t. optimal

steering safety after safety optimum stiffness
[m−1] fibre angle [-] after fibre angle distribution

retrieval [-] retrieval
0.01 1.288 1.578 4 + 22.5 % - 18.8 %

1 1.345 1.811 10 + 34.6 % - 6.8 %
2 1.357 1.830 12 + 34.9 % - 5.9 %
3 1.395 1.869 15 + 34.0 % - 3.9 %
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(a) V1 distribution for optimal stiffness (b) V3 distribution for optimal stiffness

(c) V1 distribution after fibre angle re-
trieval step for maximum local steering
of 3m−1

(d) V3 distribution after fibre angle re-
trieval step for maximum local steering
of 3m−1

(e) V1 distribution after fibre angle opti-
misation for maximum local steering of
3m−1

(f) V3 distribution after fibre angle opti-
misation for maximum local steering of
3m−1

Figure 16. in-plane lamination parameters for different cases
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Table 6. Overview of the results using different local steering constraints using 3 · 10−3 as
stopping criterion

maximum minimum optimal number difference difference difference
local factor of factor of of FEAs w.r.t. w.r.t. optimal w.r.t. tighter

steering safety after safety optimum stiffness convergence
[m−1] 1 step [-] [-] after 1 step distribution criterion

1 1.345 1.688 5 + 25.5 % - 13.2 % - 6.8 %
2 1.357 1.709 5 + 25.9 % - 12.1 % - 6.6 %
3 1.395 1.746 5 + 25.2 % - 10.2 % - 6.6 %

Appendix A. Definition of the lamination parameters

Starting from the general equations for the stiffness matrices [94], using trigonometry, the

elements of the stiffness matrix can be rewritten as [95]

Q̄11 =
1
8
(3 ·Q11 +3 ·Q22 +2 ·Q12 +4 ·Q66)+

1
2
(Q11−Q12)cos(2θ)+

1
8
(Q11 +Q22−2 ·Q12−4 ·Q66)cos(4θ)

Q̄22 =
1
8
(3 ·Q11 +3 ·Q22 +2 ·Q12 +4 ·Q66)−

1
2
(Q11−Q12)cos(2θ)+

1
8
(Q11 +Q22−2 ·Q12−4 ·Q66)cos(4θ)

Q̄12 =
1
8
(Q11 +Q22 +6 ·Q12−4 ·Q66)−

1
8
(Q11 +Q22−2 ·Q12−4 ·Q66)cos(4θ) (A.1)

Q̄66 =
1
8
(Q11 +Q22−2 ·Q12 +4 ·Q66)−

1
8
(Q11 +Q22−2 ·Q12−4 ·Q66)cos(4θ)

Q̄16 =
1
4
(Q11−Q12+)sin(2θ)+

1
8
(Q11 +Q22−2 ·Q12−4 ·Q66)sin(4θ)

Q̄26 =
1
4
(Q11−Q12+)sin(2θ)−

1
8
(Q11 +Q22−2 ·Q12−4 ·Q66)sin(4θ).43



Using these relations, the stiffness matrix of a single layer Q̄ can be written as

Q̄ = Γ0 +Γ1 · cos(2θ)+Γ2 · sin(2θ)+

Γ3 · cos(4θ)+Γ4 · sin(4θ), (A.2)

with the matrices Γi defined as

Γ0 =


U1 U4 0

U4 U1 0

0 0 U5

 Γ1 =


U2 0 0

0 −U2 0

0 0 0



Γ2 =


0 0 U2

2

0 0 U2
2

U2
2

U2
2 0

 Γ3 =


U3 −U3 0

−U3 U3 0

0 0 −U3



Γ4 =


0 0 U3

0 0 −U3

U3 −U3 0



, (A.3)

where the material invariants Ui are given by

U1 =
3 ·Q11 +3 ·Q22 +2 ·Q12 +4 ·Q66

8

U2 =
Q11−Q12

2

U3 =
Q11 +Q22−2 ·Q12−4 ·Q66

8
(A.4)

U4 =
Q11 +Q22 +6 ·Q12−4 ·Q66

8

U5 =
Q11 +Q22−2 ·Q12 +4 ·Q66

8
.
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The A- and D-matrix are calculated using

A =

h
2∫

− h
2

(Γ0 +Γ1 · cos(2θ)+Γ2 · sin(2θ)+

Γ3 · cos(4θ)+Γ4 · sin(4θ))dz

(A.5)

D =

h
2∫

− h
2

z2 (Γ0 +Γ1 · cos(2θ)+Γ2 · sin(2θ)+

Γ3 · cos(4θ)+Γ4 · sin(4θ))dz.

Introducing the normalised thickness coordinate

z̄ =
z
h
, (A.6)

the expressions in eq. (A.5) become

A = h

1
2∫

− 1
2

(Γ0 +Γ1 · cos(2θ)+Γ2 · sin(2θ)+

Γ3 · cos(4θ)+Γ4 · sin(4θ))dz̄

(A.7)

D =
h3

12

1
2∫

− 1
2

z̄2 (Γ0 +Γ1 · cos(2θ)+Γ2 · sin(2θ)+

Γ3 · cos(4θ)+Γ4 · sin(4θ))dz̄.
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The lamination parameters are defined as

(V1,V2,V3,V4) =
1
2∫
− 1

2

(cos(2θ(z̄)) ,sin(2θ(z̄)) ,cos(4θ(z̄)) ,sin(4θ(z̄)))dz̄

(W1,W2,W3,W4) =
1
2∫
− 1

2

z̄2 (cos(2θ(z̄)) ,sin(2θ(z̄)) ,cos(4θ(z̄)) ,sin(4θ(z̄)))dz̄,

. (A.8)
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